Merge tag 'pci-v5.11-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8
9 #include "igb.h"
10
11 #define INCVALUE_MASK           0x7fffffff
12 #define ISGN                    0x80000000
13
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63
64 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
66 #define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580                 40
70
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72
73 /* SYSTIM read access for the 82576 */
74 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
75 {
76         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
77         struct e1000_hw *hw = &igb->hw;
78         u64 val;
79         u32 lo, hi;
80
81         lo = rd32(E1000_SYSTIML);
82         hi = rd32(E1000_SYSTIMH);
83
84         val = ((u64) hi) << 32;
85         val |= lo;
86
87         return val;
88 }
89
90 /* SYSTIM read access for the 82580 */
91 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
92 {
93         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
94         struct e1000_hw *hw = &igb->hw;
95         u32 lo, hi;
96         u64 val;
97
98         /* The timestamp latches on lowest register read. For the 82580
99          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
100          * need to provide nanosecond resolution, so we just ignore it.
101          */
102         rd32(E1000_SYSTIMR);
103         lo = rd32(E1000_SYSTIML);
104         hi = rd32(E1000_SYSTIMH);
105
106         val = ((u64) hi) << 32;
107         val |= lo;
108
109         return val;
110 }
111
112 /* SYSTIM read access for I210/I211 */
113 static void igb_ptp_read_i210(struct igb_adapter *adapter,
114                               struct timespec64 *ts)
115 {
116         struct e1000_hw *hw = &adapter->hw;
117         u32 sec, nsec;
118
119         /* The timestamp latches on lowest register read. For I210/I211, the
120          * lowest register is SYSTIMR. Since we only need to provide nanosecond
121          * resolution, we can ignore it.
122          */
123         rd32(E1000_SYSTIMR);
124         nsec = rd32(E1000_SYSTIML);
125         sec = rd32(E1000_SYSTIMH);
126
127         ts->tv_sec = sec;
128         ts->tv_nsec = nsec;
129 }
130
131 static void igb_ptp_write_i210(struct igb_adapter *adapter,
132                                const struct timespec64 *ts)
133 {
134         struct e1000_hw *hw = &adapter->hw;
135
136         /* Writing the SYSTIMR register is not necessary as it only provides
137          * sub-nanosecond resolution.
138          */
139         wr32(E1000_SYSTIML, ts->tv_nsec);
140         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
141 }
142
143 /**
144  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
145  * @adapter: board private structure
146  * @hwtstamps: timestamp structure to update
147  * @systim: unsigned 64bit system time value.
148  *
149  * We need to convert the system time value stored in the RX/TXSTMP registers
150  * into a hwtstamp which can be used by the upper level timestamping functions.
151  *
152  * The 'tmreg_lock' spinlock is used to protect the consistency of the
153  * system time value. This is needed because reading the 64 bit time
154  * value involves reading two (or three) 32 bit registers. The first
155  * read latches the value. Ditto for writing.
156  *
157  * In addition, here have extended the system time with an overflow
158  * counter in software.
159  **/
160 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
161                                        struct skb_shared_hwtstamps *hwtstamps,
162                                        u64 systim)
163 {
164         unsigned long flags;
165         u64 ns;
166
167         switch (adapter->hw.mac.type) {
168         case e1000_82576:
169         case e1000_82580:
170         case e1000_i354:
171         case e1000_i350:
172                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
173
174                 ns = timecounter_cyc2time(&adapter->tc, systim);
175
176                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
177
178                 memset(hwtstamps, 0, sizeof(*hwtstamps));
179                 hwtstamps->hwtstamp = ns_to_ktime(ns);
180                 break;
181         case e1000_i210:
182         case e1000_i211:
183                 memset(hwtstamps, 0, sizeof(*hwtstamps));
184                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
185                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
186                                                 systim & 0xFFFFFFFF);
187                 break;
188         default:
189                 break;
190         }
191 }
192
193 /* PTP clock operations */
194 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
195 {
196         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
197                                                ptp_caps);
198         struct e1000_hw *hw = &igb->hw;
199         int neg_adj = 0;
200         u64 rate;
201         u32 incvalue;
202
203         if (ppb < 0) {
204                 neg_adj = 1;
205                 ppb = -ppb;
206         }
207         rate = ppb;
208         rate <<= 14;
209         rate = div_u64(rate, 1953125);
210
211         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
212
213         if (neg_adj)
214                 incvalue -= rate;
215         else
216                 incvalue += rate;
217
218         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
219
220         return 0;
221 }
222
223 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
224 {
225         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
226                                                ptp_caps);
227         struct e1000_hw *hw = &igb->hw;
228         int neg_adj = 0;
229         u64 rate;
230         u32 inca;
231
232         if (scaled_ppm < 0) {
233                 neg_adj = 1;
234                 scaled_ppm = -scaled_ppm;
235         }
236         rate = scaled_ppm;
237         rate <<= 13;
238         rate = div_u64(rate, 15625);
239
240         inca = rate & INCVALUE_MASK;
241         if (neg_adj)
242                 inca |= ISGN;
243
244         wr32(E1000_TIMINCA, inca);
245
246         return 0;
247 }
248
249 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
250 {
251         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
252                                                ptp_caps);
253         unsigned long flags;
254
255         spin_lock_irqsave(&igb->tmreg_lock, flags);
256         timecounter_adjtime(&igb->tc, delta);
257         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
258
259         return 0;
260 }
261
262 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
263 {
264         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
265                                                ptp_caps);
266         unsigned long flags;
267         struct timespec64 now, then = ns_to_timespec64(delta);
268
269         spin_lock_irqsave(&igb->tmreg_lock, flags);
270
271         igb_ptp_read_i210(igb, &now);
272         now = timespec64_add(now, then);
273         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
274
275         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
276
277         return 0;
278 }
279
280 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
281                                   struct timespec64 *ts,
282                                   struct ptp_system_timestamp *sts)
283 {
284         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
285                                                ptp_caps);
286         struct e1000_hw *hw = &igb->hw;
287         unsigned long flags;
288         u32 lo, hi;
289         u64 ns;
290
291         spin_lock_irqsave(&igb->tmreg_lock, flags);
292
293         ptp_read_system_prets(sts);
294         lo = rd32(E1000_SYSTIML);
295         ptp_read_system_postts(sts);
296         hi = rd32(E1000_SYSTIMH);
297
298         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
299
300         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
301
302         *ts = ns_to_timespec64(ns);
303
304         return 0;
305 }
306
307 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
308                                   struct timespec64 *ts,
309                                   struct ptp_system_timestamp *sts)
310 {
311         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
312                                                ptp_caps);
313         struct e1000_hw *hw = &igb->hw;
314         unsigned long flags;
315         u32 lo, hi;
316         u64 ns;
317
318         spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320         ptp_read_system_prets(sts);
321         rd32(E1000_SYSTIMR);
322         ptp_read_system_postts(sts);
323         lo = rd32(E1000_SYSTIML);
324         hi = rd32(E1000_SYSTIMH);
325
326         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
327
328         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
329
330         *ts = ns_to_timespec64(ns);
331
332         return 0;
333 }
334
335 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
336                                  struct timespec64 *ts,
337                                  struct ptp_system_timestamp *sts)
338 {
339         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
340                                                ptp_caps);
341         struct e1000_hw *hw = &igb->hw;
342         unsigned long flags;
343
344         spin_lock_irqsave(&igb->tmreg_lock, flags);
345
346         ptp_read_system_prets(sts);
347         rd32(E1000_SYSTIMR);
348         ptp_read_system_postts(sts);
349         ts->tv_nsec = rd32(E1000_SYSTIML);
350         ts->tv_sec = rd32(E1000_SYSTIMH);
351
352         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
353
354         return 0;
355 }
356
357 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
358                                  const struct timespec64 *ts)
359 {
360         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
361                                                ptp_caps);
362         unsigned long flags;
363         u64 ns;
364
365         ns = timespec64_to_ns(ts);
366
367         spin_lock_irqsave(&igb->tmreg_lock, flags);
368
369         timecounter_init(&igb->tc, &igb->cc, ns);
370
371         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
372
373         return 0;
374 }
375
376 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
377                                 const struct timespec64 *ts)
378 {
379         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
380                                                ptp_caps);
381         unsigned long flags;
382
383         spin_lock_irqsave(&igb->tmreg_lock, flags);
384
385         igb_ptp_write_i210(igb, ts);
386
387         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
388
389         return 0;
390 }
391
392 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
393 {
394         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
395         static const u32 mask[IGB_N_SDP] = {
396                 E1000_CTRL_SDP0_DIR,
397                 E1000_CTRL_SDP1_DIR,
398                 E1000_CTRL_EXT_SDP2_DIR,
399                 E1000_CTRL_EXT_SDP3_DIR,
400         };
401
402         if (input)
403                 *ptr &= ~mask[pin];
404         else
405                 *ptr |= mask[pin];
406 }
407
408 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
409 {
410         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412         };
413         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415         };
416         static const u32 ts_sdp_en[IGB_N_SDP] = {
417                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418         };
419         struct e1000_hw *hw = &igb->hw;
420         u32 ctrl, ctrl_ext, tssdp = 0;
421
422         ctrl = rd32(E1000_CTRL);
423         ctrl_ext = rd32(E1000_CTRL_EXT);
424         tssdp = rd32(E1000_TSSDP);
425
426         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
427
428         /* Make sure this pin is not enabled as an output. */
429         tssdp &= ~ts_sdp_en[pin];
430
431         if (chan == 1) {
432                 tssdp &= ~AUX1_SEL_SDP3;
433                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
434         } else {
435                 tssdp &= ~AUX0_SEL_SDP3;
436                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
437         }
438
439         wr32(E1000_TSSDP, tssdp);
440         wr32(E1000_CTRL, ctrl);
441         wr32(E1000_CTRL_EXT, ctrl_ext);
442 }
443
444 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
445 {
446         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
447                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
448         };
449         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
450                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
451         };
452         static const u32 ts_sdp_en[IGB_N_SDP] = {
453                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
454         };
455         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
456                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
457                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
458         };
459         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
460                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
461                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
462         };
463         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
464                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
465                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
466         };
467         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
468                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
469                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
470         };
471         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
472                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
473                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
474         };
475         struct e1000_hw *hw = &igb->hw;
476         u32 ctrl, ctrl_ext, tssdp = 0;
477
478         ctrl = rd32(E1000_CTRL);
479         ctrl_ext = rd32(E1000_CTRL_EXT);
480         tssdp = rd32(E1000_TSSDP);
481
482         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
483
484         /* Make sure this pin is not enabled as an input. */
485         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
486                 tssdp &= ~AUX0_TS_SDP_EN;
487
488         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
489                 tssdp &= ~AUX1_TS_SDP_EN;
490
491         tssdp &= ~ts_sdp_sel_clr[pin];
492         if (freq) {
493                 if (chan == 1)
494                         tssdp |= ts_sdp_sel_fc1[pin];
495                 else
496                         tssdp |= ts_sdp_sel_fc0[pin];
497         } else {
498                 if (chan == 1)
499                         tssdp |= ts_sdp_sel_tt1[pin];
500                 else
501                         tssdp |= ts_sdp_sel_tt0[pin];
502         }
503         tssdp |= ts_sdp_en[pin];
504
505         wr32(E1000_TSSDP, tssdp);
506         wr32(E1000_CTRL, ctrl);
507         wr32(E1000_CTRL_EXT, ctrl_ext);
508 }
509
510 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
511                                        struct ptp_clock_request *rq, int on)
512 {
513         struct igb_adapter *igb =
514                 container_of(ptp, struct igb_adapter, ptp_caps);
515         struct e1000_hw *hw = &igb->hw;
516         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
517         unsigned long flags;
518         struct timespec64 ts;
519         int use_freq = 0, pin = -1;
520         s64 ns;
521
522         switch (rq->type) {
523         case PTP_CLK_REQ_EXTTS:
524                 /* Reject requests with unsupported flags */
525                 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
526                                         PTP_RISING_EDGE |
527                                         PTP_FALLING_EDGE |
528                                         PTP_STRICT_FLAGS))
529                         return -EOPNOTSUPP;
530
531                 /* Reject requests failing to enable both edges. */
532                 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
533                     (rq->extts.flags & PTP_ENABLE_FEATURE) &&
534                     (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
535                         return -EOPNOTSUPP;
536
537                 if (on) {
538                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
539                                            rq->extts.index);
540                         if (pin < 0)
541                                 return -EBUSY;
542                 }
543                 if (rq->extts.index == 1) {
544                         tsauxc_mask = TSAUXC_EN_TS1;
545                         tsim_mask = TSINTR_AUTT1;
546                 } else {
547                         tsauxc_mask = TSAUXC_EN_TS0;
548                         tsim_mask = TSINTR_AUTT0;
549                 }
550                 spin_lock_irqsave(&igb->tmreg_lock, flags);
551                 tsauxc = rd32(E1000_TSAUXC);
552                 tsim = rd32(E1000_TSIM);
553                 if (on) {
554                         igb_pin_extts(igb, rq->extts.index, pin);
555                         tsauxc |= tsauxc_mask;
556                         tsim |= tsim_mask;
557                 } else {
558                         tsauxc &= ~tsauxc_mask;
559                         tsim &= ~tsim_mask;
560                 }
561                 wr32(E1000_TSAUXC, tsauxc);
562                 wr32(E1000_TSIM, tsim);
563                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
564                 return 0;
565
566         case PTP_CLK_REQ_PEROUT:
567                 /* Reject requests with unsupported flags */
568                 if (rq->perout.flags)
569                         return -EOPNOTSUPP;
570
571                 if (on) {
572                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
573                                            rq->perout.index);
574                         if (pin < 0)
575                                 return -EBUSY;
576                 }
577                 ts.tv_sec = rq->perout.period.sec;
578                 ts.tv_nsec = rq->perout.period.nsec;
579                 ns = timespec64_to_ns(&ts);
580                 ns = ns >> 1;
581                 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
582                            (ns == 250000000LL) || (ns == 500000000LL))) {
583                         if (ns < 8LL)
584                                 return -EINVAL;
585                         use_freq = 1;
586                 }
587                 ts = ns_to_timespec64(ns);
588                 if (rq->perout.index == 1) {
589                         if (use_freq) {
590                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
591                                 tsim_mask = 0;
592                         } else {
593                                 tsauxc_mask = TSAUXC_EN_TT1;
594                                 tsim_mask = TSINTR_TT1;
595                         }
596                         trgttiml = E1000_TRGTTIML1;
597                         trgttimh = E1000_TRGTTIMH1;
598                         freqout = E1000_FREQOUT1;
599                 } else {
600                         if (use_freq) {
601                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
602                                 tsim_mask = 0;
603                         } else {
604                                 tsauxc_mask = TSAUXC_EN_TT0;
605                                 tsim_mask = TSINTR_TT0;
606                         }
607                         trgttiml = E1000_TRGTTIML0;
608                         trgttimh = E1000_TRGTTIMH0;
609                         freqout = E1000_FREQOUT0;
610                 }
611                 spin_lock_irqsave(&igb->tmreg_lock, flags);
612                 tsauxc = rd32(E1000_TSAUXC);
613                 tsim = rd32(E1000_TSIM);
614                 if (rq->perout.index == 1) {
615                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
616                         tsim &= ~TSINTR_TT1;
617                 } else {
618                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
619                         tsim &= ~TSINTR_TT0;
620                 }
621                 if (on) {
622                         int i = rq->perout.index;
623                         igb_pin_perout(igb, i, pin, use_freq);
624                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
625                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
626                         igb->perout[i].period.tv_sec = ts.tv_sec;
627                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
628                         wr32(trgttimh, rq->perout.start.sec);
629                         wr32(trgttiml, rq->perout.start.nsec);
630                         if (use_freq)
631                                 wr32(freqout, ns);
632                         tsauxc |= tsauxc_mask;
633                         tsim |= tsim_mask;
634                 }
635                 wr32(E1000_TSAUXC, tsauxc);
636                 wr32(E1000_TSIM, tsim);
637                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
638                 return 0;
639
640         case PTP_CLK_REQ_PPS:
641                 spin_lock_irqsave(&igb->tmreg_lock, flags);
642                 tsim = rd32(E1000_TSIM);
643                 if (on)
644                         tsim |= TSINTR_SYS_WRAP;
645                 else
646                         tsim &= ~TSINTR_SYS_WRAP;
647                 igb->pps_sys_wrap_on = !!on;
648                 wr32(E1000_TSIM, tsim);
649                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
650                 return 0;
651         }
652
653         return -EOPNOTSUPP;
654 }
655
656 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
657                                   struct ptp_clock_request *rq, int on)
658 {
659         return -EOPNOTSUPP;
660 }
661
662 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
663                               enum ptp_pin_function func, unsigned int chan)
664 {
665         switch (func) {
666         case PTP_PF_NONE:
667         case PTP_PF_EXTTS:
668         case PTP_PF_PEROUT:
669                 break;
670         case PTP_PF_PHYSYNC:
671                 return -1;
672         }
673         return 0;
674 }
675
676 /**
677  * igb_ptp_tx_work
678  * @work: pointer to work struct
679  *
680  * This work function polls the TSYNCTXCTL valid bit to determine when a
681  * timestamp has been taken for the current stored skb.
682  **/
683 static void igb_ptp_tx_work(struct work_struct *work)
684 {
685         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
686                                                    ptp_tx_work);
687         struct e1000_hw *hw = &adapter->hw;
688         u32 tsynctxctl;
689
690         if (!adapter->ptp_tx_skb)
691                 return;
692
693         if (time_is_before_jiffies(adapter->ptp_tx_start +
694                                    IGB_PTP_TX_TIMEOUT)) {
695                 dev_kfree_skb_any(adapter->ptp_tx_skb);
696                 adapter->ptp_tx_skb = NULL;
697                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
698                 adapter->tx_hwtstamp_timeouts++;
699                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
700                  * interrupt
701                  */
702                 rd32(E1000_TXSTMPH);
703                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
704                 return;
705         }
706
707         tsynctxctl = rd32(E1000_TSYNCTXCTL);
708         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
709                 igb_ptp_tx_hwtstamp(adapter);
710         else
711                 /* reschedule to check later */
712                 schedule_work(&adapter->ptp_tx_work);
713 }
714
715 static void igb_ptp_overflow_check(struct work_struct *work)
716 {
717         struct igb_adapter *igb =
718                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
719         struct timespec64 ts;
720         u64 ns;
721
722         /* Update the timecounter */
723         ns = timecounter_read(&igb->tc);
724
725         ts = ns_to_timespec64(ns);
726         pr_debug("igb overflow check at %lld.%09lu\n",
727                  (long long) ts.tv_sec, ts.tv_nsec);
728
729         schedule_delayed_work(&igb->ptp_overflow_work,
730                               IGB_SYSTIM_OVERFLOW_PERIOD);
731 }
732
733 /**
734  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
735  * @adapter: private network adapter structure
736  *
737  * This watchdog task is scheduled to detect error case where hardware has
738  * dropped an Rx packet that was timestamped when the ring is full. The
739  * particular error is rare but leaves the device in a state unable to timestamp
740  * any future packets.
741  **/
742 void igb_ptp_rx_hang(struct igb_adapter *adapter)
743 {
744         struct e1000_hw *hw = &adapter->hw;
745         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
746         unsigned long rx_event;
747
748         /* Other hardware uses per-packet timestamps */
749         if (hw->mac.type != e1000_82576)
750                 return;
751
752         /* If we don't have a valid timestamp in the registers, just update the
753          * timeout counter and exit
754          */
755         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
756                 adapter->last_rx_ptp_check = jiffies;
757                 return;
758         }
759
760         /* Determine the most recent watchdog or rx_timestamp event */
761         rx_event = adapter->last_rx_ptp_check;
762         if (time_after(adapter->last_rx_timestamp, rx_event))
763                 rx_event = adapter->last_rx_timestamp;
764
765         /* Only need to read the high RXSTMP register to clear the lock */
766         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
767                 rd32(E1000_RXSTMPH);
768                 adapter->last_rx_ptp_check = jiffies;
769                 adapter->rx_hwtstamp_cleared++;
770                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
771         }
772 }
773
774 /**
775  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
776  * @adapter: private network adapter structure
777  */
778 void igb_ptp_tx_hang(struct igb_adapter *adapter)
779 {
780         struct e1000_hw *hw = &adapter->hw;
781         bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
782                                               IGB_PTP_TX_TIMEOUT);
783
784         if (!adapter->ptp_tx_skb)
785                 return;
786
787         if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
788                 return;
789
790         /* If we haven't received a timestamp within the timeout, it is
791          * reasonable to assume that it will never occur, so we can unlock the
792          * timestamp bit when this occurs.
793          */
794         if (timeout) {
795                 cancel_work_sync(&adapter->ptp_tx_work);
796                 dev_kfree_skb_any(adapter->ptp_tx_skb);
797                 adapter->ptp_tx_skb = NULL;
798                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
799                 adapter->tx_hwtstamp_timeouts++;
800                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
801                  * interrupt
802                  */
803                 rd32(E1000_TXSTMPH);
804                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
805         }
806 }
807
808 /**
809  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
810  * @adapter: Board private structure.
811  *
812  * If we were asked to do hardware stamping and such a time stamp is
813  * available, then it must have been for this skb here because we only
814  * allow only one such packet into the queue.
815  **/
816 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
817 {
818         struct sk_buff *skb = adapter->ptp_tx_skb;
819         struct e1000_hw *hw = &adapter->hw;
820         struct skb_shared_hwtstamps shhwtstamps;
821         u64 regval;
822         int adjust = 0;
823
824         regval = rd32(E1000_TXSTMPL);
825         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
826
827         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
828         /* adjust timestamp for the TX latency based on link speed */
829         if (adapter->hw.mac.type == e1000_i210) {
830                 switch (adapter->link_speed) {
831                 case SPEED_10:
832                         adjust = IGB_I210_TX_LATENCY_10;
833                         break;
834                 case SPEED_100:
835                         adjust = IGB_I210_TX_LATENCY_100;
836                         break;
837                 case SPEED_1000:
838                         adjust = IGB_I210_TX_LATENCY_1000;
839                         break;
840                 }
841         }
842
843         shhwtstamps.hwtstamp =
844                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
845
846         /* Clear the lock early before calling skb_tstamp_tx so that
847          * applications are not woken up before the lock bit is clear. We use
848          * a copy of the skb pointer to ensure other threads can't change it
849          * while we're notifying the stack.
850          */
851         adapter->ptp_tx_skb = NULL;
852         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
853
854         /* Notify the stack and free the skb after we've unlocked */
855         skb_tstamp_tx(skb, &shhwtstamps);
856         dev_kfree_skb_any(skb);
857 }
858
859 /**
860  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
861  * @q_vector: Pointer to interrupt specific structure
862  * @va: Pointer to address containing Rx buffer
863  * @skb: Buffer containing timestamp and packet
864  *
865  * This function is meant to retrieve a timestamp from the first buffer of an
866  * incoming frame.  The value is stored in little endian format starting on
867  * byte 8.
868  **/
869 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
870                          struct sk_buff *skb)
871 {
872         __le64 *regval = (__le64 *)va;
873         struct igb_adapter *adapter = q_vector->adapter;
874         int adjust = 0;
875
876         /* The timestamp is recorded in little endian format.
877          * DWORD: 0        1        2        3
878          * Field: Reserved Reserved SYSTIML  SYSTIMH
879          */
880         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
881                                    le64_to_cpu(regval[1]));
882
883         /* adjust timestamp for the RX latency based on link speed */
884         if (adapter->hw.mac.type == e1000_i210) {
885                 switch (adapter->link_speed) {
886                 case SPEED_10:
887                         adjust = IGB_I210_RX_LATENCY_10;
888                         break;
889                 case SPEED_100:
890                         adjust = IGB_I210_RX_LATENCY_100;
891                         break;
892                 case SPEED_1000:
893                         adjust = IGB_I210_RX_LATENCY_1000;
894                         break;
895                 }
896         }
897         skb_hwtstamps(skb)->hwtstamp =
898                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
899 }
900
901 /**
902  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
903  * @q_vector: Pointer to interrupt specific structure
904  * @skb: Buffer containing timestamp and packet
905  *
906  * This function is meant to retrieve a timestamp from the internal registers
907  * of the adapter and store it in the skb.
908  **/
909 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
910                          struct sk_buff *skb)
911 {
912         struct igb_adapter *adapter = q_vector->adapter;
913         struct e1000_hw *hw = &adapter->hw;
914         u64 regval;
915         int adjust = 0;
916
917         /* If this bit is set, then the RX registers contain the time stamp. No
918          * other packet will be time stamped until we read these registers, so
919          * read the registers to make them available again. Because only one
920          * packet can be time stamped at a time, we know that the register
921          * values must belong to this one here and therefore we don't need to
922          * compare any of the additional attributes stored for it.
923          *
924          * If nothing went wrong, then it should have a shared tx_flags that we
925          * can turn into a skb_shared_hwtstamps.
926          */
927         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
928                 return;
929
930         regval = rd32(E1000_RXSTMPL);
931         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
932
933         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
934
935         /* adjust timestamp for the RX latency based on link speed */
936         if (adapter->hw.mac.type == e1000_i210) {
937                 switch (adapter->link_speed) {
938                 case SPEED_10:
939                         adjust = IGB_I210_RX_LATENCY_10;
940                         break;
941                 case SPEED_100:
942                         adjust = IGB_I210_RX_LATENCY_100;
943                         break;
944                 case SPEED_1000:
945                         adjust = IGB_I210_RX_LATENCY_1000;
946                         break;
947                 }
948         }
949         skb_hwtstamps(skb)->hwtstamp =
950                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
951
952         /* Update the last_rx_timestamp timer in order to enable watchdog check
953          * for error case of latched timestamp on a dropped packet.
954          */
955         adapter->last_rx_timestamp = jiffies;
956 }
957
958 /**
959  * igb_ptp_get_ts_config - get hardware time stamping config
960  * @netdev: netdev struct
961  * @ifr: interface struct
962  *
963  * Get the hwtstamp_config settings to return to the user. Rather than attempt
964  * to deconstruct the settings from the registers, just return a shadow copy
965  * of the last known settings.
966  **/
967 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
968 {
969         struct igb_adapter *adapter = netdev_priv(netdev);
970         struct hwtstamp_config *config = &adapter->tstamp_config;
971
972         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
973                 -EFAULT : 0;
974 }
975
976 /**
977  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
978  * @adapter: networking device structure
979  * @config: hwtstamp configuration
980  *
981  * Outgoing time stamping can be enabled and disabled. Play nice and
982  * disable it when requested, although it shouldn't case any overhead
983  * when no packet needs it. At most one packet in the queue may be
984  * marked for time stamping, otherwise it would be impossible to tell
985  * for sure to which packet the hardware time stamp belongs.
986  *
987  * Incoming time stamping has to be configured via the hardware
988  * filters. Not all combinations are supported, in particular event
989  * type has to be specified. Matching the kind of event packet is
990  * not supported, with the exception of "all V2 events regardless of
991  * level 2 or 4".
992  */
993 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
994                                       struct hwtstamp_config *config)
995 {
996         struct e1000_hw *hw = &adapter->hw;
997         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
998         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
999         u32 tsync_rx_cfg = 0;
1000         bool is_l4 = false;
1001         bool is_l2 = false;
1002         u32 regval;
1003
1004         /* reserved for future extensions */
1005         if (config->flags)
1006                 return -EINVAL;
1007
1008         switch (config->tx_type) {
1009         case HWTSTAMP_TX_OFF:
1010                 tsync_tx_ctl = 0;
1011         case HWTSTAMP_TX_ON:
1012                 break;
1013         default:
1014                 return -ERANGE;
1015         }
1016
1017         switch (config->rx_filter) {
1018         case HWTSTAMP_FILTER_NONE:
1019                 tsync_rx_ctl = 0;
1020                 break;
1021         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1022                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1023                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1024                 is_l4 = true;
1025                 break;
1026         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1027                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1028                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1029                 is_l4 = true;
1030                 break;
1031         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1032         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1033         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1034         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1035         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1036         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1037         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1038         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1039         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1040                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1041                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1042                 is_l2 = true;
1043                 is_l4 = true;
1044                 break;
1045         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1046         case HWTSTAMP_FILTER_NTP_ALL:
1047         case HWTSTAMP_FILTER_ALL:
1048                 /* 82576 cannot timestamp all packets, which it needs to do to
1049                  * support both V1 Sync and Delay_Req messages
1050                  */
1051                 if (hw->mac.type != e1000_82576) {
1052                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1053                         config->rx_filter = HWTSTAMP_FILTER_ALL;
1054                         break;
1055                 }
1056                 fallthrough;
1057         default:
1058                 config->rx_filter = HWTSTAMP_FILTER_NONE;
1059                 return -ERANGE;
1060         }
1061
1062         if (hw->mac.type == e1000_82575) {
1063                 if (tsync_rx_ctl | tsync_tx_ctl)
1064                         return -EINVAL;
1065                 return 0;
1066         }
1067
1068         /* Per-packet timestamping only works if all packets are
1069          * timestamped, so enable timestamping in all packets as
1070          * long as one Rx filter was configured.
1071          */
1072         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1073                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1074                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1075                 config->rx_filter = HWTSTAMP_FILTER_ALL;
1076                 is_l2 = true;
1077                 is_l4 = true;
1078
1079                 if ((hw->mac.type == e1000_i210) ||
1080                     (hw->mac.type == e1000_i211)) {
1081                         regval = rd32(E1000_RXPBS);
1082                         regval |= E1000_RXPBS_CFG_TS_EN;
1083                         wr32(E1000_RXPBS, regval);
1084                 }
1085         }
1086
1087         /* enable/disable TX */
1088         regval = rd32(E1000_TSYNCTXCTL);
1089         regval &= ~E1000_TSYNCTXCTL_ENABLED;
1090         regval |= tsync_tx_ctl;
1091         wr32(E1000_TSYNCTXCTL, regval);
1092
1093         /* enable/disable RX */
1094         regval = rd32(E1000_TSYNCRXCTL);
1095         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1096         regval |= tsync_rx_ctl;
1097         wr32(E1000_TSYNCRXCTL, regval);
1098
1099         /* define which PTP packets are time stamped */
1100         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1101
1102         /* define ethertype filter for timestamped packets */
1103         if (is_l2)
1104                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1105                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1106                       E1000_ETQF_1588 | /* enable timestamping */
1107                       ETH_P_1588));     /* 1588 eth protocol type */
1108         else
1109                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1110
1111         /* L4 Queue Filter[3]: filter by destination port and protocol */
1112         if (is_l4) {
1113                 u32 ftqf = (IPPROTO_UDP /* UDP */
1114                         | E1000_FTQF_VF_BP /* VF not compared */
1115                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1116                         | E1000_FTQF_MASK); /* mask all inputs */
1117                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1118
1119                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1120                 wr32(E1000_IMIREXT(3),
1121                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1122                 if (hw->mac.type == e1000_82576) {
1123                         /* enable source port check */
1124                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1125                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1126                 }
1127                 wr32(E1000_FTQF(3), ftqf);
1128         } else {
1129                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1130         }
1131         wrfl();
1132
1133         /* clear TX/RX time stamp registers, just to be sure */
1134         regval = rd32(E1000_TXSTMPL);
1135         regval = rd32(E1000_TXSTMPH);
1136         regval = rd32(E1000_RXSTMPL);
1137         regval = rd32(E1000_RXSTMPH);
1138
1139         return 0;
1140 }
1141
1142 /**
1143  * igb_ptp_set_ts_config - set hardware time stamping config
1144  * @netdev: netdev struct
1145  * @ifr: interface struct
1146  *
1147  **/
1148 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1149 {
1150         struct igb_adapter *adapter = netdev_priv(netdev);
1151         struct hwtstamp_config config;
1152         int err;
1153
1154         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1155                 return -EFAULT;
1156
1157         err = igb_ptp_set_timestamp_mode(adapter, &config);
1158         if (err)
1159                 return err;
1160
1161         /* save these settings for future reference */
1162         memcpy(&adapter->tstamp_config, &config,
1163                sizeof(adapter->tstamp_config));
1164
1165         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1166                 -EFAULT : 0;
1167 }
1168
1169 /**
1170  * igb_ptp_init - Initialize PTP functionality
1171  * @adapter: Board private structure
1172  *
1173  * This function is called at device probe to initialize the PTP
1174  * functionality.
1175  */
1176 void igb_ptp_init(struct igb_adapter *adapter)
1177 {
1178         struct e1000_hw *hw = &adapter->hw;
1179         struct net_device *netdev = adapter->netdev;
1180         int i;
1181
1182         switch (hw->mac.type) {
1183         case e1000_82576:
1184                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1185                 adapter->ptp_caps.owner = THIS_MODULE;
1186                 adapter->ptp_caps.max_adj = 999999881;
1187                 adapter->ptp_caps.n_ext_ts = 0;
1188                 adapter->ptp_caps.pps = 0;
1189                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1190                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1191                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1192                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1193                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1194                 adapter->cc.read = igb_ptp_read_82576;
1195                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1196                 adapter->cc.mult = 1;
1197                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1198                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1199                 break;
1200         case e1000_82580:
1201         case e1000_i354:
1202         case e1000_i350:
1203                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1204                 adapter->ptp_caps.owner = THIS_MODULE;
1205                 adapter->ptp_caps.max_adj = 62499999;
1206                 adapter->ptp_caps.n_ext_ts = 0;
1207                 adapter->ptp_caps.pps = 0;
1208                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1209                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1210                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1211                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1212                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1213                 adapter->cc.read = igb_ptp_read_82580;
1214                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1215                 adapter->cc.mult = 1;
1216                 adapter->cc.shift = 0;
1217                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1218                 break;
1219         case e1000_i210:
1220         case e1000_i211:
1221                 for (i = 0; i < IGB_N_SDP; i++) {
1222                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1223
1224                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1225                         ppd->index = i;
1226                         ppd->func = PTP_PF_NONE;
1227                 }
1228                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1229                 adapter->ptp_caps.owner = THIS_MODULE;
1230                 adapter->ptp_caps.max_adj = 62499999;
1231                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1232                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1233                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1234                 adapter->ptp_caps.pps = 1;
1235                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1236                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1237                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1238                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1239                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1240                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1241                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1242                 break;
1243         default:
1244                 adapter->ptp_clock = NULL;
1245                 return;
1246         }
1247
1248         spin_lock_init(&adapter->tmreg_lock);
1249         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1250
1251         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1252                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1253                                   igb_ptp_overflow_check);
1254
1255         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1256         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1257
1258         igb_ptp_reset(adapter);
1259
1260         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1261                                                 &adapter->pdev->dev);
1262         if (IS_ERR(adapter->ptp_clock)) {
1263                 adapter->ptp_clock = NULL;
1264                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1265         } else if (adapter->ptp_clock) {
1266                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1267                          adapter->netdev->name);
1268                 adapter->ptp_flags |= IGB_PTP_ENABLED;
1269         }
1270 }
1271
1272 /**
1273  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1274  * @adapter: Board private structure
1275  *
1276  * This function stops the overflow check work and PTP Tx timestamp work, and
1277  * will prepare the device for OS suspend.
1278  */
1279 void igb_ptp_suspend(struct igb_adapter *adapter)
1280 {
1281         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1282                 return;
1283
1284         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1285                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1286
1287         cancel_work_sync(&adapter->ptp_tx_work);
1288         if (adapter->ptp_tx_skb) {
1289                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1290                 adapter->ptp_tx_skb = NULL;
1291                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1292         }
1293 }
1294
1295 /**
1296  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1297  * @adapter: Board private structure.
1298  *
1299  * This function stops the PTP support and cancels the delayed work.
1300  **/
1301 void igb_ptp_stop(struct igb_adapter *adapter)
1302 {
1303         igb_ptp_suspend(adapter);
1304
1305         if (adapter->ptp_clock) {
1306                 ptp_clock_unregister(adapter->ptp_clock);
1307                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1308                          adapter->netdev->name);
1309                 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1310         }
1311 }
1312
1313 /**
1314  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1315  * @adapter: Board private structure.
1316  *
1317  * This function handles the reset work required to re-enable the PTP device.
1318  **/
1319 void igb_ptp_reset(struct igb_adapter *adapter)
1320 {
1321         struct e1000_hw *hw = &adapter->hw;
1322         unsigned long flags;
1323
1324         /* reset the tstamp_config */
1325         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1326
1327         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1328
1329         switch (adapter->hw.mac.type) {
1330         case e1000_82576:
1331                 /* Dial the nominal frequency. */
1332                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1333                 break;
1334         case e1000_82580:
1335         case e1000_i354:
1336         case e1000_i350:
1337         case e1000_i210:
1338         case e1000_i211:
1339                 wr32(E1000_TSAUXC, 0x0);
1340                 wr32(E1000_TSSDP, 0x0);
1341                 wr32(E1000_TSIM,
1342                      TSYNC_INTERRUPTS |
1343                      (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1344                 wr32(E1000_IMS, E1000_IMS_TS);
1345                 break;
1346         default:
1347                 /* No work to do. */
1348                 goto out;
1349         }
1350
1351         /* Re-initialize the timer. */
1352         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1353                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1354
1355                 igb_ptp_write_i210(adapter, &ts);
1356         } else {
1357                 timecounter_init(&adapter->tc, &adapter->cc,
1358                                  ktime_to_ns(ktime_get_real()));
1359         }
1360 out:
1361         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1362
1363         wrfl();
1364
1365         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1366                 schedule_delayed_work(&adapter->ptp_overflow_work,
1367                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1368 }