Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15
16 #include <net/ipv6.h>
17
18 #include "igc.h"
19 #include "igc_hw.h"
20 #include "igc_tsn.h"
21 #include "igc_xdp.h"
22
23 #define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
24
25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26
27 #define IGC_XDP_PASS            0
28 #define IGC_XDP_CONSUMED        BIT(0)
29 #define IGC_XDP_TX              BIT(1)
30 #define IGC_XDP_REDIRECT        BIT(2)
31
32 static int debug = -1;
33
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43         "Copyright(c) 2018 Intel Corporation.";
44
45 static const struct igc_info *igc_info_tbl[] = {
46         [board_base] = &igc_base_info,
47 };
48
49 static const struct pci_device_id igc_pci_tbl[] = {
50         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66         /* required last entry */
67         {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73         lowest_latency = 0,
74         low_latency = 1,
75         bulk_latency = 2,
76         latency_invalid = 255
77 };
78
79 void igc_reset(struct igc_adapter *adapter)
80 {
81         struct net_device *dev = adapter->netdev;
82         struct igc_hw *hw = &adapter->hw;
83         struct igc_fc_info *fc = &hw->fc;
84         u32 pba, hwm;
85
86         /* Repartition PBA for greater than 9k MTU if required */
87         pba = IGC_PBA_34K;
88
89         /* flow control settings
90          * The high water mark must be low enough to fit one full frame
91          * after transmitting the pause frame.  As such we must have enough
92          * space to allow for us to complete our current transmit and then
93          * receive the frame that is in progress from the link partner.
94          * Set it to:
95          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96          */
97         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
100         fc->low_water = fc->high_water - 16;
101         fc->pause_time = 0xFFFF;
102         fc->send_xon = 1;
103         fc->current_mode = fc->requested_mode;
104
105         hw->mac.ops.reset_hw(hw);
106
107         if (hw->mac.ops.init_hw(hw))
108                 netdev_err(dev, "Error on hardware initialization\n");
109
110         /* Re-establish EEE setting */
111         igc_set_eee_i225(hw, true, true, true);
112
113         if (!netif_running(adapter->netdev))
114                 igc_power_down_phy_copper_base(&adapter->hw);
115
116         /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117         wr32(IGC_VET, ETH_P_8021Q);
118
119         /* Re-enable PTP, where applicable. */
120         igc_ptp_reset(adapter);
121
122         /* Re-enable TSN offloading, where applicable. */
123         igc_tsn_reset(adapter);
124
125         igc_get_phy_info(hw);
126 }
127
128 /**
129  * igc_power_up_link - Power up the phy link
130  * @adapter: address of board private structure
131  */
132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134         igc_reset_phy(&adapter->hw);
135
136         igc_power_up_phy_copper(&adapter->hw);
137
138         igc_setup_link(&adapter->hw);
139 }
140
141 /**
142  * igc_release_hw_control - release control of the h/w to f/w
143  * @adapter: address of board private structure
144  *
145  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146  * For ASF and Pass Through versions of f/w this means that the
147  * driver is no longer loaded.
148  */
149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151         struct igc_hw *hw = &adapter->hw;
152         u32 ctrl_ext;
153
154         if (!pci_device_is_present(adapter->pdev))
155                 return;
156
157         /* Let firmware take over control of h/w */
158         ctrl_ext = rd32(IGC_CTRL_EXT);
159         wr32(IGC_CTRL_EXT,
160              ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164  * igc_get_hw_control - get control of the h/w from f/w
165  * @adapter: address of board private structure
166  *
167  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168  * For ASF and Pass Through versions of f/w this means that
169  * the driver is loaded.
170  */
171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173         struct igc_hw *hw = &adapter->hw;
174         u32 ctrl_ext;
175
176         /* Let firmware know the driver has taken over */
177         ctrl_ext = rd32(IGC_CTRL_EXT);
178         wr32(IGC_CTRL_EXT,
179              ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184         dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185                          dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187         dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191  * igc_clean_tx_ring - Free Tx Buffers
192  * @tx_ring: ring to be cleaned
193  */
194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196         u16 i = tx_ring->next_to_clean;
197         struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198         u32 xsk_frames = 0;
199
200         while (i != tx_ring->next_to_use) {
201                 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203                 switch (tx_buffer->type) {
204                 case IGC_TX_BUFFER_TYPE_XSK:
205                         xsk_frames++;
206                         break;
207                 case IGC_TX_BUFFER_TYPE_XDP:
208                         xdp_return_frame(tx_buffer->xdpf);
209                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210                         break;
211                 case IGC_TX_BUFFER_TYPE_SKB:
212                         dev_kfree_skb_any(tx_buffer->skb);
213                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214                         break;
215                 default:
216                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217                         break;
218                 }
219
220                 /* check for eop_desc to determine the end of the packet */
221                 eop_desc = tx_buffer->next_to_watch;
222                 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224                 /* unmap remaining buffers */
225                 while (tx_desc != eop_desc) {
226                         tx_buffer++;
227                         tx_desc++;
228                         i++;
229                         if (unlikely(i == tx_ring->count)) {
230                                 i = 0;
231                                 tx_buffer = tx_ring->tx_buffer_info;
232                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
233                         }
234
235                         /* unmap any remaining paged data */
236                         if (dma_unmap_len(tx_buffer, len))
237                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238                 }
239
240                 tx_buffer->next_to_watch = NULL;
241
242                 /* move us one more past the eop_desc for start of next pkt */
243                 tx_buffer++;
244                 i++;
245                 if (unlikely(i == tx_ring->count)) {
246                         i = 0;
247                         tx_buffer = tx_ring->tx_buffer_info;
248                 }
249         }
250
251         if (tx_ring->xsk_pool && xsk_frames)
252                 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254         /* reset BQL for queue */
255         netdev_tx_reset_queue(txring_txq(tx_ring));
256
257         /* Zero out the buffer ring */
258         memset(tx_ring->tx_buffer_info, 0,
259                sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261         /* Zero out the descriptor ring */
262         memset(tx_ring->desc, 0, tx_ring->size);
263
264         /* reset next_to_use and next_to_clean */
265         tx_ring->next_to_use = 0;
266         tx_ring->next_to_clean = 0;
267 }
268
269 /**
270  * igc_free_tx_resources - Free Tx Resources per Queue
271  * @tx_ring: Tx descriptor ring for a specific queue
272  *
273  * Free all transmit software resources
274  */
275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277         igc_disable_tx_ring(tx_ring);
278
279         vfree(tx_ring->tx_buffer_info);
280         tx_ring->tx_buffer_info = NULL;
281
282         /* if not set, then don't free */
283         if (!tx_ring->desc)
284                 return;
285
286         dma_free_coherent(tx_ring->dev, tx_ring->size,
287                           tx_ring->desc, tx_ring->dma);
288
289         tx_ring->desc = NULL;
290 }
291
292 /**
293  * igc_free_all_tx_resources - Free Tx Resources for All Queues
294  * @adapter: board private structure
295  *
296  * Free all transmit software resources
297  */
298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300         int i;
301
302         for (i = 0; i < adapter->num_tx_queues; i++)
303                 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308  * @adapter: board private structure
309  */
310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312         int i;
313
314         for (i = 0; i < adapter->num_tx_queues; i++)
315                 if (adapter->tx_ring[i])
316                         igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321         struct igc_hw *hw = &ring->q_vector->adapter->hw;
322         u8 idx = ring->reg_idx;
323         u32 txdctl;
324
325         txdctl = rd32(IGC_TXDCTL(idx));
326         txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327         txdctl |= IGC_TXDCTL_SWFLUSH;
328         wr32(IGC_TXDCTL(idx), txdctl);
329 }
330
331 /**
332  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333  * @adapter: board private structure
334  */
335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337         int i;
338
339         for (i = 0; i < adapter->num_tx_queues; i++) {
340                 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342                 igc_disable_tx_ring_hw(tx_ring);
343         }
344 }
345
346 /**
347  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348  * @tx_ring: tx descriptor ring (for a specific queue) to setup
349  *
350  * Return 0 on success, negative on failure
351  */
352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354         struct net_device *ndev = tx_ring->netdev;
355         struct device *dev = tx_ring->dev;
356         int size = 0;
357
358         size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359         tx_ring->tx_buffer_info = vzalloc(size);
360         if (!tx_ring->tx_buffer_info)
361                 goto err;
362
363         /* round up to nearest 4K */
364         tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365         tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368                                            &tx_ring->dma, GFP_KERNEL);
369
370         if (!tx_ring->desc)
371                 goto err;
372
373         tx_ring->next_to_use = 0;
374         tx_ring->next_to_clean = 0;
375
376         return 0;
377
378 err:
379         vfree(tx_ring->tx_buffer_info);
380         netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381         return -ENOMEM;
382 }
383
384 /**
385  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386  * @adapter: board private structure
387  *
388  * Return 0 on success, negative on failure
389  */
390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392         struct net_device *dev = adapter->netdev;
393         int i, err = 0;
394
395         for (i = 0; i < adapter->num_tx_queues; i++) {
396                 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397                 if (err) {
398                         netdev_err(dev, "Error on Tx queue %u setup\n", i);
399                         for (i--; i >= 0; i--)
400                                 igc_free_tx_resources(adapter->tx_ring[i]);
401                         break;
402                 }
403         }
404
405         return err;
406 }
407
408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410         u16 i = rx_ring->next_to_clean;
411
412         dev_kfree_skb(rx_ring->skb);
413         rx_ring->skb = NULL;
414
415         /* Free all the Rx ring sk_buffs */
416         while (i != rx_ring->next_to_alloc) {
417                 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419                 /* Invalidate cache lines that may have been written to by
420                  * device so that we avoid corrupting memory.
421                  */
422                 dma_sync_single_range_for_cpu(rx_ring->dev,
423                                               buffer_info->dma,
424                                               buffer_info->page_offset,
425                                               igc_rx_bufsz(rx_ring),
426                                               DMA_FROM_DEVICE);
427
428                 /* free resources associated with mapping */
429                 dma_unmap_page_attrs(rx_ring->dev,
430                                      buffer_info->dma,
431                                      igc_rx_pg_size(rx_ring),
432                                      DMA_FROM_DEVICE,
433                                      IGC_RX_DMA_ATTR);
434                 __page_frag_cache_drain(buffer_info->page,
435                                         buffer_info->pagecnt_bias);
436
437                 i++;
438                 if (i == rx_ring->count)
439                         i = 0;
440         }
441 }
442
443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445         struct igc_rx_buffer *bi;
446         u16 i;
447
448         for (i = 0; i < ring->count; i++) {
449                 bi = &ring->rx_buffer_info[i];
450                 if (!bi->xdp)
451                         continue;
452
453                 xsk_buff_free(bi->xdp);
454                 bi->xdp = NULL;
455         }
456 }
457
458 /**
459  * igc_clean_rx_ring - Free Rx Buffers per Queue
460  * @ring: ring to free buffers from
461  */
462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464         if (ring->xsk_pool)
465                 igc_clean_rx_ring_xsk_pool(ring);
466         else
467                 igc_clean_rx_ring_page_shared(ring);
468
469         clear_ring_uses_large_buffer(ring);
470
471         ring->next_to_alloc = 0;
472         ring->next_to_clean = 0;
473         ring->next_to_use = 0;
474 }
475
476 /**
477  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478  * @adapter: board private structure
479  */
480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482         int i;
483
484         for (i = 0; i < adapter->num_rx_queues; i++)
485                 if (adapter->rx_ring[i])
486                         igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488
489 /**
490  * igc_free_rx_resources - Free Rx Resources
491  * @rx_ring: ring to clean the resources from
492  *
493  * Free all receive software resources
494  */
495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497         igc_clean_rx_ring(rx_ring);
498
499         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501         vfree(rx_ring->rx_buffer_info);
502         rx_ring->rx_buffer_info = NULL;
503
504         /* if not set, then don't free */
505         if (!rx_ring->desc)
506                 return;
507
508         dma_free_coherent(rx_ring->dev, rx_ring->size,
509                           rx_ring->desc, rx_ring->dma);
510
511         rx_ring->desc = NULL;
512 }
513
514 /**
515  * igc_free_all_rx_resources - Free Rx Resources for All Queues
516  * @adapter: board private structure
517  *
518  * Free all receive software resources
519  */
520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522         int i;
523
524         for (i = 0; i < adapter->num_rx_queues; i++)
525                 igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527
528 /**
529  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
531  *
532  * Returns 0 on success, negative on failure
533  */
534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536         struct net_device *ndev = rx_ring->netdev;
537         struct device *dev = rx_ring->dev;
538         u8 index = rx_ring->queue_index;
539         int size, desc_len, res;
540
541         /* XDP RX-queue info */
542         if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544         res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545                                rx_ring->q_vector->napi.napi_id);
546         if (res < 0) {
547                 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548                            index);
549                 return res;
550         }
551
552         size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553         rx_ring->rx_buffer_info = vzalloc(size);
554         if (!rx_ring->rx_buffer_info)
555                 goto err;
556
557         desc_len = sizeof(union igc_adv_rx_desc);
558
559         /* Round up to nearest 4K */
560         rx_ring->size = rx_ring->count * desc_len;
561         rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564                                            &rx_ring->dma, GFP_KERNEL);
565
566         if (!rx_ring->desc)
567                 goto err;
568
569         rx_ring->next_to_alloc = 0;
570         rx_ring->next_to_clean = 0;
571         rx_ring->next_to_use = 0;
572
573         return 0;
574
575 err:
576         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577         vfree(rx_ring->rx_buffer_info);
578         rx_ring->rx_buffer_info = NULL;
579         netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580         return -ENOMEM;
581 }
582
583 /**
584  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585  *                                (Descriptors) for all queues
586  * @adapter: board private structure
587  *
588  * Return 0 on success, negative on failure
589  */
590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592         struct net_device *dev = adapter->netdev;
593         int i, err = 0;
594
595         for (i = 0; i < adapter->num_rx_queues; i++) {
596                 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597                 if (err) {
598                         netdev_err(dev, "Error on Rx queue %u setup\n", i);
599                         for (i--; i >= 0; i--)
600                                 igc_free_rx_resources(adapter->rx_ring[i]);
601                         break;
602                 }
603         }
604
605         return err;
606 }
607
608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609                                               struct igc_ring *ring)
610 {
611         if (!igc_xdp_is_enabled(adapter) ||
612             !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613                 return NULL;
614
615         return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617
618 /**
619  * igc_configure_rx_ring - Configure a receive ring after Reset
620  * @adapter: board private structure
621  * @ring: receive ring to be configured
622  *
623  * Configure the Rx unit of the MAC after a reset.
624  */
625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626                                   struct igc_ring *ring)
627 {
628         struct igc_hw *hw = &adapter->hw;
629         union igc_adv_rx_desc *rx_desc;
630         int reg_idx = ring->reg_idx;
631         u32 srrctl = 0, rxdctl = 0;
632         u64 rdba = ring->dma;
633         u32 buf_size;
634
635         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637         if (ring->xsk_pool) {
638                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639                                                    MEM_TYPE_XSK_BUFF_POOL,
640                                                    NULL));
641                 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642         } else {
643                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644                                                    MEM_TYPE_PAGE_SHARED,
645                                                    NULL));
646         }
647
648         if (igc_xdp_is_enabled(adapter))
649                 set_ring_uses_large_buffer(ring);
650
651         /* disable the queue */
652         wr32(IGC_RXDCTL(reg_idx), 0);
653
654         /* Set DMA base address registers */
655         wr32(IGC_RDBAL(reg_idx),
656              rdba & 0x00000000ffffffffULL);
657         wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658         wr32(IGC_RDLEN(reg_idx),
659              ring->count * sizeof(union igc_adv_rx_desc));
660
661         /* initialize head and tail */
662         ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663         wr32(IGC_RDH(reg_idx), 0);
664         writel(0, ring->tail);
665
666         /* reset next-to- use/clean to place SW in sync with hardware */
667         ring->next_to_clean = 0;
668         ring->next_to_use = 0;
669
670         if (ring->xsk_pool)
671                 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672         else if (ring_uses_large_buffer(ring))
673                 buf_size = IGC_RXBUFFER_3072;
674         else
675                 buf_size = IGC_RXBUFFER_2048;
676
677         srrctl = rd32(IGC_SRRCTL(reg_idx));
678         srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679                     IGC_SRRCTL_DESCTYPE_MASK);
680         srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681         srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682         srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684         wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686         rxdctl |= IGC_RX_PTHRESH;
687         rxdctl |= IGC_RX_HTHRESH << 8;
688         rxdctl |= IGC_RX_WTHRESH << 16;
689
690         /* initialize rx_buffer_info */
691         memset(ring->rx_buffer_info, 0,
692                sizeof(struct igc_rx_buffer) * ring->count);
693
694         /* initialize Rx descriptor 0 */
695         rx_desc = IGC_RX_DESC(ring, 0);
696         rx_desc->wb.upper.length = 0;
697
698         /* enable receive descriptor fetching */
699         rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701         wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703
704 /**
705  * igc_configure_rx - Configure receive Unit after Reset
706  * @adapter: board private structure
707  *
708  * Configure the Rx unit of the MAC after a reset.
709  */
710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712         int i;
713
714         /* Setup the HW Rx Head and Tail Descriptor Pointers and
715          * the Base and Length of the Rx Descriptor Ring
716          */
717         for (i = 0; i < adapter->num_rx_queues; i++)
718                 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720
721 /**
722  * igc_configure_tx_ring - Configure transmit ring after Reset
723  * @adapter: board private structure
724  * @ring: tx ring to configure
725  *
726  * Configure a transmit ring after a reset.
727  */
728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729                                   struct igc_ring *ring)
730 {
731         struct igc_hw *hw = &adapter->hw;
732         int reg_idx = ring->reg_idx;
733         u64 tdba = ring->dma;
734         u32 txdctl = 0;
735
736         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738         /* disable the queue */
739         wr32(IGC_TXDCTL(reg_idx), 0);
740         wrfl();
741
742         wr32(IGC_TDLEN(reg_idx),
743              ring->count * sizeof(union igc_adv_tx_desc));
744         wr32(IGC_TDBAL(reg_idx),
745              tdba & 0x00000000ffffffffULL);
746         wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748         ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749         wr32(IGC_TDH(reg_idx), 0);
750         writel(0, ring->tail);
751
752         txdctl |= IGC_TX_PTHRESH;
753         txdctl |= IGC_TX_HTHRESH << 8;
754         txdctl |= IGC_TX_WTHRESH << 16;
755
756         txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757         wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759
760 /**
761  * igc_configure_tx - Configure transmit Unit after Reset
762  * @adapter: board private structure
763  *
764  * Configure the Tx unit of the MAC after a reset.
765  */
766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768         int i;
769
770         for (i = 0; i < adapter->num_tx_queues; i++)
771                 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773
774 /**
775  * igc_setup_mrqc - configure the multiple receive queue control registers
776  * @adapter: Board private structure
777  */
778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780         struct igc_hw *hw = &adapter->hw;
781         u32 j, num_rx_queues;
782         u32 mrqc, rxcsum;
783         u32 rss_key[10];
784
785         netdev_rss_key_fill(rss_key, sizeof(rss_key));
786         for (j = 0; j < 10; j++)
787                 wr32(IGC_RSSRK(j), rss_key[j]);
788
789         num_rx_queues = adapter->rss_queues;
790
791         if (adapter->rss_indir_tbl_init != num_rx_queues) {
792                 for (j = 0; j < IGC_RETA_SIZE; j++)
793                         adapter->rss_indir_tbl[j] =
794                         (j * num_rx_queues) / IGC_RETA_SIZE;
795                 adapter->rss_indir_tbl_init = num_rx_queues;
796         }
797         igc_write_rss_indir_tbl(adapter);
798
799         /* Disable raw packet checksumming so that RSS hash is placed in
800          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
801          * offloads as they are enabled by default
802          */
803         rxcsum = rd32(IGC_RXCSUM);
804         rxcsum |= IGC_RXCSUM_PCSD;
805
806         /* Enable Receive Checksum Offload for SCTP */
807         rxcsum |= IGC_RXCSUM_CRCOFL;
808
809         /* Don't need to set TUOFL or IPOFL, they default to 1 */
810         wr32(IGC_RXCSUM, rxcsum);
811
812         /* Generate RSS hash based on packet types, TCP/UDP
813          * port numbers and/or IPv4/v6 src and dst addresses
814          */
815         mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816                IGC_MRQC_RSS_FIELD_IPV4_TCP |
817                IGC_MRQC_RSS_FIELD_IPV6 |
818                IGC_MRQC_RSS_FIELD_IPV6_TCP |
819                IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826         mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828         wr32(IGC_MRQC, mrqc);
829 }
830
831 /**
832  * igc_setup_rctl - configure the receive control registers
833  * @adapter: Board private structure
834  */
835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837         struct igc_hw *hw = &adapter->hw;
838         u32 rctl;
839
840         rctl = rd32(IGC_RCTL);
841
842         rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843         rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846                 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848         /* enable stripping of CRC. Newer features require
849          * that the HW strips the CRC.
850          */
851         rctl |= IGC_RCTL_SECRC;
852
853         /* disable store bad packets and clear size bits. */
854         rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856         /* enable LPE to allow for reception of jumbo frames */
857         rctl |= IGC_RCTL_LPE;
858
859         /* disable queue 0 to prevent tail write w/o re-config */
860         wr32(IGC_RXDCTL(0), 0);
861
862         /* This is useful for sniffing bad packets. */
863         if (adapter->netdev->features & NETIF_F_RXALL) {
864                 /* UPE and MPE will be handled by normal PROMISC logic
865                  * in set_rx_mode
866                  */
867                 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868                          IGC_RCTL_BAM | /* RX All Bcast Pkts */
869                          IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871                 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872                           IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873         }
874
875         wr32(IGC_RCTL, rctl);
876 }
877
878 /**
879  * igc_setup_tctl - configure the transmit control registers
880  * @adapter: Board private structure
881  */
882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884         struct igc_hw *hw = &adapter->hw;
885         u32 tctl;
886
887         /* disable queue 0 which icould be enabled by default */
888         wr32(IGC_TXDCTL(0), 0);
889
890         /* Program the Transmit Control Register */
891         tctl = rd32(IGC_TCTL);
892         tctl &= ~IGC_TCTL_CT;
893         tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894                 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896         /* Enable transmits */
897         tctl |= IGC_TCTL_EN;
898
899         wr32(IGC_TCTL, tctl);
900 }
901
902 /**
903  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904  * @adapter: Pointer to adapter where the filter should be set
905  * @index: Filter index
906  * @type: MAC address filter type (source or destination)
907  * @addr: MAC address
908  * @queue: If non-negative, queue assignment feature is enabled and frames
909  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
910  *         assignment is disabled.
911  */
912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913                                   enum igc_mac_filter_type type,
914                                   const u8 *addr, int queue)
915 {
916         struct net_device *dev = adapter->netdev;
917         struct igc_hw *hw = &adapter->hw;
918         u32 ral, rah;
919
920         if (WARN_ON(index >= hw->mac.rar_entry_count))
921                 return;
922
923         ral = le32_to_cpup((__le32 *)(addr));
924         rah = le16_to_cpup((__le16 *)(addr + 4));
925
926         if (type == IGC_MAC_FILTER_TYPE_SRC) {
927                 rah &= ~IGC_RAH_ASEL_MASK;
928                 rah |= IGC_RAH_ASEL_SRC_ADDR;
929         }
930
931         if (queue >= 0) {
932                 rah &= ~IGC_RAH_QSEL_MASK;
933                 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934                 rah |= IGC_RAH_QSEL_ENABLE;
935         }
936
937         rah |= IGC_RAH_AV;
938
939         wr32(IGC_RAL(index), ral);
940         wr32(IGC_RAH(index), rah);
941
942         netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944
945 /**
946  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947  * @adapter: Pointer to adapter where the filter should be cleared
948  * @index: Filter index
949  */
950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952         struct net_device *dev = adapter->netdev;
953         struct igc_hw *hw = &adapter->hw;
954
955         if (WARN_ON(index >= hw->mac.rar_entry_count))
956                 return;
957
958         wr32(IGC_RAL(index), 0);
959         wr32(IGC_RAH(index), 0);
960
961         netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963
964 /* Set default MAC address for the PF in the first RAR entry */
965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967         struct net_device *dev = adapter->netdev;
968         u8 *addr = adapter->hw.mac.addr;
969
970         netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972         igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974
975 /**
976  * igc_set_mac - Change the Ethernet Address of the NIC
977  * @netdev: network interface device structure
978  * @p: pointer to an address structure
979  *
980  * Returns 0 on success, negative on failure
981  */
982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984         struct igc_adapter *adapter = netdev_priv(netdev);
985         struct igc_hw *hw = &adapter->hw;
986         struct sockaddr *addr = p;
987
988         if (!is_valid_ether_addr(addr->sa_data))
989                 return -EADDRNOTAVAIL;
990
991         eth_hw_addr_set(netdev, addr->sa_data);
992         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994         /* set the correct pool for the new PF MAC address in entry 0 */
995         igc_set_default_mac_filter(adapter);
996
997         return 0;
998 }
999
1000 /**
1001  *  igc_write_mc_addr_list - write multicast addresses to MTA
1002  *  @netdev: network interface device structure
1003  *
1004  *  Writes multicast address list to the MTA hash table.
1005  *  Returns: -ENOMEM on failure
1006  *           0 on no addresses written
1007  *           X on writing X addresses to MTA
1008  **/
1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011         struct igc_adapter *adapter = netdev_priv(netdev);
1012         struct igc_hw *hw = &adapter->hw;
1013         struct netdev_hw_addr *ha;
1014         u8  *mta_list;
1015         int i;
1016
1017         if (netdev_mc_empty(netdev)) {
1018                 /* nothing to program, so clear mc list */
1019                 igc_update_mc_addr_list(hw, NULL, 0);
1020                 return 0;
1021         }
1022
1023         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024         if (!mta_list)
1025                 return -ENOMEM;
1026
1027         /* The shared function expects a packed array of only addresses. */
1028         i = 0;
1029         netdev_for_each_mc_addr(ha, netdev)
1030                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032         igc_update_mc_addr_list(hw, mta_list, i);
1033         kfree(mta_list);
1034
1035         return netdev_mc_count(netdev);
1036 }
1037
1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039                                 bool *first_flag, bool *insert_empty)
1040 {
1041         struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042         ktime_t cycle_time = adapter->cycle_time;
1043         ktime_t base_time = adapter->base_time;
1044         ktime_t now = ktime_get_clocktai();
1045         ktime_t baset_est, end_of_cycle;
1046         s32 launchtime;
1047         s64 n;
1048
1049         n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051         baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052         end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054         if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055                 if (baset_est != ring->last_ff_cycle) {
1056                         *first_flag = true;
1057                         ring->last_ff_cycle = baset_est;
1058
1059                         if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060                                 *insert_empty = true;
1061                 }
1062         }
1063
1064         /* Introducing a window at end of cycle on which packets
1065          * potentially not honor launchtime. Window of 5us chosen
1066          * considering software update the tail pointer and packets
1067          * are dma'ed to packet buffer.
1068          */
1069         if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070                 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071                             txtime);
1072
1073         ring->last_tx_cycle = end_of_cycle;
1074
1075         launchtime = ktime_sub_ns(txtime, baset_est);
1076         if (launchtime > 0)
1077                 div_s64_rem(launchtime, cycle_time, &launchtime);
1078         else
1079                 launchtime = 0;
1080
1081         return cpu_to_le32(launchtime);
1082 }
1083
1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085                                 struct igc_tx_buffer *buffer,
1086                                 struct sk_buff *skb)
1087 {
1088         unsigned int size;
1089         dma_addr_t dma;
1090
1091         size = skb_headlen(skb);
1092
1093         dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094         if (dma_mapping_error(ring->dev, dma)) {
1095                 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096                 return -ENOMEM;
1097         }
1098
1099         buffer->skb = skb;
1100         buffer->protocol = 0;
1101         buffer->bytecount = skb->len;
1102         buffer->gso_segs = 1;
1103         buffer->time_stamp = jiffies;
1104         dma_unmap_len_set(buffer, len, skb->len);
1105         dma_unmap_addr_set(buffer, dma, dma);
1106
1107         return 0;
1108 }
1109
1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111                                         struct sk_buff *skb,
1112                                         struct igc_tx_buffer *first)
1113 {
1114         union igc_adv_tx_desc *desc;
1115         u32 cmd_type, olinfo_status;
1116         int err;
1117
1118         if (!igc_desc_unused(ring))
1119                 return -EBUSY;
1120
1121         err = igc_init_empty_frame(ring, first, skb);
1122         if (err)
1123                 return err;
1124
1125         cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126                    IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127                    first->bytecount;
1128         olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129
1130         desc = IGC_TX_DESC(ring, ring->next_to_use);
1131         desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133         desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134
1135         netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136
1137         first->next_to_watch = desc;
1138
1139         ring->next_to_use++;
1140         if (ring->next_to_use == ring->count)
1141                 ring->next_to_use = 0;
1142
1143         return 0;
1144 }
1145
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147
1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149                             __le32 launch_time, bool first_flag,
1150                             u32 vlan_macip_lens, u32 type_tucmd,
1151                             u32 mss_l4len_idx)
1152 {
1153         struct igc_adv_tx_context_desc *context_desc;
1154         u16 i = tx_ring->next_to_use;
1155
1156         context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157
1158         i++;
1159         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160
1161         /* set bits to identify this as an advanced context descriptor */
1162         type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163
1164         /* For i225, context index must be unique per ring. */
1165         if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166                 mss_l4len_idx |= tx_ring->reg_idx << 4;
1167
1168         if (first_flag)
1169                 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170
1171         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1172         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1173         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1174         context_desc->launch_time       = launch_time;
1175 }
1176
1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178                         __le32 launch_time, bool first_flag)
1179 {
1180         struct sk_buff *skb = first->skb;
1181         u32 vlan_macip_lens = 0;
1182         u32 type_tucmd = 0;
1183
1184         if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186                 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187                     !tx_ring->launchtime_enable)
1188                         return;
1189                 goto no_csum;
1190         }
1191
1192         switch (skb->csum_offset) {
1193         case offsetof(struct tcphdr, check):
1194                 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195                 fallthrough;
1196         case offsetof(struct udphdr, check):
1197                 break;
1198         case offsetof(struct sctphdr, checksum):
1199                 /* validate that this is actually an SCTP request */
1200                 if (skb_csum_is_sctp(skb)) {
1201                         type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202                         break;
1203                 }
1204                 fallthrough;
1205         default:
1206                 skb_checksum_help(skb);
1207                 goto csum_failed;
1208         }
1209
1210         /* update TX checksum flag */
1211         first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212         vlan_macip_lens = skb_checksum_start_offset(skb) -
1213                           skb_network_offset(skb);
1214 no_csum:
1215         vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217
1218         igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219                         vlan_macip_lens, type_tucmd, 0);
1220 }
1221
1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224         struct net_device *netdev = tx_ring->netdev;
1225
1226         netif_stop_subqueue(netdev, tx_ring->queue_index);
1227
1228         /* memory barriier comment */
1229         smp_mb();
1230
1231         /* We need to check again in a case another CPU has just
1232          * made room available.
1233          */
1234         if (igc_desc_unused(tx_ring) < size)
1235                 return -EBUSY;
1236
1237         /* A reprieve! */
1238         netif_wake_subqueue(netdev, tx_ring->queue_index);
1239
1240         u64_stats_update_begin(&tx_ring->tx_syncp2);
1241         tx_ring->tx_stats.restart_queue2++;
1242         u64_stats_update_end(&tx_ring->tx_syncp2);
1243
1244         return 0;
1245 }
1246
1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249         if (igc_desc_unused(tx_ring) >= size)
1250                 return 0;
1251         return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255         (((_flag) <= (_result)) ?                               \
1256          ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1257          ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258
1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261         /* set type for advanced descriptor with frame checksum insertion */
1262         u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263                        IGC_ADVTXD_DCMD_DEXT |
1264                        IGC_ADVTXD_DCMD_IFCS;
1265
1266         /* set HW vlan bit if vlan is present */
1267         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268                                  IGC_ADVTXD_DCMD_VLE);
1269
1270         /* set segmentation bits for TSO */
1271         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272                                  (IGC_ADVTXD_DCMD_TSE));
1273
1274         /* set timestamp bit if present, will select the register set
1275          * based on the _TSTAMP(_X) bit.
1276          */
1277         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278                                  (IGC_ADVTXD_MAC_TSTAMP));
1279
1280         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281                                  (IGC_ADVTXD_TSTAMP_REG_1));
1282
1283         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284                                  (IGC_ADVTXD_TSTAMP_REG_2));
1285
1286         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287                                  (IGC_ADVTXD_TSTAMP_REG_3));
1288
1289         /* insert frame checksum */
1290         cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291
1292         return cmd_type;
1293 }
1294
1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296                                  union igc_adv_tx_desc *tx_desc,
1297                                  u32 tx_flags, unsigned int paylen)
1298 {
1299         u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300
1301         /* insert L4 checksum */
1302         olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_CSUM,
1303                                       (IGC_TXD_POPTS_TXSM << 8));
1304
1305         /* insert IPv4 checksum */
1306         olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_IPV4,
1307                                       (IGC_TXD_POPTS_IXSM << 8));
1308
1309         /* Use the second timer (free running, in general) for the timestamp */
1310         olinfo_status |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_TIMER_1,
1311                                       IGC_TXD_PTP2_TIMER_1);
1312
1313         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1314 }
1315
1316 static int igc_tx_map(struct igc_ring *tx_ring,
1317                       struct igc_tx_buffer *first,
1318                       const u8 hdr_len)
1319 {
1320         struct sk_buff *skb = first->skb;
1321         struct igc_tx_buffer *tx_buffer;
1322         union igc_adv_tx_desc *tx_desc;
1323         u32 tx_flags = first->tx_flags;
1324         skb_frag_t *frag;
1325         u16 i = tx_ring->next_to_use;
1326         unsigned int data_len, size;
1327         dma_addr_t dma;
1328         u32 cmd_type;
1329
1330         cmd_type = igc_tx_cmd_type(skb, tx_flags);
1331         tx_desc = IGC_TX_DESC(tx_ring, i);
1332
1333         igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1334
1335         size = skb_headlen(skb);
1336         data_len = skb->data_len;
1337
1338         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1339
1340         tx_buffer = first;
1341
1342         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1343                 if (dma_mapping_error(tx_ring->dev, dma))
1344                         goto dma_error;
1345
1346                 /* record length, and DMA address */
1347                 dma_unmap_len_set(tx_buffer, len, size);
1348                 dma_unmap_addr_set(tx_buffer, dma, dma);
1349
1350                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1351
1352                 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1353                         tx_desc->read.cmd_type_len =
1354                                 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1355
1356                         i++;
1357                         tx_desc++;
1358                         if (i == tx_ring->count) {
1359                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
1360                                 i = 0;
1361                         }
1362                         tx_desc->read.olinfo_status = 0;
1363
1364                         dma += IGC_MAX_DATA_PER_TXD;
1365                         size -= IGC_MAX_DATA_PER_TXD;
1366
1367                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
1368                 }
1369
1370                 if (likely(!data_len))
1371                         break;
1372
1373                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1374
1375                 i++;
1376                 tx_desc++;
1377                 if (i == tx_ring->count) {
1378                         tx_desc = IGC_TX_DESC(tx_ring, 0);
1379                         i = 0;
1380                 }
1381                 tx_desc->read.olinfo_status = 0;
1382
1383                 size = skb_frag_size(frag);
1384                 data_len -= size;
1385
1386                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1387                                        size, DMA_TO_DEVICE);
1388
1389                 tx_buffer = &tx_ring->tx_buffer_info[i];
1390         }
1391
1392         /* write last descriptor with RS and EOP bits */
1393         cmd_type |= size | IGC_TXD_DCMD;
1394         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1395
1396         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1397
1398         /* set the timestamp */
1399         first->time_stamp = jiffies;
1400
1401         skb_tx_timestamp(skb);
1402
1403         /* Force memory writes to complete before letting h/w know there
1404          * are new descriptors to fetch.  (Only applicable for weak-ordered
1405          * memory model archs, such as IA-64).
1406          *
1407          * We also need this memory barrier to make certain all of the
1408          * status bits have been updated before next_to_watch is written.
1409          */
1410         wmb();
1411
1412         /* set next_to_watch value indicating a packet is present */
1413         first->next_to_watch = tx_desc;
1414
1415         i++;
1416         if (i == tx_ring->count)
1417                 i = 0;
1418
1419         tx_ring->next_to_use = i;
1420
1421         /* Make sure there is space in the ring for the next send. */
1422         igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1423
1424         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1425                 writel(i, tx_ring->tail);
1426         }
1427
1428         return 0;
1429 dma_error:
1430         netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1431         tx_buffer = &tx_ring->tx_buffer_info[i];
1432
1433         /* clear dma mappings for failed tx_buffer_info map */
1434         while (tx_buffer != first) {
1435                 if (dma_unmap_len(tx_buffer, len))
1436                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1437
1438                 if (i-- == 0)
1439                         i += tx_ring->count;
1440                 tx_buffer = &tx_ring->tx_buffer_info[i];
1441         }
1442
1443         if (dma_unmap_len(tx_buffer, len))
1444                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1445
1446         dev_kfree_skb_any(tx_buffer->skb);
1447         tx_buffer->skb = NULL;
1448
1449         tx_ring->next_to_use = i;
1450
1451         return -1;
1452 }
1453
1454 static int igc_tso(struct igc_ring *tx_ring,
1455                    struct igc_tx_buffer *first,
1456                    __le32 launch_time, bool first_flag,
1457                    u8 *hdr_len)
1458 {
1459         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1460         struct sk_buff *skb = first->skb;
1461         union {
1462                 struct iphdr *v4;
1463                 struct ipv6hdr *v6;
1464                 unsigned char *hdr;
1465         } ip;
1466         union {
1467                 struct tcphdr *tcp;
1468                 struct udphdr *udp;
1469                 unsigned char *hdr;
1470         } l4;
1471         u32 paylen, l4_offset;
1472         int err;
1473
1474         if (skb->ip_summed != CHECKSUM_PARTIAL)
1475                 return 0;
1476
1477         if (!skb_is_gso(skb))
1478                 return 0;
1479
1480         err = skb_cow_head(skb, 0);
1481         if (err < 0)
1482                 return err;
1483
1484         ip.hdr = skb_network_header(skb);
1485         l4.hdr = skb_checksum_start(skb);
1486
1487         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1488         type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1489
1490         /* initialize outer IP header fields */
1491         if (ip.v4->version == 4) {
1492                 unsigned char *csum_start = skb_checksum_start(skb);
1493                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1494
1495                 /* IP header will have to cancel out any data that
1496                  * is not a part of the outer IP header
1497                  */
1498                 ip.v4->check = csum_fold(csum_partial(trans_start,
1499                                                       csum_start - trans_start,
1500                                                       0));
1501                 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1502
1503                 ip.v4->tot_len = 0;
1504                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1505                                    IGC_TX_FLAGS_CSUM |
1506                                    IGC_TX_FLAGS_IPV4;
1507         } else {
1508                 ip.v6->payload_len = 0;
1509                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1510                                    IGC_TX_FLAGS_CSUM;
1511         }
1512
1513         /* determine offset of inner transport header */
1514         l4_offset = l4.hdr - skb->data;
1515
1516         /* remove payload length from inner checksum */
1517         paylen = skb->len - l4_offset;
1518         if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1519                 /* compute length of segmentation header */
1520                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1521                 csum_replace_by_diff(&l4.tcp->check,
1522                                      (__force __wsum)htonl(paylen));
1523         } else {
1524                 /* compute length of segmentation header */
1525                 *hdr_len = sizeof(*l4.udp) + l4_offset;
1526                 csum_replace_by_diff(&l4.udp->check,
1527                                      (__force __wsum)htonl(paylen));
1528         }
1529
1530         /* update gso size and bytecount with header size */
1531         first->gso_segs = skb_shinfo(skb)->gso_segs;
1532         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1533
1534         /* MSS L4LEN IDX */
1535         mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1536         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1537
1538         /* VLAN MACLEN IPLEN */
1539         vlan_macip_lens = l4.hdr - ip.hdr;
1540         vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1541         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1542
1543         igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1544                         vlan_macip_lens, type_tucmd, mss_l4len_idx);
1545
1546         return 1;
1547 }
1548
1549 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1550 {
1551         int i;
1552
1553         for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1554                 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1555
1556                 if (tstamp->skb)
1557                         continue;
1558
1559                 tstamp->skb = skb_get(skb);
1560                 tstamp->start = jiffies;
1561                 *flags = tstamp->flags;
1562
1563                 return true;
1564         }
1565
1566         return false;
1567 }
1568
1569 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1570                                        struct igc_ring *tx_ring)
1571 {
1572         struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1573         bool first_flag = false, insert_empty = false;
1574         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1575         __be16 protocol = vlan_get_protocol(skb);
1576         struct igc_tx_buffer *first;
1577         __le32 launch_time = 0;
1578         u32 tx_flags = 0;
1579         unsigned short f;
1580         ktime_t txtime;
1581         u8 hdr_len = 0;
1582         int tso = 0;
1583
1584         /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1585          *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1586          *      + 2 desc gap to keep tail from touching head,
1587          *      + 1 desc for context descriptor,
1588          * otherwise try next time
1589          */
1590         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1591                 count += TXD_USE_COUNT(skb_frag_size(
1592                                                 &skb_shinfo(skb)->frags[f]));
1593
1594         if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1595                 /* this is a hard error */
1596                 return NETDEV_TX_BUSY;
1597         }
1598
1599         if (!tx_ring->launchtime_enable)
1600                 goto done;
1601
1602         txtime = skb->tstamp;
1603         skb->tstamp = ktime_set(0, 0);
1604         launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1605
1606         if (insert_empty) {
1607                 struct igc_tx_buffer *empty_info;
1608                 struct sk_buff *empty;
1609                 void *data;
1610
1611                 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1612                 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1613                 if (!empty)
1614                         goto done;
1615
1616                 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1617                 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1618
1619                 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1620
1621                 if (igc_init_tx_empty_descriptor(tx_ring,
1622                                                  empty,
1623                                                  empty_info) < 0)
1624                         dev_kfree_skb_any(empty);
1625         }
1626
1627 done:
1628         /* record the location of the first descriptor for this packet */
1629         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1630         first->type = IGC_TX_BUFFER_TYPE_SKB;
1631         first->skb = skb;
1632         first->bytecount = skb->len;
1633         first->gso_segs = 1;
1634
1635         if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1636                 goto out_drop;
1637
1638         if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1639                 adapter->stats.txdrop++;
1640                 goto out_drop;
1641         }
1642
1643         if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1644                      skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1645                 /* FIXME: add support for retrieving timestamps from
1646                  * the other timer registers before skipping the
1647                  * timestamping request.
1648                  */
1649                 unsigned long flags;
1650                 u32 tstamp_flags;
1651
1652                 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1653                 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1654                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1655                         tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1656                         if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES)
1657                                 tx_flags |= IGC_TX_FLAGS_TSTAMP_TIMER_1;
1658                 } else {
1659                         adapter->tx_hwtstamp_skipped++;
1660                 }
1661
1662                 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1663         }
1664
1665         if (skb_vlan_tag_present(skb)) {
1666                 tx_flags |= IGC_TX_FLAGS_VLAN;
1667                 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1668         }
1669
1670         /* record initial flags and protocol */
1671         first->tx_flags = tx_flags;
1672         first->protocol = protocol;
1673
1674         tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1675         if (tso < 0)
1676                 goto out_drop;
1677         else if (!tso)
1678                 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1679
1680         igc_tx_map(tx_ring, first, hdr_len);
1681
1682         return NETDEV_TX_OK;
1683
1684 out_drop:
1685         dev_kfree_skb_any(first->skb);
1686         first->skb = NULL;
1687
1688         return NETDEV_TX_OK;
1689 }
1690
1691 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1692                                                     struct sk_buff *skb)
1693 {
1694         unsigned int r_idx = skb->queue_mapping;
1695
1696         if (r_idx >= adapter->num_tx_queues)
1697                 r_idx = r_idx % adapter->num_tx_queues;
1698
1699         return adapter->tx_ring[r_idx];
1700 }
1701
1702 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1703                                   struct net_device *netdev)
1704 {
1705         struct igc_adapter *adapter = netdev_priv(netdev);
1706
1707         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1708          * in order to meet this minimum size requirement.
1709          */
1710         if (skb->len < 17) {
1711                 if (skb_padto(skb, 17))
1712                         return NETDEV_TX_OK;
1713                 skb->len = 17;
1714         }
1715
1716         return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1717 }
1718
1719 static void igc_rx_checksum(struct igc_ring *ring,
1720                             union igc_adv_rx_desc *rx_desc,
1721                             struct sk_buff *skb)
1722 {
1723         skb_checksum_none_assert(skb);
1724
1725         /* Ignore Checksum bit is set */
1726         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1727                 return;
1728
1729         /* Rx checksum disabled via ethtool */
1730         if (!(ring->netdev->features & NETIF_F_RXCSUM))
1731                 return;
1732
1733         /* TCP/UDP checksum error bit is set */
1734         if (igc_test_staterr(rx_desc,
1735                              IGC_RXDEXT_STATERR_L4E |
1736                              IGC_RXDEXT_STATERR_IPE)) {
1737                 /* work around errata with sctp packets where the TCPE aka
1738                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1739                  * packets (aka let the stack check the crc32c)
1740                  */
1741                 if (!(skb->len == 60 &&
1742                       test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1743                         u64_stats_update_begin(&ring->rx_syncp);
1744                         ring->rx_stats.csum_err++;
1745                         u64_stats_update_end(&ring->rx_syncp);
1746                 }
1747                 /* let the stack verify checksum errors */
1748                 return;
1749         }
1750         /* It must be a TCP or UDP packet with a valid checksum */
1751         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1752                                       IGC_RXD_STAT_UDPCS))
1753                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1754
1755         netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1756                    le32_to_cpu(rx_desc->wb.upper.status_error));
1757 }
1758
1759 /* Mapping HW RSS Type to enum pkt_hash_types */
1760 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1761         [IGC_RSS_TYPE_NO_HASH]          = PKT_HASH_TYPE_L2,
1762         [IGC_RSS_TYPE_HASH_TCP_IPV4]    = PKT_HASH_TYPE_L4,
1763         [IGC_RSS_TYPE_HASH_IPV4]        = PKT_HASH_TYPE_L3,
1764         [IGC_RSS_TYPE_HASH_TCP_IPV6]    = PKT_HASH_TYPE_L4,
1765         [IGC_RSS_TYPE_HASH_IPV6_EX]     = PKT_HASH_TYPE_L3,
1766         [IGC_RSS_TYPE_HASH_IPV6]        = PKT_HASH_TYPE_L3,
1767         [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1768         [IGC_RSS_TYPE_HASH_UDP_IPV4]    = PKT_HASH_TYPE_L4,
1769         [IGC_RSS_TYPE_HASH_UDP_IPV6]    = PKT_HASH_TYPE_L4,
1770         [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1771         [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1772         [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1773         [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1774         [13] = PKT_HASH_TYPE_NONE,
1775         [14] = PKT_HASH_TYPE_NONE,
1776         [15] = PKT_HASH_TYPE_NONE,
1777 };
1778
1779 static inline void igc_rx_hash(struct igc_ring *ring,
1780                                union igc_adv_rx_desc *rx_desc,
1781                                struct sk_buff *skb)
1782 {
1783         if (ring->netdev->features & NETIF_F_RXHASH) {
1784                 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1785                 u32 rss_type = igc_rss_type(rx_desc);
1786
1787                 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1788         }
1789 }
1790
1791 static void igc_rx_vlan(struct igc_ring *rx_ring,
1792                         union igc_adv_rx_desc *rx_desc,
1793                         struct sk_buff *skb)
1794 {
1795         struct net_device *dev = rx_ring->netdev;
1796         u16 vid;
1797
1798         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1799             igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1800                 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1801                     test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1802                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1803                 else
1804                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1805
1806                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1807         }
1808 }
1809
1810 /**
1811  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1812  * @rx_ring: rx descriptor ring packet is being transacted on
1813  * @rx_desc: pointer to the EOP Rx descriptor
1814  * @skb: pointer to current skb being populated
1815  *
1816  * This function checks the ring, descriptor, and packet information in order
1817  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1818  * skb.
1819  */
1820 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1821                                    union igc_adv_rx_desc *rx_desc,
1822                                    struct sk_buff *skb)
1823 {
1824         igc_rx_hash(rx_ring, rx_desc, skb);
1825
1826         igc_rx_checksum(rx_ring, rx_desc, skb);
1827
1828         igc_rx_vlan(rx_ring, rx_desc, skb);
1829
1830         skb_record_rx_queue(skb, rx_ring->queue_index);
1831
1832         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1833 }
1834
1835 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1836 {
1837         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1838         struct igc_adapter *adapter = netdev_priv(netdev);
1839         struct igc_hw *hw = &adapter->hw;
1840         u32 ctrl;
1841
1842         ctrl = rd32(IGC_CTRL);
1843
1844         if (enable) {
1845                 /* enable VLAN tag insert/strip */
1846                 ctrl |= IGC_CTRL_VME;
1847         } else {
1848                 /* disable VLAN tag insert/strip */
1849                 ctrl &= ~IGC_CTRL_VME;
1850         }
1851         wr32(IGC_CTRL, ctrl);
1852 }
1853
1854 static void igc_restore_vlan(struct igc_adapter *adapter)
1855 {
1856         igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1857 }
1858
1859 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1860                                                const unsigned int size,
1861                                                int *rx_buffer_pgcnt)
1862 {
1863         struct igc_rx_buffer *rx_buffer;
1864
1865         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1866         *rx_buffer_pgcnt =
1867 #if (PAGE_SIZE < 8192)
1868                 page_count(rx_buffer->page);
1869 #else
1870                 0;
1871 #endif
1872         prefetchw(rx_buffer->page);
1873
1874         /* we are reusing so sync this buffer for CPU use */
1875         dma_sync_single_range_for_cpu(rx_ring->dev,
1876                                       rx_buffer->dma,
1877                                       rx_buffer->page_offset,
1878                                       size,
1879                                       DMA_FROM_DEVICE);
1880
1881         rx_buffer->pagecnt_bias--;
1882
1883         return rx_buffer;
1884 }
1885
1886 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1887                                unsigned int truesize)
1888 {
1889 #if (PAGE_SIZE < 8192)
1890         buffer->page_offset ^= truesize;
1891 #else
1892         buffer->page_offset += truesize;
1893 #endif
1894 }
1895
1896 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1897                                               unsigned int size)
1898 {
1899         unsigned int truesize;
1900
1901 #if (PAGE_SIZE < 8192)
1902         truesize = igc_rx_pg_size(ring) / 2;
1903 #else
1904         truesize = ring_uses_build_skb(ring) ?
1905                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1906                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1907                    SKB_DATA_ALIGN(size);
1908 #endif
1909         return truesize;
1910 }
1911
1912 /**
1913  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1914  * @rx_ring: rx descriptor ring to transact packets on
1915  * @rx_buffer: buffer containing page to add
1916  * @skb: sk_buff to place the data into
1917  * @size: size of buffer to be added
1918  *
1919  * This function will add the data contained in rx_buffer->page to the skb.
1920  */
1921 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1922                             struct igc_rx_buffer *rx_buffer,
1923                             struct sk_buff *skb,
1924                             unsigned int size)
1925 {
1926         unsigned int truesize;
1927
1928 #if (PAGE_SIZE < 8192)
1929         truesize = igc_rx_pg_size(rx_ring) / 2;
1930 #else
1931         truesize = ring_uses_build_skb(rx_ring) ?
1932                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1933                    SKB_DATA_ALIGN(size);
1934 #endif
1935         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1936                         rx_buffer->page_offset, size, truesize);
1937
1938         igc_rx_buffer_flip(rx_buffer, truesize);
1939 }
1940
1941 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1942                                      struct igc_rx_buffer *rx_buffer,
1943                                      struct xdp_buff *xdp)
1944 {
1945         unsigned int size = xdp->data_end - xdp->data;
1946         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1947         unsigned int metasize = xdp->data - xdp->data_meta;
1948         struct sk_buff *skb;
1949
1950         /* prefetch first cache line of first page */
1951         net_prefetch(xdp->data_meta);
1952
1953         /* build an skb around the page buffer */
1954         skb = napi_build_skb(xdp->data_hard_start, truesize);
1955         if (unlikely(!skb))
1956                 return NULL;
1957
1958         /* update pointers within the skb to store the data */
1959         skb_reserve(skb, xdp->data - xdp->data_hard_start);
1960         __skb_put(skb, size);
1961         if (metasize)
1962                 skb_metadata_set(skb, metasize);
1963
1964         igc_rx_buffer_flip(rx_buffer, truesize);
1965         return skb;
1966 }
1967
1968 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1969                                          struct igc_rx_buffer *rx_buffer,
1970                                          struct igc_xdp_buff *ctx)
1971 {
1972         struct xdp_buff *xdp = &ctx->xdp;
1973         unsigned int metasize = xdp->data - xdp->data_meta;
1974         unsigned int size = xdp->data_end - xdp->data;
1975         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1976         void *va = xdp->data;
1977         unsigned int headlen;
1978         struct sk_buff *skb;
1979
1980         /* prefetch first cache line of first page */
1981         net_prefetch(xdp->data_meta);
1982
1983         /* allocate a skb to store the frags */
1984         skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1985                              IGC_RX_HDR_LEN + metasize);
1986         if (unlikely(!skb))
1987                 return NULL;
1988
1989         if (ctx->rx_ts) {
1990                 skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV;
1991                 skb_hwtstamps(skb)->netdev_data = ctx->rx_ts;
1992         }
1993
1994         /* Determine available headroom for copy */
1995         headlen = size;
1996         if (headlen > IGC_RX_HDR_LEN)
1997                 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1998
1999         /* align pull length to size of long to optimize memcpy performance */
2000         memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
2001                ALIGN(headlen + metasize, sizeof(long)));
2002
2003         if (metasize) {
2004                 skb_metadata_set(skb, metasize);
2005                 __skb_pull(skb, metasize);
2006         }
2007
2008         /* update all of the pointers */
2009         size -= headlen;
2010         if (size) {
2011                 skb_add_rx_frag(skb, 0, rx_buffer->page,
2012                                 (va + headlen) - page_address(rx_buffer->page),
2013                                 size, truesize);
2014                 igc_rx_buffer_flip(rx_buffer, truesize);
2015         } else {
2016                 rx_buffer->pagecnt_bias++;
2017         }
2018
2019         return skb;
2020 }
2021
2022 /**
2023  * igc_reuse_rx_page - page flip buffer and store it back on the ring
2024  * @rx_ring: rx descriptor ring to store buffers on
2025  * @old_buff: donor buffer to have page reused
2026  *
2027  * Synchronizes page for reuse by the adapter
2028  */
2029 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2030                               struct igc_rx_buffer *old_buff)
2031 {
2032         u16 nta = rx_ring->next_to_alloc;
2033         struct igc_rx_buffer *new_buff;
2034
2035         new_buff = &rx_ring->rx_buffer_info[nta];
2036
2037         /* update, and store next to alloc */
2038         nta++;
2039         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2040
2041         /* Transfer page from old buffer to new buffer.
2042          * Move each member individually to avoid possible store
2043          * forwarding stalls.
2044          */
2045         new_buff->dma           = old_buff->dma;
2046         new_buff->page          = old_buff->page;
2047         new_buff->page_offset   = old_buff->page_offset;
2048         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
2049 }
2050
2051 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2052                                   int rx_buffer_pgcnt)
2053 {
2054         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2055         struct page *page = rx_buffer->page;
2056
2057         /* avoid re-using remote and pfmemalloc pages */
2058         if (!dev_page_is_reusable(page))
2059                 return false;
2060
2061 #if (PAGE_SIZE < 8192)
2062         /* if we are only owner of page we can reuse it */
2063         if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2064                 return false;
2065 #else
2066 #define IGC_LAST_OFFSET \
2067         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2068
2069         if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2070                 return false;
2071 #endif
2072
2073         /* If we have drained the page fragment pool we need to update
2074          * the pagecnt_bias and page count so that we fully restock the
2075          * number of references the driver holds.
2076          */
2077         if (unlikely(pagecnt_bias == 1)) {
2078                 page_ref_add(page, USHRT_MAX - 1);
2079                 rx_buffer->pagecnt_bias = USHRT_MAX;
2080         }
2081
2082         return true;
2083 }
2084
2085 /**
2086  * igc_is_non_eop - process handling of non-EOP buffers
2087  * @rx_ring: Rx ring being processed
2088  * @rx_desc: Rx descriptor for current buffer
2089  *
2090  * This function updates next to clean.  If the buffer is an EOP buffer
2091  * this function exits returning false, otherwise it will place the
2092  * sk_buff in the next buffer to be chained and return true indicating
2093  * that this is in fact a non-EOP buffer.
2094  */
2095 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2096                            union igc_adv_rx_desc *rx_desc)
2097 {
2098         u32 ntc = rx_ring->next_to_clean + 1;
2099
2100         /* fetch, update, and store next to clean */
2101         ntc = (ntc < rx_ring->count) ? ntc : 0;
2102         rx_ring->next_to_clean = ntc;
2103
2104         prefetch(IGC_RX_DESC(rx_ring, ntc));
2105
2106         if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2107                 return false;
2108
2109         return true;
2110 }
2111
2112 /**
2113  * igc_cleanup_headers - Correct corrupted or empty headers
2114  * @rx_ring: rx descriptor ring packet is being transacted on
2115  * @rx_desc: pointer to the EOP Rx descriptor
2116  * @skb: pointer to current skb being fixed
2117  *
2118  * Address the case where we are pulling data in on pages only
2119  * and as such no data is present in the skb header.
2120  *
2121  * In addition if skb is not at least 60 bytes we need to pad it so that
2122  * it is large enough to qualify as a valid Ethernet frame.
2123  *
2124  * Returns true if an error was encountered and skb was freed.
2125  */
2126 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2127                                 union igc_adv_rx_desc *rx_desc,
2128                                 struct sk_buff *skb)
2129 {
2130         /* XDP packets use error pointer so abort at this point */
2131         if (IS_ERR(skb))
2132                 return true;
2133
2134         if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2135                 struct net_device *netdev = rx_ring->netdev;
2136
2137                 if (!(netdev->features & NETIF_F_RXALL)) {
2138                         dev_kfree_skb_any(skb);
2139                         return true;
2140                 }
2141         }
2142
2143         /* if eth_skb_pad returns an error the skb was freed */
2144         if (eth_skb_pad(skb))
2145                 return true;
2146
2147         return false;
2148 }
2149
2150 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2151                               struct igc_rx_buffer *rx_buffer,
2152                               int rx_buffer_pgcnt)
2153 {
2154         if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2155                 /* hand second half of page back to the ring */
2156                 igc_reuse_rx_page(rx_ring, rx_buffer);
2157         } else {
2158                 /* We are not reusing the buffer so unmap it and free
2159                  * any references we are holding to it
2160                  */
2161                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2162                                      igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2163                                      IGC_RX_DMA_ATTR);
2164                 __page_frag_cache_drain(rx_buffer->page,
2165                                         rx_buffer->pagecnt_bias);
2166         }
2167
2168         /* clear contents of rx_buffer */
2169         rx_buffer->page = NULL;
2170 }
2171
2172 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2173 {
2174         struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2175
2176         if (ring_uses_build_skb(rx_ring))
2177                 return IGC_SKB_PAD;
2178         if (igc_xdp_is_enabled(adapter))
2179                 return XDP_PACKET_HEADROOM;
2180
2181         return 0;
2182 }
2183
2184 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2185                                   struct igc_rx_buffer *bi)
2186 {
2187         struct page *page = bi->page;
2188         dma_addr_t dma;
2189
2190         /* since we are recycling buffers we should seldom need to alloc */
2191         if (likely(page))
2192                 return true;
2193
2194         /* alloc new page for storage */
2195         page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2196         if (unlikely(!page)) {
2197                 rx_ring->rx_stats.alloc_failed++;
2198                 return false;
2199         }
2200
2201         /* map page for use */
2202         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2203                                  igc_rx_pg_size(rx_ring),
2204                                  DMA_FROM_DEVICE,
2205                                  IGC_RX_DMA_ATTR);
2206
2207         /* if mapping failed free memory back to system since
2208          * there isn't much point in holding memory we can't use
2209          */
2210         if (dma_mapping_error(rx_ring->dev, dma)) {
2211                 __free_page(page);
2212
2213                 rx_ring->rx_stats.alloc_failed++;
2214                 return false;
2215         }
2216
2217         bi->dma = dma;
2218         bi->page = page;
2219         bi->page_offset = igc_rx_offset(rx_ring);
2220         page_ref_add(page, USHRT_MAX - 1);
2221         bi->pagecnt_bias = USHRT_MAX;
2222
2223         return true;
2224 }
2225
2226 /**
2227  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2228  * @rx_ring: rx descriptor ring
2229  * @cleaned_count: number of buffers to clean
2230  */
2231 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2232 {
2233         union igc_adv_rx_desc *rx_desc;
2234         u16 i = rx_ring->next_to_use;
2235         struct igc_rx_buffer *bi;
2236         u16 bufsz;
2237
2238         /* nothing to do */
2239         if (!cleaned_count)
2240                 return;
2241
2242         rx_desc = IGC_RX_DESC(rx_ring, i);
2243         bi = &rx_ring->rx_buffer_info[i];
2244         i -= rx_ring->count;
2245
2246         bufsz = igc_rx_bufsz(rx_ring);
2247
2248         do {
2249                 if (!igc_alloc_mapped_page(rx_ring, bi))
2250                         break;
2251
2252                 /* sync the buffer for use by the device */
2253                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2254                                                  bi->page_offset, bufsz,
2255                                                  DMA_FROM_DEVICE);
2256
2257                 /* Refresh the desc even if buffer_addrs didn't change
2258                  * because each write-back erases this info.
2259                  */
2260                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2261
2262                 rx_desc++;
2263                 bi++;
2264                 i++;
2265                 if (unlikely(!i)) {
2266                         rx_desc = IGC_RX_DESC(rx_ring, 0);
2267                         bi = rx_ring->rx_buffer_info;
2268                         i -= rx_ring->count;
2269                 }
2270
2271                 /* clear the length for the next_to_use descriptor */
2272                 rx_desc->wb.upper.length = 0;
2273
2274                 cleaned_count--;
2275         } while (cleaned_count);
2276
2277         i += rx_ring->count;
2278
2279         if (rx_ring->next_to_use != i) {
2280                 /* record the next descriptor to use */
2281                 rx_ring->next_to_use = i;
2282
2283                 /* update next to alloc since we have filled the ring */
2284                 rx_ring->next_to_alloc = i;
2285
2286                 /* Force memory writes to complete before letting h/w
2287                  * know there are new descriptors to fetch.  (Only
2288                  * applicable for weak-ordered memory model archs,
2289                  * such as IA-64).
2290                  */
2291                 wmb();
2292                 writel(i, rx_ring->tail);
2293         }
2294 }
2295
2296 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2297 {
2298         union igc_adv_rx_desc *desc;
2299         u16 i = ring->next_to_use;
2300         struct igc_rx_buffer *bi;
2301         dma_addr_t dma;
2302         bool ok = true;
2303
2304         if (!count)
2305                 return ok;
2306
2307         XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2308
2309         desc = IGC_RX_DESC(ring, i);
2310         bi = &ring->rx_buffer_info[i];
2311         i -= ring->count;
2312
2313         do {
2314                 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2315                 if (!bi->xdp) {
2316                         ok = false;
2317                         break;
2318                 }
2319
2320                 dma = xsk_buff_xdp_get_dma(bi->xdp);
2321                 desc->read.pkt_addr = cpu_to_le64(dma);
2322
2323                 desc++;
2324                 bi++;
2325                 i++;
2326                 if (unlikely(!i)) {
2327                         desc = IGC_RX_DESC(ring, 0);
2328                         bi = ring->rx_buffer_info;
2329                         i -= ring->count;
2330                 }
2331
2332                 /* Clear the length for the next_to_use descriptor. */
2333                 desc->wb.upper.length = 0;
2334
2335                 count--;
2336         } while (count);
2337
2338         i += ring->count;
2339
2340         if (ring->next_to_use != i) {
2341                 ring->next_to_use = i;
2342
2343                 /* Force memory writes to complete before letting h/w
2344                  * know there are new descriptors to fetch.  (Only
2345                  * applicable for weak-ordered memory model archs,
2346                  * such as IA-64).
2347                  */
2348                 wmb();
2349                 writel(i, ring->tail);
2350         }
2351
2352         return ok;
2353 }
2354
2355 /* This function requires __netif_tx_lock is held by the caller. */
2356 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2357                                       struct xdp_frame *xdpf)
2358 {
2359         struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2360         u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2361         u16 count, index = ring->next_to_use;
2362         struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2363         struct igc_tx_buffer *buffer = head;
2364         union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2365         u32 olinfo_status, len = xdpf->len, cmd_type;
2366         void *data = xdpf->data;
2367         u16 i;
2368
2369         count = TXD_USE_COUNT(len);
2370         for (i = 0; i < nr_frags; i++)
2371                 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2372
2373         if (igc_maybe_stop_tx(ring, count + 3)) {
2374                 /* this is a hard error */
2375                 return -EBUSY;
2376         }
2377
2378         i = 0;
2379         head->bytecount = xdp_get_frame_len(xdpf);
2380         head->type = IGC_TX_BUFFER_TYPE_XDP;
2381         head->gso_segs = 1;
2382         head->xdpf = xdpf;
2383
2384         olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2385         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2386
2387         for (;;) {
2388                 dma_addr_t dma;
2389
2390                 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2391                 if (dma_mapping_error(ring->dev, dma)) {
2392                         netdev_err_once(ring->netdev,
2393                                         "Failed to map DMA for TX\n");
2394                         goto unmap;
2395                 }
2396
2397                 dma_unmap_len_set(buffer, len, len);
2398                 dma_unmap_addr_set(buffer, dma, dma);
2399
2400                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2401                            IGC_ADVTXD_DCMD_IFCS | len;
2402
2403                 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2404                 desc->read.buffer_addr = cpu_to_le64(dma);
2405
2406                 buffer->protocol = 0;
2407
2408                 if (++index == ring->count)
2409                         index = 0;
2410
2411                 if (i == nr_frags)
2412                         break;
2413
2414                 buffer = &ring->tx_buffer_info[index];
2415                 desc = IGC_TX_DESC(ring, index);
2416                 desc->read.olinfo_status = 0;
2417
2418                 data = skb_frag_address(&sinfo->frags[i]);
2419                 len = skb_frag_size(&sinfo->frags[i]);
2420                 i++;
2421         }
2422         desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2423
2424         netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2425         /* set the timestamp */
2426         head->time_stamp = jiffies;
2427         /* set next_to_watch value indicating a packet is present */
2428         head->next_to_watch = desc;
2429         ring->next_to_use = index;
2430
2431         return 0;
2432
2433 unmap:
2434         for (;;) {
2435                 buffer = &ring->tx_buffer_info[index];
2436                 if (dma_unmap_len(buffer, len))
2437                         dma_unmap_page(ring->dev,
2438                                        dma_unmap_addr(buffer, dma),
2439                                        dma_unmap_len(buffer, len),
2440                                        DMA_TO_DEVICE);
2441                 dma_unmap_len_set(buffer, len, 0);
2442                 if (buffer == head)
2443                         break;
2444
2445                 if (!index)
2446                         index += ring->count;
2447                 index--;
2448         }
2449
2450         return -ENOMEM;
2451 }
2452
2453 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2454                                             int cpu)
2455 {
2456         int index = cpu;
2457
2458         if (unlikely(index < 0))
2459                 index = 0;
2460
2461         while (index >= adapter->num_tx_queues)
2462                 index -= adapter->num_tx_queues;
2463
2464         return adapter->tx_ring[index];
2465 }
2466
2467 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2468 {
2469         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2470         int cpu = smp_processor_id();
2471         struct netdev_queue *nq;
2472         struct igc_ring *ring;
2473         int res;
2474
2475         if (unlikely(!xdpf))
2476                 return -EFAULT;
2477
2478         ring = igc_xdp_get_tx_ring(adapter, cpu);
2479         nq = txring_txq(ring);
2480
2481         __netif_tx_lock(nq, cpu);
2482         /* Avoid transmit queue timeout since we share it with the slow path */
2483         txq_trans_cond_update(nq);
2484         res = igc_xdp_init_tx_descriptor(ring, xdpf);
2485         __netif_tx_unlock(nq);
2486         return res;
2487 }
2488
2489 /* This function assumes rcu_read_lock() is held by the caller. */
2490 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2491                               struct bpf_prog *prog,
2492                               struct xdp_buff *xdp)
2493 {
2494         u32 act = bpf_prog_run_xdp(prog, xdp);
2495
2496         switch (act) {
2497         case XDP_PASS:
2498                 return IGC_XDP_PASS;
2499         case XDP_TX:
2500                 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2501                         goto out_failure;
2502                 return IGC_XDP_TX;
2503         case XDP_REDIRECT:
2504                 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2505                         goto out_failure;
2506                 return IGC_XDP_REDIRECT;
2507                 break;
2508         default:
2509                 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2510                 fallthrough;
2511         case XDP_ABORTED:
2512 out_failure:
2513                 trace_xdp_exception(adapter->netdev, prog, act);
2514                 fallthrough;
2515         case XDP_DROP:
2516                 return IGC_XDP_CONSUMED;
2517         }
2518 }
2519
2520 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2521                                         struct xdp_buff *xdp)
2522 {
2523         struct bpf_prog *prog;
2524         int res;
2525
2526         prog = READ_ONCE(adapter->xdp_prog);
2527         if (!prog) {
2528                 res = IGC_XDP_PASS;
2529                 goto out;
2530         }
2531
2532         res = __igc_xdp_run_prog(adapter, prog, xdp);
2533
2534 out:
2535         return ERR_PTR(-res);
2536 }
2537
2538 /* This function assumes __netif_tx_lock is held by the caller. */
2539 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2540 {
2541         /* Once tail pointer is updated, hardware can fetch the descriptors
2542          * any time so we issue a write membar here to ensure all memory
2543          * writes are complete before the tail pointer is updated.
2544          */
2545         wmb();
2546         writel(ring->next_to_use, ring->tail);
2547 }
2548
2549 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2550 {
2551         int cpu = smp_processor_id();
2552         struct netdev_queue *nq;
2553         struct igc_ring *ring;
2554
2555         if (status & IGC_XDP_TX) {
2556                 ring = igc_xdp_get_tx_ring(adapter, cpu);
2557                 nq = txring_txq(ring);
2558
2559                 __netif_tx_lock(nq, cpu);
2560                 igc_flush_tx_descriptors(ring);
2561                 __netif_tx_unlock(nq);
2562         }
2563
2564         if (status & IGC_XDP_REDIRECT)
2565                 xdp_do_flush();
2566 }
2567
2568 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2569                                 unsigned int packets, unsigned int bytes)
2570 {
2571         struct igc_ring *ring = q_vector->rx.ring;
2572
2573         u64_stats_update_begin(&ring->rx_syncp);
2574         ring->rx_stats.packets += packets;
2575         ring->rx_stats.bytes += bytes;
2576         u64_stats_update_end(&ring->rx_syncp);
2577
2578         q_vector->rx.total_packets += packets;
2579         q_vector->rx.total_bytes += bytes;
2580 }
2581
2582 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2583 {
2584         unsigned int total_bytes = 0, total_packets = 0;
2585         struct igc_adapter *adapter = q_vector->adapter;
2586         struct igc_ring *rx_ring = q_vector->rx.ring;
2587         struct sk_buff *skb = rx_ring->skb;
2588         u16 cleaned_count = igc_desc_unused(rx_ring);
2589         int xdp_status = 0, rx_buffer_pgcnt;
2590
2591         while (likely(total_packets < budget)) {
2592                 struct igc_xdp_buff ctx = { .rx_ts = NULL };
2593                 struct igc_rx_buffer *rx_buffer;
2594                 union igc_adv_rx_desc *rx_desc;
2595                 unsigned int size, truesize;
2596                 int pkt_offset = 0;
2597                 void *pktbuf;
2598
2599                 /* return some buffers to hardware, one at a time is too slow */
2600                 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2601                         igc_alloc_rx_buffers(rx_ring, cleaned_count);
2602                         cleaned_count = 0;
2603                 }
2604
2605                 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2606                 size = le16_to_cpu(rx_desc->wb.upper.length);
2607                 if (!size)
2608                         break;
2609
2610                 /* This memory barrier is needed to keep us from reading
2611                  * any other fields out of the rx_desc until we know the
2612                  * descriptor has been written back
2613                  */
2614                 dma_rmb();
2615
2616                 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2617                 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2618
2619                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2620
2621                 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2622                         ctx.rx_ts = pktbuf;
2623                         pkt_offset = IGC_TS_HDR_LEN;
2624                         size -= IGC_TS_HDR_LEN;
2625                 }
2626
2627                 if (!skb) {
2628                         xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2629                         xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2630                                          igc_rx_offset(rx_ring) + pkt_offset,
2631                                          size, true);
2632                         xdp_buff_clear_frags_flag(&ctx.xdp);
2633                         ctx.rx_desc = rx_desc;
2634
2635                         skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2636                 }
2637
2638                 if (IS_ERR(skb)) {
2639                         unsigned int xdp_res = -PTR_ERR(skb);
2640
2641                         switch (xdp_res) {
2642                         case IGC_XDP_CONSUMED:
2643                                 rx_buffer->pagecnt_bias++;
2644                                 break;
2645                         case IGC_XDP_TX:
2646                         case IGC_XDP_REDIRECT:
2647                                 igc_rx_buffer_flip(rx_buffer, truesize);
2648                                 xdp_status |= xdp_res;
2649                                 break;
2650                         }
2651
2652                         total_packets++;
2653                         total_bytes += size;
2654                 } else if (skb)
2655                         igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2656                 else if (ring_uses_build_skb(rx_ring))
2657                         skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2658                 else
2659                         skb = igc_construct_skb(rx_ring, rx_buffer, &ctx);
2660
2661                 /* exit if we failed to retrieve a buffer */
2662                 if (!skb) {
2663                         rx_ring->rx_stats.alloc_failed++;
2664                         rx_buffer->pagecnt_bias++;
2665                         break;
2666                 }
2667
2668                 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2669                 cleaned_count++;
2670
2671                 /* fetch next buffer in frame if non-eop */
2672                 if (igc_is_non_eop(rx_ring, rx_desc))
2673                         continue;
2674
2675                 /* verify the packet layout is correct */
2676                 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2677                         skb = NULL;
2678                         continue;
2679                 }
2680
2681                 /* probably a little skewed due to removing CRC */
2682                 total_bytes += skb->len;
2683
2684                 /* populate checksum, VLAN, and protocol */
2685                 igc_process_skb_fields(rx_ring, rx_desc, skb);
2686
2687                 napi_gro_receive(&q_vector->napi, skb);
2688
2689                 /* reset skb pointer */
2690                 skb = NULL;
2691
2692                 /* update budget accounting */
2693                 total_packets++;
2694         }
2695
2696         if (xdp_status)
2697                 igc_finalize_xdp(adapter, xdp_status);
2698
2699         /* place incomplete frames back on ring for completion */
2700         rx_ring->skb = skb;
2701
2702         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2703
2704         if (cleaned_count)
2705                 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2706
2707         return total_packets;
2708 }
2709
2710 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2711                                             struct xdp_buff *xdp)
2712 {
2713         unsigned int totalsize = xdp->data_end - xdp->data_meta;
2714         unsigned int metasize = xdp->data - xdp->data_meta;
2715         struct sk_buff *skb;
2716
2717         net_prefetch(xdp->data_meta);
2718
2719         skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2720                                GFP_ATOMIC | __GFP_NOWARN);
2721         if (unlikely(!skb))
2722                 return NULL;
2723
2724         memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2725                ALIGN(totalsize, sizeof(long)));
2726
2727         if (metasize) {
2728                 skb_metadata_set(skb, metasize);
2729                 __skb_pull(skb, metasize);
2730         }
2731
2732         return skb;
2733 }
2734
2735 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2736                                 union igc_adv_rx_desc *desc,
2737                                 struct xdp_buff *xdp,
2738                                 ktime_t timestamp)
2739 {
2740         struct igc_ring *ring = q_vector->rx.ring;
2741         struct sk_buff *skb;
2742
2743         skb = igc_construct_skb_zc(ring, xdp);
2744         if (!skb) {
2745                 ring->rx_stats.alloc_failed++;
2746                 return;
2747         }
2748
2749         if (timestamp)
2750                 skb_hwtstamps(skb)->hwtstamp = timestamp;
2751
2752         if (igc_cleanup_headers(ring, desc, skb))
2753                 return;
2754
2755         igc_process_skb_fields(ring, desc, skb);
2756         napi_gro_receive(&q_vector->napi, skb);
2757 }
2758
2759 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2760 {
2761         /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2762          * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2763          * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2764          */
2765        return (struct igc_xdp_buff *)xdp;
2766 }
2767
2768 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2769 {
2770         struct igc_adapter *adapter = q_vector->adapter;
2771         struct igc_ring *ring = q_vector->rx.ring;
2772         u16 cleaned_count = igc_desc_unused(ring);
2773         int total_bytes = 0, total_packets = 0;
2774         u16 ntc = ring->next_to_clean;
2775         struct bpf_prog *prog;
2776         bool failure = false;
2777         int xdp_status = 0;
2778
2779         rcu_read_lock();
2780
2781         prog = READ_ONCE(adapter->xdp_prog);
2782
2783         while (likely(total_packets < budget)) {
2784                 union igc_adv_rx_desc *desc;
2785                 struct igc_rx_buffer *bi;
2786                 struct igc_xdp_buff *ctx;
2787                 ktime_t timestamp = 0;
2788                 unsigned int size;
2789                 int res;
2790
2791                 desc = IGC_RX_DESC(ring, ntc);
2792                 size = le16_to_cpu(desc->wb.upper.length);
2793                 if (!size)
2794                         break;
2795
2796                 /* This memory barrier is needed to keep us from reading
2797                  * any other fields out of the rx_desc until we know the
2798                  * descriptor has been written back
2799                  */
2800                 dma_rmb();
2801
2802                 bi = &ring->rx_buffer_info[ntc];
2803
2804                 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2805                 ctx->rx_desc = desc;
2806
2807                 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2808                         ctx->rx_ts = bi->xdp->data;
2809
2810                         bi->xdp->data += IGC_TS_HDR_LEN;
2811
2812                         /* HW timestamp has been copied into local variable. Metadata
2813                          * length when XDP program is called should be 0.
2814                          */
2815                         bi->xdp->data_meta += IGC_TS_HDR_LEN;
2816                         size -= IGC_TS_HDR_LEN;
2817                 }
2818
2819                 bi->xdp->data_end = bi->xdp->data + size;
2820                 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2821
2822                 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2823                 switch (res) {
2824                 case IGC_XDP_PASS:
2825                         igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2826                         fallthrough;
2827                 case IGC_XDP_CONSUMED:
2828                         xsk_buff_free(bi->xdp);
2829                         break;
2830                 case IGC_XDP_TX:
2831                 case IGC_XDP_REDIRECT:
2832                         xdp_status |= res;
2833                         break;
2834                 }
2835
2836                 bi->xdp = NULL;
2837                 total_bytes += size;
2838                 total_packets++;
2839                 cleaned_count++;
2840                 ntc++;
2841                 if (ntc == ring->count)
2842                         ntc = 0;
2843         }
2844
2845         ring->next_to_clean = ntc;
2846         rcu_read_unlock();
2847
2848         if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2849                 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2850
2851         if (xdp_status)
2852                 igc_finalize_xdp(adapter, xdp_status);
2853
2854         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2855
2856         if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2857                 if (failure || ring->next_to_clean == ring->next_to_use)
2858                         xsk_set_rx_need_wakeup(ring->xsk_pool);
2859                 else
2860                         xsk_clear_rx_need_wakeup(ring->xsk_pool);
2861                 return total_packets;
2862         }
2863
2864         return failure ? budget : total_packets;
2865 }
2866
2867 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2868                                 unsigned int packets, unsigned int bytes)
2869 {
2870         struct igc_ring *ring = q_vector->tx.ring;
2871
2872         u64_stats_update_begin(&ring->tx_syncp);
2873         ring->tx_stats.bytes += bytes;
2874         ring->tx_stats.packets += packets;
2875         u64_stats_update_end(&ring->tx_syncp);
2876
2877         q_vector->tx.total_bytes += bytes;
2878         q_vector->tx.total_packets += packets;
2879 }
2880
2881 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2882 {
2883         struct xsk_buff_pool *pool = ring->xsk_pool;
2884         struct netdev_queue *nq = txring_txq(ring);
2885         union igc_adv_tx_desc *tx_desc = NULL;
2886         int cpu = smp_processor_id();
2887         struct xdp_desc xdp_desc;
2888         u16 budget, ntu;
2889
2890         if (!netif_carrier_ok(ring->netdev))
2891                 return;
2892
2893         __netif_tx_lock(nq, cpu);
2894
2895         /* Avoid transmit queue timeout since we share it with the slow path */
2896         txq_trans_cond_update(nq);
2897
2898         ntu = ring->next_to_use;
2899         budget = igc_desc_unused(ring);
2900
2901         while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2902                 u32 cmd_type, olinfo_status;
2903                 struct igc_tx_buffer *bi;
2904                 dma_addr_t dma;
2905
2906                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2907                            IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2908                            xdp_desc.len;
2909                 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2910
2911                 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2912                 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2913
2914                 tx_desc = IGC_TX_DESC(ring, ntu);
2915                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2916                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2917                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2918
2919                 bi = &ring->tx_buffer_info[ntu];
2920                 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2921                 bi->protocol = 0;
2922                 bi->bytecount = xdp_desc.len;
2923                 bi->gso_segs = 1;
2924                 bi->time_stamp = jiffies;
2925                 bi->next_to_watch = tx_desc;
2926
2927                 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2928
2929                 ntu++;
2930                 if (ntu == ring->count)
2931                         ntu = 0;
2932         }
2933
2934         ring->next_to_use = ntu;
2935         if (tx_desc) {
2936                 igc_flush_tx_descriptors(ring);
2937                 xsk_tx_release(pool);
2938         }
2939
2940         __netif_tx_unlock(nq);
2941 }
2942
2943 /**
2944  * igc_clean_tx_irq - Reclaim resources after transmit completes
2945  * @q_vector: pointer to q_vector containing needed info
2946  * @napi_budget: Used to determine if we are in netpoll
2947  *
2948  * returns true if ring is completely cleaned
2949  */
2950 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2951 {
2952         struct igc_adapter *adapter = q_vector->adapter;
2953         unsigned int total_bytes = 0, total_packets = 0;
2954         unsigned int budget = q_vector->tx.work_limit;
2955         struct igc_ring *tx_ring = q_vector->tx.ring;
2956         unsigned int i = tx_ring->next_to_clean;
2957         struct igc_tx_buffer *tx_buffer;
2958         union igc_adv_tx_desc *tx_desc;
2959         u32 xsk_frames = 0;
2960
2961         if (test_bit(__IGC_DOWN, &adapter->state))
2962                 return true;
2963
2964         tx_buffer = &tx_ring->tx_buffer_info[i];
2965         tx_desc = IGC_TX_DESC(tx_ring, i);
2966         i -= tx_ring->count;
2967
2968         do {
2969                 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2970
2971                 /* if next_to_watch is not set then there is no work pending */
2972                 if (!eop_desc)
2973                         break;
2974
2975                 /* prevent any other reads prior to eop_desc */
2976                 smp_rmb();
2977
2978                 /* if DD is not set pending work has not been completed */
2979                 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2980                         break;
2981
2982                 /* clear next_to_watch to prevent false hangs */
2983                 tx_buffer->next_to_watch = NULL;
2984
2985                 /* update the statistics for this packet */
2986                 total_bytes += tx_buffer->bytecount;
2987                 total_packets += tx_buffer->gso_segs;
2988
2989                 switch (tx_buffer->type) {
2990                 case IGC_TX_BUFFER_TYPE_XSK:
2991                         xsk_frames++;
2992                         break;
2993                 case IGC_TX_BUFFER_TYPE_XDP:
2994                         xdp_return_frame(tx_buffer->xdpf);
2995                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2996                         break;
2997                 case IGC_TX_BUFFER_TYPE_SKB:
2998                         napi_consume_skb(tx_buffer->skb, napi_budget);
2999                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3000                         break;
3001                 default:
3002                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
3003                         break;
3004                 }
3005
3006                 /* clear last DMA location and unmap remaining buffers */
3007                 while (tx_desc != eop_desc) {
3008                         tx_buffer++;
3009                         tx_desc++;
3010                         i++;
3011                         if (unlikely(!i)) {
3012                                 i -= tx_ring->count;
3013                                 tx_buffer = tx_ring->tx_buffer_info;
3014                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
3015                         }
3016
3017                         /* unmap any remaining paged data */
3018                         if (dma_unmap_len(tx_buffer, len))
3019                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3020                 }
3021
3022                 /* move us one more past the eop_desc for start of next pkt */
3023                 tx_buffer++;
3024                 tx_desc++;
3025                 i++;
3026                 if (unlikely(!i)) {
3027                         i -= tx_ring->count;
3028                         tx_buffer = tx_ring->tx_buffer_info;
3029                         tx_desc = IGC_TX_DESC(tx_ring, 0);
3030                 }
3031
3032                 /* issue prefetch for next Tx descriptor */
3033                 prefetch(tx_desc);
3034
3035                 /* update budget accounting */
3036                 budget--;
3037         } while (likely(budget));
3038
3039         netdev_tx_completed_queue(txring_txq(tx_ring),
3040                                   total_packets, total_bytes);
3041
3042         i += tx_ring->count;
3043         tx_ring->next_to_clean = i;
3044
3045         igc_update_tx_stats(q_vector, total_packets, total_bytes);
3046
3047         if (tx_ring->xsk_pool) {
3048                 if (xsk_frames)
3049                         xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3050                 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3051                         xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3052                 igc_xdp_xmit_zc(tx_ring);
3053         }
3054
3055         if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3056                 struct igc_hw *hw = &adapter->hw;
3057
3058                 /* Detect a transmit hang in hardware, this serializes the
3059                  * check with the clearing of time_stamp and movement of i
3060                  */
3061                 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3062                 if (tx_buffer->next_to_watch &&
3063                     time_after(jiffies, tx_buffer->time_stamp +
3064                     (adapter->tx_timeout_factor * HZ)) &&
3065                     !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3066                     (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3067                     !tx_ring->oper_gate_closed) {
3068                         /* detected Tx unit hang */
3069                         netdev_err(tx_ring->netdev,
3070                                    "Detected Tx Unit Hang\n"
3071                                    "  Tx Queue             <%d>\n"
3072                                    "  TDH                  <%x>\n"
3073                                    "  TDT                  <%x>\n"
3074                                    "  next_to_use          <%x>\n"
3075                                    "  next_to_clean        <%x>\n"
3076                                    "buffer_info[next_to_clean]\n"
3077                                    "  time_stamp           <%lx>\n"
3078                                    "  next_to_watch        <%p>\n"
3079                                    "  jiffies              <%lx>\n"
3080                                    "  desc.status          <%x>\n",
3081                                    tx_ring->queue_index,
3082                                    rd32(IGC_TDH(tx_ring->reg_idx)),
3083                                    readl(tx_ring->tail),
3084                                    tx_ring->next_to_use,
3085                                    tx_ring->next_to_clean,
3086                                    tx_buffer->time_stamp,
3087                                    tx_buffer->next_to_watch,
3088                                    jiffies,
3089                                    tx_buffer->next_to_watch->wb.status);
3090                         netif_stop_subqueue(tx_ring->netdev,
3091                                             tx_ring->queue_index);
3092
3093                         /* we are about to reset, no point in enabling stuff */
3094                         return true;
3095                 }
3096         }
3097
3098 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3099         if (unlikely(total_packets &&
3100                      netif_carrier_ok(tx_ring->netdev) &&
3101                      igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3102                 /* Make sure that anybody stopping the queue after this
3103                  * sees the new next_to_clean.
3104                  */
3105                 smp_mb();
3106                 if (__netif_subqueue_stopped(tx_ring->netdev,
3107                                              tx_ring->queue_index) &&
3108                     !(test_bit(__IGC_DOWN, &adapter->state))) {
3109                         netif_wake_subqueue(tx_ring->netdev,
3110                                             tx_ring->queue_index);
3111
3112                         u64_stats_update_begin(&tx_ring->tx_syncp);
3113                         tx_ring->tx_stats.restart_queue++;
3114                         u64_stats_update_end(&tx_ring->tx_syncp);
3115                 }
3116         }
3117
3118         return !!budget;
3119 }
3120
3121 static int igc_find_mac_filter(struct igc_adapter *adapter,
3122                                enum igc_mac_filter_type type, const u8 *addr)
3123 {
3124         struct igc_hw *hw = &adapter->hw;
3125         int max_entries = hw->mac.rar_entry_count;
3126         u32 ral, rah;
3127         int i;
3128
3129         for (i = 0; i < max_entries; i++) {
3130                 ral = rd32(IGC_RAL(i));
3131                 rah = rd32(IGC_RAH(i));
3132
3133                 if (!(rah & IGC_RAH_AV))
3134                         continue;
3135                 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3136                         continue;
3137                 if ((rah & IGC_RAH_RAH_MASK) !=
3138                     le16_to_cpup((__le16 *)(addr + 4)))
3139                         continue;
3140                 if (ral != le32_to_cpup((__le32 *)(addr)))
3141                         continue;
3142
3143                 return i;
3144         }
3145
3146         return -1;
3147 }
3148
3149 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3150 {
3151         struct igc_hw *hw = &adapter->hw;
3152         int max_entries = hw->mac.rar_entry_count;
3153         u32 rah;
3154         int i;
3155
3156         for (i = 0; i < max_entries; i++) {
3157                 rah = rd32(IGC_RAH(i));
3158
3159                 if (!(rah & IGC_RAH_AV))
3160                         return i;
3161         }
3162
3163         return -1;
3164 }
3165
3166 /**
3167  * igc_add_mac_filter() - Add MAC address filter
3168  * @adapter: Pointer to adapter where the filter should be added
3169  * @type: MAC address filter type (source or destination)
3170  * @addr: MAC address
3171  * @queue: If non-negative, queue assignment feature is enabled and frames
3172  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3173  *         assignment is disabled.
3174  *
3175  * Return: 0 in case of success, negative errno code otherwise.
3176  */
3177 static int igc_add_mac_filter(struct igc_adapter *adapter,
3178                               enum igc_mac_filter_type type, const u8 *addr,
3179                               int queue)
3180 {
3181         struct net_device *dev = adapter->netdev;
3182         int index;
3183
3184         index = igc_find_mac_filter(adapter, type, addr);
3185         if (index >= 0)
3186                 goto update_filter;
3187
3188         index = igc_get_avail_mac_filter_slot(adapter);
3189         if (index < 0)
3190                 return -ENOSPC;
3191
3192         netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3193                    index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3194                    addr, queue);
3195
3196 update_filter:
3197         igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3198         return 0;
3199 }
3200
3201 /**
3202  * igc_del_mac_filter() - Delete MAC address filter
3203  * @adapter: Pointer to adapter where the filter should be deleted from
3204  * @type: MAC address filter type (source or destination)
3205  * @addr: MAC address
3206  */
3207 static void igc_del_mac_filter(struct igc_adapter *adapter,
3208                                enum igc_mac_filter_type type, const u8 *addr)
3209 {
3210         struct net_device *dev = adapter->netdev;
3211         int index;
3212
3213         index = igc_find_mac_filter(adapter, type, addr);
3214         if (index < 0)
3215                 return;
3216
3217         if (index == 0) {
3218                 /* If this is the default filter, we don't actually delete it.
3219                  * We just reset to its default value i.e. disable queue
3220                  * assignment.
3221                  */
3222                 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3223
3224                 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3225         } else {
3226                 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3227                            index,
3228                            type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3229                            addr);
3230
3231                 igc_clear_mac_filter_hw(adapter, index);
3232         }
3233 }
3234
3235 /**
3236  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3237  * @adapter: Pointer to adapter where the filter should be added
3238  * @prio: VLAN priority value
3239  * @queue: Queue number which matching frames are assigned to
3240  *
3241  * Return: 0 in case of success, negative errno code otherwise.
3242  */
3243 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3244                                     int queue)
3245 {
3246         struct net_device *dev = adapter->netdev;
3247         struct igc_hw *hw = &adapter->hw;
3248         u32 vlanpqf;
3249
3250         vlanpqf = rd32(IGC_VLANPQF);
3251
3252         if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3253                 netdev_dbg(dev, "VLAN priority filter already in use\n");
3254                 return -EEXIST;
3255         }
3256
3257         vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3258         vlanpqf |= IGC_VLANPQF_VALID(prio);
3259
3260         wr32(IGC_VLANPQF, vlanpqf);
3261
3262         netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3263                    prio, queue);
3264         return 0;
3265 }
3266
3267 /**
3268  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3269  * @adapter: Pointer to adapter where the filter should be deleted from
3270  * @prio: VLAN priority value
3271  */
3272 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3273 {
3274         struct igc_hw *hw = &adapter->hw;
3275         u32 vlanpqf;
3276
3277         vlanpqf = rd32(IGC_VLANPQF);
3278
3279         vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3280         vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3281
3282         wr32(IGC_VLANPQF, vlanpqf);
3283
3284         netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3285                    prio);
3286 }
3287
3288 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3289 {
3290         struct igc_hw *hw = &adapter->hw;
3291         int i;
3292
3293         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3294                 u32 etqf = rd32(IGC_ETQF(i));
3295
3296                 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3297                         return i;
3298         }
3299
3300         return -1;
3301 }
3302
3303 /**
3304  * igc_add_etype_filter() - Add ethertype filter
3305  * @adapter: Pointer to adapter where the filter should be added
3306  * @etype: Ethertype value
3307  * @queue: If non-negative, queue assignment feature is enabled and frames
3308  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3309  *         assignment is disabled.
3310  *
3311  * Return: 0 in case of success, negative errno code otherwise.
3312  */
3313 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3314                                 int queue)
3315 {
3316         struct igc_hw *hw = &adapter->hw;
3317         int index;
3318         u32 etqf;
3319
3320         index = igc_get_avail_etype_filter_slot(adapter);
3321         if (index < 0)
3322                 return -ENOSPC;
3323
3324         etqf = rd32(IGC_ETQF(index));
3325
3326         etqf &= ~IGC_ETQF_ETYPE_MASK;
3327         etqf |= etype;
3328
3329         if (queue >= 0) {
3330                 etqf &= ~IGC_ETQF_QUEUE_MASK;
3331                 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3332                 etqf |= IGC_ETQF_QUEUE_ENABLE;
3333         }
3334
3335         etqf |= IGC_ETQF_FILTER_ENABLE;
3336
3337         wr32(IGC_ETQF(index), etqf);
3338
3339         netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3340                    etype, queue);
3341         return 0;
3342 }
3343
3344 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3345 {
3346         struct igc_hw *hw = &adapter->hw;
3347         int i;
3348
3349         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3350                 u32 etqf = rd32(IGC_ETQF(i));
3351
3352                 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3353                         return i;
3354         }
3355
3356         return -1;
3357 }
3358
3359 /**
3360  * igc_del_etype_filter() - Delete ethertype filter
3361  * @adapter: Pointer to adapter where the filter should be deleted from
3362  * @etype: Ethertype value
3363  */
3364 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3365 {
3366         struct igc_hw *hw = &adapter->hw;
3367         int index;
3368
3369         index = igc_find_etype_filter(adapter, etype);
3370         if (index < 0)
3371                 return;
3372
3373         wr32(IGC_ETQF(index), 0);
3374
3375         netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3376                    etype);
3377 }
3378
3379 static int igc_flex_filter_select(struct igc_adapter *adapter,
3380                                   struct igc_flex_filter *input,
3381                                   u32 *fhft)
3382 {
3383         struct igc_hw *hw = &adapter->hw;
3384         u8 fhft_index;
3385         u32 fhftsl;
3386
3387         if (input->index >= MAX_FLEX_FILTER) {
3388                 netdev_err(adapter->netdev, "Wrong Flex Filter index selected!\n");
3389                 return -EINVAL;
3390         }
3391
3392         /* Indirect table select register */
3393         fhftsl = rd32(IGC_FHFTSL);
3394         fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3395         switch (input->index) {
3396         case 0 ... 7:
3397                 fhftsl |= 0x00;
3398                 break;
3399         case 8 ... 15:
3400                 fhftsl |= 0x01;
3401                 break;
3402         case 16 ... 23:
3403                 fhftsl |= 0x02;
3404                 break;
3405         case 24 ... 31:
3406                 fhftsl |= 0x03;
3407                 break;
3408         }
3409         wr32(IGC_FHFTSL, fhftsl);
3410
3411         /* Normalize index down to host table register */
3412         fhft_index = input->index % 8;
3413
3414         *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3415                 IGC_FHFT_EXT(fhft_index - 4);
3416
3417         return 0;
3418 }
3419
3420 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3421                                     struct igc_flex_filter *input)
3422 {
3423         struct igc_hw *hw = &adapter->hw;
3424         u8 *data = input->data;
3425         u8 *mask = input->mask;
3426         u32 queuing;
3427         u32 fhft;
3428         u32 wufc;
3429         int ret;
3430         int i;
3431
3432         /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3433          * out early to avoid surprises later.
3434          */
3435         if (input->length % 8 != 0) {
3436                 netdev_err(adapter->netdev, "The length of a flex filter has to be 8 byte aligned!\n");
3437                 return -EINVAL;
3438         }
3439
3440         /* Select corresponding flex filter register and get base for host table. */
3441         ret = igc_flex_filter_select(adapter, input, &fhft);
3442         if (ret)
3443                 return ret;
3444
3445         /* When adding a filter globally disable flex filter feature. That is
3446          * recommended within the datasheet.
3447          */
3448         wufc = rd32(IGC_WUFC);
3449         wufc &= ~IGC_WUFC_FLEX_HQ;
3450         wr32(IGC_WUFC, wufc);
3451
3452         /* Configure filter */
3453         queuing = input->length & IGC_FHFT_LENGTH_MASK;
3454         queuing |= FIELD_PREP(IGC_FHFT_QUEUE_MASK, input->rx_queue);
3455         queuing |= FIELD_PREP(IGC_FHFT_PRIO_MASK, input->prio);
3456
3457         if (input->immediate_irq)
3458                 queuing |= IGC_FHFT_IMM_INT;
3459
3460         if (input->drop)
3461                 queuing |= IGC_FHFT_DROP;
3462
3463         wr32(fhft + 0xFC, queuing);
3464
3465         /* Write data (128 byte) and mask (128 bit) */
3466         for (i = 0; i < 16; ++i) {
3467                 const size_t data_idx = i * 8;
3468                 const size_t row_idx = i * 16;
3469                 u32 dw0 =
3470                         (data[data_idx + 0] << 0) |
3471                         (data[data_idx + 1] << 8) |
3472                         (data[data_idx + 2] << 16) |
3473                         (data[data_idx + 3] << 24);
3474                 u32 dw1 =
3475                         (data[data_idx + 4] << 0) |
3476                         (data[data_idx + 5] << 8) |
3477                         (data[data_idx + 6] << 16) |
3478                         (data[data_idx + 7] << 24);
3479                 u32 tmp;
3480
3481                 /* Write row: dw0, dw1 and mask */
3482                 wr32(fhft + row_idx, dw0);
3483                 wr32(fhft + row_idx + 4, dw1);
3484
3485                 /* mask is only valid for MASK(7, 0) */
3486                 tmp = rd32(fhft + row_idx + 8);
3487                 tmp &= ~GENMASK(7, 0);
3488                 tmp |= mask[i];
3489                 wr32(fhft + row_idx + 8, tmp);
3490         }
3491
3492         /* Enable filter. */
3493         wufc |= IGC_WUFC_FLEX_HQ;
3494         if (input->index > 8) {
3495                 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3496                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3497
3498                 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3499
3500                 wr32(IGC_WUFC_EXT, wufc_ext);
3501         } else {
3502                 wufc |= (IGC_WUFC_FLX0 << input->index);
3503         }
3504         wr32(IGC_WUFC, wufc);
3505
3506         netdev_dbg(adapter->netdev, "Added flex filter %u to HW.\n",
3507                    input->index);
3508
3509         return 0;
3510 }
3511
3512 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3513                                       const void *src, unsigned int offset,
3514                                       size_t len, const void *mask)
3515 {
3516         int i;
3517
3518         /* data */
3519         memcpy(&flex->data[offset], src, len);
3520
3521         /* mask */
3522         for (i = 0; i < len; ++i) {
3523                 const unsigned int idx = i + offset;
3524                 const u8 *ptr = mask;
3525
3526                 if (mask) {
3527                         if (ptr[i] & 0xff)
3528                                 flex->mask[idx / 8] |= BIT(idx % 8);
3529
3530                         continue;
3531                 }
3532
3533                 flex->mask[idx / 8] |= BIT(idx % 8);
3534         }
3535 }
3536
3537 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3538 {
3539         struct igc_hw *hw = &adapter->hw;
3540         u32 wufc, wufc_ext;
3541         int i;
3542
3543         wufc = rd32(IGC_WUFC);
3544         wufc_ext = rd32(IGC_WUFC_EXT);
3545
3546         for (i = 0; i < MAX_FLEX_FILTER; i++) {
3547                 if (i < 8) {
3548                         if (!(wufc & (IGC_WUFC_FLX0 << i)))
3549                                 return i;
3550                 } else {
3551                         if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3552                                 return i;
3553                 }
3554         }
3555
3556         return -ENOSPC;
3557 }
3558
3559 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3560 {
3561         struct igc_hw *hw = &adapter->hw;
3562         u32 wufc, wufc_ext;
3563
3564         wufc = rd32(IGC_WUFC);
3565         wufc_ext = rd32(IGC_WUFC_EXT);
3566
3567         if (wufc & IGC_WUFC_FILTER_MASK)
3568                 return true;
3569
3570         if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3571                 return true;
3572
3573         return false;
3574 }
3575
3576 static int igc_add_flex_filter(struct igc_adapter *adapter,
3577                                struct igc_nfc_rule *rule)
3578 {
3579         struct igc_nfc_filter *filter = &rule->filter;
3580         unsigned int eth_offset, user_offset;
3581         struct igc_flex_filter flex = { };
3582         int ret, index;
3583         bool vlan;
3584
3585         index = igc_find_avail_flex_filter_slot(adapter);
3586         if (index < 0)
3587                 return -ENOSPC;
3588
3589         /* Construct the flex filter:
3590          *  -> dest_mac [6]
3591          *  -> src_mac [6]
3592          *  -> tpid [2]
3593          *  -> vlan tci [2]
3594          *  -> ether type [2]
3595          *  -> user data [8]
3596          *  -> = 26 bytes => 32 length
3597          */
3598         flex.index    = index;
3599         flex.length   = 32;
3600         flex.rx_queue = rule->action;
3601
3602         vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3603         eth_offset = vlan ? 16 : 12;
3604         user_offset = vlan ? 18 : 14;
3605
3606         /* Add destination MAC  */
3607         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3608                 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3609                                           ETH_ALEN, NULL);
3610
3611         /* Add source MAC */
3612         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3613                 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3614                                           ETH_ALEN, NULL);
3615
3616         /* Add VLAN etype */
3617         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE) {
3618                 __be16 vlan_etype = cpu_to_be16(filter->vlan_etype);
3619
3620                 igc_flex_filter_add_field(&flex, &vlan_etype, 12,
3621                                           sizeof(vlan_etype), NULL);
3622         }
3623
3624         /* Add VLAN TCI */
3625         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3626                 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3627                                           sizeof(filter->vlan_tci), NULL);
3628
3629         /* Add Ether type */
3630         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3631                 __be16 etype = cpu_to_be16(filter->etype);
3632
3633                 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3634                                           sizeof(etype), NULL);
3635         }
3636
3637         /* Add user data */
3638         if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3639                 igc_flex_filter_add_field(&flex, &filter->user_data,
3640                                           user_offset,
3641                                           sizeof(filter->user_data),
3642                                           filter->user_mask);
3643
3644         /* Add it down to the hardware and enable it. */
3645         ret = igc_write_flex_filter_ll(adapter, &flex);
3646         if (ret)
3647                 return ret;
3648
3649         filter->flex_index = index;
3650
3651         return 0;
3652 }
3653
3654 static void igc_del_flex_filter(struct igc_adapter *adapter,
3655                                 u16 reg_index)
3656 {
3657         struct igc_hw *hw = &adapter->hw;
3658         u32 wufc;
3659
3660         /* Just disable the filter. The filter table itself is kept
3661          * intact. Another flex_filter_add() should override the "old" data
3662          * then.
3663          */
3664         if (reg_index > 8) {
3665                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3666
3667                 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3668                 wr32(IGC_WUFC_EXT, wufc_ext);
3669         } else {
3670                 wufc = rd32(IGC_WUFC);
3671
3672                 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3673                 wr32(IGC_WUFC, wufc);
3674         }
3675
3676         if (igc_flex_filter_in_use(adapter))
3677                 return;
3678
3679         /* No filters are in use, we may disable flex filters */
3680         wufc = rd32(IGC_WUFC);
3681         wufc &= ~IGC_WUFC_FLEX_HQ;
3682         wr32(IGC_WUFC, wufc);
3683 }
3684
3685 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3686                                struct igc_nfc_rule *rule)
3687 {
3688         int err;
3689
3690         if (rule->flex) {
3691                 return igc_add_flex_filter(adapter, rule);
3692         }
3693
3694         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3695                 err = igc_add_etype_filter(adapter, rule->filter.etype,
3696                                            rule->action);
3697                 if (err)
3698                         return err;
3699         }
3700
3701         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3702                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3703                                          rule->filter.src_addr, rule->action);
3704                 if (err)
3705                         return err;
3706         }
3707
3708         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3709                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3710                                          rule->filter.dst_addr, rule->action);
3711                 if (err)
3712                         return err;
3713         }
3714
3715         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3716                 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3717
3718                 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3719                 if (err)
3720                         return err;
3721         }
3722
3723         return 0;
3724 }
3725
3726 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3727                                  const struct igc_nfc_rule *rule)
3728 {
3729         if (rule->flex) {
3730                 igc_del_flex_filter(adapter, rule->filter.flex_index);
3731                 return;
3732         }
3733
3734         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3735                 igc_del_etype_filter(adapter, rule->filter.etype);
3736
3737         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3738                 int prio = FIELD_GET(VLAN_PRIO_MASK, rule->filter.vlan_tci);
3739
3740                 igc_del_vlan_prio_filter(adapter, prio);
3741         }
3742
3743         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3744                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3745                                    rule->filter.src_addr);
3746
3747         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3748                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3749                                    rule->filter.dst_addr);
3750 }
3751
3752 /**
3753  * igc_get_nfc_rule() - Get NFC rule
3754  * @adapter: Pointer to adapter
3755  * @location: Rule location
3756  *
3757  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3758  *
3759  * Return: Pointer to NFC rule at @location. If not found, NULL.
3760  */
3761 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3762                                       u32 location)
3763 {
3764         struct igc_nfc_rule *rule;
3765
3766         list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3767                 if (rule->location == location)
3768                         return rule;
3769                 if (rule->location > location)
3770                         break;
3771         }
3772
3773         return NULL;
3774 }
3775
3776 /**
3777  * igc_del_nfc_rule() - Delete NFC rule
3778  * @adapter: Pointer to adapter
3779  * @rule: Pointer to rule to be deleted
3780  *
3781  * Disable NFC rule in hardware and delete it from adapter.
3782  *
3783  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3784  */
3785 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3786 {
3787         igc_disable_nfc_rule(adapter, rule);
3788
3789         list_del(&rule->list);
3790         adapter->nfc_rule_count--;
3791
3792         kfree(rule);
3793 }
3794
3795 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3796 {
3797         struct igc_nfc_rule *rule, *tmp;
3798
3799         mutex_lock(&adapter->nfc_rule_lock);
3800
3801         list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3802                 igc_del_nfc_rule(adapter, rule);
3803
3804         mutex_unlock(&adapter->nfc_rule_lock);
3805 }
3806
3807 /**
3808  * igc_add_nfc_rule() - Add NFC rule
3809  * @adapter: Pointer to adapter
3810  * @rule: Pointer to rule to be added
3811  *
3812  * Enable NFC rule in hardware and add it to adapter.
3813  *
3814  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3815  *
3816  * Return: 0 on success, negative errno on failure.
3817  */
3818 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3819 {
3820         struct igc_nfc_rule *pred, *cur;
3821         int err;
3822
3823         err = igc_enable_nfc_rule(adapter, rule);
3824         if (err)
3825                 return err;
3826
3827         pred = NULL;
3828         list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3829                 if (cur->location >= rule->location)
3830                         break;
3831                 pred = cur;
3832         }
3833
3834         list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3835         adapter->nfc_rule_count++;
3836         return 0;
3837 }
3838
3839 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3840 {
3841         struct igc_nfc_rule *rule;
3842
3843         mutex_lock(&adapter->nfc_rule_lock);
3844
3845         list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3846                 igc_enable_nfc_rule(adapter, rule);
3847
3848         mutex_unlock(&adapter->nfc_rule_lock);
3849 }
3850
3851 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3852 {
3853         struct igc_adapter *adapter = netdev_priv(netdev);
3854
3855         return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3856 }
3857
3858 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3859 {
3860         struct igc_adapter *adapter = netdev_priv(netdev);
3861
3862         igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3863         return 0;
3864 }
3865
3866 /**
3867  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3868  * @netdev: network interface device structure
3869  *
3870  * The set_rx_mode entry point is called whenever the unicast or multicast
3871  * address lists or the network interface flags are updated.  This routine is
3872  * responsible for configuring the hardware for proper unicast, multicast,
3873  * promiscuous mode, and all-multi behavior.
3874  */
3875 static void igc_set_rx_mode(struct net_device *netdev)
3876 {
3877         struct igc_adapter *adapter = netdev_priv(netdev);
3878         struct igc_hw *hw = &adapter->hw;
3879         u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3880         int count;
3881
3882         /* Check for Promiscuous and All Multicast modes */
3883         if (netdev->flags & IFF_PROMISC) {
3884                 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3885         } else {
3886                 if (netdev->flags & IFF_ALLMULTI) {
3887                         rctl |= IGC_RCTL_MPE;
3888                 } else {
3889                         /* Write addresses to the MTA, if the attempt fails
3890                          * then we should just turn on promiscuous mode so
3891                          * that we can at least receive multicast traffic
3892                          */
3893                         count = igc_write_mc_addr_list(netdev);
3894                         if (count < 0)
3895                                 rctl |= IGC_RCTL_MPE;
3896                 }
3897         }
3898
3899         /* Write addresses to available RAR registers, if there is not
3900          * sufficient space to store all the addresses then enable
3901          * unicast promiscuous mode
3902          */
3903         if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3904                 rctl |= IGC_RCTL_UPE;
3905
3906         /* update state of unicast and multicast */
3907         rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3908         wr32(IGC_RCTL, rctl);
3909
3910 #if (PAGE_SIZE < 8192)
3911         if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3912                 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3913 #endif
3914         wr32(IGC_RLPML, rlpml);
3915 }
3916
3917 /**
3918  * igc_configure - configure the hardware for RX and TX
3919  * @adapter: private board structure
3920  */
3921 static void igc_configure(struct igc_adapter *adapter)
3922 {
3923         struct net_device *netdev = adapter->netdev;
3924         int i = 0;
3925
3926         igc_get_hw_control(adapter);
3927         igc_set_rx_mode(netdev);
3928
3929         igc_restore_vlan(adapter);
3930
3931         igc_setup_tctl(adapter);
3932         igc_setup_mrqc(adapter);
3933         igc_setup_rctl(adapter);
3934
3935         igc_set_default_mac_filter(adapter);
3936         igc_restore_nfc_rules(adapter);
3937
3938         igc_configure_tx(adapter);
3939         igc_configure_rx(adapter);
3940
3941         igc_rx_fifo_flush_base(&adapter->hw);
3942
3943         /* call igc_desc_unused which always leaves
3944          * at least 1 descriptor unused to make sure
3945          * next_to_use != next_to_clean
3946          */
3947         for (i = 0; i < adapter->num_rx_queues; i++) {
3948                 struct igc_ring *ring = adapter->rx_ring[i];
3949
3950                 if (ring->xsk_pool)
3951                         igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3952                 else
3953                         igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3954         }
3955 }
3956
3957 /**
3958  * igc_write_ivar - configure ivar for given MSI-X vector
3959  * @hw: pointer to the HW structure
3960  * @msix_vector: vector number we are allocating to a given ring
3961  * @index: row index of IVAR register to write within IVAR table
3962  * @offset: column offset of in IVAR, should be multiple of 8
3963  *
3964  * The IVAR table consists of 2 columns,
3965  * each containing an cause allocation for an Rx and Tx ring, and a
3966  * variable number of rows depending on the number of queues supported.
3967  */
3968 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3969                            int index, int offset)
3970 {
3971         u32 ivar = array_rd32(IGC_IVAR0, index);
3972
3973         /* clear any bits that are currently set */
3974         ivar &= ~((u32)0xFF << offset);
3975
3976         /* write vector and valid bit */
3977         ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3978
3979         array_wr32(IGC_IVAR0, index, ivar);
3980 }
3981
3982 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3983 {
3984         struct igc_adapter *adapter = q_vector->adapter;
3985         struct igc_hw *hw = &adapter->hw;
3986         int rx_queue = IGC_N0_QUEUE;
3987         int tx_queue = IGC_N0_QUEUE;
3988
3989         if (q_vector->rx.ring)
3990                 rx_queue = q_vector->rx.ring->reg_idx;
3991         if (q_vector->tx.ring)
3992                 tx_queue = q_vector->tx.ring->reg_idx;
3993
3994         switch (hw->mac.type) {
3995         case igc_i225:
3996                 if (rx_queue > IGC_N0_QUEUE)
3997                         igc_write_ivar(hw, msix_vector,
3998                                        rx_queue >> 1,
3999                                        (rx_queue & 0x1) << 4);
4000                 if (tx_queue > IGC_N0_QUEUE)
4001                         igc_write_ivar(hw, msix_vector,
4002                                        tx_queue >> 1,
4003                                        ((tx_queue & 0x1) << 4) + 8);
4004                 q_vector->eims_value = BIT(msix_vector);
4005                 break;
4006         default:
4007                 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4008                 break;
4009         }
4010
4011         /* add q_vector eims value to global eims_enable_mask */
4012         adapter->eims_enable_mask |= q_vector->eims_value;
4013
4014         /* configure q_vector to set itr on first interrupt */
4015         q_vector->set_itr = 1;
4016 }
4017
4018 /**
4019  * igc_configure_msix - Configure MSI-X hardware
4020  * @adapter: Pointer to adapter structure
4021  *
4022  * igc_configure_msix sets up the hardware to properly
4023  * generate MSI-X interrupts.
4024  */
4025 static void igc_configure_msix(struct igc_adapter *adapter)
4026 {
4027         struct igc_hw *hw = &adapter->hw;
4028         int i, vector = 0;
4029         u32 tmp;
4030
4031         adapter->eims_enable_mask = 0;
4032
4033         /* set vector for other causes, i.e. link changes */
4034         switch (hw->mac.type) {
4035         case igc_i225:
4036                 /* Turn on MSI-X capability first, or our settings
4037                  * won't stick.  And it will take days to debug.
4038                  */
4039                 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4040                      IGC_GPIE_PBA | IGC_GPIE_EIAME |
4041                      IGC_GPIE_NSICR);
4042
4043                 /* enable msix_other interrupt */
4044                 adapter->eims_other = BIT(vector);
4045                 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4046
4047                 wr32(IGC_IVAR_MISC, tmp);
4048                 break;
4049         default:
4050                 /* do nothing, since nothing else supports MSI-X */
4051                 break;
4052         } /* switch (hw->mac.type) */
4053
4054         adapter->eims_enable_mask |= adapter->eims_other;
4055
4056         for (i = 0; i < adapter->num_q_vectors; i++)
4057                 igc_assign_vector(adapter->q_vector[i], vector++);
4058
4059         wrfl();
4060 }
4061
4062 /**
4063  * igc_irq_enable - Enable default interrupt generation settings
4064  * @adapter: board private structure
4065  */
4066 static void igc_irq_enable(struct igc_adapter *adapter)
4067 {
4068         struct igc_hw *hw = &adapter->hw;
4069
4070         if (adapter->msix_entries) {
4071                 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4072                 u32 regval = rd32(IGC_EIAC);
4073
4074                 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4075                 regval = rd32(IGC_EIAM);
4076                 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4077                 wr32(IGC_EIMS, adapter->eims_enable_mask);
4078                 wr32(IGC_IMS, ims);
4079         } else {
4080                 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4081                 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4082         }
4083 }
4084
4085 /**
4086  * igc_irq_disable - Mask off interrupt generation on the NIC
4087  * @adapter: board private structure
4088  */
4089 static void igc_irq_disable(struct igc_adapter *adapter)
4090 {
4091         struct igc_hw *hw = &adapter->hw;
4092
4093         if (adapter->msix_entries) {
4094                 u32 regval = rd32(IGC_EIAM);
4095
4096                 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4097                 wr32(IGC_EIMC, adapter->eims_enable_mask);
4098                 regval = rd32(IGC_EIAC);
4099                 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4100         }
4101
4102         wr32(IGC_IAM, 0);
4103         wr32(IGC_IMC, ~0);
4104         wrfl();
4105
4106         if (adapter->msix_entries) {
4107                 int vector = 0, i;
4108
4109                 synchronize_irq(adapter->msix_entries[vector++].vector);
4110
4111                 for (i = 0; i < adapter->num_q_vectors; i++)
4112                         synchronize_irq(adapter->msix_entries[vector++].vector);
4113         } else {
4114                 synchronize_irq(adapter->pdev->irq);
4115         }
4116 }
4117
4118 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4119                               const u32 max_rss_queues)
4120 {
4121         /* Determine if we need to pair queues. */
4122         /* If rss_queues > half of max_rss_queues, pair the queues in
4123          * order to conserve interrupts due to limited supply.
4124          */
4125         if (adapter->rss_queues > (max_rss_queues / 2))
4126                 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4127         else
4128                 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4129 }
4130
4131 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4132 {
4133         return IGC_MAX_RX_QUEUES;
4134 }
4135
4136 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4137 {
4138         u32 max_rss_queues;
4139
4140         max_rss_queues = igc_get_max_rss_queues(adapter);
4141         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4142
4143         igc_set_flag_queue_pairs(adapter, max_rss_queues);
4144 }
4145
4146 /**
4147  * igc_reset_q_vector - Reset config for interrupt vector
4148  * @adapter: board private structure to initialize
4149  * @v_idx: Index of vector to be reset
4150  *
4151  * If NAPI is enabled it will delete any references to the
4152  * NAPI struct. This is preparation for igc_free_q_vector.
4153  */
4154 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4155 {
4156         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4157
4158         /* if we're coming from igc_set_interrupt_capability, the vectors are
4159          * not yet allocated
4160          */
4161         if (!q_vector)
4162                 return;
4163
4164         if (q_vector->tx.ring)
4165                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4166
4167         if (q_vector->rx.ring)
4168                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4169
4170         netif_napi_del(&q_vector->napi);
4171 }
4172
4173 /**
4174  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4175  * @adapter: board private structure to initialize
4176  * @v_idx: Index of vector to be freed
4177  *
4178  * This function frees the memory allocated to the q_vector.
4179  */
4180 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4181 {
4182         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4183
4184         adapter->q_vector[v_idx] = NULL;
4185
4186         /* igc_get_stats64() might access the rings on this vector,
4187          * we must wait a grace period before freeing it.
4188          */
4189         if (q_vector)
4190                 kfree_rcu(q_vector, rcu);
4191 }
4192
4193 /**
4194  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4195  * @adapter: board private structure to initialize
4196  *
4197  * This function frees the memory allocated to the q_vectors.  In addition if
4198  * NAPI is enabled it will delete any references to the NAPI struct prior
4199  * to freeing the q_vector.
4200  */
4201 static void igc_free_q_vectors(struct igc_adapter *adapter)
4202 {
4203         int v_idx = adapter->num_q_vectors;
4204
4205         adapter->num_tx_queues = 0;
4206         adapter->num_rx_queues = 0;
4207         adapter->num_q_vectors = 0;
4208
4209         while (v_idx--) {
4210                 igc_reset_q_vector(adapter, v_idx);
4211                 igc_free_q_vector(adapter, v_idx);
4212         }
4213 }
4214
4215 /**
4216  * igc_update_itr - update the dynamic ITR value based on statistics
4217  * @q_vector: pointer to q_vector
4218  * @ring_container: ring info to update the itr for
4219  *
4220  * Stores a new ITR value based on packets and byte
4221  * counts during the last interrupt.  The advantage of per interrupt
4222  * computation is faster updates and more accurate ITR for the current
4223  * traffic pattern.  Constants in this function were computed
4224  * based on theoretical maximum wire speed and thresholds were set based
4225  * on testing data as well as attempting to minimize response time
4226  * while increasing bulk throughput.
4227  * NOTE: These calculations are only valid when operating in a single-
4228  * queue environment.
4229  */
4230 static void igc_update_itr(struct igc_q_vector *q_vector,
4231                            struct igc_ring_container *ring_container)
4232 {
4233         unsigned int packets = ring_container->total_packets;
4234         unsigned int bytes = ring_container->total_bytes;
4235         u8 itrval = ring_container->itr;
4236
4237         /* no packets, exit with status unchanged */
4238         if (packets == 0)
4239                 return;
4240
4241         switch (itrval) {
4242         case lowest_latency:
4243                 /* handle TSO and jumbo frames */
4244                 if (bytes / packets > 8000)
4245                         itrval = bulk_latency;
4246                 else if ((packets < 5) && (bytes > 512))
4247                         itrval = low_latency;
4248                 break;
4249         case low_latency:  /* 50 usec aka 20000 ints/s */
4250                 if (bytes > 10000) {
4251                         /* this if handles the TSO accounting */
4252                         if (bytes / packets > 8000)
4253                                 itrval = bulk_latency;
4254                         else if ((packets < 10) || ((bytes / packets) > 1200))
4255                                 itrval = bulk_latency;
4256                         else if ((packets > 35))
4257                                 itrval = lowest_latency;
4258                 } else if (bytes / packets > 2000) {
4259                         itrval = bulk_latency;
4260                 } else if (packets <= 2 && bytes < 512) {
4261                         itrval = lowest_latency;
4262                 }
4263                 break;
4264         case bulk_latency: /* 250 usec aka 4000 ints/s */
4265                 if (bytes > 25000) {
4266                         if (packets > 35)
4267                                 itrval = low_latency;
4268                 } else if (bytes < 1500) {
4269                         itrval = low_latency;
4270                 }
4271                 break;
4272         }
4273
4274         /* clear work counters since we have the values we need */
4275         ring_container->total_bytes = 0;
4276         ring_container->total_packets = 0;
4277
4278         /* write updated itr to ring container */
4279         ring_container->itr = itrval;
4280 }
4281
4282 static void igc_set_itr(struct igc_q_vector *q_vector)
4283 {
4284         struct igc_adapter *adapter = q_vector->adapter;
4285         u32 new_itr = q_vector->itr_val;
4286         u8 current_itr = 0;
4287
4288         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4289         switch (adapter->link_speed) {
4290         case SPEED_10:
4291         case SPEED_100:
4292                 current_itr = 0;
4293                 new_itr = IGC_4K_ITR;
4294                 goto set_itr_now;
4295         default:
4296                 break;
4297         }
4298
4299         igc_update_itr(q_vector, &q_vector->tx);
4300         igc_update_itr(q_vector, &q_vector->rx);
4301
4302         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4303
4304         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4305         if (current_itr == lowest_latency &&
4306             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4307             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4308                 current_itr = low_latency;
4309
4310         switch (current_itr) {
4311         /* counts and packets in update_itr are dependent on these numbers */
4312         case lowest_latency:
4313                 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4314                 break;
4315         case low_latency:
4316                 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4317                 break;
4318         case bulk_latency:
4319                 new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4320                 break;
4321         default:
4322                 break;
4323         }
4324
4325 set_itr_now:
4326         if (new_itr != q_vector->itr_val) {
4327                 /* this attempts to bias the interrupt rate towards Bulk
4328                  * by adding intermediate steps when interrupt rate is
4329                  * increasing
4330                  */
4331                 new_itr = new_itr > q_vector->itr_val ?
4332                           max((new_itr * q_vector->itr_val) /
4333                           (new_itr + (q_vector->itr_val >> 2)),
4334                           new_itr) : new_itr;
4335                 /* Don't write the value here; it resets the adapter's
4336                  * internal timer, and causes us to delay far longer than
4337                  * we should between interrupts.  Instead, we write the ITR
4338                  * value at the beginning of the next interrupt so the timing
4339                  * ends up being correct.
4340                  */
4341                 q_vector->itr_val = new_itr;
4342                 q_vector->set_itr = 1;
4343         }
4344 }
4345
4346 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4347 {
4348         int v_idx = adapter->num_q_vectors;
4349
4350         if (adapter->msix_entries) {
4351                 pci_disable_msix(adapter->pdev);
4352                 kfree(adapter->msix_entries);
4353                 adapter->msix_entries = NULL;
4354         } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4355                 pci_disable_msi(adapter->pdev);
4356         }
4357
4358         while (v_idx--)
4359                 igc_reset_q_vector(adapter, v_idx);
4360 }
4361
4362 /**
4363  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4364  * @adapter: Pointer to adapter structure
4365  * @msix: boolean value for MSI-X capability
4366  *
4367  * Attempt to configure interrupts using the best available
4368  * capabilities of the hardware and kernel.
4369  */
4370 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4371                                          bool msix)
4372 {
4373         int numvecs, i;
4374         int err;
4375
4376         if (!msix)
4377                 goto msi_only;
4378         adapter->flags |= IGC_FLAG_HAS_MSIX;
4379
4380         /* Number of supported queues. */
4381         adapter->num_rx_queues = adapter->rss_queues;
4382
4383         adapter->num_tx_queues = adapter->rss_queues;
4384
4385         /* start with one vector for every Rx queue */
4386         numvecs = adapter->num_rx_queues;
4387
4388         /* if Tx handler is separate add 1 for every Tx queue */
4389         if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4390                 numvecs += adapter->num_tx_queues;
4391
4392         /* store the number of vectors reserved for queues */
4393         adapter->num_q_vectors = numvecs;
4394
4395         /* add 1 vector for link status interrupts */
4396         numvecs++;
4397
4398         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4399                                         GFP_KERNEL);
4400
4401         if (!adapter->msix_entries)
4402                 return;
4403
4404         /* populate entry values */
4405         for (i = 0; i < numvecs; i++)
4406                 adapter->msix_entries[i].entry = i;
4407
4408         err = pci_enable_msix_range(adapter->pdev,
4409                                     adapter->msix_entries,
4410                                     numvecs,
4411                                     numvecs);
4412         if (err > 0)
4413                 return;
4414
4415         kfree(adapter->msix_entries);
4416         adapter->msix_entries = NULL;
4417
4418         igc_reset_interrupt_capability(adapter);
4419
4420 msi_only:
4421         adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4422
4423         adapter->rss_queues = 1;
4424         adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4425         adapter->num_rx_queues = 1;
4426         adapter->num_tx_queues = 1;
4427         adapter->num_q_vectors = 1;
4428         if (!pci_enable_msi(adapter->pdev))
4429                 adapter->flags |= IGC_FLAG_HAS_MSI;
4430 }
4431
4432 /**
4433  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4434  * @q_vector: pointer to q_vector
4435  *
4436  * Stores a new ITR value based on strictly on packet size.  This
4437  * algorithm is less sophisticated than that used in igc_update_itr,
4438  * due to the difficulty of synchronizing statistics across multiple
4439  * receive rings.  The divisors and thresholds used by this function
4440  * were determined based on theoretical maximum wire speed and testing
4441  * data, in order to minimize response time while increasing bulk
4442  * throughput.
4443  * NOTE: This function is called only when operating in a multiqueue
4444  * receive environment.
4445  */
4446 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4447 {
4448         struct igc_adapter *adapter = q_vector->adapter;
4449         int new_val = q_vector->itr_val;
4450         int avg_wire_size = 0;
4451         unsigned int packets;
4452
4453         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4454          * ints/sec - ITR timer value of 120 ticks.
4455          */
4456         switch (adapter->link_speed) {
4457         case SPEED_10:
4458         case SPEED_100:
4459                 new_val = IGC_4K_ITR;
4460                 goto set_itr_val;
4461         default:
4462                 break;
4463         }
4464
4465         packets = q_vector->rx.total_packets;
4466         if (packets)
4467                 avg_wire_size = q_vector->rx.total_bytes / packets;
4468
4469         packets = q_vector->tx.total_packets;
4470         if (packets)
4471                 avg_wire_size = max_t(u32, avg_wire_size,
4472                                       q_vector->tx.total_bytes / packets);
4473
4474         /* if avg_wire_size isn't set no work was done */
4475         if (!avg_wire_size)
4476                 goto clear_counts;
4477
4478         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4479         avg_wire_size += 24;
4480
4481         /* Don't starve jumbo frames */
4482         avg_wire_size = min(avg_wire_size, 3000);
4483
4484         /* Give a little boost to mid-size frames */
4485         if (avg_wire_size > 300 && avg_wire_size < 1200)
4486                 new_val = avg_wire_size / 3;
4487         else
4488                 new_val = avg_wire_size / 2;
4489
4490         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4491         if (new_val < IGC_20K_ITR &&
4492             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4493             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4494                 new_val = IGC_20K_ITR;
4495
4496 set_itr_val:
4497         if (new_val != q_vector->itr_val) {
4498                 q_vector->itr_val = new_val;
4499                 q_vector->set_itr = 1;
4500         }
4501 clear_counts:
4502         q_vector->rx.total_bytes = 0;
4503         q_vector->rx.total_packets = 0;
4504         q_vector->tx.total_bytes = 0;
4505         q_vector->tx.total_packets = 0;
4506 }
4507
4508 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4509 {
4510         struct igc_adapter *adapter = q_vector->adapter;
4511         struct igc_hw *hw = &adapter->hw;
4512
4513         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4514             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4515                 if (adapter->num_q_vectors == 1)
4516                         igc_set_itr(q_vector);
4517                 else
4518                         igc_update_ring_itr(q_vector);
4519         }
4520
4521         if (!test_bit(__IGC_DOWN, &adapter->state)) {
4522                 if (adapter->msix_entries)
4523                         wr32(IGC_EIMS, q_vector->eims_value);
4524                 else
4525                         igc_irq_enable(adapter);
4526         }
4527 }
4528
4529 static void igc_add_ring(struct igc_ring *ring,
4530                          struct igc_ring_container *head)
4531 {
4532         head->ring = ring;
4533         head->count++;
4534 }
4535
4536 /**
4537  * igc_cache_ring_register - Descriptor ring to register mapping
4538  * @adapter: board private structure to initialize
4539  *
4540  * Once we know the feature-set enabled for the device, we'll cache
4541  * the register offset the descriptor ring is assigned to.
4542  */
4543 static void igc_cache_ring_register(struct igc_adapter *adapter)
4544 {
4545         int i = 0, j = 0;
4546
4547         switch (adapter->hw.mac.type) {
4548         case igc_i225:
4549         default:
4550                 for (; i < adapter->num_rx_queues; i++)
4551                         adapter->rx_ring[i]->reg_idx = i;
4552                 for (; j < adapter->num_tx_queues; j++)
4553                         adapter->tx_ring[j]->reg_idx = j;
4554                 break;
4555         }
4556 }
4557
4558 /**
4559  * igc_poll - NAPI Rx polling callback
4560  * @napi: napi polling structure
4561  * @budget: count of how many packets we should handle
4562  */
4563 static int igc_poll(struct napi_struct *napi, int budget)
4564 {
4565         struct igc_q_vector *q_vector = container_of(napi,
4566                                                      struct igc_q_vector,
4567                                                      napi);
4568         struct igc_ring *rx_ring = q_vector->rx.ring;
4569         bool clean_complete = true;
4570         int work_done = 0;
4571
4572         if (q_vector->tx.ring)
4573                 clean_complete = igc_clean_tx_irq(q_vector, budget);
4574
4575         if (rx_ring) {
4576                 int cleaned = rx_ring->xsk_pool ?
4577                               igc_clean_rx_irq_zc(q_vector, budget) :
4578                               igc_clean_rx_irq(q_vector, budget);
4579
4580                 work_done += cleaned;
4581                 if (cleaned >= budget)
4582                         clean_complete = false;
4583         }
4584
4585         /* If all work not completed, return budget and keep polling */
4586         if (!clean_complete)
4587                 return budget;
4588
4589         /* Exit the polling mode, but don't re-enable interrupts if stack might
4590          * poll us due to busy-polling
4591          */
4592         if (likely(napi_complete_done(napi, work_done)))
4593                 igc_ring_irq_enable(q_vector);
4594
4595         return min(work_done, budget - 1);
4596 }
4597
4598 /**
4599  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4600  * @adapter: board private structure to initialize
4601  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4602  * @v_idx: index of vector in adapter struct
4603  * @txr_count: total number of Tx rings to allocate
4604  * @txr_idx: index of first Tx ring to allocate
4605  * @rxr_count: total number of Rx rings to allocate
4606  * @rxr_idx: index of first Rx ring to allocate
4607  *
4608  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4609  */
4610 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4611                               unsigned int v_count, unsigned int v_idx,
4612                               unsigned int txr_count, unsigned int txr_idx,
4613                               unsigned int rxr_count, unsigned int rxr_idx)
4614 {
4615         struct igc_q_vector *q_vector;
4616         struct igc_ring *ring;
4617         int ring_count;
4618
4619         /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4620         if (txr_count > 1 || rxr_count > 1)
4621                 return -ENOMEM;
4622
4623         ring_count = txr_count + rxr_count;
4624
4625         /* allocate q_vector and rings */
4626         q_vector = adapter->q_vector[v_idx];
4627         if (!q_vector)
4628                 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4629                                    GFP_KERNEL);
4630         else
4631                 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4632         if (!q_vector)
4633                 return -ENOMEM;
4634
4635         /* initialize NAPI */
4636         netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4637
4638         /* tie q_vector and adapter together */
4639         adapter->q_vector[v_idx] = q_vector;
4640         q_vector->adapter = adapter;
4641
4642         /* initialize work limits */
4643         q_vector->tx.work_limit = adapter->tx_work_limit;
4644
4645         /* initialize ITR configuration */
4646         q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4647         q_vector->itr_val = IGC_START_ITR;
4648
4649         /* initialize pointer to rings */
4650         ring = q_vector->ring;
4651
4652         /* initialize ITR */
4653         if (rxr_count) {
4654                 /* rx or rx/tx vector */
4655                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4656                         q_vector->itr_val = adapter->rx_itr_setting;
4657         } else {
4658                 /* tx only vector */
4659                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4660                         q_vector->itr_val = adapter->tx_itr_setting;
4661         }
4662
4663         if (txr_count) {
4664                 /* assign generic ring traits */
4665                 ring->dev = &adapter->pdev->dev;
4666                 ring->netdev = adapter->netdev;
4667
4668                 /* configure backlink on ring */
4669                 ring->q_vector = q_vector;
4670
4671                 /* update q_vector Tx values */
4672                 igc_add_ring(ring, &q_vector->tx);
4673
4674                 /* apply Tx specific ring traits */
4675                 ring->count = adapter->tx_ring_count;
4676                 ring->queue_index = txr_idx;
4677
4678                 /* assign ring to adapter */
4679                 adapter->tx_ring[txr_idx] = ring;
4680
4681                 /* push pointer to next ring */
4682                 ring++;
4683         }
4684
4685         if (rxr_count) {
4686                 /* assign generic ring traits */
4687                 ring->dev = &adapter->pdev->dev;
4688                 ring->netdev = adapter->netdev;
4689
4690                 /* configure backlink on ring */
4691                 ring->q_vector = q_vector;
4692
4693                 /* update q_vector Rx values */
4694                 igc_add_ring(ring, &q_vector->rx);
4695
4696                 /* apply Rx specific ring traits */
4697                 ring->count = adapter->rx_ring_count;
4698                 ring->queue_index = rxr_idx;
4699
4700                 /* assign ring to adapter */
4701                 adapter->rx_ring[rxr_idx] = ring;
4702         }
4703
4704         return 0;
4705 }
4706
4707 /**
4708  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4709  * @adapter: board private structure to initialize
4710  *
4711  * We allocate one q_vector per queue interrupt.  If allocation fails we
4712  * return -ENOMEM.
4713  */
4714 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4715 {
4716         int rxr_remaining = adapter->num_rx_queues;
4717         int txr_remaining = adapter->num_tx_queues;
4718         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4719         int q_vectors = adapter->num_q_vectors;
4720         int err;
4721
4722         if (q_vectors >= (rxr_remaining + txr_remaining)) {
4723                 for (; rxr_remaining; v_idx++) {
4724                         err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4725                                                  0, 0, 1, rxr_idx);
4726
4727                         if (err)
4728                                 goto err_out;
4729
4730                         /* update counts and index */
4731                         rxr_remaining--;
4732                         rxr_idx++;
4733                 }
4734         }
4735
4736         for (; v_idx < q_vectors; v_idx++) {
4737                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4738                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4739
4740                 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4741                                          tqpv, txr_idx, rqpv, rxr_idx);
4742
4743                 if (err)
4744                         goto err_out;
4745
4746                 /* update counts and index */
4747                 rxr_remaining -= rqpv;
4748                 txr_remaining -= tqpv;
4749                 rxr_idx++;
4750                 txr_idx++;
4751         }
4752
4753         return 0;
4754
4755 err_out:
4756         adapter->num_tx_queues = 0;
4757         adapter->num_rx_queues = 0;
4758         adapter->num_q_vectors = 0;
4759
4760         while (v_idx--)
4761                 igc_free_q_vector(adapter, v_idx);
4762
4763         return -ENOMEM;
4764 }
4765
4766 /**
4767  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4768  * @adapter: Pointer to adapter structure
4769  * @msix: boolean for MSI-X capability
4770  *
4771  * This function initializes the interrupts and allocates all of the queues.
4772  */
4773 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4774 {
4775         struct net_device *dev = adapter->netdev;
4776         int err = 0;
4777
4778         igc_set_interrupt_capability(adapter, msix);
4779
4780         err = igc_alloc_q_vectors(adapter);
4781         if (err) {
4782                 netdev_err(dev, "Unable to allocate memory for vectors\n");
4783                 goto err_alloc_q_vectors;
4784         }
4785
4786         igc_cache_ring_register(adapter);
4787
4788         return 0;
4789
4790 err_alloc_q_vectors:
4791         igc_reset_interrupt_capability(adapter);
4792         return err;
4793 }
4794
4795 /**
4796  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4797  * @adapter: board private structure to initialize
4798  *
4799  * igc_sw_init initializes the Adapter private data structure.
4800  * Fields are initialized based on PCI device information and
4801  * OS network device settings (MTU size).
4802  */
4803 static int igc_sw_init(struct igc_adapter *adapter)
4804 {
4805         struct net_device *netdev = adapter->netdev;
4806         struct pci_dev *pdev = adapter->pdev;
4807         struct igc_hw *hw = &adapter->hw;
4808
4809         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4810
4811         /* set default ring sizes */
4812         adapter->tx_ring_count = IGC_DEFAULT_TXD;
4813         adapter->rx_ring_count = IGC_DEFAULT_RXD;
4814
4815         /* set default ITR values */
4816         adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4817         adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4818
4819         /* set default work limits */
4820         adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4821
4822         /* adjust max frame to be at least the size of a standard frame */
4823         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4824                                 VLAN_HLEN;
4825         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4826
4827         mutex_init(&adapter->nfc_rule_lock);
4828         INIT_LIST_HEAD(&adapter->nfc_rule_list);
4829         adapter->nfc_rule_count = 0;
4830
4831         spin_lock_init(&adapter->stats64_lock);
4832         spin_lock_init(&adapter->qbv_tx_lock);
4833         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4834         adapter->flags |= IGC_FLAG_HAS_MSIX;
4835
4836         igc_init_queue_configuration(adapter);
4837
4838         /* This call may decrease the number of queues */
4839         if (igc_init_interrupt_scheme(adapter, true)) {
4840                 netdev_err(netdev, "Unable to allocate memory for queues\n");
4841                 return -ENOMEM;
4842         }
4843
4844         /* Explicitly disable IRQ since the NIC can be in any state. */
4845         igc_irq_disable(adapter);
4846
4847         set_bit(__IGC_DOWN, &adapter->state);
4848
4849         return 0;
4850 }
4851
4852 /**
4853  * igc_up - Open the interface and prepare it to handle traffic
4854  * @adapter: board private structure
4855  */
4856 void igc_up(struct igc_adapter *adapter)
4857 {
4858         struct igc_hw *hw = &adapter->hw;
4859         int i = 0;
4860
4861         /* hardware has been reset, we need to reload some things */
4862         igc_configure(adapter);
4863
4864         clear_bit(__IGC_DOWN, &adapter->state);
4865
4866         for (i = 0; i < adapter->num_q_vectors; i++)
4867                 napi_enable(&adapter->q_vector[i]->napi);
4868
4869         if (adapter->msix_entries)
4870                 igc_configure_msix(adapter);
4871         else
4872                 igc_assign_vector(adapter->q_vector[0], 0);
4873
4874         /* Clear any pending interrupts. */
4875         rd32(IGC_ICR);
4876         igc_irq_enable(adapter);
4877
4878         netif_tx_start_all_queues(adapter->netdev);
4879
4880         /* start the watchdog. */
4881         hw->mac.get_link_status = true;
4882         schedule_work(&adapter->watchdog_task);
4883 }
4884
4885 /**
4886  * igc_update_stats - Update the board statistics counters
4887  * @adapter: board private structure
4888  */
4889 void igc_update_stats(struct igc_adapter *adapter)
4890 {
4891         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4892         struct pci_dev *pdev = adapter->pdev;
4893         struct igc_hw *hw = &adapter->hw;
4894         u64 _bytes, _packets;
4895         u64 bytes, packets;
4896         unsigned int start;
4897         u32 mpc;
4898         int i;
4899
4900         /* Prevent stats update while adapter is being reset, or if the pci
4901          * connection is down.
4902          */
4903         if (adapter->link_speed == 0)
4904                 return;
4905         if (pci_channel_offline(pdev))
4906                 return;
4907
4908         packets = 0;
4909         bytes = 0;
4910
4911         rcu_read_lock();
4912         for (i = 0; i < adapter->num_rx_queues; i++) {
4913                 struct igc_ring *ring = adapter->rx_ring[i];
4914                 u32 rqdpc = rd32(IGC_RQDPC(i));
4915
4916                 if (hw->mac.type >= igc_i225)
4917                         wr32(IGC_RQDPC(i), 0);
4918
4919                 if (rqdpc) {
4920                         ring->rx_stats.drops += rqdpc;
4921                         net_stats->rx_fifo_errors += rqdpc;
4922                 }
4923
4924                 do {
4925                         start = u64_stats_fetch_begin(&ring->rx_syncp);
4926                         _bytes = ring->rx_stats.bytes;
4927                         _packets = ring->rx_stats.packets;
4928                 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4929                 bytes += _bytes;
4930                 packets += _packets;
4931         }
4932
4933         net_stats->rx_bytes = bytes;
4934         net_stats->rx_packets = packets;
4935
4936         packets = 0;
4937         bytes = 0;
4938         for (i = 0; i < adapter->num_tx_queues; i++) {
4939                 struct igc_ring *ring = adapter->tx_ring[i];
4940
4941                 do {
4942                         start = u64_stats_fetch_begin(&ring->tx_syncp);
4943                         _bytes = ring->tx_stats.bytes;
4944                         _packets = ring->tx_stats.packets;
4945                 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4946                 bytes += _bytes;
4947                 packets += _packets;
4948         }
4949         net_stats->tx_bytes = bytes;
4950         net_stats->tx_packets = packets;
4951         rcu_read_unlock();
4952
4953         /* read stats registers */
4954         adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4955         adapter->stats.gprc += rd32(IGC_GPRC);
4956         adapter->stats.gorc += rd32(IGC_GORCL);
4957         rd32(IGC_GORCH); /* clear GORCL */
4958         adapter->stats.bprc += rd32(IGC_BPRC);
4959         adapter->stats.mprc += rd32(IGC_MPRC);
4960         adapter->stats.roc += rd32(IGC_ROC);
4961
4962         adapter->stats.prc64 += rd32(IGC_PRC64);
4963         adapter->stats.prc127 += rd32(IGC_PRC127);
4964         adapter->stats.prc255 += rd32(IGC_PRC255);
4965         adapter->stats.prc511 += rd32(IGC_PRC511);
4966         adapter->stats.prc1023 += rd32(IGC_PRC1023);
4967         adapter->stats.prc1522 += rd32(IGC_PRC1522);
4968         adapter->stats.tlpic += rd32(IGC_TLPIC);
4969         adapter->stats.rlpic += rd32(IGC_RLPIC);
4970         adapter->stats.hgptc += rd32(IGC_HGPTC);
4971
4972         mpc = rd32(IGC_MPC);
4973         adapter->stats.mpc += mpc;
4974         net_stats->rx_fifo_errors += mpc;
4975         adapter->stats.scc += rd32(IGC_SCC);
4976         adapter->stats.ecol += rd32(IGC_ECOL);
4977         adapter->stats.mcc += rd32(IGC_MCC);
4978         adapter->stats.latecol += rd32(IGC_LATECOL);
4979         adapter->stats.dc += rd32(IGC_DC);
4980         adapter->stats.rlec += rd32(IGC_RLEC);
4981         adapter->stats.xonrxc += rd32(IGC_XONRXC);
4982         adapter->stats.xontxc += rd32(IGC_XONTXC);
4983         adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4984         adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4985         adapter->stats.fcruc += rd32(IGC_FCRUC);
4986         adapter->stats.gptc += rd32(IGC_GPTC);
4987         adapter->stats.gotc += rd32(IGC_GOTCL);
4988         rd32(IGC_GOTCH); /* clear GOTCL */
4989         adapter->stats.rnbc += rd32(IGC_RNBC);
4990         adapter->stats.ruc += rd32(IGC_RUC);
4991         adapter->stats.rfc += rd32(IGC_RFC);
4992         adapter->stats.rjc += rd32(IGC_RJC);
4993         adapter->stats.tor += rd32(IGC_TORH);
4994         adapter->stats.tot += rd32(IGC_TOTH);
4995         adapter->stats.tpr += rd32(IGC_TPR);
4996
4997         adapter->stats.ptc64 += rd32(IGC_PTC64);
4998         adapter->stats.ptc127 += rd32(IGC_PTC127);
4999         adapter->stats.ptc255 += rd32(IGC_PTC255);
5000         adapter->stats.ptc511 += rd32(IGC_PTC511);
5001         adapter->stats.ptc1023 += rd32(IGC_PTC1023);
5002         adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5003
5004         adapter->stats.mptc += rd32(IGC_MPTC);
5005         adapter->stats.bptc += rd32(IGC_BPTC);
5006
5007         adapter->stats.tpt += rd32(IGC_TPT);
5008         adapter->stats.colc += rd32(IGC_COLC);
5009         adapter->stats.colc += rd32(IGC_RERC);
5010
5011         adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5012
5013         adapter->stats.tsctc += rd32(IGC_TSCTC);
5014
5015         adapter->stats.iac += rd32(IGC_IAC);
5016
5017         /* Fill out the OS statistics structure */
5018         net_stats->multicast = adapter->stats.mprc;
5019         net_stats->collisions = adapter->stats.colc;
5020
5021         /* Rx Errors */
5022
5023         /* RLEC on some newer hardware can be incorrect so build
5024          * our own version based on RUC and ROC
5025          */
5026         net_stats->rx_errors = adapter->stats.rxerrc +
5027                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5028                 adapter->stats.ruc + adapter->stats.roc +
5029                 adapter->stats.cexterr;
5030         net_stats->rx_length_errors = adapter->stats.ruc +
5031                                       adapter->stats.roc;
5032         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5033         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5034         net_stats->rx_missed_errors = adapter->stats.mpc;
5035
5036         /* Tx Errors */
5037         net_stats->tx_errors = adapter->stats.ecol +
5038                                adapter->stats.latecol;
5039         net_stats->tx_aborted_errors = adapter->stats.ecol;
5040         net_stats->tx_window_errors = adapter->stats.latecol;
5041         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5042
5043         /* Tx Dropped */
5044         net_stats->tx_dropped = adapter->stats.txdrop;
5045
5046         /* Management Stats */
5047         adapter->stats.mgptc += rd32(IGC_MGTPTC);
5048         adapter->stats.mgprc += rd32(IGC_MGTPRC);
5049         adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5050 }
5051
5052 /**
5053  * igc_down - Close the interface
5054  * @adapter: board private structure
5055  */
5056 void igc_down(struct igc_adapter *adapter)
5057 {
5058         struct net_device *netdev = adapter->netdev;
5059         struct igc_hw *hw = &adapter->hw;
5060         u32 tctl, rctl;
5061         int i = 0;
5062
5063         set_bit(__IGC_DOWN, &adapter->state);
5064
5065         igc_ptp_suspend(adapter);
5066
5067         if (pci_device_is_present(adapter->pdev)) {
5068                 /* disable receives in the hardware */
5069                 rctl = rd32(IGC_RCTL);
5070                 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5071                 /* flush and sleep below */
5072         }
5073         /* set trans_start so we don't get spurious watchdogs during reset */
5074         netif_trans_update(netdev);
5075
5076         netif_carrier_off(netdev);
5077         netif_tx_stop_all_queues(netdev);
5078
5079         if (pci_device_is_present(adapter->pdev)) {
5080                 /* disable transmits in the hardware */
5081                 tctl = rd32(IGC_TCTL);
5082                 tctl &= ~IGC_TCTL_EN;
5083                 wr32(IGC_TCTL, tctl);
5084                 /* flush both disables and wait for them to finish */
5085                 wrfl();
5086                 usleep_range(10000, 20000);
5087
5088                 igc_irq_disable(adapter);
5089         }
5090
5091         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5092
5093         for (i = 0; i < adapter->num_q_vectors; i++) {
5094                 if (adapter->q_vector[i]) {
5095                         napi_synchronize(&adapter->q_vector[i]->napi);
5096                         napi_disable(&adapter->q_vector[i]->napi);
5097                 }
5098         }
5099
5100         del_timer_sync(&adapter->watchdog_timer);
5101         del_timer_sync(&adapter->phy_info_timer);
5102
5103         /* record the stats before reset*/
5104         spin_lock(&adapter->stats64_lock);
5105         igc_update_stats(adapter);
5106         spin_unlock(&adapter->stats64_lock);
5107
5108         adapter->link_speed = 0;
5109         adapter->link_duplex = 0;
5110
5111         if (!pci_channel_offline(adapter->pdev))
5112                 igc_reset(adapter);
5113
5114         /* clear VLAN promisc flag so VFTA will be updated if necessary */
5115         adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5116
5117         igc_disable_all_tx_rings_hw(adapter);
5118         igc_clean_all_tx_rings(adapter);
5119         igc_clean_all_rx_rings(adapter);
5120 }
5121
5122 void igc_reinit_locked(struct igc_adapter *adapter)
5123 {
5124         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5125                 usleep_range(1000, 2000);
5126         igc_down(adapter);
5127         igc_up(adapter);
5128         clear_bit(__IGC_RESETTING, &adapter->state);
5129 }
5130
5131 static void igc_reset_task(struct work_struct *work)
5132 {
5133         struct igc_adapter *adapter;
5134
5135         adapter = container_of(work, struct igc_adapter, reset_task);
5136
5137         rtnl_lock();
5138         /* If we're already down or resetting, just bail */
5139         if (test_bit(__IGC_DOWN, &adapter->state) ||
5140             test_bit(__IGC_RESETTING, &adapter->state)) {
5141                 rtnl_unlock();
5142                 return;
5143         }
5144
5145         igc_rings_dump(adapter);
5146         igc_regs_dump(adapter);
5147         netdev_err(adapter->netdev, "Reset adapter\n");
5148         igc_reinit_locked(adapter);
5149         rtnl_unlock();
5150 }
5151
5152 /**
5153  * igc_change_mtu - Change the Maximum Transfer Unit
5154  * @netdev: network interface device structure
5155  * @new_mtu: new value for maximum frame size
5156  *
5157  * Returns 0 on success, negative on failure
5158  */
5159 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5160 {
5161         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5162         struct igc_adapter *adapter = netdev_priv(netdev);
5163
5164         if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5165                 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5166                 return -EINVAL;
5167         }
5168
5169         /* adjust max frame to be at least the size of a standard frame */
5170         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5171                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5172
5173         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5174                 usleep_range(1000, 2000);
5175
5176         /* igc_down has a dependency on max_frame_size */
5177         adapter->max_frame_size = max_frame;
5178
5179         if (netif_running(netdev))
5180                 igc_down(adapter);
5181
5182         netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5183         netdev->mtu = new_mtu;
5184
5185         if (netif_running(netdev))
5186                 igc_up(adapter);
5187         else
5188                 igc_reset(adapter);
5189
5190         clear_bit(__IGC_RESETTING, &adapter->state);
5191
5192         return 0;
5193 }
5194
5195 /**
5196  * igc_tx_timeout - Respond to a Tx Hang
5197  * @netdev: network interface device structure
5198  * @txqueue: queue number that timed out
5199  **/
5200 static void igc_tx_timeout(struct net_device *netdev,
5201                            unsigned int __always_unused txqueue)
5202 {
5203         struct igc_adapter *adapter = netdev_priv(netdev);
5204         struct igc_hw *hw = &adapter->hw;
5205
5206         /* Do the reset outside of interrupt context */
5207         adapter->tx_timeout_count++;
5208         schedule_work(&adapter->reset_task);
5209         wr32(IGC_EICS,
5210              (adapter->eims_enable_mask & ~adapter->eims_other));
5211 }
5212
5213 /**
5214  * igc_get_stats64 - Get System Network Statistics
5215  * @netdev: network interface device structure
5216  * @stats: rtnl_link_stats64 pointer
5217  *
5218  * Returns the address of the device statistics structure.
5219  * The statistics are updated here and also from the timer callback.
5220  */
5221 static void igc_get_stats64(struct net_device *netdev,
5222                             struct rtnl_link_stats64 *stats)
5223 {
5224         struct igc_adapter *adapter = netdev_priv(netdev);
5225
5226         spin_lock(&adapter->stats64_lock);
5227         if (!test_bit(__IGC_RESETTING, &adapter->state))
5228                 igc_update_stats(adapter);
5229         memcpy(stats, &adapter->stats64, sizeof(*stats));
5230         spin_unlock(&adapter->stats64_lock);
5231 }
5232
5233 static netdev_features_t igc_fix_features(struct net_device *netdev,
5234                                           netdev_features_t features)
5235 {
5236         /* Since there is no support for separate Rx/Tx vlan accel
5237          * enable/disable make sure Tx flag is always in same state as Rx.
5238          */
5239         if (features & NETIF_F_HW_VLAN_CTAG_RX)
5240                 features |= NETIF_F_HW_VLAN_CTAG_TX;
5241         else
5242                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5243
5244         return features;
5245 }
5246
5247 static int igc_set_features(struct net_device *netdev,
5248                             netdev_features_t features)
5249 {
5250         netdev_features_t changed = netdev->features ^ features;
5251         struct igc_adapter *adapter = netdev_priv(netdev);
5252
5253         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5254                 igc_vlan_mode(netdev, features);
5255
5256         /* Add VLAN support */
5257         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5258                 return 0;
5259
5260         if (!(features & NETIF_F_NTUPLE))
5261                 igc_flush_nfc_rules(adapter);
5262
5263         netdev->features = features;
5264
5265         if (netif_running(netdev))
5266                 igc_reinit_locked(adapter);
5267         else
5268                 igc_reset(adapter);
5269
5270         return 1;
5271 }
5272
5273 static netdev_features_t
5274 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5275                    netdev_features_t features)
5276 {
5277         unsigned int network_hdr_len, mac_hdr_len;
5278
5279         /* Make certain the headers can be described by a context descriptor */
5280         mac_hdr_len = skb_network_offset(skb);
5281         if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5282                 return features & ~(NETIF_F_HW_CSUM |
5283                                     NETIF_F_SCTP_CRC |
5284                                     NETIF_F_HW_VLAN_CTAG_TX |
5285                                     NETIF_F_TSO |
5286                                     NETIF_F_TSO6);
5287
5288         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5289         if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5290                 return features & ~(NETIF_F_HW_CSUM |
5291                                     NETIF_F_SCTP_CRC |
5292                                     NETIF_F_TSO |
5293                                     NETIF_F_TSO6);
5294
5295         /* We can only support IPv4 TSO in tunnels if we can mangle the
5296          * inner IP ID field, so strip TSO if MANGLEID is not supported.
5297          */
5298         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5299                 features &= ~NETIF_F_TSO;
5300
5301         return features;
5302 }
5303
5304 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5305 {
5306         struct igc_hw *hw = &adapter->hw;
5307         u32 tsauxc, sec, nsec, tsicr;
5308         struct ptp_clock_event event;
5309         struct timespec64 ts;
5310
5311         tsicr = rd32(IGC_TSICR);
5312
5313         if (tsicr & IGC_TSICR_SYS_WRAP) {
5314                 event.type = PTP_CLOCK_PPS;
5315                 if (adapter->ptp_caps.pps)
5316                         ptp_clock_event(adapter->ptp_clock, &event);
5317         }
5318
5319         if (tsicr & IGC_TSICR_TXTS) {
5320                 /* retrieve hardware timestamp */
5321                 igc_ptp_tx_tstamp_event(adapter);
5322         }
5323
5324         if (tsicr & IGC_TSICR_TT0) {
5325                 spin_lock(&adapter->tmreg_lock);
5326                 ts = timespec64_add(adapter->perout[0].start,
5327                                     adapter->perout[0].period);
5328                 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5329                 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5330                 tsauxc = rd32(IGC_TSAUXC);
5331                 tsauxc |= IGC_TSAUXC_EN_TT0;
5332                 wr32(IGC_TSAUXC, tsauxc);
5333                 adapter->perout[0].start = ts;
5334                 spin_unlock(&adapter->tmreg_lock);
5335         }
5336
5337         if (tsicr & IGC_TSICR_TT1) {
5338                 spin_lock(&adapter->tmreg_lock);
5339                 ts = timespec64_add(adapter->perout[1].start,
5340                                     adapter->perout[1].period);
5341                 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5342                 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5343                 tsauxc = rd32(IGC_TSAUXC);
5344                 tsauxc |= IGC_TSAUXC_EN_TT1;
5345                 wr32(IGC_TSAUXC, tsauxc);
5346                 adapter->perout[1].start = ts;
5347                 spin_unlock(&adapter->tmreg_lock);
5348         }
5349
5350         if (tsicr & IGC_TSICR_AUTT0) {
5351                 nsec = rd32(IGC_AUXSTMPL0);
5352                 sec  = rd32(IGC_AUXSTMPH0);
5353                 event.type = PTP_CLOCK_EXTTS;
5354                 event.index = 0;
5355                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5356                 ptp_clock_event(adapter->ptp_clock, &event);
5357         }
5358
5359         if (tsicr & IGC_TSICR_AUTT1) {
5360                 nsec = rd32(IGC_AUXSTMPL1);
5361                 sec  = rd32(IGC_AUXSTMPH1);
5362                 event.type = PTP_CLOCK_EXTTS;
5363                 event.index = 1;
5364                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5365                 ptp_clock_event(adapter->ptp_clock, &event);
5366         }
5367 }
5368
5369 /**
5370  * igc_msix_other - msix other interrupt handler
5371  * @irq: interrupt number
5372  * @data: pointer to a q_vector
5373  */
5374 static irqreturn_t igc_msix_other(int irq, void *data)
5375 {
5376         struct igc_adapter *adapter = data;
5377         struct igc_hw *hw = &adapter->hw;
5378         u32 icr = rd32(IGC_ICR);
5379
5380         /* reading ICR causes bit 31 of EICR to be cleared */
5381         if (icr & IGC_ICR_DRSTA)
5382                 schedule_work(&adapter->reset_task);
5383
5384         if (icr & IGC_ICR_DOUTSYNC) {
5385                 /* HW is reporting DMA is out of sync */
5386                 adapter->stats.doosync++;
5387         }
5388
5389         if (icr & IGC_ICR_LSC) {
5390                 hw->mac.get_link_status = true;
5391                 /* guard against interrupt when we're going down */
5392                 if (!test_bit(__IGC_DOWN, &adapter->state))
5393                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5394         }
5395
5396         if (icr & IGC_ICR_TS)
5397                 igc_tsync_interrupt(adapter);
5398
5399         wr32(IGC_EIMS, adapter->eims_other);
5400
5401         return IRQ_HANDLED;
5402 }
5403
5404 static void igc_write_itr(struct igc_q_vector *q_vector)
5405 {
5406         u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5407
5408         if (!q_vector->set_itr)
5409                 return;
5410
5411         if (!itr_val)
5412                 itr_val = IGC_ITR_VAL_MASK;
5413
5414         itr_val |= IGC_EITR_CNT_IGNR;
5415
5416         writel(itr_val, q_vector->itr_register);
5417         q_vector->set_itr = 0;
5418 }
5419
5420 static irqreturn_t igc_msix_ring(int irq, void *data)
5421 {
5422         struct igc_q_vector *q_vector = data;
5423
5424         /* Write the ITR value calculated from the previous interrupt. */
5425         igc_write_itr(q_vector);
5426
5427         napi_schedule(&q_vector->napi);
5428
5429         return IRQ_HANDLED;
5430 }
5431
5432 /**
5433  * igc_request_msix - Initialize MSI-X interrupts
5434  * @adapter: Pointer to adapter structure
5435  *
5436  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5437  * kernel.
5438  */
5439 static int igc_request_msix(struct igc_adapter *adapter)
5440 {
5441         unsigned int num_q_vectors = adapter->num_q_vectors;
5442         int i = 0, err = 0, vector = 0, free_vector = 0;
5443         struct net_device *netdev = adapter->netdev;
5444
5445         err = request_irq(adapter->msix_entries[vector].vector,
5446                           &igc_msix_other, 0, netdev->name, adapter);
5447         if (err)
5448                 goto err_out;
5449
5450         if (num_q_vectors > MAX_Q_VECTORS) {
5451                 num_q_vectors = MAX_Q_VECTORS;
5452                 dev_warn(&adapter->pdev->dev,
5453                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5454                          adapter->num_q_vectors, MAX_Q_VECTORS);
5455         }
5456         for (i = 0; i < num_q_vectors; i++) {
5457                 struct igc_q_vector *q_vector = adapter->q_vector[i];
5458
5459                 vector++;
5460
5461                 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5462
5463                 if (q_vector->rx.ring && q_vector->tx.ring)
5464                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5465                                 q_vector->rx.ring->queue_index);
5466                 else if (q_vector->tx.ring)
5467                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5468                                 q_vector->tx.ring->queue_index);
5469                 else if (q_vector->rx.ring)
5470                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5471                                 q_vector->rx.ring->queue_index);
5472                 else
5473                         sprintf(q_vector->name, "%s-unused", netdev->name);
5474
5475                 err = request_irq(adapter->msix_entries[vector].vector,
5476                                   igc_msix_ring, 0, q_vector->name,
5477                                   q_vector);
5478                 if (err)
5479                         goto err_free;
5480         }
5481
5482         igc_configure_msix(adapter);
5483         return 0;
5484
5485 err_free:
5486         /* free already assigned IRQs */
5487         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5488
5489         vector--;
5490         for (i = 0; i < vector; i++) {
5491                 free_irq(adapter->msix_entries[free_vector++].vector,
5492                          adapter->q_vector[i]);
5493         }
5494 err_out:
5495         return err;
5496 }
5497
5498 /**
5499  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5500  * @adapter: Pointer to adapter structure
5501  *
5502  * This function resets the device so that it has 0 rx queues, tx queues, and
5503  * MSI-X interrupts allocated.
5504  */
5505 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5506 {
5507         igc_free_q_vectors(adapter);
5508         igc_reset_interrupt_capability(adapter);
5509 }
5510
5511 /* Need to wait a few seconds after link up to get diagnostic information from
5512  * the phy
5513  */
5514 static void igc_update_phy_info(struct timer_list *t)
5515 {
5516         struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5517
5518         igc_get_phy_info(&adapter->hw);
5519 }
5520
5521 /**
5522  * igc_has_link - check shared code for link and determine up/down
5523  * @adapter: pointer to driver private info
5524  */
5525 bool igc_has_link(struct igc_adapter *adapter)
5526 {
5527         struct igc_hw *hw = &adapter->hw;
5528         bool link_active = false;
5529
5530         /* get_link_status is set on LSC (link status) interrupt or
5531          * rx sequence error interrupt.  get_link_status will stay
5532          * false until the igc_check_for_link establishes link
5533          * for copper adapters ONLY
5534          */
5535         if (!hw->mac.get_link_status)
5536                 return true;
5537         hw->mac.ops.check_for_link(hw);
5538         link_active = !hw->mac.get_link_status;
5539
5540         if (hw->mac.type == igc_i225) {
5541                 if (!netif_carrier_ok(adapter->netdev)) {
5542                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5543                 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5544                         adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5545                         adapter->link_check_timeout = jiffies;
5546                 }
5547         }
5548
5549         return link_active;
5550 }
5551
5552 /**
5553  * igc_watchdog - Timer Call-back
5554  * @t: timer for the watchdog
5555  */
5556 static void igc_watchdog(struct timer_list *t)
5557 {
5558         struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5559         /* Do the rest outside of interrupt context */
5560         schedule_work(&adapter->watchdog_task);
5561 }
5562
5563 static void igc_watchdog_task(struct work_struct *work)
5564 {
5565         struct igc_adapter *adapter = container_of(work,
5566                                                    struct igc_adapter,
5567                                                    watchdog_task);
5568         struct net_device *netdev = adapter->netdev;
5569         struct igc_hw *hw = &adapter->hw;
5570         struct igc_phy_info *phy = &hw->phy;
5571         u16 phy_data, retry_count = 20;
5572         u32 link;
5573         int i;
5574
5575         link = igc_has_link(adapter);
5576
5577         if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5578                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5579                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5580                 else
5581                         link = false;
5582         }
5583
5584         if (link) {
5585                 /* Cancel scheduled suspend requests. */
5586                 pm_runtime_resume(netdev->dev.parent);
5587
5588                 if (!netif_carrier_ok(netdev)) {
5589                         u32 ctrl;
5590
5591                         hw->mac.ops.get_speed_and_duplex(hw,
5592                                                          &adapter->link_speed,
5593                                                          &adapter->link_duplex);
5594
5595                         ctrl = rd32(IGC_CTRL);
5596                         /* Link status message must follow this format */
5597                         netdev_info(netdev,
5598                                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5599                                     adapter->link_speed,
5600                                     adapter->link_duplex == FULL_DUPLEX ?
5601                                     "Full" : "Half",
5602                                     (ctrl & IGC_CTRL_TFCE) &&
5603                                     (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5604                                     (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5605                                     (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5606
5607                         /* disable EEE if enabled */
5608                         if ((adapter->flags & IGC_FLAG_EEE) &&
5609                             adapter->link_duplex == HALF_DUPLEX) {
5610                                 netdev_info(netdev,
5611                                             "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5612                                 adapter->hw.dev_spec._base.eee_enable = false;
5613                                 adapter->flags &= ~IGC_FLAG_EEE;
5614                         }
5615
5616                         /* check if SmartSpeed worked */
5617                         igc_check_downshift(hw);
5618                         if (phy->speed_downgraded)
5619                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5620
5621                         /* adjust timeout factor according to speed/duplex */
5622                         adapter->tx_timeout_factor = 1;
5623                         switch (adapter->link_speed) {
5624                         case SPEED_10:
5625                                 adapter->tx_timeout_factor = 14;
5626                                 break;
5627                         case SPEED_100:
5628                         case SPEED_1000:
5629                         case SPEED_2500:
5630                                 adapter->tx_timeout_factor = 1;
5631                                 break;
5632                         }
5633
5634                         /* Once the launch time has been set on the wire, there
5635                          * is a delay before the link speed can be determined
5636                          * based on link-up activity. Write into the register
5637                          * as soon as we know the correct link speed.
5638                          */
5639                         igc_tsn_adjust_txtime_offset(adapter);
5640
5641                         if (adapter->link_speed != SPEED_1000)
5642                                 goto no_wait;
5643
5644                         /* wait for Remote receiver status OK */
5645 retry_read_status:
5646                         if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5647                                               &phy_data)) {
5648                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5649                                     retry_count) {
5650                                         msleep(100);
5651                                         retry_count--;
5652                                         goto retry_read_status;
5653                                 } else if (!retry_count) {
5654                                         netdev_err(netdev, "exceed max 2 second\n");
5655                                 }
5656                         } else {
5657                                 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5658                         }
5659 no_wait:
5660                         netif_carrier_on(netdev);
5661
5662                         /* link state has changed, schedule phy info update */
5663                         if (!test_bit(__IGC_DOWN, &adapter->state))
5664                                 mod_timer(&adapter->phy_info_timer,
5665                                           round_jiffies(jiffies + 2 * HZ));
5666                 }
5667         } else {
5668                 if (netif_carrier_ok(netdev)) {
5669                         adapter->link_speed = 0;
5670                         adapter->link_duplex = 0;
5671
5672                         /* Links status message must follow this format */
5673                         netdev_info(netdev, "NIC Link is Down\n");
5674                         netif_carrier_off(netdev);
5675
5676                         /* link state has changed, schedule phy info update */
5677                         if (!test_bit(__IGC_DOWN, &adapter->state))
5678                                 mod_timer(&adapter->phy_info_timer,
5679                                           round_jiffies(jiffies + 2 * HZ));
5680
5681                         pm_schedule_suspend(netdev->dev.parent,
5682                                             MSEC_PER_SEC * 5);
5683                 }
5684         }
5685
5686         spin_lock(&adapter->stats64_lock);
5687         igc_update_stats(adapter);
5688         spin_unlock(&adapter->stats64_lock);
5689
5690         for (i = 0; i < adapter->num_tx_queues; i++) {
5691                 struct igc_ring *tx_ring = adapter->tx_ring[i];
5692
5693                 if (!netif_carrier_ok(netdev)) {
5694                         /* We've lost link, so the controller stops DMA,
5695                          * but we've got queued Tx work that's never going
5696                          * to get done, so reset controller to flush Tx.
5697                          * (Do the reset outside of interrupt context).
5698                          */
5699                         if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5700                                 adapter->tx_timeout_count++;
5701                                 schedule_work(&adapter->reset_task);
5702                                 /* return immediately since reset is imminent */
5703                                 return;
5704                         }
5705                 }
5706
5707                 /* Force detection of hung controller every watchdog period */
5708                 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5709         }
5710
5711         /* Cause software interrupt to ensure Rx ring is cleaned */
5712         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5713                 u32 eics = 0;
5714
5715                 for (i = 0; i < adapter->num_q_vectors; i++)
5716                         eics |= adapter->q_vector[i]->eims_value;
5717                 wr32(IGC_EICS, eics);
5718         } else {
5719                 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5720         }
5721
5722         igc_ptp_tx_hang(adapter);
5723
5724         /* Reset the timer */
5725         if (!test_bit(__IGC_DOWN, &adapter->state)) {
5726                 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5727                         mod_timer(&adapter->watchdog_timer,
5728                                   round_jiffies(jiffies +  HZ));
5729                 else
5730                         mod_timer(&adapter->watchdog_timer,
5731                                   round_jiffies(jiffies + 2 * HZ));
5732         }
5733 }
5734
5735 /**
5736  * igc_intr_msi - Interrupt Handler
5737  * @irq: interrupt number
5738  * @data: pointer to a network interface device structure
5739  */
5740 static irqreturn_t igc_intr_msi(int irq, void *data)
5741 {
5742         struct igc_adapter *adapter = data;
5743         struct igc_q_vector *q_vector = adapter->q_vector[0];
5744         struct igc_hw *hw = &adapter->hw;
5745         /* read ICR disables interrupts using IAM */
5746         u32 icr = rd32(IGC_ICR);
5747
5748         igc_write_itr(q_vector);
5749
5750         if (icr & IGC_ICR_DRSTA)
5751                 schedule_work(&adapter->reset_task);
5752
5753         if (icr & IGC_ICR_DOUTSYNC) {
5754                 /* HW is reporting DMA is out of sync */
5755                 adapter->stats.doosync++;
5756         }
5757
5758         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5759                 hw->mac.get_link_status = true;
5760                 if (!test_bit(__IGC_DOWN, &adapter->state))
5761                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5762         }
5763
5764         if (icr & IGC_ICR_TS)
5765                 igc_tsync_interrupt(adapter);
5766
5767         napi_schedule(&q_vector->napi);
5768
5769         return IRQ_HANDLED;
5770 }
5771
5772 /**
5773  * igc_intr - Legacy Interrupt Handler
5774  * @irq: interrupt number
5775  * @data: pointer to a network interface device structure
5776  */
5777 static irqreturn_t igc_intr(int irq, void *data)
5778 {
5779         struct igc_adapter *adapter = data;
5780         struct igc_q_vector *q_vector = adapter->q_vector[0];
5781         struct igc_hw *hw = &adapter->hw;
5782         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5783          * need for the IMC write
5784          */
5785         u32 icr = rd32(IGC_ICR);
5786
5787         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5788          * not set, then the adapter didn't send an interrupt
5789          */
5790         if (!(icr & IGC_ICR_INT_ASSERTED))
5791                 return IRQ_NONE;
5792
5793         igc_write_itr(q_vector);
5794
5795         if (icr & IGC_ICR_DRSTA)
5796                 schedule_work(&adapter->reset_task);
5797
5798         if (icr & IGC_ICR_DOUTSYNC) {
5799                 /* HW is reporting DMA is out of sync */
5800                 adapter->stats.doosync++;
5801         }
5802
5803         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5804                 hw->mac.get_link_status = true;
5805                 /* guard against interrupt when we're going down */
5806                 if (!test_bit(__IGC_DOWN, &adapter->state))
5807                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5808         }
5809
5810         if (icr & IGC_ICR_TS)
5811                 igc_tsync_interrupt(adapter);
5812
5813         napi_schedule(&q_vector->napi);
5814
5815         return IRQ_HANDLED;
5816 }
5817
5818 static void igc_free_irq(struct igc_adapter *adapter)
5819 {
5820         if (adapter->msix_entries) {
5821                 int vector = 0, i;
5822
5823                 free_irq(adapter->msix_entries[vector++].vector, adapter);
5824
5825                 for (i = 0; i < adapter->num_q_vectors; i++)
5826                         free_irq(adapter->msix_entries[vector++].vector,
5827                                  adapter->q_vector[i]);
5828         } else {
5829                 free_irq(adapter->pdev->irq, adapter);
5830         }
5831 }
5832
5833 /**
5834  * igc_request_irq - initialize interrupts
5835  * @adapter: Pointer to adapter structure
5836  *
5837  * Attempts to configure interrupts using the best available
5838  * capabilities of the hardware and kernel.
5839  */
5840 static int igc_request_irq(struct igc_adapter *adapter)
5841 {
5842         struct net_device *netdev = adapter->netdev;
5843         struct pci_dev *pdev = adapter->pdev;
5844         int err = 0;
5845
5846         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5847                 err = igc_request_msix(adapter);
5848                 if (!err)
5849                         goto request_done;
5850                 /* fall back to MSI */
5851                 igc_free_all_tx_resources(adapter);
5852                 igc_free_all_rx_resources(adapter);
5853
5854                 igc_clear_interrupt_scheme(adapter);
5855                 err = igc_init_interrupt_scheme(adapter, false);
5856                 if (err)
5857                         goto request_done;
5858                 igc_setup_all_tx_resources(adapter);
5859                 igc_setup_all_rx_resources(adapter);
5860                 igc_configure(adapter);
5861         }
5862
5863         igc_assign_vector(adapter->q_vector[0], 0);
5864
5865         if (adapter->flags & IGC_FLAG_HAS_MSI) {
5866                 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5867                                   netdev->name, adapter);
5868                 if (!err)
5869                         goto request_done;
5870
5871                 /* fall back to legacy interrupts */
5872                 igc_reset_interrupt_capability(adapter);
5873                 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5874         }
5875
5876         err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5877                           netdev->name, adapter);
5878
5879         if (err)
5880                 netdev_err(netdev, "Error %d getting interrupt\n", err);
5881
5882 request_done:
5883         return err;
5884 }
5885
5886 /**
5887  * __igc_open - Called when a network interface is made active
5888  * @netdev: network interface device structure
5889  * @resuming: boolean indicating if the device is resuming
5890  *
5891  * Returns 0 on success, negative value on failure
5892  *
5893  * The open entry point is called when a network interface is made
5894  * active by the system (IFF_UP).  At this point all resources needed
5895  * for transmit and receive operations are allocated, the interrupt
5896  * handler is registered with the OS, the watchdog timer is started,
5897  * and the stack is notified that the interface is ready.
5898  */
5899 static int __igc_open(struct net_device *netdev, bool resuming)
5900 {
5901         struct igc_adapter *adapter = netdev_priv(netdev);
5902         struct pci_dev *pdev = adapter->pdev;
5903         struct igc_hw *hw = &adapter->hw;
5904         int err = 0;
5905         int i = 0;
5906
5907         /* disallow open during test */
5908
5909         if (test_bit(__IGC_TESTING, &adapter->state)) {
5910                 WARN_ON(resuming);
5911                 return -EBUSY;
5912         }
5913
5914         if (!resuming)
5915                 pm_runtime_get_sync(&pdev->dev);
5916
5917         netif_carrier_off(netdev);
5918
5919         /* allocate transmit descriptors */
5920         err = igc_setup_all_tx_resources(adapter);
5921         if (err)
5922                 goto err_setup_tx;
5923
5924         /* allocate receive descriptors */
5925         err = igc_setup_all_rx_resources(adapter);
5926         if (err)
5927                 goto err_setup_rx;
5928
5929         igc_power_up_link(adapter);
5930
5931         igc_configure(adapter);
5932
5933         err = igc_request_irq(adapter);
5934         if (err)
5935                 goto err_req_irq;
5936
5937         /* Notify the stack of the actual queue counts. */
5938         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5939         if (err)
5940                 goto err_set_queues;
5941
5942         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5943         if (err)
5944                 goto err_set_queues;
5945
5946         clear_bit(__IGC_DOWN, &adapter->state);
5947
5948         for (i = 0; i < adapter->num_q_vectors; i++)
5949                 napi_enable(&adapter->q_vector[i]->napi);
5950
5951         /* Clear any pending interrupts. */
5952         rd32(IGC_ICR);
5953         igc_irq_enable(adapter);
5954
5955         if (!resuming)
5956                 pm_runtime_put(&pdev->dev);
5957
5958         netif_tx_start_all_queues(netdev);
5959
5960         /* start the watchdog. */
5961         hw->mac.get_link_status = true;
5962         schedule_work(&adapter->watchdog_task);
5963
5964         return IGC_SUCCESS;
5965
5966 err_set_queues:
5967         igc_free_irq(adapter);
5968 err_req_irq:
5969         igc_release_hw_control(adapter);
5970         igc_power_down_phy_copper_base(&adapter->hw);
5971         igc_free_all_rx_resources(adapter);
5972 err_setup_rx:
5973         igc_free_all_tx_resources(adapter);
5974 err_setup_tx:
5975         igc_reset(adapter);
5976         if (!resuming)
5977                 pm_runtime_put(&pdev->dev);
5978
5979         return err;
5980 }
5981
5982 int igc_open(struct net_device *netdev)
5983 {
5984         return __igc_open(netdev, false);
5985 }
5986
5987 /**
5988  * __igc_close - Disables a network interface
5989  * @netdev: network interface device structure
5990  * @suspending: boolean indicating the device is suspending
5991  *
5992  * Returns 0, this is not allowed to fail
5993  *
5994  * The close entry point is called when an interface is de-activated
5995  * by the OS.  The hardware is still under the driver's control, but
5996  * needs to be disabled.  A global MAC reset is issued to stop the
5997  * hardware, and all transmit and receive resources are freed.
5998  */
5999 static int __igc_close(struct net_device *netdev, bool suspending)
6000 {
6001         struct igc_adapter *adapter = netdev_priv(netdev);
6002         struct pci_dev *pdev = adapter->pdev;
6003
6004         WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6005
6006         if (!suspending)
6007                 pm_runtime_get_sync(&pdev->dev);
6008
6009         igc_down(adapter);
6010
6011         igc_release_hw_control(adapter);
6012
6013         igc_free_irq(adapter);
6014
6015         igc_free_all_tx_resources(adapter);
6016         igc_free_all_rx_resources(adapter);
6017
6018         if (!suspending)
6019                 pm_runtime_put_sync(&pdev->dev);
6020
6021         return 0;
6022 }
6023
6024 int igc_close(struct net_device *netdev)
6025 {
6026         if (netif_device_present(netdev) || netdev->dismantle)
6027                 return __igc_close(netdev, false);
6028         return 0;
6029 }
6030
6031 /**
6032  * igc_ioctl - Access the hwtstamp interface
6033  * @netdev: network interface device structure
6034  * @ifr: interface request data
6035  * @cmd: ioctl command
6036  **/
6037 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6038 {
6039         switch (cmd) {
6040         case SIOCGHWTSTAMP:
6041                 return igc_ptp_get_ts_config(netdev, ifr);
6042         case SIOCSHWTSTAMP:
6043                 return igc_ptp_set_ts_config(netdev, ifr);
6044         default:
6045                 return -EOPNOTSUPP;
6046         }
6047 }
6048
6049 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6050                                       bool enable)
6051 {
6052         struct igc_ring *ring;
6053
6054         if (queue < 0 || queue >= adapter->num_tx_queues)
6055                 return -EINVAL;
6056
6057         ring = adapter->tx_ring[queue];
6058         ring->launchtime_enable = enable;
6059
6060         return 0;
6061 }
6062
6063 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6064 {
6065         struct timespec64 b;
6066
6067         b = ktime_to_timespec64(base_time);
6068
6069         return timespec64_compare(now, &b) > 0;
6070 }
6071
6072 static bool validate_schedule(struct igc_adapter *adapter,
6073                               const struct tc_taprio_qopt_offload *qopt)
6074 {
6075         int queue_uses[IGC_MAX_TX_QUEUES] = { };
6076         struct igc_hw *hw = &adapter->hw;
6077         struct timespec64 now;
6078         size_t n;
6079
6080         if (qopt->cycle_time_extension)
6081                 return false;
6082
6083         igc_ptp_read(adapter, &now);
6084
6085         /* If we program the controller's BASET registers with a time
6086          * in the future, it will hold all the packets until that
6087          * time, causing a lot of TX Hangs, so to avoid that, we
6088          * reject schedules that would start in the future.
6089          * Note: Limitation above is no longer in i226.
6090          */
6091         if (!is_base_time_past(qopt->base_time, &now) &&
6092             igc_is_device_id_i225(hw))
6093                 return false;
6094
6095         for (n = 0; n < qopt->num_entries; n++) {
6096                 const struct tc_taprio_sched_entry *e, *prev;
6097                 int i;
6098
6099                 prev = n ? &qopt->entries[n - 1] : NULL;
6100                 e = &qopt->entries[n];
6101
6102                 /* i225 only supports "global" frame preemption
6103                  * settings.
6104                  */
6105                 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6106                         return false;
6107
6108                 for (i = 0; i < adapter->num_tx_queues; i++)
6109                         if (e->gate_mask & BIT(i)) {
6110                                 queue_uses[i]++;
6111
6112                                 /* There are limitations: A single queue cannot
6113                                  * be opened and closed multiple times per cycle
6114                                  * unless the gate stays open. Check for it.
6115                                  */
6116                                 if (queue_uses[i] > 1 &&
6117                                     !(prev->gate_mask & BIT(i)))
6118                                         return false;
6119                         }
6120         }
6121
6122         return true;
6123 }
6124
6125 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6126                                      struct tc_etf_qopt_offload *qopt)
6127 {
6128         struct igc_hw *hw = &adapter->hw;
6129         int err;
6130
6131         if (hw->mac.type != igc_i225)
6132                 return -EOPNOTSUPP;
6133
6134         err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6135         if (err)
6136                 return err;
6137
6138         return igc_tsn_offload_apply(adapter);
6139 }
6140
6141 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6142 {
6143         unsigned long flags;
6144         int i;
6145
6146         adapter->base_time = 0;
6147         adapter->cycle_time = NSEC_PER_SEC;
6148         adapter->taprio_offload_enable = false;
6149         adapter->qbv_config_change_errors = 0;
6150         adapter->qbv_count = 0;
6151
6152         for (i = 0; i < adapter->num_tx_queues; i++) {
6153                 struct igc_ring *ring = adapter->tx_ring[i];
6154
6155                 ring->start_time = 0;
6156                 ring->end_time = NSEC_PER_SEC;
6157                 ring->max_sdu = 0;
6158         }
6159
6160         spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6161
6162         adapter->qbv_transition = false;
6163
6164         for (i = 0; i < adapter->num_tx_queues; i++) {
6165                 struct igc_ring *ring = adapter->tx_ring[i];
6166
6167                 ring->oper_gate_closed = false;
6168                 ring->admin_gate_closed = false;
6169         }
6170
6171         spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6172
6173         return 0;
6174 }
6175
6176 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6177 {
6178         igc_qbv_clear_schedule(adapter);
6179
6180         return 0;
6181 }
6182
6183 static void igc_taprio_stats(struct net_device *dev,
6184                              struct tc_taprio_qopt_stats *stats)
6185 {
6186         /* When Strict_End is enabled, the tx_overruns counter
6187          * will always be zero.
6188          */
6189         stats->tx_overruns = 0;
6190 }
6191
6192 static void igc_taprio_queue_stats(struct net_device *dev,
6193                                    struct tc_taprio_qopt_queue_stats *queue_stats)
6194 {
6195         struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6196
6197         /* When Strict_End is enabled, the tx_overruns counter
6198          * will always be zero.
6199          */
6200         stats->tx_overruns = 0;
6201 }
6202
6203 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6204                                  struct tc_taprio_qopt_offload *qopt)
6205 {
6206         bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6207         struct igc_hw *hw = &adapter->hw;
6208         u32 start_time = 0, end_time = 0;
6209         struct timespec64 now;
6210         unsigned long flags;
6211         size_t n;
6212         int i;
6213
6214         switch (qopt->cmd) {
6215         case TAPRIO_CMD_REPLACE:
6216                 break;
6217         case TAPRIO_CMD_DESTROY:
6218                 return igc_tsn_clear_schedule(adapter);
6219         case TAPRIO_CMD_STATS:
6220                 igc_taprio_stats(adapter->netdev, &qopt->stats);
6221                 return 0;
6222         case TAPRIO_CMD_QUEUE_STATS:
6223                 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6224                 return 0;
6225         default:
6226                 return -EOPNOTSUPP;
6227         }
6228
6229         if (qopt->base_time < 0)
6230                 return -ERANGE;
6231
6232         if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6233                 return -EALREADY;
6234
6235         if (!validate_schedule(adapter, qopt))
6236                 return -EINVAL;
6237
6238         adapter->cycle_time = qopt->cycle_time;
6239         adapter->base_time = qopt->base_time;
6240         adapter->taprio_offload_enable = true;
6241
6242         igc_ptp_read(adapter, &now);
6243
6244         for (n = 0; n < qopt->num_entries; n++) {
6245                 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6246
6247                 end_time += e->interval;
6248
6249                 /* If any of the conditions below are true, we need to manually
6250                  * control the end time of the cycle.
6251                  * 1. Qbv users can specify a cycle time that is not equal
6252                  * to the total GCL intervals. Hence, recalculation is
6253                  * necessary here to exclude the time interval that
6254                  * exceeds the cycle time.
6255                  * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6256                  * once the end of the list is reached, it will switch
6257                  * to the END_OF_CYCLE state and leave the gates in the
6258                  * same state until the next cycle is started.
6259                  */
6260                 if (end_time > adapter->cycle_time ||
6261                     n + 1 == qopt->num_entries)
6262                         end_time = adapter->cycle_time;
6263
6264                 for (i = 0; i < adapter->num_tx_queues; i++) {
6265                         struct igc_ring *ring = adapter->tx_ring[i];
6266
6267                         if (!(e->gate_mask & BIT(i)))
6268                                 continue;
6269
6270                         /* Check whether a queue stays open for more than one
6271                          * entry. If so, keep the start and advance the end
6272                          * time.
6273                          */
6274                         if (!queue_configured[i])
6275                                 ring->start_time = start_time;
6276                         ring->end_time = end_time;
6277
6278                         if (ring->start_time >= adapter->cycle_time)
6279                                 queue_configured[i] = false;
6280                         else
6281                                 queue_configured[i] = true;
6282                 }
6283
6284                 start_time += e->interval;
6285         }
6286
6287         spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6288
6289         /* Check whether a queue gets configured.
6290          * If not, set the start and end time to be end time.
6291          */
6292         for (i = 0; i < adapter->num_tx_queues; i++) {
6293                 struct igc_ring *ring = adapter->tx_ring[i];
6294
6295                 if (!is_base_time_past(qopt->base_time, &now)) {
6296                         ring->admin_gate_closed = false;
6297                 } else {
6298                         ring->oper_gate_closed = false;
6299                         ring->admin_gate_closed = false;
6300                 }
6301
6302                 if (!queue_configured[i]) {
6303                         if (!is_base_time_past(qopt->base_time, &now))
6304                                 ring->admin_gate_closed = true;
6305                         else
6306                                 ring->oper_gate_closed = true;
6307
6308                         ring->start_time = end_time;
6309                         ring->end_time = end_time;
6310                 }
6311         }
6312
6313         spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6314
6315         for (i = 0; i < adapter->num_tx_queues; i++) {
6316                 struct igc_ring *ring = adapter->tx_ring[i];
6317                 struct net_device *dev = adapter->netdev;
6318
6319                 if (qopt->max_sdu[i])
6320                         ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6321                 else
6322                         ring->max_sdu = 0;
6323         }
6324
6325         return 0;
6326 }
6327
6328 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6329                                          struct tc_taprio_qopt_offload *qopt)
6330 {
6331         struct igc_hw *hw = &adapter->hw;
6332         int err;
6333
6334         if (hw->mac.type != igc_i225)
6335                 return -EOPNOTSUPP;
6336
6337         err = igc_save_qbv_schedule(adapter, qopt);
6338         if (err)
6339                 return err;
6340
6341         return igc_tsn_offload_apply(adapter);
6342 }
6343
6344 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6345                                bool enable, int idleslope, int sendslope,
6346                                int hicredit, int locredit)
6347 {
6348         bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6349         struct net_device *netdev = adapter->netdev;
6350         struct igc_ring *ring;
6351         int i;
6352
6353         /* i225 has two sets of credit-based shaper logic.
6354          * Supporting it only on the top two priority queues
6355          */
6356         if (queue < 0 || queue > 1)
6357                 return -EINVAL;
6358
6359         ring = adapter->tx_ring[queue];
6360
6361         for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6362                 if (adapter->tx_ring[i])
6363                         cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6364
6365         /* CBS should be enabled on the highest priority queue first in order
6366          * for the CBS algorithm to operate as intended.
6367          */
6368         if (enable) {
6369                 if (queue == 1 && !cbs_status[0]) {
6370                         netdev_err(netdev,
6371                                    "Enabling CBS on queue1 before queue0\n");
6372                         return -EINVAL;
6373                 }
6374         } else {
6375                 if (queue == 0 && cbs_status[1]) {
6376                         netdev_err(netdev,
6377                                    "Disabling CBS on queue0 before queue1\n");
6378                         return -EINVAL;
6379                 }
6380         }
6381
6382         ring->cbs_enable = enable;
6383         ring->idleslope = idleslope;
6384         ring->sendslope = sendslope;
6385         ring->hicredit = hicredit;
6386         ring->locredit = locredit;
6387
6388         return 0;
6389 }
6390
6391 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6392                               struct tc_cbs_qopt_offload *qopt)
6393 {
6394         struct igc_hw *hw = &adapter->hw;
6395         int err;
6396
6397         if (hw->mac.type != igc_i225)
6398                 return -EOPNOTSUPP;
6399
6400         if (qopt->queue < 0 || qopt->queue > 1)
6401                 return -EINVAL;
6402
6403         err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6404                                   qopt->idleslope, qopt->sendslope,
6405                                   qopt->hicredit, qopt->locredit);
6406         if (err)
6407                 return err;
6408
6409         return igc_tsn_offload_apply(adapter);
6410 }
6411
6412 static int igc_tc_query_caps(struct igc_adapter *adapter,
6413                              struct tc_query_caps_base *base)
6414 {
6415         struct igc_hw *hw = &adapter->hw;
6416
6417         switch (base->type) {
6418         case TC_SETUP_QDISC_TAPRIO: {
6419                 struct tc_taprio_caps *caps = base->caps;
6420
6421                 caps->broken_mqprio = true;
6422
6423                 if (hw->mac.type == igc_i225) {
6424                         caps->supports_queue_max_sdu = true;
6425                         caps->gate_mask_per_txq = true;
6426                 }
6427
6428                 return 0;
6429         }
6430         default:
6431                 return -EOPNOTSUPP;
6432         }
6433 }
6434
6435 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6436                         void *type_data)
6437 {
6438         struct igc_adapter *adapter = netdev_priv(dev);
6439
6440         adapter->tc_setup_type = type;
6441
6442         switch (type) {
6443         case TC_QUERY_CAPS:
6444                 return igc_tc_query_caps(adapter, type_data);
6445         case TC_SETUP_QDISC_TAPRIO:
6446                 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6447
6448         case TC_SETUP_QDISC_ETF:
6449                 return igc_tsn_enable_launchtime(adapter, type_data);
6450
6451         case TC_SETUP_QDISC_CBS:
6452                 return igc_tsn_enable_cbs(adapter, type_data);
6453
6454         default:
6455                 return -EOPNOTSUPP;
6456         }
6457 }
6458
6459 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6460 {
6461         struct igc_adapter *adapter = netdev_priv(dev);
6462
6463         switch (bpf->command) {
6464         case XDP_SETUP_PROG:
6465                 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6466         case XDP_SETUP_XSK_POOL:
6467                 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6468                                           bpf->xsk.queue_id);
6469         default:
6470                 return -EOPNOTSUPP;
6471         }
6472 }
6473
6474 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6475                         struct xdp_frame **frames, u32 flags)
6476 {
6477         struct igc_adapter *adapter = netdev_priv(dev);
6478         int cpu = smp_processor_id();
6479         struct netdev_queue *nq;
6480         struct igc_ring *ring;
6481         int i, nxmit;
6482
6483         if (unlikely(!netif_carrier_ok(dev)))
6484                 return -ENETDOWN;
6485
6486         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6487                 return -EINVAL;
6488
6489         ring = igc_xdp_get_tx_ring(adapter, cpu);
6490         nq = txring_txq(ring);
6491
6492         __netif_tx_lock(nq, cpu);
6493
6494         /* Avoid transmit queue timeout since we share it with the slow path */
6495         txq_trans_cond_update(nq);
6496
6497         nxmit = 0;
6498         for (i = 0; i < num_frames; i++) {
6499                 int err;
6500                 struct xdp_frame *xdpf = frames[i];
6501
6502                 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6503                 if (err)
6504                         break;
6505                 nxmit++;
6506         }
6507
6508         if (flags & XDP_XMIT_FLUSH)
6509                 igc_flush_tx_descriptors(ring);
6510
6511         __netif_tx_unlock(nq);
6512
6513         return nxmit;
6514 }
6515
6516 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6517                                         struct igc_q_vector *q_vector)
6518 {
6519         struct igc_hw *hw = &adapter->hw;
6520         u32 eics = 0;
6521
6522         eics |= q_vector->eims_value;
6523         wr32(IGC_EICS, eics);
6524 }
6525
6526 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6527 {
6528         struct igc_adapter *adapter = netdev_priv(dev);
6529         struct igc_q_vector *q_vector;
6530         struct igc_ring *ring;
6531
6532         if (test_bit(__IGC_DOWN, &adapter->state))
6533                 return -ENETDOWN;
6534
6535         if (!igc_xdp_is_enabled(adapter))
6536                 return -ENXIO;
6537
6538         if (queue_id >= adapter->num_rx_queues)
6539                 return -EINVAL;
6540
6541         ring = adapter->rx_ring[queue_id];
6542
6543         if (!ring->xsk_pool)
6544                 return -ENXIO;
6545
6546         q_vector = adapter->q_vector[queue_id];
6547         if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6548                 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6549
6550         return 0;
6551 }
6552
6553 static ktime_t igc_get_tstamp(struct net_device *dev,
6554                               const struct skb_shared_hwtstamps *hwtstamps,
6555                               bool cycles)
6556 {
6557         struct igc_adapter *adapter = netdev_priv(dev);
6558         struct igc_inline_rx_tstamps *tstamp;
6559         ktime_t timestamp;
6560
6561         tstamp = hwtstamps->netdev_data;
6562
6563         if (cycles)
6564                 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer1);
6565         else
6566                 timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6567
6568         return timestamp;
6569 }
6570
6571 static const struct net_device_ops igc_netdev_ops = {
6572         .ndo_open               = igc_open,
6573         .ndo_stop               = igc_close,
6574         .ndo_start_xmit         = igc_xmit_frame,
6575         .ndo_set_rx_mode        = igc_set_rx_mode,
6576         .ndo_set_mac_address    = igc_set_mac,
6577         .ndo_change_mtu         = igc_change_mtu,
6578         .ndo_tx_timeout         = igc_tx_timeout,
6579         .ndo_get_stats64        = igc_get_stats64,
6580         .ndo_fix_features       = igc_fix_features,
6581         .ndo_set_features       = igc_set_features,
6582         .ndo_features_check     = igc_features_check,
6583         .ndo_eth_ioctl          = igc_ioctl,
6584         .ndo_setup_tc           = igc_setup_tc,
6585         .ndo_bpf                = igc_bpf,
6586         .ndo_xdp_xmit           = igc_xdp_xmit,
6587         .ndo_xsk_wakeup         = igc_xsk_wakeup,
6588         .ndo_get_tstamp         = igc_get_tstamp,
6589 };
6590
6591 /* PCIe configuration access */
6592 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6593 {
6594         struct igc_adapter *adapter = hw->back;
6595
6596         pci_read_config_word(adapter->pdev, reg, value);
6597 }
6598
6599 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6600 {
6601         struct igc_adapter *adapter = hw->back;
6602
6603         pci_write_config_word(adapter->pdev, reg, *value);
6604 }
6605
6606 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6607 {
6608         struct igc_adapter *adapter = hw->back;
6609
6610         if (!pci_is_pcie(adapter->pdev))
6611                 return -IGC_ERR_CONFIG;
6612
6613         pcie_capability_read_word(adapter->pdev, reg, value);
6614
6615         return IGC_SUCCESS;
6616 }
6617
6618 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6619 {
6620         struct igc_adapter *adapter = hw->back;
6621
6622         if (!pci_is_pcie(adapter->pdev))
6623                 return -IGC_ERR_CONFIG;
6624
6625         pcie_capability_write_word(adapter->pdev, reg, *value);
6626
6627         return IGC_SUCCESS;
6628 }
6629
6630 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6631 {
6632         struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6633         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6634         u32 value = 0;
6635
6636         if (IGC_REMOVED(hw_addr))
6637                 return ~value;
6638
6639         value = readl(&hw_addr[reg]);
6640
6641         /* reads should not return all F's */
6642         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6643                 struct net_device *netdev = igc->netdev;
6644
6645                 hw->hw_addr = NULL;
6646                 netif_device_detach(netdev);
6647                 netdev_err(netdev, "PCIe link lost, device now detached\n");
6648                 WARN(pci_device_is_present(igc->pdev),
6649                      "igc: Failed to read reg 0x%x!\n", reg);
6650         }
6651
6652         return value;
6653 }
6654
6655 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6656 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6657         [IGC_RSS_TYPE_NO_HASH]          = XDP_RSS_TYPE_L2,
6658         [IGC_RSS_TYPE_HASH_TCP_IPV4]    = XDP_RSS_TYPE_L4_IPV4_TCP,
6659         [IGC_RSS_TYPE_HASH_IPV4]        = XDP_RSS_TYPE_L3_IPV4,
6660         [IGC_RSS_TYPE_HASH_TCP_IPV6]    = XDP_RSS_TYPE_L4_IPV6_TCP,
6661         [IGC_RSS_TYPE_HASH_IPV6_EX]     = XDP_RSS_TYPE_L3_IPV6_EX,
6662         [IGC_RSS_TYPE_HASH_IPV6]        = XDP_RSS_TYPE_L3_IPV6,
6663         [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6664         [IGC_RSS_TYPE_HASH_UDP_IPV4]    = XDP_RSS_TYPE_L4_IPV4_UDP,
6665         [IGC_RSS_TYPE_HASH_UDP_IPV6]    = XDP_RSS_TYPE_L4_IPV6_UDP,
6666         [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6667         [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
6668         [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask   */
6669         [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons       */
6670         [13] = XDP_RSS_TYPE_NONE,
6671         [14] = XDP_RSS_TYPE_NONE,
6672         [15] = XDP_RSS_TYPE_NONE,
6673 };
6674
6675 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6676                            enum xdp_rss_hash_type *rss_type)
6677 {
6678         const struct igc_xdp_buff *ctx = (void *)_ctx;
6679
6680         if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6681                 return -ENODATA;
6682
6683         *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6684         *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6685
6686         return 0;
6687 }
6688
6689 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6690 {
6691         const struct igc_xdp_buff *ctx = (void *)_ctx;
6692         struct igc_adapter *adapter = netdev_priv(ctx->xdp.rxq->dev);
6693         struct igc_inline_rx_tstamps *tstamp = ctx->rx_ts;
6694
6695         if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6696                 *timestamp = igc_ptp_rx_pktstamp(adapter, tstamp->timer0);
6697
6698                 return 0;
6699         }
6700
6701         return -ENODATA;
6702 }
6703
6704 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6705         .xmo_rx_hash                    = igc_xdp_rx_hash,
6706         .xmo_rx_timestamp               = igc_xdp_rx_timestamp,
6707 };
6708
6709 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6710 {
6711         struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6712                                                    hrtimer);
6713         unsigned long flags;
6714         unsigned int i;
6715
6716         spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6717
6718         adapter->qbv_transition = true;
6719         for (i = 0; i < adapter->num_tx_queues; i++) {
6720                 struct igc_ring *tx_ring = adapter->tx_ring[i];
6721
6722                 if (tx_ring->admin_gate_closed) {
6723                         tx_ring->admin_gate_closed = false;
6724                         tx_ring->oper_gate_closed = true;
6725                 } else {
6726                         tx_ring->oper_gate_closed = false;
6727                 }
6728         }
6729         adapter->qbv_transition = false;
6730
6731         spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6732
6733         return HRTIMER_NORESTART;
6734 }
6735
6736 /**
6737  * igc_probe - Device Initialization Routine
6738  * @pdev: PCI device information struct
6739  * @ent: entry in igc_pci_tbl
6740  *
6741  * Returns 0 on success, negative on failure
6742  *
6743  * igc_probe initializes an adapter identified by a pci_dev structure.
6744  * The OS initialization, configuring the adapter private structure,
6745  * and a hardware reset occur.
6746  */
6747 static int igc_probe(struct pci_dev *pdev,
6748                      const struct pci_device_id *ent)
6749 {
6750         struct igc_adapter *adapter;
6751         struct net_device *netdev;
6752         struct igc_hw *hw;
6753         const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6754         int err;
6755
6756         err = pci_enable_device_mem(pdev);
6757         if (err)
6758                 return err;
6759
6760         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6761         if (err) {
6762                 dev_err(&pdev->dev,
6763                         "No usable DMA configuration, aborting\n");
6764                 goto err_dma;
6765         }
6766
6767         err = pci_request_mem_regions(pdev, igc_driver_name);
6768         if (err)
6769                 goto err_pci_reg;
6770
6771         err = pci_enable_ptm(pdev, NULL);
6772         if (err < 0)
6773                 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6774
6775         pci_set_master(pdev);
6776
6777         err = -ENOMEM;
6778         netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6779                                    IGC_MAX_TX_QUEUES);
6780
6781         if (!netdev)
6782                 goto err_alloc_etherdev;
6783
6784         SET_NETDEV_DEV(netdev, &pdev->dev);
6785
6786         pci_set_drvdata(pdev, netdev);
6787         adapter = netdev_priv(netdev);
6788         adapter->netdev = netdev;
6789         adapter->pdev = pdev;
6790         hw = &adapter->hw;
6791         hw->back = adapter;
6792         adapter->port_num = hw->bus.func;
6793         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6794
6795         err = pci_save_state(pdev);
6796         if (err)
6797                 goto err_ioremap;
6798
6799         err = -EIO;
6800         adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6801                                    pci_resource_len(pdev, 0));
6802         if (!adapter->io_addr)
6803                 goto err_ioremap;
6804
6805         /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6806         hw->hw_addr = adapter->io_addr;
6807
6808         netdev->netdev_ops = &igc_netdev_ops;
6809         netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6810         igc_ethtool_set_ops(netdev);
6811         netdev->watchdog_timeo = 5 * HZ;
6812
6813         netdev->mem_start = pci_resource_start(pdev, 0);
6814         netdev->mem_end = pci_resource_end(pdev, 0);
6815
6816         /* PCI config space info */
6817         hw->vendor_id = pdev->vendor;
6818         hw->device_id = pdev->device;
6819         hw->revision_id = pdev->revision;
6820         hw->subsystem_vendor_id = pdev->subsystem_vendor;
6821         hw->subsystem_device_id = pdev->subsystem_device;
6822
6823         /* Copy the default MAC and PHY function pointers */
6824         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6825         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6826
6827         /* Initialize skew-specific constants */
6828         err = ei->get_invariants(hw);
6829         if (err)
6830                 goto err_sw_init;
6831
6832         /* Add supported features to the features list*/
6833         netdev->features |= NETIF_F_SG;
6834         netdev->features |= NETIF_F_TSO;
6835         netdev->features |= NETIF_F_TSO6;
6836         netdev->features |= NETIF_F_TSO_ECN;
6837         netdev->features |= NETIF_F_RXHASH;
6838         netdev->features |= NETIF_F_RXCSUM;
6839         netdev->features |= NETIF_F_HW_CSUM;
6840         netdev->features |= NETIF_F_SCTP_CRC;
6841         netdev->features |= NETIF_F_HW_TC;
6842
6843 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6844                                   NETIF_F_GSO_GRE_CSUM | \
6845                                   NETIF_F_GSO_IPXIP4 | \
6846                                   NETIF_F_GSO_IPXIP6 | \
6847                                   NETIF_F_GSO_UDP_TUNNEL | \
6848                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
6849
6850         netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6851         netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6852
6853         /* setup the private structure */
6854         err = igc_sw_init(adapter);
6855         if (err)
6856                 goto err_sw_init;
6857
6858         /* copy netdev features into list of user selectable features */
6859         netdev->hw_features |= NETIF_F_NTUPLE;
6860         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6861         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6862         netdev->hw_features |= netdev->features;
6863
6864         netdev->features |= NETIF_F_HIGHDMA;
6865
6866         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6867         netdev->mpls_features |= NETIF_F_HW_CSUM;
6868         netdev->hw_enc_features |= netdev->vlan_features;
6869
6870         netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6871                                NETDEV_XDP_ACT_XSK_ZEROCOPY;
6872
6873         /* MTU range: 68 - 9216 */
6874         netdev->min_mtu = ETH_MIN_MTU;
6875         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6876
6877         /* before reading the NVM, reset the controller to put the device in a
6878          * known good starting state
6879          */
6880         hw->mac.ops.reset_hw(hw);
6881
6882         if (igc_get_flash_presence_i225(hw)) {
6883                 if (hw->nvm.ops.validate(hw) < 0) {
6884                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6885                         err = -EIO;
6886                         goto err_eeprom;
6887                 }
6888         }
6889
6890         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6891                 /* copy the MAC address out of the NVM */
6892                 if (hw->mac.ops.read_mac_addr(hw))
6893                         dev_err(&pdev->dev, "NVM Read Error\n");
6894         }
6895
6896         eth_hw_addr_set(netdev, hw->mac.addr);
6897
6898         if (!is_valid_ether_addr(netdev->dev_addr)) {
6899                 dev_err(&pdev->dev, "Invalid MAC Address\n");
6900                 err = -EIO;
6901                 goto err_eeprom;
6902         }
6903
6904         /* configure RXPBSIZE and TXPBSIZE */
6905         wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6906         wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6907
6908         timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6909         timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6910
6911         INIT_WORK(&adapter->reset_task, igc_reset_task);
6912         INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6913
6914         hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6915         adapter->hrtimer.function = &igc_qbv_scheduling_timer;
6916
6917         /* Initialize link properties that are user-changeable */
6918         adapter->fc_autoneg = true;
6919         hw->mac.autoneg = true;
6920         hw->phy.autoneg_advertised = 0xaf;
6921
6922         hw->fc.requested_mode = igc_fc_default;
6923         hw->fc.current_mode = igc_fc_default;
6924
6925         /* By default, support wake on port A */
6926         adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6927
6928         /* initialize the wol settings based on the eeprom settings */
6929         if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6930                 adapter->wol |= IGC_WUFC_MAG;
6931
6932         device_set_wakeup_enable(&adapter->pdev->dev,
6933                                  adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6934
6935         igc_ptp_init(adapter);
6936
6937         igc_tsn_clear_schedule(adapter);
6938
6939         /* reset the hardware with the new settings */
6940         igc_reset(adapter);
6941
6942         /* let the f/w know that the h/w is now under the control of the
6943          * driver.
6944          */
6945         igc_get_hw_control(adapter);
6946
6947         strscpy(netdev->name, "eth%d", sizeof(netdev->name));
6948         err = register_netdev(netdev);
6949         if (err)
6950                 goto err_register;
6951
6952          /* carrier off reporting is important to ethtool even BEFORE open */
6953         netif_carrier_off(netdev);
6954
6955         /* Check if Media Autosense is enabled */
6956         adapter->ei = *ei;
6957
6958         /* print pcie link status and MAC address */
6959         pcie_print_link_status(pdev);
6960         netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6961
6962         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6963         /* Disable EEE for internal PHY devices */
6964         hw->dev_spec._base.eee_enable = false;
6965         adapter->flags &= ~IGC_FLAG_EEE;
6966         igc_set_eee_i225(hw, false, false, false);
6967
6968         pm_runtime_put_noidle(&pdev->dev);
6969
6970         if (IS_ENABLED(CONFIG_IGC_LEDS)) {
6971                 err = igc_led_setup(adapter);
6972                 if (err)
6973                         goto err_register;
6974         }
6975
6976         return 0;
6977
6978 err_register:
6979         igc_release_hw_control(adapter);
6980 err_eeprom:
6981         if (!igc_check_reset_block(hw))
6982                 igc_reset_phy(hw);
6983 err_sw_init:
6984         igc_clear_interrupt_scheme(adapter);
6985         iounmap(adapter->io_addr);
6986 err_ioremap:
6987         free_netdev(netdev);
6988 err_alloc_etherdev:
6989         pci_release_mem_regions(pdev);
6990 err_pci_reg:
6991 err_dma:
6992         pci_disable_device(pdev);
6993         return err;
6994 }
6995
6996 /**
6997  * igc_remove - Device Removal Routine
6998  * @pdev: PCI device information struct
6999  *
7000  * igc_remove is called by the PCI subsystem to alert the driver
7001  * that it should release a PCI device.  This could be caused by a
7002  * Hot-Plug event, or because the driver is going to be removed from
7003  * memory.
7004  */
7005 static void igc_remove(struct pci_dev *pdev)
7006 {
7007         struct net_device *netdev = pci_get_drvdata(pdev);
7008         struct igc_adapter *adapter = netdev_priv(netdev);
7009
7010         pm_runtime_get_noresume(&pdev->dev);
7011
7012         igc_flush_nfc_rules(adapter);
7013
7014         igc_ptp_stop(adapter);
7015
7016         pci_disable_ptm(pdev);
7017         pci_clear_master(pdev);
7018
7019         set_bit(__IGC_DOWN, &adapter->state);
7020
7021         del_timer_sync(&adapter->watchdog_timer);
7022         del_timer_sync(&adapter->phy_info_timer);
7023
7024         cancel_work_sync(&adapter->reset_task);
7025         cancel_work_sync(&adapter->watchdog_task);
7026         hrtimer_cancel(&adapter->hrtimer);
7027
7028         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7029          * would have already happened in close and is redundant.
7030          */
7031         igc_release_hw_control(adapter);
7032         unregister_netdev(netdev);
7033
7034         igc_clear_interrupt_scheme(adapter);
7035         pci_iounmap(pdev, adapter->io_addr);
7036         pci_release_mem_regions(pdev);
7037
7038         free_netdev(netdev);
7039
7040         pci_disable_device(pdev);
7041 }
7042
7043 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7044                           bool runtime)
7045 {
7046         struct net_device *netdev = pci_get_drvdata(pdev);
7047         struct igc_adapter *adapter = netdev_priv(netdev);
7048         u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7049         struct igc_hw *hw = &adapter->hw;
7050         u32 ctrl, rctl, status;
7051         bool wake;
7052
7053         rtnl_lock();
7054         netif_device_detach(netdev);
7055
7056         if (netif_running(netdev))
7057                 __igc_close(netdev, true);
7058
7059         igc_ptp_suspend(adapter);
7060
7061         igc_clear_interrupt_scheme(adapter);
7062         rtnl_unlock();
7063
7064         status = rd32(IGC_STATUS);
7065         if (status & IGC_STATUS_LU)
7066                 wufc &= ~IGC_WUFC_LNKC;
7067
7068         if (wufc) {
7069                 igc_setup_rctl(adapter);
7070                 igc_set_rx_mode(netdev);
7071
7072                 /* turn on all-multi mode if wake on multicast is enabled */
7073                 if (wufc & IGC_WUFC_MC) {
7074                         rctl = rd32(IGC_RCTL);
7075                         rctl |= IGC_RCTL_MPE;
7076                         wr32(IGC_RCTL, rctl);
7077                 }
7078
7079                 ctrl = rd32(IGC_CTRL);
7080                 ctrl |= IGC_CTRL_ADVD3WUC;
7081                 wr32(IGC_CTRL, ctrl);
7082
7083                 /* Allow time for pending master requests to run */
7084                 igc_disable_pcie_master(hw);
7085
7086                 wr32(IGC_WUC, IGC_WUC_PME_EN);
7087                 wr32(IGC_WUFC, wufc);
7088         } else {
7089                 wr32(IGC_WUC, 0);
7090                 wr32(IGC_WUFC, 0);
7091         }
7092
7093         wake = wufc || adapter->en_mng_pt;
7094         if (!wake)
7095                 igc_power_down_phy_copper_base(&adapter->hw);
7096         else
7097                 igc_power_up_link(adapter);
7098
7099         if (enable_wake)
7100                 *enable_wake = wake;
7101
7102         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7103          * would have already happened in close and is redundant.
7104          */
7105         igc_release_hw_control(adapter);
7106
7107         pci_disable_device(pdev);
7108
7109         return 0;
7110 }
7111
7112 #ifdef CONFIG_PM
7113 static int __maybe_unused igc_runtime_suspend(struct device *dev)
7114 {
7115         return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7116 }
7117
7118 static void igc_deliver_wake_packet(struct net_device *netdev)
7119 {
7120         struct igc_adapter *adapter = netdev_priv(netdev);
7121         struct igc_hw *hw = &adapter->hw;
7122         struct sk_buff *skb;
7123         u32 wupl;
7124
7125         wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7126
7127         /* WUPM stores only the first 128 bytes of the wake packet.
7128          * Read the packet only if we have the whole thing.
7129          */
7130         if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7131                 return;
7132
7133         skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7134         if (!skb)
7135                 return;
7136
7137         skb_put(skb, wupl);
7138
7139         /* Ensure reads are 32-bit aligned */
7140         wupl = roundup(wupl, 4);
7141
7142         memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7143
7144         skb->protocol = eth_type_trans(skb, netdev);
7145         netif_rx(skb);
7146 }
7147
7148 static int __maybe_unused igc_resume(struct device *dev)
7149 {
7150         struct pci_dev *pdev = to_pci_dev(dev);
7151         struct net_device *netdev = pci_get_drvdata(pdev);
7152         struct igc_adapter *adapter = netdev_priv(netdev);
7153         struct igc_hw *hw = &adapter->hw;
7154         u32 err, val;
7155
7156         pci_set_power_state(pdev, PCI_D0);
7157         pci_restore_state(pdev);
7158         pci_save_state(pdev);
7159
7160         if (!pci_device_is_present(pdev))
7161                 return -ENODEV;
7162         err = pci_enable_device_mem(pdev);
7163         if (err) {
7164                 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7165                 return err;
7166         }
7167         pci_set_master(pdev);
7168
7169         pci_enable_wake(pdev, PCI_D3hot, 0);
7170         pci_enable_wake(pdev, PCI_D3cold, 0);
7171
7172         if (igc_init_interrupt_scheme(adapter, true)) {
7173                 netdev_err(netdev, "Unable to allocate memory for queues\n");
7174                 return -ENOMEM;
7175         }
7176
7177         igc_reset(adapter);
7178
7179         /* let the f/w know that the h/w is now under the control of the
7180          * driver.
7181          */
7182         igc_get_hw_control(adapter);
7183
7184         val = rd32(IGC_WUS);
7185         if (val & WAKE_PKT_WUS)
7186                 igc_deliver_wake_packet(netdev);
7187
7188         wr32(IGC_WUS, ~0);
7189
7190         rtnl_lock();
7191         if (!err && netif_running(netdev))
7192                 err = __igc_open(netdev, true);
7193
7194         if (!err)
7195                 netif_device_attach(netdev);
7196         rtnl_unlock();
7197
7198         return err;
7199 }
7200
7201 static int __maybe_unused igc_runtime_resume(struct device *dev)
7202 {
7203         return igc_resume(dev);
7204 }
7205
7206 static int __maybe_unused igc_suspend(struct device *dev)
7207 {
7208         return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7209 }
7210
7211 static int __maybe_unused igc_runtime_idle(struct device *dev)
7212 {
7213         struct net_device *netdev = dev_get_drvdata(dev);
7214         struct igc_adapter *adapter = netdev_priv(netdev);
7215
7216         if (!igc_has_link(adapter))
7217                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7218
7219         return -EBUSY;
7220 }
7221 #endif /* CONFIG_PM */
7222
7223 static void igc_shutdown(struct pci_dev *pdev)
7224 {
7225         bool wake;
7226
7227         __igc_shutdown(pdev, &wake, 0);
7228
7229         if (system_state == SYSTEM_POWER_OFF) {
7230                 pci_wake_from_d3(pdev, wake);
7231                 pci_set_power_state(pdev, PCI_D3hot);
7232         }
7233 }
7234
7235 /**
7236  *  igc_io_error_detected - called when PCI error is detected
7237  *  @pdev: Pointer to PCI device
7238  *  @state: The current PCI connection state
7239  *
7240  *  This function is called after a PCI bus error affecting
7241  *  this device has been detected.
7242  **/
7243 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7244                                               pci_channel_state_t state)
7245 {
7246         struct net_device *netdev = pci_get_drvdata(pdev);
7247         struct igc_adapter *adapter = netdev_priv(netdev);
7248
7249         netif_device_detach(netdev);
7250
7251         if (state == pci_channel_io_perm_failure)
7252                 return PCI_ERS_RESULT_DISCONNECT;
7253
7254         if (netif_running(netdev))
7255                 igc_down(adapter);
7256         pci_disable_device(pdev);
7257
7258         /* Request a slot reset. */
7259         return PCI_ERS_RESULT_NEED_RESET;
7260 }
7261
7262 /**
7263  *  igc_io_slot_reset - called after the PCI bus has been reset.
7264  *  @pdev: Pointer to PCI device
7265  *
7266  *  Restart the card from scratch, as if from a cold-boot. Implementation
7267  *  resembles the first-half of the igc_resume routine.
7268  **/
7269 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7270 {
7271         struct net_device *netdev = pci_get_drvdata(pdev);
7272         struct igc_adapter *adapter = netdev_priv(netdev);
7273         struct igc_hw *hw = &adapter->hw;
7274         pci_ers_result_t result;
7275
7276         if (pci_enable_device_mem(pdev)) {
7277                 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7278                 result = PCI_ERS_RESULT_DISCONNECT;
7279         } else {
7280                 pci_set_master(pdev);
7281                 pci_restore_state(pdev);
7282                 pci_save_state(pdev);
7283
7284                 pci_enable_wake(pdev, PCI_D3hot, 0);
7285                 pci_enable_wake(pdev, PCI_D3cold, 0);
7286
7287                 /* In case of PCI error, adapter loses its HW address
7288                  * so we should re-assign it here.
7289                  */
7290                 hw->hw_addr = adapter->io_addr;
7291
7292                 igc_reset(adapter);
7293                 wr32(IGC_WUS, ~0);
7294                 result = PCI_ERS_RESULT_RECOVERED;
7295         }
7296
7297         return result;
7298 }
7299
7300 /**
7301  *  igc_io_resume - called when traffic can start to flow again.
7302  *  @pdev: Pointer to PCI device
7303  *
7304  *  This callback is called when the error recovery driver tells us that
7305  *  its OK to resume normal operation. Implementation resembles the
7306  *  second-half of the igc_resume routine.
7307  */
7308 static void igc_io_resume(struct pci_dev *pdev)
7309 {
7310         struct net_device *netdev = pci_get_drvdata(pdev);
7311         struct igc_adapter *adapter = netdev_priv(netdev);
7312
7313         rtnl_lock();
7314         if (netif_running(netdev)) {
7315                 if (igc_open(netdev)) {
7316                         netdev_err(netdev, "igc_open failed after reset\n");
7317                         return;
7318                 }
7319         }
7320
7321         netif_device_attach(netdev);
7322
7323         /* let the f/w know that the h/w is now under the control of the
7324          * driver.
7325          */
7326         igc_get_hw_control(adapter);
7327         rtnl_unlock();
7328 }
7329
7330 static const struct pci_error_handlers igc_err_handler = {
7331         .error_detected = igc_io_error_detected,
7332         .slot_reset = igc_io_slot_reset,
7333         .resume = igc_io_resume,
7334 };
7335
7336 #ifdef CONFIG_PM
7337 static const struct dev_pm_ops igc_pm_ops = {
7338         SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7339         SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7340                            igc_runtime_idle)
7341 };
7342 #endif
7343
7344 static struct pci_driver igc_driver = {
7345         .name     = igc_driver_name,
7346         .id_table = igc_pci_tbl,
7347         .probe    = igc_probe,
7348         .remove   = igc_remove,
7349 #ifdef CONFIG_PM
7350         .driver.pm = &igc_pm_ops,
7351 #endif
7352         .shutdown = igc_shutdown,
7353         .err_handler = &igc_err_handler,
7354 };
7355
7356 /**
7357  * igc_reinit_queues - return error
7358  * @adapter: pointer to adapter structure
7359  */
7360 int igc_reinit_queues(struct igc_adapter *adapter)
7361 {
7362         struct net_device *netdev = adapter->netdev;
7363         int err = 0;
7364
7365         if (netif_running(netdev))
7366                 igc_close(netdev);
7367
7368         igc_reset_interrupt_capability(adapter);
7369
7370         if (igc_init_interrupt_scheme(adapter, true)) {
7371                 netdev_err(netdev, "Unable to allocate memory for queues\n");
7372                 return -ENOMEM;
7373         }
7374
7375         if (netif_running(netdev))
7376                 err = igc_open(netdev);
7377
7378         return err;
7379 }
7380
7381 /**
7382  * igc_get_hw_dev - return device
7383  * @hw: pointer to hardware structure
7384  *
7385  * used by hardware layer to print debugging information
7386  */
7387 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7388 {
7389         struct igc_adapter *adapter = hw->back;
7390
7391         return adapter->netdev;
7392 }
7393
7394 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7395 {
7396         struct igc_hw *hw = &ring->q_vector->adapter->hw;
7397         u8 idx = ring->reg_idx;
7398         u32 rxdctl;
7399
7400         rxdctl = rd32(IGC_RXDCTL(idx));
7401         rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7402         rxdctl |= IGC_RXDCTL_SWFLUSH;
7403         wr32(IGC_RXDCTL(idx), rxdctl);
7404 }
7405
7406 void igc_disable_rx_ring(struct igc_ring *ring)
7407 {
7408         igc_disable_rx_ring_hw(ring);
7409         igc_clean_rx_ring(ring);
7410 }
7411
7412 void igc_enable_rx_ring(struct igc_ring *ring)
7413 {
7414         struct igc_adapter *adapter = ring->q_vector->adapter;
7415
7416         igc_configure_rx_ring(adapter, ring);
7417
7418         if (ring->xsk_pool)
7419                 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7420         else
7421                 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7422 }
7423
7424 void igc_disable_tx_ring(struct igc_ring *ring)
7425 {
7426         igc_disable_tx_ring_hw(ring);
7427         igc_clean_tx_ring(ring);
7428 }
7429
7430 void igc_enable_tx_ring(struct igc_ring *ring)
7431 {
7432         struct igc_adapter *adapter = ring->q_vector->adapter;
7433
7434         igc_configure_tx_ring(adapter, ring);
7435 }
7436
7437 /**
7438  * igc_init_module - Driver Registration Routine
7439  *
7440  * igc_init_module is the first routine called when the driver is
7441  * loaded. All it does is register with the PCI subsystem.
7442  */
7443 static int __init igc_init_module(void)
7444 {
7445         int ret;
7446
7447         pr_info("%s\n", igc_driver_string);
7448         pr_info("%s\n", igc_copyright);
7449
7450         ret = pci_register_driver(&igc_driver);
7451         return ret;
7452 }
7453
7454 module_init(igc_init_module);
7455
7456 /**
7457  * igc_exit_module - Driver Exit Cleanup Routine
7458  *
7459  * igc_exit_module is called just before the driver is removed
7460  * from memory.
7461  */
7462 static void __exit igc_exit_module(void)
7463 {
7464         pci_unregister_driver(&igc_driver);
7465 }
7466
7467 module_exit(igc_exit_module);
7468 /* igc_main.c */