Merge branch 'address-masking'
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / igc / igc_ptp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2019 Intel Corporation */
3
4 #include "igc.h"
5
6 #include <linux/module.h>
7 #include <linux/device.h>
8 #include <linux/pci.h>
9 #include <linux/ptp_classify.h>
10 #include <linux/clocksource.h>
11 #include <linux/ktime.h>
12 #include <linux/delay.h>
13 #include <linux/iopoll.h>
14 #include <net/xdp_sock_drv.h>
15
16 #define INCVALUE_MASK           0x7fffffff
17 #define ISGN                    0x80000000
18
19 #define IGC_PTP_TX_TIMEOUT              (HZ * 15)
20
21 #define IGC_PTM_STAT_SLEEP              2
22 #define IGC_PTM_STAT_TIMEOUT            100
23
24 /* SYSTIM read access for I225 */
25 void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
26 {
27         struct igc_hw *hw = &adapter->hw;
28         u32 sec, nsec;
29
30         /* The timestamp is latched when SYSTIML is read. */
31         nsec = rd32(IGC_SYSTIML);
32         sec = rd32(IGC_SYSTIMH);
33
34         ts->tv_sec = sec;
35         ts->tv_nsec = nsec;
36 }
37
38 static void igc_ptp_write_i225(struct igc_adapter *adapter,
39                                const struct timespec64 *ts)
40 {
41         struct igc_hw *hw = &adapter->hw;
42
43         wr32(IGC_SYSTIML, ts->tv_nsec);
44         wr32(IGC_SYSTIMH, ts->tv_sec);
45 }
46
47 static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
48 {
49         struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
50                                                ptp_caps);
51         struct igc_hw *hw = &igc->hw;
52         int neg_adj = 0;
53         u64 rate;
54         u32 inca;
55
56         if (scaled_ppm < 0) {
57                 neg_adj = 1;
58                 scaled_ppm = -scaled_ppm;
59         }
60         rate = scaled_ppm;
61         rate <<= 14;
62         rate = div_u64(rate, 78125);
63
64         inca = rate & INCVALUE_MASK;
65         if (neg_adj)
66                 inca |= ISGN;
67
68         wr32(IGC_TIMINCA, inca);
69
70         return 0;
71 }
72
73 static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
74 {
75         struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
76                                                ptp_caps);
77         struct timespec64 now, then = ns_to_timespec64(delta);
78         unsigned long flags;
79
80         spin_lock_irqsave(&igc->tmreg_lock, flags);
81
82         igc_ptp_read(igc, &now);
83         now = timespec64_add(now, then);
84         igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
85
86         spin_unlock_irqrestore(&igc->tmreg_lock, flags);
87
88         return 0;
89 }
90
91 static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
92                                    struct timespec64 *ts,
93                                    struct ptp_system_timestamp *sts)
94 {
95         struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
96                                                ptp_caps);
97         struct igc_hw *hw = &igc->hw;
98         unsigned long flags;
99
100         spin_lock_irqsave(&igc->tmreg_lock, flags);
101
102         ptp_read_system_prets(sts);
103         ts->tv_nsec = rd32(IGC_SYSTIML);
104         ts->tv_sec = rd32(IGC_SYSTIMH);
105         ptp_read_system_postts(sts);
106
107         spin_unlock_irqrestore(&igc->tmreg_lock, flags);
108
109         return 0;
110 }
111
112 static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
113                                 const struct timespec64 *ts)
114 {
115         struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
116                                                ptp_caps);
117         unsigned long flags;
118
119         spin_lock_irqsave(&igc->tmreg_lock, flags);
120
121         igc_ptp_write_i225(igc, ts);
122
123         spin_unlock_irqrestore(&igc->tmreg_lock, flags);
124
125         return 0;
126 }
127
128 static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
129 {
130         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
131         static const u32 mask[IGC_N_SDP] = {
132                 IGC_CTRL_SDP0_DIR,
133                 IGC_CTRL_SDP1_DIR,
134                 IGC_CTRL_EXT_SDP2_DIR,
135                 IGC_CTRL_EXT_SDP3_DIR,
136         };
137
138         if (input)
139                 *ptr &= ~mask[pin];
140         else
141                 *ptr |= mask[pin];
142 }
143
144 static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
145 {
146         static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
147                 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
148         };
149         static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
150                 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
151         };
152         static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
153                 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
154         };
155         static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
156                 IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
157                 IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
158         };
159         static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
160                 IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
161                 IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
162         };
163         static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
164                 IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
165                 IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
166         };
167         static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
168                 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
169                 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
170         };
171         static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
172                 IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
173                 IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
174         };
175         struct igc_hw *hw = &igc->hw;
176         u32 ctrl, ctrl_ext, tssdp = 0;
177
178         ctrl = rd32(IGC_CTRL);
179         ctrl_ext = rd32(IGC_CTRL_EXT);
180         tssdp = rd32(IGC_TSSDP);
181
182         igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
183
184         /* Make sure this pin is not enabled as an input. */
185         if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
186                 tssdp &= ~IGC_AUX0_TS_SDP_EN;
187
188         if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
189                 tssdp &= ~IGC_AUX1_TS_SDP_EN;
190
191         tssdp &= ~igc_ts_sdp_sel_clr[pin];
192         if (freq) {
193                 if (chan == 1)
194                         tssdp |= igc_ts_sdp_sel_fc1[pin];
195                 else
196                         tssdp |= igc_ts_sdp_sel_fc0[pin];
197         } else {
198                 if (chan == 1)
199                         tssdp |= igc_ts_sdp_sel_tt1[pin];
200                 else
201                         tssdp |= igc_ts_sdp_sel_tt0[pin];
202         }
203         tssdp |= igc_ts_sdp_en[pin];
204
205         wr32(IGC_TSSDP, tssdp);
206         wr32(IGC_CTRL, ctrl);
207         wr32(IGC_CTRL_EXT, ctrl_ext);
208 }
209
210 static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
211 {
212         static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
213                 IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
214         };
215         static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
216                 IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
217         };
218         static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
219                 IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
220         };
221         struct igc_hw *hw = &igc->hw;
222         u32 ctrl, ctrl_ext, tssdp = 0;
223
224         ctrl = rd32(IGC_CTRL);
225         ctrl_ext = rd32(IGC_CTRL_EXT);
226         tssdp = rd32(IGC_TSSDP);
227
228         igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
229
230         /* Make sure this pin is not enabled as an output. */
231         tssdp &= ~igc_ts_sdp_en[pin];
232
233         if (chan == 1) {
234                 tssdp &= ~IGC_AUX1_SEL_SDP3;
235                 tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
236         } else {
237                 tssdp &= ~IGC_AUX0_SEL_SDP3;
238                 tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
239         }
240
241         wr32(IGC_TSSDP, tssdp);
242         wr32(IGC_CTRL, ctrl);
243         wr32(IGC_CTRL_EXT, ctrl_ext);
244 }
245
246 static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
247                                        struct ptp_clock_request *rq, int on)
248 {
249         struct igc_adapter *igc =
250                 container_of(ptp, struct igc_adapter, ptp_caps);
251         struct igc_hw *hw = &igc->hw;
252         unsigned long flags;
253         struct timespec64 ts;
254         int use_freq = 0, pin = -1;
255         u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
256         s64 ns;
257
258         switch (rq->type) {
259         case PTP_CLK_REQ_EXTTS:
260                 /* Reject requests with unsupported flags */
261                 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
262                                         PTP_RISING_EDGE |
263                                         PTP_FALLING_EDGE |
264                                         PTP_STRICT_FLAGS))
265                         return -EOPNOTSUPP;
266
267                 /* Reject requests failing to enable both edges. */
268                 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
269                     (rq->extts.flags & PTP_ENABLE_FEATURE) &&
270                     (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
271                         return -EOPNOTSUPP;
272
273                 if (on) {
274                         pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
275                                            rq->extts.index);
276                         if (pin < 0)
277                                 return -EBUSY;
278                 }
279                 if (rq->extts.index == 1) {
280                         tsauxc_mask = IGC_TSAUXC_EN_TS1;
281                         tsim_mask = IGC_TSICR_AUTT1;
282                 } else {
283                         tsauxc_mask = IGC_TSAUXC_EN_TS0;
284                         tsim_mask = IGC_TSICR_AUTT0;
285                 }
286                 spin_lock_irqsave(&igc->tmreg_lock, flags);
287                 tsauxc = rd32(IGC_TSAUXC);
288                 tsim = rd32(IGC_TSIM);
289                 if (on) {
290                         igc_pin_extts(igc, rq->extts.index, pin);
291                         tsauxc |= tsauxc_mask;
292                         tsim |= tsim_mask;
293                 } else {
294                         tsauxc &= ~tsauxc_mask;
295                         tsim &= ~tsim_mask;
296                 }
297                 wr32(IGC_TSAUXC, tsauxc);
298                 wr32(IGC_TSIM, tsim);
299                 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
300                 return 0;
301
302         case PTP_CLK_REQ_PEROUT:
303                 /* Reject requests with unsupported flags */
304                 if (rq->perout.flags)
305                         return -EOPNOTSUPP;
306
307                 if (on) {
308                         pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
309                                            rq->perout.index);
310                         if (pin < 0)
311                                 return -EBUSY;
312                 }
313                 ts.tv_sec = rq->perout.period.sec;
314                 ts.tv_nsec = rq->perout.period.nsec;
315                 ns = timespec64_to_ns(&ts);
316                 ns = ns >> 1;
317                 if (on && (ns <= 70000000LL || ns == 125000000LL ||
318                            ns == 250000000LL || ns == 500000000LL)) {
319                         if (ns < 8LL)
320                                 return -EINVAL;
321                         use_freq = 1;
322                 }
323                 ts = ns_to_timespec64(ns);
324                 if (rq->perout.index == 1) {
325                         if (use_freq) {
326                                 tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
327                                 tsim_mask = 0;
328                         } else {
329                                 tsauxc_mask = IGC_TSAUXC_EN_TT1;
330                                 tsim_mask = IGC_TSICR_TT1;
331                         }
332                         trgttiml = IGC_TRGTTIML1;
333                         trgttimh = IGC_TRGTTIMH1;
334                         freqout = IGC_FREQOUT1;
335                 } else {
336                         if (use_freq) {
337                                 tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
338                                 tsim_mask = 0;
339                         } else {
340                                 tsauxc_mask = IGC_TSAUXC_EN_TT0;
341                                 tsim_mask = IGC_TSICR_TT0;
342                         }
343                         trgttiml = IGC_TRGTTIML0;
344                         trgttimh = IGC_TRGTTIMH0;
345                         freqout = IGC_FREQOUT0;
346                 }
347                 spin_lock_irqsave(&igc->tmreg_lock, flags);
348                 tsauxc = rd32(IGC_TSAUXC);
349                 tsim = rd32(IGC_TSIM);
350                 if (rq->perout.index == 1) {
351                         tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
352                                     IGC_TSAUXC_ST1);
353                         tsim &= ~IGC_TSICR_TT1;
354                 } else {
355                         tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
356                                     IGC_TSAUXC_ST0);
357                         tsim &= ~IGC_TSICR_TT0;
358                 }
359                 if (on) {
360                         struct timespec64 safe_start;
361                         int i = rq->perout.index;
362
363                         igc_pin_perout(igc, i, pin, use_freq);
364                         igc_ptp_read(igc, &safe_start);
365
366                         /* PPS output start time is triggered by Target time(TT)
367                          * register. Programming any past time value into TT
368                          * register will cause PPS to never start. Need to make
369                          * sure we program the TT register a time ahead in
370                          * future. There isn't a stringent need to fire PPS out
371                          * right away. Adding +2 seconds should take care of
372                          * corner cases. Let's say if the SYSTIML is close to
373                          * wrap up and the timer keeps ticking as we program the
374                          * register, adding +2seconds is safe bet.
375                          */
376                         safe_start.tv_sec += 2;
377
378                         if (rq->perout.start.sec < safe_start.tv_sec)
379                                 igc->perout[i].start.tv_sec = safe_start.tv_sec;
380                         else
381                                 igc->perout[i].start.tv_sec = rq->perout.start.sec;
382                         igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
383                         igc->perout[i].period.tv_sec = ts.tv_sec;
384                         igc->perout[i].period.tv_nsec = ts.tv_nsec;
385                         wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
386                         /* For now, always select timer 0 as source. */
387                         wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
388                                              IGC_TT_IO_TIMER_SEL_SYSTIM0));
389                         if (use_freq)
390                                 wr32(freqout, ns);
391                         tsauxc |= tsauxc_mask;
392                         tsim |= tsim_mask;
393                 }
394                 wr32(IGC_TSAUXC, tsauxc);
395                 wr32(IGC_TSIM, tsim);
396                 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
397                 return 0;
398
399         case PTP_CLK_REQ_PPS:
400                 spin_lock_irqsave(&igc->tmreg_lock, flags);
401                 tsim = rd32(IGC_TSIM);
402                 if (on)
403                         tsim |= IGC_TSICR_SYS_WRAP;
404                 else
405                         tsim &= ~IGC_TSICR_SYS_WRAP;
406                 igc->pps_sys_wrap_on = on;
407                 wr32(IGC_TSIM, tsim);
408                 spin_unlock_irqrestore(&igc->tmreg_lock, flags);
409                 return 0;
410
411         default:
412                 break;
413         }
414
415         return -EOPNOTSUPP;
416 }
417
418 static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
419                               enum ptp_pin_function func, unsigned int chan)
420 {
421         switch (func) {
422         case PTP_PF_NONE:
423         case PTP_PF_EXTTS:
424         case PTP_PF_PEROUT:
425                 break;
426         case PTP_PF_PHYSYNC:
427                 return -1;
428         }
429         return 0;
430 }
431
432 /**
433  * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
434  * @adapter: board private structure
435  * @hwtstamps: timestamp structure to update
436  * @systim: unsigned 64bit system time value
437  *
438  * We need to convert the system time value stored in the RX/TXSTMP registers
439  * into a hwtstamp which can be used by the upper level timestamping functions.
440  *
441  * Returns 0 on success.
442  **/
443 static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
444                                       struct skb_shared_hwtstamps *hwtstamps,
445                                       u64 systim)
446 {
447         switch (adapter->hw.mac.type) {
448         case igc_i225:
449                 memset(hwtstamps, 0, sizeof(*hwtstamps));
450                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
451                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
452                                                 systim & 0xFFFFFFFF);
453                 break;
454         default:
455                 return -EINVAL;
456         }
457         return 0;
458 }
459
460 /**
461  * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
462  * @adapter: Pointer to adapter the packet buffer belongs to
463  * @buf: Pointer to start of timestamp in HW format (2 32-bit words)
464  *
465  * This function retrieves and converts the timestamp stored at @buf
466  * to ktime_t, adjusting for hardware latencies.
467  *
468  * Returns timestamp value.
469  */
470 ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
471 {
472         ktime_t timestamp;
473         u32 secs, nsecs;
474         int adjust;
475
476         nsecs = le32_to_cpu(buf[0]);
477         secs = le32_to_cpu(buf[1]);
478
479         timestamp = ktime_set(secs, nsecs);
480
481         /* Adjust timestamp for the RX latency based on link speed */
482         switch (adapter->link_speed) {
483         case SPEED_10:
484                 adjust = IGC_I225_RX_LATENCY_10;
485                 break;
486         case SPEED_100:
487                 adjust = IGC_I225_RX_LATENCY_100;
488                 break;
489         case SPEED_1000:
490                 adjust = IGC_I225_RX_LATENCY_1000;
491                 break;
492         case SPEED_2500:
493                 adjust = IGC_I225_RX_LATENCY_2500;
494                 break;
495         default:
496                 adjust = 0;
497                 netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
498                 break;
499         }
500
501         return ktime_sub_ns(timestamp, adjust);
502 }
503
504 static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
505 {
506         struct igc_hw *hw = &adapter->hw;
507         u32 val;
508         int i;
509
510         wr32(IGC_TSYNCRXCTL, 0);
511
512         for (i = 0; i < adapter->num_rx_queues; i++) {
513                 val = rd32(IGC_SRRCTL(i));
514                 val &= ~IGC_SRRCTL_TIMESTAMP;
515                 wr32(IGC_SRRCTL(i), val);
516         }
517
518         val = rd32(IGC_RXPBS);
519         val &= ~IGC_RXPBS_CFG_TS_EN;
520         wr32(IGC_RXPBS, val);
521 }
522
523 static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
524 {
525         struct igc_hw *hw = &adapter->hw;
526         u32 val;
527         int i;
528
529         val = rd32(IGC_RXPBS);
530         val |= IGC_RXPBS_CFG_TS_EN;
531         wr32(IGC_RXPBS, val);
532
533         for (i = 0; i < adapter->num_rx_queues; i++) {
534                 val = rd32(IGC_SRRCTL(i));
535                 /* Enable retrieving timestamps from timer 0, the
536                  * "adjustable clock" and timer 1 the "free running
537                  * clock".
538                  */
539                 val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) |
540                        IGC_SRRCTL_TIMESTAMP;
541                 wr32(IGC_SRRCTL(i), val);
542         }
543
544         val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
545               IGC_TSYNCRXCTL_RXSYNSIG;
546         wr32(IGC_TSYNCRXCTL, val);
547 }
548
549 static void igc_ptp_free_tx_buffer(struct igc_adapter *adapter,
550                                    struct igc_tx_timestamp_request *tstamp)
551 {
552         if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
553                 /* Release the transmit completion */
554                 tstamp->xsk_tx_buffer->xsk_pending_ts = false;
555
556                 /* Note: tstamp->skb and tstamp->xsk_tx_buffer are in union.
557                  * By setting tstamp->xsk_tx_buffer to NULL, tstamp->skb will
558                  * become NULL as well.
559                  */
560                 tstamp->xsk_tx_buffer = NULL;
561                 tstamp->buffer_type = 0;
562
563                 /* Trigger txrx interrupt for transmit completion */
564                 igc_xsk_wakeup(adapter->netdev, tstamp->xsk_queue_index, 0);
565
566                 return;
567         }
568
569         dev_kfree_skb_any(tstamp->skb);
570         tstamp->skb = NULL;
571 }
572
573 static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
574 {
575         unsigned long flags;
576         int i;
577
578         spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
579
580         for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
581                 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
582
583                 if (tstamp->skb)
584                         igc_ptp_free_tx_buffer(adapter, tstamp);
585         }
586
587         spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
588 }
589
590 static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
591 {
592         struct igc_hw *hw = &adapter->hw;
593         int i;
594
595         /* Clear the flags first to avoid new packets to be enqueued
596          * for TX timestamping.
597          */
598         for (i = 0; i < adapter->num_tx_queues; i++) {
599                 struct igc_ring *tx_ring = adapter->tx_ring[i];
600
601                 clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
602         }
603
604         /* Now we can clean the pending TX timestamp requests. */
605         igc_ptp_clear_tx_tstamp(adapter);
606
607         wr32(IGC_TSYNCTXCTL, 0);
608 }
609
610 static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
611 {
612         struct igc_hw *hw = &adapter->hw;
613         int i;
614
615         wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
616
617         /* Read TXSTMP registers to discard any timestamp previously stored. */
618         rd32(IGC_TXSTMPL);
619         rd32(IGC_TXSTMPH);
620
621         /* The hardware is ready to accept TX timestamp requests,
622          * notify the transmit path.
623          */
624         for (i = 0; i < adapter->num_tx_queues; i++) {
625                 struct igc_ring *tx_ring = adapter->tx_ring[i];
626
627                 set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
628         }
629
630 }
631
632 /**
633  * igc_ptp_set_timestamp_mode - setup hardware for timestamping
634  * @adapter: networking device structure
635  * @config: hwtstamp configuration
636  *
637  * Return: 0 in case of success, negative errno code otherwise.
638  */
639 static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
640                                       struct hwtstamp_config *config)
641 {
642         switch (config->tx_type) {
643         case HWTSTAMP_TX_OFF:
644                 igc_ptp_disable_tx_timestamp(adapter);
645                 break;
646         case HWTSTAMP_TX_ON:
647                 igc_ptp_enable_tx_timestamp(adapter);
648                 break;
649         default:
650                 return -ERANGE;
651         }
652
653         switch (config->rx_filter) {
654         case HWTSTAMP_FILTER_NONE:
655                 igc_ptp_disable_rx_timestamp(adapter);
656                 break;
657         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
658         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
659         case HWTSTAMP_FILTER_PTP_V2_EVENT:
660         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
661         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
662         case HWTSTAMP_FILTER_PTP_V2_SYNC:
663         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
664         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
665         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
666         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
667         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
668         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
669         case HWTSTAMP_FILTER_NTP_ALL:
670         case HWTSTAMP_FILTER_ALL:
671                 igc_ptp_enable_rx_timestamp(adapter);
672                 config->rx_filter = HWTSTAMP_FILTER_ALL;
673                 break;
674         default:
675                 return -ERANGE;
676         }
677
678         return 0;
679 }
680
681 /* Requires adapter->ptp_tx_lock held by caller. */
682 static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
683                                struct igc_tx_timestamp_request *tstamp)
684 {
685         if (tstamp->skb)
686                 igc_ptp_free_tx_buffer(adapter, tstamp);
687
688         adapter->tx_hwtstamp_timeouts++;
689
690         netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
691 }
692
693 void igc_ptp_tx_hang(struct igc_adapter *adapter)
694 {
695         struct igc_tx_timestamp_request *tstamp;
696         struct igc_hw *hw = &adapter->hw;
697         unsigned long flags;
698         bool found = false;
699         int i;
700
701         spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
702
703         for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
704                 tstamp = &adapter->tx_tstamp[i];
705
706                 if (!tstamp->skb)
707                         continue;
708
709                 if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
710                         continue;
711
712                 igc_ptp_tx_timeout(adapter, tstamp);
713                 found = true;
714         }
715
716         if (found) {
717                 /* Reading the high register of the first set of timestamp registers
718                  * clears all the equivalent bits in the TSYNCTXCTL register.
719                  */
720                 rd32(IGC_TXSTMPH_0);
721         }
722
723         spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
724 }
725
726 static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
727                                     struct igc_tx_timestamp_request *tstamp, u64 regval)
728 {
729         struct skb_shared_hwtstamps shhwtstamps;
730         struct sk_buff *skb;
731         int adjust = 0;
732
733         skb = tstamp->skb;
734         if (!skb)
735                 return;
736
737         if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
738                 return;
739
740         switch (adapter->link_speed) {
741         case SPEED_10:
742                 adjust = IGC_I225_TX_LATENCY_10;
743                 break;
744         case SPEED_100:
745                 adjust = IGC_I225_TX_LATENCY_100;
746                 break;
747         case SPEED_1000:
748                 adjust = IGC_I225_TX_LATENCY_1000;
749                 break;
750         case SPEED_2500:
751                 adjust = IGC_I225_TX_LATENCY_2500;
752                 break;
753         }
754
755         shhwtstamps.hwtstamp =
756                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
757
758         /* Copy the tx hardware timestamp into xdp metadata or skb */
759         if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) {
760                 struct xsk_buff_pool *xsk_pool;
761
762                 xsk_pool = adapter->tx_ring[tstamp->xsk_queue_index]->xsk_pool;
763                 if (xsk_pool && xp_tx_metadata_enabled(xsk_pool)) {
764                         xsk_tx_metadata_complete(&tstamp->xsk_meta,
765                                                  &igc_xsk_tx_metadata_ops,
766                                                  &shhwtstamps.hwtstamp);
767                 }
768         } else {
769                 skb_tstamp_tx(skb, &shhwtstamps);
770         }
771
772         igc_ptp_free_tx_buffer(adapter, tstamp);
773 }
774
775 /**
776  * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
777  * @adapter: Board private structure
778  *
779  * Check against the ready mask for which of the timestamp register
780  * sets are ready to be retrieved, then retrieve that and notify the
781  * rest of the stack.
782  *
783  * Context: Expects adapter->ptp_tx_lock to be held by caller.
784  */
785 static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
786 {
787         struct igc_hw *hw = &adapter->hw;
788         u64 regval;
789         u32 mask;
790         int i;
791
792         mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
793         if (mask & IGC_TSYNCTXCTL_TXTT_0) {
794                 regval = rd32(IGC_TXSTMPL);
795                 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
796         } else {
797                 /* There's a bug in the hardware that could cause
798                  * missing interrupts for TX timestamping. The issue
799                  * is that for new interrupts to be triggered, the
800                  * IGC_TXSTMPH_0 register must be read.
801                  *
802                  * To avoid discarding a valid timestamp that just
803                  * happened at the "wrong" time, we need to confirm
804                  * that there was no timestamp captured, we do that by
805                  * assuming that no two timestamps in sequence have
806                  * the same nanosecond value.
807                  *
808                  * So, we read the "low" register, read the "high"
809                  * register (to latch a new timestamp) and read the
810                  * "low" register again, if "old" and "new" versions
811                  * of the "low" register are different, a valid
812                  * timestamp was captured, we can read the "high"
813                  * register again.
814                  */
815                 u32 txstmpl_old, txstmpl_new;
816
817                 txstmpl_old = rd32(IGC_TXSTMPL);
818                 rd32(IGC_TXSTMPH);
819                 txstmpl_new = rd32(IGC_TXSTMPL);
820
821                 if (txstmpl_old == txstmpl_new)
822                         goto done;
823
824                 regval = txstmpl_new;
825                 regval |= (u64)rd32(IGC_TXSTMPH) << 32;
826         }
827
828         igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
829
830 done:
831         /* Now that the problematic first register was handled, we can
832          * use retrieve the timestamps from the other registers
833          * (starting from '1') with less complications.
834          */
835         for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
836                 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
837
838                 if (!(tstamp->mask & mask))
839                         continue;
840
841                 regval = rd32(tstamp->regl);
842                 regval |= (u64)rd32(tstamp->regh) << 32;
843
844                 igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
845         }
846 }
847
848 /**
849  * igc_ptp_tx_tstamp_event
850  * @adapter: board private structure
851  *
852  * Called when a TX timestamp interrupt happens to retrieve the
853  * timestamp and send it up to the socket.
854  */
855 void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
856 {
857         unsigned long flags;
858
859         spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
860
861         igc_ptp_tx_hwtstamp(adapter);
862
863         spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
864 }
865
866 /**
867  * igc_ptp_set_ts_config - set hardware time stamping config
868  * @netdev: network interface device structure
869  * @ifr: interface request data
870  *
871  **/
872 int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
873 {
874         struct igc_adapter *adapter = netdev_priv(netdev);
875         struct hwtstamp_config config;
876         int err;
877
878         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
879                 return -EFAULT;
880
881         err = igc_ptp_set_timestamp_mode(adapter, &config);
882         if (err)
883                 return err;
884
885         /* save these settings for future reference */
886         memcpy(&adapter->tstamp_config, &config,
887                sizeof(adapter->tstamp_config));
888
889         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
890                 -EFAULT : 0;
891 }
892
893 /**
894  * igc_ptp_get_ts_config - get hardware time stamping config
895  * @netdev: network interface device structure
896  * @ifr: interface request data
897  *
898  * Get the hwtstamp_config settings to return to the user. Rather than attempt
899  * to deconstruct the settings from the registers, just return a shadow copy
900  * of the last known settings.
901  **/
902 int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
903 {
904         struct igc_adapter *adapter = netdev_priv(netdev);
905         struct hwtstamp_config *config = &adapter->tstamp_config;
906
907         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
908                 -EFAULT : 0;
909 }
910
911 /* The two conditions below must be met for cross timestamping via
912  * PCIe PTM:
913  *
914  * 1. We have an way to convert the timestamps in the PTM messages
915  *    to something related to the system clocks (right now, only
916  *    X86 systems with support for the Always Running Timer allow that);
917  *
918  * 2. We have PTM enabled in the path from the device to the PCIe root port.
919  */
920 static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
921 {
922         if (!IS_ENABLED(CONFIG_X86_TSC))
923                 return false;
924
925         /* FIXME: it was noticed that enabling support for PCIe PTM in
926          * some i225-V models could cause lockups when bringing the
927          * interface up/down. There should be no downsides to
928          * disabling crosstimestamping support for i225-V, as it
929          * doesn't have any PTP support. That way we gain some time
930          * while root causing the issue.
931          */
932         if (adapter->pdev->device == IGC_DEV_ID_I225_V)
933                 return false;
934
935         return pcie_ptm_enabled(adapter->pdev);
936 }
937
938 static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
939 {
940 #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
941         return (struct system_counterval_t) {
942                 .cs_id          = CSID_X86_ART,
943                 .cycles         = tstamp,
944                 .use_nsecs      = true,
945         };
946 #else
947         return (struct system_counterval_t) { };
948 #endif
949 }
950
951 static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
952 {
953         struct net_device *netdev = adapter->netdev;
954
955         switch (ptm_stat) {
956         case IGC_PTM_STAT_RET_ERR:
957                 netdev_err(netdev, "PTM Error: Root port timeout\n");
958                 break;
959         case IGC_PTM_STAT_BAD_PTM_RES:
960                 netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
961                 break;
962         case IGC_PTM_STAT_T4M1_OVFL:
963                 netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
964                 break;
965         case IGC_PTM_STAT_ADJUST_1ST:
966                 netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
967                 break;
968         case IGC_PTM_STAT_ADJUST_CYC:
969                 netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
970                 break;
971         default:
972                 netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
973                 break;
974         }
975 }
976
977 static int igc_phc_get_syncdevicetime(ktime_t *device,
978                                       struct system_counterval_t *system,
979                                       void *ctx)
980 {
981         u32 stat, t2_curr_h, t2_curr_l, ctrl;
982         struct igc_adapter *adapter = ctx;
983         struct igc_hw *hw = &adapter->hw;
984         int err, count = 100;
985         ktime_t t1, t2_curr;
986
987         /* Get a snapshot of system clocks to use as historic value. */
988         ktime_get_snapshot(&adapter->snapshot);
989
990         do {
991                 /* Doing this in a loop because in the event of a
992                  * badly timed (ha!) system clock adjustment, we may
993                  * get PTM errors from the PCI root, but these errors
994                  * are transitory. Repeating the process returns valid
995                  * data eventually.
996                  */
997
998                 /* To "manually" start the PTM cycle we need to clear and
999                  * then set again the TRIG bit.
1000                  */
1001                 ctrl = rd32(IGC_PTM_CTRL);
1002                 ctrl &= ~IGC_PTM_CTRL_TRIG;
1003                 wr32(IGC_PTM_CTRL, ctrl);
1004                 ctrl |= IGC_PTM_CTRL_TRIG;
1005                 wr32(IGC_PTM_CTRL, ctrl);
1006
1007                 /* The cycle only starts "for real" when software notifies
1008                  * that it has read the registers, this is done by setting
1009                  * VALID bit.
1010                  */
1011                 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1012
1013                 err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
1014                                          stat, IGC_PTM_STAT_SLEEP,
1015                                          IGC_PTM_STAT_TIMEOUT);
1016                 if (err < 0) {
1017                         netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
1018                         return err;
1019                 }
1020
1021                 if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
1022                         break;
1023
1024                 if (stat & ~IGC_PTM_STAT_VALID) {
1025                         /* An error occurred, log it. */
1026                         igc_ptm_log_error(adapter, stat);
1027                         /* The STAT register is write-1-to-clear (W1C),
1028                          * so write the previous error status to clear it.
1029                          */
1030                         wr32(IGC_PTM_STAT, stat);
1031                         continue;
1032                 }
1033         } while (--count);
1034
1035         if (!count) {
1036                 netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
1037                 return -ETIMEDOUT;
1038         }
1039
1040         t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
1041
1042         t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
1043         t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
1044
1045         /* FIXME: When the register that tells the endianness of the
1046          * PTM registers are implemented, check them here and add the
1047          * appropriate conversion.
1048          */
1049         t2_curr_h = swab32(t2_curr_h);
1050
1051         t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
1052
1053         *device = t1;
1054         *system = igc_device_tstamp_to_system(t2_curr);
1055
1056         return 0;
1057 }
1058
1059 static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
1060                                   struct system_device_crosststamp *cts)
1061 {
1062         struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
1063                                                    ptp_caps);
1064
1065         return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
1066                                              adapter, &adapter->snapshot, cts);
1067 }
1068
1069 static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp,
1070                                 struct timespec64 *ts,
1071                                 struct ptp_system_timestamp *sts)
1072 {
1073         struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps);
1074         struct igc_hw *hw = &igc->hw;
1075         unsigned long flags;
1076
1077         spin_lock_irqsave(&igc->free_timer_lock, flags);
1078
1079         ptp_read_system_prets(sts);
1080         ts->tv_nsec = rd32(IGC_SYSTIML_1);
1081         ts->tv_sec = rd32(IGC_SYSTIMH_1);
1082         ptp_read_system_postts(sts);
1083
1084         spin_unlock_irqrestore(&igc->free_timer_lock, flags);
1085
1086         return 0;
1087 }
1088
1089 /**
1090  * igc_ptp_init - Initialize PTP functionality
1091  * @adapter: Board private structure
1092  *
1093  * This function is called at device probe to initialize the PTP
1094  * functionality.
1095  */
1096 void igc_ptp_init(struct igc_adapter *adapter)
1097 {
1098         struct net_device *netdev = adapter->netdev;
1099         struct igc_tx_timestamp_request *tstamp;
1100         struct igc_hw *hw = &adapter->hw;
1101         int i;
1102
1103         tstamp = &adapter->tx_tstamp[0];
1104         tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
1105         tstamp->regl = IGC_TXSTMPL_0;
1106         tstamp->regh = IGC_TXSTMPH_0;
1107         tstamp->flags = 0;
1108
1109         tstamp = &adapter->tx_tstamp[1];
1110         tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
1111         tstamp->regl = IGC_TXSTMPL_1;
1112         tstamp->regh = IGC_TXSTMPH_1;
1113         tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
1114
1115         tstamp = &adapter->tx_tstamp[2];
1116         tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
1117         tstamp->regl = IGC_TXSTMPL_2;
1118         tstamp->regh = IGC_TXSTMPH_2;
1119         tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
1120
1121         tstamp = &adapter->tx_tstamp[3];
1122         tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
1123         tstamp->regl = IGC_TXSTMPL_3;
1124         tstamp->regh = IGC_TXSTMPH_3;
1125         tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
1126
1127         switch (hw->mac.type) {
1128         case igc_i225:
1129                 for (i = 0; i < IGC_N_SDP; i++) {
1130                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1131
1132                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1133                         ppd->index = i;
1134                         ppd->func = PTP_PF_NONE;
1135                 }
1136                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1137                 adapter->ptp_caps.owner = THIS_MODULE;
1138                 adapter->ptp_caps.max_adj = 62499999;
1139                 adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
1140                 adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
1141                 adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
1142                 adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64;
1143                 adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
1144                 adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
1145                 adapter->ptp_caps.pps = 1;
1146                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1147                 adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
1148                 adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
1149                 adapter->ptp_caps.n_pins = IGC_N_SDP;
1150                 adapter->ptp_caps.verify = igc_ptp_verify_pin;
1151
1152                 if (!igc_is_crosststamp_supported(adapter))
1153                         break;
1154
1155                 adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
1156                 break;
1157         default:
1158                 adapter->ptp_clock = NULL;
1159                 return;
1160         }
1161
1162         spin_lock_init(&adapter->ptp_tx_lock);
1163         spin_lock_init(&adapter->free_timer_lock);
1164         spin_lock_init(&adapter->tmreg_lock);
1165
1166         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1167         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1168
1169         adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
1170         adapter->ptp_reset_start = ktime_get();
1171
1172         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1173                                                 &adapter->pdev->dev);
1174         if (IS_ERR(adapter->ptp_clock)) {
1175                 adapter->ptp_clock = NULL;
1176                 netdev_err(netdev, "ptp_clock_register failed\n");
1177         } else if (adapter->ptp_clock) {
1178                 netdev_info(netdev, "PHC added\n");
1179                 adapter->ptp_flags |= IGC_PTP_ENABLED;
1180         }
1181 }
1182
1183 static void igc_ptp_time_save(struct igc_adapter *adapter)
1184 {
1185         igc_ptp_read(adapter, &adapter->prev_ptp_time);
1186         adapter->ptp_reset_start = ktime_get();
1187 }
1188
1189 static void igc_ptp_time_restore(struct igc_adapter *adapter)
1190 {
1191         struct timespec64 ts = adapter->prev_ptp_time;
1192         ktime_t delta;
1193
1194         delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
1195
1196         timespec64_add_ns(&ts, ktime_to_ns(delta));
1197
1198         igc_ptp_write_i225(adapter, &ts);
1199 }
1200
1201 static void igc_ptm_stop(struct igc_adapter *adapter)
1202 {
1203         struct igc_hw *hw = &adapter->hw;
1204         u32 ctrl;
1205
1206         ctrl = rd32(IGC_PTM_CTRL);
1207         ctrl &= ~IGC_PTM_CTRL_EN;
1208
1209         wr32(IGC_PTM_CTRL, ctrl);
1210 }
1211
1212 /**
1213  * igc_ptp_suspend - Disable PTP work items and prepare for suspend
1214  * @adapter: Board private structure
1215  *
1216  * This function stops the overflow check work and PTP Tx timestamp work, and
1217  * will prepare the device for OS suspend.
1218  */
1219 void igc_ptp_suspend(struct igc_adapter *adapter)
1220 {
1221         if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
1222                 return;
1223
1224         igc_ptp_clear_tx_tstamp(adapter);
1225
1226         if (pci_device_is_present(adapter->pdev)) {
1227                 igc_ptp_time_save(adapter);
1228                 igc_ptm_stop(adapter);
1229         }
1230 }
1231
1232 /**
1233  * igc_ptp_stop - Disable PTP device and stop the overflow check.
1234  * @adapter: Board private structure.
1235  *
1236  * This function stops the PTP support and cancels the delayed work.
1237  **/
1238 void igc_ptp_stop(struct igc_adapter *adapter)
1239 {
1240         igc_ptp_suspend(adapter);
1241
1242         if (adapter->ptp_clock) {
1243                 ptp_clock_unregister(adapter->ptp_clock);
1244                 netdev_info(adapter->netdev, "PHC removed\n");
1245                 adapter->ptp_flags &= ~IGC_PTP_ENABLED;
1246         }
1247 }
1248
1249 /**
1250  * igc_ptp_reset - Re-enable the adapter for PTP following a reset.
1251  * @adapter: Board private structure.
1252  *
1253  * This function handles the reset work required to re-enable the PTP device.
1254  **/
1255 void igc_ptp_reset(struct igc_adapter *adapter)
1256 {
1257         struct igc_hw *hw = &adapter->hw;
1258         u32 cycle_ctrl, ctrl;
1259         unsigned long flags;
1260         u32 timadj;
1261
1262         /* reset the tstamp_config */
1263         igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1264
1265         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1266
1267         switch (adapter->hw.mac.type) {
1268         case igc_i225:
1269                 timadj = rd32(IGC_TIMADJ);
1270                 timadj |= IGC_TIMADJ_ADJUST_METH;
1271                 wr32(IGC_TIMADJ, timadj);
1272
1273                 wr32(IGC_TSAUXC, 0x0);
1274                 wr32(IGC_TSSDP, 0x0);
1275                 wr32(IGC_TSIM,
1276                      IGC_TSICR_INTERRUPTS |
1277                      (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
1278                 wr32(IGC_IMS, IGC_IMS_TS);
1279
1280                 if (!igc_is_crosststamp_supported(adapter))
1281                         break;
1282
1283                 wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
1284                 wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
1285
1286                 cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
1287
1288                 wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
1289
1290                 ctrl = IGC_PTM_CTRL_EN |
1291                         IGC_PTM_CTRL_START_NOW |
1292                         IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
1293                         IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
1294                         IGC_PTM_CTRL_TRIG;
1295
1296                 wr32(IGC_PTM_CTRL, ctrl);
1297
1298                 /* Force the first cycle to run. */
1299                 wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
1300
1301                 break;
1302         default:
1303                 /* No work to do. */
1304                 goto out;
1305         }
1306
1307         /* Re-initialize the timer. */
1308         if (hw->mac.type == igc_i225) {
1309                 igc_ptp_time_restore(adapter);
1310         } else {
1311                 timecounter_init(&adapter->tc, &adapter->cc,
1312                                  ktime_to_ns(ktime_get_real()));
1313         }
1314 out:
1315         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1316
1317         wrfl();
1318 }