powerpc/perf/hv-24x7: Move cpumask file to top folder of hv-24x7 driver
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13
14 #include <net/ipv6.h>
15
16 #include "igc.h"
17 #include "igc_hw.h"
18 #include "igc_tsn.h"
19
20 #define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
21
22 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
23
24 static int debug = -1;
25
26 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
27 MODULE_DESCRIPTION(DRV_SUMMARY);
28 MODULE_LICENSE("GPL v2");
29 module_param(debug, int, 0);
30 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
31
32 char igc_driver_name[] = "igc";
33 static const char igc_driver_string[] = DRV_SUMMARY;
34 static const char igc_copyright[] =
35         "Copyright(c) 2018 Intel Corporation.";
36
37 static const struct igc_info *igc_info_tbl[] = {
38         [board_base] = &igc_base_info,
39 };
40
41 static const struct pci_device_id igc_pci_tbl[] = {
42         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
48         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
49         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
50         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
51         /* required last entry */
52         {0, }
53 };
54
55 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
56
57 enum latency_range {
58         lowest_latency = 0,
59         low_latency = 1,
60         bulk_latency = 2,
61         latency_invalid = 255
62 };
63
64 void igc_reset(struct igc_adapter *adapter)
65 {
66         struct net_device *dev = adapter->netdev;
67         struct igc_hw *hw = &adapter->hw;
68         struct igc_fc_info *fc = &hw->fc;
69         u32 pba, hwm;
70
71         /* Repartition PBA for greater than 9k MTU if required */
72         pba = IGC_PBA_34K;
73
74         /* flow control settings
75          * The high water mark must be low enough to fit one full frame
76          * after transmitting the pause frame.  As such we must have enough
77          * space to allow for us to complete our current transmit and then
78          * receive the frame that is in progress from the link partner.
79          * Set it to:
80          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
81          */
82         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
83
84         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
85         fc->low_water = fc->high_water - 16;
86         fc->pause_time = 0xFFFF;
87         fc->send_xon = 1;
88         fc->current_mode = fc->requested_mode;
89
90         hw->mac.ops.reset_hw(hw);
91
92         if (hw->mac.ops.init_hw(hw))
93                 netdev_err(dev, "Error on hardware initialization\n");
94
95         /* Re-establish EEE setting */
96         igc_set_eee_i225(hw, true, true, true);
97
98         if (!netif_running(adapter->netdev))
99                 igc_power_down_phy_copper_base(&adapter->hw);
100
101         /* Re-enable PTP, where applicable. */
102         igc_ptp_reset(adapter);
103
104         /* Re-enable TSN offloading, where applicable. */
105         igc_tsn_offload_apply(adapter);
106
107         igc_get_phy_info(hw);
108 }
109
110 /**
111  * igc_power_up_link - Power up the phy link
112  * @adapter: address of board private structure
113  */
114 static void igc_power_up_link(struct igc_adapter *adapter)
115 {
116         igc_reset_phy(&adapter->hw);
117
118         igc_power_up_phy_copper(&adapter->hw);
119
120         igc_setup_link(&adapter->hw);
121 }
122
123 /**
124  * igc_release_hw_control - release control of the h/w to f/w
125  * @adapter: address of board private structure
126  *
127  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
128  * For ASF and Pass Through versions of f/w this means that the
129  * driver is no longer loaded.
130  */
131 static void igc_release_hw_control(struct igc_adapter *adapter)
132 {
133         struct igc_hw *hw = &adapter->hw;
134         u32 ctrl_ext;
135
136         /* Let firmware take over control of h/w */
137         ctrl_ext = rd32(IGC_CTRL_EXT);
138         wr32(IGC_CTRL_EXT,
139              ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
140 }
141
142 /**
143  * igc_get_hw_control - get control of the h/w from f/w
144  * @adapter: address of board private structure
145  *
146  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that
148  * the driver is loaded.
149  */
150 static void igc_get_hw_control(struct igc_adapter *adapter)
151 {
152         struct igc_hw *hw = &adapter->hw;
153         u32 ctrl_ext;
154
155         /* Let firmware know the driver has taken over */
156         ctrl_ext = rd32(IGC_CTRL_EXT);
157         wr32(IGC_CTRL_EXT,
158              ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
159 }
160
161 /**
162  * igc_clean_tx_ring - Free Tx Buffers
163  * @tx_ring: ring to be cleaned
164  */
165 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
166 {
167         u16 i = tx_ring->next_to_clean;
168         struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
169
170         while (i != tx_ring->next_to_use) {
171                 union igc_adv_tx_desc *eop_desc, *tx_desc;
172
173                 /* Free all the Tx ring sk_buffs */
174                 dev_kfree_skb_any(tx_buffer->skb);
175
176                 /* unmap skb header data */
177                 dma_unmap_single(tx_ring->dev,
178                                  dma_unmap_addr(tx_buffer, dma),
179                                  dma_unmap_len(tx_buffer, len),
180                                  DMA_TO_DEVICE);
181
182                 /* check for eop_desc to determine the end of the packet */
183                 eop_desc = tx_buffer->next_to_watch;
184                 tx_desc = IGC_TX_DESC(tx_ring, i);
185
186                 /* unmap remaining buffers */
187                 while (tx_desc != eop_desc) {
188                         tx_buffer++;
189                         tx_desc++;
190                         i++;
191                         if (unlikely(i == tx_ring->count)) {
192                                 i = 0;
193                                 tx_buffer = tx_ring->tx_buffer_info;
194                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
195                         }
196
197                         /* unmap any remaining paged data */
198                         if (dma_unmap_len(tx_buffer, len))
199                                 dma_unmap_page(tx_ring->dev,
200                                                dma_unmap_addr(tx_buffer, dma),
201                                                dma_unmap_len(tx_buffer, len),
202                                                DMA_TO_DEVICE);
203                 }
204
205                 /* move us one more past the eop_desc for start of next pkt */
206                 tx_buffer++;
207                 i++;
208                 if (unlikely(i == tx_ring->count)) {
209                         i = 0;
210                         tx_buffer = tx_ring->tx_buffer_info;
211                 }
212         }
213
214         /* reset BQL for queue */
215         netdev_tx_reset_queue(txring_txq(tx_ring));
216
217         /* reset next_to_use and next_to_clean */
218         tx_ring->next_to_use = 0;
219         tx_ring->next_to_clean = 0;
220 }
221
222 /**
223  * igc_free_tx_resources - Free Tx Resources per Queue
224  * @tx_ring: Tx descriptor ring for a specific queue
225  *
226  * Free all transmit software resources
227  */
228 void igc_free_tx_resources(struct igc_ring *tx_ring)
229 {
230         igc_clean_tx_ring(tx_ring);
231
232         vfree(tx_ring->tx_buffer_info);
233         tx_ring->tx_buffer_info = NULL;
234
235         /* if not set, then don't free */
236         if (!tx_ring->desc)
237                 return;
238
239         dma_free_coherent(tx_ring->dev, tx_ring->size,
240                           tx_ring->desc, tx_ring->dma);
241
242         tx_ring->desc = NULL;
243 }
244
245 /**
246  * igc_free_all_tx_resources - Free Tx Resources for All Queues
247  * @adapter: board private structure
248  *
249  * Free all transmit software resources
250  */
251 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
252 {
253         int i;
254
255         for (i = 0; i < adapter->num_tx_queues; i++)
256                 igc_free_tx_resources(adapter->tx_ring[i]);
257 }
258
259 /**
260  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
261  * @adapter: board private structure
262  */
263 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
264 {
265         int i;
266
267         for (i = 0; i < adapter->num_tx_queues; i++)
268                 if (adapter->tx_ring[i])
269                         igc_clean_tx_ring(adapter->tx_ring[i]);
270 }
271
272 /**
273  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
274  * @tx_ring: tx descriptor ring (for a specific queue) to setup
275  *
276  * Return 0 on success, negative on failure
277  */
278 int igc_setup_tx_resources(struct igc_ring *tx_ring)
279 {
280         struct net_device *ndev = tx_ring->netdev;
281         struct device *dev = tx_ring->dev;
282         int size = 0;
283
284         size = sizeof(struct igc_tx_buffer) * tx_ring->count;
285         tx_ring->tx_buffer_info = vzalloc(size);
286         if (!tx_ring->tx_buffer_info)
287                 goto err;
288
289         /* round up to nearest 4K */
290         tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
291         tx_ring->size = ALIGN(tx_ring->size, 4096);
292
293         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
294                                            &tx_ring->dma, GFP_KERNEL);
295
296         if (!tx_ring->desc)
297                 goto err;
298
299         tx_ring->next_to_use = 0;
300         tx_ring->next_to_clean = 0;
301
302         return 0;
303
304 err:
305         vfree(tx_ring->tx_buffer_info);
306         netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
307         return -ENOMEM;
308 }
309
310 /**
311  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
312  * @adapter: board private structure
313  *
314  * Return 0 on success, negative on failure
315  */
316 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
317 {
318         struct net_device *dev = adapter->netdev;
319         int i, err = 0;
320
321         for (i = 0; i < adapter->num_tx_queues; i++) {
322                 err = igc_setup_tx_resources(adapter->tx_ring[i]);
323                 if (err) {
324                         netdev_err(dev, "Error on Tx queue %u setup\n", i);
325                         for (i--; i >= 0; i--)
326                                 igc_free_tx_resources(adapter->tx_ring[i]);
327                         break;
328                 }
329         }
330
331         return err;
332 }
333
334 /**
335  * igc_clean_rx_ring - Free Rx Buffers per Queue
336  * @rx_ring: ring to free buffers from
337  */
338 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
339 {
340         u16 i = rx_ring->next_to_clean;
341
342         dev_kfree_skb(rx_ring->skb);
343         rx_ring->skb = NULL;
344
345         /* Free all the Rx ring sk_buffs */
346         while (i != rx_ring->next_to_alloc) {
347                 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
348
349                 /* Invalidate cache lines that may have been written to by
350                  * device so that we avoid corrupting memory.
351                  */
352                 dma_sync_single_range_for_cpu(rx_ring->dev,
353                                               buffer_info->dma,
354                                               buffer_info->page_offset,
355                                               igc_rx_bufsz(rx_ring),
356                                               DMA_FROM_DEVICE);
357
358                 /* free resources associated with mapping */
359                 dma_unmap_page_attrs(rx_ring->dev,
360                                      buffer_info->dma,
361                                      igc_rx_pg_size(rx_ring),
362                                      DMA_FROM_DEVICE,
363                                      IGC_RX_DMA_ATTR);
364                 __page_frag_cache_drain(buffer_info->page,
365                                         buffer_info->pagecnt_bias);
366
367                 i++;
368                 if (i == rx_ring->count)
369                         i = 0;
370         }
371
372         rx_ring->next_to_alloc = 0;
373         rx_ring->next_to_clean = 0;
374         rx_ring->next_to_use = 0;
375 }
376
377 /**
378  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
379  * @adapter: board private structure
380  */
381 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
382 {
383         int i;
384
385         for (i = 0; i < adapter->num_rx_queues; i++)
386                 if (adapter->rx_ring[i])
387                         igc_clean_rx_ring(adapter->rx_ring[i]);
388 }
389
390 /**
391  * igc_free_rx_resources - Free Rx Resources
392  * @rx_ring: ring to clean the resources from
393  *
394  * Free all receive software resources
395  */
396 void igc_free_rx_resources(struct igc_ring *rx_ring)
397 {
398         igc_clean_rx_ring(rx_ring);
399
400         vfree(rx_ring->rx_buffer_info);
401         rx_ring->rx_buffer_info = NULL;
402
403         /* if not set, then don't free */
404         if (!rx_ring->desc)
405                 return;
406
407         dma_free_coherent(rx_ring->dev, rx_ring->size,
408                           rx_ring->desc, rx_ring->dma);
409
410         rx_ring->desc = NULL;
411 }
412
413 /**
414  * igc_free_all_rx_resources - Free Rx Resources for All Queues
415  * @adapter: board private structure
416  *
417  * Free all receive software resources
418  */
419 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
420 {
421         int i;
422
423         for (i = 0; i < adapter->num_rx_queues; i++)
424                 igc_free_rx_resources(adapter->rx_ring[i]);
425 }
426
427 /**
428  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
429  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
430  *
431  * Returns 0 on success, negative on failure
432  */
433 int igc_setup_rx_resources(struct igc_ring *rx_ring)
434 {
435         struct net_device *ndev = rx_ring->netdev;
436         struct device *dev = rx_ring->dev;
437         int size, desc_len;
438
439         size = sizeof(struct igc_rx_buffer) * rx_ring->count;
440         rx_ring->rx_buffer_info = vzalloc(size);
441         if (!rx_ring->rx_buffer_info)
442                 goto err;
443
444         desc_len = sizeof(union igc_adv_rx_desc);
445
446         /* Round up to nearest 4K */
447         rx_ring->size = rx_ring->count * desc_len;
448         rx_ring->size = ALIGN(rx_ring->size, 4096);
449
450         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
451                                            &rx_ring->dma, GFP_KERNEL);
452
453         if (!rx_ring->desc)
454                 goto err;
455
456         rx_ring->next_to_alloc = 0;
457         rx_ring->next_to_clean = 0;
458         rx_ring->next_to_use = 0;
459
460         return 0;
461
462 err:
463         vfree(rx_ring->rx_buffer_info);
464         rx_ring->rx_buffer_info = NULL;
465         netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
466         return -ENOMEM;
467 }
468
469 /**
470  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
471  *                                (Descriptors) for all queues
472  * @adapter: board private structure
473  *
474  * Return 0 on success, negative on failure
475  */
476 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
477 {
478         struct net_device *dev = adapter->netdev;
479         int i, err = 0;
480
481         for (i = 0; i < adapter->num_rx_queues; i++) {
482                 err = igc_setup_rx_resources(adapter->rx_ring[i]);
483                 if (err) {
484                         netdev_err(dev, "Error on Rx queue %u setup\n", i);
485                         for (i--; i >= 0; i--)
486                                 igc_free_rx_resources(adapter->rx_ring[i]);
487                         break;
488                 }
489         }
490
491         return err;
492 }
493
494 /**
495  * igc_configure_rx_ring - Configure a receive ring after Reset
496  * @adapter: board private structure
497  * @ring: receive ring to be configured
498  *
499  * Configure the Rx unit of the MAC after a reset.
500  */
501 static void igc_configure_rx_ring(struct igc_adapter *adapter,
502                                   struct igc_ring *ring)
503 {
504         struct igc_hw *hw = &adapter->hw;
505         union igc_adv_rx_desc *rx_desc;
506         int reg_idx = ring->reg_idx;
507         u32 srrctl = 0, rxdctl = 0;
508         u64 rdba = ring->dma;
509
510         /* disable the queue */
511         wr32(IGC_RXDCTL(reg_idx), 0);
512
513         /* Set DMA base address registers */
514         wr32(IGC_RDBAL(reg_idx),
515              rdba & 0x00000000ffffffffULL);
516         wr32(IGC_RDBAH(reg_idx), rdba >> 32);
517         wr32(IGC_RDLEN(reg_idx),
518              ring->count * sizeof(union igc_adv_rx_desc));
519
520         /* initialize head and tail */
521         ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
522         wr32(IGC_RDH(reg_idx), 0);
523         writel(0, ring->tail);
524
525         /* reset next-to- use/clean to place SW in sync with hardware */
526         ring->next_to_clean = 0;
527         ring->next_to_use = 0;
528
529         /* set descriptor configuration */
530         srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
531         if (ring_uses_large_buffer(ring))
532                 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
533         else
534                 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
535         srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
536
537         wr32(IGC_SRRCTL(reg_idx), srrctl);
538
539         rxdctl |= IGC_RX_PTHRESH;
540         rxdctl |= IGC_RX_HTHRESH << 8;
541         rxdctl |= IGC_RX_WTHRESH << 16;
542
543         /* initialize rx_buffer_info */
544         memset(ring->rx_buffer_info, 0,
545                sizeof(struct igc_rx_buffer) * ring->count);
546
547         /* initialize Rx descriptor 0 */
548         rx_desc = IGC_RX_DESC(ring, 0);
549         rx_desc->wb.upper.length = 0;
550
551         /* enable receive descriptor fetching */
552         rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
553
554         wr32(IGC_RXDCTL(reg_idx), rxdctl);
555 }
556
557 /**
558  * igc_configure_rx - Configure receive Unit after Reset
559  * @adapter: board private structure
560  *
561  * Configure the Rx unit of the MAC after a reset.
562  */
563 static void igc_configure_rx(struct igc_adapter *adapter)
564 {
565         int i;
566
567         /* Setup the HW Rx Head and Tail Descriptor Pointers and
568          * the Base and Length of the Rx Descriptor Ring
569          */
570         for (i = 0; i < adapter->num_rx_queues; i++)
571                 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
572 }
573
574 /**
575  * igc_configure_tx_ring - Configure transmit ring after Reset
576  * @adapter: board private structure
577  * @ring: tx ring to configure
578  *
579  * Configure a transmit ring after a reset.
580  */
581 static void igc_configure_tx_ring(struct igc_adapter *adapter,
582                                   struct igc_ring *ring)
583 {
584         struct igc_hw *hw = &adapter->hw;
585         int reg_idx = ring->reg_idx;
586         u64 tdba = ring->dma;
587         u32 txdctl = 0;
588
589         /* disable the queue */
590         wr32(IGC_TXDCTL(reg_idx), 0);
591         wrfl();
592         mdelay(10);
593
594         wr32(IGC_TDLEN(reg_idx),
595              ring->count * sizeof(union igc_adv_tx_desc));
596         wr32(IGC_TDBAL(reg_idx),
597              tdba & 0x00000000ffffffffULL);
598         wr32(IGC_TDBAH(reg_idx), tdba >> 32);
599
600         ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
601         wr32(IGC_TDH(reg_idx), 0);
602         writel(0, ring->tail);
603
604         txdctl |= IGC_TX_PTHRESH;
605         txdctl |= IGC_TX_HTHRESH << 8;
606         txdctl |= IGC_TX_WTHRESH << 16;
607
608         txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
609         wr32(IGC_TXDCTL(reg_idx), txdctl);
610 }
611
612 /**
613  * igc_configure_tx - Configure transmit Unit after Reset
614  * @adapter: board private structure
615  *
616  * Configure the Tx unit of the MAC after a reset.
617  */
618 static void igc_configure_tx(struct igc_adapter *adapter)
619 {
620         int i;
621
622         for (i = 0; i < adapter->num_tx_queues; i++)
623                 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
624 }
625
626 /**
627  * igc_setup_mrqc - configure the multiple receive queue control registers
628  * @adapter: Board private structure
629  */
630 static void igc_setup_mrqc(struct igc_adapter *adapter)
631 {
632         struct igc_hw *hw = &adapter->hw;
633         u32 j, num_rx_queues;
634         u32 mrqc, rxcsum;
635         u32 rss_key[10];
636
637         netdev_rss_key_fill(rss_key, sizeof(rss_key));
638         for (j = 0; j < 10; j++)
639                 wr32(IGC_RSSRK(j), rss_key[j]);
640
641         num_rx_queues = adapter->rss_queues;
642
643         if (adapter->rss_indir_tbl_init != num_rx_queues) {
644                 for (j = 0; j < IGC_RETA_SIZE; j++)
645                         adapter->rss_indir_tbl[j] =
646                         (j * num_rx_queues) / IGC_RETA_SIZE;
647                 adapter->rss_indir_tbl_init = num_rx_queues;
648         }
649         igc_write_rss_indir_tbl(adapter);
650
651         /* Disable raw packet checksumming so that RSS hash is placed in
652          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
653          * offloads as they are enabled by default
654          */
655         rxcsum = rd32(IGC_RXCSUM);
656         rxcsum |= IGC_RXCSUM_PCSD;
657
658         /* Enable Receive Checksum Offload for SCTP */
659         rxcsum |= IGC_RXCSUM_CRCOFL;
660
661         /* Don't need to set TUOFL or IPOFL, they default to 1 */
662         wr32(IGC_RXCSUM, rxcsum);
663
664         /* Generate RSS hash based on packet types, TCP/UDP
665          * port numbers and/or IPv4/v6 src and dst addresses
666          */
667         mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
668                IGC_MRQC_RSS_FIELD_IPV4_TCP |
669                IGC_MRQC_RSS_FIELD_IPV6 |
670                IGC_MRQC_RSS_FIELD_IPV6_TCP |
671                IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
672
673         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
674                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
675         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
676                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
677
678         mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
679
680         wr32(IGC_MRQC, mrqc);
681 }
682
683 /**
684  * igc_setup_rctl - configure the receive control registers
685  * @adapter: Board private structure
686  */
687 static void igc_setup_rctl(struct igc_adapter *adapter)
688 {
689         struct igc_hw *hw = &adapter->hw;
690         u32 rctl;
691
692         rctl = rd32(IGC_RCTL);
693
694         rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
695         rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
696
697         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
698                 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
699
700         /* enable stripping of CRC. Newer features require
701          * that the HW strips the CRC.
702          */
703         rctl |= IGC_RCTL_SECRC;
704
705         /* disable store bad packets and clear size bits. */
706         rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
707
708         /* enable LPE to allow for reception of jumbo frames */
709         rctl |= IGC_RCTL_LPE;
710
711         /* disable queue 0 to prevent tail write w/o re-config */
712         wr32(IGC_RXDCTL(0), 0);
713
714         /* This is useful for sniffing bad packets. */
715         if (adapter->netdev->features & NETIF_F_RXALL) {
716                 /* UPE and MPE will be handled by normal PROMISC logic
717                  * in set_rx_mode
718                  */
719                 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
720                          IGC_RCTL_BAM | /* RX All Bcast Pkts */
721                          IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
722
723                 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
724                           IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
725         }
726
727         wr32(IGC_RCTL, rctl);
728 }
729
730 /**
731  * igc_setup_tctl - configure the transmit control registers
732  * @adapter: Board private structure
733  */
734 static void igc_setup_tctl(struct igc_adapter *adapter)
735 {
736         struct igc_hw *hw = &adapter->hw;
737         u32 tctl;
738
739         /* disable queue 0 which icould be enabled by default */
740         wr32(IGC_TXDCTL(0), 0);
741
742         /* Program the Transmit Control Register */
743         tctl = rd32(IGC_TCTL);
744         tctl &= ~IGC_TCTL_CT;
745         tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
746                 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
747
748         /* Enable transmits */
749         tctl |= IGC_TCTL_EN;
750
751         wr32(IGC_TCTL, tctl);
752 }
753
754 /**
755  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
756  * @adapter: Pointer to adapter where the filter should be set
757  * @index: Filter index
758  * @type: MAC address filter type (source or destination)
759  * @addr: MAC address
760  * @queue: If non-negative, queue assignment feature is enabled and frames
761  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
762  *         assignment is disabled.
763  */
764 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
765                                   enum igc_mac_filter_type type,
766                                   const u8 *addr, int queue)
767 {
768         struct net_device *dev = adapter->netdev;
769         struct igc_hw *hw = &adapter->hw;
770         u32 ral, rah;
771
772         if (WARN_ON(index >= hw->mac.rar_entry_count))
773                 return;
774
775         ral = le32_to_cpup((__le32 *)(addr));
776         rah = le16_to_cpup((__le16 *)(addr + 4));
777
778         if (type == IGC_MAC_FILTER_TYPE_SRC) {
779                 rah &= ~IGC_RAH_ASEL_MASK;
780                 rah |= IGC_RAH_ASEL_SRC_ADDR;
781         }
782
783         if (queue >= 0) {
784                 rah &= ~IGC_RAH_QSEL_MASK;
785                 rah |= (queue << IGC_RAH_QSEL_SHIFT);
786                 rah |= IGC_RAH_QSEL_ENABLE;
787         }
788
789         rah |= IGC_RAH_AV;
790
791         wr32(IGC_RAL(index), ral);
792         wr32(IGC_RAH(index), rah);
793
794         netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
795 }
796
797 /**
798  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
799  * @adapter: Pointer to adapter where the filter should be cleared
800  * @index: Filter index
801  */
802 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
803 {
804         struct net_device *dev = adapter->netdev;
805         struct igc_hw *hw = &adapter->hw;
806
807         if (WARN_ON(index >= hw->mac.rar_entry_count))
808                 return;
809
810         wr32(IGC_RAL(index), 0);
811         wr32(IGC_RAH(index), 0);
812
813         netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
814 }
815
816 /* Set default MAC address for the PF in the first RAR entry */
817 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
818 {
819         struct net_device *dev = adapter->netdev;
820         u8 *addr = adapter->hw.mac.addr;
821
822         netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
823
824         igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
825 }
826
827 /**
828  * igc_set_mac - Change the Ethernet Address of the NIC
829  * @netdev: network interface device structure
830  * @p: pointer to an address structure
831  *
832  * Returns 0 on success, negative on failure
833  */
834 static int igc_set_mac(struct net_device *netdev, void *p)
835 {
836         struct igc_adapter *adapter = netdev_priv(netdev);
837         struct igc_hw *hw = &adapter->hw;
838         struct sockaddr *addr = p;
839
840         if (!is_valid_ether_addr(addr->sa_data))
841                 return -EADDRNOTAVAIL;
842
843         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
844         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
845
846         /* set the correct pool for the new PF MAC address in entry 0 */
847         igc_set_default_mac_filter(adapter);
848
849         return 0;
850 }
851
852 /**
853  *  igc_write_mc_addr_list - write multicast addresses to MTA
854  *  @netdev: network interface device structure
855  *
856  *  Writes multicast address list to the MTA hash table.
857  *  Returns: -ENOMEM on failure
858  *           0 on no addresses written
859  *           X on writing X addresses to MTA
860  **/
861 static int igc_write_mc_addr_list(struct net_device *netdev)
862 {
863         struct igc_adapter *adapter = netdev_priv(netdev);
864         struct igc_hw *hw = &adapter->hw;
865         struct netdev_hw_addr *ha;
866         u8  *mta_list;
867         int i;
868
869         if (netdev_mc_empty(netdev)) {
870                 /* nothing to program, so clear mc list */
871                 igc_update_mc_addr_list(hw, NULL, 0);
872                 return 0;
873         }
874
875         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
876         if (!mta_list)
877                 return -ENOMEM;
878
879         /* The shared function expects a packed array of only addresses. */
880         i = 0;
881         netdev_for_each_mc_addr(ha, netdev)
882                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
883
884         igc_update_mc_addr_list(hw, mta_list, i);
885         kfree(mta_list);
886
887         return netdev_mc_count(netdev);
888 }
889
890 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
891 {
892         ktime_t cycle_time = adapter->cycle_time;
893         ktime_t base_time = adapter->base_time;
894         u32 launchtime;
895
896         /* FIXME: when using ETF together with taprio, we may have a
897          * case where 'delta' is larger than the cycle_time, this may
898          * cause problems if we don't read the current value of
899          * IGC_BASET, as the value writen into the launchtime
900          * descriptor field may be misinterpreted.
901          */
902         div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
903
904         return cpu_to_le32(launchtime);
905 }
906
907 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
908                             struct igc_tx_buffer *first,
909                             u32 vlan_macip_lens, u32 type_tucmd,
910                             u32 mss_l4len_idx)
911 {
912         struct igc_adv_tx_context_desc *context_desc;
913         u16 i = tx_ring->next_to_use;
914
915         context_desc = IGC_TX_CTXTDESC(tx_ring, i);
916
917         i++;
918         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
919
920         /* set bits to identify this as an advanced context descriptor */
921         type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
922
923         /* For i225, context index must be unique per ring. */
924         if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
925                 mss_l4len_idx |= tx_ring->reg_idx << 4;
926
927         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
928         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
929         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
930
931         /* We assume there is always a valid Tx time available. Invalid times
932          * should have been handled by the upper layers.
933          */
934         if (tx_ring->launchtime_enable) {
935                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
936                 ktime_t txtime = first->skb->tstamp;
937
938                 first->skb->tstamp = ktime_set(0, 0);
939                 context_desc->launch_time = igc_tx_launchtime(adapter,
940                                                               txtime);
941         } else {
942                 context_desc->launch_time = 0;
943         }
944 }
945
946 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
947 {
948         unsigned int offset = 0;
949
950         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
951
952         return offset == skb_checksum_start_offset(skb);
953 }
954
955 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
956 {
957         struct sk_buff *skb = first->skb;
958         u32 vlan_macip_lens = 0;
959         u32 type_tucmd = 0;
960
961         if (skb->ip_summed != CHECKSUM_PARTIAL) {
962 csum_failed:
963                 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
964                     !tx_ring->launchtime_enable)
965                         return;
966                 goto no_csum;
967         }
968
969         switch (skb->csum_offset) {
970         case offsetof(struct tcphdr, check):
971                 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
972                 fallthrough;
973         case offsetof(struct udphdr, check):
974                 break;
975         case offsetof(struct sctphdr, checksum):
976                 /* validate that this is actually an SCTP request */
977                 if ((first->protocol == htons(ETH_P_IP) &&
978                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
979                     (first->protocol == htons(ETH_P_IPV6) &&
980                      igc_ipv6_csum_is_sctp(skb))) {
981                         type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
982                         break;
983                 }
984                 fallthrough;
985         default:
986                 skb_checksum_help(skb);
987                 goto csum_failed;
988         }
989
990         /* update TX checksum flag */
991         first->tx_flags |= IGC_TX_FLAGS_CSUM;
992         vlan_macip_lens = skb_checksum_start_offset(skb) -
993                           skb_network_offset(skb);
994 no_csum:
995         vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
996         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
997
998         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
999 }
1000
1001 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1002 {
1003         struct net_device *netdev = tx_ring->netdev;
1004
1005         netif_stop_subqueue(netdev, tx_ring->queue_index);
1006
1007         /* memory barriier comment */
1008         smp_mb();
1009
1010         /* We need to check again in a case another CPU has just
1011          * made room available.
1012          */
1013         if (igc_desc_unused(tx_ring) < size)
1014                 return -EBUSY;
1015
1016         /* A reprieve! */
1017         netif_wake_subqueue(netdev, tx_ring->queue_index);
1018
1019         u64_stats_update_begin(&tx_ring->tx_syncp2);
1020         tx_ring->tx_stats.restart_queue2++;
1021         u64_stats_update_end(&tx_ring->tx_syncp2);
1022
1023         return 0;
1024 }
1025
1026 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1027 {
1028         if (igc_desc_unused(tx_ring) >= size)
1029                 return 0;
1030         return __igc_maybe_stop_tx(tx_ring, size);
1031 }
1032
1033 #define IGC_SET_FLAG(_input, _flag, _result) \
1034         (((_flag) <= (_result)) ?                               \
1035          ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1036          ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1037
1038 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1039 {
1040         /* set type for advanced descriptor with frame checksum insertion */
1041         u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1042                        IGC_ADVTXD_DCMD_DEXT |
1043                        IGC_ADVTXD_DCMD_IFCS;
1044
1045         /* set segmentation bits for TSO */
1046         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1047                                  (IGC_ADVTXD_DCMD_TSE));
1048
1049         /* set timestamp bit if present */
1050         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1051                                  (IGC_ADVTXD_MAC_TSTAMP));
1052
1053         return cmd_type;
1054 }
1055
1056 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1057                                  union igc_adv_tx_desc *tx_desc,
1058                                  u32 tx_flags, unsigned int paylen)
1059 {
1060         u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1061
1062         /* insert L4 checksum */
1063         olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1064                           ((IGC_TXD_POPTS_TXSM << 8) /
1065                           IGC_TX_FLAGS_CSUM);
1066
1067         /* insert IPv4 checksum */
1068         olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1069                           (((IGC_TXD_POPTS_IXSM << 8)) /
1070                           IGC_TX_FLAGS_IPV4);
1071
1072         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1073 }
1074
1075 static int igc_tx_map(struct igc_ring *tx_ring,
1076                       struct igc_tx_buffer *first,
1077                       const u8 hdr_len)
1078 {
1079         struct sk_buff *skb = first->skb;
1080         struct igc_tx_buffer *tx_buffer;
1081         union igc_adv_tx_desc *tx_desc;
1082         u32 tx_flags = first->tx_flags;
1083         skb_frag_t *frag;
1084         u16 i = tx_ring->next_to_use;
1085         unsigned int data_len, size;
1086         dma_addr_t dma;
1087         u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1088
1089         tx_desc = IGC_TX_DESC(tx_ring, i);
1090
1091         igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1092
1093         size = skb_headlen(skb);
1094         data_len = skb->data_len;
1095
1096         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1097
1098         tx_buffer = first;
1099
1100         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1101                 if (dma_mapping_error(tx_ring->dev, dma))
1102                         goto dma_error;
1103
1104                 /* record length, and DMA address */
1105                 dma_unmap_len_set(tx_buffer, len, size);
1106                 dma_unmap_addr_set(tx_buffer, dma, dma);
1107
1108                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1109
1110                 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1111                         tx_desc->read.cmd_type_len =
1112                                 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1113
1114                         i++;
1115                         tx_desc++;
1116                         if (i == tx_ring->count) {
1117                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
1118                                 i = 0;
1119                         }
1120                         tx_desc->read.olinfo_status = 0;
1121
1122                         dma += IGC_MAX_DATA_PER_TXD;
1123                         size -= IGC_MAX_DATA_PER_TXD;
1124
1125                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
1126                 }
1127
1128                 if (likely(!data_len))
1129                         break;
1130
1131                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1132
1133                 i++;
1134                 tx_desc++;
1135                 if (i == tx_ring->count) {
1136                         tx_desc = IGC_TX_DESC(tx_ring, 0);
1137                         i = 0;
1138                 }
1139                 tx_desc->read.olinfo_status = 0;
1140
1141                 size = skb_frag_size(frag);
1142                 data_len -= size;
1143
1144                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1145                                        size, DMA_TO_DEVICE);
1146
1147                 tx_buffer = &tx_ring->tx_buffer_info[i];
1148         }
1149
1150         /* write last descriptor with RS and EOP bits */
1151         cmd_type |= size | IGC_TXD_DCMD;
1152         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1153
1154         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1155
1156         /* set the timestamp */
1157         first->time_stamp = jiffies;
1158
1159         skb_tx_timestamp(skb);
1160
1161         /* Force memory writes to complete before letting h/w know there
1162          * are new descriptors to fetch.  (Only applicable for weak-ordered
1163          * memory model archs, such as IA-64).
1164          *
1165          * We also need this memory barrier to make certain all of the
1166          * status bits have been updated before next_to_watch is written.
1167          */
1168         wmb();
1169
1170         /* set next_to_watch value indicating a packet is present */
1171         first->next_to_watch = tx_desc;
1172
1173         i++;
1174         if (i == tx_ring->count)
1175                 i = 0;
1176
1177         tx_ring->next_to_use = i;
1178
1179         /* Make sure there is space in the ring for the next send. */
1180         igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1181
1182         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1183                 writel(i, tx_ring->tail);
1184         }
1185
1186         return 0;
1187 dma_error:
1188         netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1189         tx_buffer = &tx_ring->tx_buffer_info[i];
1190
1191         /* clear dma mappings for failed tx_buffer_info map */
1192         while (tx_buffer != first) {
1193                 if (dma_unmap_len(tx_buffer, len))
1194                         dma_unmap_page(tx_ring->dev,
1195                                        dma_unmap_addr(tx_buffer, dma),
1196                                        dma_unmap_len(tx_buffer, len),
1197                                        DMA_TO_DEVICE);
1198                 dma_unmap_len_set(tx_buffer, len, 0);
1199
1200                 if (i-- == 0)
1201                         i += tx_ring->count;
1202                 tx_buffer = &tx_ring->tx_buffer_info[i];
1203         }
1204
1205         if (dma_unmap_len(tx_buffer, len))
1206                 dma_unmap_single(tx_ring->dev,
1207                                  dma_unmap_addr(tx_buffer, dma),
1208                                  dma_unmap_len(tx_buffer, len),
1209                                  DMA_TO_DEVICE);
1210         dma_unmap_len_set(tx_buffer, len, 0);
1211
1212         dev_kfree_skb_any(tx_buffer->skb);
1213         tx_buffer->skb = NULL;
1214
1215         tx_ring->next_to_use = i;
1216
1217         return -1;
1218 }
1219
1220 static int igc_tso(struct igc_ring *tx_ring,
1221                    struct igc_tx_buffer *first,
1222                    u8 *hdr_len)
1223 {
1224         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1225         struct sk_buff *skb = first->skb;
1226         union {
1227                 struct iphdr *v4;
1228                 struct ipv6hdr *v6;
1229                 unsigned char *hdr;
1230         } ip;
1231         union {
1232                 struct tcphdr *tcp;
1233                 struct udphdr *udp;
1234                 unsigned char *hdr;
1235         } l4;
1236         u32 paylen, l4_offset;
1237         int err;
1238
1239         if (skb->ip_summed != CHECKSUM_PARTIAL)
1240                 return 0;
1241
1242         if (!skb_is_gso(skb))
1243                 return 0;
1244
1245         err = skb_cow_head(skb, 0);
1246         if (err < 0)
1247                 return err;
1248
1249         ip.hdr = skb_network_header(skb);
1250         l4.hdr = skb_checksum_start(skb);
1251
1252         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1253         type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1254
1255         /* initialize outer IP header fields */
1256         if (ip.v4->version == 4) {
1257                 unsigned char *csum_start = skb_checksum_start(skb);
1258                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1259
1260                 /* IP header will have to cancel out any data that
1261                  * is not a part of the outer IP header
1262                  */
1263                 ip.v4->check = csum_fold(csum_partial(trans_start,
1264                                                       csum_start - trans_start,
1265                                                       0));
1266                 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1267
1268                 ip.v4->tot_len = 0;
1269                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1270                                    IGC_TX_FLAGS_CSUM |
1271                                    IGC_TX_FLAGS_IPV4;
1272         } else {
1273                 ip.v6->payload_len = 0;
1274                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1275                                    IGC_TX_FLAGS_CSUM;
1276         }
1277
1278         /* determine offset of inner transport header */
1279         l4_offset = l4.hdr - skb->data;
1280
1281         /* remove payload length from inner checksum */
1282         paylen = skb->len - l4_offset;
1283         if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1284                 /* compute length of segmentation header */
1285                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1286                 csum_replace_by_diff(&l4.tcp->check,
1287                                      (__force __wsum)htonl(paylen));
1288         } else {
1289                 /* compute length of segmentation header */
1290                 *hdr_len = sizeof(*l4.udp) + l4_offset;
1291                 csum_replace_by_diff(&l4.udp->check,
1292                                      (__force __wsum)htonl(paylen));
1293         }
1294
1295         /* update gso size and bytecount with header size */
1296         first->gso_segs = skb_shinfo(skb)->gso_segs;
1297         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1298
1299         /* MSS L4LEN IDX */
1300         mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1301         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1302
1303         /* VLAN MACLEN IPLEN */
1304         vlan_macip_lens = l4.hdr - ip.hdr;
1305         vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1306         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1307
1308         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1309                         type_tucmd, mss_l4len_idx);
1310
1311         return 1;
1312 }
1313
1314 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1315                                        struct igc_ring *tx_ring)
1316 {
1317         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1318         __be16 protocol = vlan_get_protocol(skb);
1319         struct igc_tx_buffer *first;
1320         u32 tx_flags = 0;
1321         unsigned short f;
1322         u8 hdr_len = 0;
1323         int tso = 0;
1324
1325         /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1326          *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1327          *      + 2 desc gap to keep tail from touching head,
1328          *      + 1 desc for context descriptor,
1329          * otherwise try next time
1330          */
1331         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1332                 count += TXD_USE_COUNT(skb_frag_size(
1333                                                 &skb_shinfo(skb)->frags[f]));
1334
1335         if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1336                 /* this is a hard error */
1337                 return NETDEV_TX_BUSY;
1338         }
1339
1340         /* record the location of the first descriptor for this packet */
1341         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1342         first->skb = skb;
1343         first->bytecount = skb->len;
1344         first->gso_segs = 1;
1345
1346         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1347                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1348
1349                 /* FIXME: add support for retrieving timestamps from
1350                  * the other timer registers before skipping the
1351                  * timestamping request.
1352                  */
1353                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1354                     !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1355                                            &adapter->state)) {
1356                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1357                         tx_flags |= IGC_TX_FLAGS_TSTAMP;
1358
1359                         adapter->ptp_tx_skb = skb_get(skb);
1360                         adapter->ptp_tx_start = jiffies;
1361                 } else {
1362                         adapter->tx_hwtstamp_skipped++;
1363                 }
1364         }
1365
1366         /* record initial flags and protocol */
1367         first->tx_flags = tx_flags;
1368         first->protocol = protocol;
1369
1370         tso = igc_tso(tx_ring, first, &hdr_len);
1371         if (tso < 0)
1372                 goto out_drop;
1373         else if (!tso)
1374                 igc_tx_csum(tx_ring, first);
1375
1376         igc_tx_map(tx_ring, first, hdr_len);
1377
1378         return NETDEV_TX_OK;
1379
1380 out_drop:
1381         dev_kfree_skb_any(first->skb);
1382         first->skb = NULL;
1383
1384         return NETDEV_TX_OK;
1385 }
1386
1387 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1388                                                     struct sk_buff *skb)
1389 {
1390         unsigned int r_idx = skb->queue_mapping;
1391
1392         if (r_idx >= adapter->num_tx_queues)
1393                 r_idx = r_idx % adapter->num_tx_queues;
1394
1395         return adapter->tx_ring[r_idx];
1396 }
1397
1398 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1399                                   struct net_device *netdev)
1400 {
1401         struct igc_adapter *adapter = netdev_priv(netdev);
1402
1403         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1404          * in order to meet this minimum size requirement.
1405          */
1406         if (skb->len < 17) {
1407                 if (skb_padto(skb, 17))
1408                         return NETDEV_TX_OK;
1409                 skb->len = 17;
1410         }
1411
1412         return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1413 }
1414
1415 static void igc_rx_checksum(struct igc_ring *ring,
1416                             union igc_adv_rx_desc *rx_desc,
1417                             struct sk_buff *skb)
1418 {
1419         skb_checksum_none_assert(skb);
1420
1421         /* Ignore Checksum bit is set */
1422         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1423                 return;
1424
1425         /* Rx checksum disabled via ethtool */
1426         if (!(ring->netdev->features & NETIF_F_RXCSUM))
1427                 return;
1428
1429         /* TCP/UDP checksum error bit is set */
1430         if (igc_test_staterr(rx_desc,
1431                              IGC_RXDEXT_STATERR_TCPE |
1432                              IGC_RXDEXT_STATERR_IPE)) {
1433                 /* work around errata with sctp packets where the TCPE aka
1434                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1435                  * packets (aka let the stack check the crc32c)
1436                  */
1437                 if (!(skb->len == 60 &&
1438                       test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1439                         u64_stats_update_begin(&ring->rx_syncp);
1440                         ring->rx_stats.csum_err++;
1441                         u64_stats_update_end(&ring->rx_syncp);
1442                 }
1443                 /* let the stack verify checksum errors */
1444                 return;
1445         }
1446         /* It must be a TCP or UDP packet with a valid checksum */
1447         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1448                                       IGC_RXD_STAT_UDPCS))
1449                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1450
1451         netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1452                    le32_to_cpu(rx_desc->wb.upper.status_error));
1453 }
1454
1455 static inline void igc_rx_hash(struct igc_ring *ring,
1456                                union igc_adv_rx_desc *rx_desc,
1457                                struct sk_buff *skb)
1458 {
1459         if (ring->netdev->features & NETIF_F_RXHASH)
1460                 skb_set_hash(skb,
1461                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1462                              PKT_HASH_TYPE_L3);
1463 }
1464
1465 /**
1466  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1467  * @rx_ring: rx descriptor ring packet is being transacted on
1468  * @rx_desc: pointer to the EOP Rx descriptor
1469  * @skb: pointer to current skb being populated
1470  *
1471  * This function checks the ring, descriptor, and packet information in order
1472  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1473  * skb.
1474  */
1475 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1476                                    union igc_adv_rx_desc *rx_desc,
1477                                    struct sk_buff *skb)
1478 {
1479         igc_rx_hash(rx_ring, rx_desc, skb);
1480
1481         igc_rx_checksum(rx_ring, rx_desc, skb);
1482
1483         skb_record_rx_queue(skb, rx_ring->queue_index);
1484
1485         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1486 }
1487
1488 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1489                                                const unsigned int size)
1490 {
1491         struct igc_rx_buffer *rx_buffer;
1492
1493         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1494         prefetchw(rx_buffer->page);
1495
1496         /* we are reusing so sync this buffer for CPU use */
1497         dma_sync_single_range_for_cpu(rx_ring->dev,
1498                                       rx_buffer->dma,
1499                                       rx_buffer->page_offset,
1500                                       size,
1501                                       DMA_FROM_DEVICE);
1502
1503         rx_buffer->pagecnt_bias--;
1504
1505         return rx_buffer;
1506 }
1507
1508 /**
1509  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1510  * @rx_ring: rx descriptor ring to transact packets on
1511  * @rx_buffer: buffer containing page to add
1512  * @skb: sk_buff to place the data into
1513  * @size: size of buffer to be added
1514  *
1515  * This function will add the data contained in rx_buffer->page to the skb.
1516  */
1517 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1518                             struct igc_rx_buffer *rx_buffer,
1519                             struct sk_buff *skb,
1520                             unsigned int size)
1521 {
1522 #if (PAGE_SIZE < 8192)
1523         unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1524
1525         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1526                         rx_buffer->page_offset, size, truesize);
1527         rx_buffer->page_offset ^= truesize;
1528 #else
1529         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1530                                 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1531                                 SKB_DATA_ALIGN(size);
1532         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1533                         rx_buffer->page_offset, size, truesize);
1534         rx_buffer->page_offset += truesize;
1535 #endif
1536 }
1537
1538 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1539                                      struct igc_rx_buffer *rx_buffer,
1540                                      union igc_adv_rx_desc *rx_desc,
1541                                      unsigned int size)
1542 {
1543         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1544 #if (PAGE_SIZE < 8192)
1545         unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1546 #else
1547         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1548                                 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1549 #endif
1550         struct sk_buff *skb;
1551
1552         /* prefetch first cache line of first page */
1553         prefetch(va);
1554 #if L1_CACHE_BYTES < 128
1555         prefetch(va + L1_CACHE_BYTES);
1556 #endif
1557
1558         /* build an skb around the page buffer */
1559         skb = build_skb(va - IGC_SKB_PAD, truesize);
1560         if (unlikely(!skb))
1561                 return NULL;
1562
1563         /* update pointers within the skb to store the data */
1564         skb_reserve(skb, IGC_SKB_PAD);
1565         __skb_put(skb, size);
1566
1567         /* update buffer offset */
1568 #if (PAGE_SIZE < 8192)
1569         rx_buffer->page_offset ^= truesize;
1570 #else
1571         rx_buffer->page_offset += truesize;
1572 #endif
1573
1574         return skb;
1575 }
1576
1577 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1578                                          struct igc_rx_buffer *rx_buffer,
1579                                          union igc_adv_rx_desc *rx_desc,
1580                                          unsigned int size)
1581 {
1582         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1583 #if (PAGE_SIZE < 8192)
1584         unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1585 #else
1586         unsigned int truesize = SKB_DATA_ALIGN(size);
1587 #endif
1588         unsigned int headlen;
1589         struct sk_buff *skb;
1590
1591         /* prefetch first cache line of first page */
1592         prefetch(va);
1593 #if L1_CACHE_BYTES < 128
1594         prefetch(va + L1_CACHE_BYTES);
1595 #endif
1596
1597         /* allocate a skb to store the frags */
1598         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1599         if (unlikely(!skb))
1600                 return NULL;
1601
1602         if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1603                 igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1604                 va += IGC_TS_HDR_LEN;
1605                 size -= IGC_TS_HDR_LEN;
1606         }
1607
1608         /* Determine available headroom for copy */
1609         headlen = size;
1610         if (headlen > IGC_RX_HDR_LEN)
1611                 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1612
1613         /* align pull length to size of long to optimize memcpy performance */
1614         memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1615
1616         /* update all of the pointers */
1617         size -= headlen;
1618         if (size) {
1619                 skb_add_rx_frag(skb, 0, rx_buffer->page,
1620                                 (va + headlen) - page_address(rx_buffer->page),
1621                                 size, truesize);
1622 #if (PAGE_SIZE < 8192)
1623                 rx_buffer->page_offset ^= truesize;
1624 #else
1625                 rx_buffer->page_offset += truesize;
1626 #endif
1627         } else {
1628                 rx_buffer->pagecnt_bias++;
1629         }
1630
1631         return skb;
1632 }
1633
1634 /**
1635  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1636  * @rx_ring: rx descriptor ring to store buffers on
1637  * @old_buff: donor buffer to have page reused
1638  *
1639  * Synchronizes page for reuse by the adapter
1640  */
1641 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1642                               struct igc_rx_buffer *old_buff)
1643 {
1644         u16 nta = rx_ring->next_to_alloc;
1645         struct igc_rx_buffer *new_buff;
1646
1647         new_buff = &rx_ring->rx_buffer_info[nta];
1648
1649         /* update, and store next to alloc */
1650         nta++;
1651         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1652
1653         /* Transfer page from old buffer to new buffer.
1654          * Move each member individually to avoid possible store
1655          * forwarding stalls.
1656          */
1657         new_buff->dma           = old_buff->dma;
1658         new_buff->page          = old_buff->page;
1659         new_buff->page_offset   = old_buff->page_offset;
1660         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1661 }
1662
1663 static inline bool igc_page_is_reserved(struct page *page)
1664 {
1665         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1666 }
1667
1668 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1669 {
1670         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1671         struct page *page = rx_buffer->page;
1672
1673         /* avoid re-using remote pages */
1674         if (unlikely(igc_page_is_reserved(page)))
1675                 return false;
1676
1677 #if (PAGE_SIZE < 8192)
1678         /* if we are only owner of page we can reuse it */
1679         if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1680                 return false;
1681 #else
1682 #define IGC_LAST_OFFSET \
1683         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1684
1685         if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1686                 return false;
1687 #endif
1688
1689         /* If we have drained the page fragment pool we need to update
1690          * the pagecnt_bias and page count so that we fully restock the
1691          * number of references the driver holds.
1692          */
1693         if (unlikely(!pagecnt_bias)) {
1694                 page_ref_add(page, USHRT_MAX);
1695                 rx_buffer->pagecnt_bias = USHRT_MAX;
1696         }
1697
1698         return true;
1699 }
1700
1701 /**
1702  * igc_is_non_eop - process handling of non-EOP buffers
1703  * @rx_ring: Rx ring being processed
1704  * @rx_desc: Rx descriptor for current buffer
1705  *
1706  * This function updates next to clean.  If the buffer is an EOP buffer
1707  * this function exits returning false, otherwise it will place the
1708  * sk_buff in the next buffer to be chained and return true indicating
1709  * that this is in fact a non-EOP buffer.
1710  */
1711 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1712                            union igc_adv_rx_desc *rx_desc)
1713 {
1714         u32 ntc = rx_ring->next_to_clean + 1;
1715
1716         /* fetch, update, and store next to clean */
1717         ntc = (ntc < rx_ring->count) ? ntc : 0;
1718         rx_ring->next_to_clean = ntc;
1719
1720         prefetch(IGC_RX_DESC(rx_ring, ntc));
1721
1722         if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1723                 return false;
1724
1725         return true;
1726 }
1727
1728 /**
1729  * igc_cleanup_headers - Correct corrupted or empty headers
1730  * @rx_ring: rx descriptor ring packet is being transacted on
1731  * @rx_desc: pointer to the EOP Rx descriptor
1732  * @skb: pointer to current skb being fixed
1733  *
1734  * Address the case where we are pulling data in on pages only
1735  * and as such no data is present in the skb header.
1736  *
1737  * In addition if skb is not at least 60 bytes we need to pad it so that
1738  * it is large enough to qualify as a valid Ethernet frame.
1739  *
1740  * Returns true if an error was encountered and skb was freed.
1741  */
1742 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1743                                 union igc_adv_rx_desc *rx_desc,
1744                                 struct sk_buff *skb)
1745 {
1746         if (unlikely((igc_test_staterr(rx_desc,
1747                                        IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1748                 struct net_device *netdev = rx_ring->netdev;
1749
1750                 if (!(netdev->features & NETIF_F_RXALL)) {
1751                         dev_kfree_skb_any(skb);
1752                         return true;
1753                 }
1754         }
1755
1756         /* if eth_skb_pad returns an error the skb was freed */
1757         if (eth_skb_pad(skb))
1758                 return true;
1759
1760         return false;
1761 }
1762
1763 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1764                               struct igc_rx_buffer *rx_buffer)
1765 {
1766         if (igc_can_reuse_rx_page(rx_buffer)) {
1767                 /* hand second half of page back to the ring */
1768                 igc_reuse_rx_page(rx_ring, rx_buffer);
1769         } else {
1770                 /* We are not reusing the buffer so unmap it and free
1771                  * any references we are holding to it
1772                  */
1773                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1774                                      igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1775                                      IGC_RX_DMA_ATTR);
1776                 __page_frag_cache_drain(rx_buffer->page,
1777                                         rx_buffer->pagecnt_bias);
1778         }
1779
1780         /* clear contents of rx_buffer */
1781         rx_buffer->page = NULL;
1782 }
1783
1784 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1785 {
1786         return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1787 }
1788
1789 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1790                                   struct igc_rx_buffer *bi)
1791 {
1792         struct page *page = bi->page;
1793         dma_addr_t dma;
1794
1795         /* since we are recycling buffers we should seldom need to alloc */
1796         if (likely(page))
1797                 return true;
1798
1799         /* alloc new page for storage */
1800         page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1801         if (unlikely(!page)) {
1802                 rx_ring->rx_stats.alloc_failed++;
1803                 return false;
1804         }
1805
1806         /* map page for use */
1807         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1808                                  igc_rx_pg_size(rx_ring),
1809                                  DMA_FROM_DEVICE,
1810                                  IGC_RX_DMA_ATTR);
1811
1812         /* if mapping failed free memory back to system since
1813          * there isn't much point in holding memory we can't use
1814          */
1815         if (dma_mapping_error(rx_ring->dev, dma)) {
1816                 __free_page(page);
1817
1818                 rx_ring->rx_stats.alloc_failed++;
1819                 return false;
1820         }
1821
1822         bi->dma = dma;
1823         bi->page = page;
1824         bi->page_offset = igc_rx_offset(rx_ring);
1825         bi->pagecnt_bias = 1;
1826
1827         return true;
1828 }
1829
1830 /**
1831  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1832  * @rx_ring: rx descriptor ring
1833  * @cleaned_count: number of buffers to clean
1834  */
1835 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1836 {
1837         union igc_adv_rx_desc *rx_desc;
1838         u16 i = rx_ring->next_to_use;
1839         struct igc_rx_buffer *bi;
1840         u16 bufsz;
1841
1842         /* nothing to do */
1843         if (!cleaned_count)
1844                 return;
1845
1846         rx_desc = IGC_RX_DESC(rx_ring, i);
1847         bi = &rx_ring->rx_buffer_info[i];
1848         i -= rx_ring->count;
1849
1850         bufsz = igc_rx_bufsz(rx_ring);
1851
1852         do {
1853                 if (!igc_alloc_mapped_page(rx_ring, bi))
1854                         break;
1855
1856                 /* sync the buffer for use by the device */
1857                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1858                                                  bi->page_offset, bufsz,
1859                                                  DMA_FROM_DEVICE);
1860
1861                 /* Refresh the desc even if buffer_addrs didn't change
1862                  * because each write-back erases this info.
1863                  */
1864                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1865
1866                 rx_desc++;
1867                 bi++;
1868                 i++;
1869                 if (unlikely(!i)) {
1870                         rx_desc = IGC_RX_DESC(rx_ring, 0);
1871                         bi = rx_ring->rx_buffer_info;
1872                         i -= rx_ring->count;
1873                 }
1874
1875                 /* clear the length for the next_to_use descriptor */
1876                 rx_desc->wb.upper.length = 0;
1877
1878                 cleaned_count--;
1879         } while (cleaned_count);
1880
1881         i += rx_ring->count;
1882
1883         if (rx_ring->next_to_use != i) {
1884                 /* record the next descriptor to use */
1885                 rx_ring->next_to_use = i;
1886
1887                 /* update next to alloc since we have filled the ring */
1888                 rx_ring->next_to_alloc = i;
1889
1890                 /* Force memory writes to complete before letting h/w
1891                  * know there are new descriptors to fetch.  (Only
1892                  * applicable for weak-ordered memory model archs,
1893                  * such as IA-64).
1894                  */
1895                 wmb();
1896                 writel(i, rx_ring->tail);
1897         }
1898 }
1899
1900 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1901 {
1902         unsigned int total_bytes = 0, total_packets = 0;
1903         struct igc_ring *rx_ring = q_vector->rx.ring;
1904         struct sk_buff *skb = rx_ring->skb;
1905         u16 cleaned_count = igc_desc_unused(rx_ring);
1906
1907         while (likely(total_packets < budget)) {
1908                 union igc_adv_rx_desc *rx_desc;
1909                 struct igc_rx_buffer *rx_buffer;
1910                 unsigned int size;
1911
1912                 /* return some buffers to hardware, one at a time is too slow */
1913                 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1914                         igc_alloc_rx_buffers(rx_ring, cleaned_count);
1915                         cleaned_count = 0;
1916                 }
1917
1918                 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1919                 size = le16_to_cpu(rx_desc->wb.upper.length);
1920                 if (!size)
1921                         break;
1922
1923                 /* This memory barrier is needed to keep us from reading
1924                  * any other fields out of the rx_desc until we know the
1925                  * descriptor has been written back
1926                  */
1927                 dma_rmb();
1928
1929                 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1930
1931                 /* retrieve a buffer from the ring */
1932                 if (skb)
1933                         igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1934                 else if (ring_uses_build_skb(rx_ring))
1935                         skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1936                 else
1937                         skb = igc_construct_skb(rx_ring, rx_buffer,
1938                                                 rx_desc, size);
1939
1940                 /* exit if we failed to retrieve a buffer */
1941                 if (!skb) {
1942                         rx_ring->rx_stats.alloc_failed++;
1943                         rx_buffer->pagecnt_bias++;
1944                         break;
1945                 }
1946
1947                 igc_put_rx_buffer(rx_ring, rx_buffer);
1948                 cleaned_count++;
1949
1950                 /* fetch next buffer in frame if non-eop */
1951                 if (igc_is_non_eop(rx_ring, rx_desc))
1952                         continue;
1953
1954                 /* verify the packet layout is correct */
1955                 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1956                         skb = NULL;
1957                         continue;
1958                 }
1959
1960                 /* probably a little skewed due to removing CRC */
1961                 total_bytes += skb->len;
1962
1963                 /* populate checksum, VLAN, and protocol */
1964                 igc_process_skb_fields(rx_ring, rx_desc, skb);
1965
1966                 napi_gro_receive(&q_vector->napi, skb);
1967
1968                 /* reset skb pointer */
1969                 skb = NULL;
1970
1971                 /* update budget accounting */
1972                 total_packets++;
1973         }
1974
1975         /* place incomplete frames back on ring for completion */
1976         rx_ring->skb = skb;
1977
1978         u64_stats_update_begin(&rx_ring->rx_syncp);
1979         rx_ring->rx_stats.packets += total_packets;
1980         rx_ring->rx_stats.bytes += total_bytes;
1981         u64_stats_update_end(&rx_ring->rx_syncp);
1982         q_vector->rx.total_packets += total_packets;
1983         q_vector->rx.total_bytes += total_bytes;
1984
1985         if (cleaned_count)
1986                 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1987
1988         return total_packets;
1989 }
1990
1991 /**
1992  * igc_clean_tx_irq - Reclaim resources after transmit completes
1993  * @q_vector: pointer to q_vector containing needed info
1994  * @napi_budget: Used to determine if we are in netpoll
1995  *
1996  * returns true if ring is completely cleaned
1997  */
1998 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1999 {
2000         struct igc_adapter *adapter = q_vector->adapter;
2001         unsigned int total_bytes = 0, total_packets = 0;
2002         unsigned int budget = q_vector->tx.work_limit;
2003         struct igc_ring *tx_ring = q_vector->tx.ring;
2004         unsigned int i = tx_ring->next_to_clean;
2005         struct igc_tx_buffer *tx_buffer;
2006         union igc_adv_tx_desc *tx_desc;
2007
2008         if (test_bit(__IGC_DOWN, &adapter->state))
2009                 return true;
2010
2011         tx_buffer = &tx_ring->tx_buffer_info[i];
2012         tx_desc = IGC_TX_DESC(tx_ring, i);
2013         i -= tx_ring->count;
2014
2015         do {
2016                 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2017
2018                 /* if next_to_watch is not set then there is no work pending */
2019                 if (!eop_desc)
2020                         break;
2021
2022                 /* prevent any other reads prior to eop_desc */
2023                 smp_rmb();
2024
2025                 /* if DD is not set pending work has not been completed */
2026                 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2027                         break;
2028
2029                 /* clear next_to_watch to prevent false hangs */
2030                 tx_buffer->next_to_watch = NULL;
2031
2032                 /* update the statistics for this packet */
2033                 total_bytes += tx_buffer->bytecount;
2034                 total_packets += tx_buffer->gso_segs;
2035
2036                 /* free the skb */
2037                 napi_consume_skb(tx_buffer->skb, napi_budget);
2038
2039                 /* unmap skb header data */
2040                 dma_unmap_single(tx_ring->dev,
2041                                  dma_unmap_addr(tx_buffer, dma),
2042                                  dma_unmap_len(tx_buffer, len),
2043                                  DMA_TO_DEVICE);
2044
2045                 /* clear tx_buffer data */
2046                 dma_unmap_len_set(tx_buffer, len, 0);
2047
2048                 /* clear last DMA location and unmap remaining buffers */
2049                 while (tx_desc != eop_desc) {
2050                         tx_buffer++;
2051                         tx_desc++;
2052                         i++;
2053                         if (unlikely(!i)) {
2054                                 i -= tx_ring->count;
2055                                 tx_buffer = tx_ring->tx_buffer_info;
2056                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
2057                         }
2058
2059                         /* unmap any remaining paged data */
2060                         if (dma_unmap_len(tx_buffer, len)) {
2061                                 dma_unmap_page(tx_ring->dev,
2062                                                dma_unmap_addr(tx_buffer, dma),
2063                                                dma_unmap_len(tx_buffer, len),
2064                                                DMA_TO_DEVICE);
2065                                 dma_unmap_len_set(tx_buffer, len, 0);
2066                         }
2067                 }
2068
2069                 /* move us one more past the eop_desc for start of next pkt */
2070                 tx_buffer++;
2071                 tx_desc++;
2072                 i++;
2073                 if (unlikely(!i)) {
2074                         i -= tx_ring->count;
2075                         tx_buffer = tx_ring->tx_buffer_info;
2076                         tx_desc = IGC_TX_DESC(tx_ring, 0);
2077                 }
2078
2079                 /* issue prefetch for next Tx descriptor */
2080                 prefetch(tx_desc);
2081
2082                 /* update budget accounting */
2083                 budget--;
2084         } while (likely(budget));
2085
2086         netdev_tx_completed_queue(txring_txq(tx_ring),
2087                                   total_packets, total_bytes);
2088
2089         i += tx_ring->count;
2090         tx_ring->next_to_clean = i;
2091         u64_stats_update_begin(&tx_ring->tx_syncp);
2092         tx_ring->tx_stats.bytes += total_bytes;
2093         tx_ring->tx_stats.packets += total_packets;
2094         u64_stats_update_end(&tx_ring->tx_syncp);
2095         q_vector->tx.total_bytes += total_bytes;
2096         q_vector->tx.total_packets += total_packets;
2097
2098         if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2099                 struct igc_hw *hw = &adapter->hw;
2100
2101                 /* Detect a transmit hang in hardware, this serializes the
2102                  * check with the clearing of time_stamp and movement of i
2103                  */
2104                 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2105                 if (tx_buffer->next_to_watch &&
2106                     time_after(jiffies, tx_buffer->time_stamp +
2107                     (adapter->tx_timeout_factor * HZ)) &&
2108                     !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2109                         /* detected Tx unit hang */
2110                         netdev_err(tx_ring->netdev,
2111                                    "Detected Tx Unit Hang\n"
2112                                    "  Tx Queue             <%d>\n"
2113                                    "  TDH                  <%x>\n"
2114                                    "  TDT                  <%x>\n"
2115                                    "  next_to_use          <%x>\n"
2116                                    "  next_to_clean        <%x>\n"
2117                                    "buffer_info[next_to_clean]\n"
2118                                    "  time_stamp           <%lx>\n"
2119                                    "  next_to_watch        <%p>\n"
2120                                    "  jiffies              <%lx>\n"
2121                                    "  desc.status          <%x>\n",
2122                                    tx_ring->queue_index,
2123                                    rd32(IGC_TDH(tx_ring->reg_idx)),
2124                                    readl(tx_ring->tail),
2125                                    tx_ring->next_to_use,
2126                                    tx_ring->next_to_clean,
2127                                    tx_buffer->time_stamp,
2128                                    tx_buffer->next_to_watch,
2129                                    jiffies,
2130                                    tx_buffer->next_to_watch->wb.status);
2131                         netif_stop_subqueue(tx_ring->netdev,
2132                                             tx_ring->queue_index);
2133
2134                         /* we are about to reset, no point in enabling stuff */
2135                         return true;
2136                 }
2137         }
2138
2139 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2140         if (unlikely(total_packets &&
2141                      netif_carrier_ok(tx_ring->netdev) &&
2142                      igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2143                 /* Make sure that anybody stopping the queue after this
2144                  * sees the new next_to_clean.
2145                  */
2146                 smp_mb();
2147                 if (__netif_subqueue_stopped(tx_ring->netdev,
2148                                              tx_ring->queue_index) &&
2149                     !(test_bit(__IGC_DOWN, &adapter->state))) {
2150                         netif_wake_subqueue(tx_ring->netdev,
2151                                             tx_ring->queue_index);
2152
2153                         u64_stats_update_begin(&tx_ring->tx_syncp);
2154                         tx_ring->tx_stats.restart_queue++;
2155                         u64_stats_update_end(&tx_ring->tx_syncp);
2156                 }
2157         }
2158
2159         return !!budget;
2160 }
2161
2162 static int igc_find_mac_filter(struct igc_adapter *adapter,
2163                                enum igc_mac_filter_type type, const u8 *addr)
2164 {
2165         struct igc_hw *hw = &adapter->hw;
2166         int max_entries = hw->mac.rar_entry_count;
2167         u32 ral, rah;
2168         int i;
2169
2170         for (i = 0; i < max_entries; i++) {
2171                 ral = rd32(IGC_RAL(i));
2172                 rah = rd32(IGC_RAH(i));
2173
2174                 if (!(rah & IGC_RAH_AV))
2175                         continue;
2176                 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2177                         continue;
2178                 if ((rah & IGC_RAH_RAH_MASK) !=
2179                     le16_to_cpup((__le16 *)(addr + 4)))
2180                         continue;
2181                 if (ral != le32_to_cpup((__le32 *)(addr)))
2182                         continue;
2183
2184                 return i;
2185         }
2186
2187         return -1;
2188 }
2189
2190 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2191 {
2192         struct igc_hw *hw = &adapter->hw;
2193         int max_entries = hw->mac.rar_entry_count;
2194         u32 rah;
2195         int i;
2196
2197         for (i = 0; i < max_entries; i++) {
2198                 rah = rd32(IGC_RAH(i));
2199
2200                 if (!(rah & IGC_RAH_AV))
2201                         return i;
2202         }
2203
2204         return -1;
2205 }
2206
2207 /**
2208  * igc_add_mac_filter() - Add MAC address filter
2209  * @adapter: Pointer to adapter where the filter should be added
2210  * @type: MAC address filter type (source or destination)
2211  * @addr: MAC address
2212  * @queue: If non-negative, queue assignment feature is enabled and frames
2213  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2214  *         assignment is disabled.
2215  *
2216  * Return: 0 in case of success, negative errno code otherwise.
2217  */
2218 static int igc_add_mac_filter(struct igc_adapter *adapter,
2219                               enum igc_mac_filter_type type, const u8 *addr,
2220                               int queue)
2221 {
2222         struct net_device *dev = adapter->netdev;
2223         int index;
2224
2225         index = igc_find_mac_filter(adapter, type, addr);
2226         if (index >= 0)
2227                 goto update_filter;
2228
2229         index = igc_get_avail_mac_filter_slot(adapter);
2230         if (index < 0)
2231                 return -ENOSPC;
2232
2233         netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2234                    index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2235                    addr, queue);
2236
2237 update_filter:
2238         igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2239         return 0;
2240 }
2241
2242 /**
2243  * igc_del_mac_filter() - Delete MAC address filter
2244  * @adapter: Pointer to adapter where the filter should be deleted from
2245  * @type: MAC address filter type (source or destination)
2246  * @addr: MAC address
2247  */
2248 static void igc_del_mac_filter(struct igc_adapter *adapter,
2249                                enum igc_mac_filter_type type, const u8 *addr)
2250 {
2251         struct net_device *dev = adapter->netdev;
2252         int index;
2253
2254         index = igc_find_mac_filter(adapter, type, addr);
2255         if (index < 0)
2256                 return;
2257
2258         if (index == 0) {
2259                 /* If this is the default filter, we don't actually delete it.
2260                  * We just reset to its default value i.e. disable queue
2261                  * assignment.
2262                  */
2263                 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2264
2265                 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2266         } else {
2267                 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2268                            index,
2269                            type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2270                            addr);
2271
2272                 igc_clear_mac_filter_hw(adapter, index);
2273         }
2274 }
2275
2276 /**
2277  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2278  * @adapter: Pointer to adapter where the filter should be added
2279  * @prio: VLAN priority value
2280  * @queue: Queue number which matching frames are assigned to
2281  *
2282  * Return: 0 in case of success, negative errno code otherwise.
2283  */
2284 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2285                                     int queue)
2286 {
2287         struct net_device *dev = adapter->netdev;
2288         struct igc_hw *hw = &adapter->hw;
2289         u32 vlanpqf;
2290
2291         vlanpqf = rd32(IGC_VLANPQF);
2292
2293         if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2294                 netdev_dbg(dev, "VLAN priority filter already in use\n");
2295                 return -EEXIST;
2296         }
2297
2298         vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2299         vlanpqf |= IGC_VLANPQF_VALID(prio);
2300
2301         wr32(IGC_VLANPQF, vlanpqf);
2302
2303         netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2304                    prio, queue);
2305         return 0;
2306 }
2307
2308 /**
2309  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2310  * @adapter: Pointer to adapter where the filter should be deleted from
2311  * @prio: VLAN priority value
2312  */
2313 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2314 {
2315         struct igc_hw *hw = &adapter->hw;
2316         u32 vlanpqf;
2317
2318         vlanpqf = rd32(IGC_VLANPQF);
2319
2320         vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2321         vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2322
2323         wr32(IGC_VLANPQF, vlanpqf);
2324
2325         netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2326                    prio);
2327 }
2328
2329 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2330 {
2331         struct igc_hw *hw = &adapter->hw;
2332         int i;
2333
2334         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2335                 u32 etqf = rd32(IGC_ETQF(i));
2336
2337                 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2338                         return i;
2339         }
2340
2341         return -1;
2342 }
2343
2344 /**
2345  * igc_add_etype_filter() - Add ethertype filter
2346  * @adapter: Pointer to adapter where the filter should be added
2347  * @etype: Ethertype value
2348  * @queue: If non-negative, queue assignment feature is enabled and frames
2349  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2350  *         assignment is disabled.
2351  *
2352  * Return: 0 in case of success, negative errno code otherwise.
2353  */
2354 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2355                                 int queue)
2356 {
2357         struct igc_hw *hw = &adapter->hw;
2358         int index;
2359         u32 etqf;
2360
2361         index = igc_get_avail_etype_filter_slot(adapter);
2362         if (index < 0)
2363                 return -ENOSPC;
2364
2365         etqf = rd32(IGC_ETQF(index));
2366
2367         etqf &= ~IGC_ETQF_ETYPE_MASK;
2368         etqf |= etype;
2369
2370         if (queue >= 0) {
2371                 etqf &= ~IGC_ETQF_QUEUE_MASK;
2372                 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2373                 etqf |= IGC_ETQF_QUEUE_ENABLE;
2374         }
2375
2376         etqf |= IGC_ETQF_FILTER_ENABLE;
2377
2378         wr32(IGC_ETQF(index), etqf);
2379
2380         netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2381                    etype, queue);
2382         return 0;
2383 }
2384
2385 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2386 {
2387         struct igc_hw *hw = &adapter->hw;
2388         int i;
2389
2390         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2391                 u32 etqf = rd32(IGC_ETQF(i));
2392
2393                 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2394                         return i;
2395         }
2396
2397         return -1;
2398 }
2399
2400 /**
2401  * igc_del_etype_filter() - Delete ethertype filter
2402  * @adapter: Pointer to adapter where the filter should be deleted from
2403  * @etype: Ethertype value
2404  */
2405 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2406 {
2407         struct igc_hw *hw = &adapter->hw;
2408         int index;
2409
2410         index = igc_find_etype_filter(adapter, etype);
2411         if (index < 0)
2412                 return;
2413
2414         wr32(IGC_ETQF(index), 0);
2415
2416         netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2417                    etype);
2418 }
2419
2420 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2421                                const struct igc_nfc_rule *rule)
2422 {
2423         int err;
2424
2425         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2426                 err = igc_add_etype_filter(adapter, rule->filter.etype,
2427                                            rule->action);
2428                 if (err)
2429                         return err;
2430         }
2431
2432         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2433                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2434                                          rule->filter.src_addr, rule->action);
2435                 if (err)
2436                         return err;
2437         }
2438
2439         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2440                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2441                                          rule->filter.dst_addr, rule->action);
2442                 if (err)
2443                         return err;
2444         }
2445
2446         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2447                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2448                            VLAN_PRIO_SHIFT;
2449
2450                 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2451                 if (err)
2452                         return err;
2453         }
2454
2455         return 0;
2456 }
2457
2458 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2459                                  const struct igc_nfc_rule *rule)
2460 {
2461         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2462                 igc_del_etype_filter(adapter, rule->filter.etype);
2463
2464         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2465                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2466                            VLAN_PRIO_SHIFT;
2467
2468                 igc_del_vlan_prio_filter(adapter, prio);
2469         }
2470
2471         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2472                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2473                                    rule->filter.src_addr);
2474
2475         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2476                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2477                                    rule->filter.dst_addr);
2478 }
2479
2480 /**
2481  * igc_get_nfc_rule() - Get NFC rule
2482  * @adapter: Pointer to adapter
2483  * @location: Rule location
2484  *
2485  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2486  *
2487  * Return: Pointer to NFC rule at @location. If not found, NULL.
2488  */
2489 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2490                                       u32 location)
2491 {
2492         struct igc_nfc_rule *rule;
2493
2494         list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2495                 if (rule->location == location)
2496                         return rule;
2497                 if (rule->location > location)
2498                         break;
2499         }
2500
2501         return NULL;
2502 }
2503
2504 /**
2505  * igc_del_nfc_rule() - Delete NFC rule
2506  * @adapter: Pointer to adapter
2507  * @rule: Pointer to rule to be deleted
2508  *
2509  * Disable NFC rule in hardware and delete it from adapter.
2510  *
2511  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2512  */
2513 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2514 {
2515         igc_disable_nfc_rule(adapter, rule);
2516
2517         list_del(&rule->list);
2518         adapter->nfc_rule_count--;
2519
2520         kfree(rule);
2521 }
2522
2523 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2524 {
2525         struct igc_nfc_rule *rule, *tmp;
2526
2527         mutex_lock(&adapter->nfc_rule_lock);
2528
2529         list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2530                 igc_del_nfc_rule(adapter, rule);
2531
2532         mutex_unlock(&adapter->nfc_rule_lock);
2533 }
2534
2535 /**
2536  * igc_add_nfc_rule() - Add NFC rule
2537  * @adapter: Pointer to adapter
2538  * @rule: Pointer to rule to be added
2539  *
2540  * Enable NFC rule in hardware and add it to adapter.
2541  *
2542  * Context: Expects adapter->nfc_rule_lock to be held by caller.
2543  *
2544  * Return: 0 on success, negative errno on failure.
2545  */
2546 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2547 {
2548         struct igc_nfc_rule *pred, *cur;
2549         int err;
2550
2551         err = igc_enable_nfc_rule(adapter, rule);
2552         if (err)
2553                 return err;
2554
2555         pred = NULL;
2556         list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2557                 if (cur->location >= rule->location)
2558                         break;
2559                 pred = cur;
2560         }
2561
2562         list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2563         adapter->nfc_rule_count++;
2564         return 0;
2565 }
2566
2567 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2568 {
2569         struct igc_nfc_rule *rule;
2570
2571         mutex_lock(&adapter->nfc_rule_lock);
2572
2573         list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2574                 igc_enable_nfc_rule(adapter, rule);
2575
2576         mutex_unlock(&adapter->nfc_rule_lock);
2577 }
2578
2579 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2580 {
2581         struct igc_adapter *adapter = netdev_priv(netdev);
2582
2583         return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2584 }
2585
2586 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2587 {
2588         struct igc_adapter *adapter = netdev_priv(netdev);
2589
2590         igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2591         return 0;
2592 }
2593
2594 /**
2595  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2596  * @netdev: network interface device structure
2597  *
2598  * The set_rx_mode entry point is called whenever the unicast or multicast
2599  * address lists or the network interface flags are updated.  This routine is
2600  * responsible for configuring the hardware for proper unicast, multicast,
2601  * promiscuous mode, and all-multi behavior.
2602  */
2603 static void igc_set_rx_mode(struct net_device *netdev)
2604 {
2605         struct igc_adapter *adapter = netdev_priv(netdev);
2606         struct igc_hw *hw = &adapter->hw;
2607         u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2608         int count;
2609
2610         /* Check for Promiscuous and All Multicast modes */
2611         if (netdev->flags & IFF_PROMISC) {
2612                 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2613         } else {
2614                 if (netdev->flags & IFF_ALLMULTI) {
2615                         rctl |= IGC_RCTL_MPE;
2616                 } else {
2617                         /* Write addresses to the MTA, if the attempt fails
2618                          * then we should just turn on promiscuous mode so
2619                          * that we can at least receive multicast traffic
2620                          */
2621                         count = igc_write_mc_addr_list(netdev);
2622                         if (count < 0)
2623                                 rctl |= IGC_RCTL_MPE;
2624                 }
2625         }
2626
2627         /* Write addresses to available RAR registers, if there is not
2628          * sufficient space to store all the addresses then enable
2629          * unicast promiscuous mode
2630          */
2631         if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2632                 rctl |= IGC_RCTL_UPE;
2633
2634         /* update state of unicast and multicast */
2635         rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2636         wr32(IGC_RCTL, rctl);
2637
2638 #if (PAGE_SIZE < 8192)
2639         if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2640                 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2641 #endif
2642         wr32(IGC_RLPML, rlpml);
2643 }
2644
2645 /**
2646  * igc_configure - configure the hardware for RX and TX
2647  * @adapter: private board structure
2648  */
2649 static void igc_configure(struct igc_adapter *adapter)
2650 {
2651         struct net_device *netdev = adapter->netdev;
2652         int i = 0;
2653
2654         igc_get_hw_control(adapter);
2655         igc_set_rx_mode(netdev);
2656
2657         igc_setup_tctl(adapter);
2658         igc_setup_mrqc(adapter);
2659         igc_setup_rctl(adapter);
2660
2661         igc_set_default_mac_filter(adapter);
2662         igc_restore_nfc_rules(adapter);
2663
2664         igc_configure_tx(adapter);
2665         igc_configure_rx(adapter);
2666
2667         igc_rx_fifo_flush_base(&adapter->hw);
2668
2669         /* call igc_desc_unused which always leaves
2670          * at least 1 descriptor unused to make sure
2671          * next_to_use != next_to_clean
2672          */
2673         for (i = 0; i < adapter->num_rx_queues; i++) {
2674                 struct igc_ring *ring = adapter->rx_ring[i];
2675
2676                 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2677         }
2678 }
2679
2680 /**
2681  * igc_write_ivar - configure ivar for given MSI-X vector
2682  * @hw: pointer to the HW structure
2683  * @msix_vector: vector number we are allocating to a given ring
2684  * @index: row index of IVAR register to write within IVAR table
2685  * @offset: column offset of in IVAR, should be multiple of 8
2686  *
2687  * The IVAR table consists of 2 columns,
2688  * each containing an cause allocation for an Rx and Tx ring, and a
2689  * variable number of rows depending on the number of queues supported.
2690  */
2691 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2692                            int index, int offset)
2693 {
2694         u32 ivar = array_rd32(IGC_IVAR0, index);
2695
2696         /* clear any bits that are currently set */
2697         ivar &= ~((u32)0xFF << offset);
2698
2699         /* write vector and valid bit */
2700         ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2701
2702         array_wr32(IGC_IVAR0, index, ivar);
2703 }
2704
2705 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2706 {
2707         struct igc_adapter *adapter = q_vector->adapter;
2708         struct igc_hw *hw = &adapter->hw;
2709         int rx_queue = IGC_N0_QUEUE;
2710         int tx_queue = IGC_N0_QUEUE;
2711
2712         if (q_vector->rx.ring)
2713                 rx_queue = q_vector->rx.ring->reg_idx;
2714         if (q_vector->tx.ring)
2715                 tx_queue = q_vector->tx.ring->reg_idx;
2716
2717         switch (hw->mac.type) {
2718         case igc_i225:
2719                 if (rx_queue > IGC_N0_QUEUE)
2720                         igc_write_ivar(hw, msix_vector,
2721                                        rx_queue >> 1,
2722                                        (rx_queue & 0x1) << 4);
2723                 if (tx_queue > IGC_N0_QUEUE)
2724                         igc_write_ivar(hw, msix_vector,
2725                                        tx_queue >> 1,
2726                                        ((tx_queue & 0x1) << 4) + 8);
2727                 q_vector->eims_value = BIT(msix_vector);
2728                 break;
2729         default:
2730                 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2731                 break;
2732         }
2733
2734         /* add q_vector eims value to global eims_enable_mask */
2735         adapter->eims_enable_mask |= q_vector->eims_value;
2736
2737         /* configure q_vector to set itr on first interrupt */
2738         q_vector->set_itr = 1;
2739 }
2740
2741 /**
2742  * igc_configure_msix - Configure MSI-X hardware
2743  * @adapter: Pointer to adapter structure
2744  *
2745  * igc_configure_msix sets up the hardware to properly
2746  * generate MSI-X interrupts.
2747  */
2748 static void igc_configure_msix(struct igc_adapter *adapter)
2749 {
2750         struct igc_hw *hw = &adapter->hw;
2751         int i, vector = 0;
2752         u32 tmp;
2753
2754         adapter->eims_enable_mask = 0;
2755
2756         /* set vector for other causes, i.e. link changes */
2757         switch (hw->mac.type) {
2758         case igc_i225:
2759                 /* Turn on MSI-X capability first, or our settings
2760                  * won't stick.  And it will take days to debug.
2761                  */
2762                 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2763                      IGC_GPIE_PBA | IGC_GPIE_EIAME |
2764                      IGC_GPIE_NSICR);
2765
2766                 /* enable msix_other interrupt */
2767                 adapter->eims_other = BIT(vector);
2768                 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2769
2770                 wr32(IGC_IVAR_MISC, tmp);
2771                 break;
2772         default:
2773                 /* do nothing, since nothing else supports MSI-X */
2774                 break;
2775         } /* switch (hw->mac.type) */
2776
2777         adapter->eims_enable_mask |= adapter->eims_other;
2778
2779         for (i = 0; i < adapter->num_q_vectors; i++)
2780                 igc_assign_vector(adapter->q_vector[i], vector++);
2781
2782         wrfl();
2783 }
2784
2785 /**
2786  * igc_irq_enable - Enable default interrupt generation settings
2787  * @adapter: board private structure
2788  */
2789 static void igc_irq_enable(struct igc_adapter *adapter)
2790 {
2791         struct igc_hw *hw = &adapter->hw;
2792
2793         if (adapter->msix_entries) {
2794                 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2795                 u32 regval = rd32(IGC_EIAC);
2796
2797                 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2798                 regval = rd32(IGC_EIAM);
2799                 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2800                 wr32(IGC_EIMS, adapter->eims_enable_mask);
2801                 wr32(IGC_IMS, ims);
2802         } else {
2803                 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2804                 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2805         }
2806 }
2807
2808 /**
2809  * igc_irq_disable - Mask off interrupt generation on the NIC
2810  * @adapter: board private structure
2811  */
2812 static void igc_irq_disable(struct igc_adapter *adapter)
2813 {
2814         struct igc_hw *hw = &adapter->hw;
2815
2816         if (adapter->msix_entries) {
2817                 u32 regval = rd32(IGC_EIAM);
2818
2819                 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2820                 wr32(IGC_EIMC, adapter->eims_enable_mask);
2821                 regval = rd32(IGC_EIAC);
2822                 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2823         }
2824
2825         wr32(IGC_IAM, 0);
2826         wr32(IGC_IMC, ~0);
2827         wrfl();
2828
2829         if (adapter->msix_entries) {
2830                 int vector = 0, i;
2831
2832                 synchronize_irq(adapter->msix_entries[vector++].vector);
2833
2834                 for (i = 0; i < adapter->num_q_vectors; i++)
2835                         synchronize_irq(adapter->msix_entries[vector++].vector);
2836         } else {
2837                 synchronize_irq(adapter->pdev->irq);
2838         }
2839 }
2840
2841 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2842                               const u32 max_rss_queues)
2843 {
2844         /* Determine if we need to pair queues. */
2845         /* If rss_queues > half of max_rss_queues, pair the queues in
2846          * order to conserve interrupts due to limited supply.
2847          */
2848         if (adapter->rss_queues > (max_rss_queues / 2))
2849                 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2850         else
2851                 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2852 }
2853
2854 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2855 {
2856         return IGC_MAX_RX_QUEUES;
2857 }
2858
2859 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2860 {
2861         u32 max_rss_queues;
2862
2863         max_rss_queues = igc_get_max_rss_queues(adapter);
2864         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2865
2866         igc_set_flag_queue_pairs(adapter, max_rss_queues);
2867 }
2868
2869 /**
2870  * igc_reset_q_vector - Reset config for interrupt vector
2871  * @adapter: board private structure to initialize
2872  * @v_idx: Index of vector to be reset
2873  *
2874  * If NAPI is enabled it will delete any references to the
2875  * NAPI struct. This is preparation for igc_free_q_vector.
2876  */
2877 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2878 {
2879         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2880
2881         /* if we're coming from igc_set_interrupt_capability, the vectors are
2882          * not yet allocated
2883          */
2884         if (!q_vector)
2885                 return;
2886
2887         if (q_vector->tx.ring)
2888                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2889
2890         if (q_vector->rx.ring)
2891                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2892
2893         netif_napi_del(&q_vector->napi);
2894 }
2895
2896 /**
2897  * igc_free_q_vector - Free memory allocated for specific interrupt vector
2898  * @adapter: board private structure to initialize
2899  * @v_idx: Index of vector to be freed
2900  *
2901  * This function frees the memory allocated to the q_vector.
2902  */
2903 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2904 {
2905         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2906
2907         adapter->q_vector[v_idx] = NULL;
2908
2909         /* igc_get_stats64() might access the rings on this vector,
2910          * we must wait a grace period before freeing it.
2911          */
2912         if (q_vector)
2913                 kfree_rcu(q_vector, rcu);
2914 }
2915
2916 /**
2917  * igc_free_q_vectors - Free memory allocated for interrupt vectors
2918  * @adapter: board private structure to initialize
2919  *
2920  * This function frees the memory allocated to the q_vectors.  In addition if
2921  * NAPI is enabled it will delete any references to the NAPI struct prior
2922  * to freeing the q_vector.
2923  */
2924 static void igc_free_q_vectors(struct igc_adapter *adapter)
2925 {
2926         int v_idx = adapter->num_q_vectors;
2927
2928         adapter->num_tx_queues = 0;
2929         adapter->num_rx_queues = 0;
2930         adapter->num_q_vectors = 0;
2931
2932         while (v_idx--) {
2933                 igc_reset_q_vector(adapter, v_idx);
2934                 igc_free_q_vector(adapter, v_idx);
2935         }
2936 }
2937
2938 /**
2939  * igc_update_itr - update the dynamic ITR value based on statistics
2940  * @q_vector: pointer to q_vector
2941  * @ring_container: ring info to update the itr for
2942  *
2943  * Stores a new ITR value based on packets and byte
2944  * counts during the last interrupt.  The advantage of per interrupt
2945  * computation is faster updates and more accurate ITR for the current
2946  * traffic pattern.  Constants in this function were computed
2947  * based on theoretical maximum wire speed and thresholds were set based
2948  * on testing data as well as attempting to minimize response time
2949  * while increasing bulk throughput.
2950  * NOTE: These calculations are only valid when operating in a single-
2951  * queue environment.
2952  */
2953 static void igc_update_itr(struct igc_q_vector *q_vector,
2954                            struct igc_ring_container *ring_container)
2955 {
2956         unsigned int packets = ring_container->total_packets;
2957         unsigned int bytes = ring_container->total_bytes;
2958         u8 itrval = ring_container->itr;
2959
2960         /* no packets, exit with status unchanged */
2961         if (packets == 0)
2962                 return;
2963
2964         switch (itrval) {
2965         case lowest_latency:
2966                 /* handle TSO and jumbo frames */
2967                 if (bytes / packets > 8000)
2968                         itrval = bulk_latency;
2969                 else if ((packets < 5) && (bytes > 512))
2970                         itrval = low_latency;
2971                 break;
2972         case low_latency:  /* 50 usec aka 20000 ints/s */
2973                 if (bytes > 10000) {
2974                         /* this if handles the TSO accounting */
2975                         if (bytes / packets > 8000)
2976                                 itrval = bulk_latency;
2977                         else if ((packets < 10) || ((bytes / packets) > 1200))
2978                                 itrval = bulk_latency;
2979                         else if ((packets > 35))
2980                                 itrval = lowest_latency;
2981                 } else if (bytes / packets > 2000) {
2982                         itrval = bulk_latency;
2983                 } else if (packets <= 2 && bytes < 512) {
2984                         itrval = lowest_latency;
2985                 }
2986                 break;
2987         case bulk_latency: /* 250 usec aka 4000 ints/s */
2988                 if (bytes > 25000) {
2989                         if (packets > 35)
2990                                 itrval = low_latency;
2991                 } else if (bytes < 1500) {
2992                         itrval = low_latency;
2993                 }
2994                 break;
2995         }
2996
2997         /* clear work counters since we have the values we need */
2998         ring_container->total_bytes = 0;
2999         ring_container->total_packets = 0;
3000
3001         /* write updated itr to ring container */
3002         ring_container->itr = itrval;
3003 }
3004
3005 static void igc_set_itr(struct igc_q_vector *q_vector)
3006 {
3007         struct igc_adapter *adapter = q_vector->adapter;
3008         u32 new_itr = q_vector->itr_val;
3009         u8 current_itr = 0;
3010
3011         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3012         switch (adapter->link_speed) {
3013         case SPEED_10:
3014         case SPEED_100:
3015                 current_itr = 0;
3016                 new_itr = IGC_4K_ITR;
3017                 goto set_itr_now;
3018         default:
3019                 break;
3020         }
3021
3022         igc_update_itr(q_vector, &q_vector->tx);
3023         igc_update_itr(q_vector, &q_vector->rx);
3024
3025         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3026
3027         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3028         if (current_itr == lowest_latency &&
3029             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3030             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3031                 current_itr = low_latency;
3032
3033         switch (current_itr) {
3034         /* counts and packets in update_itr are dependent on these numbers */
3035         case lowest_latency:
3036                 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3037                 break;
3038         case low_latency:
3039                 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3040                 break;
3041         case bulk_latency:
3042                 new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3043                 break;
3044         default:
3045                 break;
3046         }
3047
3048 set_itr_now:
3049         if (new_itr != q_vector->itr_val) {
3050                 /* this attempts to bias the interrupt rate towards Bulk
3051                  * by adding intermediate steps when interrupt rate is
3052                  * increasing
3053                  */
3054                 new_itr = new_itr > q_vector->itr_val ?
3055                           max((new_itr * q_vector->itr_val) /
3056                           (new_itr + (q_vector->itr_val >> 2)),
3057                           new_itr) : new_itr;
3058                 /* Don't write the value here; it resets the adapter's
3059                  * internal timer, and causes us to delay far longer than
3060                  * we should between interrupts.  Instead, we write the ITR
3061                  * value at the beginning of the next interrupt so the timing
3062                  * ends up being correct.
3063                  */
3064                 q_vector->itr_val = new_itr;
3065                 q_vector->set_itr = 1;
3066         }
3067 }
3068
3069 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3070 {
3071         int v_idx = adapter->num_q_vectors;
3072
3073         if (adapter->msix_entries) {
3074                 pci_disable_msix(adapter->pdev);
3075                 kfree(adapter->msix_entries);
3076                 adapter->msix_entries = NULL;
3077         } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3078                 pci_disable_msi(adapter->pdev);
3079         }
3080
3081         while (v_idx--)
3082                 igc_reset_q_vector(adapter, v_idx);
3083 }
3084
3085 /**
3086  * igc_set_interrupt_capability - set MSI or MSI-X if supported
3087  * @adapter: Pointer to adapter structure
3088  * @msix: boolean value for MSI-X capability
3089  *
3090  * Attempt to configure interrupts using the best available
3091  * capabilities of the hardware and kernel.
3092  */
3093 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3094                                          bool msix)
3095 {
3096         int numvecs, i;
3097         int err;
3098
3099         if (!msix)
3100                 goto msi_only;
3101         adapter->flags |= IGC_FLAG_HAS_MSIX;
3102
3103         /* Number of supported queues. */
3104         adapter->num_rx_queues = adapter->rss_queues;
3105
3106         adapter->num_tx_queues = adapter->rss_queues;
3107
3108         /* start with one vector for every Rx queue */
3109         numvecs = adapter->num_rx_queues;
3110
3111         /* if Tx handler is separate add 1 for every Tx queue */
3112         if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3113                 numvecs += adapter->num_tx_queues;
3114
3115         /* store the number of vectors reserved for queues */
3116         adapter->num_q_vectors = numvecs;
3117
3118         /* add 1 vector for link status interrupts */
3119         numvecs++;
3120
3121         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3122                                         GFP_KERNEL);
3123
3124         if (!adapter->msix_entries)
3125                 return;
3126
3127         /* populate entry values */
3128         for (i = 0; i < numvecs; i++)
3129                 adapter->msix_entries[i].entry = i;
3130
3131         err = pci_enable_msix_range(adapter->pdev,
3132                                     adapter->msix_entries,
3133                                     numvecs,
3134                                     numvecs);
3135         if (err > 0)
3136                 return;
3137
3138         kfree(adapter->msix_entries);
3139         adapter->msix_entries = NULL;
3140
3141         igc_reset_interrupt_capability(adapter);
3142
3143 msi_only:
3144         adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3145
3146         adapter->rss_queues = 1;
3147         adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3148         adapter->num_rx_queues = 1;
3149         adapter->num_tx_queues = 1;
3150         adapter->num_q_vectors = 1;
3151         if (!pci_enable_msi(adapter->pdev))
3152                 adapter->flags |= IGC_FLAG_HAS_MSI;
3153 }
3154
3155 /**
3156  * igc_update_ring_itr - update the dynamic ITR value based on packet size
3157  * @q_vector: pointer to q_vector
3158  *
3159  * Stores a new ITR value based on strictly on packet size.  This
3160  * algorithm is less sophisticated than that used in igc_update_itr,
3161  * due to the difficulty of synchronizing statistics across multiple
3162  * receive rings.  The divisors and thresholds used by this function
3163  * were determined based on theoretical maximum wire speed and testing
3164  * data, in order to minimize response time while increasing bulk
3165  * throughput.
3166  * NOTE: This function is called only when operating in a multiqueue
3167  * receive environment.
3168  */
3169 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3170 {
3171         struct igc_adapter *adapter = q_vector->adapter;
3172         int new_val = q_vector->itr_val;
3173         int avg_wire_size = 0;
3174         unsigned int packets;
3175
3176         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3177          * ints/sec - ITR timer value of 120 ticks.
3178          */
3179         switch (adapter->link_speed) {
3180         case SPEED_10:
3181         case SPEED_100:
3182                 new_val = IGC_4K_ITR;
3183                 goto set_itr_val;
3184         default:
3185                 break;
3186         }
3187
3188         packets = q_vector->rx.total_packets;
3189         if (packets)
3190                 avg_wire_size = q_vector->rx.total_bytes / packets;
3191
3192         packets = q_vector->tx.total_packets;
3193         if (packets)
3194                 avg_wire_size = max_t(u32, avg_wire_size,
3195                                       q_vector->tx.total_bytes / packets);
3196
3197         /* if avg_wire_size isn't set no work was done */
3198         if (!avg_wire_size)
3199                 goto clear_counts;
3200
3201         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3202         avg_wire_size += 24;
3203
3204         /* Don't starve jumbo frames */
3205         avg_wire_size = min(avg_wire_size, 3000);
3206
3207         /* Give a little boost to mid-size frames */
3208         if (avg_wire_size > 300 && avg_wire_size < 1200)
3209                 new_val = avg_wire_size / 3;
3210         else
3211                 new_val = avg_wire_size / 2;
3212
3213         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3214         if (new_val < IGC_20K_ITR &&
3215             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3216             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3217                 new_val = IGC_20K_ITR;
3218
3219 set_itr_val:
3220         if (new_val != q_vector->itr_val) {
3221                 q_vector->itr_val = new_val;
3222                 q_vector->set_itr = 1;
3223         }
3224 clear_counts:
3225         q_vector->rx.total_bytes = 0;
3226         q_vector->rx.total_packets = 0;
3227         q_vector->tx.total_bytes = 0;
3228         q_vector->tx.total_packets = 0;
3229 }
3230
3231 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3232 {
3233         struct igc_adapter *adapter = q_vector->adapter;
3234         struct igc_hw *hw = &adapter->hw;
3235
3236         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3237             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3238                 if (adapter->num_q_vectors == 1)
3239                         igc_set_itr(q_vector);
3240                 else
3241                         igc_update_ring_itr(q_vector);
3242         }
3243
3244         if (!test_bit(__IGC_DOWN, &adapter->state)) {
3245                 if (adapter->msix_entries)
3246                         wr32(IGC_EIMS, q_vector->eims_value);
3247                 else
3248                         igc_irq_enable(adapter);
3249         }
3250 }
3251
3252 static void igc_add_ring(struct igc_ring *ring,
3253                          struct igc_ring_container *head)
3254 {
3255         head->ring = ring;
3256         head->count++;
3257 }
3258
3259 /**
3260  * igc_cache_ring_register - Descriptor ring to register mapping
3261  * @adapter: board private structure to initialize
3262  *
3263  * Once we know the feature-set enabled for the device, we'll cache
3264  * the register offset the descriptor ring is assigned to.
3265  */
3266 static void igc_cache_ring_register(struct igc_adapter *adapter)
3267 {
3268         int i = 0, j = 0;
3269
3270         switch (adapter->hw.mac.type) {
3271         case igc_i225:
3272         default:
3273                 for (; i < adapter->num_rx_queues; i++)
3274                         adapter->rx_ring[i]->reg_idx = i;
3275                 for (; j < adapter->num_tx_queues; j++)
3276                         adapter->tx_ring[j]->reg_idx = j;
3277                 break;
3278         }
3279 }
3280
3281 /**
3282  * igc_poll - NAPI Rx polling callback
3283  * @napi: napi polling structure
3284  * @budget: count of how many packets we should handle
3285  */
3286 static int igc_poll(struct napi_struct *napi, int budget)
3287 {
3288         struct igc_q_vector *q_vector = container_of(napi,
3289                                                      struct igc_q_vector,
3290                                                      napi);
3291         bool clean_complete = true;
3292         int work_done = 0;
3293
3294         if (q_vector->tx.ring)
3295                 clean_complete = igc_clean_tx_irq(q_vector, budget);
3296
3297         if (q_vector->rx.ring) {
3298                 int cleaned = igc_clean_rx_irq(q_vector, budget);
3299
3300                 work_done += cleaned;
3301                 if (cleaned >= budget)
3302                         clean_complete = false;
3303         }
3304
3305         /* If all work not completed, return budget and keep polling */
3306         if (!clean_complete)
3307                 return budget;
3308
3309         /* Exit the polling mode, but don't re-enable interrupts if stack might
3310          * poll us due to busy-polling
3311          */
3312         if (likely(napi_complete_done(napi, work_done)))
3313                 igc_ring_irq_enable(q_vector);
3314
3315         return min(work_done, budget - 1);
3316 }
3317
3318 /**
3319  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3320  * @adapter: board private structure to initialize
3321  * @v_count: q_vectors allocated on adapter, used for ring interleaving
3322  * @v_idx: index of vector in adapter struct
3323  * @txr_count: total number of Tx rings to allocate
3324  * @txr_idx: index of first Tx ring to allocate
3325  * @rxr_count: total number of Rx rings to allocate
3326  * @rxr_idx: index of first Rx ring to allocate
3327  *
3328  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3329  */
3330 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3331                               unsigned int v_count, unsigned int v_idx,
3332                               unsigned int txr_count, unsigned int txr_idx,
3333                               unsigned int rxr_count, unsigned int rxr_idx)
3334 {
3335         struct igc_q_vector *q_vector;
3336         struct igc_ring *ring;
3337         int ring_count;
3338
3339         /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3340         if (txr_count > 1 || rxr_count > 1)
3341                 return -ENOMEM;
3342
3343         ring_count = txr_count + rxr_count;
3344
3345         /* allocate q_vector and rings */
3346         q_vector = adapter->q_vector[v_idx];
3347         if (!q_vector)
3348                 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3349                                    GFP_KERNEL);
3350         else
3351                 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3352         if (!q_vector)
3353                 return -ENOMEM;
3354
3355         /* initialize NAPI */
3356         netif_napi_add(adapter->netdev, &q_vector->napi,
3357                        igc_poll, 64);
3358
3359         /* tie q_vector and adapter together */
3360         adapter->q_vector[v_idx] = q_vector;
3361         q_vector->adapter = adapter;
3362
3363         /* initialize work limits */
3364         q_vector->tx.work_limit = adapter->tx_work_limit;
3365
3366         /* initialize ITR configuration */
3367         q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3368         q_vector->itr_val = IGC_START_ITR;
3369
3370         /* initialize pointer to rings */
3371         ring = q_vector->ring;
3372
3373         /* initialize ITR */
3374         if (rxr_count) {
3375                 /* rx or rx/tx vector */
3376                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3377                         q_vector->itr_val = adapter->rx_itr_setting;
3378         } else {
3379                 /* tx only vector */
3380                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3381                         q_vector->itr_val = adapter->tx_itr_setting;
3382         }
3383
3384         if (txr_count) {
3385                 /* assign generic ring traits */
3386                 ring->dev = &adapter->pdev->dev;
3387                 ring->netdev = adapter->netdev;
3388
3389                 /* configure backlink on ring */
3390                 ring->q_vector = q_vector;
3391
3392                 /* update q_vector Tx values */
3393                 igc_add_ring(ring, &q_vector->tx);
3394
3395                 /* apply Tx specific ring traits */
3396                 ring->count = adapter->tx_ring_count;
3397                 ring->queue_index = txr_idx;
3398
3399                 /* assign ring to adapter */
3400                 adapter->tx_ring[txr_idx] = ring;
3401
3402                 /* push pointer to next ring */
3403                 ring++;
3404         }
3405
3406         if (rxr_count) {
3407                 /* assign generic ring traits */
3408                 ring->dev = &adapter->pdev->dev;
3409                 ring->netdev = adapter->netdev;
3410
3411                 /* configure backlink on ring */
3412                 ring->q_vector = q_vector;
3413
3414                 /* update q_vector Rx values */
3415                 igc_add_ring(ring, &q_vector->rx);
3416
3417                 /* apply Rx specific ring traits */
3418                 ring->count = adapter->rx_ring_count;
3419                 ring->queue_index = rxr_idx;
3420
3421                 /* assign ring to adapter */
3422                 adapter->rx_ring[rxr_idx] = ring;
3423         }
3424
3425         return 0;
3426 }
3427
3428 /**
3429  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3430  * @adapter: board private structure to initialize
3431  *
3432  * We allocate one q_vector per queue interrupt.  If allocation fails we
3433  * return -ENOMEM.
3434  */
3435 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3436 {
3437         int rxr_remaining = adapter->num_rx_queues;
3438         int txr_remaining = adapter->num_tx_queues;
3439         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3440         int q_vectors = adapter->num_q_vectors;
3441         int err;
3442
3443         if (q_vectors >= (rxr_remaining + txr_remaining)) {
3444                 for (; rxr_remaining; v_idx++) {
3445                         err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3446                                                  0, 0, 1, rxr_idx);
3447
3448                         if (err)
3449                                 goto err_out;
3450
3451                         /* update counts and index */
3452                         rxr_remaining--;
3453                         rxr_idx++;
3454                 }
3455         }
3456
3457         for (; v_idx < q_vectors; v_idx++) {
3458                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3459                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3460
3461                 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3462                                          tqpv, txr_idx, rqpv, rxr_idx);
3463
3464                 if (err)
3465                         goto err_out;
3466
3467                 /* update counts and index */
3468                 rxr_remaining -= rqpv;
3469                 txr_remaining -= tqpv;
3470                 rxr_idx++;
3471                 txr_idx++;
3472         }
3473
3474         return 0;
3475
3476 err_out:
3477         adapter->num_tx_queues = 0;
3478         adapter->num_rx_queues = 0;
3479         adapter->num_q_vectors = 0;
3480
3481         while (v_idx--)
3482                 igc_free_q_vector(adapter, v_idx);
3483
3484         return -ENOMEM;
3485 }
3486
3487 /**
3488  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3489  * @adapter: Pointer to adapter structure
3490  * @msix: boolean for MSI-X capability
3491  *
3492  * This function initializes the interrupts and allocates all of the queues.
3493  */
3494 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3495 {
3496         struct net_device *dev = adapter->netdev;
3497         int err = 0;
3498
3499         igc_set_interrupt_capability(adapter, msix);
3500
3501         err = igc_alloc_q_vectors(adapter);
3502         if (err) {
3503                 netdev_err(dev, "Unable to allocate memory for vectors\n");
3504                 goto err_alloc_q_vectors;
3505         }
3506
3507         igc_cache_ring_register(adapter);
3508
3509         return 0;
3510
3511 err_alloc_q_vectors:
3512         igc_reset_interrupt_capability(adapter);
3513         return err;
3514 }
3515
3516 /**
3517  * igc_sw_init - Initialize general software structures (struct igc_adapter)
3518  * @adapter: board private structure to initialize
3519  *
3520  * igc_sw_init initializes the Adapter private data structure.
3521  * Fields are initialized based on PCI device information and
3522  * OS network device settings (MTU size).
3523  */
3524 static int igc_sw_init(struct igc_adapter *adapter)
3525 {
3526         struct net_device *netdev = adapter->netdev;
3527         struct pci_dev *pdev = adapter->pdev;
3528         struct igc_hw *hw = &adapter->hw;
3529
3530         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3531
3532         /* set default ring sizes */
3533         adapter->tx_ring_count = IGC_DEFAULT_TXD;
3534         adapter->rx_ring_count = IGC_DEFAULT_RXD;
3535
3536         /* set default ITR values */
3537         adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3538         adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3539
3540         /* set default work limits */
3541         adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3542
3543         /* adjust max frame to be at least the size of a standard frame */
3544         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3545                                 VLAN_HLEN;
3546         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3547
3548         mutex_init(&adapter->nfc_rule_lock);
3549         INIT_LIST_HEAD(&adapter->nfc_rule_list);
3550         adapter->nfc_rule_count = 0;
3551
3552         spin_lock_init(&adapter->stats64_lock);
3553         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3554         adapter->flags |= IGC_FLAG_HAS_MSIX;
3555
3556         igc_init_queue_configuration(adapter);
3557
3558         /* This call may decrease the number of queues */
3559         if (igc_init_interrupt_scheme(adapter, true)) {
3560                 netdev_err(netdev, "Unable to allocate memory for queues\n");
3561                 return -ENOMEM;
3562         }
3563
3564         /* Explicitly disable IRQ since the NIC can be in any state. */
3565         igc_irq_disable(adapter);
3566
3567         set_bit(__IGC_DOWN, &adapter->state);
3568
3569         return 0;
3570 }
3571
3572 /**
3573  * igc_up - Open the interface and prepare it to handle traffic
3574  * @adapter: board private structure
3575  */
3576 void igc_up(struct igc_adapter *adapter)
3577 {
3578         struct igc_hw *hw = &adapter->hw;
3579         int i = 0;
3580
3581         /* hardware has been reset, we need to reload some things */
3582         igc_configure(adapter);
3583
3584         clear_bit(__IGC_DOWN, &adapter->state);
3585
3586         for (i = 0; i < adapter->num_q_vectors; i++)
3587                 napi_enable(&adapter->q_vector[i]->napi);
3588
3589         if (adapter->msix_entries)
3590                 igc_configure_msix(adapter);
3591         else
3592                 igc_assign_vector(adapter->q_vector[0], 0);
3593
3594         /* Clear any pending interrupts. */
3595         rd32(IGC_ICR);
3596         igc_irq_enable(adapter);
3597
3598         netif_tx_start_all_queues(adapter->netdev);
3599
3600         /* start the watchdog. */
3601         hw->mac.get_link_status = 1;
3602         schedule_work(&adapter->watchdog_task);
3603 }
3604
3605 /**
3606  * igc_update_stats - Update the board statistics counters
3607  * @adapter: board private structure
3608  */
3609 void igc_update_stats(struct igc_adapter *adapter)
3610 {
3611         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3612         struct pci_dev *pdev = adapter->pdev;
3613         struct igc_hw *hw = &adapter->hw;
3614         u64 _bytes, _packets;
3615         u64 bytes, packets;
3616         unsigned int start;
3617         u32 mpc;
3618         int i;
3619
3620         /* Prevent stats update while adapter is being reset, or if the pci
3621          * connection is down.
3622          */
3623         if (adapter->link_speed == 0)
3624                 return;
3625         if (pci_channel_offline(pdev))
3626                 return;
3627
3628         packets = 0;
3629         bytes = 0;
3630
3631         rcu_read_lock();
3632         for (i = 0; i < adapter->num_rx_queues; i++) {
3633                 struct igc_ring *ring = adapter->rx_ring[i];
3634                 u32 rqdpc = rd32(IGC_RQDPC(i));
3635
3636                 if (hw->mac.type >= igc_i225)
3637                         wr32(IGC_RQDPC(i), 0);
3638
3639                 if (rqdpc) {
3640                         ring->rx_stats.drops += rqdpc;
3641                         net_stats->rx_fifo_errors += rqdpc;
3642                 }
3643
3644                 do {
3645                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3646                         _bytes = ring->rx_stats.bytes;
3647                         _packets = ring->rx_stats.packets;
3648                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3649                 bytes += _bytes;
3650                 packets += _packets;
3651         }
3652
3653         net_stats->rx_bytes = bytes;
3654         net_stats->rx_packets = packets;
3655
3656         packets = 0;
3657         bytes = 0;
3658         for (i = 0; i < adapter->num_tx_queues; i++) {
3659                 struct igc_ring *ring = adapter->tx_ring[i];
3660
3661                 do {
3662                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3663                         _bytes = ring->tx_stats.bytes;
3664                         _packets = ring->tx_stats.packets;
3665                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3666                 bytes += _bytes;
3667                 packets += _packets;
3668         }
3669         net_stats->tx_bytes = bytes;
3670         net_stats->tx_packets = packets;
3671         rcu_read_unlock();
3672
3673         /* read stats registers */
3674         adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3675         adapter->stats.gprc += rd32(IGC_GPRC);
3676         adapter->stats.gorc += rd32(IGC_GORCL);
3677         rd32(IGC_GORCH); /* clear GORCL */
3678         adapter->stats.bprc += rd32(IGC_BPRC);
3679         adapter->stats.mprc += rd32(IGC_MPRC);
3680         adapter->stats.roc += rd32(IGC_ROC);
3681
3682         adapter->stats.prc64 += rd32(IGC_PRC64);
3683         adapter->stats.prc127 += rd32(IGC_PRC127);
3684         adapter->stats.prc255 += rd32(IGC_PRC255);
3685         adapter->stats.prc511 += rd32(IGC_PRC511);
3686         adapter->stats.prc1023 += rd32(IGC_PRC1023);
3687         adapter->stats.prc1522 += rd32(IGC_PRC1522);
3688
3689         mpc = rd32(IGC_MPC);
3690         adapter->stats.mpc += mpc;
3691         net_stats->rx_fifo_errors += mpc;
3692         adapter->stats.scc += rd32(IGC_SCC);
3693         adapter->stats.ecol += rd32(IGC_ECOL);
3694         adapter->stats.mcc += rd32(IGC_MCC);
3695         adapter->stats.latecol += rd32(IGC_LATECOL);
3696         adapter->stats.dc += rd32(IGC_DC);
3697         adapter->stats.rlec += rd32(IGC_RLEC);
3698         adapter->stats.xonrxc += rd32(IGC_XONRXC);
3699         adapter->stats.xontxc += rd32(IGC_XONTXC);
3700         adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3701         adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3702         adapter->stats.fcruc += rd32(IGC_FCRUC);
3703         adapter->stats.gptc += rd32(IGC_GPTC);
3704         adapter->stats.gotc += rd32(IGC_GOTCL);
3705         rd32(IGC_GOTCH); /* clear GOTCL */
3706         adapter->stats.rnbc += rd32(IGC_RNBC);
3707         adapter->stats.ruc += rd32(IGC_RUC);
3708         adapter->stats.rfc += rd32(IGC_RFC);
3709         adapter->stats.rjc += rd32(IGC_RJC);
3710         adapter->stats.tor += rd32(IGC_TORH);
3711         adapter->stats.tot += rd32(IGC_TOTH);
3712         adapter->stats.tpr += rd32(IGC_TPR);
3713
3714         adapter->stats.ptc64 += rd32(IGC_PTC64);
3715         adapter->stats.ptc127 += rd32(IGC_PTC127);
3716         adapter->stats.ptc255 += rd32(IGC_PTC255);
3717         adapter->stats.ptc511 += rd32(IGC_PTC511);
3718         adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3719         adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3720
3721         adapter->stats.mptc += rd32(IGC_MPTC);
3722         adapter->stats.bptc += rd32(IGC_BPTC);
3723
3724         adapter->stats.tpt += rd32(IGC_TPT);
3725         adapter->stats.colc += rd32(IGC_COLC);
3726         adapter->stats.colc += rd32(IGC_RERC);
3727
3728         adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3729
3730         adapter->stats.tsctc += rd32(IGC_TSCTC);
3731
3732         adapter->stats.iac += rd32(IGC_IAC);
3733
3734         /* Fill out the OS statistics structure */
3735         net_stats->multicast = adapter->stats.mprc;
3736         net_stats->collisions = adapter->stats.colc;
3737
3738         /* Rx Errors */
3739
3740         /* RLEC on some newer hardware can be incorrect so build
3741          * our own version based on RUC and ROC
3742          */
3743         net_stats->rx_errors = adapter->stats.rxerrc +
3744                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3745                 adapter->stats.ruc + adapter->stats.roc +
3746                 adapter->stats.cexterr;
3747         net_stats->rx_length_errors = adapter->stats.ruc +
3748                                       adapter->stats.roc;
3749         net_stats->rx_crc_errors = adapter->stats.crcerrs;
3750         net_stats->rx_frame_errors = adapter->stats.algnerrc;
3751         net_stats->rx_missed_errors = adapter->stats.mpc;
3752
3753         /* Tx Errors */
3754         net_stats->tx_errors = adapter->stats.ecol +
3755                                adapter->stats.latecol;
3756         net_stats->tx_aborted_errors = adapter->stats.ecol;
3757         net_stats->tx_window_errors = adapter->stats.latecol;
3758         net_stats->tx_carrier_errors = adapter->stats.tncrs;
3759
3760         /* Tx Dropped needs to be maintained elsewhere */
3761
3762         /* Management Stats */
3763         adapter->stats.mgptc += rd32(IGC_MGTPTC);
3764         adapter->stats.mgprc += rd32(IGC_MGTPRC);
3765         adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3766 }
3767
3768 /**
3769  * igc_down - Close the interface
3770  * @adapter: board private structure
3771  */
3772 void igc_down(struct igc_adapter *adapter)
3773 {
3774         struct net_device *netdev = adapter->netdev;
3775         struct igc_hw *hw = &adapter->hw;
3776         u32 tctl, rctl;
3777         int i = 0;
3778
3779         set_bit(__IGC_DOWN, &adapter->state);
3780
3781         /* disable receives in the hardware */
3782         rctl = rd32(IGC_RCTL);
3783         wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3784         /* flush and sleep below */
3785
3786         /* set trans_start so we don't get spurious watchdogs during reset */
3787         netif_trans_update(netdev);
3788
3789         netif_carrier_off(netdev);
3790         netif_tx_stop_all_queues(netdev);
3791
3792         /* disable transmits in the hardware */
3793         tctl = rd32(IGC_TCTL);
3794         tctl &= ~IGC_TCTL_EN;
3795         wr32(IGC_TCTL, tctl);
3796         /* flush both disables and wait for them to finish */
3797         wrfl();
3798         usleep_range(10000, 20000);
3799
3800         igc_irq_disable(adapter);
3801
3802         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3803
3804         for (i = 0; i < adapter->num_q_vectors; i++) {
3805                 if (adapter->q_vector[i]) {
3806                         napi_synchronize(&adapter->q_vector[i]->napi);
3807                         napi_disable(&adapter->q_vector[i]->napi);
3808                 }
3809         }
3810
3811         del_timer_sync(&adapter->watchdog_timer);
3812         del_timer_sync(&adapter->phy_info_timer);
3813
3814         /* record the stats before reset*/
3815         spin_lock(&adapter->stats64_lock);
3816         igc_update_stats(adapter);
3817         spin_unlock(&adapter->stats64_lock);
3818
3819         adapter->link_speed = 0;
3820         adapter->link_duplex = 0;
3821
3822         if (!pci_channel_offline(adapter->pdev))
3823                 igc_reset(adapter);
3824
3825         /* clear VLAN promisc flag so VFTA will be updated if necessary */
3826         adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3827
3828         igc_clean_all_tx_rings(adapter);
3829         igc_clean_all_rx_rings(adapter);
3830 }
3831
3832 void igc_reinit_locked(struct igc_adapter *adapter)
3833 {
3834         WARN_ON(in_interrupt());
3835         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3836                 usleep_range(1000, 2000);
3837         igc_down(adapter);
3838         igc_up(adapter);
3839         clear_bit(__IGC_RESETTING, &adapter->state);
3840 }
3841
3842 static void igc_reset_task(struct work_struct *work)
3843 {
3844         struct igc_adapter *adapter;
3845
3846         adapter = container_of(work, struct igc_adapter, reset_task);
3847
3848         igc_rings_dump(adapter);
3849         igc_regs_dump(adapter);
3850         netdev_err(adapter->netdev, "Reset adapter\n");
3851         igc_reinit_locked(adapter);
3852 }
3853
3854 /**
3855  * igc_change_mtu - Change the Maximum Transfer Unit
3856  * @netdev: network interface device structure
3857  * @new_mtu: new value for maximum frame size
3858  *
3859  * Returns 0 on success, negative on failure
3860  */
3861 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3862 {
3863         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3864         struct igc_adapter *adapter = netdev_priv(netdev);
3865
3866         /* adjust max frame to be at least the size of a standard frame */
3867         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3868                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3869
3870         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3871                 usleep_range(1000, 2000);
3872
3873         /* igc_down has a dependency on max_frame_size */
3874         adapter->max_frame_size = max_frame;
3875
3876         if (netif_running(netdev))
3877                 igc_down(adapter);
3878
3879         netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3880         netdev->mtu = new_mtu;
3881
3882         if (netif_running(netdev))
3883                 igc_up(adapter);
3884         else
3885                 igc_reset(adapter);
3886
3887         clear_bit(__IGC_RESETTING, &adapter->state);
3888
3889         return 0;
3890 }
3891
3892 /**
3893  * igc_get_stats - Get System Network Statistics
3894  * @netdev: network interface device structure
3895  *
3896  * Returns the address of the device statistics structure.
3897  * The statistics are updated here and also from the timer callback.
3898  */
3899 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
3900 {
3901         struct igc_adapter *adapter = netdev_priv(netdev);
3902
3903         if (!test_bit(__IGC_RESETTING, &adapter->state))
3904                 igc_update_stats(adapter);
3905
3906         /* only return the current stats */
3907         return &netdev->stats;
3908 }
3909
3910 static netdev_features_t igc_fix_features(struct net_device *netdev,
3911                                           netdev_features_t features)
3912 {
3913         /* Since there is no support for separate Rx/Tx vlan accel
3914          * enable/disable make sure Tx flag is always in same state as Rx.
3915          */
3916         if (features & NETIF_F_HW_VLAN_CTAG_RX)
3917                 features |= NETIF_F_HW_VLAN_CTAG_TX;
3918         else
3919                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3920
3921         return features;
3922 }
3923
3924 static int igc_set_features(struct net_device *netdev,
3925                             netdev_features_t features)
3926 {
3927         netdev_features_t changed = netdev->features ^ features;
3928         struct igc_adapter *adapter = netdev_priv(netdev);
3929
3930         /* Add VLAN support */
3931         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3932                 return 0;
3933
3934         if (!(features & NETIF_F_NTUPLE))
3935                 igc_flush_nfc_rules(adapter);
3936
3937         netdev->features = features;
3938
3939         if (netif_running(netdev))
3940                 igc_reinit_locked(adapter);
3941         else
3942                 igc_reset(adapter);
3943
3944         return 1;
3945 }
3946
3947 static netdev_features_t
3948 igc_features_check(struct sk_buff *skb, struct net_device *dev,
3949                    netdev_features_t features)
3950 {
3951         unsigned int network_hdr_len, mac_hdr_len;
3952
3953         /* Make certain the headers can be described by a context descriptor */
3954         mac_hdr_len = skb_network_header(skb) - skb->data;
3955         if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3956                 return features & ~(NETIF_F_HW_CSUM |
3957                                     NETIF_F_SCTP_CRC |
3958                                     NETIF_F_HW_VLAN_CTAG_TX |
3959                                     NETIF_F_TSO |
3960                                     NETIF_F_TSO6);
3961
3962         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3963         if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
3964                 return features & ~(NETIF_F_HW_CSUM |
3965                                     NETIF_F_SCTP_CRC |
3966                                     NETIF_F_TSO |
3967                                     NETIF_F_TSO6);
3968
3969         /* We can only support IPv4 TSO in tunnels if we can mangle the
3970          * inner IP ID field, so strip TSO if MANGLEID is not supported.
3971          */
3972         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3973                 features &= ~NETIF_F_TSO;
3974
3975         return features;
3976 }
3977
3978 static void igc_tsync_interrupt(struct igc_adapter *adapter)
3979 {
3980         struct igc_hw *hw = &adapter->hw;
3981         u32 tsicr = rd32(IGC_TSICR);
3982         u32 ack = 0;
3983
3984         if (tsicr & IGC_TSICR_TXTS) {
3985                 /* retrieve hardware timestamp */
3986                 schedule_work(&adapter->ptp_tx_work);
3987                 ack |= IGC_TSICR_TXTS;
3988         }
3989
3990         /* acknowledge the interrupts */
3991         wr32(IGC_TSICR, ack);
3992 }
3993
3994 /**
3995  * igc_msix_other - msix other interrupt handler
3996  * @irq: interrupt number
3997  * @data: pointer to a q_vector
3998  */
3999 static irqreturn_t igc_msix_other(int irq, void *data)
4000 {
4001         struct igc_adapter *adapter = data;
4002         struct igc_hw *hw = &adapter->hw;
4003         u32 icr = rd32(IGC_ICR);
4004
4005         /* reading ICR causes bit 31 of EICR to be cleared */
4006         if (icr & IGC_ICR_DRSTA)
4007                 schedule_work(&adapter->reset_task);
4008
4009         if (icr & IGC_ICR_DOUTSYNC) {
4010                 /* HW is reporting DMA is out of sync */
4011                 adapter->stats.doosync++;
4012         }
4013
4014         if (icr & IGC_ICR_LSC) {
4015                 hw->mac.get_link_status = 1;
4016                 /* guard against interrupt when we're going down */
4017                 if (!test_bit(__IGC_DOWN, &adapter->state))
4018                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4019         }
4020
4021         if (icr & IGC_ICR_TS)
4022                 igc_tsync_interrupt(adapter);
4023
4024         wr32(IGC_EIMS, adapter->eims_other);
4025
4026         return IRQ_HANDLED;
4027 }
4028
4029 static void igc_write_itr(struct igc_q_vector *q_vector)
4030 {
4031         u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4032
4033         if (!q_vector->set_itr)
4034                 return;
4035
4036         if (!itr_val)
4037                 itr_val = IGC_ITR_VAL_MASK;
4038
4039         itr_val |= IGC_EITR_CNT_IGNR;
4040
4041         writel(itr_val, q_vector->itr_register);
4042         q_vector->set_itr = 0;
4043 }
4044
4045 static irqreturn_t igc_msix_ring(int irq, void *data)
4046 {
4047         struct igc_q_vector *q_vector = data;
4048
4049         /* Write the ITR value calculated from the previous interrupt. */
4050         igc_write_itr(q_vector);
4051
4052         napi_schedule(&q_vector->napi);
4053
4054         return IRQ_HANDLED;
4055 }
4056
4057 /**
4058  * igc_request_msix - Initialize MSI-X interrupts
4059  * @adapter: Pointer to adapter structure
4060  *
4061  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4062  * kernel.
4063  */
4064 static int igc_request_msix(struct igc_adapter *adapter)
4065 {
4066         int i = 0, err = 0, vector = 0, free_vector = 0;
4067         struct net_device *netdev = adapter->netdev;
4068
4069         err = request_irq(adapter->msix_entries[vector].vector,
4070                           &igc_msix_other, 0, netdev->name, adapter);
4071         if (err)
4072                 goto err_out;
4073
4074         for (i = 0; i < adapter->num_q_vectors; i++) {
4075                 struct igc_q_vector *q_vector = adapter->q_vector[i];
4076
4077                 vector++;
4078
4079                 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4080
4081                 if (q_vector->rx.ring && q_vector->tx.ring)
4082                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4083                                 q_vector->rx.ring->queue_index);
4084                 else if (q_vector->tx.ring)
4085                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4086                                 q_vector->tx.ring->queue_index);
4087                 else if (q_vector->rx.ring)
4088                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4089                                 q_vector->rx.ring->queue_index);
4090                 else
4091                         sprintf(q_vector->name, "%s-unused", netdev->name);
4092
4093                 err = request_irq(adapter->msix_entries[vector].vector,
4094                                   igc_msix_ring, 0, q_vector->name,
4095                                   q_vector);
4096                 if (err)
4097                         goto err_free;
4098         }
4099
4100         igc_configure_msix(adapter);
4101         return 0;
4102
4103 err_free:
4104         /* free already assigned IRQs */
4105         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4106
4107         vector--;
4108         for (i = 0; i < vector; i++) {
4109                 free_irq(adapter->msix_entries[free_vector++].vector,
4110                          adapter->q_vector[i]);
4111         }
4112 err_out:
4113         return err;
4114 }
4115
4116 /**
4117  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4118  * @adapter: Pointer to adapter structure
4119  *
4120  * This function resets the device so that it has 0 rx queues, tx queues, and
4121  * MSI-X interrupts allocated.
4122  */
4123 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4124 {
4125         igc_free_q_vectors(adapter);
4126         igc_reset_interrupt_capability(adapter);
4127 }
4128
4129 /* Need to wait a few seconds after link up to get diagnostic information from
4130  * the phy
4131  */
4132 static void igc_update_phy_info(struct timer_list *t)
4133 {
4134         struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4135
4136         igc_get_phy_info(&adapter->hw);
4137 }
4138
4139 /**
4140  * igc_has_link - check shared code for link and determine up/down
4141  * @adapter: pointer to driver private info
4142  */
4143 bool igc_has_link(struct igc_adapter *adapter)
4144 {
4145         struct igc_hw *hw = &adapter->hw;
4146         bool link_active = false;
4147
4148         /* get_link_status is set on LSC (link status) interrupt or
4149          * rx sequence error interrupt.  get_link_status will stay
4150          * false until the igc_check_for_link establishes link
4151          * for copper adapters ONLY
4152          */
4153         switch (hw->phy.media_type) {
4154         case igc_media_type_copper:
4155                 if (!hw->mac.get_link_status)
4156                         return true;
4157                 hw->mac.ops.check_for_link(hw);
4158                 link_active = !hw->mac.get_link_status;
4159                 break;
4160         default:
4161         case igc_media_type_unknown:
4162                 break;
4163         }
4164
4165         if (hw->mac.type == igc_i225 &&
4166             hw->phy.id == I225_I_PHY_ID) {
4167                 if (!netif_carrier_ok(adapter->netdev)) {
4168                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4169                 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4170                         adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4171                         adapter->link_check_timeout = jiffies;
4172                 }
4173         }
4174
4175         return link_active;
4176 }
4177
4178 /**
4179  * igc_watchdog - Timer Call-back
4180  * @t: timer for the watchdog
4181  */
4182 static void igc_watchdog(struct timer_list *t)
4183 {
4184         struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4185         /* Do the rest outside of interrupt context */
4186         schedule_work(&adapter->watchdog_task);
4187 }
4188
4189 static void igc_watchdog_task(struct work_struct *work)
4190 {
4191         struct igc_adapter *adapter = container_of(work,
4192                                                    struct igc_adapter,
4193                                                    watchdog_task);
4194         struct net_device *netdev = adapter->netdev;
4195         struct igc_hw *hw = &adapter->hw;
4196         struct igc_phy_info *phy = &hw->phy;
4197         u16 phy_data, retry_count = 20;
4198         u32 link;
4199         int i;
4200
4201         link = igc_has_link(adapter);
4202
4203         if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4204                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4205                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4206                 else
4207                         link = false;
4208         }
4209
4210         if (link) {
4211                 /* Cancel scheduled suspend requests. */
4212                 pm_runtime_resume(netdev->dev.parent);
4213
4214                 if (!netif_carrier_ok(netdev)) {
4215                         u32 ctrl;
4216
4217                         hw->mac.ops.get_speed_and_duplex(hw,
4218                                                          &adapter->link_speed,
4219                                                          &adapter->link_duplex);
4220
4221                         ctrl = rd32(IGC_CTRL);
4222                         /* Link status message must follow this format */
4223                         netdev_info(netdev,
4224                                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4225                                     adapter->link_speed,
4226                                     adapter->link_duplex == FULL_DUPLEX ?
4227                                     "Full" : "Half",
4228                                     (ctrl & IGC_CTRL_TFCE) &&
4229                                     (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4230                                     (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4231                                     (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4232
4233                         /* disable EEE if enabled */
4234                         if ((adapter->flags & IGC_FLAG_EEE) &&
4235                             adapter->link_duplex == HALF_DUPLEX) {
4236                                 netdev_info(netdev,
4237                                             "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4238                                 adapter->hw.dev_spec._base.eee_enable = false;
4239                                 adapter->flags &= ~IGC_FLAG_EEE;
4240                         }
4241
4242                         /* check if SmartSpeed worked */
4243                         igc_check_downshift(hw);
4244                         if (phy->speed_downgraded)
4245                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4246
4247                         /* adjust timeout factor according to speed/duplex */
4248                         adapter->tx_timeout_factor = 1;
4249                         switch (adapter->link_speed) {
4250                         case SPEED_10:
4251                                 adapter->tx_timeout_factor = 14;
4252                                 break;
4253                         case SPEED_100:
4254                                 /* maybe add some timeout factor ? */
4255                                 break;
4256                         }
4257
4258                         if (adapter->link_speed != SPEED_1000)
4259                                 goto no_wait;
4260
4261                         /* wait for Remote receiver status OK */
4262 retry_read_status:
4263                         if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4264                                               &phy_data)) {
4265                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4266                                     retry_count) {
4267                                         msleep(100);
4268                                         retry_count--;
4269                                         goto retry_read_status;
4270                                 } else if (!retry_count) {
4271                                         netdev_err(netdev, "exceed max 2 second\n");
4272                                 }
4273                         } else {
4274                                 netdev_err(netdev, "read 1000Base-T Status Reg\n");
4275                         }
4276 no_wait:
4277                         netif_carrier_on(netdev);
4278
4279                         /* link state has changed, schedule phy info update */
4280                         if (!test_bit(__IGC_DOWN, &adapter->state))
4281                                 mod_timer(&adapter->phy_info_timer,
4282                                           round_jiffies(jiffies + 2 * HZ));
4283                 }
4284         } else {
4285                 if (netif_carrier_ok(netdev)) {
4286                         adapter->link_speed = 0;
4287                         adapter->link_duplex = 0;
4288
4289                         /* Links status message must follow this format */
4290                         netdev_info(netdev, "NIC Link is Down\n");
4291                         netif_carrier_off(netdev);
4292
4293                         /* link state has changed, schedule phy info update */
4294                         if (!test_bit(__IGC_DOWN, &adapter->state))
4295                                 mod_timer(&adapter->phy_info_timer,
4296                                           round_jiffies(jiffies + 2 * HZ));
4297
4298                         /* link is down, time to check for alternate media */
4299                         if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4300                                 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4301                                         schedule_work(&adapter->reset_task);
4302                                         /* return immediately */
4303                                         return;
4304                                 }
4305                         }
4306                         pm_schedule_suspend(netdev->dev.parent,
4307                                             MSEC_PER_SEC * 5);
4308
4309                 /* also check for alternate media here */
4310                 } else if (!netif_carrier_ok(netdev) &&
4311                            (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4312                         if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4313                                 schedule_work(&adapter->reset_task);
4314                                 /* return immediately */
4315                                 return;
4316                         }
4317                 }
4318         }
4319
4320         spin_lock(&adapter->stats64_lock);
4321         igc_update_stats(adapter);
4322         spin_unlock(&adapter->stats64_lock);
4323
4324         for (i = 0; i < adapter->num_tx_queues; i++) {
4325                 struct igc_ring *tx_ring = adapter->tx_ring[i];
4326
4327                 if (!netif_carrier_ok(netdev)) {
4328                         /* We've lost link, so the controller stops DMA,
4329                          * but we've got queued Tx work that's never going
4330                          * to get done, so reset controller to flush Tx.
4331                          * (Do the reset outside of interrupt context).
4332                          */
4333                         if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4334                                 adapter->tx_timeout_count++;
4335                                 schedule_work(&adapter->reset_task);
4336                                 /* return immediately since reset is imminent */
4337                                 return;
4338                         }
4339                 }
4340
4341                 /* Force detection of hung controller every watchdog period */
4342                 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4343         }
4344
4345         /* Cause software interrupt to ensure Rx ring is cleaned */
4346         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4347                 u32 eics = 0;
4348
4349                 for (i = 0; i < adapter->num_q_vectors; i++)
4350                         eics |= adapter->q_vector[i]->eims_value;
4351                 wr32(IGC_EICS, eics);
4352         } else {
4353                 wr32(IGC_ICS, IGC_ICS_RXDMT0);
4354         }
4355
4356         igc_ptp_tx_hang(adapter);
4357
4358         /* Reset the timer */
4359         if (!test_bit(__IGC_DOWN, &adapter->state)) {
4360                 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4361                         mod_timer(&adapter->watchdog_timer,
4362                                   round_jiffies(jiffies +  HZ));
4363                 else
4364                         mod_timer(&adapter->watchdog_timer,
4365                                   round_jiffies(jiffies + 2 * HZ));
4366         }
4367 }
4368
4369 /**
4370  * igc_intr_msi - Interrupt Handler
4371  * @irq: interrupt number
4372  * @data: pointer to a network interface device structure
4373  */
4374 static irqreturn_t igc_intr_msi(int irq, void *data)
4375 {
4376         struct igc_adapter *adapter = data;
4377         struct igc_q_vector *q_vector = adapter->q_vector[0];
4378         struct igc_hw *hw = &adapter->hw;
4379         /* read ICR disables interrupts using IAM */
4380         u32 icr = rd32(IGC_ICR);
4381
4382         igc_write_itr(q_vector);
4383
4384         if (icr & IGC_ICR_DRSTA)
4385                 schedule_work(&adapter->reset_task);
4386
4387         if (icr & IGC_ICR_DOUTSYNC) {
4388                 /* HW is reporting DMA is out of sync */
4389                 adapter->stats.doosync++;
4390         }
4391
4392         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4393                 hw->mac.get_link_status = 1;
4394                 if (!test_bit(__IGC_DOWN, &adapter->state))
4395                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4396         }
4397
4398         napi_schedule(&q_vector->napi);
4399
4400         return IRQ_HANDLED;
4401 }
4402
4403 /**
4404  * igc_intr - Legacy Interrupt Handler
4405  * @irq: interrupt number
4406  * @data: pointer to a network interface device structure
4407  */
4408 static irqreturn_t igc_intr(int irq, void *data)
4409 {
4410         struct igc_adapter *adapter = data;
4411         struct igc_q_vector *q_vector = adapter->q_vector[0];
4412         struct igc_hw *hw = &adapter->hw;
4413         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4414          * need for the IMC write
4415          */
4416         u32 icr = rd32(IGC_ICR);
4417
4418         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4419          * not set, then the adapter didn't send an interrupt
4420          */
4421         if (!(icr & IGC_ICR_INT_ASSERTED))
4422                 return IRQ_NONE;
4423
4424         igc_write_itr(q_vector);
4425
4426         if (icr & IGC_ICR_DRSTA)
4427                 schedule_work(&adapter->reset_task);
4428
4429         if (icr & IGC_ICR_DOUTSYNC) {
4430                 /* HW is reporting DMA is out of sync */
4431                 adapter->stats.doosync++;
4432         }
4433
4434         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4435                 hw->mac.get_link_status = 1;
4436                 /* guard against interrupt when we're going down */
4437                 if (!test_bit(__IGC_DOWN, &adapter->state))
4438                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4439         }
4440
4441         napi_schedule(&q_vector->napi);
4442
4443         return IRQ_HANDLED;
4444 }
4445
4446 static void igc_free_irq(struct igc_adapter *adapter)
4447 {
4448         if (adapter->msix_entries) {
4449                 int vector = 0, i;
4450
4451                 free_irq(adapter->msix_entries[vector++].vector, adapter);
4452
4453                 for (i = 0; i < adapter->num_q_vectors; i++)
4454                         free_irq(adapter->msix_entries[vector++].vector,
4455                                  adapter->q_vector[i]);
4456         } else {
4457                 free_irq(adapter->pdev->irq, adapter);
4458         }
4459 }
4460
4461 /**
4462  * igc_request_irq - initialize interrupts
4463  * @adapter: Pointer to adapter structure
4464  *
4465  * Attempts to configure interrupts using the best available
4466  * capabilities of the hardware and kernel.
4467  */
4468 static int igc_request_irq(struct igc_adapter *adapter)
4469 {
4470         struct net_device *netdev = adapter->netdev;
4471         struct pci_dev *pdev = adapter->pdev;
4472         int err = 0;
4473
4474         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4475                 err = igc_request_msix(adapter);
4476                 if (!err)
4477                         goto request_done;
4478                 /* fall back to MSI */
4479                 igc_free_all_tx_resources(adapter);
4480                 igc_free_all_rx_resources(adapter);
4481
4482                 igc_clear_interrupt_scheme(adapter);
4483                 err = igc_init_interrupt_scheme(adapter, false);
4484                 if (err)
4485                         goto request_done;
4486                 igc_setup_all_tx_resources(adapter);
4487                 igc_setup_all_rx_resources(adapter);
4488                 igc_configure(adapter);
4489         }
4490
4491         igc_assign_vector(adapter->q_vector[0], 0);
4492
4493         if (adapter->flags & IGC_FLAG_HAS_MSI) {
4494                 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4495                                   netdev->name, adapter);
4496                 if (!err)
4497                         goto request_done;
4498
4499                 /* fall back to legacy interrupts */
4500                 igc_reset_interrupt_capability(adapter);
4501                 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4502         }
4503
4504         err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4505                           netdev->name, adapter);
4506
4507         if (err)
4508                 netdev_err(netdev, "Error %d getting interrupt\n", err);
4509
4510 request_done:
4511         return err;
4512 }
4513
4514 /**
4515  * __igc_open - Called when a network interface is made active
4516  * @netdev: network interface device structure
4517  * @resuming: boolean indicating if the device is resuming
4518  *
4519  * Returns 0 on success, negative value on failure
4520  *
4521  * The open entry point is called when a network interface is made
4522  * active by the system (IFF_UP).  At this point all resources needed
4523  * for transmit and receive operations are allocated, the interrupt
4524  * handler is registered with the OS, the watchdog timer is started,
4525  * and the stack is notified that the interface is ready.
4526  */
4527 static int __igc_open(struct net_device *netdev, bool resuming)
4528 {
4529         struct igc_adapter *adapter = netdev_priv(netdev);
4530         struct pci_dev *pdev = adapter->pdev;
4531         struct igc_hw *hw = &adapter->hw;
4532         int err = 0;
4533         int i = 0;
4534
4535         /* disallow open during test */
4536
4537         if (test_bit(__IGC_TESTING, &adapter->state)) {
4538                 WARN_ON(resuming);
4539                 return -EBUSY;
4540         }
4541
4542         if (!resuming)
4543                 pm_runtime_get_sync(&pdev->dev);
4544
4545         netif_carrier_off(netdev);
4546
4547         /* allocate transmit descriptors */
4548         err = igc_setup_all_tx_resources(adapter);
4549         if (err)
4550                 goto err_setup_tx;
4551
4552         /* allocate receive descriptors */
4553         err = igc_setup_all_rx_resources(adapter);
4554         if (err)
4555                 goto err_setup_rx;
4556
4557         igc_power_up_link(adapter);
4558
4559         igc_configure(adapter);
4560
4561         err = igc_request_irq(adapter);
4562         if (err)
4563                 goto err_req_irq;
4564
4565         /* Notify the stack of the actual queue counts. */
4566         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4567         if (err)
4568                 goto err_set_queues;
4569
4570         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4571         if (err)
4572                 goto err_set_queues;
4573
4574         clear_bit(__IGC_DOWN, &adapter->state);
4575
4576         for (i = 0; i < adapter->num_q_vectors; i++)
4577                 napi_enable(&adapter->q_vector[i]->napi);
4578
4579         /* Clear any pending interrupts. */
4580         rd32(IGC_ICR);
4581         igc_irq_enable(adapter);
4582
4583         if (!resuming)
4584                 pm_runtime_put(&pdev->dev);
4585
4586         netif_tx_start_all_queues(netdev);
4587
4588         /* start the watchdog. */
4589         hw->mac.get_link_status = 1;
4590         schedule_work(&adapter->watchdog_task);
4591
4592         return IGC_SUCCESS;
4593
4594 err_set_queues:
4595         igc_free_irq(adapter);
4596 err_req_irq:
4597         igc_release_hw_control(adapter);
4598         igc_power_down_phy_copper_base(&adapter->hw);
4599         igc_free_all_rx_resources(adapter);
4600 err_setup_rx:
4601         igc_free_all_tx_resources(adapter);
4602 err_setup_tx:
4603         igc_reset(adapter);
4604         if (!resuming)
4605                 pm_runtime_put(&pdev->dev);
4606
4607         return err;
4608 }
4609
4610 int igc_open(struct net_device *netdev)
4611 {
4612         return __igc_open(netdev, false);
4613 }
4614
4615 /**
4616  * __igc_close - Disables a network interface
4617  * @netdev: network interface device structure
4618  * @suspending: boolean indicating the device is suspending
4619  *
4620  * Returns 0, this is not allowed to fail
4621  *
4622  * The close entry point is called when an interface is de-activated
4623  * by the OS.  The hardware is still under the driver's control, but
4624  * needs to be disabled.  A global MAC reset is issued to stop the
4625  * hardware, and all transmit and receive resources are freed.
4626  */
4627 static int __igc_close(struct net_device *netdev, bool suspending)
4628 {
4629         struct igc_adapter *adapter = netdev_priv(netdev);
4630         struct pci_dev *pdev = adapter->pdev;
4631
4632         WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4633
4634         if (!suspending)
4635                 pm_runtime_get_sync(&pdev->dev);
4636
4637         igc_down(adapter);
4638
4639         igc_release_hw_control(adapter);
4640
4641         igc_free_irq(adapter);
4642
4643         igc_free_all_tx_resources(adapter);
4644         igc_free_all_rx_resources(adapter);
4645
4646         if (!suspending)
4647                 pm_runtime_put_sync(&pdev->dev);
4648
4649         return 0;
4650 }
4651
4652 int igc_close(struct net_device *netdev)
4653 {
4654         if (netif_device_present(netdev) || netdev->dismantle)
4655                 return __igc_close(netdev, false);
4656         return 0;
4657 }
4658
4659 /**
4660  * igc_ioctl - Access the hwtstamp interface
4661  * @netdev: network interface device structure
4662  * @ifreq: interface request data
4663  * @cmd: ioctl command
4664  **/
4665 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4666 {
4667         switch (cmd) {
4668         case SIOCGHWTSTAMP:
4669                 return igc_ptp_get_ts_config(netdev, ifr);
4670         case SIOCSHWTSTAMP:
4671                 return igc_ptp_set_ts_config(netdev, ifr);
4672         default:
4673                 return -EOPNOTSUPP;
4674         }
4675 }
4676
4677 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4678                                       bool enable)
4679 {
4680         struct igc_ring *ring;
4681         int i;
4682
4683         if (queue < 0 || queue >= adapter->num_tx_queues)
4684                 return -EINVAL;
4685
4686         ring = adapter->tx_ring[queue];
4687         ring->launchtime_enable = enable;
4688
4689         if (adapter->base_time)
4690                 return 0;
4691
4692         adapter->cycle_time = NSEC_PER_SEC;
4693
4694         for (i = 0; i < adapter->num_tx_queues; i++) {
4695                 ring = adapter->tx_ring[i];
4696                 ring->start_time = 0;
4697                 ring->end_time = NSEC_PER_SEC;
4698         }
4699
4700         return 0;
4701 }
4702
4703 static bool validate_schedule(const struct tc_taprio_qopt_offload *qopt)
4704 {
4705         int queue_uses[IGC_MAX_TX_QUEUES] = { };
4706         size_t n;
4707
4708         if (qopt->cycle_time_extension)
4709                 return false;
4710
4711         for (n = 0; n < qopt->num_entries; n++) {
4712                 const struct tc_taprio_sched_entry *e;
4713                 int i;
4714
4715                 e = &qopt->entries[n];
4716
4717                 /* i225 only supports "global" frame preemption
4718                  * settings.
4719                  */
4720                 if (e->command != TC_TAPRIO_CMD_SET_GATES)
4721                         return false;
4722
4723                 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4724                         if (e->gate_mask & BIT(i))
4725                                 queue_uses[i]++;
4726
4727                         if (queue_uses[i] > 1)
4728                                 return false;
4729                 }
4730         }
4731
4732         return true;
4733 }
4734
4735 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4736                                      struct tc_etf_qopt_offload *qopt)
4737 {
4738         struct igc_hw *hw = &adapter->hw;
4739         int err;
4740
4741         if (hw->mac.type != igc_i225)
4742                 return -EOPNOTSUPP;
4743
4744         err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4745         if (err)
4746                 return err;
4747
4748         return igc_tsn_offload_apply(adapter);
4749 }
4750
4751 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4752                                  struct tc_taprio_qopt_offload *qopt)
4753 {
4754         u32 start_time = 0, end_time = 0;
4755         size_t n;
4756
4757         if (!qopt->enable) {
4758                 adapter->base_time = 0;
4759                 return 0;
4760         }
4761
4762         if (adapter->base_time)
4763                 return -EALREADY;
4764
4765         if (!validate_schedule(qopt))
4766                 return -EINVAL;
4767
4768         adapter->cycle_time = qopt->cycle_time;
4769         adapter->base_time = qopt->base_time;
4770
4771         /* FIXME: be a little smarter about cases when the gate for a
4772          * queue stays open for more than one entry.
4773          */
4774         for (n = 0; n < qopt->num_entries; n++) {
4775                 struct tc_taprio_sched_entry *e = &qopt->entries[n];
4776                 int i;
4777
4778                 end_time += e->interval;
4779
4780                 for (i = 0; i < IGC_MAX_TX_QUEUES; i++) {
4781                         struct igc_ring *ring = adapter->tx_ring[i];
4782
4783                         if (!(e->gate_mask & BIT(i)))
4784                                 continue;
4785
4786                         ring->start_time = start_time;
4787                         ring->end_time = end_time;
4788                 }
4789
4790                 start_time += e->interval;
4791         }
4792
4793         return 0;
4794 }
4795
4796 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4797                                          struct tc_taprio_qopt_offload *qopt)
4798 {
4799         struct igc_hw *hw = &adapter->hw;
4800         int err;
4801
4802         if (hw->mac.type != igc_i225)
4803                 return -EOPNOTSUPP;
4804
4805         err = igc_save_qbv_schedule(adapter, qopt);
4806         if (err)
4807                 return err;
4808
4809         return igc_tsn_offload_apply(adapter);
4810 }
4811
4812 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4813                         void *type_data)
4814 {
4815         struct igc_adapter *adapter = netdev_priv(dev);
4816
4817         switch (type) {
4818         case TC_SETUP_QDISC_TAPRIO:
4819                 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4820
4821         case TC_SETUP_QDISC_ETF:
4822                 return igc_tsn_enable_launchtime(adapter, type_data);
4823
4824         default:
4825                 return -EOPNOTSUPP;
4826         }
4827 }
4828
4829 static const struct net_device_ops igc_netdev_ops = {
4830         .ndo_open               = igc_open,
4831         .ndo_stop               = igc_close,
4832         .ndo_start_xmit         = igc_xmit_frame,
4833         .ndo_set_rx_mode        = igc_set_rx_mode,
4834         .ndo_set_mac_address    = igc_set_mac,
4835         .ndo_change_mtu         = igc_change_mtu,
4836         .ndo_get_stats          = igc_get_stats,
4837         .ndo_fix_features       = igc_fix_features,
4838         .ndo_set_features       = igc_set_features,
4839         .ndo_features_check     = igc_features_check,
4840         .ndo_do_ioctl           = igc_ioctl,
4841         .ndo_setup_tc           = igc_setup_tc,
4842 };
4843
4844 /* PCIe configuration access */
4845 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4846 {
4847         struct igc_adapter *adapter = hw->back;
4848
4849         pci_read_config_word(adapter->pdev, reg, value);
4850 }
4851
4852 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4853 {
4854         struct igc_adapter *adapter = hw->back;
4855
4856         pci_write_config_word(adapter->pdev, reg, *value);
4857 }
4858
4859 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4860 {
4861         struct igc_adapter *adapter = hw->back;
4862
4863         if (!pci_is_pcie(adapter->pdev))
4864                 return -IGC_ERR_CONFIG;
4865
4866         pcie_capability_read_word(adapter->pdev, reg, value);
4867
4868         return IGC_SUCCESS;
4869 }
4870
4871 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4872 {
4873         struct igc_adapter *adapter = hw->back;
4874
4875         if (!pci_is_pcie(adapter->pdev))
4876                 return -IGC_ERR_CONFIG;
4877
4878         pcie_capability_write_word(adapter->pdev, reg, *value);
4879
4880         return IGC_SUCCESS;
4881 }
4882
4883 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4884 {
4885         struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4886         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4887         u32 value = 0;
4888
4889         value = readl(&hw_addr[reg]);
4890
4891         /* reads should not return all F's */
4892         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4893                 struct net_device *netdev = igc->netdev;
4894
4895                 hw->hw_addr = NULL;
4896                 netif_device_detach(netdev);
4897                 netdev_err(netdev, "PCIe link lost, device now detached\n");
4898                 WARN(pci_device_is_present(igc->pdev),
4899                      "igc: Failed to read reg 0x%x!\n", reg);
4900         }
4901
4902         return value;
4903 }
4904
4905 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4906 {
4907         struct igc_mac_info *mac = &adapter->hw.mac;
4908
4909         mac->autoneg = 0;
4910
4911         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4912          * for the switch() below to work
4913          */
4914         if ((spd & 1) || (dplx & ~1))
4915                 goto err_inval;
4916
4917         switch (spd + dplx) {
4918         case SPEED_10 + DUPLEX_HALF:
4919                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4920                 break;
4921         case SPEED_10 + DUPLEX_FULL:
4922                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4923                 break;
4924         case SPEED_100 + DUPLEX_HALF:
4925                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4926                 break;
4927         case SPEED_100 + DUPLEX_FULL:
4928                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4929                 break;
4930         case SPEED_1000 + DUPLEX_FULL:
4931                 mac->autoneg = 1;
4932                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4933                 break;
4934         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4935                 goto err_inval;
4936         case SPEED_2500 + DUPLEX_FULL:
4937                 mac->autoneg = 1;
4938                 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4939                 break;
4940         case SPEED_2500 + DUPLEX_HALF: /* not supported */
4941         default:
4942                 goto err_inval;
4943         }
4944
4945         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4946         adapter->hw.phy.mdix = AUTO_ALL_MODES;
4947
4948         return 0;
4949
4950 err_inval:
4951         netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
4952         return -EINVAL;
4953 }
4954
4955 /**
4956  * igc_probe - Device Initialization Routine
4957  * @pdev: PCI device information struct
4958  * @ent: entry in igc_pci_tbl
4959  *
4960  * Returns 0 on success, negative on failure
4961  *
4962  * igc_probe initializes an adapter identified by a pci_dev structure.
4963  * The OS initialization, configuring the adapter private structure,
4964  * and a hardware reset occur.
4965  */
4966 static int igc_probe(struct pci_dev *pdev,
4967                      const struct pci_device_id *ent)
4968 {
4969         struct igc_adapter *adapter;
4970         struct net_device *netdev;
4971         struct igc_hw *hw;
4972         const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4973         int err, pci_using_dac;
4974
4975         err = pci_enable_device_mem(pdev);
4976         if (err)
4977                 return err;
4978
4979         pci_using_dac = 0;
4980         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4981         if (!err) {
4982                 pci_using_dac = 1;
4983         } else {
4984                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4985                 if (err) {
4986                         dev_err(&pdev->dev,
4987                                 "No usable DMA configuration, aborting\n");
4988                         goto err_dma;
4989                 }
4990         }
4991
4992         err = pci_request_mem_regions(pdev, igc_driver_name);
4993         if (err)
4994                 goto err_pci_reg;
4995
4996         pci_enable_pcie_error_reporting(pdev);
4997
4998         pci_set_master(pdev);
4999
5000         err = -ENOMEM;
5001         netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5002                                    IGC_MAX_TX_QUEUES);
5003
5004         if (!netdev)
5005                 goto err_alloc_etherdev;
5006
5007         SET_NETDEV_DEV(netdev, &pdev->dev);
5008
5009         pci_set_drvdata(pdev, netdev);
5010         adapter = netdev_priv(netdev);
5011         adapter->netdev = netdev;
5012         adapter->pdev = pdev;
5013         hw = &adapter->hw;
5014         hw->back = adapter;
5015         adapter->port_num = hw->bus.func;
5016         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5017
5018         err = pci_save_state(pdev);
5019         if (err)
5020                 goto err_ioremap;
5021
5022         err = -EIO;
5023         adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5024                                    pci_resource_len(pdev, 0));
5025         if (!adapter->io_addr)
5026                 goto err_ioremap;
5027
5028         /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5029         hw->hw_addr = adapter->io_addr;
5030
5031         netdev->netdev_ops = &igc_netdev_ops;
5032         igc_ethtool_set_ops(netdev);
5033         netdev->watchdog_timeo = 5 * HZ;
5034
5035         netdev->mem_start = pci_resource_start(pdev, 0);
5036         netdev->mem_end = pci_resource_end(pdev, 0);
5037
5038         /* PCI config space info */
5039         hw->vendor_id = pdev->vendor;
5040         hw->device_id = pdev->device;
5041         hw->revision_id = pdev->revision;
5042         hw->subsystem_vendor_id = pdev->subsystem_vendor;
5043         hw->subsystem_device_id = pdev->subsystem_device;
5044
5045         /* Copy the default MAC and PHY function pointers */
5046         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5047         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5048
5049         /* Initialize skew-specific constants */
5050         err = ei->get_invariants(hw);
5051         if (err)
5052                 goto err_sw_init;
5053
5054         /* Add supported features to the features list*/
5055         netdev->features |= NETIF_F_SG;
5056         netdev->features |= NETIF_F_TSO;
5057         netdev->features |= NETIF_F_TSO6;
5058         netdev->features |= NETIF_F_TSO_ECN;
5059         netdev->features |= NETIF_F_RXCSUM;
5060         netdev->features |= NETIF_F_HW_CSUM;
5061         netdev->features |= NETIF_F_SCTP_CRC;
5062         netdev->features |= NETIF_F_HW_TC;
5063
5064 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5065                                   NETIF_F_GSO_GRE_CSUM | \
5066                                   NETIF_F_GSO_IPXIP4 | \
5067                                   NETIF_F_GSO_IPXIP6 | \
5068                                   NETIF_F_GSO_UDP_TUNNEL | \
5069                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
5070
5071         netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5072         netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5073
5074         /* setup the private structure */
5075         err = igc_sw_init(adapter);
5076         if (err)
5077                 goto err_sw_init;
5078
5079         /* copy netdev features into list of user selectable features */
5080         netdev->hw_features |= NETIF_F_NTUPLE;
5081         netdev->hw_features |= netdev->features;
5082
5083         if (pci_using_dac)
5084                 netdev->features |= NETIF_F_HIGHDMA;
5085
5086         /* MTU range: 68 - 9216 */
5087         netdev->min_mtu = ETH_MIN_MTU;
5088         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5089
5090         /* before reading the NVM, reset the controller to put the device in a
5091          * known good starting state
5092          */
5093         hw->mac.ops.reset_hw(hw);
5094
5095         if (igc_get_flash_presence_i225(hw)) {
5096                 if (hw->nvm.ops.validate(hw) < 0) {
5097                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5098                         err = -EIO;
5099                         goto err_eeprom;
5100                 }
5101         }
5102
5103         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5104                 /* copy the MAC address out of the NVM */
5105                 if (hw->mac.ops.read_mac_addr(hw))
5106                         dev_err(&pdev->dev, "NVM Read Error\n");
5107         }
5108
5109         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5110
5111         if (!is_valid_ether_addr(netdev->dev_addr)) {
5112                 dev_err(&pdev->dev, "Invalid MAC Address\n");
5113                 err = -EIO;
5114                 goto err_eeprom;
5115         }
5116
5117         /* configure RXPBSIZE and TXPBSIZE */
5118         wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5119         wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5120
5121         timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5122         timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5123
5124         INIT_WORK(&adapter->reset_task, igc_reset_task);
5125         INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5126
5127         /* Initialize link properties that are user-changeable */
5128         adapter->fc_autoneg = true;
5129         hw->mac.autoneg = true;
5130         hw->phy.autoneg_advertised = 0xaf;
5131
5132         hw->fc.requested_mode = igc_fc_default;
5133         hw->fc.current_mode = igc_fc_default;
5134
5135         /* By default, support wake on port A */
5136         adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5137
5138         /* initialize the wol settings based on the eeprom settings */
5139         if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5140                 adapter->wol |= IGC_WUFC_MAG;
5141
5142         device_set_wakeup_enable(&adapter->pdev->dev,
5143                                  adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5144
5145         /* reset the hardware with the new settings */
5146         igc_reset(adapter);
5147
5148         /* let the f/w know that the h/w is now under the control of the
5149          * driver.
5150          */
5151         igc_get_hw_control(adapter);
5152
5153         strncpy(netdev->name, "eth%d", IFNAMSIZ);
5154         err = register_netdev(netdev);
5155         if (err)
5156                 goto err_register;
5157
5158          /* carrier off reporting is important to ethtool even BEFORE open */
5159         netif_carrier_off(netdev);
5160
5161         /* do hw tstamp init after resetting */
5162         igc_ptp_init(adapter);
5163
5164         /* Check if Media Autosense is enabled */
5165         adapter->ei = *ei;
5166
5167         /* print pcie link status and MAC address */
5168         pcie_print_link_status(pdev);
5169         netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5170
5171         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5172         /* Disable EEE for internal PHY devices */
5173         hw->dev_spec._base.eee_enable = false;
5174         adapter->flags &= ~IGC_FLAG_EEE;
5175         igc_set_eee_i225(hw, false, false, false);
5176
5177         pm_runtime_put_noidle(&pdev->dev);
5178
5179         return 0;
5180
5181 err_register:
5182         igc_release_hw_control(adapter);
5183 err_eeprom:
5184         if (!igc_check_reset_block(hw))
5185                 igc_reset_phy(hw);
5186 err_sw_init:
5187         igc_clear_interrupt_scheme(adapter);
5188         iounmap(adapter->io_addr);
5189 err_ioremap:
5190         free_netdev(netdev);
5191 err_alloc_etherdev:
5192         pci_release_mem_regions(pdev);
5193 err_pci_reg:
5194 err_dma:
5195         pci_disable_device(pdev);
5196         return err;
5197 }
5198
5199 /**
5200  * igc_remove - Device Removal Routine
5201  * @pdev: PCI device information struct
5202  *
5203  * igc_remove is called by the PCI subsystem to alert the driver
5204  * that it should release a PCI device.  This could be caused by a
5205  * Hot-Plug event, or because the driver is going to be removed from
5206  * memory.
5207  */
5208 static void igc_remove(struct pci_dev *pdev)
5209 {
5210         struct net_device *netdev = pci_get_drvdata(pdev);
5211         struct igc_adapter *adapter = netdev_priv(netdev);
5212
5213         pm_runtime_get_noresume(&pdev->dev);
5214
5215         igc_flush_nfc_rules(adapter);
5216
5217         igc_ptp_stop(adapter);
5218
5219         set_bit(__IGC_DOWN, &adapter->state);
5220
5221         del_timer_sync(&adapter->watchdog_timer);
5222         del_timer_sync(&adapter->phy_info_timer);
5223
5224         cancel_work_sync(&adapter->reset_task);
5225         cancel_work_sync(&adapter->watchdog_task);
5226
5227         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5228          * would have already happened in close and is redundant.
5229          */
5230         igc_release_hw_control(adapter);
5231         unregister_netdev(netdev);
5232
5233         igc_clear_interrupt_scheme(adapter);
5234         pci_iounmap(pdev, adapter->io_addr);
5235         pci_release_mem_regions(pdev);
5236
5237         free_netdev(netdev);
5238
5239         pci_disable_pcie_error_reporting(pdev);
5240
5241         pci_disable_device(pdev);
5242 }
5243
5244 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5245                           bool runtime)
5246 {
5247         struct net_device *netdev = pci_get_drvdata(pdev);
5248         struct igc_adapter *adapter = netdev_priv(netdev);
5249         u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5250         struct igc_hw *hw = &adapter->hw;
5251         u32 ctrl, rctl, status;
5252         bool wake;
5253
5254         rtnl_lock();
5255         netif_device_detach(netdev);
5256
5257         if (netif_running(netdev))
5258                 __igc_close(netdev, true);
5259
5260         igc_ptp_suspend(adapter);
5261
5262         igc_clear_interrupt_scheme(adapter);
5263         rtnl_unlock();
5264
5265         status = rd32(IGC_STATUS);
5266         if (status & IGC_STATUS_LU)
5267                 wufc &= ~IGC_WUFC_LNKC;
5268
5269         if (wufc) {
5270                 igc_setup_rctl(adapter);
5271                 igc_set_rx_mode(netdev);
5272
5273                 /* turn on all-multi mode if wake on multicast is enabled */
5274                 if (wufc & IGC_WUFC_MC) {
5275                         rctl = rd32(IGC_RCTL);
5276                         rctl |= IGC_RCTL_MPE;
5277                         wr32(IGC_RCTL, rctl);
5278                 }
5279
5280                 ctrl = rd32(IGC_CTRL);
5281                 ctrl |= IGC_CTRL_ADVD3WUC;
5282                 wr32(IGC_CTRL, ctrl);
5283
5284                 /* Allow time for pending master requests to run */
5285                 igc_disable_pcie_master(hw);
5286
5287                 wr32(IGC_WUC, IGC_WUC_PME_EN);
5288                 wr32(IGC_WUFC, wufc);
5289         } else {
5290                 wr32(IGC_WUC, 0);
5291                 wr32(IGC_WUFC, 0);
5292         }
5293
5294         wake = wufc || adapter->en_mng_pt;
5295         if (!wake)
5296                 igc_power_down_phy_copper_base(&adapter->hw);
5297         else
5298                 igc_power_up_link(adapter);
5299
5300         if (enable_wake)
5301                 *enable_wake = wake;
5302
5303         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5304          * would have already happened in close and is redundant.
5305          */
5306         igc_release_hw_control(adapter);
5307
5308         pci_disable_device(pdev);
5309
5310         return 0;
5311 }
5312
5313 #ifdef CONFIG_PM
5314 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5315 {
5316         return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5317 }
5318
5319 static void igc_deliver_wake_packet(struct net_device *netdev)
5320 {
5321         struct igc_adapter *adapter = netdev_priv(netdev);
5322         struct igc_hw *hw = &adapter->hw;
5323         struct sk_buff *skb;
5324         u32 wupl;
5325
5326         wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5327
5328         /* WUPM stores only the first 128 bytes of the wake packet.
5329          * Read the packet only if we have the whole thing.
5330          */
5331         if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5332                 return;
5333
5334         skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5335         if (!skb)
5336                 return;
5337
5338         skb_put(skb, wupl);
5339
5340         /* Ensure reads are 32-bit aligned */
5341         wupl = roundup(wupl, 4);
5342
5343         memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5344
5345         skb->protocol = eth_type_trans(skb, netdev);
5346         netif_rx(skb);
5347 }
5348
5349 static int __maybe_unused igc_resume(struct device *dev)
5350 {
5351         struct pci_dev *pdev = to_pci_dev(dev);
5352         struct net_device *netdev = pci_get_drvdata(pdev);
5353         struct igc_adapter *adapter = netdev_priv(netdev);
5354         struct igc_hw *hw = &adapter->hw;
5355         u32 err, val;
5356
5357         pci_set_power_state(pdev, PCI_D0);
5358         pci_restore_state(pdev);
5359         pci_save_state(pdev);
5360
5361         if (!pci_device_is_present(pdev))
5362                 return -ENODEV;
5363         err = pci_enable_device_mem(pdev);
5364         if (err) {
5365                 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5366                 return err;
5367         }
5368         pci_set_master(pdev);
5369
5370         pci_enable_wake(pdev, PCI_D3hot, 0);
5371         pci_enable_wake(pdev, PCI_D3cold, 0);
5372
5373         if (igc_init_interrupt_scheme(adapter, true)) {
5374                 netdev_err(netdev, "Unable to allocate memory for queues\n");
5375                 return -ENOMEM;
5376         }
5377
5378         igc_reset(adapter);
5379
5380         /* let the f/w know that the h/w is now under the control of the
5381          * driver.
5382          */
5383         igc_get_hw_control(adapter);
5384
5385         val = rd32(IGC_WUS);
5386         if (val & WAKE_PKT_WUS)
5387                 igc_deliver_wake_packet(netdev);
5388
5389         wr32(IGC_WUS, ~0);
5390
5391         rtnl_lock();
5392         if (!err && netif_running(netdev))
5393                 err = __igc_open(netdev, true);
5394
5395         if (!err)
5396                 netif_device_attach(netdev);
5397         rtnl_unlock();
5398
5399         return err;
5400 }
5401
5402 static int __maybe_unused igc_runtime_resume(struct device *dev)
5403 {
5404         return igc_resume(dev);
5405 }
5406
5407 static int __maybe_unused igc_suspend(struct device *dev)
5408 {
5409         return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5410 }
5411
5412 static int __maybe_unused igc_runtime_idle(struct device *dev)
5413 {
5414         struct net_device *netdev = dev_get_drvdata(dev);
5415         struct igc_adapter *adapter = netdev_priv(netdev);
5416
5417         if (!igc_has_link(adapter))
5418                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5419
5420         return -EBUSY;
5421 }
5422 #endif /* CONFIG_PM */
5423
5424 static void igc_shutdown(struct pci_dev *pdev)
5425 {
5426         bool wake;
5427
5428         __igc_shutdown(pdev, &wake, 0);
5429
5430         if (system_state == SYSTEM_POWER_OFF) {
5431                 pci_wake_from_d3(pdev, wake);
5432                 pci_set_power_state(pdev, PCI_D3hot);
5433         }
5434 }
5435
5436 /**
5437  *  igc_io_error_detected - called when PCI error is detected
5438  *  @pdev: Pointer to PCI device
5439  *  @state: The current PCI connection state
5440  *
5441  *  This function is called after a PCI bus error affecting
5442  *  this device has been detected.
5443  **/
5444 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5445                                               pci_channel_state_t state)
5446 {
5447         struct net_device *netdev = pci_get_drvdata(pdev);
5448         struct igc_adapter *adapter = netdev_priv(netdev);
5449
5450         netif_device_detach(netdev);
5451
5452         if (state == pci_channel_io_perm_failure)
5453                 return PCI_ERS_RESULT_DISCONNECT;
5454
5455         if (netif_running(netdev))
5456                 igc_down(adapter);
5457         pci_disable_device(pdev);
5458
5459         /* Request a slot reset. */
5460         return PCI_ERS_RESULT_NEED_RESET;
5461 }
5462
5463 /**
5464  *  igc_io_slot_reset - called after the PCI bus has been reset.
5465  *  @pdev: Pointer to PCI device
5466  *
5467  *  Restart the card from scratch, as if from a cold-boot. Implementation
5468  *  resembles the first-half of the igc_resume routine.
5469  **/
5470 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5471 {
5472         struct net_device *netdev = pci_get_drvdata(pdev);
5473         struct igc_adapter *adapter = netdev_priv(netdev);
5474         struct igc_hw *hw = &adapter->hw;
5475         pci_ers_result_t result;
5476
5477         if (pci_enable_device_mem(pdev)) {
5478                 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5479                 result = PCI_ERS_RESULT_DISCONNECT;
5480         } else {
5481                 pci_set_master(pdev);
5482                 pci_restore_state(pdev);
5483                 pci_save_state(pdev);
5484
5485                 pci_enable_wake(pdev, PCI_D3hot, 0);
5486                 pci_enable_wake(pdev, PCI_D3cold, 0);
5487
5488                 /* In case of PCI error, adapter loses its HW address
5489                  * so we should re-assign it here.
5490                  */
5491                 hw->hw_addr = adapter->io_addr;
5492
5493                 igc_reset(adapter);
5494                 wr32(IGC_WUS, ~0);
5495                 result = PCI_ERS_RESULT_RECOVERED;
5496         }
5497
5498         return result;
5499 }
5500
5501 /**
5502  *  igc_io_resume - called when traffic can start to flow again.
5503  *  @pdev: Pointer to PCI device
5504  *
5505  *  This callback is called when the error recovery driver tells us that
5506  *  its OK to resume normal operation. Implementation resembles the
5507  *  second-half of the igc_resume routine.
5508  */
5509 static void igc_io_resume(struct pci_dev *pdev)
5510 {
5511         struct net_device *netdev = pci_get_drvdata(pdev);
5512         struct igc_adapter *adapter = netdev_priv(netdev);
5513
5514         rtnl_lock();
5515         if (netif_running(netdev)) {
5516                 if (igc_open(netdev)) {
5517                         netdev_err(netdev, "igc_open failed after reset\n");
5518                         return;
5519                 }
5520         }
5521
5522         netif_device_attach(netdev);
5523
5524         /* let the f/w know that the h/w is now under the control of the
5525          * driver.
5526          */
5527         igc_get_hw_control(adapter);
5528         rtnl_unlock();
5529 }
5530
5531 static const struct pci_error_handlers igc_err_handler = {
5532         .error_detected = igc_io_error_detected,
5533         .slot_reset = igc_io_slot_reset,
5534         .resume = igc_io_resume,
5535 };
5536
5537 #ifdef CONFIG_PM
5538 static const struct dev_pm_ops igc_pm_ops = {
5539         SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5540         SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5541                            igc_runtime_idle)
5542 };
5543 #endif
5544
5545 static struct pci_driver igc_driver = {
5546         .name     = igc_driver_name,
5547         .id_table = igc_pci_tbl,
5548         .probe    = igc_probe,
5549         .remove   = igc_remove,
5550 #ifdef CONFIG_PM
5551         .driver.pm = &igc_pm_ops,
5552 #endif
5553         .shutdown = igc_shutdown,
5554         .err_handler = &igc_err_handler,
5555 };
5556
5557 /**
5558  * igc_reinit_queues - return error
5559  * @adapter: pointer to adapter structure
5560  */
5561 int igc_reinit_queues(struct igc_adapter *adapter)
5562 {
5563         struct net_device *netdev = adapter->netdev;
5564         int err = 0;
5565
5566         if (netif_running(netdev))
5567                 igc_close(netdev);
5568
5569         igc_reset_interrupt_capability(adapter);
5570
5571         if (igc_init_interrupt_scheme(adapter, true)) {
5572                 netdev_err(netdev, "Unable to allocate memory for queues\n");
5573                 return -ENOMEM;
5574         }
5575
5576         if (netif_running(netdev))
5577                 err = igc_open(netdev);
5578
5579         return err;
5580 }
5581
5582 /**
5583  * igc_get_hw_dev - return device
5584  * @hw: pointer to hardware structure
5585  *
5586  * used by hardware layer to print debugging information
5587  */
5588 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5589 {
5590         struct igc_adapter *adapter = hw->back;
5591
5592         return adapter->netdev;
5593 }
5594
5595 /**
5596  * igc_init_module - Driver Registration Routine
5597  *
5598  * igc_init_module is the first routine called when the driver is
5599  * loaded. All it does is register with the PCI subsystem.
5600  */
5601 static int __init igc_init_module(void)
5602 {
5603         int ret;
5604
5605         pr_info("%s\n", igc_driver_string);
5606         pr_info("%s\n", igc_copyright);
5607
5608         ret = pci_register_driver(&igc_driver);
5609         return ret;
5610 }
5611
5612 module_init(igc_init_module);
5613
5614 /**
5615  * igc_exit_module - Driver Exit Cleanup Routine
5616  *
5617  * igc_exit_module is called just before the driver is removed
5618  * from memory.
5619  */
5620 static void __exit igc_exit_module(void)
5621 {
5622         pci_unregister_driver(&igc_driver);
5623 }
5624
5625 module_exit(igc_exit_module);
5626 /* igc_main.c */