Merge tag 'tegra-for-5.10-dt-bindings' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40
41 enum queue_mode {
42         QUEUE_MODE_STRICT_PRIORITY,
43         QUEUE_MODE_STREAM_RESERVATION,
44 };
45
46 enum tx_queue_prio {
47         TX_QUEUE_PRIO_HIGH,
48         TX_QUEUE_PRIO_LOW,
49 };
50
51 char igb_driver_name[] = "igb";
52 static const char igb_driver_string[] =
53                                 "Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright[] =
55                                 "Copyright (c) 2007-2014 Intel Corporation.";
56
57 static const struct e1000_info *igb_info_tbl[] = {
58         [board_82575] = &e1000_82575_info,
59 };
60
61 static const struct pci_device_id igb_pci_tbl[] = {
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
97         /* required last entry */
98         {0, }
99 };
100
101 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
102
103 static int igb_setup_all_tx_resources(struct igb_adapter *);
104 static int igb_setup_all_rx_resources(struct igb_adapter *);
105 static void igb_free_all_tx_resources(struct igb_adapter *);
106 static void igb_free_all_rx_resources(struct igb_adapter *);
107 static void igb_setup_mrqc(struct igb_adapter *);
108 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
109 static void igb_remove(struct pci_dev *pdev);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_clean_tx_ring(struct igb_ring *);
119 static void igb_clean_rx_ring(struct igb_ring *);
120 static void igb_set_rx_mode(struct net_device *);
121 static void igb_update_phy_info(struct timer_list *);
122 static void igb_watchdog(struct timer_list *);
123 static void igb_watchdog_task(struct work_struct *);
124 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
125 static void igb_get_stats64(struct net_device *dev,
126                             struct rtnl_link_stats64 *stats);
127 static int igb_change_mtu(struct net_device *, int);
128 static int igb_set_mac(struct net_device *, void *);
129 static void igb_set_uta(struct igb_adapter *adapter, bool set);
130 static irqreturn_t igb_intr(int irq, void *);
131 static irqreturn_t igb_intr_msi(int irq, void *);
132 static irqreturn_t igb_msix_other(int irq, void *);
133 static irqreturn_t igb_msix_ring(int irq, void *);
134 #ifdef CONFIG_IGB_DCA
135 static void igb_update_dca(struct igb_q_vector *);
136 static void igb_setup_dca(struct igb_adapter *);
137 #endif /* CONFIG_IGB_DCA */
138 static int igb_poll(struct napi_struct *, int);
139 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
140 static int igb_clean_rx_irq(struct igb_q_vector *, int);
141 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
142 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
143 static void igb_reset_task(struct work_struct *);
144 static void igb_vlan_mode(struct net_device *netdev,
145                           netdev_features_t features);
146 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
147 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
148 static void igb_restore_vlan(struct igb_adapter *);
149 static void igb_rar_set_index(struct igb_adapter *, u32);
150 static void igb_ping_all_vfs(struct igb_adapter *);
151 static void igb_msg_task(struct igb_adapter *);
152 static void igb_vmm_control(struct igb_adapter *);
153 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
154 static void igb_flush_mac_table(struct igb_adapter *);
155 static int igb_available_rars(struct igb_adapter *, u8);
156 static void igb_set_default_mac_filter(struct igb_adapter *);
157 static int igb_uc_sync(struct net_device *, const unsigned char *);
158 static int igb_uc_unsync(struct net_device *, const unsigned char *);
159 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
160 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
161 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
162                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
163 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
164 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
165                                    bool setting);
166 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
167                                 bool setting);
168 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
169                                  struct ifla_vf_info *ivi);
170 static void igb_check_vf_rate_limit(struct igb_adapter *);
171 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
172 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
173
174 #ifdef CONFIG_PCI_IOV
175 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
176 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
177 static int igb_disable_sriov(struct pci_dev *dev);
178 static int igb_pci_disable_sriov(struct pci_dev *dev);
179 #endif
180
181 static int igb_suspend(struct device *);
182 static int igb_resume(struct device *);
183 static int igb_runtime_suspend(struct device *dev);
184 static int igb_runtime_resume(struct device *dev);
185 static int igb_runtime_idle(struct device *dev);
186 static const struct dev_pm_ops igb_pm_ops = {
187         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
188         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
189                         igb_runtime_idle)
190 };
191 static void igb_shutdown(struct pci_dev *);
192 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
193 #ifdef CONFIG_IGB_DCA
194 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
195 static struct notifier_block dca_notifier = {
196         .notifier_call  = igb_notify_dca,
197         .next           = NULL,
198         .priority       = 0
199 };
200 #endif
201 #ifdef CONFIG_PCI_IOV
202 static unsigned int max_vfs;
203 module_param(max_vfs, uint, 0);
204 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
205 #endif /* CONFIG_PCI_IOV */
206
207 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
208                      pci_channel_state_t);
209 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
210 static void igb_io_resume(struct pci_dev *);
211
212 static const struct pci_error_handlers igb_err_handler = {
213         .error_detected = igb_io_error_detected,
214         .slot_reset = igb_io_slot_reset,
215         .resume = igb_io_resume,
216 };
217
218 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
219
220 static struct pci_driver igb_driver = {
221         .name     = igb_driver_name,
222         .id_table = igb_pci_tbl,
223         .probe    = igb_probe,
224         .remove   = igb_remove,
225 #ifdef CONFIG_PM
226         .driver.pm = &igb_pm_ops,
227 #endif
228         .shutdown = igb_shutdown,
229         .sriov_configure = igb_pci_sriov_configure,
230         .err_handler = &igb_err_handler
231 };
232
233 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
234 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
235 MODULE_LICENSE("GPL v2");
236
237 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
238 static int debug = -1;
239 module_param(debug, int, 0);
240 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
241
242 struct igb_reg_info {
243         u32 ofs;
244         char *name;
245 };
246
247 static const struct igb_reg_info igb_reg_info_tbl[] = {
248
249         /* General Registers */
250         {E1000_CTRL, "CTRL"},
251         {E1000_STATUS, "STATUS"},
252         {E1000_CTRL_EXT, "CTRL_EXT"},
253
254         /* Interrupt Registers */
255         {E1000_ICR, "ICR"},
256
257         /* RX Registers */
258         {E1000_RCTL, "RCTL"},
259         {E1000_RDLEN(0), "RDLEN"},
260         {E1000_RDH(0), "RDH"},
261         {E1000_RDT(0), "RDT"},
262         {E1000_RXDCTL(0), "RXDCTL"},
263         {E1000_RDBAL(0), "RDBAL"},
264         {E1000_RDBAH(0), "RDBAH"},
265
266         /* TX Registers */
267         {E1000_TCTL, "TCTL"},
268         {E1000_TDBAL(0), "TDBAL"},
269         {E1000_TDBAH(0), "TDBAH"},
270         {E1000_TDLEN(0), "TDLEN"},
271         {E1000_TDH(0), "TDH"},
272         {E1000_TDT(0), "TDT"},
273         {E1000_TXDCTL(0), "TXDCTL"},
274         {E1000_TDFH, "TDFH"},
275         {E1000_TDFT, "TDFT"},
276         {E1000_TDFHS, "TDFHS"},
277         {E1000_TDFPC, "TDFPC"},
278
279         /* List Terminator */
280         {}
281 };
282
283 /* igb_regdump - register printout routine */
284 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
285 {
286         int n = 0;
287         char rname[16];
288         u32 regs[8];
289
290         switch (reginfo->ofs) {
291         case E1000_RDLEN(0):
292                 for (n = 0; n < 4; n++)
293                         regs[n] = rd32(E1000_RDLEN(n));
294                 break;
295         case E1000_RDH(0):
296                 for (n = 0; n < 4; n++)
297                         regs[n] = rd32(E1000_RDH(n));
298                 break;
299         case E1000_RDT(0):
300                 for (n = 0; n < 4; n++)
301                         regs[n] = rd32(E1000_RDT(n));
302                 break;
303         case E1000_RXDCTL(0):
304                 for (n = 0; n < 4; n++)
305                         regs[n] = rd32(E1000_RXDCTL(n));
306                 break;
307         case E1000_RDBAL(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDBAL(n));
310                 break;
311         case E1000_RDBAH(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RDBAH(n));
314                 break;
315         case E1000_TDBAL(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RDBAL(n));
318                 break;
319         case E1000_TDBAH(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_TDBAH(n));
322                 break;
323         case E1000_TDLEN(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_TDLEN(n));
326                 break;
327         case E1000_TDH(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_TDH(n));
330                 break;
331         case E1000_TDT(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_TDT(n));
334                 break;
335         case E1000_TXDCTL(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TXDCTL(n));
338                 break;
339         default:
340                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
341                 return;
342         }
343
344         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
345         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
346                 regs[2], regs[3]);
347 }
348
349 /* igb_dump - Print registers, Tx-rings and Rx-rings */
350 static void igb_dump(struct igb_adapter *adapter)
351 {
352         struct net_device *netdev = adapter->netdev;
353         struct e1000_hw *hw = &adapter->hw;
354         struct igb_reg_info *reginfo;
355         struct igb_ring *tx_ring;
356         union e1000_adv_tx_desc *tx_desc;
357         struct my_u0 { u64 a; u64 b; } *u0;
358         struct igb_ring *rx_ring;
359         union e1000_adv_rx_desc *rx_desc;
360         u32 staterr;
361         u16 i, n;
362
363         if (!netif_msg_hw(adapter))
364                 return;
365
366         /* Print netdevice Info */
367         if (netdev) {
368                 dev_info(&adapter->pdev->dev, "Net device Info\n");
369                 pr_info("Device Name     state            trans_start\n");
370                 pr_info("%-15s %016lX %016lX\n", netdev->name,
371                         netdev->state, dev_trans_start(netdev));
372         }
373
374         /* Print Registers */
375         dev_info(&adapter->pdev->dev, "Register Dump\n");
376         pr_info(" Register Name   Value\n");
377         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
378              reginfo->name; reginfo++) {
379                 igb_regdump(hw, reginfo);
380         }
381
382         /* Print TX Ring Summary */
383         if (!netdev || !netif_running(netdev))
384                 goto exit;
385
386         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
387         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
388         for (n = 0; n < adapter->num_tx_queues; n++) {
389                 struct igb_tx_buffer *buffer_info;
390                 tx_ring = adapter->tx_ring[n];
391                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
392                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
393                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
394                         (u64)dma_unmap_addr(buffer_info, dma),
395                         dma_unmap_len(buffer_info, len),
396                         buffer_info->next_to_watch,
397                         (u64)buffer_info->time_stamp);
398         }
399
400         /* Print TX Rings */
401         if (!netif_msg_tx_done(adapter))
402                 goto rx_ring_summary;
403
404         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
405
406         /* Transmit Descriptor Formats
407          *
408          * Advanced Transmit Descriptor
409          *   +--------------------------------------------------------------+
410          * 0 |         Buffer Address [63:0]                                |
411          *   +--------------------------------------------------------------+
412          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
413          *   +--------------------------------------------------------------+
414          *   63      46 45    40 39 38 36 35 32 31   24             15       0
415          */
416
417         for (n = 0; n < adapter->num_tx_queues; n++) {
418                 tx_ring = adapter->tx_ring[n];
419                 pr_info("------------------------------------\n");
420                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
421                 pr_info("------------------------------------\n");
422                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
423
424                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
425                         const char *next_desc;
426                         struct igb_tx_buffer *buffer_info;
427                         tx_desc = IGB_TX_DESC(tx_ring, i);
428                         buffer_info = &tx_ring->tx_buffer_info[i];
429                         u0 = (struct my_u0 *)tx_desc;
430                         if (i == tx_ring->next_to_use &&
431                             i == tx_ring->next_to_clean)
432                                 next_desc = " NTC/U";
433                         else if (i == tx_ring->next_to_use)
434                                 next_desc = " NTU";
435                         else if (i == tx_ring->next_to_clean)
436                                 next_desc = " NTC";
437                         else
438                                 next_desc = "";
439
440                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
441                                 i, le64_to_cpu(u0->a),
442                                 le64_to_cpu(u0->b),
443                                 (u64)dma_unmap_addr(buffer_info, dma),
444                                 dma_unmap_len(buffer_info, len),
445                                 buffer_info->next_to_watch,
446                                 (u64)buffer_info->time_stamp,
447                                 buffer_info->skb, next_desc);
448
449                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
450                                 print_hex_dump(KERN_INFO, "",
451                                         DUMP_PREFIX_ADDRESS,
452                                         16, 1, buffer_info->skb->data,
453                                         dma_unmap_len(buffer_info, len),
454                                         true);
455                 }
456         }
457
458         /* Print RX Rings Summary */
459 rx_ring_summary:
460         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
461         pr_info("Queue [NTU] [NTC]\n");
462         for (n = 0; n < adapter->num_rx_queues; n++) {
463                 rx_ring = adapter->rx_ring[n];
464                 pr_info(" %5d %5X %5X\n",
465                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
466         }
467
468         /* Print RX Rings */
469         if (!netif_msg_rx_status(adapter))
470                 goto exit;
471
472         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
473
474         /* Advanced Receive Descriptor (Read) Format
475          *    63                                           1        0
476          *    +-----------------------------------------------------+
477          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
478          *    +----------------------------------------------+------+
479          *  8 |       Header Buffer Address [63:1]           |  DD  |
480          *    +-----------------------------------------------------+
481          *
482          *
483          * Advanced Receive Descriptor (Write-Back) Format
484          *
485          *   63       48 47    32 31  30      21 20 17 16   4 3     0
486          *   +------------------------------------------------------+
487          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
488          *   | Checksum   Ident  |   |           |    | Type | Type |
489          *   +------------------------------------------------------+
490          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
491          *   +------------------------------------------------------+
492          *   63       48 47    32 31            20 19               0
493          */
494
495         for (n = 0; n < adapter->num_rx_queues; n++) {
496                 rx_ring = adapter->rx_ring[n];
497                 pr_info("------------------------------------\n");
498                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
499                 pr_info("------------------------------------\n");
500                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
501                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
502
503                 for (i = 0; i < rx_ring->count; i++) {
504                         const char *next_desc;
505                         struct igb_rx_buffer *buffer_info;
506                         buffer_info = &rx_ring->rx_buffer_info[i];
507                         rx_desc = IGB_RX_DESC(rx_ring, i);
508                         u0 = (struct my_u0 *)rx_desc;
509                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
510
511                         if (i == rx_ring->next_to_use)
512                                 next_desc = " NTU";
513                         else if (i == rx_ring->next_to_clean)
514                                 next_desc = " NTC";
515                         else
516                                 next_desc = "";
517
518                         if (staterr & E1000_RXD_STAT_DD) {
519                                 /* Descriptor Done */
520                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
521                                         "RWB", i,
522                                         le64_to_cpu(u0->a),
523                                         le64_to_cpu(u0->b),
524                                         next_desc);
525                         } else {
526                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
527                                         "R  ", i,
528                                         le64_to_cpu(u0->a),
529                                         le64_to_cpu(u0->b),
530                                         (u64)buffer_info->dma,
531                                         next_desc);
532
533                                 if (netif_msg_pktdata(adapter) &&
534                                     buffer_info->dma && buffer_info->page) {
535                                         print_hex_dump(KERN_INFO, "",
536                                           DUMP_PREFIX_ADDRESS,
537                                           16, 1,
538                                           page_address(buffer_info->page) +
539                                                       buffer_info->page_offset,
540                                           igb_rx_bufsz(rx_ring), true);
541                                 }
542                         }
543                 }
544         }
545
546 exit:
547         return;
548 }
549
550 /**
551  *  igb_get_i2c_data - Reads the I2C SDA data bit
552  *  @hw: pointer to hardware structure
553  *  @i2cctl: Current value of I2CCTL register
554  *
555  *  Returns the I2C data bit value
556  **/
557 static int igb_get_i2c_data(void *data)
558 {
559         struct igb_adapter *adapter = (struct igb_adapter *)data;
560         struct e1000_hw *hw = &adapter->hw;
561         s32 i2cctl = rd32(E1000_I2CPARAMS);
562
563         return !!(i2cctl & E1000_I2C_DATA_IN);
564 }
565
566 /**
567  *  igb_set_i2c_data - Sets the I2C data bit
568  *  @data: pointer to hardware structure
569  *  @state: I2C data value (0 or 1) to set
570  *
571  *  Sets the I2C data bit
572  **/
573 static void igb_set_i2c_data(void *data, int state)
574 {
575         struct igb_adapter *adapter = (struct igb_adapter *)data;
576         struct e1000_hw *hw = &adapter->hw;
577         s32 i2cctl = rd32(E1000_I2CPARAMS);
578
579         if (state)
580                 i2cctl |= E1000_I2C_DATA_OUT;
581         else
582                 i2cctl &= ~E1000_I2C_DATA_OUT;
583
584         i2cctl &= ~E1000_I2C_DATA_OE_N;
585         i2cctl |= E1000_I2C_CLK_OE_N;
586         wr32(E1000_I2CPARAMS, i2cctl);
587         wrfl();
588
589 }
590
591 /**
592  *  igb_set_i2c_clk - Sets the I2C SCL clock
593  *  @data: pointer to hardware structure
594  *  @state: state to set clock
595  *
596  *  Sets the I2C clock line to state
597  **/
598 static void igb_set_i2c_clk(void *data, int state)
599 {
600         struct igb_adapter *adapter = (struct igb_adapter *)data;
601         struct e1000_hw *hw = &adapter->hw;
602         s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604         if (state) {
605                 i2cctl |= E1000_I2C_CLK_OUT;
606                 i2cctl &= ~E1000_I2C_CLK_OE_N;
607         } else {
608                 i2cctl &= ~E1000_I2C_CLK_OUT;
609                 i2cctl &= ~E1000_I2C_CLK_OE_N;
610         }
611         wr32(E1000_I2CPARAMS, i2cctl);
612         wrfl();
613 }
614
615 /**
616  *  igb_get_i2c_clk - Gets the I2C SCL clock state
617  *  @data: pointer to hardware structure
618  *
619  *  Gets the I2C clock state
620  **/
621 static int igb_get_i2c_clk(void *data)
622 {
623         struct igb_adapter *adapter = (struct igb_adapter *)data;
624         struct e1000_hw *hw = &adapter->hw;
625         s32 i2cctl = rd32(E1000_I2CPARAMS);
626
627         return !!(i2cctl & E1000_I2C_CLK_IN);
628 }
629
630 static const struct i2c_algo_bit_data igb_i2c_algo = {
631         .setsda         = igb_set_i2c_data,
632         .setscl         = igb_set_i2c_clk,
633         .getsda         = igb_get_i2c_data,
634         .getscl         = igb_get_i2c_clk,
635         .udelay         = 5,
636         .timeout        = 20,
637 };
638
639 /**
640  *  igb_get_hw_dev - return device
641  *  @hw: pointer to hardware structure
642  *
643  *  used by hardware layer to print debugging information
644  **/
645 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
646 {
647         struct igb_adapter *adapter = hw->back;
648         return adapter->netdev;
649 }
650
651 /**
652  *  igb_init_module - Driver Registration Routine
653  *
654  *  igb_init_module is the first routine called when the driver is
655  *  loaded. All it does is register with the PCI subsystem.
656  **/
657 static int __init igb_init_module(void)
658 {
659         int ret;
660
661         pr_info("%s\n", igb_driver_string);
662         pr_info("%s\n", igb_copyright);
663
664 #ifdef CONFIG_IGB_DCA
665         dca_register_notify(&dca_notifier);
666 #endif
667         ret = pci_register_driver(&igb_driver);
668         return ret;
669 }
670
671 module_init(igb_init_module);
672
673 /**
674  *  igb_exit_module - Driver Exit Cleanup Routine
675  *
676  *  igb_exit_module is called just before the driver is removed
677  *  from memory.
678  **/
679 static void __exit igb_exit_module(void)
680 {
681 #ifdef CONFIG_IGB_DCA
682         dca_unregister_notify(&dca_notifier);
683 #endif
684         pci_unregister_driver(&igb_driver);
685 }
686
687 module_exit(igb_exit_module);
688
689 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
690 /**
691  *  igb_cache_ring_register - Descriptor ring to register mapping
692  *  @adapter: board private structure to initialize
693  *
694  *  Once we know the feature-set enabled for the device, we'll cache
695  *  the register offset the descriptor ring is assigned to.
696  **/
697 static void igb_cache_ring_register(struct igb_adapter *adapter)
698 {
699         int i = 0, j = 0;
700         u32 rbase_offset = adapter->vfs_allocated_count;
701
702         switch (adapter->hw.mac.type) {
703         case e1000_82576:
704                 /* The queues are allocated for virtualization such that VF 0
705                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
706                  * In order to avoid collision we start at the first free queue
707                  * and continue consuming queues in the same sequence
708                  */
709                 if (adapter->vfs_allocated_count) {
710                         for (; i < adapter->rss_queues; i++)
711                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
712                                                                Q_IDX_82576(i);
713                 }
714                 fallthrough;
715         case e1000_82575:
716         case e1000_82580:
717         case e1000_i350:
718         case e1000_i354:
719         case e1000_i210:
720         case e1000_i211:
721         default:
722                 for (; i < adapter->num_rx_queues; i++)
723                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
724                 for (; j < adapter->num_tx_queues; j++)
725                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
726                 break;
727         }
728 }
729
730 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
731 {
732         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
733         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
734         u32 value = 0;
735
736         if (E1000_REMOVED(hw_addr))
737                 return ~value;
738
739         value = readl(&hw_addr[reg]);
740
741         /* reads should not return all F's */
742         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
743                 struct net_device *netdev = igb->netdev;
744                 hw->hw_addr = NULL;
745                 netdev_err(netdev, "PCIe link lost\n");
746                 WARN(pci_device_is_present(igb->pdev),
747                      "igb: Failed to read reg 0x%x!\n", reg);
748         }
749
750         return value;
751 }
752
753 /**
754  *  igb_write_ivar - configure ivar for given MSI-X vector
755  *  @hw: pointer to the HW structure
756  *  @msix_vector: vector number we are allocating to a given ring
757  *  @index: row index of IVAR register to write within IVAR table
758  *  @offset: column offset of in IVAR, should be multiple of 8
759  *
760  *  This function is intended to handle the writing of the IVAR register
761  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
762  *  each containing an cause allocation for an Rx and Tx ring, and a
763  *  variable number of rows depending on the number of queues supported.
764  **/
765 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
766                            int index, int offset)
767 {
768         u32 ivar = array_rd32(E1000_IVAR0, index);
769
770         /* clear any bits that are currently set */
771         ivar &= ~((u32)0xFF << offset);
772
773         /* write vector and valid bit */
774         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
775
776         array_wr32(E1000_IVAR0, index, ivar);
777 }
778
779 #define IGB_N0_QUEUE -1
780 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
781 {
782         struct igb_adapter *adapter = q_vector->adapter;
783         struct e1000_hw *hw = &adapter->hw;
784         int rx_queue = IGB_N0_QUEUE;
785         int tx_queue = IGB_N0_QUEUE;
786         u32 msixbm = 0;
787
788         if (q_vector->rx.ring)
789                 rx_queue = q_vector->rx.ring->reg_idx;
790         if (q_vector->tx.ring)
791                 tx_queue = q_vector->tx.ring->reg_idx;
792
793         switch (hw->mac.type) {
794         case e1000_82575:
795                 /* The 82575 assigns vectors using a bitmask, which matches the
796                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
797                  * or more queues to a vector, we write the appropriate bits
798                  * into the MSIXBM register for that vector.
799                  */
800                 if (rx_queue > IGB_N0_QUEUE)
801                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
802                 if (tx_queue > IGB_N0_QUEUE)
803                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
804                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
805                         msixbm |= E1000_EIMS_OTHER;
806                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
807                 q_vector->eims_value = msixbm;
808                 break;
809         case e1000_82576:
810                 /* 82576 uses a table that essentially consists of 2 columns
811                  * with 8 rows.  The ordering is column-major so we use the
812                  * lower 3 bits as the row index, and the 4th bit as the
813                  * column offset.
814                  */
815                 if (rx_queue > IGB_N0_QUEUE)
816                         igb_write_ivar(hw, msix_vector,
817                                        rx_queue & 0x7,
818                                        (rx_queue & 0x8) << 1);
819                 if (tx_queue > IGB_N0_QUEUE)
820                         igb_write_ivar(hw, msix_vector,
821                                        tx_queue & 0x7,
822                                        ((tx_queue & 0x8) << 1) + 8);
823                 q_vector->eims_value = BIT(msix_vector);
824                 break;
825         case e1000_82580:
826         case e1000_i350:
827         case e1000_i354:
828         case e1000_i210:
829         case e1000_i211:
830                 /* On 82580 and newer adapters the scheme is similar to 82576
831                  * however instead of ordering column-major we have things
832                  * ordered row-major.  So we traverse the table by using
833                  * bit 0 as the column offset, and the remaining bits as the
834                  * row index.
835                  */
836                 if (rx_queue > IGB_N0_QUEUE)
837                         igb_write_ivar(hw, msix_vector,
838                                        rx_queue >> 1,
839                                        (rx_queue & 0x1) << 4);
840                 if (tx_queue > IGB_N0_QUEUE)
841                         igb_write_ivar(hw, msix_vector,
842                                        tx_queue >> 1,
843                                        ((tx_queue & 0x1) << 4) + 8);
844                 q_vector->eims_value = BIT(msix_vector);
845                 break;
846         default:
847                 BUG();
848                 break;
849         }
850
851         /* add q_vector eims value to global eims_enable_mask */
852         adapter->eims_enable_mask |= q_vector->eims_value;
853
854         /* configure q_vector to set itr on first interrupt */
855         q_vector->set_itr = 1;
856 }
857
858 /**
859  *  igb_configure_msix - Configure MSI-X hardware
860  *  @adapter: board private structure to initialize
861  *
862  *  igb_configure_msix sets up the hardware to properly
863  *  generate MSI-X interrupts.
864  **/
865 static void igb_configure_msix(struct igb_adapter *adapter)
866 {
867         u32 tmp;
868         int i, vector = 0;
869         struct e1000_hw *hw = &adapter->hw;
870
871         adapter->eims_enable_mask = 0;
872
873         /* set vector for other causes, i.e. link changes */
874         switch (hw->mac.type) {
875         case e1000_82575:
876                 tmp = rd32(E1000_CTRL_EXT);
877                 /* enable MSI-X PBA support*/
878                 tmp |= E1000_CTRL_EXT_PBA_CLR;
879
880                 /* Auto-Mask interrupts upon ICR read. */
881                 tmp |= E1000_CTRL_EXT_EIAME;
882                 tmp |= E1000_CTRL_EXT_IRCA;
883
884                 wr32(E1000_CTRL_EXT, tmp);
885
886                 /* enable msix_other interrupt */
887                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
888                 adapter->eims_other = E1000_EIMS_OTHER;
889
890                 break;
891
892         case e1000_82576:
893         case e1000_82580:
894         case e1000_i350:
895         case e1000_i354:
896         case e1000_i210:
897         case e1000_i211:
898                 /* Turn on MSI-X capability first, or our settings
899                  * won't stick.  And it will take days to debug.
900                  */
901                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
902                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
903                      E1000_GPIE_NSICR);
904
905                 /* enable msix_other interrupt */
906                 adapter->eims_other = BIT(vector);
907                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
908
909                 wr32(E1000_IVAR_MISC, tmp);
910                 break;
911         default:
912                 /* do nothing, since nothing else supports MSI-X */
913                 break;
914         } /* switch (hw->mac.type) */
915
916         adapter->eims_enable_mask |= adapter->eims_other;
917
918         for (i = 0; i < adapter->num_q_vectors; i++)
919                 igb_assign_vector(adapter->q_vector[i], vector++);
920
921         wrfl();
922 }
923
924 /**
925  *  igb_request_msix - Initialize MSI-X interrupts
926  *  @adapter: board private structure to initialize
927  *
928  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
929  *  kernel.
930  **/
931 static int igb_request_msix(struct igb_adapter *adapter)
932 {
933         struct net_device *netdev = adapter->netdev;
934         int i, err = 0, vector = 0, free_vector = 0;
935
936         err = request_irq(adapter->msix_entries[vector].vector,
937                           igb_msix_other, 0, netdev->name, adapter);
938         if (err)
939                 goto err_out;
940
941         for (i = 0; i < adapter->num_q_vectors; i++) {
942                 struct igb_q_vector *q_vector = adapter->q_vector[i];
943
944                 vector++;
945
946                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
947
948                 if (q_vector->rx.ring && q_vector->tx.ring)
949                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950                                 q_vector->rx.ring->queue_index);
951                 else if (q_vector->tx.ring)
952                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953                                 q_vector->tx.ring->queue_index);
954                 else if (q_vector->rx.ring)
955                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956                                 q_vector->rx.ring->queue_index);
957                 else
958                         sprintf(q_vector->name, "%s-unused", netdev->name);
959
960                 err = request_irq(adapter->msix_entries[vector].vector,
961                                   igb_msix_ring, 0, q_vector->name,
962                                   q_vector);
963                 if (err)
964                         goto err_free;
965         }
966
967         igb_configure_msix(adapter);
968         return 0;
969
970 err_free:
971         /* free already assigned IRQs */
972         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973
974         vector--;
975         for (i = 0; i < vector; i++) {
976                 free_irq(adapter->msix_entries[free_vector++].vector,
977                          adapter->q_vector[i]);
978         }
979 err_out:
980         return err;
981 }
982
983 /**
984  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
985  *  @adapter: board private structure to initialize
986  *  @v_idx: Index of vector to be freed
987  *
988  *  This function frees the memory allocated to the q_vector.
989  **/
990 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
991 {
992         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
993
994         adapter->q_vector[v_idx] = NULL;
995
996         /* igb_get_stats64() might access the rings on this vector,
997          * we must wait a grace period before freeing it.
998          */
999         if (q_vector)
1000                 kfree_rcu(q_vector, rcu);
1001 }
1002
1003 /**
1004  *  igb_reset_q_vector - Reset config for interrupt vector
1005  *  @adapter: board private structure to initialize
1006  *  @v_idx: Index of vector to be reset
1007  *
1008  *  If NAPI is enabled it will delete any references to the
1009  *  NAPI struct. This is preparation for igb_free_q_vector.
1010  **/
1011 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1012 {
1013         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1014
1015         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1016          * allocated. So, q_vector is NULL so we should stop here.
1017          */
1018         if (!q_vector)
1019                 return;
1020
1021         if (q_vector->tx.ring)
1022                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1023
1024         if (q_vector->rx.ring)
1025                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1026
1027         netif_napi_del(&q_vector->napi);
1028
1029 }
1030
1031 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1032 {
1033         int v_idx = adapter->num_q_vectors;
1034
1035         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1036                 pci_disable_msix(adapter->pdev);
1037         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1038                 pci_disable_msi(adapter->pdev);
1039
1040         while (v_idx--)
1041                 igb_reset_q_vector(adapter, v_idx);
1042 }
1043
1044 /**
1045  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1046  *  @adapter: board private structure to initialize
1047  *
1048  *  This function frees the memory allocated to the q_vectors.  In addition if
1049  *  NAPI is enabled it will delete any references to the NAPI struct prior
1050  *  to freeing the q_vector.
1051  **/
1052 static void igb_free_q_vectors(struct igb_adapter *adapter)
1053 {
1054         int v_idx = adapter->num_q_vectors;
1055
1056         adapter->num_tx_queues = 0;
1057         adapter->num_rx_queues = 0;
1058         adapter->num_q_vectors = 0;
1059
1060         while (v_idx--) {
1061                 igb_reset_q_vector(adapter, v_idx);
1062                 igb_free_q_vector(adapter, v_idx);
1063         }
1064 }
1065
1066 /**
1067  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1068  *  @adapter: board private structure to initialize
1069  *
1070  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1071  *  MSI-X interrupts allocated.
1072  */
1073 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1074 {
1075         igb_free_q_vectors(adapter);
1076         igb_reset_interrupt_capability(adapter);
1077 }
1078
1079 /**
1080  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1081  *  @adapter: board private structure to initialize
1082  *  @msix: boolean value of MSIX capability
1083  *
1084  *  Attempt to configure interrupts using the best available
1085  *  capabilities of the hardware and kernel.
1086  **/
1087 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1088 {
1089         int err;
1090         int numvecs, i;
1091
1092         if (!msix)
1093                 goto msi_only;
1094         adapter->flags |= IGB_FLAG_HAS_MSIX;
1095
1096         /* Number of supported queues. */
1097         adapter->num_rx_queues = adapter->rss_queues;
1098         if (adapter->vfs_allocated_count)
1099                 adapter->num_tx_queues = 1;
1100         else
1101                 adapter->num_tx_queues = adapter->rss_queues;
1102
1103         /* start with one vector for every Rx queue */
1104         numvecs = adapter->num_rx_queues;
1105
1106         /* if Tx handler is separate add 1 for every Tx queue */
1107         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1108                 numvecs += adapter->num_tx_queues;
1109
1110         /* store the number of vectors reserved for queues */
1111         adapter->num_q_vectors = numvecs;
1112
1113         /* add 1 vector for link status interrupts */
1114         numvecs++;
1115         for (i = 0; i < numvecs; i++)
1116                 adapter->msix_entries[i].entry = i;
1117
1118         err = pci_enable_msix_range(adapter->pdev,
1119                                     adapter->msix_entries,
1120                                     numvecs,
1121                                     numvecs);
1122         if (err > 0)
1123                 return;
1124
1125         igb_reset_interrupt_capability(adapter);
1126
1127         /* If we can't do MSI-X, try MSI */
1128 msi_only:
1129         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1130 #ifdef CONFIG_PCI_IOV
1131         /* disable SR-IOV for non MSI-X configurations */
1132         if (adapter->vf_data) {
1133                 struct e1000_hw *hw = &adapter->hw;
1134                 /* disable iov and allow time for transactions to clear */
1135                 pci_disable_sriov(adapter->pdev);
1136                 msleep(500);
1137
1138                 kfree(adapter->vf_mac_list);
1139                 adapter->vf_mac_list = NULL;
1140                 kfree(adapter->vf_data);
1141                 adapter->vf_data = NULL;
1142                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1143                 wrfl();
1144                 msleep(100);
1145                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1146         }
1147 #endif
1148         adapter->vfs_allocated_count = 0;
1149         adapter->rss_queues = 1;
1150         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1151         adapter->num_rx_queues = 1;
1152         adapter->num_tx_queues = 1;
1153         adapter->num_q_vectors = 1;
1154         if (!pci_enable_msi(adapter->pdev))
1155                 adapter->flags |= IGB_FLAG_HAS_MSI;
1156 }
1157
1158 static void igb_add_ring(struct igb_ring *ring,
1159                          struct igb_ring_container *head)
1160 {
1161         head->ring = ring;
1162         head->count++;
1163 }
1164
1165 /**
1166  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1167  *  @adapter: board private structure to initialize
1168  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1169  *  @v_idx: index of vector in adapter struct
1170  *  @txr_count: total number of Tx rings to allocate
1171  *  @txr_idx: index of first Tx ring to allocate
1172  *  @rxr_count: total number of Rx rings to allocate
1173  *  @rxr_idx: index of first Rx ring to allocate
1174  *
1175  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1176  **/
1177 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1178                               int v_count, int v_idx,
1179                               int txr_count, int txr_idx,
1180                               int rxr_count, int rxr_idx)
1181 {
1182         struct igb_q_vector *q_vector;
1183         struct igb_ring *ring;
1184         int ring_count;
1185         size_t size;
1186
1187         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1188         if (txr_count > 1 || rxr_count > 1)
1189                 return -ENOMEM;
1190
1191         ring_count = txr_count + rxr_count;
1192         size = struct_size(q_vector, ring, ring_count);
1193
1194         /* allocate q_vector and rings */
1195         q_vector = adapter->q_vector[v_idx];
1196         if (!q_vector) {
1197                 q_vector = kzalloc(size, GFP_KERNEL);
1198         } else if (size > ksize(q_vector)) {
1199                 kfree_rcu(q_vector, rcu);
1200                 q_vector = kzalloc(size, GFP_KERNEL);
1201         } else {
1202                 memset(q_vector, 0, size);
1203         }
1204         if (!q_vector)
1205                 return -ENOMEM;
1206
1207         /* initialize NAPI */
1208         netif_napi_add(adapter->netdev, &q_vector->napi,
1209                        igb_poll, 64);
1210
1211         /* tie q_vector and adapter together */
1212         adapter->q_vector[v_idx] = q_vector;
1213         q_vector->adapter = adapter;
1214
1215         /* initialize work limits */
1216         q_vector->tx.work_limit = adapter->tx_work_limit;
1217
1218         /* initialize ITR configuration */
1219         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1220         q_vector->itr_val = IGB_START_ITR;
1221
1222         /* initialize pointer to rings */
1223         ring = q_vector->ring;
1224
1225         /* intialize ITR */
1226         if (rxr_count) {
1227                 /* rx or rx/tx vector */
1228                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1229                         q_vector->itr_val = adapter->rx_itr_setting;
1230         } else {
1231                 /* tx only vector */
1232                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1233                         q_vector->itr_val = adapter->tx_itr_setting;
1234         }
1235
1236         if (txr_count) {
1237                 /* assign generic ring traits */
1238                 ring->dev = &adapter->pdev->dev;
1239                 ring->netdev = adapter->netdev;
1240
1241                 /* configure backlink on ring */
1242                 ring->q_vector = q_vector;
1243
1244                 /* update q_vector Tx values */
1245                 igb_add_ring(ring, &q_vector->tx);
1246
1247                 /* For 82575, context index must be unique per ring. */
1248                 if (adapter->hw.mac.type == e1000_82575)
1249                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1250
1251                 /* apply Tx specific ring traits */
1252                 ring->count = adapter->tx_ring_count;
1253                 ring->queue_index = txr_idx;
1254
1255                 ring->cbs_enable = false;
1256                 ring->idleslope = 0;
1257                 ring->sendslope = 0;
1258                 ring->hicredit = 0;
1259                 ring->locredit = 0;
1260
1261                 u64_stats_init(&ring->tx_syncp);
1262                 u64_stats_init(&ring->tx_syncp2);
1263
1264                 /* assign ring to adapter */
1265                 adapter->tx_ring[txr_idx] = ring;
1266
1267                 /* push pointer to next ring */
1268                 ring++;
1269         }
1270
1271         if (rxr_count) {
1272                 /* assign generic ring traits */
1273                 ring->dev = &adapter->pdev->dev;
1274                 ring->netdev = adapter->netdev;
1275
1276                 /* configure backlink on ring */
1277                 ring->q_vector = q_vector;
1278
1279                 /* update q_vector Rx values */
1280                 igb_add_ring(ring, &q_vector->rx);
1281
1282                 /* set flag indicating ring supports SCTP checksum offload */
1283                 if (adapter->hw.mac.type >= e1000_82576)
1284                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1285
1286                 /* On i350, i354, i210, and i211, loopback VLAN packets
1287                  * have the tag byte-swapped.
1288                  */
1289                 if (adapter->hw.mac.type >= e1000_i350)
1290                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1291
1292                 /* apply Rx specific ring traits */
1293                 ring->count = adapter->rx_ring_count;
1294                 ring->queue_index = rxr_idx;
1295
1296                 u64_stats_init(&ring->rx_syncp);
1297
1298                 /* assign ring to adapter */
1299                 adapter->rx_ring[rxr_idx] = ring;
1300         }
1301
1302         return 0;
1303 }
1304
1305
1306 /**
1307  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1308  *  @adapter: board private structure to initialize
1309  *
1310  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1311  *  return -ENOMEM.
1312  **/
1313 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1314 {
1315         int q_vectors = adapter->num_q_vectors;
1316         int rxr_remaining = adapter->num_rx_queues;
1317         int txr_remaining = adapter->num_tx_queues;
1318         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1319         int err;
1320
1321         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1322                 for (; rxr_remaining; v_idx++) {
1323                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1324                                                  0, 0, 1, rxr_idx);
1325
1326                         if (err)
1327                                 goto err_out;
1328
1329                         /* update counts and index */
1330                         rxr_remaining--;
1331                         rxr_idx++;
1332                 }
1333         }
1334
1335         for (; v_idx < q_vectors; v_idx++) {
1336                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1337                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1338
1339                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1340                                          tqpv, txr_idx, rqpv, rxr_idx);
1341
1342                 if (err)
1343                         goto err_out;
1344
1345                 /* update counts and index */
1346                 rxr_remaining -= rqpv;
1347                 txr_remaining -= tqpv;
1348                 rxr_idx++;
1349                 txr_idx++;
1350         }
1351
1352         return 0;
1353
1354 err_out:
1355         adapter->num_tx_queues = 0;
1356         adapter->num_rx_queues = 0;
1357         adapter->num_q_vectors = 0;
1358
1359         while (v_idx--)
1360                 igb_free_q_vector(adapter, v_idx);
1361
1362         return -ENOMEM;
1363 }
1364
1365 /**
1366  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1367  *  @adapter: board private structure to initialize
1368  *  @msix: boolean value of MSIX capability
1369  *
1370  *  This function initializes the interrupts and allocates all of the queues.
1371  **/
1372 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1373 {
1374         struct pci_dev *pdev = adapter->pdev;
1375         int err;
1376
1377         igb_set_interrupt_capability(adapter, msix);
1378
1379         err = igb_alloc_q_vectors(adapter);
1380         if (err) {
1381                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1382                 goto err_alloc_q_vectors;
1383         }
1384
1385         igb_cache_ring_register(adapter);
1386
1387         return 0;
1388
1389 err_alloc_q_vectors:
1390         igb_reset_interrupt_capability(adapter);
1391         return err;
1392 }
1393
1394 /**
1395  *  igb_request_irq - initialize interrupts
1396  *  @adapter: board private structure to initialize
1397  *
1398  *  Attempts to configure interrupts using the best available
1399  *  capabilities of the hardware and kernel.
1400  **/
1401 static int igb_request_irq(struct igb_adapter *adapter)
1402 {
1403         struct net_device *netdev = adapter->netdev;
1404         struct pci_dev *pdev = adapter->pdev;
1405         int err = 0;
1406
1407         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1408                 err = igb_request_msix(adapter);
1409                 if (!err)
1410                         goto request_done;
1411                 /* fall back to MSI */
1412                 igb_free_all_tx_resources(adapter);
1413                 igb_free_all_rx_resources(adapter);
1414
1415                 igb_clear_interrupt_scheme(adapter);
1416                 err = igb_init_interrupt_scheme(adapter, false);
1417                 if (err)
1418                         goto request_done;
1419
1420                 igb_setup_all_tx_resources(adapter);
1421                 igb_setup_all_rx_resources(adapter);
1422                 igb_configure(adapter);
1423         }
1424
1425         igb_assign_vector(adapter->q_vector[0], 0);
1426
1427         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1428                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1429                                   netdev->name, adapter);
1430                 if (!err)
1431                         goto request_done;
1432
1433                 /* fall back to legacy interrupts */
1434                 igb_reset_interrupt_capability(adapter);
1435                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1436         }
1437
1438         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1439                           netdev->name, adapter);
1440
1441         if (err)
1442                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1443                         err);
1444
1445 request_done:
1446         return err;
1447 }
1448
1449 static void igb_free_irq(struct igb_adapter *adapter)
1450 {
1451         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1452                 int vector = 0, i;
1453
1454                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1455
1456                 for (i = 0; i < adapter->num_q_vectors; i++)
1457                         free_irq(adapter->msix_entries[vector++].vector,
1458                                  adapter->q_vector[i]);
1459         } else {
1460                 free_irq(adapter->pdev->irq, adapter);
1461         }
1462 }
1463
1464 /**
1465  *  igb_irq_disable - Mask off interrupt generation on the NIC
1466  *  @adapter: board private structure
1467  **/
1468 static void igb_irq_disable(struct igb_adapter *adapter)
1469 {
1470         struct e1000_hw *hw = &adapter->hw;
1471
1472         /* we need to be careful when disabling interrupts.  The VFs are also
1473          * mapped into these registers and so clearing the bits can cause
1474          * issues on the VF drivers so we only need to clear what we set
1475          */
1476         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1477                 u32 regval = rd32(E1000_EIAM);
1478
1479                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1480                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1481                 regval = rd32(E1000_EIAC);
1482                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1483         }
1484
1485         wr32(E1000_IAM, 0);
1486         wr32(E1000_IMC, ~0);
1487         wrfl();
1488         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489                 int i;
1490
1491                 for (i = 0; i < adapter->num_q_vectors; i++)
1492                         synchronize_irq(adapter->msix_entries[i].vector);
1493         } else {
1494                 synchronize_irq(adapter->pdev->irq);
1495         }
1496 }
1497
1498 /**
1499  *  igb_irq_enable - Enable default interrupt generation settings
1500  *  @adapter: board private structure
1501  **/
1502 static void igb_irq_enable(struct igb_adapter *adapter)
1503 {
1504         struct e1000_hw *hw = &adapter->hw;
1505
1506         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1507                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1508                 u32 regval = rd32(E1000_EIAC);
1509
1510                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1511                 regval = rd32(E1000_EIAM);
1512                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1513                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1514                 if (adapter->vfs_allocated_count) {
1515                         wr32(E1000_MBVFIMR, 0xFF);
1516                         ims |= E1000_IMS_VMMB;
1517                 }
1518                 wr32(E1000_IMS, ims);
1519         } else {
1520                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1521                                 E1000_IMS_DRSTA);
1522                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1523                                 E1000_IMS_DRSTA);
1524         }
1525 }
1526
1527 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1528 {
1529         struct e1000_hw *hw = &adapter->hw;
1530         u16 pf_id = adapter->vfs_allocated_count;
1531         u16 vid = adapter->hw.mng_cookie.vlan_id;
1532         u16 old_vid = adapter->mng_vlan_id;
1533
1534         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1535                 /* add VID to filter table */
1536                 igb_vfta_set(hw, vid, pf_id, true, true);
1537                 adapter->mng_vlan_id = vid;
1538         } else {
1539                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1540         }
1541
1542         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1543             (vid != old_vid) &&
1544             !test_bit(old_vid, adapter->active_vlans)) {
1545                 /* remove VID from filter table */
1546                 igb_vfta_set(hw, vid, pf_id, false, true);
1547         }
1548 }
1549
1550 /**
1551  *  igb_release_hw_control - release control of the h/w to f/w
1552  *  @adapter: address of board private structure
1553  *
1554  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1555  *  For ASF and Pass Through versions of f/w this means that the
1556  *  driver is no longer loaded.
1557  **/
1558 static void igb_release_hw_control(struct igb_adapter *adapter)
1559 {
1560         struct e1000_hw *hw = &adapter->hw;
1561         u32 ctrl_ext;
1562
1563         /* Let firmware take over control of h/w */
1564         ctrl_ext = rd32(E1000_CTRL_EXT);
1565         wr32(E1000_CTRL_EXT,
1566                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1567 }
1568
1569 /**
1570  *  igb_get_hw_control - get control of the h/w from f/w
1571  *  @adapter: address of board private structure
1572  *
1573  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1574  *  For ASF and Pass Through versions of f/w this means that
1575  *  the driver is loaded.
1576  **/
1577 static void igb_get_hw_control(struct igb_adapter *adapter)
1578 {
1579         struct e1000_hw *hw = &adapter->hw;
1580         u32 ctrl_ext;
1581
1582         /* Let firmware know the driver has taken over */
1583         ctrl_ext = rd32(E1000_CTRL_EXT);
1584         wr32(E1000_CTRL_EXT,
1585                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1586 }
1587
1588 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1589 {
1590         struct net_device *netdev = adapter->netdev;
1591         struct e1000_hw *hw = &adapter->hw;
1592
1593         WARN_ON(hw->mac.type != e1000_i210);
1594
1595         if (enable)
1596                 adapter->flags |= IGB_FLAG_FQTSS;
1597         else
1598                 adapter->flags &= ~IGB_FLAG_FQTSS;
1599
1600         if (netif_running(netdev))
1601                 schedule_work(&adapter->reset_task);
1602 }
1603
1604 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1605 {
1606         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1607 }
1608
1609 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1610                                    enum tx_queue_prio prio)
1611 {
1612         u32 val;
1613
1614         WARN_ON(hw->mac.type != e1000_i210);
1615         WARN_ON(queue < 0 || queue > 4);
1616
1617         val = rd32(E1000_I210_TXDCTL(queue));
1618
1619         if (prio == TX_QUEUE_PRIO_HIGH)
1620                 val |= E1000_TXDCTL_PRIORITY;
1621         else
1622                 val &= ~E1000_TXDCTL_PRIORITY;
1623
1624         wr32(E1000_I210_TXDCTL(queue), val);
1625 }
1626
1627 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1628 {
1629         u32 val;
1630
1631         WARN_ON(hw->mac.type != e1000_i210);
1632         WARN_ON(queue < 0 || queue > 1);
1633
1634         val = rd32(E1000_I210_TQAVCC(queue));
1635
1636         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1637                 val |= E1000_TQAVCC_QUEUEMODE;
1638         else
1639                 val &= ~E1000_TQAVCC_QUEUEMODE;
1640
1641         wr32(E1000_I210_TQAVCC(queue), val);
1642 }
1643
1644 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1645 {
1646         int i;
1647
1648         for (i = 0; i < adapter->num_tx_queues; i++) {
1649                 if (adapter->tx_ring[i]->cbs_enable)
1650                         return true;
1651         }
1652
1653         return false;
1654 }
1655
1656 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1657 {
1658         int i;
1659
1660         for (i = 0; i < adapter->num_tx_queues; i++) {
1661                 if (adapter->tx_ring[i]->launchtime_enable)
1662                         return true;
1663         }
1664
1665         return false;
1666 }
1667
1668 /**
1669  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1670  *  @adapter: pointer to adapter struct
1671  *  @queue: queue number
1672  *
1673  *  Configure CBS and Launchtime for a given hardware queue.
1674  *  Parameters are retrieved from the correct Tx ring, so
1675  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1676  *  for setting those correctly prior to this function being called.
1677  **/
1678 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1679 {
1680         struct igb_ring *ring = adapter->tx_ring[queue];
1681         struct net_device *netdev = adapter->netdev;
1682         struct e1000_hw *hw = &adapter->hw;
1683         u32 tqavcc, tqavctrl;
1684         u16 value;
1685
1686         WARN_ON(hw->mac.type != e1000_i210);
1687         WARN_ON(queue < 0 || queue > 1);
1688
1689         /* If any of the Qav features is enabled, configure queues as SR and
1690          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1691          * as SP.
1692          */
1693         if (ring->cbs_enable || ring->launchtime_enable) {
1694                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1695                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1696         } else {
1697                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1698                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1699         }
1700
1701         /* If CBS is enabled, set DataTranARB and config its parameters. */
1702         if (ring->cbs_enable || queue == 0) {
1703                 /* i210 does not allow the queue 0 to be in the Strict
1704                  * Priority mode while the Qav mode is enabled, so,
1705                  * instead of disabling strict priority mode, we give
1706                  * queue 0 the maximum of credits possible.
1707                  *
1708                  * See section 8.12.19 of the i210 datasheet, "Note:
1709                  * Queue0 QueueMode must be set to 1b when
1710                  * TransmitMode is set to Qav."
1711                  */
1712                 if (queue == 0 && !ring->cbs_enable) {
1713                         /* max "linkspeed" idleslope in kbps */
1714                         ring->idleslope = 1000000;
1715                         ring->hicredit = ETH_FRAME_LEN;
1716                 }
1717
1718                 /* Always set data transfer arbitration to credit-based
1719                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1720                  * the queues.
1721                  */
1722                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1723                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1724                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1725
1726                 /* According to i210 datasheet section 7.2.7.7, we should set
1727                  * the 'idleSlope' field from TQAVCC register following the
1728                  * equation:
1729                  *
1730                  * For 100 Mbps link speed:
1731                  *
1732                  *     value = BW * 0x7735 * 0.2                          (E1)
1733                  *
1734                  * For 1000Mbps link speed:
1735                  *
1736                  *     value = BW * 0x7735 * 2                            (E2)
1737                  *
1738                  * E1 and E2 can be merged into one equation as shown below.
1739                  * Note that 'link-speed' is in Mbps.
1740                  *
1741                  *     value = BW * 0x7735 * 2 * link-speed
1742                  *                           --------------               (E3)
1743                  *                                1000
1744                  *
1745                  * 'BW' is the percentage bandwidth out of full link speed
1746                  * which can be found with the following equation. Note that
1747                  * idleSlope here is the parameter from this function which
1748                  * is in kbps.
1749                  *
1750                  *     BW =     idleSlope
1751                  *          -----------------                             (E4)
1752                  *          link-speed * 1000
1753                  *
1754                  * That said, we can come up with a generic equation to
1755                  * calculate the value we should set it TQAVCC register by
1756                  * replacing 'BW' in E3 by E4. The resulting equation is:
1757                  *
1758                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1759                  *         -----------------            --------------    (E5)
1760                  *         link-speed * 1000                 1000
1761                  *
1762                  * 'link-speed' is present in both sides of the fraction so
1763                  * it is canceled out. The final equation is the following:
1764                  *
1765                  *     value = idleSlope * 61034
1766                  *             -----------------                          (E6)
1767                  *                  1000000
1768                  *
1769                  * NOTE: For i210, given the above, we can see that idleslope
1770                  *       is represented in 16.38431 kbps units by the value at
1771                  *       the TQAVCC register (1Gbps / 61034), which reduces
1772                  *       the granularity for idleslope increments.
1773                  *       For instance, if you want to configure a 2576kbps
1774                  *       idleslope, the value to be written on the register
1775                  *       would have to be 157.23. If rounded down, you end
1776                  *       up with less bandwidth available than originally
1777                  *       required (~2572 kbps). If rounded up, you end up
1778                  *       with a higher bandwidth (~2589 kbps). Below the
1779                  *       approach we take is to always round up the
1780                  *       calculated value, so the resulting bandwidth might
1781                  *       be slightly higher for some configurations.
1782                  */
1783                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1784
1785                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1786                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1787                 tqavcc |= value;
1788                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1789
1790                 wr32(E1000_I210_TQAVHC(queue),
1791                      0x80000000 + ring->hicredit * 0x7735);
1792         } else {
1793
1794                 /* Set idleSlope to zero. */
1795                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798
1799                 /* Set hiCredit to zero. */
1800                 wr32(E1000_I210_TQAVHC(queue), 0);
1801
1802                 /* If CBS is not enabled for any queues anymore, then return to
1803                  * the default state of Data Transmission Arbitration on
1804                  * TQAVCTRL.
1805                  */
1806                 if (!is_any_cbs_enabled(adapter)) {
1807                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1808                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1809                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1810                 }
1811         }
1812
1813         /* If LaunchTime is enabled, set DataTranTIM. */
1814         if (ring->launchtime_enable) {
1815                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1816                  * for any of the SR queues, and configure fetchtime delta.
1817                  * XXX NOTE:
1818                  *     - LaunchTime will be enabled for all SR queues.
1819                  *     - A fixed offset can be added relative to the launch
1820                  *       time of all packets if configured at reg LAUNCH_OS0.
1821                  *       We are keeping it as 0 for now (default value).
1822                  */
1823                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1824                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1825                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1826                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1827         } else {
1828                 /* If Launchtime is not enabled for any SR queues anymore,
1829                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1830                  * effectively disabling Launchtime.
1831                  */
1832                 if (!is_any_txtime_enabled(adapter)) {
1833                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1835                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1836                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837                 }
1838         }
1839
1840         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1841          * CBS are not configurable by software so we don't do any 'controller
1842          * configuration' in respect to these parameters.
1843          */
1844
1845         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1846                    ring->cbs_enable ? "enabled" : "disabled",
1847                    ring->launchtime_enable ? "enabled" : "disabled",
1848                    queue,
1849                    ring->idleslope, ring->sendslope,
1850                    ring->hicredit, ring->locredit);
1851 }
1852
1853 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1854                                   bool enable)
1855 {
1856         struct igb_ring *ring;
1857
1858         if (queue < 0 || queue > adapter->num_tx_queues)
1859                 return -EINVAL;
1860
1861         ring = adapter->tx_ring[queue];
1862         ring->launchtime_enable = enable;
1863
1864         return 0;
1865 }
1866
1867 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1868                                bool enable, int idleslope, int sendslope,
1869                                int hicredit, int locredit)
1870 {
1871         struct igb_ring *ring;
1872
1873         if (queue < 0 || queue > adapter->num_tx_queues)
1874                 return -EINVAL;
1875
1876         ring = adapter->tx_ring[queue];
1877
1878         ring->cbs_enable = enable;
1879         ring->idleslope = idleslope;
1880         ring->sendslope = sendslope;
1881         ring->hicredit = hicredit;
1882         ring->locredit = locredit;
1883
1884         return 0;
1885 }
1886
1887 /**
1888  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1889  *  @adapter: pointer to adapter struct
1890  *
1891  *  Configure TQAVCTRL register switching the controller's Tx mode
1892  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1893  *  a call to igb_config_tx_modes() per queue so any previously saved
1894  *  Tx parameters are applied.
1895  **/
1896 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1897 {
1898         struct net_device *netdev = adapter->netdev;
1899         struct e1000_hw *hw = &adapter->hw;
1900         u32 val;
1901
1902         /* Only i210 controller supports changing the transmission mode. */
1903         if (hw->mac.type != e1000_i210)
1904                 return;
1905
1906         if (is_fqtss_enabled(adapter)) {
1907                 int i, max_queue;
1908
1909                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1910                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1911                  * so SP queues wait for SR ones.
1912                  */
1913                 val = rd32(E1000_I210_TQAVCTRL);
1914                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1915                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1916                 wr32(E1000_I210_TQAVCTRL, val);
1917
1918                 /* Configure Tx and Rx packet buffers sizes as described in
1919                  * i210 datasheet section 7.2.7.7.
1920                  */
1921                 val = rd32(E1000_TXPBS);
1922                 val &= ~I210_TXPBSIZE_MASK;
1923                 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1924                         I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1925                 wr32(E1000_TXPBS, val);
1926
1927                 val = rd32(E1000_RXPBS);
1928                 val &= ~I210_RXPBSIZE_MASK;
1929                 val |= I210_RXPBSIZE_PB_30KB;
1930                 wr32(E1000_RXPBS, val);
1931
1932                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1933                  * register should not exceed the buffer size programmed in
1934                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1935                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1936                  * 4kB / 64.
1937                  *
1938                  * However, when we do so, no frame from queue 2 and 3 are
1939                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1940                  * or _equal_ to the buffer size programmed in TXPBS. For this
1941                  * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1942                  */
1943                 val = (4096 - 1) / 64;
1944                 wr32(E1000_I210_DTXMXPKTSZ, val);
1945
1946                 /* Since FQTSS mode is enabled, apply any CBS configuration
1947                  * previously set. If no previous CBS configuration has been
1948                  * done, then the initial configuration is applied, which means
1949                  * CBS is disabled.
1950                  */
1951                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1952                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1953
1954                 for (i = 0; i < max_queue; i++) {
1955                         igb_config_tx_modes(adapter, i);
1956                 }
1957         } else {
1958                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1959                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1960                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1961
1962                 val = rd32(E1000_I210_TQAVCTRL);
1963                 /* According to Section 8.12.21, the other flags we've set when
1964                  * enabling FQTSS are not relevant when disabling FQTSS so we
1965                  * don't set they here.
1966                  */
1967                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1968                 wr32(E1000_I210_TQAVCTRL, val);
1969         }
1970
1971         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1972                    "enabled" : "disabled");
1973 }
1974
1975 /**
1976  *  igb_configure - configure the hardware for RX and TX
1977  *  @adapter: private board structure
1978  **/
1979 static void igb_configure(struct igb_adapter *adapter)
1980 {
1981         struct net_device *netdev = adapter->netdev;
1982         int i;
1983
1984         igb_get_hw_control(adapter);
1985         igb_set_rx_mode(netdev);
1986         igb_setup_tx_mode(adapter);
1987
1988         igb_restore_vlan(adapter);
1989
1990         igb_setup_tctl(adapter);
1991         igb_setup_mrqc(adapter);
1992         igb_setup_rctl(adapter);
1993
1994         igb_nfc_filter_restore(adapter);
1995         igb_configure_tx(adapter);
1996         igb_configure_rx(adapter);
1997
1998         igb_rx_fifo_flush_82575(&adapter->hw);
1999
2000         /* call igb_desc_unused which always leaves
2001          * at least 1 descriptor unused to make sure
2002          * next_to_use != next_to_clean
2003          */
2004         for (i = 0; i < adapter->num_rx_queues; i++) {
2005                 struct igb_ring *ring = adapter->rx_ring[i];
2006                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2007         }
2008 }
2009
2010 /**
2011  *  igb_power_up_link - Power up the phy/serdes link
2012  *  @adapter: address of board private structure
2013  **/
2014 void igb_power_up_link(struct igb_adapter *adapter)
2015 {
2016         igb_reset_phy(&adapter->hw);
2017
2018         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2019                 igb_power_up_phy_copper(&adapter->hw);
2020         else
2021                 igb_power_up_serdes_link_82575(&adapter->hw);
2022
2023         igb_setup_link(&adapter->hw);
2024 }
2025
2026 /**
2027  *  igb_power_down_link - Power down the phy/serdes link
2028  *  @adapter: address of board private structure
2029  */
2030 static void igb_power_down_link(struct igb_adapter *adapter)
2031 {
2032         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2033                 igb_power_down_phy_copper_82575(&adapter->hw);
2034         else
2035                 igb_shutdown_serdes_link_82575(&adapter->hw);
2036 }
2037
2038 /**
2039  * Detect and switch function for Media Auto Sense
2040  * @adapter: address of the board private structure
2041  **/
2042 static void igb_check_swap_media(struct igb_adapter *adapter)
2043 {
2044         struct e1000_hw *hw = &adapter->hw;
2045         u32 ctrl_ext, connsw;
2046         bool swap_now = false;
2047
2048         ctrl_ext = rd32(E1000_CTRL_EXT);
2049         connsw = rd32(E1000_CONNSW);
2050
2051         /* need to live swap if current media is copper and we have fiber/serdes
2052          * to go to.
2053          */
2054
2055         if ((hw->phy.media_type == e1000_media_type_copper) &&
2056             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2057                 swap_now = true;
2058         } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2059                    !(connsw & E1000_CONNSW_SERDESD)) {
2060                 /* copper signal takes time to appear */
2061                 if (adapter->copper_tries < 4) {
2062                         adapter->copper_tries++;
2063                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2064                         wr32(E1000_CONNSW, connsw);
2065                         return;
2066                 } else {
2067                         adapter->copper_tries = 0;
2068                         if ((connsw & E1000_CONNSW_PHYSD) &&
2069                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2070                                 swap_now = true;
2071                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2072                                 wr32(E1000_CONNSW, connsw);
2073                         }
2074                 }
2075         }
2076
2077         if (!swap_now)
2078                 return;
2079
2080         switch (hw->phy.media_type) {
2081         case e1000_media_type_copper:
2082                 netdev_info(adapter->netdev,
2083                         "MAS: changing media to fiber/serdes\n");
2084                 ctrl_ext |=
2085                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2086                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2087                 adapter->copper_tries = 0;
2088                 break;
2089         case e1000_media_type_internal_serdes:
2090         case e1000_media_type_fiber:
2091                 netdev_info(adapter->netdev,
2092                         "MAS: changing media to copper\n");
2093                 ctrl_ext &=
2094                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096                 break;
2097         default:
2098                 /* shouldn't get here during regular operation */
2099                 netdev_err(adapter->netdev,
2100                         "AMS: Invalid media type found, returning\n");
2101                 break;
2102         }
2103         wr32(E1000_CTRL_EXT, ctrl_ext);
2104 }
2105
2106 /**
2107  *  igb_up - Open the interface and prepare it to handle traffic
2108  *  @adapter: board private structure
2109  **/
2110 int igb_up(struct igb_adapter *adapter)
2111 {
2112         struct e1000_hw *hw = &adapter->hw;
2113         int i;
2114
2115         /* hardware has been reset, we need to reload some things */
2116         igb_configure(adapter);
2117
2118         clear_bit(__IGB_DOWN, &adapter->state);
2119
2120         for (i = 0; i < adapter->num_q_vectors; i++)
2121                 napi_enable(&(adapter->q_vector[i]->napi));
2122
2123         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2124                 igb_configure_msix(adapter);
2125         else
2126                 igb_assign_vector(adapter->q_vector[0], 0);
2127
2128         /* Clear any pending interrupts. */
2129         rd32(E1000_TSICR);
2130         rd32(E1000_ICR);
2131         igb_irq_enable(adapter);
2132
2133         /* notify VFs that reset has been completed */
2134         if (adapter->vfs_allocated_count) {
2135                 u32 reg_data = rd32(E1000_CTRL_EXT);
2136
2137                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2138                 wr32(E1000_CTRL_EXT, reg_data);
2139         }
2140
2141         netif_tx_start_all_queues(adapter->netdev);
2142
2143         /* start the watchdog. */
2144         hw->mac.get_link_status = 1;
2145         schedule_work(&adapter->watchdog_task);
2146
2147         if ((adapter->flags & IGB_FLAG_EEE) &&
2148             (!hw->dev_spec._82575.eee_disable))
2149                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2150
2151         return 0;
2152 }
2153
2154 void igb_down(struct igb_adapter *adapter)
2155 {
2156         struct net_device *netdev = adapter->netdev;
2157         struct e1000_hw *hw = &adapter->hw;
2158         u32 tctl, rctl;
2159         int i;
2160
2161         /* signal that we're down so the interrupt handler does not
2162          * reschedule our watchdog timer
2163          */
2164         set_bit(__IGB_DOWN, &adapter->state);
2165
2166         /* disable receives in the hardware */
2167         rctl = rd32(E1000_RCTL);
2168         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2169         /* flush and sleep below */
2170
2171         igb_nfc_filter_exit(adapter);
2172
2173         netif_carrier_off(netdev);
2174         netif_tx_stop_all_queues(netdev);
2175
2176         /* disable transmits in the hardware */
2177         tctl = rd32(E1000_TCTL);
2178         tctl &= ~E1000_TCTL_EN;
2179         wr32(E1000_TCTL, tctl);
2180         /* flush both disables and wait for them to finish */
2181         wrfl();
2182         usleep_range(10000, 11000);
2183
2184         igb_irq_disable(adapter);
2185
2186         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2187
2188         for (i = 0; i < adapter->num_q_vectors; i++) {
2189                 if (adapter->q_vector[i]) {
2190                         napi_synchronize(&adapter->q_vector[i]->napi);
2191                         napi_disable(&adapter->q_vector[i]->napi);
2192                 }
2193         }
2194
2195         del_timer_sync(&adapter->watchdog_timer);
2196         del_timer_sync(&adapter->phy_info_timer);
2197
2198         /* record the stats before reset*/
2199         spin_lock(&adapter->stats64_lock);
2200         igb_update_stats(adapter);
2201         spin_unlock(&adapter->stats64_lock);
2202
2203         adapter->link_speed = 0;
2204         adapter->link_duplex = 0;
2205
2206         if (!pci_channel_offline(adapter->pdev))
2207                 igb_reset(adapter);
2208
2209         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2210         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2211
2212         igb_clean_all_tx_rings(adapter);
2213         igb_clean_all_rx_rings(adapter);
2214 #ifdef CONFIG_IGB_DCA
2215
2216         /* since we reset the hardware DCA settings were cleared */
2217         igb_setup_dca(adapter);
2218 #endif
2219 }
2220
2221 void igb_reinit_locked(struct igb_adapter *adapter)
2222 {
2223         WARN_ON(in_interrupt());
2224         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2225                 usleep_range(1000, 2000);
2226         igb_down(adapter);
2227         igb_up(adapter);
2228         clear_bit(__IGB_RESETTING, &adapter->state);
2229 }
2230
2231 /** igb_enable_mas - Media Autosense re-enable after swap
2232  *
2233  * @adapter: adapter struct
2234  **/
2235 static void igb_enable_mas(struct igb_adapter *adapter)
2236 {
2237         struct e1000_hw *hw = &adapter->hw;
2238         u32 connsw = rd32(E1000_CONNSW);
2239
2240         /* configure for SerDes media detect */
2241         if ((hw->phy.media_type == e1000_media_type_copper) &&
2242             (!(connsw & E1000_CONNSW_SERDESD))) {
2243                 connsw |= E1000_CONNSW_ENRGSRC;
2244                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2245                 wr32(E1000_CONNSW, connsw);
2246                 wrfl();
2247         }
2248 }
2249
2250 void igb_reset(struct igb_adapter *adapter)
2251 {
2252         struct pci_dev *pdev = adapter->pdev;
2253         struct e1000_hw *hw = &adapter->hw;
2254         struct e1000_mac_info *mac = &hw->mac;
2255         struct e1000_fc_info *fc = &hw->fc;
2256         u32 pba, hwm;
2257
2258         /* Repartition Pba for greater than 9k mtu
2259          * To take effect CTRL.RST is required.
2260          */
2261         switch (mac->type) {
2262         case e1000_i350:
2263         case e1000_i354:
2264         case e1000_82580:
2265                 pba = rd32(E1000_RXPBS);
2266                 pba = igb_rxpbs_adjust_82580(pba);
2267                 break;
2268         case e1000_82576:
2269                 pba = rd32(E1000_RXPBS);
2270                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2271                 break;
2272         case e1000_82575:
2273         case e1000_i210:
2274         case e1000_i211:
2275         default:
2276                 pba = E1000_PBA_34K;
2277                 break;
2278         }
2279
2280         if (mac->type == e1000_82575) {
2281                 u32 min_rx_space, min_tx_space, needed_tx_space;
2282
2283                 /* write Rx PBA so that hardware can report correct Tx PBA */
2284                 wr32(E1000_PBA, pba);
2285
2286                 /* To maintain wire speed transmits, the Tx FIFO should be
2287                  * large enough to accommodate two full transmit packets,
2288                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2289                  * the Rx FIFO should be large enough to accommodate at least
2290                  * one full receive packet and is similarly rounded up and
2291                  * expressed in KB.
2292                  */
2293                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2294
2295                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2296                  * but don't include Ethernet FCS because hardware appends it.
2297                  * We only need to round down to the nearest 512 byte block
2298                  * count since the value we care about is 2 frames, not 1.
2299                  */
2300                 min_tx_space = adapter->max_frame_size;
2301                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2302                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2303
2304                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2305                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2306
2307                 /* If current Tx allocation is less than the min Tx FIFO size,
2308                  * and the min Tx FIFO size is less than the current Rx FIFO
2309                  * allocation, take space away from current Rx allocation.
2310                  */
2311                 if (needed_tx_space < pba) {
2312                         pba -= needed_tx_space;
2313
2314                         /* if short on Rx space, Rx wins and must trump Tx
2315                          * adjustment
2316                          */
2317                         if (pba < min_rx_space)
2318                                 pba = min_rx_space;
2319                 }
2320
2321                 /* adjust PBA for jumbo frames */
2322                 wr32(E1000_PBA, pba);
2323         }
2324
2325         /* flow control settings
2326          * The high water mark must be low enough to fit one full frame
2327          * after transmitting the pause frame.  As such we must have enough
2328          * space to allow for us to complete our current transmit and then
2329          * receive the frame that is in progress from the link partner.
2330          * Set it to:
2331          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2332          */
2333         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2334
2335         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2336         fc->low_water = fc->high_water - 16;
2337         fc->pause_time = 0xFFFF;
2338         fc->send_xon = 1;
2339         fc->current_mode = fc->requested_mode;
2340
2341         /* disable receive for all VFs and wait one second */
2342         if (adapter->vfs_allocated_count) {
2343                 int i;
2344
2345                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2346                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2347
2348                 /* ping all the active vfs to let them know we are going down */
2349                 igb_ping_all_vfs(adapter);
2350
2351                 /* disable transmits and receives */
2352                 wr32(E1000_VFRE, 0);
2353                 wr32(E1000_VFTE, 0);
2354         }
2355
2356         /* Allow time for pending master requests to run */
2357         hw->mac.ops.reset_hw(hw);
2358         wr32(E1000_WUC, 0);
2359
2360         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2361                 /* need to resetup here after media swap */
2362                 adapter->ei.get_invariants(hw);
2363                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2364         }
2365         if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2366             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2367                 igb_enable_mas(adapter);
2368         }
2369         if (hw->mac.ops.init_hw(hw))
2370                 dev_err(&pdev->dev, "Hardware Error\n");
2371
2372         /* RAR registers were cleared during init_hw, clear mac table */
2373         igb_flush_mac_table(adapter);
2374         __dev_uc_unsync(adapter->netdev, NULL);
2375
2376         /* Recover default RAR entry */
2377         igb_set_default_mac_filter(adapter);
2378
2379         /* Flow control settings reset on hardware reset, so guarantee flow
2380          * control is off when forcing speed.
2381          */
2382         if (!hw->mac.autoneg)
2383                 igb_force_mac_fc(hw);
2384
2385         igb_init_dmac(adapter, pba);
2386 #ifdef CONFIG_IGB_HWMON
2387         /* Re-initialize the thermal sensor on i350 devices. */
2388         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2389                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2390                         /* If present, re-initialize the external thermal sensor
2391                          * interface.
2392                          */
2393                         if (adapter->ets)
2394                                 mac->ops.init_thermal_sensor_thresh(hw);
2395                 }
2396         }
2397 #endif
2398         /* Re-establish EEE setting */
2399         if (hw->phy.media_type == e1000_media_type_copper) {
2400                 switch (mac->type) {
2401                 case e1000_i350:
2402                 case e1000_i210:
2403                 case e1000_i211:
2404                         igb_set_eee_i350(hw, true, true);
2405                         break;
2406                 case e1000_i354:
2407                         igb_set_eee_i354(hw, true, true);
2408                         break;
2409                 default:
2410                         break;
2411                 }
2412         }
2413         if (!netif_running(adapter->netdev))
2414                 igb_power_down_link(adapter);
2415
2416         igb_update_mng_vlan(adapter);
2417
2418         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2420
2421         /* Re-enable PTP, where applicable. */
2422         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2423                 igb_ptp_reset(adapter);
2424
2425         igb_get_phy_info(hw);
2426 }
2427
2428 static netdev_features_t igb_fix_features(struct net_device *netdev,
2429         netdev_features_t features)
2430 {
2431         /* Since there is no support for separate Rx/Tx vlan accel
2432          * enable/disable make sure Tx flag is always in same state as Rx.
2433          */
2434         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2435                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2436         else
2437                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2438
2439         return features;
2440 }
2441
2442 static int igb_set_features(struct net_device *netdev,
2443         netdev_features_t features)
2444 {
2445         netdev_features_t changed = netdev->features ^ features;
2446         struct igb_adapter *adapter = netdev_priv(netdev);
2447
2448         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2449                 igb_vlan_mode(netdev, features);
2450
2451         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2452                 return 0;
2453
2454         if (!(features & NETIF_F_NTUPLE)) {
2455                 struct hlist_node *node2;
2456                 struct igb_nfc_filter *rule;
2457
2458                 spin_lock(&adapter->nfc_lock);
2459                 hlist_for_each_entry_safe(rule, node2,
2460                                           &adapter->nfc_filter_list, nfc_node) {
2461                         igb_erase_filter(adapter, rule);
2462                         hlist_del(&rule->nfc_node);
2463                         kfree(rule);
2464                 }
2465                 spin_unlock(&adapter->nfc_lock);
2466                 adapter->nfc_filter_count = 0;
2467         }
2468
2469         netdev->features = features;
2470
2471         if (netif_running(netdev))
2472                 igb_reinit_locked(adapter);
2473         else
2474                 igb_reset(adapter);
2475
2476         return 1;
2477 }
2478
2479 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2480                            struct net_device *dev,
2481                            const unsigned char *addr, u16 vid,
2482                            u16 flags,
2483                            struct netlink_ext_ack *extack)
2484 {
2485         /* guarantee we can provide a unique filter for the unicast address */
2486         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2487                 struct igb_adapter *adapter = netdev_priv(dev);
2488                 int vfn = adapter->vfs_allocated_count;
2489
2490                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2491                         return -ENOMEM;
2492         }
2493
2494         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2495 }
2496
2497 #define IGB_MAX_MAC_HDR_LEN     127
2498 #define IGB_MAX_NETWORK_HDR_LEN 511
2499
2500 static netdev_features_t
2501 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2502                    netdev_features_t features)
2503 {
2504         unsigned int network_hdr_len, mac_hdr_len;
2505
2506         /* Make certain the headers can be described by a context descriptor */
2507         mac_hdr_len = skb_network_header(skb) - skb->data;
2508         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2509                 return features & ~(NETIF_F_HW_CSUM |
2510                                     NETIF_F_SCTP_CRC |
2511                                     NETIF_F_GSO_UDP_L4 |
2512                                     NETIF_F_HW_VLAN_CTAG_TX |
2513                                     NETIF_F_TSO |
2514                                     NETIF_F_TSO6);
2515
2516         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2517         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2518                 return features & ~(NETIF_F_HW_CSUM |
2519                                     NETIF_F_SCTP_CRC |
2520                                     NETIF_F_GSO_UDP_L4 |
2521                                     NETIF_F_TSO |
2522                                     NETIF_F_TSO6);
2523
2524         /* We can only support IPV4 TSO in tunnels if we can mangle the
2525          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2526          */
2527         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2528                 features &= ~NETIF_F_TSO;
2529
2530         return features;
2531 }
2532
2533 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2534 {
2535         if (!is_fqtss_enabled(adapter)) {
2536                 enable_fqtss(adapter, true);
2537                 return;
2538         }
2539
2540         igb_config_tx_modes(adapter, queue);
2541
2542         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2543                 enable_fqtss(adapter, false);
2544 }
2545
2546 static int igb_offload_cbs(struct igb_adapter *adapter,
2547                            struct tc_cbs_qopt_offload *qopt)
2548 {
2549         struct e1000_hw *hw = &adapter->hw;
2550         int err;
2551
2552         /* CBS offloading is only supported by i210 controller. */
2553         if (hw->mac.type != e1000_i210)
2554                 return -EOPNOTSUPP;
2555
2556         /* CBS offloading is only supported by queue 0 and queue 1. */
2557         if (qopt->queue < 0 || qopt->queue > 1)
2558                 return -EINVAL;
2559
2560         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2561                                   qopt->idleslope, qopt->sendslope,
2562                                   qopt->hicredit, qopt->locredit);
2563         if (err)
2564                 return err;
2565
2566         igb_offload_apply(adapter, qopt->queue);
2567
2568         return 0;
2569 }
2570
2571 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572 #define VLAN_PRIO_FULL_MASK (0x07)
2573
2574 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2575                                 struct flow_cls_offload *f,
2576                                 int traffic_class,
2577                                 struct igb_nfc_filter *input)
2578 {
2579         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2580         struct flow_dissector *dissector = rule->match.dissector;
2581         struct netlink_ext_ack *extack = f->common.extack;
2582
2583         if (dissector->used_keys &
2584             ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2585               BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2586               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2587               BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2588                 NL_SET_ERR_MSG_MOD(extack,
2589                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2590                 return -EOPNOTSUPP;
2591         }
2592
2593         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2594                 struct flow_match_eth_addrs match;
2595
2596                 flow_rule_match_eth_addrs(rule, &match);
2597                 if (!is_zero_ether_addr(match.mask->dst)) {
2598                         if (!is_broadcast_ether_addr(match.mask->dst)) {
2599                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2600                                 return -EINVAL;
2601                         }
2602
2603                         input->filter.match_flags |=
2604                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2605                         ether_addr_copy(input->filter.dst_addr, match.key->dst);
2606                 }
2607
2608                 if (!is_zero_ether_addr(match.mask->src)) {
2609                         if (!is_broadcast_ether_addr(match.mask->src)) {
2610                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2611                                 return -EINVAL;
2612                         }
2613
2614                         input->filter.match_flags |=
2615                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2616                         ether_addr_copy(input->filter.src_addr, match.key->src);
2617                 }
2618         }
2619
2620         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2621                 struct flow_match_basic match;
2622
2623                 flow_rule_match_basic(rule, &match);
2624                 if (match.mask->n_proto) {
2625                         if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2626                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2627                                 return -EINVAL;
2628                         }
2629
2630                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2631                         input->filter.etype = match.key->n_proto;
2632                 }
2633         }
2634
2635         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2636                 struct flow_match_vlan match;
2637
2638                 flow_rule_match_vlan(rule, &match);
2639                 if (match.mask->vlan_priority) {
2640                         if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2641                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2642                                 return -EINVAL;
2643                         }
2644
2645                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2646                         input->filter.vlan_tci = match.key->vlan_priority;
2647                 }
2648         }
2649
2650         input->action = traffic_class;
2651         input->cookie = f->cookie;
2652
2653         return 0;
2654 }
2655
2656 static int igb_configure_clsflower(struct igb_adapter *adapter,
2657                                    struct flow_cls_offload *cls_flower)
2658 {
2659         struct netlink_ext_ack *extack = cls_flower->common.extack;
2660         struct igb_nfc_filter *filter, *f;
2661         int err, tc;
2662
2663         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2664         if (tc < 0) {
2665                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2666                 return -EINVAL;
2667         }
2668
2669         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2670         if (!filter)
2671                 return -ENOMEM;
2672
2673         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2674         if (err < 0)
2675                 goto err_parse;
2676
2677         spin_lock(&adapter->nfc_lock);
2678
2679         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2680                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2681                         err = -EEXIST;
2682                         NL_SET_ERR_MSG_MOD(extack,
2683                                            "This filter is already set in ethtool");
2684                         goto err_locked;
2685                 }
2686         }
2687
2688         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2689                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690                         err = -EEXIST;
2691                         NL_SET_ERR_MSG_MOD(extack,
2692                                            "This filter is already set in cls_flower");
2693                         goto err_locked;
2694                 }
2695         }
2696
2697         err = igb_add_filter(adapter, filter);
2698         if (err < 0) {
2699                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2700                 goto err_locked;
2701         }
2702
2703         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2704
2705         spin_unlock(&adapter->nfc_lock);
2706
2707         return 0;
2708
2709 err_locked:
2710         spin_unlock(&adapter->nfc_lock);
2711
2712 err_parse:
2713         kfree(filter);
2714
2715         return err;
2716 }
2717
2718 static int igb_delete_clsflower(struct igb_adapter *adapter,
2719                                 struct flow_cls_offload *cls_flower)
2720 {
2721         struct igb_nfc_filter *filter;
2722         int err;
2723
2724         spin_lock(&adapter->nfc_lock);
2725
2726         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2727                 if (filter->cookie == cls_flower->cookie)
2728                         break;
2729
2730         if (!filter) {
2731                 err = -ENOENT;
2732                 goto out;
2733         }
2734
2735         err = igb_erase_filter(adapter, filter);
2736         if (err < 0)
2737                 goto out;
2738
2739         hlist_del(&filter->nfc_node);
2740         kfree(filter);
2741
2742 out:
2743         spin_unlock(&adapter->nfc_lock);
2744
2745         return err;
2746 }
2747
2748 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2749                                    struct flow_cls_offload *cls_flower)
2750 {
2751         switch (cls_flower->command) {
2752         case FLOW_CLS_REPLACE:
2753                 return igb_configure_clsflower(adapter, cls_flower);
2754         case FLOW_CLS_DESTROY:
2755                 return igb_delete_clsflower(adapter, cls_flower);
2756         case FLOW_CLS_STATS:
2757                 return -EOPNOTSUPP;
2758         default:
2759                 return -EOPNOTSUPP;
2760         }
2761 }
2762
2763 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2764                                  void *cb_priv)
2765 {
2766         struct igb_adapter *adapter = cb_priv;
2767
2768         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2769                 return -EOPNOTSUPP;
2770
2771         switch (type) {
2772         case TC_SETUP_CLSFLOWER:
2773                 return igb_setup_tc_cls_flower(adapter, type_data);
2774
2775         default:
2776                 return -EOPNOTSUPP;
2777         }
2778 }
2779
2780 static int igb_offload_txtime(struct igb_adapter *adapter,
2781                               struct tc_etf_qopt_offload *qopt)
2782 {
2783         struct e1000_hw *hw = &adapter->hw;
2784         int err;
2785
2786         /* Launchtime offloading is only supported by i210 controller. */
2787         if (hw->mac.type != e1000_i210)
2788                 return -EOPNOTSUPP;
2789
2790         /* Launchtime offloading is only supported by queues 0 and 1. */
2791         if (qopt->queue < 0 || qopt->queue > 1)
2792                 return -EINVAL;
2793
2794         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2795         if (err)
2796                 return err;
2797
2798         igb_offload_apply(adapter, qopt->queue);
2799
2800         return 0;
2801 }
2802
2803 static LIST_HEAD(igb_block_cb_list);
2804
2805 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2806                         void *type_data)
2807 {
2808         struct igb_adapter *adapter = netdev_priv(dev);
2809
2810         switch (type) {
2811         case TC_SETUP_QDISC_CBS:
2812                 return igb_offload_cbs(adapter, type_data);
2813         case TC_SETUP_BLOCK:
2814                 return flow_block_cb_setup_simple(type_data,
2815                                                   &igb_block_cb_list,
2816                                                   igb_setup_tc_block_cb,
2817                                                   adapter, adapter, true);
2818
2819         case TC_SETUP_QDISC_ETF:
2820                 return igb_offload_txtime(adapter, type_data);
2821
2822         default:
2823                 return -EOPNOTSUPP;
2824         }
2825 }
2826
2827 static const struct net_device_ops igb_netdev_ops = {
2828         .ndo_open               = igb_open,
2829         .ndo_stop               = igb_close,
2830         .ndo_start_xmit         = igb_xmit_frame,
2831         .ndo_get_stats64        = igb_get_stats64,
2832         .ndo_set_rx_mode        = igb_set_rx_mode,
2833         .ndo_set_mac_address    = igb_set_mac,
2834         .ndo_change_mtu         = igb_change_mtu,
2835         .ndo_do_ioctl           = igb_ioctl,
2836         .ndo_tx_timeout         = igb_tx_timeout,
2837         .ndo_validate_addr      = eth_validate_addr,
2838         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2839         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2840         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2841         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2842         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2843         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2844         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
2845         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2846         .ndo_fix_features       = igb_fix_features,
2847         .ndo_set_features       = igb_set_features,
2848         .ndo_fdb_add            = igb_ndo_fdb_add,
2849         .ndo_features_check     = igb_features_check,
2850         .ndo_setup_tc           = igb_setup_tc,
2851 };
2852
2853 /**
2854  * igb_set_fw_version - Configure version string for ethtool
2855  * @adapter: adapter struct
2856  **/
2857 void igb_set_fw_version(struct igb_adapter *adapter)
2858 {
2859         struct e1000_hw *hw = &adapter->hw;
2860         struct e1000_fw_version fw;
2861
2862         igb_get_fw_version(hw, &fw);
2863
2864         switch (hw->mac.type) {
2865         case e1000_i210:
2866         case e1000_i211:
2867                 if (!(igb_get_flash_presence_i210(hw))) {
2868                         snprintf(adapter->fw_version,
2869                                  sizeof(adapter->fw_version),
2870                                  "%2d.%2d-%d",
2871                                  fw.invm_major, fw.invm_minor,
2872                                  fw.invm_img_type);
2873                         break;
2874                 }
2875                 fallthrough;
2876         default:
2877                 /* if option is rom valid, display its version too */
2878                 if (fw.or_valid) {
2879                         snprintf(adapter->fw_version,
2880                                  sizeof(adapter->fw_version),
2881                                  "%d.%d, 0x%08x, %d.%d.%d",
2882                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2883                                  fw.or_major, fw.or_build, fw.or_patch);
2884                 /* no option rom */
2885                 } else if (fw.etrack_id != 0X0000) {
2886                         snprintf(adapter->fw_version,
2887                             sizeof(adapter->fw_version),
2888                             "%d.%d, 0x%08x",
2889                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2890                 } else {
2891                 snprintf(adapter->fw_version,
2892                     sizeof(adapter->fw_version),
2893                     "%d.%d.%d",
2894                     fw.eep_major, fw.eep_minor, fw.eep_build);
2895                 }
2896                 break;
2897         }
2898 }
2899
2900 /**
2901  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2902  *
2903  * @adapter: adapter struct
2904  **/
2905 static void igb_init_mas(struct igb_adapter *adapter)
2906 {
2907         struct e1000_hw *hw = &adapter->hw;
2908         u16 eeprom_data;
2909
2910         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2911         switch (hw->bus.func) {
2912         case E1000_FUNC_0:
2913                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2914                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2915                         netdev_info(adapter->netdev,
2916                                 "MAS: Enabling Media Autosense for port %d\n",
2917                                 hw->bus.func);
2918                 }
2919                 break;
2920         case E1000_FUNC_1:
2921                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2922                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2923                         netdev_info(adapter->netdev,
2924                                 "MAS: Enabling Media Autosense for port %d\n",
2925                                 hw->bus.func);
2926                 }
2927                 break;
2928         case E1000_FUNC_2:
2929                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2930                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2931                         netdev_info(adapter->netdev,
2932                                 "MAS: Enabling Media Autosense for port %d\n",
2933                                 hw->bus.func);
2934                 }
2935                 break;
2936         case E1000_FUNC_3:
2937                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2938                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2939                         netdev_info(adapter->netdev,
2940                                 "MAS: Enabling Media Autosense for port %d\n",
2941                                 hw->bus.func);
2942                 }
2943                 break;
2944         default:
2945                 /* Shouldn't get here */
2946                 netdev_err(adapter->netdev,
2947                         "MAS: Invalid port configuration, returning\n");
2948                 break;
2949         }
2950 }
2951
2952 /**
2953  *  igb_init_i2c - Init I2C interface
2954  *  @adapter: pointer to adapter structure
2955  **/
2956 static s32 igb_init_i2c(struct igb_adapter *adapter)
2957 {
2958         s32 status = 0;
2959
2960         /* I2C interface supported on i350 devices */
2961         if (adapter->hw.mac.type != e1000_i350)
2962                 return 0;
2963
2964         /* Initialize the i2c bus which is controlled by the registers.
2965          * This bus will use the i2c_algo_bit structue that implements
2966          * the protocol through toggling of the 4 bits in the register.
2967          */
2968         adapter->i2c_adap.owner = THIS_MODULE;
2969         adapter->i2c_algo = igb_i2c_algo;
2970         adapter->i2c_algo.data = adapter;
2971         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2972         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2973         strlcpy(adapter->i2c_adap.name, "igb BB",
2974                 sizeof(adapter->i2c_adap.name));
2975         status = i2c_bit_add_bus(&adapter->i2c_adap);
2976         return status;
2977 }
2978
2979 /**
2980  *  igb_probe - Device Initialization Routine
2981  *  @pdev: PCI device information struct
2982  *  @ent: entry in igb_pci_tbl
2983  *
2984  *  Returns 0 on success, negative on failure
2985  *
2986  *  igb_probe initializes an adapter identified by a pci_dev structure.
2987  *  The OS initialization, configuring of the adapter private structure,
2988  *  and a hardware reset occur.
2989  **/
2990 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2991 {
2992         struct net_device *netdev;
2993         struct igb_adapter *adapter;
2994         struct e1000_hw *hw;
2995         u16 eeprom_data = 0;
2996         s32 ret_val;
2997         static int global_quad_port_a; /* global quad port a indication */
2998         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2999         int err, pci_using_dac;
3000         u8 part_str[E1000_PBANUM_LENGTH];
3001
3002         /* Catch broken hardware that put the wrong VF device ID in
3003          * the PCIe SR-IOV capability.
3004          */
3005         if (pdev->is_virtfn) {
3006                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3007                         pci_name(pdev), pdev->vendor, pdev->device);
3008                 return -EINVAL;
3009         }
3010
3011         err = pci_enable_device_mem(pdev);
3012         if (err)
3013                 return err;
3014
3015         pci_using_dac = 0;
3016         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3017         if (!err) {
3018                 pci_using_dac = 1;
3019         } else {
3020                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3021                 if (err) {
3022                         dev_err(&pdev->dev,
3023                                 "No usable DMA configuration, aborting\n");
3024                         goto err_dma;
3025                 }
3026         }
3027
3028         err = pci_request_mem_regions(pdev, igb_driver_name);
3029         if (err)
3030                 goto err_pci_reg;
3031
3032         pci_enable_pcie_error_reporting(pdev);
3033
3034         pci_set_master(pdev);
3035         pci_save_state(pdev);
3036
3037         err = -ENOMEM;
3038         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3039                                    IGB_MAX_TX_QUEUES);
3040         if (!netdev)
3041                 goto err_alloc_etherdev;
3042
3043         SET_NETDEV_DEV(netdev, &pdev->dev);
3044
3045         pci_set_drvdata(pdev, netdev);
3046         adapter = netdev_priv(netdev);
3047         adapter->netdev = netdev;
3048         adapter->pdev = pdev;
3049         hw = &adapter->hw;
3050         hw->back = adapter;
3051         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3052
3053         err = -EIO;
3054         adapter->io_addr = pci_iomap(pdev, 0, 0);
3055         if (!adapter->io_addr)
3056                 goto err_ioremap;
3057         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3058         hw->hw_addr = adapter->io_addr;
3059
3060         netdev->netdev_ops = &igb_netdev_ops;
3061         igb_set_ethtool_ops(netdev);
3062         netdev->watchdog_timeo = 5 * HZ;
3063
3064         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3065
3066         netdev->mem_start = pci_resource_start(pdev, 0);
3067         netdev->mem_end = pci_resource_end(pdev, 0);
3068
3069         /* PCI config space info */
3070         hw->vendor_id = pdev->vendor;
3071         hw->device_id = pdev->device;
3072         hw->revision_id = pdev->revision;
3073         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3074         hw->subsystem_device_id = pdev->subsystem_device;
3075
3076         /* Copy the default MAC, PHY and NVM function pointers */
3077         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3078         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3079         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3080         /* Initialize skew-specific constants */
3081         err = ei->get_invariants(hw);
3082         if (err)
3083                 goto err_sw_init;
3084
3085         /* setup the private structure */
3086         err = igb_sw_init(adapter);
3087         if (err)
3088                 goto err_sw_init;
3089
3090         igb_get_bus_info_pcie(hw);
3091
3092         hw->phy.autoneg_wait_to_complete = false;
3093
3094         /* Copper options */
3095         if (hw->phy.media_type == e1000_media_type_copper) {
3096                 hw->phy.mdix = AUTO_ALL_MODES;
3097                 hw->phy.disable_polarity_correction = false;
3098                 hw->phy.ms_type = e1000_ms_hw_default;
3099         }
3100
3101         if (igb_check_reset_block(hw))
3102                 dev_info(&pdev->dev,
3103                         "PHY reset is blocked due to SOL/IDER session.\n");
3104
3105         /* features is initialized to 0 in allocation, it might have bits
3106          * set by igb_sw_init so we should use an or instead of an
3107          * assignment.
3108          */
3109         netdev->features |= NETIF_F_SG |
3110                             NETIF_F_TSO |
3111                             NETIF_F_TSO6 |
3112                             NETIF_F_RXHASH |
3113                             NETIF_F_RXCSUM |
3114                             NETIF_F_HW_CSUM;
3115
3116         if (hw->mac.type >= e1000_82576)
3117                 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3118
3119         if (hw->mac.type >= e1000_i350)
3120                 netdev->features |= NETIF_F_HW_TC;
3121
3122 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3123                                   NETIF_F_GSO_GRE_CSUM | \
3124                                   NETIF_F_GSO_IPXIP4 | \
3125                                   NETIF_F_GSO_IPXIP6 | \
3126                                   NETIF_F_GSO_UDP_TUNNEL | \
3127                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3128
3129         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3130         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3131
3132         /* copy netdev features into list of user selectable features */
3133         netdev->hw_features |= netdev->features |
3134                                NETIF_F_HW_VLAN_CTAG_RX |
3135                                NETIF_F_HW_VLAN_CTAG_TX |
3136                                NETIF_F_RXALL;
3137
3138         if (hw->mac.type >= e1000_i350)
3139                 netdev->hw_features |= NETIF_F_NTUPLE;
3140
3141         if (pci_using_dac)
3142                 netdev->features |= NETIF_F_HIGHDMA;
3143
3144         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3145         netdev->mpls_features |= NETIF_F_HW_CSUM;
3146         netdev->hw_enc_features |= netdev->vlan_features;
3147
3148         /* set this bit last since it cannot be part of vlan_features */
3149         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3150                             NETIF_F_HW_VLAN_CTAG_RX |
3151                             NETIF_F_HW_VLAN_CTAG_TX;
3152
3153         netdev->priv_flags |= IFF_SUPP_NOFCS;
3154
3155         netdev->priv_flags |= IFF_UNICAST_FLT;
3156
3157         /* MTU range: 68 - 9216 */
3158         netdev->min_mtu = ETH_MIN_MTU;
3159         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3160
3161         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3162
3163         /* before reading the NVM, reset the controller to put the device in a
3164          * known good starting state
3165          */
3166         hw->mac.ops.reset_hw(hw);
3167
3168         /* make sure the NVM is good , i211/i210 parts can have special NVM
3169          * that doesn't contain a checksum
3170          */
3171         switch (hw->mac.type) {
3172         case e1000_i210:
3173         case e1000_i211:
3174                 if (igb_get_flash_presence_i210(hw)) {
3175                         if (hw->nvm.ops.validate(hw) < 0) {
3176                                 dev_err(&pdev->dev,
3177                                         "The NVM Checksum Is Not Valid\n");
3178                                 err = -EIO;
3179                                 goto err_eeprom;
3180                         }
3181                 }
3182                 break;
3183         default:
3184                 if (hw->nvm.ops.validate(hw) < 0) {
3185                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3186                         err = -EIO;
3187                         goto err_eeprom;
3188                 }
3189                 break;
3190         }
3191
3192         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3193                 /* copy the MAC address out of the NVM */
3194                 if (hw->mac.ops.read_mac_addr(hw))
3195                         dev_err(&pdev->dev, "NVM Read Error\n");
3196         }
3197
3198         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3199
3200         if (!is_valid_ether_addr(netdev->dev_addr)) {
3201                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3202                 err = -EIO;
3203                 goto err_eeprom;
3204         }
3205
3206         igb_set_default_mac_filter(adapter);
3207
3208         /* get firmware version for ethtool -i */
3209         igb_set_fw_version(adapter);
3210
3211         /* configure RXPBSIZE and TXPBSIZE */
3212         if (hw->mac.type == e1000_i210) {
3213                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3214                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3215         }
3216
3217         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3218         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3219
3220         INIT_WORK(&adapter->reset_task, igb_reset_task);
3221         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3222
3223         /* Initialize link properties that are user-changeable */
3224         adapter->fc_autoneg = true;
3225         hw->mac.autoneg = true;
3226         hw->phy.autoneg_advertised = 0x2f;
3227
3228         hw->fc.requested_mode = e1000_fc_default;
3229         hw->fc.current_mode = e1000_fc_default;
3230
3231         igb_validate_mdi_setting(hw);
3232
3233         /* By default, support wake on port A */
3234         if (hw->bus.func == 0)
3235                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3236
3237         /* Check the NVM for wake support on non-port A ports */
3238         if (hw->mac.type >= e1000_82580)
3239                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3240                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3241                                  &eeprom_data);
3242         else if (hw->bus.func == 1)
3243                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3244
3245         if (eeprom_data & IGB_EEPROM_APME)
3246                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3247
3248         /* now that we have the eeprom settings, apply the special cases where
3249          * the eeprom may be wrong or the board simply won't support wake on
3250          * lan on a particular port
3251          */
3252         switch (pdev->device) {
3253         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3254                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3255                 break;
3256         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3257         case E1000_DEV_ID_82576_FIBER:
3258         case E1000_DEV_ID_82576_SERDES:
3259                 /* Wake events only supported on port A for dual fiber
3260                  * regardless of eeprom setting
3261                  */
3262                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3263                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3264                 break;
3265         case E1000_DEV_ID_82576_QUAD_COPPER:
3266         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3267                 /* if quad port adapter, disable WoL on all but port A */
3268                 if (global_quad_port_a != 0)
3269                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3270                 else
3271                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3272                 /* Reset for multiple quad port adapters */
3273                 if (++global_quad_port_a == 4)
3274                         global_quad_port_a = 0;
3275                 break;
3276         default:
3277                 /* If the device can't wake, don't set software support */
3278                 if (!device_can_wakeup(&adapter->pdev->dev))
3279                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3280         }
3281
3282         /* initialize the wol settings based on the eeprom settings */
3283         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3284                 adapter->wol |= E1000_WUFC_MAG;
3285
3286         /* Some vendors want WoL disabled by default, but still supported */
3287         if ((hw->mac.type == e1000_i350) &&
3288             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3289                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3290                 adapter->wol = 0;
3291         }
3292
3293         /* Some vendors want the ability to Use the EEPROM setting as
3294          * enable/disable only, and not for capability
3295          */
3296         if (((hw->mac.type == e1000_i350) ||
3297              (hw->mac.type == e1000_i354)) &&
3298             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3299                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3300                 adapter->wol = 0;
3301         }
3302         if (hw->mac.type == e1000_i350) {
3303                 if (((pdev->subsystem_device == 0x5001) ||
3304                      (pdev->subsystem_device == 0x5002)) &&
3305                                 (hw->bus.func == 0)) {
3306                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3307                         adapter->wol = 0;
3308                 }
3309                 if (pdev->subsystem_device == 0x1F52)
3310                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3311         }
3312
3313         device_set_wakeup_enable(&adapter->pdev->dev,
3314                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3315
3316         /* reset the hardware with the new settings */
3317         igb_reset(adapter);
3318
3319         /* Init the I2C interface */
3320         err = igb_init_i2c(adapter);
3321         if (err) {
3322                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3323                 goto err_eeprom;
3324         }
3325
3326         /* let the f/w know that the h/w is now under the control of the
3327          * driver.
3328          */
3329         igb_get_hw_control(adapter);
3330
3331         strcpy(netdev->name, "eth%d");
3332         err = register_netdev(netdev);
3333         if (err)
3334                 goto err_register;
3335
3336         /* carrier off reporting is important to ethtool even BEFORE open */
3337         netif_carrier_off(netdev);
3338
3339 #ifdef CONFIG_IGB_DCA
3340         if (dca_add_requester(&pdev->dev) == 0) {
3341                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3342                 dev_info(&pdev->dev, "DCA enabled\n");
3343                 igb_setup_dca(adapter);
3344         }
3345
3346 #endif
3347 #ifdef CONFIG_IGB_HWMON
3348         /* Initialize the thermal sensor on i350 devices. */
3349         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3350                 u16 ets_word;
3351
3352                 /* Read the NVM to determine if this i350 device supports an
3353                  * external thermal sensor.
3354                  */
3355                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3356                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3357                         adapter->ets = true;
3358                 else
3359                         adapter->ets = false;
3360                 if (igb_sysfs_init(adapter))
3361                         dev_err(&pdev->dev,
3362                                 "failed to allocate sysfs resources\n");
3363         } else {
3364                 adapter->ets = false;
3365         }
3366 #endif
3367         /* Check if Media Autosense is enabled */
3368         adapter->ei = *ei;
3369         if (hw->dev_spec._82575.mas_capable)
3370                 igb_init_mas(adapter);
3371
3372         /* do hw tstamp init after resetting */
3373         igb_ptp_init(adapter);
3374
3375         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3376         /* print bus type/speed/width info, not applicable to i354 */
3377         if (hw->mac.type != e1000_i354) {
3378                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3379                          netdev->name,
3380                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3381                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3382                            "unknown"),
3383                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3384                           "Width x4" :
3385                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3386                           "Width x2" :
3387                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3388                           "Width x1" : "unknown"), netdev->dev_addr);
3389         }
3390
3391         if ((hw->mac.type >= e1000_i210 ||
3392              igb_get_flash_presence_i210(hw))) {
3393                 ret_val = igb_read_part_string(hw, part_str,
3394                                                E1000_PBANUM_LENGTH);
3395         } else {
3396                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3397         }
3398
3399         if (ret_val)
3400                 strcpy(part_str, "Unknown");
3401         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3402         dev_info(&pdev->dev,
3403                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3404                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3405                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3406                 adapter->num_rx_queues, adapter->num_tx_queues);
3407         if (hw->phy.media_type == e1000_media_type_copper) {
3408                 switch (hw->mac.type) {
3409                 case e1000_i350:
3410                 case e1000_i210:
3411                 case e1000_i211:
3412                         /* Enable EEE for internal copper PHY devices */
3413                         err = igb_set_eee_i350(hw, true, true);
3414                         if ((!err) &&
3415                             (!hw->dev_spec._82575.eee_disable)) {
3416                                 adapter->eee_advert =
3417                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3418                                 adapter->flags |= IGB_FLAG_EEE;
3419                         }
3420                         break;
3421                 case e1000_i354:
3422                         if ((rd32(E1000_CTRL_EXT) &
3423                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3424                                 err = igb_set_eee_i354(hw, true, true);
3425                                 if ((!err) &&
3426                                         (!hw->dev_spec._82575.eee_disable)) {
3427                                         adapter->eee_advert =
3428                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3429                                         adapter->flags |= IGB_FLAG_EEE;
3430                                 }
3431                         }
3432                         break;
3433                 default:
3434                         break;
3435                 }
3436         }
3437
3438         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3439
3440         pm_runtime_put_noidle(&pdev->dev);
3441         return 0;
3442
3443 err_register:
3444         igb_release_hw_control(adapter);
3445         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3446 err_eeprom:
3447         if (!igb_check_reset_block(hw))
3448                 igb_reset_phy(hw);
3449
3450         if (hw->flash_address)
3451                 iounmap(hw->flash_address);
3452 err_sw_init:
3453         kfree(adapter->mac_table);
3454         kfree(adapter->shadow_vfta);
3455         igb_clear_interrupt_scheme(adapter);
3456 #ifdef CONFIG_PCI_IOV
3457         igb_disable_sriov(pdev);
3458 #endif
3459         pci_iounmap(pdev, adapter->io_addr);
3460 err_ioremap:
3461         free_netdev(netdev);
3462 err_alloc_etherdev:
3463         pci_release_mem_regions(pdev);
3464 err_pci_reg:
3465 err_dma:
3466         pci_disable_device(pdev);
3467         return err;
3468 }
3469
3470 #ifdef CONFIG_PCI_IOV
3471 static int igb_disable_sriov(struct pci_dev *pdev)
3472 {
3473         struct net_device *netdev = pci_get_drvdata(pdev);
3474         struct igb_adapter *adapter = netdev_priv(netdev);
3475         struct e1000_hw *hw = &adapter->hw;
3476
3477         /* reclaim resources allocated to VFs */
3478         if (adapter->vf_data) {
3479                 /* disable iov and allow time for transactions to clear */
3480                 if (pci_vfs_assigned(pdev)) {
3481                         dev_warn(&pdev->dev,
3482                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3483                         return -EPERM;
3484                 } else {
3485                         pci_disable_sriov(pdev);
3486                         msleep(500);
3487                 }
3488
3489                 kfree(adapter->vf_mac_list);
3490                 adapter->vf_mac_list = NULL;
3491                 kfree(adapter->vf_data);
3492                 adapter->vf_data = NULL;
3493                 adapter->vfs_allocated_count = 0;
3494                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3495                 wrfl();
3496                 msleep(100);
3497                 dev_info(&pdev->dev, "IOV Disabled\n");
3498
3499                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3500                 adapter->flags |= IGB_FLAG_DMAC;
3501         }
3502
3503         return 0;
3504 }
3505
3506 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3507 {
3508         struct net_device *netdev = pci_get_drvdata(pdev);
3509         struct igb_adapter *adapter = netdev_priv(netdev);
3510         int old_vfs = pci_num_vf(pdev);
3511         struct vf_mac_filter *mac_list;
3512         int err = 0;
3513         int num_vf_mac_filters, i;
3514
3515         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3516                 err = -EPERM;
3517                 goto out;
3518         }
3519         if (!num_vfs)
3520                 goto out;
3521
3522         if (old_vfs) {
3523                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3524                          old_vfs, max_vfs);
3525                 adapter->vfs_allocated_count = old_vfs;
3526         } else
3527                 adapter->vfs_allocated_count = num_vfs;
3528
3529         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3530                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3531
3532         /* if allocation failed then we do not support SR-IOV */
3533         if (!adapter->vf_data) {
3534                 adapter->vfs_allocated_count = 0;
3535                 err = -ENOMEM;
3536                 goto out;
3537         }
3538
3539         /* Due to the limited number of RAR entries calculate potential
3540          * number of MAC filters available for the VFs. Reserve entries
3541          * for PF default MAC, PF MAC filters and at least one RAR entry
3542          * for each VF for VF MAC.
3543          */
3544         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3545                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3546                               adapter->vfs_allocated_count);
3547
3548         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3549                                        sizeof(struct vf_mac_filter),
3550                                        GFP_KERNEL);
3551
3552         mac_list = adapter->vf_mac_list;
3553         INIT_LIST_HEAD(&adapter->vf_macs.l);
3554
3555         if (adapter->vf_mac_list) {
3556                 /* Initialize list of VF MAC filters */
3557                 for (i = 0; i < num_vf_mac_filters; i++) {
3558                         mac_list->vf = -1;
3559                         mac_list->free = true;
3560                         list_add(&mac_list->l, &adapter->vf_macs.l);
3561                         mac_list++;
3562                 }
3563         } else {
3564                 /* If we could not allocate memory for the VF MAC filters
3565                  * we can continue without this feature but warn user.
3566                  */
3567                 dev_err(&pdev->dev,
3568                         "Unable to allocate memory for VF MAC filter list\n");
3569         }
3570
3571         /* only call pci_enable_sriov() if no VFs are allocated already */
3572         if (!old_vfs) {
3573                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3574                 if (err)
3575                         goto err_out;
3576         }
3577         dev_info(&pdev->dev, "%d VFs allocated\n",
3578                  adapter->vfs_allocated_count);
3579         for (i = 0; i < adapter->vfs_allocated_count; i++)
3580                 igb_vf_configure(adapter, i);
3581
3582         /* DMA Coalescing is not supported in IOV mode. */
3583         adapter->flags &= ~IGB_FLAG_DMAC;
3584         goto out;
3585
3586 err_out:
3587         kfree(adapter->vf_mac_list);
3588         adapter->vf_mac_list = NULL;
3589         kfree(adapter->vf_data);
3590         adapter->vf_data = NULL;
3591         adapter->vfs_allocated_count = 0;
3592 out:
3593         return err;
3594 }
3595
3596 #endif
3597 /**
3598  *  igb_remove_i2c - Cleanup  I2C interface
3599  *  @adapter: pointer to adapter structure
3600  **/
3601 static void igb_remove_i2c(struct igb_adapter *adapter)
3602 {
3603         /* free the adapter bus structure */
3604         i2c_del_adapter(&adapter->i2c_adap);
3605 }
3606
3607 /**
3608  *  igb_remove - Device Removal Routine
3609  *  @pdev: PCI device information struct
3610  *
3611  *  igb_remove is called by the PCI subsystem to alert the driver
3612  *  that it should release a PCI device.  The could be caused by a
3613  *  Hot-Plug event, or because the driver is going to be removed from
3614  *  memory.
3615  **/
3616 static void igb_remove(struct pci_dev *pdev)
3617 {
3618         struct net_device *netdev = pci_get_drvdata(pdev);
3619         struct igb_adapter *adapter = netdev_priv(netdev);
3620         struct e1000_hw *hw = &adapter->hw;
3621
3622         pm_runtime_get_noresume(&pdev->dev);
3623 #ifdef CONFIG_IGB_HWMON
3624         igb_sysfs_exit(adapter);
3625 #endif
3626         igb_remove_i2c(adapter);
3627         igb_ptp_stop(adapter);
3628         /* The watchdog timer may be rescheduled, so explicitly
3629          * disable watchdog from being rescheduled.
3630          */
3631         set_bit(__IGB_DOWN, &adapter->state);
3632         del_timer_sync(&adapter->watchdog_timer);
3633         del_timer_sync(&adapter->phy_info_timer);
3634
3635         cancel_work_sync(&adapter->reset_task);
3636         cancel_work_sync(&adapter->watchdog_task);
3637
3638 #ifdef CONFIG_IGB_DCA
3639         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3640                 dev_info(&pdev->dev, "DCA disabled\n");
3641                 dca_remove_requester(&pdev->dev);
3642                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3643                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3644         }
3645 #endif
3646
3647         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3648          * would have already happened in close and is redundant.
3649          */
3650         igb_release_hw_control(adapter);
3651
3652 #ifdef CONFIG_PCI_IOV
3653         igb_disable_sriov(pdev);
3654 #endif
3655
3656         unregister_netdev(netdev);
3657
3658         igb_clear_interrupt_scheme(adapter);
3659
3660         pci_iounmap(pdev, adapter->io_addr);
3661         if (hw->flash_address)
3662                 iounmap(hw->flash_address);
3663         pci_release_mem_regions(pdev);
3664
3665         kfree(adapter->mac_table);
3666         kfree(adapter->shadow_vfta);
3667         free_netdev(netdev);
3668
3669         pci_disable_pcie_error_reporting(pdev);
3670
3671         pci_disable_device(pdev);
3672 }
3673
3674 /**
3675  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3676  *  @adapter: board private structure to initialize
3677  *
3678  *  This function initializes the vf specific data storage and then attempts to
3679  *  allocate the VFs.  The reason for ordering it this way is because it is much
3680  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3681  *  the memory for the VFs.
3682  **/
3683 static void igb_probe_vfs(struct igb_adapter *adapter)
3684 {
3685 #ifdef CONFIG_PCI_IOV
3686         struct pci_dev *pdev = adapter->pdev;
3687         struct e1000_hw *hw = &adapter->hw;
3688
3689         /* Virtualization features not supported on i210 family. */
3690         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3691                 return;
3692
3693         /* Of the below we really only want the effect of getting
3694          * IGB_FLAG_HAS_MSIX set (if available), without which
3695          * igb_enable_sriov() has no effect.
3696          */
3697         igb_set_interrupt_capability(adapter, true);
3698         igb_reset_interrupt_capability(adapter);
3699
3700         pci_sriov_set_totalvfs(pdev, 7);
3701         igb_enable_sriov(pdev, max_vfs);
3702
3703 #endif /* CONFIG_PCI_IOV */
3704 }
3705
3706 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3707 {
3708         struct e1000_hw *hw = &adapter->hw;
3709         unsigned int max_rss_queues;
3710
3711         /* Determine the maximum number of RSS queues supported. */
3712         switch (hw->mac.type) {
3713         case e1000_i211:
3714                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3715                 break;
3716         case e1000_82575:
3717         case e1000_i210:
3718                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3719                 break;
3720         case e1000_i350:
3721                 /* I350 cannot do RSS and SR-IOV at the same time */
3722                 if (!!adapter->vfs_allocated_count) {
3723                         max_rss_queues = 1;
3724                         break;
3725                 }
3726                 fallthrough;
3727         case e1000_82576:
3728                 if (!!adapter->vfs_allocated_count) {
3729                         max_rss_queues = 2;
3730                         break;
3731                 }
3732                 fallthrough;
3733         case e1000_82580:
3734         case e1000_i354:
3735         default:
3736                 max_rss_queues = IGB_MAX_RX_QUEUES;
3737                 break;
3738         }
3739
3740         return max_rss_queues;
3741 }
3742
3743 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3744 {
3745         u32 max_rss_queues;
3746
3747         max_rss_queues = igb_get_max_rss_queues(adapter);
3748         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3749
3750         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3751 }
3752
3753 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3754                               const u32 max_rss_queues)
3755 {
3756         struct e1000_hw *hw = &adapter->hw;
3757
3758         /* Determine if we need to pair queues. */
3759         switch (hw->mac.type) {
3760         case e1000_82575:
3761         case e1000_i211:
3762                 /* Device supports enough interrupts without queue pairing. */
3763                 break;
3764         case e1000_82576:
3765         case e1000_82580:
3766         case e1000_i350:
3767         case e1000_i354:
3768         case e1000_i210:
3769         default:
3770                 /* If rss_queues > half of max_rss_queues, pair the queues in
3771                  * order to conserve interrupts due to limited supply.
3772                  */
3773                 if (adapter->rss_queues > (max_rss_queues / 2))
3774                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3775                 else
3776                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3777                 break;
3778         }
3779 }
3780
3781 /**
3782  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3783  *  @adapter: board private structure to initialize
3784  *
3785  *  igb_sw_init initializes the Adapter private data structure.
3786  *  Fields are initialized based on PCI device information and
3787  *  OS network device settings (MTU size).
3788  **/
3789 static int igb_sw_init(struct igb_adapter *adapter)
3790 {
3791         struct e1000_hw *hw = &adapter->hw;
3792         struct net_device *netdev = adapter->netdev;
3793         struct pci_dev *pdev = adapter->pdev;
3794
3795         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3796
3797         /* set default ring sizes */
3798         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3799         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3800
3801         /* set default ITR values */
3802         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3803         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3804
3805         /* set default work limits */
3806         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3807
3808         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3809                                   VLAN_HLEN;
3810         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3811
3812         spin_lock_init(&adapter->nfc_lock);
3813         spin_lock_init(&adapter->stats64_lock);
3814 #ifdef CONFIG_PCI_IOV
3815         switch (hw->mac.type) {
3816         case e1000_82576:
3817         case e1000_i350:
3818                 if (max_vfs > 7) {
3819                         dev_warn(&pdev->dev,
3820                                  "Maximum of 7 VFs per PF, using max\n");
3821                         max_vfs = adapter->vfs_allocated_count = 7;
3822                 } else
3823                         adapter->vfs_allocated_count = max_vfs;
3824                 if (adapter->vfs_allocated_count)
3825                         dev_warn(&pdev->dev,
3826                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3827                 break;
3828         default:
3829                 break;
3830         }
3831 #endif /* CONFIG_PCI_IOV */
3832
3833         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3834         adapter->flags |= IGB_FLAG_HAS_MSIX;
3835
3836         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3837                                      sizeof(struct igb_mac_addr),
3838                                      GFP_KERNEL);
3839         if (!adapter->mac_table)
3840                 return -ENOMEM;
3841
3842         igb_probe_vfs(adapter);
3843
3844         igb_init_queue_configuration(adapter);
3845
3846         /* Setup and initialize a copy of the hw vlan table array */
3847         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3848                                        GFP_KERNEL);
3849         if (!adapter->shadow_vfta)
3850                 return -ENOMEM;
3851
3852         /* This call may decrease the number of queues */
3853         if (igb_init_interrupt_scheme(adapter, true)) {
3854                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3855                 return -ENOMEM;
3856         }
3857
3858         /* Explicitly disable IRQ since the NIC can be in any state. */
3859         igb_irq_disable(adapter);
3860
3861         if (hw->mac.type >= e1000_i350)
3862                 adapter->flags &= ~IGB_FLAG_DMAC;
3863
3864         set_bit(__IGB_DOWN, &adapter->state);
3865         return 0;
3866 }
3867
3868 /**
3869  *  igb_open - Called when a network interface is made active
3870  *  @netdev: network interface device structure
3871  *
3872  *  Returns 0 on success, negative value on failure
3873  *
3874  *  The open entry point is called when a network interface is made
3875  *  active by the system (IFF_UP).  At this point all resources needed
3876  *  for transmit and receive operations are allocated, the interrupt
3877  *  handler is registered with the OS, the watchdog timer is started,
3878  *  and the stack is notified that the interface is ready.
3879  **/
3880 static int __igb_open(struct net_device *netdev, bool resuming)
3881 {
3882         struct igb_adapter *adapter = netdev_priv(netdev);
3883         struct e1000_hw *hw = &adapter->hw;
3884         struct pci_dev *pdev = adapter->pdev;
3885         int err;
3886         int i;
3887
3888         /* disallow open during test */
3889         if (test_bit(__IGB_TESTING, &adapter->state)) {
3890                 WARN_ON(resuming);
3891                 return -EBUSY;
3892         }
3893
3894         if (!resuming)
3895                 pm_runtime_get_sync(&pdev->dev);
3896
3897         netif_carrier_off(netdev);
3898
3899         /* allocate transmit descriptors */
3900         err = igb_setup_all_tx_resources(adapter);
3901         if (err)
3902                 goto err_setup_tx;
3903
3904         /* allocate receive descriptors */
3905         err = igb_setup_all_rx_resources(adapter);
3906         if (err)
3907                 goto err_setup_rx;
3908
3909         igb_power_up_link(adapter);
3910
3911         /* before we allocate an interrupt, we must be ready to handle it.
3912          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3913          * as soon as we call pci_request_irq, so we have to setup our
3914          * clean_rx handler before we do so.
3915          */
3916         igb_configure(adapter);
3917
3918         err = igb_request_irq(adapter);
3919         if (err)
3920                 goto err_req_irq;
3921
3922         /* Notify the stack of the actual queue counts. */
3923         err = netif_set_real_num_tx_queues(adapter->netdev,
3924                                            adapter->num_tx_queues);
3925         if (err)
3926                 goto err_set_queues;
3927
3928         err = netif_set_real_num_rx_queues(adapter->netdev,
3929                                            adapter->num_rx_queues);
3930         if (err)
3931                 goto err_set_queues;
3932
3933         /* From here on the code is the same as igb_up() */
3934         clear_bit(__IGB_DOWN, &adapter->state);
3935
3936         for (i = 0; i < adapter->num_q_vectors; i++)
3937                 napi_enable(&(adapter->q_vector[i]->napi));
3938
3939         /* Clear any pending interrupts. */
3940         rd32(E1000_TSICR);
3941         rd32(E1000_ICR);
3942
3943         igb_irq_enable(adapter);
3944
3945         /* notify VFs that reset has been completed */
3946         if (adapter->vfs_allocated_count) {
3947                 u32 reg_data = rd32(E1000_CTRL_EXT);
3948
3949                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3950                 wr32(E1000_CTRL_EXT, reg_data);
3951         }
3952
3953         netif_tx_start_all_queues(netdev);
3954
3955         if (!resuming)
3956                 pm_runtime_put(&pdev->dev);
3957
3958         /* start the watchdog. */
3959         hw->mac.get_link_status = 1;
3960         schedule_work(&adapter->watchdog_task);
3961
3962         return 0;
3963
3964 err_set_queues:
3965         igb_free_irq(adapter);
3966 err_req_irq:
3967         igb_release_hw_control(adapter);
3968         igb_power_down_link(adapter);
3969         igb_free_all_rx_resources(adapter);
3970 err_setup_rx:
3971         igb_free_all_tx_resources(adapter);
3972 err_setup_tx:
3973         igb_reset(adapter);
3974         if (!resuming)
3975                 pm_runtime_put(&pdev->dev);
3976
3977         return err;
3978 }
3979
3980 int igb_open(struct net_device *netdev)
3981 {
3982         return __igb_open(netdev, false);
3983 }
3984
3985 /**
3986  *  igb_close - Disables a network interface
3987  *  @netdev: network interface device structure
3988  *
3989  *  Returns 0, this is not allowed to fail
3990  *
3991  *  The close entry point is called when an interface is de-activated
3992  *  by the OS.  The hardware is still under the driver's control, but
3993  *  needs to be disabled.  A global MAC reset is issued to stop the
3994  *  hardware, and all transmit and receive resources are freed.
3995  **/
3996 static int __igb_close(struct net_device *netdev, bool suspending)
3997 {
3998         struct igb_adapter *adapter = netdev_priv(netdev);
3999         struct pci_dev *pdev = adapter->pdev;
4000
4001         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4002
4003         if (!suspending)
4004                 pm_runtime_get_sync(&pdev->dev);
4005
4006         igb_down(adapter);
4007         igb_free_irq(adapter);
4008
4009         igb_free_all_tx_resources(adapter);
4010         igb_free_all_rx_resources(adapter);
4011
4012         if (!suspending)
4013                 pm_runtime_put_sync(&pdev->dev);
4014         return 0;
4015 }
4016
4017 int igb_close(struct net_device *netdev)
4018 {
4019         if (netif_device_present(netdev) || netdev->dismantle)
4020                 return __igb_close(netdev, false);
4021         return 0;
4022 }
4023
4024 /**
4025  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4026  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4027  *
4028  *  Return 0 on success, negative on failure
4029  **/
4030 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4031 {
4032         struct device *dev = tx_ring->dev;
4033         int size;
4034
4035         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4036
4037         tx_ring->tx_buffer_info = vmalloc(size);
4038         if (!tx_ring->tx_buffer_info)
4039                 goto err;
4040
4041         /* round up to nearest 4K */
4042         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4043         tx_ring->size = ALIGN(tx_ring->size, 4096);
4044
4045         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4046                                            &tx_ring->dma, GFP_KERNEL);
4047         if (!tx_ring->desc)
4048                 goto err;
4049
4050         tx_ring->next_to_use = 0;
4051         tx_ring->next_to_clean = 0;
4052
4053         return 0;
4054
4055 err:
4056         vfree(tx_ring->tx_buffer_info);
4057         tx_ring->tx_buffer_info = NULL;
4058         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4059         return -ENOMEM;
4060 }
4061
4062 /**
4063  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4064  *                               (Descriptors) for all queues
4065  *  @adapter: board private structure
4066  *
4067  *  Return 0 on success, negative on failure
4068  **/
4069 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4070 {
4071         struct pci_dev *pdev = adapter->pdev;
4072         int i, err = 0;
4073
4074         for (i = 0; i < adapter->num_tx_queues; i++) {
4075                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4076                 if (err) {
4077                         dev_err(&pdev->dev,
4078                                 "Allocation for Tx Queue %u failed\n", i);
4079                         for (i--; i >= 0; i--)
4080                                 igb_free_tx_resources(adapter->tx_ring[i]);
4081                         break;
4082                 }
4083         }
4084
4085         return err;
4086 }
4087
4088 /**
4089  *  igb_setup_tctl - configure the transmit control registers
4090  *  @adapter: Board private structure
4091  **/
4092 void igb_setup_tctl(struct igb_adapter *adapter)
4093 {
4094         struct e1000_hw *hw = &adapter->hw;
4095         u32 tctl;
4096
4097         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4098         wr32(E1000_TXDCTL(0), 0);
4099
4100         /* Program the Transmit Control Register */
4101         tctl = rd32(E1000_TCTL);
4102         tctl &= ~E1000_TCTL_CT;
4103         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4104                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4105
4106         igb_config_collision_dist(hw);
4107
4108         /* Enable transmits */
4109         tctl |= E1000_TCTL_EN;
4110
4111         wr32(E1000_TCTL, tctl);
4112 }
4113
4114 /**
4115  *  igb_configure_tx_ring - Configure transmit ring after Reset
4116  *  @adapter: board private structure
4117  *  @ring: tx ring to configure
4118  *
4119  *  Configure a transmit ring after a reset.
4120  **/
4121 void igb_configure_tx_ring(struct igb_adapter *adapter,
4122                            struct igb_ring *ring)
4123 {
4124         struct e1000_hw *hw = &adapter->hw;
4125         u32 txdctl = 0;
4126         u64 tdba = ring->dma;
4127         int reg_idx = ring->reg_idx;
4128
4129         wr32(E1000_TDLEN(reg_idx),
4130              ring->count * sizeof(union e1000_adv_tx_desc));
4131         wr32(E1000_TDBAL(reg_idx),
4132              tdba & 0x00000000ffffffffULL);
4133         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4134
4135         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4136         wr32(E1000_TDH(reg_idx), 0);
4137         writel(0, ring->tail);
4138
4139         txdctl |= IGB_TX_PTHRESH;
4140         txdctl |= IGB_TX_HTHRESH << 8;
4141         txdctl |= IGB_TX_WTHRESH << 16;
4142
4143         /* reinitialize tx_buffer_info */
4144         memset(ring->tx_buffer_info, 0,
4145                sizeof(struct igb_tx_buffer) * ring->count);
4146
4147         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4148         wr32(E1000_TXDCTL(reg_idx), txdctl);
4149 }
4150
4151 /**
4152  *  igb_configure_tx - Configure transmit Unit after Reset
4153  *  @adapter: board private structure
4154  *
4155  *  Configure the Tx unit of the MAC after a reset.
4156  **/
4157 static void igb_configure_tx(struct igb_adapter *adapter)
4158 {
4159         struct e1000_hw *hw = &adapter->hw;
4160         int i;
4161
4162         /* disable the queues */
4163         for (i = 0; i < adapter->num_tx_queues; i++)
4164                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4165
4166         wrfl();
4167         usleep_range(10000, 20000);
4168
4169         for (i = 0; i < adapter->num_tx_queues; i++)
4170                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4171 }
4172
4173 /**
4174  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4175  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4176  *
4177  *  Returns 0 on success, negative on failure
4178  **/
4179 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4180 {
4181         struct device *dev = rx_ring->dev;
4182         int size;
4183
4184         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4185
4186         rx_ring->rx_buffer_info = vmalloc(size);
4187         if (!rx_ring->rx_buffer_info)
4188                 goto err;
4189
4190         /* Round up to nearest 4K */
4191         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4192         rx_ring->size = ALIGN(rx_ring->size, 4096);
4193
4194         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4195                                            &rx_ring->dma, GFP_KERNEL);
4196         if (!rx_ring->desc)
4197                 goto err;
4198
4199         rx_ring->next_to_alloc = 0;
4200         rx_ring->next_to_clean = 0;
4201         rx_ring->next_to_use = 0;
4202
4203         return 0;
4204
4205 err:
4206         vfree(rx_ring->rx_buffer_info);
4207         rx_ring->rx_buffer_info = NULL;
4208         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4209         return -ENOMEM;
4210 }
4211
4212 /**
4213  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4214  *                               (Descriptors) for all queues
4215  *  @adapter: board private structure
4216  *
4217  *  Return 0 on success, negative on failure
4218  **/
4219 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4220 {
4221         struct pci_dev *pdev = adapter->pdev;
4222         int i, err = 0;
4223
4224         for (i = 0; i < adapter->num_rx_queues; i++) {
4225                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4226                 if (err) {
4227                         dev_err(&pdev->dev,
4228                                 "Allocation for Rx Queue %u failed\n", i);
4229                         for (i--; i >= 0; i--)
4230                                 igb_free_rx_resources(adapter->rx_ring[i]);
4231                         break;
4232                 }
4233         }
4234
4235         return err;
4236 }
4237
4238 /**
4239  *  igb_setup_mrqc - configure the multiple receive queue control registers
4240  *  @adapter: Board private structure
4241  **/
4242 static void igb_setup_mrqc(struct igb_adapter *adapter)
4243 {
4244         struct e1000_hw *hw = &adapter->hw;
4245         u32 mrqc, rxcsum;
4246         u32 j, num_rx_queues;
4247         u32 rss_key[10];
4248
4249         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4250         for (j = 0; j < 10; j++)
4251                 wr32(E1000_RSSRK(j), rss_key[j]);
4252
4253         num_rx_queues = adapter->rss_queues;
4254
4255         switch (hw->mac.type) {
4256         case e1000_82576:
4257                 /* 82576 supports 2 RSS queues for SR-IOV */
4258                 if (adapter->vfs_allocated_count)
4259                         num_rx_queues = 2;
4260                 break;
4261         default:
4262                 break;
4263         }
4264
4265         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4266                 for (j = 0; j < IGB_RETA_SIZE; j++)
4267                         adapter->rss_indir_tbl[j] =
4268                         (j * num_rx_queues) / IGB_RETA_SIZE;
4269                 adapter->rss_indir_tbl_init = num_rx_queues;
4270         }
4271         igb_write_rss_indir_tbl(adapter);
4272
4273         /* Disable raw packet checksumming so that RSS hash is placed in
4274          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4275          * offloads as they are enabled by default
4276          */
4277         rxcsum = rd32(E1000_RXCSUM);
4278         rxcsum |= E1000_RXCSUM_PCSD;
4279
4280         if (adapter->hw.mac.type >= e1000_82576)
4281                 /* Enable Receive Checksum Offload for SCTP */
4282                 rxcsum |= E1000_RXCSUM_CRCOFL;
4283
4284         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4285         wr32(E1000_RXCSUM, rxcsum);
4286
4287         /* Generate RSS hash based on packet types, TCP/UDP
4288          * port numbers and/or IPv4/v6 src and dst addresses
4289          */
4290         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4291                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4292                E1000_MRQC_RSS_FIELD_IPV6 |
4293                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4294                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4295
4296         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4297                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4298         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4299                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4300
4301         /* If VMDq is enabled then we set the appropriate mode for that, else
4302          * we default to RSS so that an RSS hash is calculated per packet even
4303          * if we are only using one queue
4304          */
4305         if (adapter->vfs_allocated_count) {
4306                 if (hw->mac.type > e1000_82575) {
4307                         /* Set the default pool for the PF's first queue */
4308                         u32 vtctl = rd32(E1000_VT_CTL);
4309
4310                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4311                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4312                         vtctl |= adapter->vfs_allocated_count <<
4313                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4314                         wr32(E1000_VT_CTL, vtctl);
4315                 }
4316                 if (adapter->rss_queues > 1)
4317                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4318                 else
4319                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4320         } else {
4321                 if (hw->mac.type != e1000_i211)
4322                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4323         }
4324         igb_vmm_control(adapter);
4325
4326         wr32(E1000_MRQC, mrqc);
4327 }
4328
4329 /**
4330  *  igb_setup_rctl - configure the receive control registers
4331  *  @adapter: Board private structure
4332  **/
4333 void igb_setup_rctl(struct igb_adapter *adapter)
4334 {
4335         struct e1000_hw *hw = &adapter->hw;
4336         u32 rctl;
4337
4338         rctl = rd32(E1000_RCTL);
4339
4340         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4341         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4342
4343         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4344                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4345
4346         /* enable stripping of CRC. It's unlikely this will break BMC
4347          * redirection as it did with e1000. Newer features require
4348          * that the HW strips the CRC.
4349          */
4350         rctl |= E1000_RCTL_SECRC;
4351
4352         /* disable store bad packets and clear size bits. */
4353         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4354
4355         /* enable LPE to allow for reception of jumbo frames */
4356         rctl |= E1000_RCTL_LPE;
4357
4358         /* disable queue 0 to prevent tail write w/o re-config */
4359         wr32(E1000_RXDCTL(0), 0);
4360
4361         /* Attention!!!  For SR-IOV PF driver operations you must enable
4362          * queue drop for all VF and PF queues to prevent head of line blocking
4363          * if an un-trusted VF does not provide descriptors to hardware.
4364          */
4365         if (adapter->vfs_allocated_count) {
4366                 /* set all queue drop enable bits */
4367                 wr32(E1000_QDE, ALL_QUEUES);
4368         }
4369
4370         /* This is useful for sniffing bad packets. */
4371         if (adapter->netdev->features & NETIF_F_RXALL) {
4372                 /* UPE and MPE will be handled by normal PROMISC logic
4373                  * in e1000e_set_rx_mode
4374                  */
4375                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4376                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4377                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4378
4379                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4380                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4381                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4382                  * and that breaks VLANs.
4383                  */
4384         }
4385
4386         wr32(E1000_RCTL, rctl);
4387 }
4388
4389 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4390                                    int vfn)
4391 {
4392         struct e1000_hw *hw = &adapter->hw;
4393         u32 vmolr;
4394
4395         if (size > MAX_JUMBO_FRAME_SIZE)
4396                 size = MAX_JUMBO_FRAME_SIZE;
4397
4398         vmolr = rd32(E1000_VMOLR(vfn));
4399         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4400         vmolr |= size | E1000_VMOLR_LPE;
4401         wr32(E1000_VMOLR(vfn), vmolr);
4402
4403         return 0;
4404 }
4405
4406 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4407                                          int vfn, bool enable)
4408 {
4409         struct e1000_hw *hw = &adapter->hw;
4410         u32 val, reg;
4411
4412         if (hw->mac.type < e1000_82576)
4413                 return;
4414
4415         if (hw->mac.type == e1000_i350)
4416                 reg = E1000_DVMOLR(vfn);
4417         else
4418                 reg = E1000_VMOLR(vfn);
4419
4420         val = rd32(reg);
4421         if (enable)
4422                 val |= E1000_VMOLR_STRVLAN;
4423         else
4424                 val &= ~(E1000_VMOLR_STRVLAN);
4425         wr32(reg, val);
4426 }
4427
4428 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4429                                  int vfn, bool aupe)
4430 {
4431         struct e1000_hw *hw = &adapter->hw;
4432         u32 vmolr;
4433
4434         /* This register exists only on 82576 and newer so if we are older then
4435          * we should exit and do nothing
4436          */
4437         if (hw->mac.type < e1000_82576)
4438                 return;
4439
4440         vmolr = rd32(E1000_VMOLR(vfn));
4441         if (aupe)
4442                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4443         else
4444                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4445
4446         /* clear all bits that might not be set */
4447         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4448
4449         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4450                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4451         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4452          * multicast packets
4453          */
4454         if (vfn <= adapter->vfs_allocated_count)
4455                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4456
4457         wr32(E1000_VMOLR(vfn), vmolr);
4458 }
4459
4460 /**
4461  *  igb_setup_srrctl - configure the split and replication receive control
4462  *                     registers
4463  *  @adapter: Board private structure
4464  *  @ring: receive ring to be configured
4465  **/
4466 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4467 {
4468         struct e1000_hw *hw = &adapter->hw;
4469         int reg_idx = ring->reg_idx;
4470         u32 srrctl = 0;
4471
4472         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4473         if (ring_uses_large_buffer(ring))
4474                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4475         else
4476                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4477         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4478         if (hw->mac.type >= e1000_82580)
4479                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4480         /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4481          * queues and rx flow control is disabled
4482          */
4483         if (adapter->vfs_allocated_count ||
4484             (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4485              adapter->num_rx_queues > 1))
4486                 srrctl |= E1000_SRRCTL_DROP_EN;
4487
4488         wr32(E1000_SRRCTL(reg_idx), srrctl);
4489 }
4490
4491 /**
4492  *  igb_configure_rx_ring - Configure a receive ring after Reset
4493  *  @adapter: board private structure
4494  *  @ring: receive ring to be configured
4495  *
4496  *  Configure the Rx unit of the MAC after a reset.
4497  **/
4498 void igb_configure_rx_ring(struct igb_adapter *adapter,
4499                            struct igb_ring *ring)
4500 {
4501         struct e1000_hw *hw = &adapter->hw;
4502         union e1000_adv_rx_desc *rx_desc;
4503         u64 rdba = ring->dma;
4504         int reg_idx = ring->reg_idx;
4505         u32 rxdctl = 0;
4506
4507         /* disable the queue */
4508         wr32(E1000_RXDCTL(reg_idx), 0);
4509
4510         /* Set DMA base address registers */
4511         wr32(E1000_RDBAL(reg_idx),
4512              rdba & 0x00000000ffffffffULL);
4513         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4514         wr32(E1000_RDLEN(reg_idx),
4515              ring->count * sizeof(union e1000_adv_rx_desc));
4516
4517         /* initialize head and tail */
4518         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4519         wr32(E1000_RDH(reg_idx), 0);
4520         writel(0, ring->tail);
4521
4522         /* set descriptor configuration */
4523         igb_setup_srrctl(adapter, ring);
4524
4525         /* set filtering for VMDQ pools */
4526         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4527
4528         rxdctl |= IGB_RX_PTHRESH;
4529         rxdctl |= IGB_RX_HTHRESH << 8;
4530         rxdctl |= IGB_RX_WTHRESH << 16;
4531
4532         /* initialize rx_buffer_info */
4533         memset(ring->rx_buffer_info, 0,
4534                sizeof(struct igb_rx_buffer) * ring->count);
4535
4536         /* initialize Rx descriptor 0 */
4537         rx_desc = IGB_RX_DESC(ring, 0);
4538         rx_desc->wb.upper.length = 0;
4539
4540         /* enable receive descriptor fetching */
4541         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4542         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4543 }
4544
4545 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4546                                   struct igb_ring *rx_ring)
4547 {
4548         /* set build_skb and buffer size flags */
4549         clear_ring_build_skb_enabled(rx_ring);
4550         clear_ring_uses_large_buffer(rx_ring);
4551
4552         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4553                 return;
4554
4555         set_ring_build_skb_enabled(rx_ring);
4556
4557 #if (PAGE_SIZE < 8192)
4558         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4559                 return;
4560
4561         set_ring_uses_large_buffer(rx_ring);
4562 #endif
4563 }
4564
4565 /**
4566  *  igb_configure_rx - Configure receive Unit after Reset
4567  *  @adapter: board private structure
4568  *
4569  *  Configure the Rx unit of the MAC after a reset.
4570  **/
4571 static void igb_configure_rx(struct igb_adapter *adapter)
4572 {
4573         int i;
4574
4575         /* set the correct pool for the PF default MAC address in entry 0 */
4576         igb_set_default_mac_filter(adapter);
4577
4578         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4579          * the Base and Length of the Rx Descriptor Ring
4580          */
4581         for (i = 0; i < adapter->num_rx_queues; i++) {
4582                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4583
4584                 igb_set_rx_buffer_len(adapter, rx_ring);
4585                 igb_configure_rx_ring(adapter, rx_ring);
4586         }
4587 }
4588
4589 /**
4590  *  igb_free_tx_resources - Free Tx Resources per Queue
4591  *  @tx_ring: Tx descriptor ring for a specific queue
4592  *
4593  *  Free all transmit software resources
4594  **/
4595 void igb_free_tx_resources(struct igb_ring *tx_ring)
4596 {
4597         igb_clean_tx_ring(tx_ring);
4598
4599         vfree(tx_ring->tx_buffer_info);
4600         tx_ring->tx_buffer_info = NULL;
4601
4602         /* if not set, then don't free */
4603         if (!tx_ring->desc)
4604                 return;
4605
4606         dma_free_coherent(tx_ring->dev, tx_ring->size,
4607                           tx_ring->desc, tx_ring->dma);
4608
4609         tx_ring->desc = NULL;
4610 }
4611
4612 /**
4613  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4614  *  @adapter: board private structure
4615  *
4616  *  Free all transmit software resources
4617  **/
4618 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4619 {
4620         int i;
4621
4622         for (i = 0; i < adapter->num_tx_queues; i++)
4623                 if (adapter->tx_ring[i])
4624                         igb_free_tx_resources(adapter->tx_ring[i]);
4625 }
4626
4627 /**
4628  *  igb_clean_tx_ring - Free Tx Buffers
4629  *  @tx_ring: ring to be cleaned
4630  **/
4631 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4632 {
4633         u16 i = tx_ring->next_to_clean;
4634         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4635
4636         while (i != tx_ring->next_to_use) {
4637                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4638
4639                 /* Free all the Tx ring sk_buffs */
4640                 dev_kfree_skb_any(tx_buffer->skb);
4641
4642                 /* unmap skb header data */
4643                 dma_unmap_single(tx_ring->dev,
4644                                  dma_unmap_addr(tx_buffer, dma),
4645                                  dma_unmap_len(tx_buffer, len),
4646                                  DMA_TO_DEVICE);
4647
4648                 /* check for eop_desc to determine the end of the packet */
4649                 eop_desc = tx_buffer->next_to_watch;
4650                 tx_desc = IGB_TX_DESC(tx_ring, i);
4651
4652                 /* unmap remaining buffers */
4653                 while (tx_desc != eop_desc) {
4654                         tx_buffer++;
4655                         tx_desc++;
4656                         i++;
4657                         if (unlikely(i == tx_ring->count)) {
4658                                 i = 0;
4659                                 tx_buffer = tx_ring->tx_buffer_info;
4660                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4661                         }
4662
4663                         /* unmap any remaining paged data */
4664                         if (dma_unmap_len(tx_buffer, len))
4665                                 dma_unmap_page(tx_ring->dev,
4666                                                dma_unmap_addr(tx_buffer, dma),
4667                                                dma_unmap_len(tx_buffer, len),
4668                                                DMA_TO_DEVICE);
4669                 }
4670
4671                 /* move us one more past the eop_desc for start of next pkt */
4672                 tx_buffer++;
4673                 i++;
4674                 if (unlikely(i == tx_ring->count)) {
4675                         i = 0;
4676                         tx_buffer = tx_ring->tx_buffer_info;
4677                 }
4678         }
4679
4680         /* reset BQL for queue */
4681         netdev_tx_reset_queue(txring_txq(tx_ring));
4682
4683         /* reset next_to_use and next_to_clean */
4684         tx_ring->next_to_use = 0;
4685         tx_ring->next_to_clean = 0;
4686 }
4687
4688 /**
4689  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4690  *  @adapter: board private structure
4691  **/
4692 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4693 {
4694         int i;
4695
4696         for (i = 0; i < adapter->num_tx_queues; i++)
4697                 if (adapter->tx_ring[i])
4698                         igb_clean_tx_ring(adapter->tx_ring[i]);
4699 }
4700
4701 /**
4702  *  igb_free_rx_resources - Free Rx Resources
4703  *  @rx_ring: ring to clean the resources from
4704  *
4705  *  Free all receive software resources
4706  **/
4707 void igb_free_rx_resources(struct igb_ring *rx_ring)
4708 {
4709         igb_clean_rx_ring(rx_ring);
4710
4711         vfree(rx_ring->rx_buffer_info);
4712         rx_ring->rx_buffer_info = NULL;
4713
4714         /* if not set, then don't free */
4715         if (!rx_ring->desc)
4716                 return;
4717
4718         dma_free_coherent(rx_ring->dev, rx_ring->size,
4719                           rx_ring->desc, rx_ring->dma);
4720
4721         rx_ring->desc = NULL;
4722 }
4723
4724 /**
4725  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4726  *  @adapter: board private structure
4727  *
4728  *  Free all receive software resources
4729  **/
4730 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4731 {
4732         int i;
4733
4734         for (i = 0; i < adapter->num_rx_queues; i++)
4735                 if (adapter->rx_ring[i])
4736                         igb_free_rx_resources(adapter->rx_ring[i]);
4737 }
4738
4739 /**
4740  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4741  *  @rx_ring: ring to free buffers from
4742  **/
4743 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4744 {
4745         u16 i = rx_ring->next_to_clean;
4746
4747         dev_kfree_skb(rx_ring->skb);
4748         rx_ring->skb = NULL;
4749
4750         /* Free all the Rx ring sk_buffs */
4751         while (i != rx_ring->next_to_alloc) {
4752                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4753
4754                 /* Invalidate cache lines that may have been written to by
4755                  * device so that we avoid corrupting memory.
4756                  */
4757                 dma_sync_single_range_for_cpu(rx_ring->dev,
4758                                               buffer_info->dma,
4759                                               buffer_info->page_offset,
4760                                               igb_rx_bufsz(rx_ring),
4761                                               DMA_FROM_DEVICE);
4762
4763                 /* free resources associated with mapping */
4764                 dma_unmap_page_attrs(rx_ring->dev,
4765                                      buffer_info->dma,
4766                                      igb_rx_pg_size(rx_ring),
4767                                      DMA_FROM_DEVICE,
4768                                      IGB_RX_DMA_ATTR);
4769                 __page_frag_cache_drain(buffer_info->page,
4770                                         buffer_info->pagecnt_bias);
4771
4772                 i++;
4773                 if (i == rx_ring->count)
4774                         i = 0;
4775         }
4776
4777         rx_ring->next_to_alloc = 0;
4778         rx_ring->next_to_clean = 0;
4779         rx_ring->next_to_use = 0;
4780 }
4781
4782 /**
4783  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4784  *  @adapter: board private structure
4785  **/
4786 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4787 {
4788         int i;
4789
4790         for (i = 0; i < adapter->num_rx_queues; i++)
4791                 if (adapter->rx_ring[i])
4792                         igb_clean_rx_ring(adapter->rx_ring[i]);
4793 }
4794
4795 /**
4796  *  igb_set_mac - Change the Ethernet Address of the NIC
4797  *  @netdev: network interface device structure
4798  *  @p: pointer to an address structure
4799  *
4800  *  Returns 0 on success, negative on failure
4801  **/
4802 static int igb_set_mac(struct net_device *netdev, void *p)
4803 {
4804         struct igb_adapter *adapter = netdev_priv(netdev);
4805         struct e1000_hw *hw = &adapter->hw;
4806         struct sockaddr *addr = p;
4807
4808         if (!is_valid_ether_addr(addr->sa_data))
4809                 return -EADDRNOTAVAIL;
4810
4811         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4812         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4813
4814         /* set the correct pool for the new PF MAC address in entry 0 */
4815         igb_set_default_mac_filter(adapter);
4816
4817         return 0;
4818 }
4819
4820 /**
4821  *  igb_write_mc_addr_list - write multicast addresses to MTA
4822  *  @netdev: network interface device structure
4823  *
4824  *  Writes multicast address list to the MTA hash table.
4825  *  Returns: -ENOMEM on failure
4826  *           0 on no addresses written
4827  *           X on writing X addresses to MTA
4828  **/
4829 static int igb_write_mc_addr_list(struct net_device *netdev)
4830 {
4831         struct igb_adapter *adapter = netdev_priv(netdev);
4832         struct e1000_hw *hw = &adapter->hw;
4833         struct netdev_hw_addr *ha;
4834         u8  *mta_list;
4835         int i;
4836
4837         if (netdev_mc_empty(netdev)) {
4838                 /* nothing to program, so clear mc list */
4839                 igb_update_mc_addr_list(hw, NULL, 0);
4840                 igb_restore_vf_multicasts(adapter);
4841                 return 0;
4842         }
4843
4844         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4845         if (!mta_list)
4846                 return -ENOMEM;
4847
4848         /* The shared function expects a packed array of only addresses. */
4849         i = 0;
4850         netdev_for_each_mc_addr(ha, netdev)
4851                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4852
4853         igb_update_mc_addr_list(hw, mta_list, i);
4854         kfree(mta_list);
4855
4856         return netdev_mc_count(netdev);
4857 }
4858
4859 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4860 {
4861         struct e1000_hw *hw = &adapter->hw;
4862         u32 i, pf_id;
4863
4864         switch (hw->mac.type) {
4865         case e1000_i210:
4866         case e1000_i211:
4867         case e1000_i350:
4868                 /* VLAN filtering needed for VLAN prio filter */
4869                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4870                         break;
4871                 fallthrough;
4872         case e1000_82576:
4873         case e1000_82580:
4874         case e1000_i354:
4875                 /* VLAN filtering needed for pool filtering */
4876                 if (adapter->vfs_allocated_count)
4877                         break;
4878                 fallthrough;
4879         default:
4880                 return 1;
4881         }
4882
4883         /* We are already in VLAN promisc, nothing to do */
4884         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4885                 return 0;
4886
4887         if (!adapter->vfs_allocated_count)
4888                 goto set_vfta;
4889
4890         /* Add PF to all active pools */
4891         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4892
4893         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4894                 u32 vlvf = rd32(E1000_VLVF(i));
4895
4896                 vlvf |= BIT(pf_id);
4897                 wr32(E1000_VLVF(i), vlvf);
4898         }
4899
4900 set_vfta:
4901         /* Set all bits in the VLAN filter table array */
4902         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4903                 hw->mac.ops.write_vfta(hw, i, ~0U);
4904
4905         /* Set flag so we don't redo unnecessary work */
4906         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4907
4908         return 0;
4909 }
4910
4911 #define VFTA_BLOCK_SIZE 8
4912 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4913 {
4914         struct e1000_hw *hw = &adapter->hw;
4915         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4916         u32 vid_start = vfta_offset * 32;
4917         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4918         u32 i, vid, word, bits, pf_id;
4919
4920         /* guarantee that we don't scrub out management VLAN */
4921         vid = adapter->mng_vlan_id;
4922         if (vid >= vid_start && vid < vid_end)
4923                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4924
4925         if (!adapter->vfs_allocated_count)
4926                 goto set_vfta;
4927
4928         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4929
4930         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4931                 u32 vlvf = rd32(E1000_VLVF(i));
4932
4933                 /* pull VLAN ID from VLVF */
4934                 vid = vlvf & VLAN_VID_MASK;
4935
4936                 /* only concern ourselves with a certain range */
4937                 if (vid < vid_start || vid >= vid_end)
4938                         continue;
4939
4940                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4941                         /* record VLAN ID in VFTA */
4942                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4943
4944                         /* if PF is part of this then continue */
4945                         if (test_bit(vid, adapter->active_vlans))
4946                                 continue;
4947                 }
4948
4949                 /* remove PF from the pool */
4950                 bits = ~BIT(pf_id);
4951                 bits &= rd32(E1000_VLVF(i));
4952                 wr32(E1000_VLVF(i), bits);
4953         }
4954
4955 set_vfta:
4956         /* extract values from active_vlans and write back to VFTA */
4957         for (i = VFTA_BLOCK_SIZE; i--;) {
4958                 vid = (vfta_offset + i) * 32;
4959                 word = vid / BITS_PER_LONG;
4960                 bits = vid % BITS_PER_LONG;
4961
4962                 vfta[i] |= adapter->active_vlans[word] >> bits;
4963
4964                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4965         }
4966 }
4967
4968 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4969 {
4970         u32 i;
4971
4972         /* We are not in VLAN promisc, nothing to do */
4973         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4974                 return;
4975
4976         /* Set flag so we don't redo unnecessary work */
4977         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4978
4979         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4980                 igb_scrub_vfta(adapter, i);
4981 }
4982
4983 /**
4984  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4985  *  @netdev: network interface device structure
4986  *
4987  *  The set_rx_mode entry point is called whenever the unicast or multicast
4988  *  address lists or the network interface flags are updated.  This routine is
4989  *  responsible for configuring the hardware for proper unicast, multicast,
4990  *  promiscuous mode, and all-multi behavior.
4991  **/
4992 static void igb_set_rx_mode(struct net_device *netdev)
4993 {
4994         struct igb_adapter *adapter = netdev_priv(netdev);
4995         struct e1000_hw *hw = &adapter->hw;
4996         unsigned int vfn = adapter->vfs_allocated_count;
4997         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4998         int count;
4999
5000         /* Check for Promiscuous and All Multicast modes */
5001         if (netdev->flags & IFF_PROMISC) {
5002                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5003                 vmolr |= E1000_VMOLR_MPME;
5004
5005                 /* enable use of UTA filter to force packets to default pool */
5006                 if (hw->mac.type == e1000_82576)
5007                         vmolr |= E1000_VMOLR_ROPE;
5008         } else {
5009                 if (netdev->flags & IFF_ALLMULTI) {
5010                         rctl |= E1000_RCTL_MPE;
5011                         vmolr |= E1000_VMOLR_MPME;
5012                 } else {
5013                         /* Write addresses to the MTA, if the attempt fails
5014                          * then we should just turn on promiscuous mode so
5015                          * that we can at least receive multicast traffic
5016                          */
5017                         count = igb_write_mc_addr_list(netdev);
5018                         if (count < 0) {
5019                                 rctl |= E1000_RCTL_MPE;
5020                                 vmolr |= E1000_VMOLR_MPME;
5021                         } else if (count) {
5022                                 vmolr |= E1000_VMOLR_ROMPE;
5023                         }
5024                 }
5025         }
5026
5027         /* Write addresses to available RAR registers, if there is not
5028          * sufficient space to store all the addresses then enable
5029          * unicast promiscuous mode
5030          */
5031         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5032                 rctl |= E1000_RCTL_UPE;
5033                 vmolr |= E1000_VMOLR_ROPE;
5034         }
5035
5036         /* enable VLAN filtering by default */
5037         rctl |= E1000_RCTL_VFE;
5038
5039         /* disable VLAN filtering for modes that require it */
5040         if ((netdev->flags & IFF_PROMISC) ||
5041             (netdev->features & NETIF_F_RXALL)) {
5042                 /* if we fail to set all rules then just clear VFE */
5043                 if (igb_vlan_promisc_enable(adapter))
5044                         rctl &= ~E1000_RCTL_VFE;
5045         } else {
5046                 igb_vlan_promisc_disable(adapter);
5047         }
5048
5049         /* update state of unicast, multicast, and VLAN filtering modes */
5050         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5051                                      E1000_RCTL_VFE);
5052         wr32(E1000_RCTL, rctl);
5053
5054 #if (PAGE_SIZE < 8192)
5055         if (!adapter->vfs_allocated_count) {
5056                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5057                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5058         }
5059 #endif
5060         wr32(E1000_RLPML, rlpml);
5061
5062         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5063          * the VMOLR to enable the appropriate modes.  Without this workaround
5064          * we will have issues with VLAN tag stripping not being done for frames
5065          * that are only arriving because we are the default pool
5066          */
5067         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5068                 return;
5069
5070         /* set UTA to appropriate mode */
5071         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5072
5073         vmolr |= rd32(E1000_VMOLR(vfn)) &
5074                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5075
5076         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5077         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5078 #if (PAGE_SIZE < 8192)
5079         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5080                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5081         else
5082 #endif
5083                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5084         vmolr |= E1000_VMOLR_LPE;
5085
5086         wr32(E1000_VMOLR(vfn), vmolr);
5087
5088         igb_restore_vf_multicasts(adapter);
5089 }
5090
5091 static void igb_check_wvbr(struct igb_adapter *adapter)
5092 {
5093         struct e1000_hw *hw = &adapter->hw;
5094         u32 wvbr = 0;
5095
5096         switch (hw->mac.type) {
5097         case e1000_82576:
5098         case e1000_i350:
5099                 wvbr = rd32(E1000_WVBR);
5100                 if (!wvbr)
5101                         return;
5102                 break;
5103         default:
5104                 break;
5105         }
5106
5107         adapter->wvbr |= wvbr;
5108 }
5109
5110 #define IGB_STAGGERED_QUEUE_OFFSET 8
5111
5112 static void igb_spoof_check(struct igb_adapter *adapter)
5113 {
5114         int j;
5115
5116         if (!adapter->wvbr)
5117                 return;
5118
5119         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5120                 if (adapter->wvbr & BIT(j) ||
5121                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5122                         dev_warn(&adapter->pdev->dev,
5123                                 "Spoof event(s) detected on VF %d\n", j);
5124                         adapter->wvbr &=
5125                                 ~(BIT(j) |
5126                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5127                 }
5128         }
5129 }
5130
5131 /* Need to wait a few seconds after link up to get diagnostic information from
5132  * the phy
5133  */
5134 static void igb_update_phy_info(struct timer_list *t)
5135 {
5136         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5137         igb_get_phy_info(&adapter->hw);
5138 }
5139
5140 /**
5141  *  igb_has_link - check shared code for link and determine up/down
5142  *  @adapter: pointer to driver private info
5143  **/
5144 bool igb_has_link(struct igb_adapter *adapter)
5145 {
5146         struct e1000_hw *hw = &adapter->hw;
5147         bool link_active = false;
5148
5149         /* get_link_status is set on LSC (link status) interrupt or
5150          * rx sequence error interrupt.  get_link_status will stay
5151          * false until the e1000_check_for_link establishes link
5152          * for copper adapters ONLY
5153          */
5154         switch (hw->phy.media_type) {
5155         case e1000_media_type_copper:
5156                 if (!hw->mac.get_link_status)
5157                         return true;
5158                 fallthrough;
5159         case e1000_media_type_internal_serdes:
5160                 hw->mac.ops.check_for_link(hw);
5161                 link_active = !hw->mac.get_link_status;
5162                 break;
5163         default:
5164         case e1000_media_type_unknown:
5165                 break;
5166         }
5167
5168         if (((hw->mac.type == e1000_i210) ||
5169              (hw->mac.type == e1000_i211)) &&
5170              (hw->phy.id == I210_I_PHY_ID)) {
5171                 if (!netif_carrier_ok(adapter->netdev)) {
5172                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5173                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5174                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5175                         adapter->link_check_timeout = jiffies;
5176                 }
5177         }
5178
5179         return link_active;
5180 }
5181
5182 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5183 {
5184         bool ret = false;
5185         u32 ctrl_ext, thstat;
5186
5187         /* check for thermal sensor event on i350 copper only */
5188         if (hw->mac.type == e1000_i350) {
5189                 thstat = rd32(E1000_THSTAT);
5190                 ctrl_ext = rd32(E1000_CTRL_EXT);
5191
5192                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5193                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5194                         ret = !!(thstat & event);
5195         }
5196
5197         return ret;
5198 }
5199
5200 /**
5201  *  igb_check_lvmmc - check for malformed packets received
5202  *  and indicated in LVMMC register
5203  *  @adapter: pointer to adapter
5204  **/
5205 static void igb_check_lvmmc(struct igb_adapter *adapter)
5206 {
5207         struct e1000_hw *hw = &adapter->hw;
5208         u32 lvmmc;
5209
5210         lvmmc = rd32(E1000_LVMMC);
5211         if (lvmmc) {
5212                 if (unlikely(net_ratelimit())) {
5213                         netdev_warn(adapter->netdev,
5214                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5215                                     lvmmc);
5216                 }
5217         }
5218 }
5219
5220 /**
5221  *  igb_watchdog - Timer Call-back
5222  *  @data: pointer to adapter cast into an unsigned long
5223  **/
5224 static void igb_watchdog(struct timer_list *t)
5225 {
5226         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5227         /* Do the rest outside of interrupt context */
5228         schedule_work(&adapter->watchdog_task);
5229 }
5230
5231 static void igb_watchdog_task(struct work_struct *work)
5232 {
5233         struct igb_adapter *adapter = container_of(work,
5234                                                    struct igb_adapter,
5235                                                    watchdog_task);
5236         struct e1000_hw *hw = &adapter->hw;
5237         struct e1000_phy_info *phy = &hw->phy;
5238         struct net_device *netdev = adapter->netdev;
5239         u32 link;
5240         int i;
5241         u32 connsw;
5242         u16 phy_data, retry_count = 20;
5243
5244         link = igb_has_link(adapter);
5245
5246         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5247                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5248                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5249                 else
5250                         link = false;
5251         }
5252
5253         /* Force link down if we have fiber to swap to */
5254         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5255                 if (hw->phy.media_type == e1000_media_type_copper) {
5256                         connsw = rd32(E1000_CONNSW);
5257                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5258                                 link = 0;
5259                 }
5260         }
5261         if (link) {
5262                 /* Perform a reset if the media type changed. */
5263                 if (hw->dev_spec._82575.media_changed) {
5264                         hw->dev_spec._82575.media_changed = false;
5265                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5266                         igb_reset(adapter);
5267                 }
5268                 /* Cancel scheduled suspend requests. */
5269                 pm_runtime_resume(netdev->dev.parent);
5270
5271                 if (!netif_carrier_ok(netdev)) {
5272                         u32 ctrl;
5273
5274                         hw->mac.ops.get_speed_and_duplex(hw,
5275                                                          &adapter->link_speed,
5276                                                          &adapter->link_duplex);
5277
5278                         ctrl = rd32(E1000_CTRL);
5279                         /* Links status message must follow this format */
5280                         netdev_info(netdev,
5281                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5282                                netdev->name,
5283                                adapter->link_speed,
5284                                adapter->link_duplex == FULL_DUPLEX ?
5285                                "Full" : "Half",
5286                                (ctrl & E1000_CTRL_TFCE) &&
5287                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5288                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5289                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5290
5291                         /* disable EEE if enabled */
5292                         if ((adapter->flags & IGB_FLAG_EEE) &&
5293                                 (adapter->link_duplex == HALF_DUPLEX)) {
5294                                 dev_info(&adapter->pdev->dev,
5295                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5296                                 adapter->hw.dev_spec._82575.eee_disable = true;
5297                                 adapter->flags &= ~IGB_FLAG_EEE;
5298                         }
5299
5300                         /* check if SmartSpeed worked */
5301                         igb_check_downshift(hw);
5302                         if (phy->speed_downgraded)
5303                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5304
5305                         /* check for thermal sensor event */
5306                         if (igb_thermal_sensor_event(hw,
5307                             E1000_THSTAT_LINK_THROTTLE))
5308                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5309
5310                         /* adjust timeout factor according to speed/duplex */
5311                         adapter->tx_timeout_factor = 1;
5312                         switch (adapter->link_speed) {
5313                         case SPEED_10:
5314                                 adapter->tx_timeout_factor = 14;
5315                                 break;
5316                         case SPEED_100:
5317                                 /* maybe add some timeout factor ? */
5318                                 break;
5319                         }
5320
5321                         if (adapter->link_speed != SPEED_1000)
5322                                 goto no_wait;
5323
5324                         /* wait for Remote receiver status OK */
5325 retry_read_status:
5326                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5327                                               &phy_data)) {
5328                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5329                                     retry_count) {
5330                                         msleep(100);
5331                                         retry_count--;
5332                                         goto retry_read_status;
5333                                 } else if (!retry_count) {
5334                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5335                                 }
5336                         } else {
5337                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5338                         }
5339 no_wait:
5340                         netif_carrier_on(netdev);
5341
5342                         igb_ping_all_vfs(adapter);
5343                         igb_check_vf_rate_limit(adapter);
5344
5345                         /* link state has changed, schedule phy info update */
5346                         if (!test_bit(__IGB_DOWN, &adapter->state))
5347                                 mod_timer(&adapter->phy_info_timer,
5348                                           round_jiffies(jiffies + 2 * HZ));
5349                 }
5350         } else {
5351                 if (netif_carrier_ok(netdev)) {
5352                         adapter->link_speed = 0;
5353                         adapter->link_duplex = 0;
5354
5355                         /* check for thermal sensor event */
5356                         if (igb_thermal_sensor_event(hw,
5357                             E1000_THSTAT_PWR_DOWN)) {
5358                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5359                         }
5360
5361                         /* Links status message must follow this format */
5362                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5363                                netdev->name);
5364                         netif_carrier_off(netdev);
5365
5366                         igb_ping_all_vfs(adapter);
5367
5368                         /* link state has changed, schedule phy info update */
5369                         if (!test_bit(__IGB_DOWN, &adapter->state))
5370                                 mod_timer(&adapter->phy_info_timer,
5371                                           round_jiffies(jiffies + 2 * HZ));
5372
5373                         /* link is down, time to check for alternate media */
5374                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5375                                 igb_check_swap_media(adapter);
5376                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5377                                         schedule_work(&adapter->reset_task);
5378                                         /* return immediately */
5379                                         return;
5380                                 }
5381                         }
5382                         pm_schedule_suspend(netdev->dev.parent,
5383                                             MSEC_PER_SEC * 5);
5384
5385                 /* also check for alternate media here */
5386                 } else if (!netif_carrier_ok(netdev) &&
5387                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5388                         igb_check_swap_media(adapter);
5389                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5390                                 schedule_work(&adapter->reset_task);
5391                                 /* return immediately */
5392                                 return;
5393                         }
5394                 }
5395         }
5396
5397         spin_lock(&adapter->stats64_lock);
5398         igb_update_stats(adapter);
5399         spin_unlock(&adapter->stats64_lock);
5400
5401         for (i = 0; i < adapter->num_tx_queues; i++) {
5402                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5403                 if (!netif_carrier_ok(netdev)) {
5404                         /* We've lost link, so the controller stops DMA,
5405                          * but we've got queued Tx work that's never going
5406                          * to get done, so reset controller to flush Tx.
5407                          * (Do the reset outside of interrupt context).
5408                          */
5409                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5410                                 adapter->tx_timeout_count++;
5411                                 schedule_work(&adapter->reset_task);
5412                                 /* return immediately since reset is imminent */
5413                                 return;
5414                         }
5415                 }
5416
5417                 /* Force detection of hung controller every watchdog period */
5418                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5419         }
5420
5421         /* Cause software interrupt to ensure Rx ring is cleaned */
5422         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5423                 u32 eics = 0;
5424
5425                 for (i = 0; i < adapter->num_q_vectors; i++)
5426                         eics |= adapter->q_vector[i]->eims_value;
5427                 wr32(E1000_EICS, eics);
5428         } else {
5429                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5430         }
5431
5432         igb_spoof_check(adapter);
5433         igb_ptp_rx_hang(adapter);
5434         igb_ptp_tx_hang(adapter);
5435
5436         /* Check LVMMC register on i350/i354 only */
5437         if ((adapter->hw.mac.type == e1000_i350) ||
5438             (adapter->hw.mac.type == e1000_i354))
5439                 igb_check_lvmmc(adapter);
5440
5441         /* Reset the timer */
5442         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5443                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5444                         mod_timer(&adapter->watchdog_timer,
5445                                   round_jiffies(jiffies +  HZ));
5446                 else
5447                         mod_timer(&adapter->watchdog_timer,
5448                                   round_jiffies(jiffies + 2 * HZ));
5449         }
5450 }
5451
5452 enum latency_range {
5453         lowest_latency = 0,
5454         low_latency = 1,
5455         bulk_latency = 2,
5456         latency_invalid = 255
5457 };
5458
5459 /**
5460  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5461  *  @q_vector: pointer to q_vector
5462  *
5463  *  Stores a new ITR value based on strictly on packet size.  This
5464  *  algorithm is less sophisticated than that used in igb_update_itr,
5465  *  due to the difficulty of synchronizing statistics across multiple
5466  *  receive rings.  The divisors and thresholds used by this function
5467  *  were determined based on theoretical maximum wire speed and testing
5468  *  data, in order to minimize response time while increasing bulk
5469  *  throughput.
5470  *  This functionality is controlled by ethtool's coalescing settings.
5471  *  NOTE:  This function is called only when operating in a multiqueue
5472  *         receive environment.
5473  **/
5474 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5475 {
5476         int new_val = q_vector->itr_val;
5477         int avg_wire_size = 0;
5478         struct igb_adapter *adapter = q_vector->adapter;
5479         unsigned int packets;
5480
5481         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5482          * ints/sec - ITR timer value of 120 ticks.
5483          */
5484         if (adapter->link_speed != SPEED_1000) {
5485                 new_val = IGB_4K_ITR;
5486                 goto set_itr_val;
5487         }
5488
5489         packets = q_vector->rx.total_packets;
5490         if (packets)
5491                 avg_wire_size = q_vector->rx.total_bytes / packets;
5492
5493         packets = q_vector->tx.total_packets;
5494         if (packets)
5495                 avg_wire_size = max_t(u32, avg_wire_size,
5496                                       q_vector->tx.total_bytes / packets);
5497
5498         /* if avg_wire_size isn't set no work was done */
5499         if (!avg_wire_size)
5500                 goto clear_counts;
5501
5502         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5503         avg_wire_size += 24;
5504
5505         /* Don't starve jumbo frames */
5506         avg_wire_size = min(avg_wire_size, 3000);
5507
5508         /* Give a little boost to mid-size frames */
5509         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5510                 new_val = avg_wire_size / 3;
5511         else
5512                 new_val = avg_wire_size / 2;
5513
5514         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5515         if (new_val < IGB_20K_ITR &&
5516             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5517              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5518                 new_val = IGB_20K_ITR;
5519
5520 set_itr_val:
5521         if (new_val != q_vector->itr_val) {
5522                 q_vector->itr_val = new_val;
5523                 q_vector->set_itr = 1;
5524         }
5525 clear_counts:
5526         q_vector->rx.total_bytes = 0;
5527         q_vector->rx.total_packets = 0;
5528         q_vector->tx.total_bytes = 0;
5529         q_vector->tx.total_packets = 0;
5530 }
5531
5532 /**
5533  *  igb_update_itr - update the dynamic ITR value based on statistics
5534  *  @q_vector: pointer to q_vector
5535  *  @ring_container: ring info to update the itr for
5536  *
5537  *  Stores a new ITR value based on packets and byte
5538  *  counts during the last interrupt.  The advantage of per interrupt
5539  *  computation is faster updates and more accurate ITR for the current
5540  *  traffic pattern.  Constants in this function were computed
5541  *  based on theoretical maximum wire speed and thresholds were set based
5542  *  on testing data as well as attempting to minimize response time
5543  *  while increasing bulk throughput.
5544  *  This functionality is controlled by ethtool's coalescing settings.
5545  *  NOTE:  These calculations are only valid when operating in a single-
5546  *         queue environment.
5547  **/
5548 static void igb_update_itr(struct igb_q_vector *q_vector,
5549                            struct igb_ring_container *ring_container)
5550 {
5551         unsigned int packets = ring_container->total_packets;
5552         unsigned int bytes = ring_container->total_bytes;
5553         u8 itrval = ring_container->itr;
5554
5555         /* no packets, exit with status unchanged */
5556         if (packets == 0)
5557                 return;
5558
5559         switch (itrval) {
5560         case lowest_latency:
5561                 /* handle TSO and jumbo frames */
5562                 if (bytes/packets > 8000)
5563                         itrval = bulk_latency;
5564                 else if ((packets < 5) && (bytes > 512))
5565                         itrval = low_latency;
5566                 break;
5567         case low_latency:  /* 50 usec aka 20000 ints/s */
5568                 if (bytes > 10000) {
5569                         /* this if handles the TSO accounting */
5570                         if (bytes/packets > 8000)
5571                                 itrval = bulk_latency;
5572                         else if ((packets < 10) || ((bytes/packets) > 1200))
5573                                 itrval = bulk_latency;
5574                         else if ((packets > 35))
5575                                 itrval = lowest_latency;
5576                 } else if (bytes/packets > 2000) {
5577                         itrval = bulk_latency;
5578                 } else if (packets <= 2 && bytes < 512) {
5579                         itrval = lowest_latency;
5580                 }
5581                 break;
5582         case bulk_latency: /* 250 usec aka 4000 ints/s */
5583                 if (bytes > 25000) {
5584                         if (packets > 35)
5585                                 itrval = low_latency;
5586                 } else if (bytes < 1500) {
5587                         itrval = low_latency;
5588                 }
5589                 break;
5590         }
5591
5592         /* clear work counters since we have the values we need */
5593         ring_container->total_bytes = 0;
5594         ring_container->total_packets = 0;
5595
5596         /* write updated itr to ring container */
5597         ring_container->itr = itrval;
5598 }
5599
5600 static void igb_set_itr(struct igb_q_vector *q_vector)
5601 {
5602         struct igb_adapter *adapter = q_vector->adapter;
5603         u32 new_itr = q_vector->itr_val;
5604         u8 current_itr = 0;
5605
5606         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5607         if (adapter->link_speed != SPEED_1000) {
5608                 current_itr = 0;
5609                 new_itr = IGB_4K_ITR;
5610                 goto set_itr_now;
5611         }
5612
5613         igb_update_itr(q_vector, &q_vector->tx);
5614         igb_update_itr(q_vector, &q_vector->rx);
5615
5616         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5617
5618         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5619         if (current_itr == lowest_latency &&
5620             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5621              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5622                 current_itr = low_latency;
5623
5624         switch (current_itr) {
5625         /* counts and packets in update_itr are dependent on these numbers */
5626         case lowest_latency:
5627                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5628                 break;
5629         case low_latency:
5630                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5631                 break;
5632         case bulk_latency:
5633                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5634                 break;
5635         default:
5636                 break;
5637         }
5638
5639 set_itr_now:
5640         if (new_itr != q_vector->itr_val) {
5641                 /* this attempts to bias the interrupt rate towards Bulk
5642                  * by adding intermediate steps when interrupt rate is
5643                  * increasing
5644                  */
5645                 new_itr = new_itr > q_vector->itr_val ?
5646                           max((new_itr * q_vector->itr_val) /
5647                           (new_itr + (q_vector->itr_val >> 2)),
5648                           new_itr) : new_itr;
5649                 /* Don't write the value here; it resets the adapter's
5650                  * internal timer, and causes us to delay far longer than
5651                  * we should between interrupts.  Instead, we write the ITR
5652                  * value at the beginning of the next interrupt so the timing
5653                  * ends up being correct.
5654                  */
5655                 q_vector->itr_val = new_itr;
5656                 q_vector->set_itr = 1;
5657         }
5658 }
5659
5660 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5661                             struct igb_tx_buffer *first,
5662                             u32 vlan_macip_lens, u32 type_tucmd,
5663                             u32 mss_l4len_idx)
5664 {
5665         struct e1000_adv_tx_context_desc *context_desc;
5666         u16 i = tx_ring->next_to_use;
5667         struct timespec64 ts;
5668
5669         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5670
5671         i++;
5672         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5673
5674         /* set bits to identify this as an advanced context descriptor */
5675         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5676
5677         /* For 82575, context index must be unique per ring. */
5678         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5679                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5680
5681         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5682         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5683         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5684
5685         /* We assume there is always a valid tx time available. Invalid times
5686          * should have been handled by the upper layers.
5687          */
5688         if (tx_ring->launchtime_enable) {
5689                 ts = ktime_to_timespec64(first->skb->tstamp);
5690                 first->skb->tstamp = ktime_set(0, 0);
5691                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5692         } else {
5693                 context_desc->seqnum_seed = 0;
5694         }
5695 }
5696
5697 static int igb_tso(struct igb_ring *tx_ring,
5698                    struct igb_tx_buffer *first,
5699                    u8 *hdr_len)
5700 {
5701         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5702         struct sk_buff *skb = first->skb;
5703         union {
5704                 struct iphdr *v4;
5705                 struct ipv6hdr *v6;
5706                 unsigned char *hdr;
5707         } ip;
5708         union {
5709                 struct tcphdr *tcp;
5710                 struct udphdr *udp;
5711                 unsigned char *hdr;
5712         } l4;
5713         u32 paylen, l4_offset;
5714         int err;
5715
5716         if (skb->ip_summed != CHECKSUM_PARTIAL)
5717                 return 0;
5718
5719         if (!skb_is_gso(skb))
5720                 return 0;
5721
5722         err = skb_cow_head(skb, 0);
5723         if (err < 0)
5724                 return err;
5725
5726         ip.hdr = skb_network_header(skb);
5727         l4.hdr = skb_checksum_start(skb);
5728
5729         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5730         type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5731                       E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5732
5733         /* initialize outer IP header fields */
5734         if (ip.v4->version == 4) {
5735                 unsigned char *csum_start = skb_checksum_start(skb);
5736                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5737
5738                 /* IP header will have to cancel out any data that
5739                  * is not a part of the outer IP header
5740                  */
5741                 ip.v4->check = csum_fold(csum_partial(trans_start,
5742                                                       csum_start - trans_start,
5743                                                       0));
5744                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5745
5746                 ip.v4->tot_len = 0;
5747                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5748                                    IGB_TX_FLAGS_CSUM |
5749                                    IGB_TX_FLAGS_IPV4;
5750         } else {
5751                 ip.v6->payload_len = 0;
5752                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5753                                    IGB_TX_FLAGS_CSUM;
5754         }
5755
5756         /* determine offset of inner transport header */
5757         l4_offset = l4.hdr - skb->data;
5758
5759         /* remove payload length from inner checksum */
5760         paylen = skb->len - l4_offset;
5761         if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5762                 /* compute length of segmentation header */
5763                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5764                 csum_replace_by_diff(&l4.tcp->check,
5765                         (__force __wsum)htonl(paylen));
5766         } else {
5767                 /* compute length of segmentation header */
5768                 *hdr_len = sizeof(*l4.udp) + l4_offset;
5769                 csum_replace_by_diff(&l4.udp->check,
5770                                      (__force __wsum)htonl(paylen));
5771         }
5772
5773         /* update gso size and bytecount with header size */
5774         first->gso_segs = skb_shinfo(skb)->gso_segs;
5775         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5776
5777         /* MSS L4LEN IDX */
5778         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5779         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5780
5781         /* VLAN MACLEN IPLEN */
5782         vlan_macip_lens = l4.hdr - ip.hdr;
5783         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5784         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5785
5786         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5787                         type_tucmd, mss_l4len_idx);
5788
5789         return 1;
5790 }
5791
5792 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5793 {
5794         unsigned int offset = 0;
5795
5796         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5797
5798         return offset == skb_checksum_start_offset(skb);
5799 }
5800
5801 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5802 {
5803         struct sk_buff *skb = first->skb;
5804         u32 vlan_macip_lens = 0;
5805         u32 type_tucmd = 0;
5806
5807         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5808 csum_failed:
5809                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5810                     !tx_ring->launchtime_enable)
5811                         return;
5812                 goto no_csum;
5813         }
5814
5815         switch (skb->csum_offset) {
5816         case offsetof(struct tcphdr, check):
5817                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5818                 fallthrough;
5819         case offsetof(struct udphdr, check):
5820                 break;
5821         case offsetof(struct sctphdr, checksum):
5822                 /* validate that this is actually an SCTP request */
5823                 if (((first->protocol == htons(ETH_P_IP)) &&
5824                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5825                     ((first->protocol == htons(ETH_P_IPV6)) &&
5826                      igb_ipv6_csum_is_sctp(skb))) {
5827                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5828                         break;
5829                 }
5830                 fallthrough;
5831         default:
5832                 skb_checksum_help(skb);
5833                 goto csum_failed;
5834         }
5835
5836         /* update TX checksum flag */
5837         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5838         vlan_macip_lens = skb_checksum_start_offset(skb) -
5839                           skb_network_offset(skb);
5840 no_csum:
5841         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5842         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5843
5844         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5845 }
5846
5847 #define IGB_SET_FLAG(_input, _flag, _result) \
5848         ((_flag <= _result) ? \
5849          ((u32)(_input & _flag) * (_result / _flag)) : \
5850          ((u32)(_input & _flag) / (_flag / _result)))
5851
5852 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5853 {
5854         /* set type for advanced descriptor with frame checksum insertion */
5855         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5856                        E1000_ADVTXD_DCMD_DEXT |
5857                        E1000_ADVTXD_DCMD_IFCS;
5858
5859         /* set HW vlan bit if vlan is present */
5860         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5861                                  (E1000_ADVTXD_DCMD_VLE));
5862
5863         /* set segmentation bits for TSO */
5864         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5865                                  (E1000_ADVTXD_DCMD_TSE));
5866
5867         /* set timestamp bit if present */
5868         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5869                                  (E1000_ADVTXD_MAC_TSTAMP));
5870
5871         /* insert frame checksum */
5872         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5873
5874         return cmd_type;
5875 }
5876
5877 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5878                                  union e1000_adv_tx_desc *tx_desc,
5879                                  u32 tx_flags, unsigned int paylen)
5880 {
5881         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5882
5883         /* 82575 requires a unique index per ring */
5884         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5885                 olinfo_status |= tx_ring->reg_idx << 4;
5886
5887         /* insert L4 checksum */
5888         olinfo_status |= IGB_SET_FLAG(tx_flags,
5889                                       IGB_TX_FLAGS_CSUM,
5890                                       (E1000_TXD_POPTS_TXSM << 8));
5891
5892         /* insert IPv4 checksum */
5893         olinfo_status |= IGB_SET_FLAG(tx_flags,
5894                                       IGB_TX_FLAGS_IPV4,
5895                                       (E1000_TXD_POPTS_IXSM << 8));
5896
5897         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5898 }
5899
5900 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5901 {
5902         struct net_device *netdev = tx_ring->netdev;
5903
5904         netif_stop_subqueue(netdev, tx_ring->queue_index);
5905
5906         /* Herbert's original patch had:
5907          *  smp_mb__after_netif_stop_queue();
5908          * but since that doesn't exist yet, just open code it.
5909          */
5910         smp_mb();
5911
5912         /* We need to check again in a case another CPU has just
5913          * made room available.
5914          */
5915         if (igb_desc_unused(tx_ring) < size)
5916                 return -EBUSY;
5917
5918         /* A reprieve! */
5919         netif_wake_subqueue(netdev, tx_ring->queue_index);
5920
5921         u64_stats_update_begin(&tx_ring->tx_syncp2);
5922         tx_ring->tx_stats.restart_queue2++;
5923         u64_stats_update_end(&tx_ring->tx_syncp2);
5924
5925         return 0;
5926 }
5927
5928 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5929 {
5930         if (igb_desc_unused(tx_ring) >= size)
5931                 return 0;
5932         return __igb_maybe_stop_tx(tx_ring, size);
5933 }
5934
5935 static int igb_tx_map(struct igb_ring *tx_ring,
5936                       struct igb_tx_buffer *first,
5937                       const u8 hdr_len)
5938 {
5939         struct sk_buff *skb = first->skb;
5940         struct igb_tx_buffer *tx_buffer;
5941         union e1000_adv_tx_desc *tx_desc;
5942         skb_frag_t *frag;
5943         dma_addr_t dma;
5944         unsigned int data_len, size;
5945         u32 tx_flags = first->tx_flags;
5946         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5947         u16 i = tx_ring->next_to_use;
5948
5949         tx_desc = IGB_TX_DESC(tx_ring, i);
5950
5951         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5952
5953         size = skb_headlen(skb);
5954         data_len = skb->data_len;
5955
5956         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5957
5958         tx_buffer = first;
5959
5960         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5961                 if (dma_mapping_error(tx_ring->dev, dma))
5962                         goto dma_error;
5963
5964                 /* record length, and DMA address */
5965                 dma_unmap_len_set(tx_buffer, len, size);
5966                 dma_unmap_addr_set(tx_buffer, dma, dma);
5967
5968                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5969
5970                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5971                         tx_desc->read.cmd_type_len =
5972                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5973
5974                         i++;
5975                         tx_desc++;
5976                         if (i == tx_ring->count) {
5977                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5978                                 i = 0;
5979                         }
5980                         tx_desc->read.olinfo_status = 0;
5981
5982                         dma += IGB_MAX_DATA_PER_TXD;
5983                         size -= IGB_MAX_DATA_PER_TXD;
5984
5985                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5986                 }
5987
5988                 if (likely(!data_len))
5989                         break;
5990
5991                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5992
5993                 i++;
5994                 tx_desc++;
5995                 if (i == tx_ring->count) {
5996                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5997                         i = 0;
5998                 }
5999                 tx_desc->read.olinfo_status = 0;
6000
6001                 size = skb_frag_size(frag);
6002                 data_len -= size;
6003
6004                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6005                                        size, DMA_TO_DEVICE);
6006
6007                 tx_buffer = &tx_ring->tx_buffer_info[i];
6008         }
6009
6010         /* write last descriptor with RS and EOP bits */
6011         cmd_type |= size | IGB_TXD_DCMD;
6012         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6013
6014         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6015
6016         /* set the timestamp */
6017         first->time_stamp = jiffies;
6018
6019         skb_tx_timestamp(skb);
6020
6021         /* Force memory writes to complete before letting h/w know there
6022          * are new descriptors to fetch.  (Only applicable for weak-ordered
6023          * memory model archs, such as IA-64).
6024          *
6025          * We also need this memory barrier to make certain all of the
6026          * status bits have been updated before next_to_watch is written.
6027          */
6028         dma_wmb();
6029
6030         /* set next_to_watch value indicating a packet is present */
6031         first->next_to_watch = tx_desc;
6032
6033         i++;
6034         if (i == tx_ring->count)
6035                 i = 0;
6036
6037         tx_ring->next_to_use = i;
6038
6039         /* Make sure there is space in the ring for the next send. */
6040         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6041
6042         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6043                 writel(i, tx_ring->tail);
6044         }
6045         return 0;
6046
6047 dma_error:
6048         dev_err(tx_ring->dev, "TX DMA map failed\n");
6049         tx_buffer = &tx_ring->tx_buffer_info[i];
6050
6051         /* clear dma mappings for failed tx_buffer_info map */
6052         while (tx_buffer != first) {
6053                 if (dma_unmap_len(tx_buffer, len))
6054                         dma_unmap_page(tx_ring->dev,
6055                                        dma_unmap_addr(tx_buffer, dma),
6056                                        dma_unmap_len(tx_buffer, len),
6057                                        DMA_TO_DEVICE);
6058                 dma_unmap_len_set(tx_buffer, len, 0);
6059
6060                 if (i-- == 0)
6061                         i += tx_ring->count;
6062                 tx_buffer = &tx_ring->tx_buffer_info[i];
6063         }
6064
6065         if (dma_unmap_len(tx_buffer, len))
6066                 dma_unmap_single(tx_ring->dev,
6067                                  dma_unmap_addr(tx_buffer, dma),
6068                                  dma_unmap_len(tx_buffer, len),
6069                                  DMA_TO_DEVICE);
6070         dma_unmap_len_set(tx_buffer, len, 0);
6071
6072         dev_kfree_skb_any(tx_buffer->skb);
6073         tx_buffer->skb = NULL;
6074
6075         tx_ring->next_to_use = i;
6076
6077         return -1;
6078 }
6079
6080 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6081                                 struct igb_ring *tx_ring)
6082 {
6083         struct igb_tx_buffer *first;
6084         int tso;
6085         u32 tx_flags = 0;
6086         unsigned short f;
6087         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6088         __be16 protocol = vlan_get_protocol(skb);
6089         u8 hdr_len = 0;
6090
6091         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6092          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6093          *       + 2 desc gap to keep tail from touching head,
6094          *       + 1 desc for context descriptor,
6095          * otherwise try next time
6096          */
6097         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6098                 count += TXD_USE_COUNT(skb_frag_size(
6099                                                 &skb_shinfo(skb)->frags[f]));
6100
6101         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6102                 /* this is a hard error */
6103                 return NETDEV_TX_BUSY;
6104         }
6105
6106         /* record the location of the first descriptor for this packet */
6107         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6108         first->skb = skb;
6109         first->bytecount = skb->len;
6110         first->gso_segs = 1;
6111
6112         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6113                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6114
6115                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6116                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6117                                            &adapter->state)) {
6118                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6119                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6120
6121                         adapter->ptp_tx_skb = skb_get(skb);
6122                         adapter->ptp_tx_start = jiffies;
6123                         if (adapter->hw.mac.type == e1000_82576)
6124                                 schedule_work(&adapter->ptp_tx_work);
6125                 } else {
6126                         adapter->tx_hwtstamp_skipped++;
6127                 }
6128         }
6129
6130         if (skb_vlan_tag_present(skb)) {
6131                 tx_flags |= IGB_TX_FLAGS_VLAN;
6132                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6133         }
6134
6135         /* record initial flags and protocol */
6136         first->tx_flags = tx_flags;
6137         first->protocol = protocol;
6138
6139         tso = igb_tso(tx_ring, first, &hdr_len);
6140         if (tso < 0)
6141                 goto out_drop;
6142         else if (!tso)
6143                 igb_tx_csum(tx_ring, first);
6144
6145         if (igb_tx_map(tx_ring, first, hdr_len))
6146                 goto cleanup_tx_tstamp;
6147
6148         return NETDEV_TX_OK;
6149
6150 out_drop:
6151         dev_kfree_skb_any(first->skb);
6152         first->skb = NULL;
6153 cleanup_tx_tstamp:
6154         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6155                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6156
6157                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6158                 adapter->ptp_tx_skb = NULL;
6159                 if (adapter->hw.mac.type == e1000_82576)
6160                         cancel_work_sync(&adapter->ptp_tx_work);
6161                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6162         }
6163
6164         return NETDEV_TX_OK;
6165 }
6166
6167 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6168                                                     struct sk_buff *skb)
6169 {
6170         unsigned int r_idx = skb->queue_mapping;
6171
6172         if (r_idx >= adapter->num_tx_queues)
6173                 r_idx = r_idx % adapter->num_tx_queues;
6174
6175         return adapter->tx_ring[r_idx];
6176 }
6177
6178 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6179                                   struct net_device *netdev)
6180 {
6181         struct igb_adapter *adapter = netdev_priv(netdev);
6182
6183         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6184          * in order to meet this minimum size requirement.
6185          */
6186         if (skb_put_padto(skb, 17))
6187                 return NETDEV_TX_OK;
6188
6189         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6190 }
6191
6192 /**
6193  *  igb_tx_timeout - Respond to a Tx Hang
6194  *  @netdev: network interface device structure
6195  **/
6196 static void igb_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6197 {
6198         struct igb_adapter *adapter = netdev_priv(netdev);
6199         struct e1000_hw *hw = &adapter->hw;
6200
6201         /* Do the reset outside of interrupt context */
6202         adapter->tx_timeout_count++;
6203
6204         if (hw->mac.type >= e1000_82580)
6205                 hw->dev_spec._82575.global_device_reset = true;
6206
6207         schedule_work(&adapter->reset_task);
6208         wr32(E1000_EICS,
6209              (adapter->eims_enable_mask & ~adapter->eims_other));
6210 }
6211
6212 static void igb_reset_task(struct work_struct *work)
6213 {
6214         struct igb_adapter *adapter;
6215         adapter = container_of(work, struct igb_adapter, reset_task);
6216
6217         rtnl_lock();
6218         /* If we're already down or resetting, just bail */
6219         if (test_bit(__IGB_DOWN, &adapter->state) ||
6220             test_bit(__IGB_RESETTING, &adapter->state)) {
6221                 rtnl_unlock();
6222                 return;
6223         }
6224
6225         igb_dump(adapter);
6226         netdev_err(adapter->netdev, "Reset adapter\n");
6227         igb_reinit_locked(adapter);
6228         rtnl_unlock();
6229 }
6230
6231 /**
6232  *  igb_get_stats64 - Get System Network Statistics
6233  *  @netdev: network interface device structure
6234  *  @stats: rtnl_link_stats64 pointer
6235  **/
6236 static void igb_get_stats64(struct net_device *netdev,
6237                             struct rtnl_link_stats64 *stats)
6238 {
6239         struct igb_adapter *adapter = netdev_priv(netdev);
6240
6241         spin_lock(&adapter->stats64_lock);
6242         igb_update_stats(adapter);
6243         memcpy(stats, &adapter->stats64, sizeof(*stats));
6244         spin_unlock(&adapter->stats64_lock);
6245 }
6246
6247 /**
6248  *  igb_change_mtu - Change the Maximum Transfer Unit
6249  *  @netdev: network interface device structure
6250  *  @new_mtu: new value for maximum frame size
6251  *
6252  *  Returns 0 on success, negative on failure
6253  **/
6254 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6255 {
6256         struct igb_adapter *adapter = netdev_priv(netdev);
6257         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6258
6259         /* adjust max frame to be at least the size of a standard frame */
6260         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6261                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6262
6263         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6264                 usleep_range(1000, 2000);
6265
6266         /* igb_down has a dependency on max_frame_size */
6267         adapter->max_frame_size = max_frame;
6268
6269         if (netif_running(netdev))
6270                 igb_down(adapter);
6271
6272         netdev_dbg(netdev, "changing MTU from %d to %d\n",
6273                    netdev->mtu, new_mtu);
6274         netdev->mtu = new_mtu;
6275
6276         if (netif_running(netdev))
6277                 igb_up(adapter);
6278         else
6279                 igb_reset(adapter);
6280
6281         clear_bit(__IGB_RESETTING, &adapter->state);
6282
6283         return 0;
6284 }
6285
6286 /**
6287  *  igb_update_stats - Update the board statistics counters
6288  *  @adapter: board private structure
6289  **/
6290 void igb_update_stats(struct igb_adapter *adapter)
6291 {
6292         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6293         struct e1000_hw *hw = &adapter->hw;
6294         struct pci_dev *pdev = adapter->pdev;
6295         u32 reg, mpc;
6296         int i;
6297         u64 bytes, packets;
6298         unsigned int start;
6299         u64 _bytes, _packets;
6300
6301         /* Prevent stats update while adapter is being reset, or if the pci
6302          * connection is down.
6303          */
6304         if (adapter->link_speed == 0)
6305                 return;
6306         if (pci_channel_offline(pdev))
6307                 return;
6308
6309         bytes = 0;
6310         packets = 0;
6311
6312         rcu_read_lock();
6313         for (i = 0; i < adapter->num_rx_queues; i++) {
6314                 struct igb_ring *ring = adapter->rx_ring[i];
6315                 u32 rqdpc = rd32(E1000_RQDPC(i));
6316                 if (hw->mac.type >= e1000_i210)
6317                         wr32(E1000_RQDPC(i), 0);
6318
6319                 if (rqdpc) {
6320                         ring->rx_stats.drops += rqdpc;
6321                         net_stats->rx_fifo_errors += rqdpc;
6322                 }
6323
6324                 do {
6325                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6326                         _bytes = ring->rx_stats.bytes;
6327                         _packets = ring->rx_stats.packets;
6328                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6329                 bytes += _bytes;
6330                 packets += _packets;
6331         }
6332
6333         net_stats->rx_bytes = bytes;
6334         net_stats->rx_packets = packets;
6335
6336         bytes = 0;
6337         packets = 0;
6338         for (i = 0; i < adapter->num_tx_queues; i++) {
6339                 struct igb_ring *ring = adapter->tx_ring[i];
6340                 do {
6341                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6342                         _bytes = ring->tx_stats.bytes;
6343                         _packets = ring->tx_stats.packets;
6344                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6345                 bytes += _bytes;
6346                 packets += _packets;
6347         }
6348         net_stats->tx_bytes = bytes;
6349         net_stats->tx_packets = packets;
6350         rcu_read_unlock();
6351
6352         /* read stats registers */
6353         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6354         adapter->stats.gprc += rd32(E1000_GPRC);
6355         adapter->stats.gorc += rd32(E1000_GORCL);
6356         rd32(E1000_GORCH); /* clear GORCL */
6357         adapter->stats.bprc += rd32(E1000_BPRC);
6358         adapter->stats.mprc += rd32(E1000_MPRC);
6359         adapter->stats.roc += rd32(E1000_ROC);
6360
6361         adapter->stats.prc64 += rd32(E1000_PRC64);
6362         adapter->stats.prc127 += rd32(E1000_PRC127);
6363         adapter->stats.prc255 += rd32(E1000_PRC255);
6364         adapter->stats.prc511 += rd32(E1000_PRC511);
6365         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6366         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6367         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6368         adapter->stats.sec += rd32(E1000_SEC);
6369
6370         mpc = rd32(E1000_MPC);
6371         adapter->stats.mpc += mpc;
6372         net_stats->rx_fifo_errors += mpc;
6373         adapter->stats.scc += rd32(E1000_SCC);
6374         adapter->stats.ecol += rd32(E1000_ECOL);
6375         adapter->stats.mcc += rd32(E1000_MCC);
6376         adapter->stats.latecol += rd32(E1000_LATECOL);
6377         adapter->stats.dc += rd32(E1000_DC);
6378         adapter->stats.rlec += rd32(E1000_RLEC);
6379         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6380         adapter->stats.xontxc += rd32(E1000_XONTXC);
6381         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6382         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6383         adapter->stats.fcruc += rd32(E1000_FCRUC);
6384         adapter->stats.gptc += rd32(E1000_GPTC);
6385         adapter->stats.gotc += rd32(E1000_GOTCL);
6386         rd32(E1000_GOTCH); /* clear GOTCL */
6387         adapter->stats.rnbc += rd32(E1000_RNBC);
6388         adapter->stats.ruc += rd32(E1000_RUC);
6389         adapter->stats.rfc += rd32(E1000_RFC);
6390         adapter->stats.rjc += rd32(E1000_RJC);
6391         adapter->stats.tor += rd32(E1000_TORH);
6392         adapter->stats.tot += rd32(E1000_TOTH);
6393         adapter->stats.tpr += rd32(E1000_TPR);
6394
6395         adapter->stats.ptc64 += rd32(E1000_PTC64);
6396         adapter->stats.ptc127 += rd32(E1000_PTC127);
6397         adapter->stats.ptc255 += rd32(E1000_PTC255);
6398         adapter->stats.ptc511 += rd32(E1000_PTC511);
6399         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6400         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6401
6402         adapter->stats.mptc += rd32(E1000_MPTC);
6403         adapter->stats.bptc += rd32(E1000_BPTC);
6404
6405         adapter->stats.tpt += rd32(E1000_TPT);
6406         adapter->stats.colc += rd32(E1000_COLC);
6407
6408         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6409         /* read internal phy specific stats */
6410         reg = rd32(E1000_CTRL_EXT);
6411         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6412                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6413
6414                 /* this stat has invalid values on i210/i211 */
6415                 if ((hw->mac.type != e1000_i210) &&
6416                     (hw->mac.type != e1000_i211))
6417                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6418         }
6419
6420         adapter->stats.tsctc += rd32(E1000_TSCTC);
6421         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6422
6423         adapter->stats.iac += rd32(E1000_IAC);
6424         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6425         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6426         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6427         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6428         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6429         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6430         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6431         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6432
6433         /* Fill out the OS statistics structure */
6434         net_stats->multicast = adapter->stats.mprc;
6435         net_stats->collisions = adapter->stats.colc;
6436
6437         /* Rx Errors */
6438
6439         /* RLEC on some newer hardware can be incorrect so build
6440          * our own version based on RUC and ROC
6441          */
6442         net_stats->rx_errors = adapter->stats.rxerrc +
6443                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6444                 adapter->stats.ruc + adapter->stats.roc +
6445                 adapter->stats.cexterr;
6446         net_stats->rx_length_errors = adapter->stats.ruc +
6447                                       adapter->stats.roc;
6448         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6449         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6450         net_stats->rx_missed_errors = adapter->stats.mpc;
6451
6452         /* Tx Errors */
6453         net_stats->tx_errors = adapter->stats.ecol +
6454                                adapter->stats.latecol;
6455         net_stats->tx_aborted_errors = adapter->stats.ecol;
6456         net_stats->tx_window_errors = adapter->stats.latecol;
6457         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6458
6459         /* Tx Dropped needs to be maintained elsewhere */
6460
6461         /* Management Stats */
6462         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6463         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6464         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6465
6466         /* OS2BMC Stats */
6467         reg = rd32(E1000_MANC);
6468         if (reg & E1000_MANC_EN_BMC2OS) {
6469                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6470                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6471                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6472                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6473         }
6474 }
6475
6476 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6477 {
6478         struct e1000_hw *hw = &adapter->hw;
6479         struct ptp_clock_event event;
6480         struct timespec64 ts;
6481         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6482
6483         if (tsicr & TSINTR_SYS_WRAP) {
6484                 event.type = PTP_CLOCK_PPS;
6485                 if (adapter->ptp_caps.pps)
6486                         ptp_clock_event(adapter->ptp_clock, &event);
6487                 ack |= TSINTR_SYS_WRAP;
6488         }
6489
6490         if (tsicr & E1000_TSICR_TXTS) {
6491                 /* retrieve hardware timestamp */
6492                 schedule_work(&adapter->ptp_tx_work);
6493                 ack |= E1000_TSICR_TXTS;
6494         }
6495
6496         if (tsicr & TSINTR_TT0) {
6497                 spin_lock(&adapter->tmreg_lock);
6498                 ts = timespec64_add(adapter->perout[0].start,
6499                                     adapter->perout[0].period);
6500                 /* u32 conversion of tv_sec is safe until y2106 */
6501                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6502                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6503                 tsauxc = rd32(E1000_TSAUXC);
6504                 tsauxc |= TSAUXC_EN_TT0;
6505                 wr32(E1000_TSAUXC, tsauxc);
6506                 adapter->perout[0].start = ts;
6507                 spin_unlock(&adapter->tmreg_lock);
6508                 ack |= TSINTR_TT0;
6509         }
6510
6511         if (tsicr & TSINTR_TT1) {
6512                 spin_lock(&adapter->tmreg_lock);
6513                 ts = timespec64_add(adapter->perout[1].start,
6514                                     adapter->perout[1].period);
6515                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6516                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6517                 tsauxc = rd32(E1000_TSAUXC);
6518                 tsauxc |= TSAUXC_EN_TT1;
6519                 wr32(E1000_TSAUXC, tsauxc);
6520                 adapter->perout[1].start = ts;
6521                 spin_unlock(&adapter->tmreg_lock);
6522                 ack |= TSINTR_TT1;
6523         }
6524
6525         if (tsicr & TSINTR_AUTT0) {
6526                 nsec = rd32(E1000_AUXSTMPL0);
6527                 sec  = rd32(E1000_AUXSTMPH0);
6528                 event.type = PTP_CLOCK_EXTTS;
6529                 event.index = 0;
6530                 event.timestamp = sec * 1000000000ULL + nsec;
6531                 ptp_clock_event(adapter->ptp_clock, &event);
6532                 ack |= TSINTR_AUTT0;
6533         }
6534
6535         if (tsicr & TSINTR_AUTT1) {
6536                 nsec = rd32(E1000_AUXSTMPL1);
6537                 sec  = rd32(E1000_AUXSTMPH1);
6538                 event.type = PTP_CLOCK_EXTTS;
6539                 event.index = 1;
6540                 event.timestamp = sec * 1000000000ULL + nsec;
6541                 ptp_clock_event(adapter->ptp_clock, &event);
6542                 ack |= TSINTR_AUTT1;
6543         }
6544
6545         /* acknowledge the interrupts */
6546         wr32(E1000_TSICR, ack);
6547 }
6548
6549 static irqreturn_t igb_msix_other(int irq, void *data)
6550 {
6551         struct igb_adapter *adapter = data;
6552         struct e1000_hw *hw = &adapter->hw;
6553         u32 icr = rd32(E1000_ICR);
6554         /* reading ICR causes bit 31 of EICR to be cleared */
6555
6556         if (icr & E1000_ICR_DRSTA)
6557                 schedule_work(&adapter->reset_task);
6558
6559         if (icr & E1000_ICR_DOUTSYNC) {
6560                 /* HW is reporting DMA is out of sync */
6561                 adapter->stats.doosync++;
6562                 /* The DMA Out of Sync is also indication of a spoof event
6563                  * in IOV mode. Check the Wrong VM Behavior register to
6564                  * see if it is really a spoof event.
6565                  */
6566                 igb_check_wvbr(adapter);
6567         }
6568
6569         /* Check for a mailbox event */
6570         if (icr & E1000_ICR_VMMB)
6571                 igb_msg_task(adapter);
6572
6573         if (icr & E1000_ICR_LSC) {
6574                 hw->mac.get_link_status = 1;
6575                 /* guard against interrupt when we're going down */
6576                 if (!test_bit(__IGB_DOWN, &adapter->state))
6577                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6578         }
6579
6580         if (icr & E1000_ICR_TS)
6581                 igb_tsync_interrupt(adapter);
6582
6583         wr32(E1000_EIMS, adapter->eims_other);
6584
6585         return IRQ_HANDLED;
6586 }
6587
6588 static void igb_write_itr(struct igb_q_vector *q_vector)
6589 {
6590         struct igb_adapter *adapter = q_vector->adapter;
6591         u32 itr_val = q_vector->itr_val & 0x7FFC;
6592
6593         if (!q_vector->set_itr)
6594                 return;
6595
6596         if (!itr_val)
6597                 itr_val = 0x4;
6598
6599         if (adapter->hw.mac.type == e1000_82575)
6600                 itr_val |= itr_val << 16;
6601         else
6602                 itr_val |= E1000_EITR_CNT_IGNR;
6603
6604         writel(itr_val, q_vector->itr_register);
6605         q_vector->set_itr = 0;
6606 }
6607
6608 static irqreturn_t igb_msix_ring(int irq, void *data)
6609 {
6610         struct igb_q_vector *q_vector = data;
6611
6612         /* Write the ITR value calculated from the previous interrupt. */
6613         igb_write_itr(q_vector);
6614
6615         napi_schedule(&q_vector->napi);
6616
6617         return IRQ_HANDLED;
6618 }
6619
6620 #ifdef CONFIG_IGB_DCA
6621 static void igb_update_tx_dca(struct igb_adapter *adapter,
6622                               struct igb_ring *tx_ring,
6623                               int cpu)
6624 {
6625         struct e1000_hw *hw = &adapter->hw;
6626         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6627
6628         if (hw->mac.type != e1000_82575)
6629                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6630
6631         /* We can enable relaxed ordering for reads, but not writes when
6632          * DCA is enabled.  This is due to a known issue in some chipsets
6633          * which will cause the DCA tag to be cleared.
6634          */
6635         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6636                   E1000_DCA_TXCTRL_DATA_RRO_EN |
6637                   E1000_DCA_TXCTRL_DESC_DCA_EN;
6638
6639         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6640 }
6641
6642 static void igb_update_rx_dca(struct igb_adapter *adapter,
6643                               struct igb_ring *rx_ring,
6644                               int cpu)
6645 {
6646         struct e1000_hw *hw = &adapter->hw;
6647         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6648
6649         if (hw->mac.type != e1000_82575)
6650                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6651
6652         /* We can enable relaxed ordering for reads, but not writes when
6653          * DCA is enabled.  This is due to a known issue in some chipsets
6654          * which will cause the DCA tag to be cleared.
6655          */
6656         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6657                   E1000_DCA_RXCTRL_DESC_DCA_EN;
6658
6659         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6660 }
6661
6662 static void igb_update_dca(struct igb_q_vector *q_vector)
6663 {
6664         struct igb_adapter *adapter = q_vector->adapter;
6665         int cpu = get_cpu();
6666
6667         if (q_vector->cpu == cpu)
6668                 goto out_no_update;
6669
6670         if (q_vector->tx.ring)
6671                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6672
6673         if (q_vector->rx.ring)
6674                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6675
6676         q_vector->cpu = cpu;
6677 out_no_update:
6678         put_cpu();
6679 }
6680
6681 static void igb_setup_dca(struct igb_adapter *adapter)
6682 {
6683         struct e1000_hw *hw = &adapter->hw;
6684         int i;
6685
6686         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6687                 return;
6688
6689         /* Always use CB2 mode, difference is masked in the CB driver. */
6690         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6691
6692         for (i = 0; i < adapter->num_q_vectors; i++) {
6693                 adapter->q_vector[i]->cpu = -1;
6694                 igb_update_dca(adapter->q_vector[i]);
6695         }
6696 }
6697
6698 static int __igb_notify_dca(struct device *dev, void *data)
6699 {
6700         struct net_device *netdev = dev_get_drvdata(dev);
6701         struct igb_adapter *adapter = netdev_priv(netdev);
6702         struct pci_dev *pdev = adapter->pdev;
6703         struct e1000_hw *hw = &adapter->hw;
6704         unsigned long event = *(unsigned long *)data;
6705
6706         switch (event) {
6707         case DCA_PROVIDER_ADD:
6708                 /* if already enabled, don't do it again */
6709                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6710                         break;
6711                 if (dca_add_requester(dev) == 0) {
6712                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
6713                         dev_info(&pdev->dev, "DCA enabled\n");
6714                         igb_setup_dca(adapter);
6715                         break;
6716                 }
6717                 fallthrough; /* since DCA is disabled. */
6718         case DCA_PROVIDER_REMOVE:
6719                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6720                         /* without this a class_device is left
6721                          * hanging around in the sysfs model
6722                          */
6723                         dca_remove_requester(dev);
6724                         dev_info(&pdev->dev, "DCA disabled\n");
6725                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6726                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6727                 }
6728                 break;
6729         }
6730
6731         return 0;
6732 }
6733
6734 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6735                           void *p)
6736 {
6737         int ret_val;
6738
6739         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6740                                          __igb_notify_dca);
6741
6742         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6743 }
6744 #endif /* CONFIG_IGB_DCA */
6745
6746 #ifdef CONFIG_PCI_IOV
6747 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6748 {
6749         unsigned char mac_addr[ETH_ALEN];
6750
6751         eth_zero_addr(mac_addr);
6752         igb_set_vf_mac(adapter, vf, mac_addr);
6753
6754         /* By default spoof check is enabled for all VFs */
6755         adapter->vf_data[vf].spoofchk_enabled = true;
6756
6757         /* By default VFs are not trusted */
6758         adapter->vf_data[vf].trusted = false;
6759
6760         return 0;
6761 }
6762
6763 #endif
6764 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6765 {
6766         struct e1000_hw *hw = &adapter->hw;
6767         u32 ping;
6768         int i;
6769
6770         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6771                 ping = E1000_PF_CONTROL_MSG;
6772                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6773                         ping |= E1000_VT_MSGTYPE_CTS;
6774                 igb_write_mbx(hw, &ping, 1, i);
6775         }
6776 }
6777
6778 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6779 {
6780         struct e1000_hw *hw = &adapter->hw;
6781         u32 vmolr = rd32(E1000_VMOLR(vf));
6782         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6783
6784         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6785                             IGB_VF_FLAG_MULTI_PROMISC);
6786         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6787
6788         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6789                 vmolr |= E1000_VMOLR_MPME;
6790                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6791                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6792         } else {
6793                 /* if we have hashes and we are clearing a multicast promisc
6794                  * flag we need to write the hashes to the MTA as this step
6795                  * was previously skipped
6796                  */
6797                 if (vf_data->num_vf_mc_hashes > 30) {
6798                         vmolr |= E1000_VMOLR_MPME;
6799                 } else if (vf_data->num_vf_mc_hashes) {
6800                         int j;
6801
6802                         vmolr |= E1000_VMOLR_ROMPE;
6803                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6804                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6805                 }
6806         }
6807
6808         wr32(E1000_VMOLR(vf), vmolr);
6809
6810         /* there are flags left unprocessed, likely not supported */
6811         if (*msgbuf & E1000_VT_MSGINFO_MASK)
6812                 return -EINVAL;
6813
6814         return 0;
6815 }
6816
6817 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6818                                   u32 *msgbuf, u32 vf)
6819 {
6820         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6821         u16 *hash_list = (u16 *)&msgbuf[1];
6822         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6823         int i;
6824
6825         /* salt away the number of multicast addresses assigned
6826          * to this VF for later use to restore when the PF multi cast
6827          * list changes
6828          */
6829         vf_data->num_vf_mc_hashes = n;
6830
6831         /* only up to 30 hash values supported */
6832         if (n > 30)
6833                 n = 30;
6834
6835         /* store the hashes for later use */
6836         for (i = 0; i < n; i++)
6837                 vf_data->vf_mc_hashes[i] = hash_list[i];
6838
6839         /* Flush and reset the mta with the new values */
6840         igb_set_rx_mode(adapter->netdev);
6841
6842         return 0;
6843 }
6844
6845 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6846 {
6847         struct e1000_hw *hw = &adapter->hw;
6848         struct vf_data_storage *vf_data;
6849         int i, j;
6850
6851         for (i = 0; i < adapter->vfs_allocated_count; i++) {
6852                 u32 vmolr = rd32(E1000_VMOLR(i));
6853
6854                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6855
6856                 vf_data = &adapter->vf_data[i];
6857
6858                 if ((vf_data->num_vf_mc_hashes > 30) ||
6859                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6860                         vmolr |= E1000_VMOLR_MPME;
6861                 } else if (vf_data->num_vf_mc_hashes) {
6862                         vmolr |= E1000_VMOLR_ROMPE;
6863                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6864                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6865                 }
6866                 wr32(E1000_VMOLR(i), vmolr);
6867         }
6868 }
6869
6870 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6871 {
6872         struct e1000_hw *hw = &adapter->hw;
6873         u32 pool_mask, vlvf_mask, i;
6874
6875         /* create mask for VF and other pools */
6876         pool_mask = E1000_VLVF_POOLSEL_MASK;
6877         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6878
6879         /* drop PF from pool bits */
6880         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6881                              adapter->vfs_allocated_count);
6882
6883         /* Find the vlan filter for this id */
6884         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6885                 u32 vlvf = rd32(E1000_VLVF(i));
6886                 u32 vfta_mask, vid, vfta;
6887
6888                 /* remove the vf from the pool */
6889                 if (!(vlvf & vlvf_mask))
6890                         continue;
6891
6892                 /* clear out bit from VLVF */
6893                 vlvf ^= vlvf_mask;
6894
6895                 /* if other pools are present, just remove ourselves */
6896                 if (vlvf & pool_mask)
6897                         goto update_vlvfb;
6898
6899                 /* if PF is present, leave VFTA */
6900                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6901                         goto update_vlvf;
6902
6903                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6904                 vfta_mask = BIT(vid % 32);
6905
6906                 /* clear bit from VFTA */
6907                 vfta = adapter->shadow_vfta[vid / 32];
6908                 if (vfta & vfta_mask)
6909                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6910 update_vlvf:
6911                 /* clear pool selection enable */
6912                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6913                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6914                 else
6915                         vlvf = 0;
6916 update_vlvfb:
6917                 /* clear pool bits */
6918                 wr32(E1000_VLVF(i), vlvf);
6919         }
6920 }
6921
6922 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6923 {
6924         u32 vlvf;
6925         int idx;
6926
6927         /* short cut the special case */
6928         if (vlan == 0)
6929                 return 0;
6930
6931         /* Search for the VLAN id in the VLVF entries */
6932         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6933                 vlvf = rd32(E1000_VLVF(idx));
6934                 if ((vlvf & VLAN_VID_MASK) == vlan)
6935                         break;
6936         }
6937
6938         return idx;
6939 }
6940
6941 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6942 {
6943         struct e1000_hw *hw = &adapter->hw;
6944         u32 bits, pf_id;
6945         int idx;
6946
6947         idx = igb_find_vlvf_entry(hw, vid);
6948         if (!idx)
6949                 return;
6950
6951         /* See if any other pools are set for this VLAN filter
6952          * entry other than the PF.
6953          */
6954         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6955         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6956         bits &= rd32(E1000_VLVF(idx));
6957
6958         /* Disable the filter so this falls into the default pool. */
6959         if (!bits) {
6960                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6961                         wr32(E1000_VLVF(idx), BIT(pf_id));
6962                 else
6963                         wr32(E1000_VLVF(idx), 0);
6964         }
6965 }
6966
6967 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6968                            bool add, u32 vf)
6969 {
6970         int pf_id = adapter->vfs_allocated_count;
6971         struct e1000_hw *hw = &adapter->hw;
6972         int err;
6973
6974         /* If VLAN overlaps with one the PF is currently monitoring make
6975          * sure that we are able to allocate a VLVF entry.  This may be
6976          * redundant but it guarantees PF will maintain visibility to
6977          * the VLAN.
6978          */
6979         if (add && test_bit(vid, adapter->active_vlans)) {
6980                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6981                 if (err)
6982                         return err;
6983         }
6984
6985         err = igb_vfta_set(hw, vid, vf, add, false);
6986
6987         if (add && !err)
6988                 return err;
6989
6990         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6991          * we may need to drop the PF pool bit in order to allow us to free
6992          * up the VLVF resources.
6993          */
6994         if (test_bit(vid, adapter->active_vlans) ||
6995             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6996                 igb_update_pf_vlvf(adapter, vid);
6997
6998         return err;
6999 }
7000
7001 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7002 {
7003         struct e1000_hw *hw = &adapter->hw;
7004
7005         if (vid)
7006                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7007         else
7008                 wr32(E1000_VMVIR(vf), 0);
7009 }
7010
7011 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7012                                 u16 vlan, u8 qos)
7013 {
7014         int err;
7015
7016         err = igb_set_vf_vlan(adapter, vlan, true, vf);
7017         if (err)
7018                 return err;
7019
7020         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7021         igb_set_vmolr(adapter, vf, !vlan);
7022
7023         /* revoke access to previous VLAN */
7024         if (vlan != adapter->vf_data[vf].pf_vlan)
7025                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7026                                 false, vf);
7027
7028         adapter->vf_data[vf].pf_vlan = vlan;
7029         adapter->vf_data[vf].pf_qos = qos;
7030         igb_set_vf_vlan_strip(adapter, vf, true);
7031         dev_info(&adapter->pdev->dev,
7032                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7033         if (test_bit(__IGB_DOWN, &adapter->state)) {
7034                 dev_warn(&adapter->pdev->dev,
7035                          "The VF VLAN has been set, but the PF device is not up.\n");
7036                 dev_warn(&adapter->pdev->dev,
7037                          "Bring the PF device up before attempting to use the VF device.\n");
7038         }
7039
7040         return err;
7041 }
7042
7043 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7044 {
7045         /* Restore tagless access via VLAN 0 */
7046         igb_set_vf_vlan(adapter, 0, true, vf);
7047
7048         igb_set_vmvir(adapter, 0, vf);
7049         igb_set_vmolr(adapter, vf, true);
7050
7051         /* Remove any PF assigned VLAN */
7052         if (adapter->vf_data[vf].pf_vlan)
7053                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7054                                 false, vf);
7055
7056         adapter->vf_data[vf].pf_vlan = 0;
7057         adapter->vf_data[vf].pf_qos = 0;
7058         igb_set_vf_vlan_strip(adapter, vf, false);
7059
7060         return 0;
7061 }
7062
7063 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7064                                u16 vlan, u8 qos, __be16 vlan_proto)
7065 {
7066         struct igb_adapter *adapter = netdev_priv(netdev);
7067
7068         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7069                 return -EINVAL;
7070
7071         if (vlan_proto != htons(ETH_P_8021Q))
7072                 return -EPROTONOSUPPORT;
7073
7074         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7075                                igb_disable_port_vlan(adapter, vf);
7076 }
7077
7078 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7079 {
7080         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7081         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7082         int ret;
7083
7084         if (adapter->vf_data[vf].pf_vlan)
7085                 return -1;
7086
7087         /* VLAN 0 is a special case, don't allow it to be removed */
7088         if (!vid && !add)
7089                 return 0;
7090
7091         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7092         if (!ret)
7093                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7094         return ret;
7095 }
7096
7097 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7098 {
7099         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7100
7101         /* clear flags - except flag that indicates PF has set the MAC */
7102         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7103         vf_data->last_nack = jiffies;
7104
7105         /* reset vlans for device */
7106         igb_clear_vf_vfta(adapter, vf);
7107         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7108         igb_set_vmvir(adapter, vf_data->pf_vlan |
7109                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7110         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7111         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7112
7113         /* reset multicast table array for vf */
7114         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7115
7116         /* Flush and reset the mta with the new values */
7117         igb_set_rx_mode(adapter->netdev);
7118 }
7119
7120 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7121 {
7122         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7123
7124         /* clear mac address as we were hotplug removed/added */
7125         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7126                 eth_zero_addr(vf_mac);
7127
7128         /* process remaining reset events */
7129         igb_vf_reset(adapter, vf);
7130 }
7131
7132 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7133 {
7134         struct e1000_hw *hw = &adapter->hw;
7135         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7136         u32 reg, msgbuf[3];
7137         u8 *addr = (u8 *)(&msgbuf[1]);
7138
7139         /* process all the same items cleared in a function level reset */
7140         igb_vf_reset(adapter, vf);
7141
7142         /* set vf mac address */
7143         igb_set_vf_mac(adapter, vf, vf_mac);
7144
7145         /* enable transmit and receive for vf */
7146         reg = rd32(E1000_VFTE);
7147         wr32(E1000_VFTE, reg | BIT(vf));
7148         reg = rd32(E1000_VFRE);
7149         wr32(E1000_VFRE, reg | BIT(vf));
7150
7151         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7152
7153         /* reply to reset with ack and vf mac address */
7154         if (!is_zero_ether_addr(vf_mac)) {
7155                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7156                 memcpy(addr, vf_mac, ETH_ALEN);
7157         } else {
7158                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7159         }
7160         igb_write_mbx(hw, msgbuf, 3, vf);
7161 }
7162
7163 static void igb_flush_mac_table(struct igb_adapter *adapter)
7164 {
7165         struct e1000_hw *hw = &adapter->hw;
7166         int i;
7167
7168         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7169                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7170                 eth_zero_addr(adapter->mac_table[i].addr);
7171                 adapter->mac_table[i].queue = 0;
7172                 igb_rar_set_index(adapter, i);
7173         }
7174 }
7175
7176 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7177 {
7178         struct e1000_hw *hw = &adapter->hw;
7179         /* do not count rar entries reserved for VFs MAC addresses */
7180         int rar_entries = hw->mac.rar_entry_count -
7181                           adapter->vfs_allocated_count;
7182         int i, count = 0;
7183
7184         for (i = 0; i < rar_entries; i++) {
7185                 /* do not count default entries */
7186                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7187                         continue;
7188
7189                 /* do not count "in use" entries for different queues */
7190                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7191                     (adapter->mac_table[i].queue != queue))
7192                         continue;
7193
7194                 count++;
7195         }
7196
7197         return count;
7198 }
7199
7200 /* Set default MAC address for the PF in the first RAR entry */
7201 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7202 {
7203         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7204
7205         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7206         mac_table->queue = adapter->vfs_allocated_count;
7207         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7208
7209         igb_rar_set_index(adapter, 0);
7210 }
7211
7212 /* If the filter to be added and an already existing filter express
7213  * the same address and address type, it should be possible to only
7214  * override the other configurations, for example the queue to steer
7215  * traffic.
7216  */
7217 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7218                                       const u8 *addr, const u8 flags)
7219 {
7220         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7221                 return true;
7222
7223         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7224             (flags & IGB_MAC_STATE_SRC_ADDR))
7225                 return false;
7226
7227         if (!ether_addr_equal(addr, entry->addr))
7228                 return false;
7229
7230         return true;
7231 }
7232
7233 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7234  * 'flags' is used to indicate what kind of match is made, match is by
7235  * default for the destination address, if matching by source address
7236  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7237  */
7238 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7239                                     const u8 *addr, const u8 queue,
7240                                     const u8 flags)
7241 {
7242         struct e1000_hw *hw = &adapter->hw;
7243         int rar_entries = hw->mac.rar_entry_count -
7244                           adapter->vfs_allocated_count;
7245         int i;
7246
7247         if (is_zero_ether_addr(addr))
7248                 return -EINVAL;
7249
7250         /* Search for the first empty entry in the MAC table.
7251          * Do not touch entries at the end of the table reserved for the VF MAC
7252          * addresses.
7253          */
7254         for (i = 0; i < rar_entries; i++) {
7255                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7256                                                addr, flags))
7257                         continue;
7258
7259                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7260                 adapter->mac_table[i].queue = queue;
7261                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7262
7263                 igb_rar_set_index(adapter, i);
7264                 return i;
7265         }
7266
7267         return -ENOSPC;
7268 }
7269
7270 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7271                               const u8 queue)
7272 {
7273         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7274 }
7275
7276 /* Remove a MAC filter for 'addr' directing matching traffic to
7277  * 'queue', 'flags' is used to indicate what kind of match need to be
7278  * removed, match is by default for the destination address, if
7279  * matching by source address is to be removed the flag
7280  * IGB_MAC_STATE_SRC_ADDR can be used.
7281  */
7282 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7283                                     const u8 *addr, const u8 queue,
7284                                     const u8 flags)
7285 {
7286         struct e1000_hw *hw = &adapter->hw;
7287         int rar_entries = hw->mac.rar_entry_count -
7288                           adapter->vfs_allocated_count;
7289         int i;
7290
7291         if (is_zero_ether_addr(addr))
7292                 return -EINVAL;
7293
7294         /* Search for matching entry in the MAC table based on given address
7295          * and queue. Do not touch entries at the end of the table reserved
7296          * for the VF MAC addresses.
7297          */
7298         for (i = 0; i < rar_entries; i++) {
7299                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7300                         continue;
7301                 if ((adapter->mac_table[i].state & flags) != flags)
7302                         continue;
7303                 if (adapter->mac_table[i].queue != queue)
7304                         continue;
7305                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7306                         continue;
7307
7308                 /* When a filter for the default address is "deleted",
7309                  * we return it to its initial configuration
7310                  */
7311                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7312                         adapter->mac_table[i].state =
7313                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7314                         adapter->mac_table[i].queue =
7315                                 adapter->vfs_allocated_count;
7316                 } else {
7317                         adapter->mac_table[i].state = 0;
7318                         adapter->mac_table[i].queue = 0;
7319                         eth_zero_addr(adapter->mac_table[i].addr);
7320                 }
7321
7322                 igb_rar_set_index(adapter, i);
7323                 return 0;
7324         }
7325
7326         return -ENOENT;
7327 }
7328
7329 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7330                               const u8 queue)
7331 {
7332         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7333 }
7334
7335 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7336                                 const u8 *addr, u8 queue, u8 flags)
7337 {
7338         struct e1000_hw *hw = &adapter->hw;
7339
7340         /* In theory, this should be supported on 82575 as well, but
7341          * that part wasn't easily accessible during development.
7342          */
7343         if (hw->mac.type != e1000_i210)
7344                 return -EOPNOTSUPP;
7345
7346         return igb_add_mac_filter_flags(adapter, addr, queue,
7347                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7348 }
7349
7350 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7351                                 const u8 *addr, u8 queue, u8 flags)
7352 {
7353         return igb_del_mac_filter_flags(adapter, addr, queue,
7354                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7355 }
7356
7357 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7358 {
7359         struct igb_adapter *adapter = netdev_priv(netdev);
7360         int ret;
7361
7362         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7363
7364         return min_t(int, ret, 0);
7365 }
7366
7367 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7368 {
7369         struct igb_adapter *adapter = netdev_priv(netdev);
7370
7371         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7372
7373         return 0;
7374 }
7375
7376 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7377                                  const u32 info, const u8 *addr)
7378 {
7379         struct pci_dev *pdev = adapter->pdev;
7380         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7381         struct list_head *pos;
7382         struct vf_mac_filter *entry = NULL;
7383         int ret = 0;
7384
7385         switch (info) {
7386         case E1000_VF_MAC_FILTER_CLR:
7387                 /* remove all unicast MAC filters related to the current VF */
7388                 list_for_each(pos, &adapter->vf_macs.l) {
7389                         entry = list_entry(pos, struct vf_mac_filter, l);
7390                         if (entry->vf == vf) {
7391                                 entry->vf = -1;
7392                                 entry->free = true;
7393                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7394                         }
7395                 }
7396                 break;
7397         case E1000_VF_MAC_FILTER_ADD:
7398                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7399                     !vf_data->trusted) {
7400                         dev_warn(&pdev->dev,
7401                                  "VF %d requested MAC filter but is administratively denied\n",
7402                                  vf);
7403                         return -EINVAL;
7404                 }
7405                 if (!is_valid_ether_addr(addr)) {
7406                         dev_warn(&pdev->dev,
7407                                  "VF %d attempted to set invalid MAC filter\n",
7408                                  vf);
7409                         return -EINVAL;
7410                 }
7411
7412                 /* try to find empty slot in the list */
7413                 list_for_each(pos, &adapter->vf_macs.l) {
7414                         entry = list_entry(pos, struct vf_mac_filter, l);
7415                         if (entry->free)
7416                                 break;
7417                 }
7418
7419                 if (entry && entry->free) {
7420                         entry->free = false;
7421                         entry->vf = vf;
7422                         ether_addr_copy(entry->vf_mac, addr);
7423
7424                         ret = igb_add_mac_filter(adapter, addr, vf);
7425                         ret = min_t(int, ret, 0);
7426                 } else {
7427                         ret = -ENOSPC;
7428                 }
7429
7430                 if (ret == -ENOSPC)
7431                         dev_warn(&pdev->dev,
7432                                  "VF %d has requested MAC filter but there is no space for it\n",
7433                                  vf);
7434                 break;
7435         default:
7436                 ret = -EINVAL;
7437                 break;
7438         }
7439
7440         return ret;
7441 }
7442
7443 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7444 {
7445         struct pci_dev *pdev = adapter->pdev;
7446         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7447         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7448
7449         /* The VF MAC Address is stored in a packed array of bytes
7450          * starting at the second 32 bit word of the msg array
7451          */
7452         unsigned char *addr = (unsigned char *)&msg[1];
7453         int ret = 0;
7454
7455         if (!info) {
7456                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7457                     !vf_data->trusted) {
7458                         dev_warn(&pdev->dev,
7459                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7460                                  vf);
7461                         return -EINVAL;
7462                 }
7463
7464                 if (!is_valid_ether_addr(addr)) {
7465                         dev_warn(&pdev->dev,
7466                                  "VF %d attempted to set invalid MAC\n",
7467                                  vf);
7468                         return -EINVAL;
7469                 }
7470
7471                 ret = igb_set_vf_mac(adapter, vf, addr);
7472         } else {
7473                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7474         }
7475
7476         return ret;
7477 }
7478
7479 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7480 {
7481         struct e1000_hw *hw = &adapter->hw;
7482         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7483         u32 msg = E1000_VT_MSGTYPE_NACK;
7484
7485         /* if device isn't clear to send it shouldn't be reading either */
7486         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7487             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7488                 igb_write_mbx(hw, &msg, 1, vf);
7489                 vf_data->last_nack = jiffies;
7490         }
7491 }
7492
7493 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7494 {
7495         struct pci_dev *pdev = adapter->pdev;
7496         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7497         struct e1000_hw *hw = &adapter->hw;
7498         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7499         s32 retval;
7500
7501         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7502
7503         if (retval) {
7504                 /* if receive failed revoke VF CTS stats and restart init */
7505                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7506                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7507                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7508                         goto unlock;
7509                 goto out;
7510         }
7511
7512         /* this is a message we already processed, do nothing */
7513         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7514                 goto unlock;
7515
7516         /* until the vf completes a reset it should not be
7517          * allowed to start any configuration.
7518          */
7519         if (msgbuf[0] == E1000_VF_RESET) {
7520                 /* unlocks mailbox */
7521                 igb_vf_reset_msg(adapter, vf);
7522                 return;
7523         }
7524
7525         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7526                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7527                         goto unlock;
7528                 retval = -1;
7529                 goto out;
7530         }
7531
7532         switch ((msgbuf[0] & 0xFFFF)) {
7533         case E1000_VF_SET_MAC_ADDR:
7534                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7535                 break;
7536         case E1000_VF_SET_PROMISC:
7537                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7538                 break;
7539         case E1000_VF_SET_MULTICAST:
7540                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7541                 break;
7542         case E1000_VF_SET_LPE:
7543                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7544                 break;
7545         case E1000_VF_SET_VLAN:
7546                 retval = -1;
7547                 if (vf_data->pf_vlan)
7548                         dev_warn(&pdev->dev,
7549                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7550                                  vf);
7551                 else
7552                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7553                 break;
7554         default:
7555                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7556                 retval = -1;
7557                 break;
7558         }
7559
7560         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7561 out:
7562         /* notify the VF of the results of what it sent us */
7563         if (retval)
7564                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7565         else
7566                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7567
7568         /* unlocks mailbox */
7569         igb_write_mbx(hw, msgbuf, 1, vf);
7570         return;
7571
7572 unlock:
7573         igb_unlock_mbx(hw, vf);
7574 }
7575
7576 static void igb_msg_task(struct igb_adapter *adapter)
7577 {
7578         struct e1000_hw *hw = &adapter->hw;
7579         u32 vf;
7580
7581         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7582                 /* process any reset requests */
7583                 if (!igb_check_for_rst(hw, vf))
7584                         igb_vf_reset_event(adapter, vf);
7585
7586                 /* process any messages pending */
7587                 if (!igb_check_for_msg(hw, vf))
7588                         igb_rcv_msg_from_vf(adapter, vf);
7589
7590                 /* process any acks */
7591                 if (!igb_check_for_ack(hw, vf))
7592                         igb_rcv_ack_from_vf(adapter, vf);
7593         }
7594 }
7595
7596 /**
7597  *  igb_set_uta - Set unicast filter table address
7598  *  @adapter: board private structure
7599  *  @set: boolean indicating if we are setting or clearing bits
7600  *
7601  *  The unicast table address is a register array of 32-bit registers.
7602  *  The table is meant to be used in a way similar to how the MTA is used
7603  *  however due to certain limitations in the hardware it is necessary to
7604  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7605  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7606  **/
7607 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7608 {
7609         struct e1000_hw *hw = &adapter->hw;
7610         u32 uta = set ? ~0 : 0;
7611         int i;
7612
7613         /* we only need to do this if VMDq is enabled */
7614         if (!adapter->vfs_allocated_count)
7615                 return;
7616
7617         for (i = hw->mac.uta_reg_count; i--;)
7618                 array_wr32(E1000_UTA, i, uta);
7619 }
7620
7621 /**
7622  *  igb_intr_msi - Interrupt Handler
7623  *  @irq: interrupt number
7624  *  @data: pointer to a network interface device structure
7625  **/
7626 static irqreturn_t igb_intr_msi(int irq, void *data)
7627 {
7628         struct igb_adapter *adapter = data;
7629         struct igb_q_vector *q_vector = adapter->q_vector[0];
7630         struct e1000_hw *hw = &adapter->hw;
7631         /* read ICR disables interrupts using IAM */
7632         u32 icr = rd32(E1000_ICR);
7633
7634         igb_write_itr(q_vector);
7635
7636         if (icr & E1000_ICR_DRSTA)
7637                 schedule_work(&adapter->reset_task);
7638
7639         if (icr & E1000_ICR_DOUTSYNC) {
7640                 /* HW is reporting DMA is out of sync */
7641                 adapter->stats.doosync++;
7642         }
7643
7644         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7645                 hw->mac.get_link_status = 1;
7646                 if (!test_bit(__IGB_DOWN, &adapter->state))
7647                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7648         }
7649
7650         if (icr & E1000_ICR_TS)
7651                 igb_tsync_interrupt(adapter);
7652
7653         napi_schedule(&q_vector->napi);
7654
7655         return IRQ_HANDLED;
7656 }
7657
7658 /**
7659  *  igb_intr - Legacy Interrupt Handler
7660  *  @irq: interrupt number
7661  *  @data: pointer to a network interface device structure
7662  **/
7663 static irqreturn_t igb_intr(int irq, void *data)
7664 {
7665         struct igb_adapter *adapter = data;
7666         struct igb_q_vector *q_vector = adapter->q_vector[0];
7667         struct e1000_hw *hw = &adapter->hw;
7668         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7669          * need for the IMC write
7670          */
7671         u32 icr = rd32(E1000_ICR);
7672
7673         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7674          * not set, then the adapter didn't send an interrupt
7675          */
7676         if (!(icr & E1000_ICR_INT_ASSERTED))
7677                 return IRQ_NONE;
7678
7679         igb_write_itr(q_vector);
7680
7681         if (icr & E1000_ICR_DRSTA)
7682                 schedule_work(&adapter->reset_task);
7683
7684         if (icr & E1000_ICR_DOUTSYNC) {
7685                 /* HW is reporting DMA is out of sync */
7686                 adapter->stats.doosync++;
7687         }
7688
7689         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7690                 hw->mac.get_link_status = 1;
7691                 /* guard against interrupt when we're going down */
7692                 if (!test_bit(__IGB_DOWN, &adapter->state))
7693                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7694         }
7695
7696         if (icr & E1000_ICR_TS)
7697                 igb_tsync_interrupt(adapter);
7698
7699         napi_schedule(&q_vector->napi);
7700
7701         return IRQ_HANDLED;
7702 }
7703
7704 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7705 {
7706         struct igb_adapter *adapter = q_vector->adapter;
7707         struct e1000_hw *hw = &adapter->hw;
7708
7709         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7710             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7711                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7712                         igb_set_itr(q_vector);
7713                 else
7714                         igb_update_ring_itr(q_vector);
7715         }
7716
7717         if (!test_bit(__IGB_DOWN, &adapter->state)) {
7718                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7719                         wr32(E1000_EIMS, q_vector->eims_value);
7720                 else
7721                         igb_irq_enable(adapter);
7722         }
7723 }
7724
7725 /**
7726  *  igb_poll - NAPI Rx polling callback
7727  *  @napi: napi polling structure
7728  *  @budget: count of how many packets we should handle
7729  **/
7730 static int igb_poll(struct napi_struct *napi, int budget)
7731 {
7732         struct igb_q_vector *q_vector = container_of(napi,
7733                                                      struct igb_q_vector,
7734                                                      napi);
7735         bool clean_complete = true;
7736         int work_done = 0;
7737
7738 #ifdef CONFIG_IGB_DCA
7739         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7740                 igb_update_dca(q_vector);
7741 #endif
7742         if (q_vector->tx.ring)
7743                 clean_complete = igb_clean_tx_irq(q_vector, budget);
7744
7745         if (q_vector->rx.ring) {
7746                 int cleaned = igb_clean_rx_irq(q_vector, budget);
7747
7748                 work_done += cleaned;
7749                 if (cleaned >= budget)
7750                         clean_complete = false;
7751         }
7752
7753         /* If all work not completed, return budget and keep polling */
7754         if (!clean_complete)
7755                 return budget;
7756
7757         /* Exit the polling mode, but don't re-enable interrupts if stack might
7758          * poll us due to busy-polling
7759          */
7760         if (likely(napi_complete_done(napi, work_done)))
7761                 igb_ring_irq_enable(q_vector);
7762
7763         return min(work_done, budget - 1);
7764 }
7765
7766 /**
7767  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7768  *  @q_vector: pointer to q_vector containing needed info
7769  *  @napi_budget: Used to determine if we are in netpoll
7770  *
7771  *  returns true if ring is completely cleaned
7772  **/
7773 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7774 {
7775         struct igb_adapter *adapter = q_vector->adapter;
7776         struct igb_ring *tx_ring = q_vector->tx.ring;
7777         struct igb_tx_buffer *tx_buffer;
7778         union e1000_adv_tx_desc *tx_desc;
7779         unsigned int total_bytes = 0, total_packets = 0;
7780         unsigned int budget = q_vector->tx.work_limit;
7781         unsigned int i = tx_ring->next_to_clean;
7782
7783         if (test_bit(__IGB_DOWN, &adapter->state))
7784                 return true;
7785
7786         tx_buffer = &tx_ring->tx_buffer_info[i];
7787         tx_desc = IGB_TX_DESC(tx_ring, i);
7788         i -= tx_ring->count;
7789
7790         do {
7791                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7792
7793                 /* if next_to_watch is not set then there is no work pending */
7794                 if (!eop_desc)
7795                         break;
7796
7797                 /* prevent any other reads prior to eop_desc */
7798                 smp_rmb();
7799
7800                 /* if DD is not set pending work has not been completed */
7801                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7802                         break;
7803
7804                 /* clear next_to_watch to prevent false hangs */
7805                 tx_buffer->next_to_watch = NULL;
7806
7807                 /* update the statistics for this packet */
7808                 total_bytes += tx_buffer->bytecount;
7809                 total_packets += tx_buffer->gso_segs;
7810
7811                 /* free the skb */
7812                 napi_consume_skb(tx_buffer->skb, napi_budget);
7813
7814                 /* unmap skb header data */
7815                 dma_unmap_single(tx_ring->dev,
7816                                  dma_unmap_addr(tx_buffer, dma),
7817                                  dma_unmap_len(tx_buffer, len),
7818                                  DMA_TO_DEVICE);
7819
7820                 /* clear tx_buffer data */
7821                 dma_unmap_len_set(tx_buffer, len, 0);
7822
7823                 /* clear last DMA location and unmap remaining buffers */
7824                 while (tx_desc != eop_desc) {
7825                         tx_buffer++;
7826                         tx_desc++;
7827                         i++;
7828                         if (unlikely(!i)) {
7829                                 i -= tx_ring->count;
7830                                 tx_buffer = tx_ring->tx_buffer_info;
7831                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
7832                         }
7833
7834                         /* unmap any remaining paged data */
7835                         if (dma_unmap_len(tx_buffer, len)) {
7836                                 dma_unmap_page(tx_ring->dev,
7837                                                dma_unmap_addr(tx_buffer, dma),
7838                                                dma_unmap_len(tx_buffer, len),
7839                                                DMA_TO_DEVICE);
7840                                 dma_unmap_len_set(tx_buffer, len, 0);
7841                         }
7842                 }
7843
7844                 /* move us one more past the eop_desc for start of next pkt */
7845                 tx_buffer++;
7846                 tx_desc++;
7847                 i++;
7848                 if (unlikely(!i)) {
7849                         i -= tx_ring->count;
7850                         tx_buffer = tx_ring->tx_buffer_info;
7851                         tx_desc = IGB_TX_DESC(tx_ring, 0);
7852                 }
7853
7854                 /* issue prefetch for next Tx descriptor */
7855                 prefetch(tx_desc);
7856
7857                 /* update budget accounting */
7858                 budget--;
7859         } while (likely(budget));
7860
7861         netdev_tx_completed_queue(txring_txq(tx_ring),
7862                                   total_packets, total_bytes);
7863         i += tx_ring->count;
7864         tx_ring->next_to_clean = i;
7865         u64_stats_update_begin(&tx_ring->tx_syncp);
7866         tx_ring->tx_stats.bytes += total_bytes;
7867         tx_ring->tx_stats.packets += total_packets;
7868         u64_stats_update_end(&tx_ring->tx_syncp);
7869         q_vector->tx.total_bytes += total_bytes;
7870         q_vector->tx.total_packets += total_packets;
7871
7872         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7873                 struct e1000_hw *hw = &adapter->hw;
7874
7875                 /* Detect a transmit hang in hardware, this serializes the
7876                  * check with the clearing of time_stamp and movement of i
7877                  */
7878                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7879                 if (tx_buffer->next_to_watch &&
7880                     time_after(jiffies, tx_buffer->time_stamp +
7881                                (adapter->tx_timeout_factor * HZ)) &&
7882                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7883
7884                         /* detected Tx unit hang */
7885                         dev_err(tx_ring->dev,
7886                                 "Detected Tx Unit Hang\n"
7887                                 "  Tx Queue             <%d>\n"
7888                                 "  TDH                  <%x>\n"
7889                                 "  TDT                  <%x>\n"
7890                                 "  next_to_use          <%x>\n"
7891                                 "  next_to_clean        <%x>\n"
7892                                 "buffer_info[next_to_clean]\n"
7893                                 "  time_stamp           <%lx>\n"
7894                                 "  next_to_watch        <%p>\n"
7895                                 "  jiffies              <%lx>\n"
7896                                 "  desc.status          <%x>\n",
7897                                 tx_ring->queue_index,
7898                                 rd32(E1000_TDH(tx_ring->reg_idx)),
7899                                 readl(tx_ring->tail),
7900                                 tx_ring->next_to_use,
7901                                 tx_ring->next_to_clean,
7902                                 tx_buffer->time_stamp,
7903                                 tx_buffer->next_to_watch,
7904                                 jiffies,
7905                                 tx_buffer->next_to_watch->wb.status);
7906                         netif_stop_subqueue(tx_ring->netdev,
7907                                             tx_ring->queue_index);
7908
7909                         /* we are about to reset, no point in enabling stuff */
7910                         return true;
7911                 }
7912         }
7913
7914 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7915         if (unlikely(total_packets &&
7916             netif_carrier_ok(tx_ring->netdev) &&
7917             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7918                 /* Make sure that anybody stopping the queue after this
7919                  * sees the new next_to_clean.
7920                  */
7921                 smp_mb();
7922                 if (__netif_subqueue_stopped(tx_ring->netdev,
7923                                              tx_ring->queue_index) &&
7924                     !(test_bit(__IGB_DOWN, &adapter->state))) {
7925                         netif_wake_subqueue(tx_ring->netdev,
7926                                             tx_ring->queue_index);
7927
7928                         u64_stats_update_begin(&tx_ring->tx_syncp);
7929                         tx_ring->tx_stats.restart_queue++;
7930                         u64_stats_update_end(&tx_ring->tx_syncp);
7931                 }
7932         }
7933
7934         return !!budget;
7935 }
7936
7937 /**
7938  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7939  *  @rx_ring: rx descriptor ring to store buffers on
7940  *  @old_buff: donor buffer to have page reused
7941  *
7942  *  Synchronizes page for reuse by the adapter
7943  **/
7944 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7945                               struct igb_rx_buffer *old_buff)
7946 {
7947         struct igb_rx_buffer *new_buff;
7948         u16 nta = rx_ring->next_to_alloc;
7949
7950         new_buff = &rx_ring->rx_buffer_info[nta];
7951
7952         /* update, and store next to alloc */
7953         nta++;
7954         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7955
7956         /* Transfer page from old buffer to new buffer.
7957          * Move each member individually to avoid possible store
7958          * forwarding stalls.
7959          */
7960         new_buff->dma           = old_buff->dma;
7961         new_buff->page          = old_buff->page;
7962         new_buff->page_offset   = old_buff->page_offset;
7963         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
7964 }
7965
7966 static inline bool igb_page_is_reserved(struct page *page)
7967 {
7968         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7969 }
7970
7971 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7972 {
7973         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7974         struct page *page = rx_buffer->page;
7975
7976         /* avoid re-using remote pages */
7977         if (unlikely(igb_page_is_reserved(page)))
7978                 return false;
7979
7980 #if (PAGE_SIZE < 8192)
7981         /* if we are only owner of page we can reuse it */
7982         if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7983                 return false;
7984 #else
7985 #define IGB_LAST_OFFSET \
7986         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7987
7988         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7989                 return false;
7990 #endif
7991
7992         /* If we have drained the page fragment pool we need to update
7993          * the pagecnt_bias and page count so that we fully restock the
7994          * number of references the driver holds.
7995          */
7996         if (unlikely(!pagecnt_bias)) {
7997                 page_ref_add(page, USHRT_MAX);
7998                 rx_buffer->pagecnt_bias = USHRT_MAX;
7999         }
8000
8001         return true;
8002 }
8003
8004 /**
8005  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8006  *  @rx_ring: rx descriptor ring to transact packets on
8007  *  @rx_buffer: buffer containing page to add
8008  *  @skb: sk_buff to place the data into
8009  *  @size: size of buffer to be added
8010  *
8011  *  This function will add the data contained in rx_buffer->page to the skb.
8012  **/
8013 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8014                             struct igb_rx_buffer *rx_buffer,
8015                             struct sk_buff *skb,
8016                             unsigned int size)
8017 {
8018 #if (PAGE_SIZE < 8192)
8019         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8020 #else
8021         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8022                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8023                                 SKB_DATA_ALIGN(size);
8024 #endif
8025         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8026                         rx_buffer->page_offset, size, truesize);
8027 #if (PAGE_SIZE < 8192)
8028         rx_buffer->page_offset ^= truesize;
8029 #else
8030         rx_buffer->page_offset += truesize;
8031 #endif
8032 }
8033
8034 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8035                                          struct igb_rx_buffer *rx_buffer,
8036                                          union e1000_adv_rx_desc *rx_desc,
8037                                          unsigned int size)
8038 {
8039         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8040 #if (PAGE_SIZE < 8192)
8041         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8042 #else
8043         unsigned int truesize = SKB_DATA_ALIGN(size);
8044 #endif
8045         unsigned int headlen;
8046         struct sk_buff *skb;
8047
8048         /* prefetch first cache line of first page */
8049         prefetch(va);
8050 #if L1_CACHE_BYTES < 128
8051         prefetch(va + L1_CACHE_BYTES);
8052 #endif
8053
8054         /* allocate a skb to store the frags */
8055         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8056         if (unlikely(!skb))
8057                 return NULL;
8058
8059         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8060                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8061                 va += IGB_TS_HDR_LEN;
8062                 size -= IGB_TS_HDR_LEN;
8063         }
8064
8065         /* Determine available headroom for copy */
8066         headlen = size;
8067         if (headlen > IGB_RX_HDR_LEN)
8068                 headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8069
8070         /* align pull length to size of long to optimize memcpy performance */
8071         memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8072
8073         /* update all of the pointers */
8074         size -= headlen;
8075         if (size) {
8076                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8077                                 (va + headlen) - page_address(rx_buffer->page),
8078                                 size, truesize);
8079 #if (PAGE_SIZE < 8192)
8080                 rx_buffer->page_offset ^= truesize;
8081 #else
8082                 rx_buffer->page_offset += truesize;
8083 #endif
8084         } else {
8085                 rx_buffer->pagecnt_bias++;
8086         }
8087
8088         return skb;
8089 }
8090
8091 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8092                                      struct igb_rx_buffer *rx_buffer,
8093                                      union e1000_adv_rx_desc *rx_desc,
8094                                      unsigned int size)
8095 {
8096         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8097 #if (PAGE_SIZE < 8192)
8098         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8099 #else
8100         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8101                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8102 #endif
8103         struct sk_buff *skb;
8104
8105         /* prefetch first cache line of first page */
8106         prefetch(va);
8107 #if L1_CACHE_BYTES < 128
8108         prefetch(va + L1_CACHE_BYTES);
8109 #endif
8110
8111         /* build an skb around the page buffer */
8112         skb = build_skb(va - IGB_SKB_PAD, truesize);
8113         if (unlikely(!skb))
8114                 return NULL;
8115
8116         /* update pointers within the skb to store the data */
8117         skb_reserve(skb, IGB_SKB_PAD);
8118         __skb_put(skb, size);
8119
8120         /* pull timestamp out of packet data */
8121         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8122                 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8123                 __skb_pull(skb, IGB_TS_HDR_LEN);
8124         }
8125
8126         /* update buffer offset */
8127 #if (PAGE_SIZE < 8192)
8128         rx_buffer->page_offset ^= truesize;
8129 #else
8130         rx_buffer->page_offset += truesize;
8131 #endif
8132
8133         return skb;
8134 }
8135
8136 static inline void igb_rx_checksum(struct igb_ring *ring,
8137                                    union e1000_adv_rx_desc *rx_desc,
8138                                    struct sk_buff *skb)
8139 {
8140         skb_checksum_none_assert(skb);
8141
8142         /* Ignore Checksum bit is set */
8143         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8144                 return;
8145
8146         /* Rx checksum disabled via ethtool */
8147         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8148                 return;
8149
8150         /* TCP/UDP checksum error bit is set */
8151         if (igb_test_staterr(rx_desc,
8152                              E1000_RXDEXT_STATERR_TCPE |
8153                              E1000_RXDEXT_STATERR_IPE)) {
8154                 /* work around errata with sctp packets where the TCPE aka
8155                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8156                  * packets, (aka let the stack check the crc32c)
8157                  */
8158                 if (!((skb->len == 60) &&
8159                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8160                         u64_stats_update_begin(&ring->rx_syncp);
8161                         ring->rx_stats.csum_err++;
8162                         u64_stats_update_end(&ring->rx_syncp);
8163                 }
8164                 /* let the stack verify checksum errors */
8165                 return;
8166         }
8167         /* It must be a TCP or UDP packet with a valid checksum */
8168         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8169                                       E1000_RXD_STAT_UDPCS))
8170                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8171
8172         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8173                 le32_to_cpu(rx_desc->wb.upper.status_error));
8174 }
8175
8176 static inline void igb_rx_hash(struct igb_ring *ring,
8177                                union e1000_adv_rx_desc *rx_desc,
8178                                struct sk_buff *skb)
8179 {
8180         if (ring->netdev->features & NETIF_F_RXHASH)
8181                 skb_set_hash(skb,
8182                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8183                              PKT_HASH_TYPE_L3);
8184 }
8185
8186 /**
8187  *  igb_is_non_eop - process handling of non-EOP buffers
8188  *  @rx_ring: Rx ring being processed
8189  *  @rx_desc: Rx descriptor for current buffer
8190  *  @skb: current socket buffer containing buffer in progress
8191  *
8192  *  This function updates next to clean.  If the buffer is an EOP buffer
8193  *  this function exits returning false, otherwise it will place the
8194  *  sk_buff in the next buffer to be chained and return true indicating
8195  *  that this is in fact a non-EOP buffer.
8196  **/
8197 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8198                            union e1000_adv_rx_desc *rx_desc)
8199 {
8200         u32 ntc = rx_ring->next_to_clean + 1;
8201
8202         /* fetch, update, and store next to clean */
8203         ntc = (ntc < rx_ring->count) ? ntc : 0;
8204         rx_ring->next_to_clean = ntc;
8205
8206         prefetch(IGB_RX_DESC(rx_ring, ntc));
8207
8208         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8209                 return false;
8210
8211         return true;
8212 }
8213
8214 /**
8215  *  igb_cleanup_headers - Correct corrupted or empty headers
8216  *  @rx_ring: rx descriptor ring packet is being transacted on
8217  *  @rx_desc: pointer to the EOP Rx descriptor
8218  *  @skb: pointer to current skb being fixed
8219  *
8220  *  Address the case where we are pulling data in on pages only
8221  *  and as such no data is present in the skb header.
8222  *
8223  *  In addition if skb is not at least 60 bytes we need to pad it so that
8224  *  it is large enough to qualify as a valid Ethernet frame.
8225  *
8226  *  Returns true if an error was encountered and skb was freed.
8227  **/
8228 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8229                                 union e1000_adv_rx_desc *rx_desc,
8230                                 struct sk_buff *skb)
8231 {
8232         if (unlikely((igb_test_staterr(rx_desc,
8233                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8234                 struct net_device *netdev = rx_ring->netdev;
8235                 if (!(netdev->features & NETIF_F_RXALL)) {
8236                         dev_kfree_skb_any(skb);
8237                         return true;
8238                 }
8239         }
8240
8241         /* if eth_skb_pad returns an error the skb was freed */
8242         if (eth_skb_pad(skb))
8243                 return true;
8244
8245         return false;
8246 }
8247
8248 /**
8249  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8250  *  @rx_ring: rx descriptor ring packet is being transacted on
8251  *  @rx_desc: pointer to the EOP Rx descriptor
8252  *  @skb: pointer to current skb being populated
8253  *
8254  *  This function checks the ring, descriptor, and packet information in
8255  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8256  *  other fields within the skb.
8257  **/
8258 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8259                                    union e1000_adv_rx_desc *rx_desc,
8260                                    struct sk_buff *skb)
8261 {
8262         struct net_device *dev = rx_ring->netdev;
8263
8264         igb_rx_hash(rx_ring, rx_desc, skb);
8265
8266         igb_rx_checksum(rx_ring, rx_desc, skb);
8267
8268         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8269             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8270                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8271
8272         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8273             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8274                 u16 vid;
8275
8276                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8277                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8278                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8279                 else
8280                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8281
8282                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8283         }
8284
8285         skb_record_rx_queue(skb, rx_ring->queue_index);
8286
8287         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8288 }
8289
8290 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8291                                                const unsigned int size)
8292 {
8293         struct igb_rx_buffer *rx_buffer;
8294
8295         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8296         prefetchw(rx_buffer->page);
8297
8298         /* we are reusing so sync this buffer for CPU use */
8299         dma_sync_single_range_for_cpu(rx_ring->dev,
8300                                       rx_buffer->dma,
8301                                       rx_buffer->page_offset,
8302                                       size,
8303                                       DMA_FROM_DEVICE);
8304
8305         rx_buffer->pagecnt_bias--;
8306
8307         return rx_buffer;
8308 }
8309
8310 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8311                               struct igb_rx_buffer *rx_buffer)
8312 {
8313         if (igb_can_reuse_rx_page(rx_buffer)) {
8314                 /* hand second half of page back to the ring */
8315                 igb_reuse_rx_page(rx_ring, rx_buffer);
8316         } else {
8317                 /* We are not reusing the buffer so unmap it and free
8318                  * any references we are holding to it
8319                  */
8320                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8321                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8322                                      IGB_RX_DMA_ATTR);
8323                 __page_frag_cache_drain(rx_buffer->page,
8324                                         rx_buffer->pagecnt_bias);
8325         }
8326
8327         /* clear contents of rx_buffer */
8328         rx_buffer->page = NULL;
8329 }
8330
8331 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8332 {
8333         struct igb_ring *rx_ring = q_vector->rx.ring;
8334         struct sk_buff *skb = rx_ring->skb;
8335         unsigned int total_bytes = 0, total_packets = 0;
8336         u16 cleaned_count = igb_desc_unused(rx_ring);
8337
8338         while (likely(total_packets < budget)) {
8339                 union e1000_adv_rx_desc *rx_desc;
8340                 struct igb_rx_buffer *rx_buffer;
8341                 unsigned int size;
8342
8343                 /* return some buffers to hardware, one at a time is too slow */
8344                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8345                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8346                         cleaned_count = 0;
8347                 }
8348
8349                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8350                 size = le16_to_cpu(rx_desc->wb.upper.length);
8351                 if (!size)
8352                         break;
8353
8354                 /* This memory barrier is needed to keep us from reading
8355                  * any other fields out of the rx_desc until we know the
8356                  * descriptor has been written back
8357                  */
8358                 dma_rmb();
8359
8360                 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8361
8362                 /* retrieve a buffer from the ring */
8363                 if (skb)
8364                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8365                 else if (ring_uses_build_skb(rx_ring))
8366                         skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8367                 else
8368                         skb = igb_construct_skb(rx_ring, rx_buffer,
8369                                                 rx_desc, size);
8370
8371                 /* exit if we failed to retrieve a buffer */
8372                 if (!skb) {
8373                         rx_ring->rx_stats.alloc_failed++;
8374                         rx_buffer->pagecnt_bias++;
8375                         break;
8376                 }
8377
8378                 igb_put_rx_buffer(rx_ring, rx_buffer);
8379                 cleaned_count++;
8380
8381                 /* fetch next buffer in frame if non-eop */
8382                 if (igb_is_non_eop(rx_ring, rx_desc))
8383                         continue;
8384
8385                 /* verify the packet layout is correct */
8386                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8387                         skb = NULL;
8388                         continue;
8389                 }
8390
8391                 /* probably a little skewed due to removing CRC */
8392                 total_bytes += skb->len;
8393
8394                 /* populate checksum, timestamp, VLAN, and protocol */
8395                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8396
8397                 napi_gro_receive(&q_vector->napi, skb);
8398
8399                 /* reset skb pointer */
8400                 skb = NULL;
8401
8402                 /* update budget accounting */
8403                 total_packets++;
8404         }
8405
8406         /* place incomplete frames back on ring for completion */
8407         rx_ring->skb = skb;
8408
8409         u64_stats_update_begin(&rx_ring->rx_syncp);
8410         rx_ring->rx_stats.packets += total_packets;
8411         rx_ring->rx_stats.bytes += total_bytes;
8412         u64_stats_update_end(&rx_ring->rx_syncp);
8413         q_vector->rx.total_packets += total_packets;
8414         q_vector->rx.total_bytes += total_bytes;
8415
8416         if (cleaned_count)
8417                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8418
8419         return total_packets;
8420 }
8421
8422 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8423 {
8424         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8425 }
8426
8427 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8428                                   struct igb_rx_buffer *bi)
8429 {
8430         struct page *page = bi->page;
8431         dma_addr_t dma;
8432
8433         /* since we are recycling buffers we should seldom need to alloc */
8434         if (likely(page))
8435                 return true;
8436
8437         /* alloc new page for storage */
8438         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8439         if (unlikely(!page)) {
8440                 rx_ring->rx_stats.alloc_failed++;
8441                 return false;
8442         }
8443
8444         /* map page for use */
8445         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8446                                  igb_rx_pg_size(rx_ring),
8447                                  DMA_FROM_DEVICE,
8448                                  IGB_RX_DMA_ATTR);
8449
8450         /* if mapping failed free memory back to system since
8451          * there isn't much point in holding memory we can't use
8452          */
8453         if (dma_mapping_error(rx_ring->dev, dma)) {
8454                 __free_pages(page, igb_rx_pg_order(rx_ring));
8455
8456                 rx_ring->rx_stats.alloc_failed++;
8457                 return false;
8458         }
8459
8460         bi->dma = dma;
8461         bi->page = page;
8462         bi->page_offset = igb_rx_offset(rx_ring);
8463         bi->pagecnt_bias = 1;
8464
8465         return true;
8466 }
8467
8468 /**
8469  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8470  *  @adapter: address of board private structure
8471  **/
8472 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8473 {
8474         union e1000_adv_rx_desc *rx_desc;
8475         struct igb_rx_buffer *bi;
8476         u16 i = rx_ring->next_to_use;
8477         u16 bufsz;
8478
8479         /* nothing to do */
8480         if (!cleaned_count)
8481                 return;
8482
8483         rx_desc = IGB_RX_DESC(rx_ring, i);
8484         bi = &rx_ring->rx_buffer_info[i];
8485         i -= rx_ring->count;
8486
8487         bufsz = igb_rx_bufsz(rx_ring);
8488
8489         do {
8490                 if (!igb_alloc_mapped_page(rx_ring, bi))
8491                         break;
8492
8493                 /* sync the buffer for use by the device */
8494                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8495                                                  bi->page_offset, bufsz,
8496                                                  DMA_FROM_DEVICE);
8497
8498                 /* Refresh the desc even if buffer_addrs didn't change
8499                  * because each write-back erases this info.
8500                  */
8501                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8502
8503                 rx_desc++;
8504                 bi++;
8505                 i++;
8506                 if (unlikely(!i)) {
8507                         rx_desc = IGB_RX_DESC(rx_ring, 0);
8508                         bi = rx_ring->rx_buffer_info;
8509                         i -= rx_ring->count;
8510                 }
8511
8512                 /* clear the length for the next_to_use descriptor */
8513                 rx_desc->wb.upper.length = 0;
8514
8515                 cleaned_count--;
8516         } while (cleaned_count);
8517
8518         i += rx_ring->count;
8519
8520         if (rx_ring->next_to_use != i) {
8521                 /* record the next descriptor to use */
8522                 rx_ring->next_to_use = i;
8523
8524                 /* update next to alloc since we have filled the ring */
8525                 rx_ring->next_to_alloc = i;
8526
8527                 /* Force memory writes to complete before letting h/w
8528                  * know there are new descriptors to fetch.  (Only
8529                  * applicable for weak-ordered memory model archs,
8530                  * such as IA-64).
8531                  */
8532                 dma_wmb();
8533                 writel(i, rx_ring->tail);
8534         }
8535 }
8536
8537 /**
8538  * igb_mii_ioctl -
8539  * @netdev:
8540  * @ifreq:
8541  * @cmd:
8542  **/
8543 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8544 {
8545         struct igb_adapter *adapter = netdev_priv(netdev);
8546         struct mii_ioctl_data *data = if_mii(ifr);
8547
8548         if (adapter->hw.phy.media_type != e1000_media_type_copper)
8549                 return -EOPNOTSUPP;
8550
8551         switch (cmd) {
8552         case SIOCGMIIPHY:
8553                 data->phy_id = adapter->hw.phy.addr;
8554                 break;
8555         case SIOCGMIIREG:
8556                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8557                                      &data->val_out))
8558                         return -EIO;
8559                 break;
8560         case SIOCSMIIREG:
8561         default:
8562                 return -EOPNOTSUPP;
8563         }
8564         return 0;
8565 }
8566
8567 /**
8568  * igb_ioctl -
8569  * @netdev:
8570  * @ifreq:
8571  * @cmd:
8572  **/
8573 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8574 {
8575         switch (cmd) {
8576         case SIOCGMIIPHY:
8577         case SIOCGMIIREG:
8578         case SIOCSMIIREG:
8579                 return igb_mii_ioctl(netdev, ifr, cmd);
8580         case SIOCGHWTSTAMP:
8581                 return igb_ptp_get_ts_config(netdev, ifr);
8582         case SIOCSHWTSTAMP:
8583                 return igb_ptp_set_ts_config(netdev, ifr);
8584         default:
8585                 return -EOPNOTSUPP;
8586         }
8587 }
8588
8589 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8590 {
8591         struct igb_adapter *adapter = hw->back;
8592
8593         pci_read_config_word(adapter->pdev, reg, value);
8594 }
8595
8596 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8597 {
8598         struct igb_adapter *adapter = hw->back;
8599
8600         pci_write_config_word(adapter->pdev, reg, *value);
8601 }
8602
8603 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8604 {
8605         struct igb_adapter *adapter = hw->back;
8606
8607         if (pcie_capability_read_word(adapter->pdev, reg, value))
8608                 return -E1000_ERR_CONFIG;
8609
8610         return 0;
8611 }
8612
8613 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8614 {
8615         struct igb_adapter *adapter = hw->back;
8616
8617         if (pcie_capability_write_word(adapter->pdev, reg, *value))
8618                 return -E1000_ERR_CONFIG;
8619
8620         return 0;
8621 }
8622
8623 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8624 {
8625         struct igb_adapter *adapter = netdev_priv(netdev);
8626         struct e1000_hw *hw = &adapter->hw;
8627         u32 ctrl, rctl;
8628         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8629
8630         if (enable) {
8631                 /* enable VLAN tag insert/strip */
8632                 ctrl = rd32(E1000_CTRL);
8633                 ctrl |= E1000_CTRL_VME;
8634                 wr32(E1000_CTRL, ctrl);
8635
8636                 /* Disable CFI check */
8637                 rctl = rd32(E1000_RCTL);
8638                 rctl &= ~E1000_RCTL_CFIEN;
8639                 wr32(E1000_RCTL, rctl);
8640         } else {
8641                 /* disable VLAN tag insert/strip */
8642                 ctrl = rd32(E1000_CTRL);
8643                 ctrl &= ~E1000_CTRL_VME;
8644                 wr32(E1000_CTRL, ctrl);
8645         }
8646
8647         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8648 }
8649
8650 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8651                                __be16 proto, u16 vid)
8652 {
8653         struct igb_adapter *adapter = netdev_priv(netdev);
8654         struct e1000_hw *hw = &adapter->hw;
8655         int pf_id = adapter->vfs_allocated_count;
8656
8657         /* add the filter since PF can receive vlans w/o entry in vlvf */
8658         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8659                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8660
8661         set_bit(vid, adapter->active_vlans);
8662
8663         return 0;
8664 }
8665
8666 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8667                                 __be16 proto, u16 vid)
8668 {
8669         struct igb_adapter *adapter = netdev_priv(netdev);
8670         int pf_id = adapter->vfs_allocated_count;
8671         struct e1000_hw *hw = &adapter->hw;
8672
8673         /* remove VID from filter table */
8674         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8675                 igb_vfta_set(hw, vid, pf_id, false, true);
8676
8677         clear_bit(vid, adapter->active_vlans);
8678
8679         return 0;
8680 }
8681
8682 static void igb_restore_vlan(struct igb_adapter *adapter)
8683 {
8684         u16 vid = 1;
8685
8686         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8687         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8688
8689         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8690                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8691 }
8692
8693 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8694 {
8695         struct pci_dev *pdev = adapter->pdev;
8696         struct e1000_mac_info *mac = &adapter->hw.mac;
8697
8698         mac->autoneg = 0;
8699
8700         /* Make sure dplx is at most 1 bit and lsb of speed is not set
8701          * for the switch() below to work
8702          */
8703         if ((spd & 1) || (dplx & ~1))
8704                 goto err_inval;
8705
8706         /* Fiber NIC's only allow 1000 gbps Full duplex
8707          * and 100Mbps Full duplex for 100baseFx sfp
8708          */
8709         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8710                 switch (spd + dplx) {
8711                 case SPEED_10 + DUPLEX_HALF:
8712                 case SPEED_10 + DUPLEX_FULL:
8713                 case SPEED_100 + DUPLEX_HALF:
8714                         goto err_inval;
8715                 default:
8716                         break;
8717                 }
8718         }
8719
8720         switch (spd + dplx) {
8721         case SPEED_10 + DUPLEX_HALF:
8722                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8723                 break;
8724         case SPEED_10 + DUPLEX_FULL:
8725                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8726                 break;
8727         case SPEED_100 + DUPLEX_HALF:
8728                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8729                 break;
8730         case SPEED_100 + DUPLEX_FULL:
8731                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8732                 break;
8733         case SPEED_1000 + DUPLEX_FULL:
8734                 mac->autoneg = 1;
8735                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8736                 break;
8737         case SPEED_1000 + DUPLEX_HALF: /* not supported */
8738         default:
8739                 goto err_inval;
8740         }
8741
8742         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8743         adapter->hw.phy.mdix = AUTO_ALL_MODES;
8744
8745         return 0;
8746
8747 err_inval:
8748         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8749         return -EINVAL;
8750 }
8751
8752 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8753                           bool runtime)
8754 {
8755         struct net_device *netdev = pci_get_drvdata(pdev);
8756         struct igb_adapter *adapter = netdev_priv(netdev);
8757         struct e1000_hw *hw = &adapter->hw;
8758         u32 ctrl, rctl, status;
8759         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8760         bool wake;
8761
8762         rtnl_lock();
8763         netif_device_detach(netdev);
8764
8765         if (netif_running(netdev))
8766                 __igb_close(netdev, true);
8767
8768         igb_ptp_suspend(adapter);
8769
8770         igb_clear_interrupt_scheme(adapter);
8771         rtnl_unlock();
8772
8773         status = rd32(E1000_STATUS);
8774         if (status & E1000_STATUS_LU)
8775                 wufc &= ~E1000_WUFC_LNKC;
8776
8777         if (wufc) {
8778                 igb_setup_rctl(adapter);
8779                 igb_set_rx_mode(netdev);
8780
8781                 /* turn on all-multi mode if wake on multicast is enabled */
8782                 if (wufc & E1000_WUFC_MC) {
8783                         rctl = rd32(E1000_RCTL);
8784                         rctl |= E1000_RCTL_MPE;
8785                         wr32(E1000_RCTL, rctl);
8786                 }
8787
8788                 ctrl = rd32(E1000_CTRL);
8789                 ctrl |= E1000_CTRL_ADVD3WUC;
8790                 wr32(E1000_CTRL, ctrl);
8791
8792                 /* Allow time for pending master requests to run */
8793                 igb_disable_pcie_master(hw);
8794
8795                 wr32(E1000_WUC, E1000_WUC_PME_EN);
8796                 wr32(E1000_WUFC, wufc);
8797         } else {
8798                 wr32(E1000_WUC, 0);
8799                 wr32(E1000_WUFC, 0);
8800         }
8801
8802         wake = wufc || adapter->en_mng_pt;
8803         if (!wake)
8804                 igb_power_down_link(adapter);
8805         else
8806                 igb_power_up_link(adapter);
8807
8808         if (enable_wake)
8809                 *enable_wake = wake;
8810
8811         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
8812          * would have already happened in close and is redundant.
8813          */
8814         igb_release_hw_control(adapter);
8815
8816         pci_disable_device(pdev);
8817
8818         return 0;
8819 }
8820
8821 static void igb_deliver_wake_packet(struct net_device *netdev)
8822 {
8823         struct igb_adapter *adapter = netdev_priv(netdev);
8824         struct e1000_hw *hw = &adapter->hw;
8825         struct sk_buff *skb;
8826         u32 wupl;
8827
8828         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8829
8830         /* WUPM stores only the first 128 bytes of the wake packet.
8831          * Read the packet only if we have the whole thing.
8832          */
8833         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8834                 return;
8835
8836         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8837         if (!skb)
8838                 return;
8839
8840         skb_put(skb, wupl);
8841
8842         /* Ensure reads are 32-bit aligned */
8843         wupl = roundup(wupl, 4);
8844
8845         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8846
8847         skb->protocol = eth_type_trans(skb, netdev);
8848         netif_rx(skb);
8849 }
8850
8851 static int __maybe_unused igb_suspend(struct device *dev)
8852 {
8853         return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8854 }
8855
8856 static int __maybe_unused igb_resume(struct device *dev)
8857 {
8858         struct pci_dev *pdev = to_pci_dev(dev);
8859         struct net_device *netdev = pci_get_drvdata(pdev);
8860         struct igb_adapter *adapter = netdev_priv(netdev);
8861         struct e1000_hw *hw = &adapter->hw;
8862         u32 err, val;
8863
8864         pci_set_power_state(pdev, PCI_D0);
8865         pci_restore_state(pdev);
8866         pci_save_state(pdev);
8867
8868         if (!pci_device_is_present(pdev))
8869                 return -ENODEV;
8870         err = pci_enable_device_mem(pdev);
8871         if (err) {
8872                 dev_err(&pdev->dev,
8873                         "igb: Cannot enable PCI device from suspend\n");
8874                 return err;
8875         }
8876         pci_set_master(pdev);
8877
8878         pci_enable_wake(pdev, PCI_D3hot, 0);
8879         pci_enable_wake(pdev, PCI_D3cold, 0);
8880
8881         if (igb_init_interrupt_scheme(adapter, true)) {
8882                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8883                 return -ENOMEM;
8884         }
8885
8886         igb_reset(adapter);
8887
8888         /* let the f/w know that the h/w is now under the control of the
8889          * driver.
8890          */
8891         igb_get_hw_control(adapter);
8892
8893         val = rd32(E1000_WUS);
8894         if (val & WAKE_PKT_WUS)
8895                 igb_deliver_wake_packet(netdev);
8896
8897         wr32(E1000_WUS, ~0);
8898
8899         rtnl_lock();
8900         if (!err && netif_running(netdev))
8901                 err = __igb_open(netdev, true);
8902
8903         if (!err)
8904                 netif_device_attach(netdev);
8905         rtnl_unlock();
8906
8907         return err;
8908 }
8909
8910 static int __maybe_unused igb_runtime_idle(struct device *dev)
8911 {
8912         struct net_device *netdev = dev_get_drvdata(dev);
8913         struct igb_adapter *adapter = netdev_priv(netdev);
8914
8915         if (!igb_has_link(adapter))
8916                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8917
8918         return -EBUSY;
8919 }
8920
8921 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8922 {
8923         return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8924 }
8925
8926 static int __maybe_unused igb_runtime_resume(struct device *dev)
8927 {
8928         return igb_resume(dev);
8929 }
8930
8931 static void igb_shutdown(struct pci_dev *pdev)
8932 {
8933         bool wake;
8934
8935         __igb_shutdown(pdev, &wake, 0);
8936
8937         if (system_state == SYSTEM_POWER_OFF) {
8938                 pci_wake_from_d3(pdev, wake);
8939                 pci_set_power_state(pdev, PCI_D3hot);
8940         }
8941 }
8942
8943 #ifdef CONFIG_PCI_IOV
8944 static int igb_sriov_reinit(struct pci_dev *dev)
8945 {
8946         struct net_device *netdev = pci_get_drvdata(dev);
8947         struct igb_adapter *adapter = netdev_priv(netdev);
8948         struct pci_dev *pdev = adapter->pdev;
8949
8950         rtnl_lock();
8951
8952         if (netif_running(netdev))
8953                 igb_close(netdev);
8954         else
8955                 igb_reset(adapter);
8956
8957         igb_clear_interrupt_scheme(adapter);
8958
8959         igb_init_queue_configuration(adapter);
8960
8961         if (igb_init_interrupt_scheme(adapter, true)) {
8962                 rtnl_unlock();
8963                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8964                 return -ENOMEM;
8965         }
8966
8967         if (netif_running(netdev))
8968                 igb_open(netdev);
8969
8970         rtnl_unlock();
8971
8972         return 0;
8973 }
8974
8975 static int igb_pci_disable_sriov(struct pci_dev *dev)
8976 {
8977         int err = igb_disable_sriov(dev);
8978
8979         if (!err)
8980                 err = igb_sriov_reinit(dev);
8981
8982         return err;
8983 }
8984
8985 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8986 {
8987         int err = igb_enable_sriov(dev, num_vfs);
8988
8989         if (err)
8990                 goto out;
8991
8992         err = igb_sriov_reinit(dev);
8993         if (!err)
8994                 return num_vfs;
8995
8996 out:
8997         return err;
8998 }
8999
9000 #endif
9001 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9002 {
9003 #ifdef CONFIG_PCI_IOV
9004         if (num_vfs == 0)
9005                 return igb_pci_disable_sriov(dev);
9006         else
9007                 return igb_pci_enable_sriov(dev, num_vfs);
9008 #endif
9009         return 0;
9010 }
9011
9012 /**
9013  *  igb_io_error_detected - called when PCI error is detected
9014  *  @pdev: Pointer to PCI device
9015  *  @state: The current pci connection state
9016  *
9017  *  This function is called after a PCI bus error affecting
9018  *  this device has been detected.
9019  **/
9020 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9021                                               pci_channel_state_t state)
9022 {
9023         struct net_device *netdev = pci_get_drvdata(pdev);
9024         struct igb_adapter *adapter = netdev_priv(netdev);
9025
9026         netif_device_detach(netdev);
9027
9028         if (state == pci_channel_io_perm_failure)
9029                 return PCI_ERS_RESULT_DISCONNECT;
9030
9031         if (netif_running(netdev))
9032                 igb_down(adapter);
9033         pci_disable_device(pdev);
9034
9035         /* Request a slot slot reset. */
9036         return PCI_ERS_RESULT_NEED_RESET;
9037 }
9038
9039 /**
9040  *  igb_io_slot_reset - called after the pci bus has been reset.
9041  *  @pdev: Pointer to PCI device
9042  *
9043  *  Restart the card from scratch, as if from a cold-boot. Implementation
9044  *  resembles the first-half of the igb_resume routine.
9045  **/
9046 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9047 {
9048         struct net_device *netdev = pci_get_drvdata(pdev);
9049         struct igb_adapter *adapter = netdev_priv(netdev);
9050         struct e1000_hw *hw = &adapter->hw;
9051         pci_ers_result_t result;
9052
9053         if (pci_enable_device_mem(pdev)) {
9054                 dev_err(&pdev->dev,
9055                         "Cannot re-enable PCI device after reset.\n");
9056                 result = PCI_ERS_RESULT_DISCONNECT;
9057         } else {
9058                 pci_set_master(pdev);
9059                 pci_restore_state(pdev);
9060                 pci_save_state(pdev);
9061
9062                 pci_enable_wake(pdev, PCI_D3hot, 0);
9063                 pci_enable_wake(pdev, PCI_D3cold, 0);
9064
9065                 /* In case of PCI error, adapter lose its HW address
9066                  * so we should re-assign it here.
9067                  */
9068                 hw->hw_addr = adapter->io_addr;
9069
9070                 igb_reset(adapter);
9071                 wr32(E1000_WUS, ~0);
9072                 result = PCI_ERS_RESULT_RECOVERED;
9073         }
9074
9075         return result;
9076 }
9077
9078 /**
9079  *  igb_io_resume - called when traffic can start flowing again.
9080  *  @pdev: Pointer to PCI device
9081  *
9082  *  This callback is called when the error recovery driver tells us that
9083  *  its OK to resume normal operation. Implementation resembles the
9084  *  second-half of the igb_resume routine.
9085  */
9086 static void igb_io_resume(struct pci_dev *pdev)
9087 {
9088         struct net_device *netdev = pci_get_drvdata(pdev);
9089         struct igb_adapter *adapter = netdev_priv(netdev);
9090
9091         if (netif_running(netdev)) {
9092                 if (igb_up(adapter)) {
9093                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9094                         return;
9095                 }
9096         }
9097
9098         netif_device_attach(netdev);
9099
9100         /* let the f/w know that the h/w is now under the control of the
9101          * driver.
9102          */
9103         igb_get_hw_control(adapter);
9104 }
9105
9106 /**
9107  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9108  *  @adapter: Pointer to adapter structure
9109  *  @index: Index of the RAR entry which need to be synced with MAC table
9110  **/
9111 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9112 {
9113         struct e1000_hw *hw = &adapter->hw;
9114         u32 rar_low, rar_high;
9115         u8 *addr = adapter->mac_table[index].addr;
9116
9117         /* HW expects these to be in network order when they are plugged
9118          * into the registers which are little endian.  In order to guarantee
9119          * that ordering we need to do an leXX_to_cpup here in order to be
9120          * ready for the byteswap that occurs with writel
9121          */
9122         rar_low = le32_to_cpup((__le32 *)(addr));
9123         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9124
9125         /* Indicate to hardware the Address is Valid. */
9126         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9127                 if (is_valid_ether_addr(addr))
9128                         rar_high |= E1000_RAH_AV;
9129
9130                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9131                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9132
9133                 switch (hw->mac.type) {
9134                 case e1000_82575:
9135                 case e1000_i210:
9136                         if (adapter->mac_table[index].state &
9137                             IGB_MAC_STATE_QUEUE_STEERING)
9138                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9139
9140                         rar_high |= E1000_RAH_POOL_1 *
9141                                     adapter->mac_table[index].queue;
9142                         break;
9143                 default:
9144                         rar_high |= E1000_RAH_POOL_1 <<
9145                                     adapter->mac_table[index].queue;
9146                         break;
9147                 }
9148         }
9149
9150         wr32(E1000_RAL(index), rar_low);
9151         wrfl();
9152         wr32(E1000_RAH(index), rar_high);
9153         wrfl();
9154 }
9155
9156 static int igb_set_vf_mac(struct igb_adapter *adapter,
9157                           int vf, unsigned char *mac_addr)
9158 {
9159         struct e1000_hw *hw = &adapter->hw;
9160         /* VF MAC addresses start at end of receive addresses and moves
9161          * towards the first, as a result a collision should not be possible
9162          */
9163         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9164         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9165
9166         ether_addr_copy(vf_mac_addr, mac_addr);
9167         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9168         adapter->mac_table[rar_entry].queue = vf;
9169         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9170         igb_rar_set_index(adapter, rar_entry);
9171
9172         return 0;
9173 }
9174
9175 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9176 {
9177         struct igb_adapter *adapter = netdev_priv(netdev);
9178
9179         if (vf >= adapter->vfs_allocated_count)
9180                 return -EINVAL;
9181
9182         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9183          * flag and allows to overwrite the MAC via VF netdev.  This
9184          * is necessary to allow libvirt a way to restore the original
9185          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9186          * down a VM.
9187          */
9188         if (is_zero_ether_addr(mac)) {
9189                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9190                 dev_info(&adapter->pdev->dev,
9191                          "remove administratively set MAC on VF %d\n",
9192                          vf);
9193         } else if (is_valid_ether_addr(mac)) {
9194                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9195                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9196                          mac, vf);
9197                 dev_info(&adapter->pdev->dev,
9198                          "Reload the VF driver to make this change effective.");
9199                 /* Generate additional warning if PF is down */
9200                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9201                         dev_warn(&adapter->pdev->dev,
9202                                  "The VF MAC address has been set, but the PF device is not up.\n");
9203                         dev_warn(&adapter->pdev->dev,
9204                                  "Bring the PF device up before attempting to use the VF device.\n");
9205                 }
9206         } else {
9207                 return -EINVAL;
9208         }
9209         return igb_set_vf_mac(adapter, vf, mac);
9210 }
9211
9212 static int igb_link_mbps(int internal_link_speed)
9213 {
9214         switch (internal_link_speed) {
9215         case SPEED_100:
9216                 return 100;
9217         case SPEED_1000:
9218                 return 1000;
9219         default:
9220                 return 0;
9221         }
9222 }
9223
9224 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9225                                   int link_speed)
9226 {
9227         int rf_dec, rf_int;
9228         u32 bcnrc_val;
9229
9230         if (tx_rate != 0) {
9231                 /* Calculate the rate factor values to set */
9232                 rf_int = link_speed / tx_rate;
9233                 rf_dec = (link_speed - (rf_int * tx_rate));
9234                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9235                          tx_rate;
9236
9237                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9238                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9239                               E1000_RTTBCNRC_RF_INT_MASK);
9240                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9241         } else {
9242                 bcnrc_val = 0;
9243         }
9244
9245         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9246         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9247          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9248          */
9249         wr32(E1000_RTTBCNRM, 0x14);
9250         wr32(E1000_RTTBCNRC, bcnrc_val);
9251 }
9252
9253 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9254 {
9255         int actual_link_speed, i;
9256         bool reset_rate = false;
9257
9258         /* VF TX rate limit was not set or not supported */
9259         if ((adapter->vf_rate_link_speed == 0) ||
9260             (adapter->hw.mac.type != e1000_82576))
9261                 return;
9262
9263         actual_link_speed = igb_link_mbps(adapter->link_speed);
9264         if (actual_link_speed != adapter->vf_rate_link_speed) {
9265                 reset_rate = true;
9266                 adapter->vf_rate_link_speed = 0;
9267                 dev_info(&adapter->pdev->dev,
9268                          "Link speed has been changed. VF Transmit rate is disabled\n");
9269         }
9270
9271         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9272                 if (reset_rate)
9273                         adapter->vf_data[i].tx_rate = 0;
9274
9275                 igb_set_vf_rate_limit(&adapter->hw, i,
9276                                       adapter->vf_data[i].tx_rate,
9277                                       actual_link_speed);
9278         }
9279 }
9280
9281 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9282                              int min_tx_rate, int max_tx_rate)
9283 {
9284         struct igb_adapter *adapter = netdev_priv(netdev);
9285         struct e1000_hw *hw = &adapter->hw;
9286         int actual_link_speed;
9287
9288         if (hw->mac.type != e1000_82576)
9289                 return -EOPNOTSUPP;
9290
9291         if (min_tx_rate)
9292                 return -EINVAL;
9293
9294         actual_link_speed = igb_link_mbps(adapter->link_speed);
9295         if ((vf >= adapter->vfs_allocated_count) ||
9296             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9297             (max_tx_rate < 0) ||
9298             (max_tx_rate > actual_link_speed))
9299                 return -EINVAL;
9300
9301         adapter->vf_rate_link_speed = actual_link_speed;
9302         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9303         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9304
9305         return 0;
9306 }
9307
9308 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9309                                    bool setting)
9310 {
9311         struct igb_adapter *adapter = netdev_priv(netdev);
9312         struct e1000_hw *hw = &adapter->hw;
9313         u32 reg_val, reg_offset;
9314
9315         if (!adapter->vfs_allocated_count)
9316                 return -EOPNOTSUPP;
9317
9318         if (vf >= adapter->vfs_allocated_count)
9319                 return -EINVAL;
9320
9321         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9322         reg_val = rd32(reg_offset);
9323         if (setting)
9324                 reg_val |= (BIT(vf) |
9325                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9326         else
9327                 reg_val &= ~(BIT(vf) |
9328                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9329         wr32(reg_offset, reg_val);
9330
9331         adapter->vf_data[vf].spoofchk_enabled = setting;
9332         return 0;
9333 }
9334
9335 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9336 {
9337         struct igb_adapter *adapter = netdev_priv(netdev);
9338
9339         if (vf >= adapter->vfs_allocated_count)
9340                 return -EINVAL;
9341         if (adapter->vf_data[vf].trusted == setting)
9342                 return 0;
9343
9344         adapter->vf_data[vf].trusted = setting;
9345
9346         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9347                  vf, setting ? "" : "not ");
9348         return 0;
9349 }
9350
9351 static int igb_ndo_get_vf_config(struct net_device *netdev,
9352                                  int vf, struct ifla_vf_info *ivi)
9353 {
9354         struct igb_adapter *adapter = netdev_priv(netdev);
9355         if (vf >= adapter->vfs_allocated_count)
9356                 return -EINVAL;
9357         ivi->vf = vf;
9358         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9359         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9360         ivi->min_tx_rate = 0;
9361         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9362         ivi->qos = adapter->vf_data[vf].pf_qos;
9363         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9364         ivi->trusted = adapter->vf_data[vf].trusted;
9365         return 0;
9366 }
9367
9368 static void igb_vmm_control(struct igb_adapter *adapter)
9369 {
9370         struct e1000_hw *hw = &adapter->hw;
9371         u32 reg;
9372
9373         switch (hw->mac.type) {
9374         case e1000_82575:
9375         case e1000_i210:
9376         case e1000_i211:
9377         case e1000_i354:
9378         default:
9379                 /* replication is not supported for 82575 */
9380                 return;
9381         case e1000_82576:
9382                 /* notify HW that the MAC is adding vlan tags */
9383                 reg = rd32(E1000_DTXCTL);
9384                 reg |= E1000_DTXCTL_VLAN_ADDED;
9385                 wr32(E1000_DTXCTL, reg);
9386                 fallthrough;
9387         case e1000_82580:
9388                 /* enable replication vlan tag stripping */
9389                 reg = rd32(E1000_RPLOLR);
9390                 reg |= E1000_RPLOLR_STRVLAN;
9391                 wr32(E1000_RPLOLR, reg);
9392                 fallthrough;
9393         case e1000_i350:
9394                 /* none of the above registers are supported by i350 */
9395                 break;
9396         }
9397
9398         if (adapter->vfs_allocated_count) {
9399                 igb_vmdq_set_loopback_pf(hw, true);
9400                 igb_vmdq_set_replication_pf(hw, true);
9401                 igb_vmdq_set_anti_spoofing_pf(hw, true,
9402                                               adapter->vfs_allocated_count);
9403         } else {
9404                 igb_vmdq_set_loopback_pf(hw, false);
9405                 igb_vmdq_set_replication_pf(hw, false);
9406         }
9407 }
9408
9409 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9410 {
9411         struct e1000_hw *hw = &adapter->hw;
9412         u32 dmac_thr;
9413         u16 hwm;
9414
9415         if (hw->mac.type > e1000_82580) {
9416                 if (adapter->flags & IGB_FLAG_DMAC) {
9417                         u32 reg;
9418
9419                         /* force threshold to 0. */
9420                         wr32(E1000_DMCTXTH, 0);
9421
9422                         /* DMA Coalescing high water mark needs to be greater
9423                          * than the Rx threshold. Set hwm to PBA - max frame
9424                          * size in 16B units, capping it at PBA - 6KB.
9425                          */
9426                         hwm = 64 * (pba - 6);
9427                         reg = rd32(E1000_FCRTC);
9428                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9429                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9430                                 & E1000_FCRTC_RTH_COAL_MASK);
9431                         wr32(E1000_FCRTC, reg);
9432
9433                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9434                          * frame size, capping it at PBA - 10KB.
9435                          */
9436                         dmac_thr = pba - 10;
9437                         reg = rd32(E1000_DMACR);
9438                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9439                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9440                                 & E1000_DMACR_DMACTHR_MASK);
9441
9442                         /* transition to L0x or L1 if available..*/
9443                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9444
9445                         /* watchdog timer= +-1000 usec in 32usec intervals */
9446                         reg |= (1000 >> 5);
9447
9448                         /* Disable BMC-to-OS Watchdog Enable */
9449                         if (hw->mac.type != e1000_i354)
9450                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9451
9452                         wr32(E1000_DMACR, reg);
9453
9454                         /* no lower threshold to disable
9455                          * coalescing(smart fifb)-UTRESH=0
9456                          */
9457                         wr32(E1000_DMCRTRH, 0);
9458
9459                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9460
9461                         wr32(E1000_DMCTLX, reg);
9462
9463                         /* free space in tx packet buffer to wake from
9464                          * DMA coal
9465                          */
9466                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9467                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9468
9469                         /* make low power state decision controlled
9470                          * by DMA coal
9471                          */
9472                         reg = rd32(E1000_PCIEMISC);
9473                         reg &= ~E1000_PCIEMISC_LX_DECISION;
9474                         wr32(E1000_PCIEMISC, reg);
9475                 } /* endif adapter->dmac is not disabled */
9476         } else if (hw->mac.type == e1000_82580) {
9477                 u32 reg = rd32(E1000_PCIEMISC);
9478
9479                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9480                 wr32(E1000_DMACR, 0);
9481         }
9482 }
9483
9484 /**
9485  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9486  *  @hw: pointer to hardware structure
9487  *  @byte_offset: byte offset to read
9488  *  @dev_addr: device address
9489  *  @data: value read
9490  *
9491  *  Performs byte read operation over I2C interface at
9492  *  a specified device address.
9493  **/
9494 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9495                       u8 dev_addr, u8 *data)
9496 {
9497         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9498         struct i2c_client *this_client = adapter->i2c_client;
9499         s32 status;
9500         u16 swfw_mask = 0;
9501
9502         if (!this_client)
9503                 return E1000_ERR_I2C;
9504
9505         swfw_mask = E1000_SWFW_PHY0_SM;
9506
9507         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9508                 return E1000_ERR_SWFW_SYNC;
9509
9510         status = i2c_smbus_read_byte_data(this_client, byte_offset);
9511         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9512
9513         if (status < 0)
9514                 return E1000_ERR_I2C;
9515         else {
9516                 *data = status;
9517                 return 0;
9518         }
9519 }
9520
9521 /**
9522  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9523  *  @hw: pointer to hardware structure
9524  *  @byte_offset: byte offset to write
9525  *  @dev_addr: device address
9526  *  @data: value to write
9527  *
9528  *  Performs byte write operation over I2C interface at
9529  *  a specified device address.
9530  **/
9531 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9532                        u8 dev_addr, u8 data)
9533 {
9534         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9535         struct i2c_client *this_client = adapter->i2c_client;
9536         s32 status;
9537         u16 swfw_mask = E1000_SWFW_PHY0_SM;
9538
9539         if (!this_client)
9540                 return E1000_ERR_I2C;
9541
9542         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9543                 return E1000_ERR_SWFW_SYNC;
9544         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9545         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9546
9547         if (status)
9548                 return E1000_ERR_I2C;
9549         else
9550                 return 0;
9551
9552 }
9553
9554 int igb_reinit_queues(struct igb_adapter *adapter)
9555 {
9556         struct net_device *netdev = adapter->netdev;
9557         struct pci_dev *pdev = adapter->pdev;
9558         int err = 0;
9559
9560         if (netif_running(netdev))
9561                 igb_close(netdev);
9562
9563         igb_reset_interrupt_capability(adapter);
9564
9565         if (igb_init_interrupt_scheme(adapter, true)) {
9566                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9567                 return -ENOMEM;
9568         }
9569
9570         if (netif_running(netdev))
9571                 err = igb_open(netdev);
9572
9573         return err;
9574 }
9575
9576 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9577 {
9578         struct igb_nfc_filter *rule;
9579
9580         spin_lock(&adapter->nfc_lock);
9581
9582         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9583                 igb_erase_filter(adapter, rule);
9584
9585         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9586                 igb_erase_filter(adapter, rule);
9587
9588         spin_unlock(&adapter->nfc_lock);
9589 }
9590
9591 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9592 {
9593         struct igb_nfc_filter *rule;
9594
9595         spin_lock(&adapter->nfc_lock);
9596
9597         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9598                 igb_add_filter(adapter, rule);
9599
9600         spin_unlock(&adapter->nfc_lock);
9601 }
9602 /* igb_main.c */