Merge tag 'edac_updates_for_v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / net / ethernet / korina.c
1 /*
2  *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5  *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6  *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7  *  Copyright 2017 Roman Yeryomin <roman@advem.lv>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
15  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
16  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
17  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
18  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
20  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
22  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  *  You should have received a copy of the  GNU General Public License along
26  *  with this program; if not, write  to the Free Software Foundation, Inc.,
27  *  675 Mass Ave, Cambridge, MA 02139, USA.
28  *
29  *  Writing to a DMA status register:
30  *
31  *  When writing to the status register, you should mask the bit you have
32  *  been testing the status register with. Both Tx and Rx DMA registers
33  *  should stick to this procedure.
34  */
35
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>
40 #include <linux/ctype.h>
41 #include <linux/types.h>
42 #include <linux/interrupt.h>
43 #include <linux/ioport.h>
44 #include <linux/iopoll.h>
45 #include <linux/in.h>
46 #include <linux/of_device.h>
47 #include <linux/of_net.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/delay.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/skbuff.h>
54 #include <linux/errno.h>
55 #include <linux/platform_device.h>
56 #include <linux/mii.h>
57 #include <linux/ethtool.h>
58 #include <linux/crc32.h>
59 #include <linux/pgtable.h>
60 #include <linux/clk.h>
61
62 #define DRV_NAME        "korina"
63 #define DRV_VERSION     "0.20"
64 #define DRV_RELDATE     "15Sep2017"
65
66 struct eth_regs {
67         u32 ethintfc;
68         u32 ethfifott;
69         u32 etharc;
70         u32 ethhash0;
71         u32 ethhash1;
72         u32 ethu0[4];           /* Reserved. */
73         u32 ethpfs;
74         u32 ethmcp;
75         u32 eth_u1[10];         /* Reserved. */
76         u32 ethspare;
77         u32 eth_u2[42];         /* Reserved. */
78         u32 ethsal0;
79         u32 ethsah0;
80         u32 ethsal1;
81         u32 ethsah1;
82         u32 ethsal2;
83         u32 ethsah2;
84         u32 ethsal3;
85         u32 ethsah3;
86         u32 ethrbc;
87         u32 ethrpc;
88         u32 ethrupc;
89         u32 ethrfc;
90         u32 ethtbc;
91         u32 ethgpf;
92         u32 eth_u9[50];         /* Reserved. */
93         u32 ethmac1;
94         u32 ethmac2;
95         u32 ethipgt;
96         u32 ethipgr;
97         u32 ethclrt;
98         u32 ethmaxf;
99         u32 eth_u10;            /* Reserved. */
100         u32 ethmtest;
101         u32 miimcfg;
102         u32 miimcmd;
103         u32 miimaddr;
104         u32 miimwtd;
105         u32 miimrdd;
106         u32 miimind;
107         u32 eth_u11;            /* Reserved. */
108         u32 eth_u12;            /* Reserved. */
109         u32 ethcfsa0;
110         u32 ethcfsa1;
111         u32 ethcfsa2;
112 };
113
114 /* Ethernet interrupt registers */
115 #define ETH_INT_FC_EN           BIT(0)
116 #define ETH_INT_FC_ITS          BIT(1)
117 #define ETH_INT_FC_RIP          BIT(2)
118 #define ETH_INT_FC_JAM          BIT(3)
119 #define ETH_INT_FC_OVR          BIT(4)
120 #define ETH_INT_FC_UND          BIT(5)
121 #define ETH_INT_FC_IOC          0x000000c0
122
123 /* Ethernet FIFO registers */
124 #define ETH_FIFI_TT_TTH_BIT     0
125 #define ETH_FIFO_TT_TTH         0x0000007f
126
127 /* Ethernet ARC/multicast registers */
128 #define ETH_ARC_PRO             BIT(0)
129 #define ETH_ARC_AM              BIT(1)
130 #define ETH_ARC_AFM             BIT(2)
131 #define ETH_ARC_AB              BIT(3)
132
133 /* Ethernet SAL registers */
134 #define ETH_SAL_BYTE_5          0x000000ff
135 #define ETH_SAL_BYTE_4          0x0000ff00
136 #define ETH_SAL_BYTE_3          0x00ff0000
137 #define ETH_SAL_BYTE_2          0xff000000
138
139 /* Ethernet SAH registers */
140 #define ETH_SAH_BYTE1           0x000000ff
141 #define ETH_SAH_BYTE0           0x0000ff00
142
143 /* Ethernet GPF register */
144 #define ETH_GPF_PTV             0x0000ffff
145
146 /* Ethernet PFG register */
147 #define ETH_PFS_PFD             BIT(0)
148
149 /* Ethernet CFSA[0-3] registers */
150 #define ETH_CFSA0_CFSA4         0x000000ff
151 #define ETH_CFSA0_CFSA5         0x0000ff00
152 #define ETH_CFSA1_CFSA2         0x000000ff
153 #define ETH_CFSA1_CFSA3         0x0000ff00
154 #define ETH_CFSA1_CFSA0         0x000000ff
155 #define ETH_CFSA1_CFSA1         0x0000ff00
156
157 /* Ethernet MAC1 registers */
158 #define ETH_MAC1_RE             BIT(0)
159 #define ETH_MAC1_PAF            BIT(1)
160 #define ETH_MAC1_RFC            BIT(2)
161 #define ETH_MAC1_TFC            BIT(3)
162 #define ETH_MAC1_LB             BIT(4)
163 #define ETH_MAC1_MR             BIT(31)
164
165 /* Ethernet MAC2 registers */
166 #define ETH_MAC2_FD             BIT(0)
167 #define ETH_MAC2_FLC            BIT(1)
168 #define ETH_MAC2_HFE            BIT(2)
169 #define ETH_MAC2_DC             BIT(3)
170 #define ETH_MAC2_CEN            BIT(4)
171 #define ETH_MAC2_PE             BIT(5)
172 #define ETH_MAC2_VPE            BIT(6)
173 #define ETH_MAC2_APE            BIT(7)
174 #define ETH_MAC2_PPE            BIT(8)
175 #define ETH_MAC2_LPE            BIT(9)
176 #define ETH_MAC2_NB             BIT(12)
177 #define ETH_MAC2_BP             BIT(13)
178 #define ETH_MAC2_ED             BIT(14)
179
180 /* Ethernet IPGT register */
181 #define ETH_IPGT                0x0000007f
182
183 /* Ethernet IPGR registers */
184 #define ETH_IPGR_IPGR2          0x0000007f
185 #define ETH_IPGR_IPGR1          0x00007f00
186
187 /* Ethernet CLRT registers */
188 #define ETH_CLRT_MAX_RET        0x0000000f
189 #define ETH_CLRT_COL_WIN        0x00003f00
190
191 /* Ethernet MAXF register */
192 #define ETH_MAXF                0x0000ffff
193
194 /* Ethernet test registers */
195 #define ETH_TEST_REG            BIT(2)
196 #define ETH_MCP_DIV             0x000000ff
197
198 /* MII registers */
199 #define ETH_MII_CFG_RSVD        0x0000000c
200 #define ETH_MII_CMD_RD          BIT(0)
201 #define ETH_MII_CMD_SCN         BIT(1)
202 #define ETH_MII_REG_ADDR        0x0000001f
203 #define ETH_MII_PHY_ADDR        0x00001f00
204 #define ETH_MII_WTD_DATA        0x0000ffff
205 #define ETH_MII_RDD_DATA        0x0000ffff
206 #define ETH_MII_IND_BSY         BIT(0)
207 #define ETH_MII_IND_SCN         BIT(1)
208 #define ETH_MII_IND_NV          BIT(2)
209
210 /* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
211 #define ETH_RX_FD               BIT(0)
212 #define ETH_RX_LD               BIT(1)
213 #define ETH_RX_ROK              BIT(2)
214 #define ETH_RX_FM               BIT(3)
215 #define ETH_RX_MP               BIT(4)
216 #define ETH_RX_BP               BIT(5)
217 #define ETH_RX_VLT              BIT(6)
218 #define ETH_RX_CF               BIT(7)
219 #define ETH_RX_OVR              BIT(8)
220 #define ETH_RX_CRC              BIT(9)
221 #define ETH_RX_CV               BIT(10)
222 #define ETH_RX_DB               BIT(11)
223 #define ETH_RX_LE               BIT(12)
224 #define ETH_RX_LOR              BIT(13)
225 #define ETH_RX_CES              BIT(14)
226 #define ETH_RX_LEN_BIT          16
227 #define ETH_RX_LEN              0xffff0000
228
229 #define ETH_TX_FD               BIT(0)
230 #define ETH_TX_LD               BIT(1)
231 #define ETH_TX_OEN              BIT(2)
232 #define ETH_TX_PEN              BIT(3)
233 #define ETH_TX_CEN              BIT(4)
234 #define ETH_TX_HEN              BIT(5)
235 #define ETH_TX_TOK              BIT(6)
236 #define ETH_TX_MP               BIT(7)
237 #define ETH_TX_BP               BIT(8)
238 #define ETH_TX_UND              BIT(9)
239 #define ETH_TX_OF               BIT(10)
240 #define ETH_TX_ED               BIT(11)
241 #define ETH_TX_EC               BIT(12)
242 #define ETH_TX_LC               BIT(13)
243 #define ETH_TX_TD               BIT(14)
244 #define ETH_TX_CRC              BIT(15)
245 #define ETH_TX_LE               BIT(16)
246 #define ETH_TX_CC               0x001E0000
247
248 /* DMA descriptor (in physical memory). */
249 struct dma_desc {
250         u32 control;                    /* Control. use DMAD_* */
251         u32 ca;                         /* Current Address. */
252         u32 devcs;                      /* Device control and status. */
253         u32 link;                       /* Next descriptor in chain. */
254 };
255
256 #define DMA_DESC_COUNT_BIT              0
257 #define DMA_DESC_COUNT_MSK              0x0003ffff
258 #define DMA_DESC_DS_BIT                 20
259 #define DMA_DESC_DS_MSK                 0x00300000
260
261 #define DMA_DESC_DEV_CMD_BIT            22
262 #define DMA_DESC_DEV_CMD_MSK            0x01c00000
263
264 /* DMA descriptors interrupts */
265 #define DMA_DESC_COF                    BIT(25) /* Chain on finished */
266 #define DMA_DESC_COD                    BIT(26) /* Chain on done */
267 #define DMA_DESC_IOF                    BIT(27) /* Interrupt on finished */
268 #define DMA_DESC_IOD                    BIT(28) /* Interrupt on done */
269 #define DMA_DESC_TERM                   BIT(29) /* Terminated */
270 #define DMA_DESC_DONE                   BIT(30) /* Done */
271 #define DMA_DESC_FINI                   BIT(31) /* Finished */
272
273 /* DMA register (within Internal Register Map).  */
274 struct dma_reg {
275         u32 dmac;               /* Control. */
276         u32 dmas;               /* Status. */
277         u32 dmasm;              /* Mask. */
278         u32 dmadptr;            /* Descriptor pointer. */
279         u32 dmandptr;           /* Next descriptor pointer. */
280 };
281
282 /* DMA channels specific registers */
283 #define DMA_CHAN_RUN_BIT                BIT(0)
284 #define DMA_CHAN_DONE_BIT               BIT(1)
285 #define DMA_CHAN_MODE_BIT               BIT(2)
286 #define DMA_CHAN_MODE_MSK               0x0000000c
287 #define  DMA_CHAN_MODE_AUTO             0
288 #define  DMA_CHAN_MODE_BURST            1
289 #define  DMA_CHAN_MODE_XFRT             2
290 #define  DMA_CHAN_MODE_RSVD             3
291 #define DMA_CHAN_ACT_BIT                BIT(4)
292
293 /* DMA status registers */
294 #define DMA_STAT_FINI                   BIT(0)
295 #define DMA_STAT_DONE                   BIT(1)
296 #define DMA_STAT_CHAIN                  BIT(2)
297 #define DMA_STAT_ERR                    BIT(3)
298 #define DMA_STAT_HALT                   BIT(4)
299
300 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
301                                    ((dev)->dev_addr[1]))
302 #define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
303                                    ((dev)->dev_addr[3] << 16) | \
304                                    ((dev)->dev_addr[4] << 8)  | \
305                                    ((dev)->dev_addr[5]))
306
307 #define MII_CLOCK       1250000 /* no more than 2.5MHz */
308
309 /* the following must be powers of two */
310 #define KORINA_NUM_RDS  64  /* number of receive descriptors */
311 #define KORINA_NUM_TDS  64  /* number of transmit descriptors */
312
313 /* KORINA_RBSIZE is the hardware's default maximum receive
314  * frame size in bytes. Having this hardcoded means that there
315  * is no support for MTU sizes greater than 1500. */
316 #define KORINA_RBSIZE   1536 /* size of one resource buffer = Ether MTU */
317 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
318 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
319 #define RD_RING_SIZE    (KORINA_NUM_RDS * sizeof(struct dma_desc))
320 #define TD_RING_SIZE    (KORINA_NUM_TDS * sizeof(struct dma_desc))
321
322 #define TX_TIMEOUT      (6000 * HZ / 1000)
323
324 enum chain_status {
325         desc_filled,
326         desc_is_empty
327 };
328
329 #define DMA_COUNT(count)        ((count) & DMA_DESC_COUNT_MSK)
330 #define IS_DMA_FINISHED(X)      (((X) & (DMA_DESC_FINI)) != 0)
331 #define IS_DMA_DONE(X)          (((X) & (DMA_DESC_DONE)) != 0)
332 #define RCVPKT_LENGTH(X)        (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
333
334 /* Information that need to be kept for each board. */
335 struct korina_private {
336         struct eth_regs __iomem *eth_regs;
337         struct dma_reg __iomem *rx_dma_regs;
338         struct dma_reg __iomem *tx_dma_regs;
339         struct dma_desc *td_ring; /* transmit descriptor ring */
340         struct dma_desc *rd_ring; /* receive descriptor ring  */
341         dma_addr_t td_dma;
342         dma_addr_t rd_dma;
343
344         struct sk_buff *tx_skb[KORINA_NUM_TDS];
345         struct sk_buff *rx_skb[KORINA_NUM_RDS];
346
347         dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
348         dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
349
350         int rx_next_done;
351         int rx_chain_head;
352         int rx_chain_tail;
353         enum chain_status rx_chain_status;
354
355         int tx_next_done;
356         int tx_chain_head;
357         int tx_chain_tail;
358         enum chain_status tx_chain_status;
359         int tx_count;
360         int tx_full;
361
362         int rx_irq;
363         int tx_irq;
364
365         spinlock_t lock;        /* NIC xmit lock */
366
367         int dma_halt_cnt;
368         int dma_run_cnt;
369         struct napi_struct napi;
370         struct timer_list media_check_timer;
371         struct mii_if_info mii_if;
372         struct work_struct restart_task;
373         struct net_device *dev;
374         struct device *dmadev;
375         int mii_clock_freq;
376 };
377
378 static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
379 {
380         return lp->td_dma + (idx * sizeof(struct dma_desc));
381 }
382
383 static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
384 {
385         return lp->rd_dma + (idx * sizeof(struct dma_desc));
386 }
387
388 static inline void korina_abort_dma(struct net_device *dev,
389                                         struct dma_reg *ch)
390 {
391         if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
392                 writel(0x10, &ch->dmac);
393
394                 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
395                         netif_trans_update(dev);
396
397                 writel(0, &ch->dmas);
398         }
399
400         writel(0, &ch->dmadptr);
401         writel(0, &ch->dmandptr);
402 }
403
404 static void korina_abort_tx(struct net_device *dev)
405 {
406         struct korina_private *lp = netdev_priv(dev);
407
408         korina_abort_dma(dev, lp->tx_dma_regs);
409 }
410
411 static void korina_abort_rx(struct net_device *dev)
412 {
413         struct korina_private *lp = netdev_priv(dev);
414
415         korina_abort_dma(dev, lp->rx_dma_regs);
416 }
417
418 /* transmit packet */
419 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
420 {
421         struct korina_private *lp = netdev_priv(dev);
422         u32 chain_prev, chain_next;
423         unsigned long flags;
424         struct dma_desc *td;
425         dma_addr_t ca;
426         u32 length;
427         int idx;
428
429         spin_lock_irqsave(&lp->lock, flags);
430
431         idx = lp->tx_chain_tail;
432         td = &lp->td_ring[idx];
433
434         /* stop queue when full, drop pkts if queue already full */
435         if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
436                 lp->tx_full = 1;
437
438                 if (lp->tx_count == (KORINA_NUM_TDS - 2))
439                         netif_stop_queue(dev);
440                 else
441                         goto drop_packet;
442         }
443
444         lp->tx_count++;
445
446         lp->tx_skb[idx] = skb;
447
448         length = skb->len;
449
450         /* Setup the transmit descriptor. */
451         ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
452         if (dma_mapping_error(lp->dmadev, ca))
453                 goto drop_packet;
454
455         lp->tx_skb_dma[idx] = ca;
456         td->ca = ca;
457
458         chain_prev = (idx - 1) & KORINA_TDS_MASK;
459         chain_next = (idx + 1) & KORINA_TDS_MASK;
460
461         if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
462                 if (lp->tx_chain_status == desc_is_empty) {
463                         /* Update tail */
464                         td->control = DMA_COUNT(length) |
465                                         DMA_DESC_COF | DMA_DESC_IOF;
466                         /* Move tail */
467                         lp->tx_chain_tail = chain_next;
468                         /* Write to NDPTR */
469                         writel(korina_tx_dma(lp, lp->tx_chain_head),
470                                &lp->tx_dma_regs->dmandptr);
471                         /* Move head to tail */
472                         lp->tx_chain_head = lp->tx_chain_tail;
473                 } else {
474                         /* Update tail */
475                         td->control = DMA_COUNT(length) |
476                                         DMA_DESC_COF | DMA_DESC_IOF;
477                         /* Link to prev */
478                         lp->td_ring[chain_prev].control &=
479                                         ~DMA_DESC_COF;
480                         /* Link to prev */
481                         lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
482                         /* Move tail */
483                         lp->tx_chain_tail = chain_next;
484                         /* Write to NDPTR */
485                         writel(korina_tx_dma(lp, lp->tx_chain_head),
486                                &lp->tx_dma_regs->dmandptr);
487                         /* Move head to tail */
488                         lp->tx_chain_head = lp->tx_chain_tail;
489                         lp->tx_chain_status = desc_is_empty;
490                 }
491         } else {
492                 if (lp->tx_chain_status == desc_is_empty) {
493                         /* Update tail */
494                         td->control = DMA_COUNT(length) |
495                                         DMA_DESC_COF | DMA_DESC_IOF;
496                         /* Move tail */
497                         lp->tx_chain_tail = chain_next;
498                         lp->tx_chain_status = desc_filled;
499                 } else {
500                         /* Update tail */
501                         td->control = DMA_COUNT(length) |
502                                         DMA_DESC_COF | DMA_DESC_IOF;
503                         lp->td_ring[chain_prev].control &=
504                                         ~DMA_DESC_COF;
505                         lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
506                         lp->tx_chain_tail = chain_next;
507                 }
508         }
509
510         netif_trans_update(dev);
511         spin_unlock_irqrestore(&lp->lock, flags);
512
513         return NETDEV_TX_OK;
514
515 drop_packet:
516         dev->stats.tx_dropped++;
517         dev_kfree_skb_any(skb);
518         spin_unlock_irqrestore(&lp->lock, flags);
519
520         return NETDEV_TX_OK;
521 }
522
523 static int korina_mdio_wait(struct korina_private *lp)
524 {
525         u32 value;
526
527         return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
528                                          value, value & ETH_MII_IND_BSY,
529                                          1, 1000);
530 }
531
532 static int korina_mdio_read(struct net_device *dev, int phy, int reg)
533 {
534         struct korina_private *lp = netdev_priv(dev);
535         int ret;
536
537         ret = korina_mdio_wait(lp);
538         if (ret < 0)
539                 return ret;
540
541         writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
542         writel(1, &lp->eth_regs->miimcmd);
543
544         ret = korina_mdio_wait(lp);
545         if (ret < 0)
546                 return ret;
547
548         if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
549                 return -EINVAL;
550
551         ret = readl(&lp->eth_regs->miimrdd);
552         writel(0, &lp->eth_regs->miimcmd);
553         return ret;
554 }
555
556 static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
557 {
558         struct korina_private *lp = netdev_priv(dev);
559
560         if (korina_mdio_wait(lp))
561                 return;
562
563         writel(0, &lp->eth_regs->miimcmd);
564         writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
565         writel(val, &lp->eth_regs->miimwtd);
566 }
567
568 /* Ethernet Rx DMA interrupt */
569 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
570 {
571         struct net_device *dev = dev_id;
572         struct korina_private *lp = netdev_priv(dev);
573         u32 dmas, dmasm;
574         irqreturn_t retval;
575
576         dmas = readl(&lp->rx_dma_regs->dmas);
577         if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
578                 dmasm = readl(&lp->rx_dma_regs->dmasm);
579                 writel(dmasm | (DMA_STAT_DONE |
580                                 DMA_STAT_HALT | DMA_STAT_ERR),
581                                 &lp->rx_dma_regs->dmasm);
582
583                 napi_schedule(&lp->napi);
584
585                 if (dmas & DMA_STAT_ERR)
586                         printk(KERN_ERR "%s: DMA error\n", dev->name);
587
588                 retval = IRQ_HANDLED;
589         } else
590                 retval = IRQ_NONE;
591
592         return retval;
593 }
594
595 static int korina_rx(struct net_device *dev, int limit)
596 {
597         struct korina_private *lp = netdev_priv(dev);
598         struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
599         struct sk_buff *skb, *skb_new;
600         u32 devcs, pkt_len, dmas;
601         dma_addr_t ca;
602         int count;
603
604         for (count = 0; count < limit; count++) {
605                 skb = lp->rx_skb[lp->rx_next_done];
606                 skb_new = NULL;
607
608                 devcs = rd->devcs;
609
610                 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
611                         break;
612
613                 /* check that this is a whole packet
614                  * WARNING: DMA_FD bit incorrectly set
615                  * in Rc32434 (errata ref #077) */
616                 if (!(devcs & ETH_RX_LD))
617                         goto next;
618
619                 if (!(devcs & ETH_RX_ROK)) {
620                         /* Update statistics counters */
621                         dev->stats.rx_errors++;
622                         dev->stats.rx_dropped++;
623                         if (devcs & ETH_RX_CRC)
624                                 dev->stats.rx_crc_errors++;
625                         if (devcs & ETH_RX_LE)
626                                 dev->stats.rx_length_errors++;
627                         if (devcs & ETH_RX_OVR)
628                                 dev->stats.rx_fifo_errors++;
629                         if (devcs & ETH_RX_CV)
630                                 dev->stats.rx_frame_errors++;
631                         if (devcs & ETH_RX_CES)
632                                 dev->stats.rx_frame_errors++;
633
634                         goto next;
635                 }
636
637                 /* Malloc up new buffer. */
638                 skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
639                 if (!skb_new)
640                         break;
641
642                 ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
643                                     DMA_FROM_DEVICE);
644                 if (dma_mapping_error(lp->dmadev, ca)) {
645                         dev_kfree_skb_any(skb_new);
646                         break;
647                 }
648
649                 pkt_len = RCVPKT_LENGTH(devcs);
650                 dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
651                                  pkt_len, DMA_FROM_DEVICE);
652
653                 /* Do not count the CRC */
654                 skb_put(skb, pkt_len - 4);
655                 skb->protocol = eth_type_trans(skb, dev);
656
657                 /* Pass the packet to upper layers */
658                 napi_gro_receive(&lp->napi, skb);
659                 dev->stats.rx_packets++;
660                 dev->stats.rx_bytes += pkt_len;
661
662                 /* Update the mcast stats */
663                 if (devcs & ETH_RX_MP)
664                         dev->stats.multicast++;
665
666                 lp->rx_skb[lp->rx_next_done] = skb_new;
667                 lp->rx_skb_dma[lp->rx_next_done] = ca;
668
669 next:
670                 rd->devcs = 0;
671
672                 /* Restore descriptor's curr_addr */
673                 rd->ca = lp->rx_skb_dma[lp->rx_next_done];
674
675                 rd->control = DMA_COUNT(KORINA_RBSIZE) |
676                         DMA_DESC_COD | DMA_DESC_IOD;
677                 lp->rd_ring[(lp->rx_next_done - 1) &
678                         KORINA_RDS_MASK].control &=
679                         ~DMA_DESC_COD;
680
681                 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
682                 rd = &lp->rd_ring[lp->rx_next_done];
683                 writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
684         }
685
686         dmas = readl(&lp->rx_dma_regs->dmas);
687
688         if (dmas & DMA_STAT_HALT) {
689                 writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
690                        &lp->rx_dma_regs->dmas);
691
692                 lp->dma_halt_cnt++;
693                 rd->devcs = 0;
694                 rd->ca = lp->rx_skb_dma[lp->rx_next_done];
695                 writel(korina_rx_dma(lp, rd - lp->rd_ring),
696                        &lp->rx_dma_regs->dmandptr);
697         }
698
699         return count;
700 }
701
702 static int korina_poll(struct napi_struct *napi, int budget)
703 {
704         struct korina_private *lp =
705                 container_of(napi, struct korina_private, napi);
706         struct net_device *dev = lp->dev;
707         int work_done;
708
709         work_done = korina_rx(dev, budget);
710         if (work_done < budget) {
711                 napi_complete_done(napi, work_done);
712
713                 writel(readl(&lp->rx_dma_regs->dmasm) &
714                         ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
715                         &lp->rx_dma_regs->dmasm);
716         }
717         return work_done;
718 }
719
720 /*
721  * Set or clear the multicast filter for this adaptor.
722  */
723 static void korina_multicast_list(struct net_device *dev)
724 {
725         struct korina_private *lp = netdev_priv(dev);
726         unsigned long flags;
727         struct netdev_hw_addr *ha;
728         u32 recognise = ETH_ARC_AB;     /* always accept broadcasts */
729
730         /* Set promiscuous mode */
731         if (dev->flags & IFF_PROMISC)
732                 recognise |= ETH_ARC_PRO;
733
734         else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
735                 /* All multicast and broadcast */
736                 recognise |= ETH_ARC_AM;
737
738         /* Build the hash table */
739         if (netdev_mc_count(dev) > 4) {
740                 u16 hash_table[4] = { 0 };
741                 u32 crc;
742
743                 netdev_for_each_mc_addr(ha, dev) {
744                         crc = ether_crc_le(6, ha->addr);
745                         crc >>= 26;
746                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
747                 }
748                 /* Accept filtered multicast */
749                 recognise |= ETH_ARC_AFM;
750
751                 /* Fill the MAC hash tables with their values */
752                 writel((u32)(hash_table[1] << 16 | hash_table[0]),
753                                         &lp->eth_regs->ethhash0);
754                 writel((u32)(hash_table[3] << 16 | hash_table[2]),
755                                         &lp->eth_regs->ethhash1);
756         }
757
758         spin_lock_irqsave(&lp->lock, flags);
759         writel(recognise, &lp->eth_regs->etharc);
760         spin_unlock_irqrestore(&lp->lock, flags);
761 }
762
763 static void korina_tx(struct net_device *dev)
764 {
765         struct korina_private *lp = netdev_priv(dev);
766         struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
767         u32 devcs;
768         u32 dmas;
769
770         spin_lock(&lp->lock);
771
772         /* Process all desc that are done */
773         while (IS_DMA_FINISHED(td->control)) {
774                 if (lp->tx_full == 1) {
775                         netif_wake_queue(dev);
776                         lp->tx_full = 0;
777                 }
778
779                 devcs = lp->td_ring[lp->tx_next_done].devcs;
780                 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
781                                 (ETH_TX_FD | ETH_TX_LD)) {
782                         dev->stats.tx_errors++;
783                         dev->stats.tx_dropped++;
784
785                         /* Should never happen */
786                         printk(KERN_ERR "%s: split tx ignored\n",
787                                                         dev->name);
788                 } else if (devcs & ETH_TX_TOK) {
789                         dev->stats.tx_packets++;
790                         dev->stats.tx_bytes +=
791                                         lp->tx_skb[lp->tx_next_done]->len;
792                 } else {
793                         dev->stats.tx_errors++;
794                         dev->stats.tx_dropped++;
795
796                         /* Underflow */
797                         if (devcs & ETH_TX_UND)
798                                 dev->stats.tx_fifo_errors++;
799
800                         /* Oversized frame */
801                         if (devcs & ETH_TX_OF)
802                                 dev->stats.tx_aborted_errors++;
803
804                         /* Excessive deferrals */
805                         if (devcs & ETH_TX_ED)
806                                 dev->stats.tx_carrier_errors++;
807
808                         /* Collisions: medium busy */
809                         if (devcs & ETH_TX_EC)
810                                 dev->stats.collisions++;
811
812                         /* Late collision */
813                         if (devcs & ETH_TX_LC)
814                                 dev->stats.tx_window_errors++;
815                 }
816
817                 /* We must always free the original skb */
818                 if (lp->tx_skb[lp->tx_next_done]) {
819                         dma_unmap_single(lp->dmadev,
820                                          lp->tx_skb_dma[lp->tx_next_done],
821                                          lp->tx_skb[lp->tx_next_done]->len,
822                                          DMA_TO_DEVICE);
823                         dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
824                         lp->tx_skb[lp->tx_next_done] = NULL;
825                 }
826
827                 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
828                 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
829                 lp->td_ring[lp->tx_next_done].link = 0;
830                 lp->td_ring[lp->tx_next_done].ca = 0;
831                 lp->tx_count--;
832
833                 /* Go on to next transmission */
834                 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
835                 td = &lp->td_ring[lp->tx_next_done];
836
837         }
838
839         /* Clear the DMA status register */
840         dmas = readl(&lp->tx_dma_regs->dmas);
841         writel(~dmas, &lp->tx_dma_regs->dmas);
842
843         writel(readl(&lp->tx_dma_regs->dmasm) &
844                         ~(DMA_STAT_FINI | DMA_STAT_ERR),
845                         &lp->tx_dma_regs->dmasm);
846
847         spin_unlock(&lp->lock);
848 }
849
850 static irqreturn_t
851 korina_tx_dma_interrupt(int irq, void *dev_id)
852 {
853         struct net_device *dev = dev_id;
854         struct korina_private *lp = netdev_priv(dev);
855         u32 dmas, dmasm;
856         irqreturn_t retval;
857
858         dmas = readl(&lp->tx_dma_regs->dmas);
859
860         if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
861                 dmasm = readl(&lp->tx_dma_regs->dmasm);
862                 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
863                                 &lp->tx_dma_regs->dmasm);
864
865                 korina_tx(dev);
866
867                 if (lp->tx_chain_status == desc_filled &&
868                         (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
869                         writel(korina_tx_dma(lp, lp->tx_chain_head),
870                                &lp->tx_dma_regs->dmandptr);
871                         lp->tx_chain_status = desc_is_empty;
872                         lp->tx_chain_head = lp->tx_chain_tail;
873                         netif_trans_update(dev);
874                 }
875                 if (dmas & DMA_STAT_ERR)
876                         printk(KERN_ERR "%s: DMA error\n", dev->name);
877
878                 retval = IRQ_HANDLED;
879         } else
880                 retval = IRQ_NONE;
881
882         return retval;
883 }
884
885
886 static void korina_check_media(struct net_device *dev, unsigned int init_media)
887 {
888         struct korina_private *lp = netdev_priv(dev);
889
890         mii_check_media(&lp->mii_if, 1, init_media);
891
892         if (lp->mii_if.full_duplex)
893                 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
894                                                 &lp->eth_regs->ethmac2);
895         else
896                 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
897                                                 &lp->eth_regs->ethmac2);
898 }
899
900 static void korina_poll_media(struct timer_list *t)
901 {
902         struct korina_private *lp = from_timer(lp, t, media_check_timer);
903         struct net_device *dev = lp->dev;
904
905         korina_check_media(dev, 0);
906         mod_timer(&lp->media_check_timer, jiffies + HZ);
907 }
908
909 static void korina_set_carrier(struct mii_if_info *mii)
910 {
911         if (mii->force_media) {
912                 /* autoneg is off: Link is always assumed to be up */
913                 if (!netif_carrier_ok(mii->dev))
914                         netif_carrier_on(mii->dev);
915         } else  /* Let MMI library update carrier status */
916                 korina_check_media(mii->dev, 0);
917 }
918
919 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
920 {
921         struct korina_private *lp = netdev_priv(dev);
922         struct mii_ioctl_data *data = if_mii(rq);
923         int rc;
924
925         if (!netif_running(dev))
926                 return -EINVAL;
927         spin_lock_irq(&lp->lock);
928         rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
929         spin_unlock_irq(&lp->lock);
930         korina_set_carrier(&lp->mii_if);
931
932         return rc;
933 }
934
935 /* ethtool helpers */
936 static void netdev_get_drvinfo(struct net_device *dev,
937                                 struct ethtool_drvinfo *info)
938 {
939         struct korina_private *lp = netdev_priv(dev);
940
941         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
942         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
943         strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
944 }
945
946 static int netdev_get_link_ksettings(struct net_device *dev,
947                                      struct ethtool_link_ksettings *cmd)
948 {
949         struct korina_private *lp = netdev_priv(dev);
950
951         spin_lock_irq(&lp->lock);
952         mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
953         spin_unlock_irq(&lp->lock);
954
955         return 0;
956 }
957
958 static int netdev_set_link_ksettings(struct net_device *dev,
959                                      const struct ethtool_link_ksettings *cmd)
960 {
961         struct korina_private *lp = netdev_priv(dev);
962         int rc;
963
964         spin_lock_irq(&lp->lock);
965         rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
966         spin_unlock_irq(&lp->lock);
967         korina_set_carrier(&lp->mii_if);
968
969         return rc;
970 }
971
972 static u32 netdev_get_link(struct net_device *dev)
973 {
974         struct korina_private *lp = netdev_priv(dev);
975
976         return mii_link_ok(&lp->mii_if);
977 }
978
979 static const struct ethtool_ops netdev_ethtool_ops = {
980         .get_drvinfo            = netdev_get_drvinfo,
981         .get_link               = netdev_get_link,
982         .get_link_ksettings     = netdev_get_link_ksettings,
983         .set_link_ksettings     = netdev_set_link_ksettings,
984 };
985
986 static int korina_alloc_ring(struct net_device *dev)
987 {
988         struct korina_private *lp = netdev_priv(dev);
989         struct sk_buff *skb;
990         dma_addr_t ca;
991         int i;
992
993         /* Initialize the transmit descriptors */
994         for (i = 0; i < KORINA_NUM_TDS; i++) {
995                 lp->td_ring[i].control = DMA_DESC_IOF;
996                 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
997                 lp->td_ring[i].ca = 0;
998                 lp->td_ring[i].link = 0;
999         }
1000         lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
1001                         lp->tx_full = lp->tx_count = 0;
1002         lp->tx_chain_status = desc_is_empty;
1003
1004         /* Initialize the receive descriptors */
1005         for (i = 0; i < KORINA_NUM_RDS; i++) {
1006                 skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
1007                 if (!skb)
1008                         return -ENOMEM;
1009                 lp->rx_skb[i] = skb;
1010                 lp->rd_ring[i].control = DMA_DESC_IOD |
1011                                 DMA_COUNT(KORINA_RBSIZE);
1012                 lp->rd_ring[i].devcs = 0;
1013                 ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
1014                                     DMA_FROM_DEVICE);
1015                 if (dma_mapping_error(lp->dmadev, ca))
1016                         return -ENOMEM;
1017                 lp->rd_ring[i].ca = ca;
1018                 lp->rx_skb_dma[i] = ca;
1019                 lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
1020         }
1021
1022         /* loop back receive descriptors, so the last
1023          * descriptor points to the first one */
1024         lp->rd_ring[i - 1].link = lp->rd_dma;
1025         lp->rd_ring[i - 1].control |= DMA_DESC_COD;
1026
1027         lp->rx_next_done  = 0;
1028         lp->rx_chain_head = 0;
1029         lp->rx_chain_tail = 0;
1030         lp->rx_chain_status = desc_is_empty;
1031
1032         return 0;
1033 }
1034
1035 static void korina_free_ring(struct net_device *dev)
1036 {
1037         struct korina_private *lp = netdev_priv(dev);
1038         int i;
1039
1040         for (i = 0; i < KORINA_NUM_RDS; i++) {
1041                 lp->rd_ring[i].control = 0;
1042                 if (lp->rx_skb[i]) {
1043                         dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
1044                                          KORINA_RBSIZE, DMA_FROM_DEVICE);
1045                         dev_kfree_skb_any(lp->rx_skb[i]);
1046                         lp->rx_skb[i] = NULL;
1047                 }
1048         }
1049
1050         for (i = 0; i < KORINA_NUM_TDS; i++) {
1051                 lp->td_ring[i].control = 0;
1052                 if (lp->tx_skb[i]) {
1053                         dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
1054                                          lp->tx_skb[i]->len, DMA_TO_DEVICE);
1055                         dev_kfree_skb_any(lp->tx_skb[i]);
1056                         lp->tx_skb[i] = NULL;
1057                 }
1058         }
1059 }
1060
1061 /*
1062  * Initialize the RC32434 ethernet controller.
1063  */
1064 static int korina_init(struct net_device *dev)
1065 {
1066         struct korina_private *lp = netdev_priv(dev);
1067
1068         /* Disable DMA */
1069         korina_abort_tx(dev);
1070         korina_abort_rx(dev);
1071
1072         /* reset ethernet logic */
1073         writel(0, &lp->eth_regs->ethintfc);
1074         while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
1075                 netif_trans_update(dev);
1076
1077         /* Enable Ethernet Interface */
1078         writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
1079
1080         /* Allocate rings */
1081         if (korina_alloc_ring(dev)) {
1082                 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
1083                 korina_free_ring(dev);
1084                 return -ENOMEM;
1085         }
1086
1087         writel(0, &lp->rx_dma_regs->dmas);
1088         /* Start Rx DMA */
1089         writel(0, &lp->rx_dma_regs->dmandptr);
1090         writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
1091
1092         writel(readl(&lp->tx_dma_regs->dmasm) &
1093                         ~(DMA_STAT_FINI | DMA_STAT_ERR),
1094                         &lp->tx_dma_regs->dmasm);
1095         writel(readl(&lp->rx_dma_regs->dmasm) &
1096                         ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
1097                         &lp->rx_dma_regs->dmasm);
1098
1099         /* Accept only packets destined for this Ethernet device address */
1100         writel(ETH_ARC_AB, &lp->eth_regs->etharc);
1101
1102         /* Set all Ether station address registers to their initial values */
1103         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
1104         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
1105
1106         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
1107         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
1108
1109         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
1110         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
1111
1112         writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
1113         writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
1114
1115
1116         /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
1117         writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
1118                         &lp->eth_regs->ethmac2);
1119
1120         /* Back to back inter-packet-gap */
1121         writel(0x15, &lp->eth_regs->ethipgt);
1122         /* Non - Back to back inter-packet-gap */
1123         writel(0x12, &lp->eth_regs->ethipgr);
1124
1125         /* Management Clock Prescaler Divisor
1126          * Clock independent setting */
1127         writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
1128                &lp->eth_regs->ethmcp);
1129         writel(0, &lp->eth_regs->miimcfg);
1130
1131         /* don't transmit until fifo contains 48b */
1132         writel(48, &lp->eth_regs->ethfifott);
1133
1134         writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
1135
1136         korina_check_media(dev, 1);
1137
1138         napi_enable(&lp->napi);
1139         netif_start_queue(dev);
1140
1141         return 0;
1142 }
1143
1144 /*
1145  * Restart the RC32434 ethernet controller.
1146  */
1147 static void korina_restart_task(struct work_struct *work)
1148 {
1149         struct korina_private *lp = container_of(work,
1150                         struct korina_private, restart_task);
1151         struct net_device *dev = lp->dev;
1152
1153         /*
1154          * Disable interrupts
1155          */
1156         disable_irq(lp->rx_irq);
1157         disable_irq(lp->tx_irq);
1158
1159         writel(readl(&lp->tx_dma_regs->dmasm) |
1160                                 DMA_STAT_FINI | DMA_STAT_ERR,
1161                                 &lp->tx_dma_regs->dmasm);
1162         writel(readl(&lp->rx_dma_regs->dmasm) |
1163                                 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
1164                                 &lp->rx_dma_regs->dmasm);
1165
1166         napi_disable(&lp->napi);
1167
1168         korina_free_ring(dev);
1169
1170         if (korina_init(dev) < 0) {
1171                 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
1172                 return;
1173         }
1174         korina_multicast_list(dev);
1175
1176         enable_irq(lp->tx_irq);
1177         enable_irq(lp->rx_irq);
1178 }
1179
1180 static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue)
1181 {
1182         struct korina_private *lp = netdev_priv(dev);
1183
1184         schedule_work(&lp->restart_task);
1185 }
1186
1187 #ifdef CONFIG_NET_POLL_CONTROLLER
1188 static void korina_poll_controller(struct net_device *dev)
1189 {
1190         disable_irq(dev->irq);
1191         korina_tx_dma_interrupt(dev->irq, dev);
1192         enable_irq(dev->irq);
1193 }
1194 #endif
1195
1196 static int korina_open(struct net_device *dev)
1197 {
1198         struct korina_private *lp = netdev_priv(dev);
1199         int ret;
1200
1201         /* Initialize */
1202         ret = korina_init(dev);
1203         if (ret < 0) {
1204                 printk(KERN_ERR "%s: cannot open device\n", dev->name);
1205                 goto out;
1206         }
1207
1208         /* Install the interrupt handler
1209          * that handles the Done Finished */
1210         ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1211                         0, "Korina ethernet Rx", dev);
1212         if (ret < 0) {
1213                 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1214                         dev->name, lp->rx_irq);
1215                 goto err_release;
1216         }
1217         ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1218                         0, "Korina ethernet Tx", dev);
1219         if (ret < 0) {
1220                 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1221                         dev->name, lp->tx_irq);
1222                 goto err_free_rx_irq;
1223         }
1224
1225         mod_timer(&lp->media_check_timer, jiffies + 1);
1226 out:
1227         return ret;
1228
1229 err_free_rx_irq:
1230         free_irq(lp->rx_irq, dev);
1231 err_release:
1232         korina_free_ring(dev);
1233         goto out;
1234 }
1235
1236 static int korina_close(struct net_device *dev)
1237 {
1238         struct korina_private *lp = netdev_priv(dev);
1239         u32 tmp;
1240
1241         del_timer(&lp->media_check_timer);
1242
1243         /* Disable interrupts */
1244         disable_irq(lp->rx_irq);
1245         disable_irq(lp->tx_irq);
1246
1247         korina_abort_tx(dev);
1248         tmp = readl(&lp->tx_dma_regs->dmasm);
1249         tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1250         writel(tmp, &lp->tx_dma_regs->dmasm);
1251
1252         korina_abort_rx(dev);
1253         tmp = readl(&lp->rx_dma_regs->dmasm);
1254         tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1255         writel(tmp, &lp->rx_dma_regs->dmasm);
1256
1257         napi_disable(&lp->napi);
1258
1259         cancel_work_sync(&lp->restart_task);
1260
1261         korina_free_ring(dev);
1262
1263         free_irq(lp->rx_irq, dev);
1264         free_irq(lp->tx_irq, dev);
1265
1266         return 0;
1267 }
1268
1269 static const struct net_device_ops korina_netdev_ops = {
1270         .ndo_open               = korina_open,
1271         .ndo_stop               = korina_close,
1272         .ndo_start_xmit         = korina_send_packet,
1273         .ndo_set_rx_mode        = korina_multicast_list,
1274         .ndo_tx_timeout         = korina_tx_timeout,
1275         .ndo_do_ioctl           = korina_ioctl,
1276         .ndo_validate_addr      = eth_validate_addr,
1277         .ndo_set_mac_address    = eth_mac_addr,
1278 #ifdef CONFIG_NET_POLL_CONTROLLER
1279         .ndo_poll_controller    = korina_poll_controller,
1280 #endif
1281 };
1282
1283 static int korina_probe(struct platform_device *pdev)
1284 {
1285         u8 *mac_addr = dev_get_platdata(&pdev->dev);
1286         struct korina_private *lp;
1287         struct net_device *dev;
1288         struct clk *clk;
1289         void __iomem *p;
1290         int rc;
1291
1292         dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
1293         if (!dev)
1294                 return -ENOMEM;
1295
1296         SET_NETDEV_DEV(dev, &pdev->dev);
1297         lp = netdev_priv(dev);
1298
1299         if (mac_addr)
1300                 ether_addr_copy(dev->dev_addr, mac_addr);
1301         else if (of_get_mac_address(pdev->dev.of_node, dev->dev_addr) < 0)
1302                 eth_hw_addr_random(dev);
1303
1304         clk = devm_clk_get_optional(&pdev->dev, "mdioclk");
1305         if (IS_ERR(clk))
1306                 return PTR_ERR(clk);
1307         if (clk) {
1308                 clk_prepare_enable(clk);
1309                 lp->mii_clock_freq = clk_get_rate(clk);
1310         } else {
1311                 lp->mii_clock_freq = 200000000; /* max possible input clk */
1312         }
1313
1314         lp->rx_irq = platform_get_irq_byname(pdev, "rx");
1315         lp->tx_irq = platform_get_irq_byname(pdev, "tx");
1316
1317         p = devm_platform_ioremap_resource_byname(pdev, "emac");
1318         if (IS_ERR(p)) {
1319                 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1320                 return PTR_ERR(p);
1321         }
1322         lp->eth_regs = p;
1323
1324         p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
1325         if (IS_ERR(p)) {
1326                 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1327                 return PTR_ERR(p);
1328         }
1329         lp->rx_dma_regs = p;
1330
1331         p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
1332         if (IS_ERR(p)) {
1333                 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1334                 return PTR_ERR(p);
1335         }
1336         lp->tx_dma_regs = p;
1337
1338         lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
1339                                           &lp->td_dma, GFP_KERNEL);
1340         if (!lp->td_ring)
1341                 return -ENOMEM;
1342
1343         lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
1344                                           &lp->rd_dma, GFP_KERNEL);
1345         if (!lp->rd_ring)
1346                 return -ENOMEM;
1347
1348         spin_lock_init(&lp->lock);
1349         /* just use the rx dma irq */
1350         dev->irq = lp->rx_irq;
1351         lp->dev = dev;
1352         lp->dmadev = &pdev->dev;
1353
1354         dev->netdev_ops = &korina_netdev_ops;
1355         dev->ethtool_ops = &netdev_ethtool_ops;
1356         dev->watchdog_timeo = TX_TIMEOUT;
1357         netif_napi_add(dev, &lp->napi, korina_poll, NAPI_POLL_WEIGHT);
1358
1359         lp->mii_if.dev = dev;
1360         lp->mii_if.mdio_read = korina_mdio_read;
1361         lp->mii_if.mdio_write = korina_mdio_write;
1362         lp->mii_if.phy_id = 1;
1363         lp->mii_if.phy_id_mask = 0x1f;
1364         lp->mii_if.reg_num_mask = 0x1f;
1365
1366         platform_set_drvdata(pdev, dev);
1367
1368         rc = register_netdev(dev);
1369         if (rc < 0) {
1370                 printk(KERN_ERR DRV_NAME
1371                         ": cannot register net device: %d\n", rc);
1372                 return rc;
1373         }
1374         timer_setup(&lp->media_check_timer, korina_poll_media, 0);
1375
1376         INIT_WORK(&lp->restart_task, korina_restart_task);
1377
1378         printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1379                         dev->name);
1380         return rc;
1381 }
1382
1383 static int korina_remove(struct platform_device *pdev)
1384 {
1385         struct net_device *dev = platform_get_drvdata(pdev);
1386
1387         unregister_netdev(dev);
1388
1389         return 0;
1390 }
1391
1392 #ifdef CONFIG_OF
1393 static const struct of_device_id korina_match[] = {
1394         {
1395                 .compatible = "idt,3243x-emac",
1396         },
1397         { }
1398 };
1399 MODULE_DEVICE_TABLE(of, korina_match);
1400 #endif
1401
1402 static struct platform_driver korina_driver = {
1403         .driver = {
1404                 .name = "korina",
1405                 .of_match_table = of_match_ptr(korina_match),
1406         },
1407         .probe = korina_probe,
1408         .remove = korina_remove,
1409 };
1410
1411 module_platform_driver(korina_driver);
1412
1413 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1414 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1415 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1416 MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
1417 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1418 MODULE_LICENSE("GPL");