1c96fe83000a10ea7ce16d809b9009cf3fdb3a55
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 3
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68                                 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70                                 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73         [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112         /* required last entry */
113         {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
141                                           struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160                           netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
170 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172                                int vf, u16 vlan, u8 qos);
173 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
174 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175                                    bool setting);
176 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177                                  struct ifla_vf_info *ivi);
178 static void igb_check_vf_rate_limit(struct igb_adapter *);
179
180 #ifdef CONFIG_PCI_IOV
181 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
182 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
183 static int igb_disable_sriov(struct pci_dev *dev);
184 static int igb_pci_disable_sriov(struct pci_dev *dev);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 static const struct dev_pm_ops igb_pm_ops = {
196         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
197         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
198                         igb_runtime_idle)
199 };
200 #endif
201 static void igb_shutdown(struct pci_dev *);
202 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
203 #ifdef CONFIG_IGB_DCA
204 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
205 static struct notifier_block dca_notifier = {
206         .notifier_call  = igb_notify_dca,
207         .next           = NULL,
208         .priority       = 0
209 };
210 #endif
211 #ifdef CONFIG_NET_POLL_CONTROLLER
212 /* for netdump / net console */
213 static void igb_netpoll(struct net_device *);
214 #endif
215 #ifdef CONFIG_PCI_IOV
216 static unsigned int max_vfs;
217 module_param(max_vfs, uint, 0);
218 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
219 #endif /* CONFIG_PCI_IOV */
220
221 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
222                      pci_channel_state_t);
223 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
224 static void igb_io_resume(struct pci_dev *);
225
226 static const struct pci_error_handlers igb_err_handler = {
227         .error_detected = igb_io_error_detected,
228         .slot_reset = igb_io_slot_reset,
229         .resume = igb_io_resume,
230 };
231
232 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
233
234 static struct pci_driver igb_driver = {
235         .name     = igb_driver_name,
236         .id_table = igb_pci_tbl,
237         .probe    = igb_probe,
238         .remove   = igb_remove,
239 #ifdef CONFIG_PM
240         .driver.pm = &igb_pm_ops,
241 #endif
242         .shutdown = igb_shutdown,
243         .sriov_configure = igb_pci_sriov_configure,
244         .err_handler = &igb_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
248 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
253 static int debug = -1;
254 module_param(debug, int, 0);
255 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
256
257 struct igb_reg_info {
258         u32 ofs;
259         char *name;
260 };
261
262 static const struct igb_reg_info igb_reg_info_tbl[] = {
263
264         /* General Registers */
265         {E1000_CTRL, "CTRL"},
266         {E1000_STATUS, "STATUS"},
267         {E1000_CTRL_EXT, "CTRL_EXT"},
268
269         /* Interrupt Registers */
270         {E1000_ICR, "ICR"},
271
272         /* RX Registers */
273         {E1000_RCTL, "RCTL"},
274         {E1000_RDLEN(0), "RDLEN"},
275         {E1000_RDH(0), "RDH"},
276         {E1000_RDT(0), "RDT"},
277         {E1000_RXDCTL(0), "RXDCTL"},
278         {E1000_RDBAL(0), "RDBAL"},
279         {E1000_RDBAH(0), "RDBAH"},
280
281         /* TX Registers */
282         {E1000_TCTL, "TCTL"},
283         {E1000_TDBAL(0), "TDBAL"},
284         {E1000_TDBAH(0), "TDBAH"},
285         {E1000_TDLEN(0), "TDLEN"},
286         {E1000_TDH(0), "TDH"},
287         {E1000_TDT(0), "TDT"},
288         {E1000_TXDCTL(0), "TXDCTL"},
289         {E1000_TDFH, "TDFH"},
290         {E1000_TDFT, "TDFT"},
291         {E1000_TDFHS, "TDFHS"},
292         {E1000_TDFPC, "TDFPC"},
293
294         /* List Terminator */
295         {}
296 };
297
298 /* igb_regdump - register printout routine */
299 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
300 {
301         int n = 0;
302         char rname[16];
303         u32 regs[8];
304
305         switch (reginfo->ofs) {
306         case E1000_RDLEN(0):
307                 for (n = 0; n < 4; n++)
308                         regs[n] = rd32(E1000_RDLEN(n));
309                 break;
310         case E1000_RDH(0):
311                 for (n = 0; n < 4; n++)
312                         regs[n] = rd32(E1000_RDH(n));
313                 break;
314         case E1000_RDT(0):
315                 for (n = 0; n < 4; n++)
316                         regs[n] = rd32(E1000_RDT(n));
317                 break;
318         case E1000_RXDCTL(0):
319                 for (n = 0; n < 4; n++)
320                         regs[n] = rd32(E1000_RXDCTL(n));
321                 break;
322         case E1000_RDBAL(0):
323                 for (n = 0; n < 4; n++)
324                         regs[n] = rd32(E1000_RDBAL(n));
325                 break;
326         case E1000_RDBAH(0):
327                 for (n = 0; n < 4; n++)
328                         regs[n] = rd32(E1000_RDBAH(n));
329                 break;
330         case E1000_TDBAL(0):
331                 for (n = 0; n < 4; n++)
332                         regs[n] = rd32(E1000_RDBAL(n));
333                 break;
334         case E1000_TDBAH(0):
335                 for (n = 0; n < 4; n++)
336                         regs[n] = rd32(E1000_TDBAH(n));
337                 break;
338         case E1000_TDLEN(0):
339                 for (n = 0; n < 4; n++)
340                         regs[n] = rd32(E1000_TDLEN(n));
341                 break;
342         case E1000_TDH(0):
343                 for (n = 0; n < 4; n++)
344                         regs[n] = rd32(E1000_TDH(n));
345                 break;
346         case E1000_TDT(0):
347                 for (n = 0; n < 4; n++)
348                         regs[n] = rd32(E1000_TDT(n));
349                 break;
350         case E1000_TXDCTL(0):
351                 for (n = 0; n < 4; n++)
352                         regs[n] = rd32(E1000_TXDCTL(n));
353                 break;
354         default:
355                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
356                 return;
357         }
358
359         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
360         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
361                 regs[2], regs[3]);
362 }
363
364 /* igb_dump - Print registers, Tx-rings and Rx-rings */
365 static void igb_dump(struct igb_adapter *adapter)
366 {
367         struct net_device *netdev = adapter->netdev;
368         struct e1000_hw *hw = &adapter->hw;
369         struct igb_reg_info *reginfo;
370         struct igb_ring *tx_ring;
371         union e1000_adv_tx_desc *tx_desc;
372         struct my_u0 { u64 a; u64 b; } *u0;
373         struct igb_ring *rx_ring;
374         union e1000_adv_rx_desc *rx_desc;
375         u32 staterr;
376         u16 i, n;
377
378         if (!netif_msg_hw(adapter))
379                 return;
380
381         /* Print netdevice Info */
382         if (netdev) {
383                 dev_info(&adapter->pdev->dev, "Net device Info\n");
384                 pr_info("Device Name     state            trans_start      last_rx\n");
385                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
386                         netdev->state, dev_trans_start(netdev), netdev->last_rx);
387         }
388
389         /* Print Registers */
390         dev_info(&adapter->pdev->dev, "Register Dump\n");
391         pr_info(" Register Name   Value\n");
392         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
393              reginfo->name; reginfo++) {
394                 igb_regdump(hw, reginfo);
395         }
396
397         /* Print TX Ring Summary */
398         if (!netdev || !netif_running(netdev))
399                 goto exit;
400
401         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
402         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
403         for (n = 0; n < adapter->num_tx_queues; n++) {
404                 struct igb_tx_buffer *buffer_info;
405                 tx_ring = adapter->tx_ring[n];
406                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
407                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
408                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
409                         (u64)dma_unmap_addr(buffer_info, dma),
410                         dma_unmap_len(buffer_info, len),
411                         buffer_info->next_to_watch,
412                         (u64)buffer_info->time_stamp);
413         }
414
415         /* Print TX Rings */
416         if (!netif_msg_tx_done(adapter))
417                 goto rx_ring_summary;
418
419         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
420
421         /* Transmit Descriptor Formats
422          *
423          * Advanced Transmit Descriptor
424          *   +--------------------------------------------------------------+
425          * 0 |         Buffer Address [63:0]                                |
426          *   +--------------------------------------------------------------+
427          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
428          *   +--------------------------------------------------------------+
429          *   63      46 45    40 39 38 36 35 32 31   24             15       0
430          */
431
432         for (n = 0; n < adapter->num_tx_queues; n++) {
433                 tx_ring = adapter->tx_ring[n];
434                 pr_info("------------------------------------\n");
435                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
436                 pr_info("------------------------------------\n");
437                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
438
439                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
440                         const char *next_desc;
441                         struct igb_tx_buffer *buffer_info;
442                         tx_desc = IGB_TX_DESC(tx_ring, i);
443                         buffer_info = &tx_ring->tx_buffer_info[i];
444                         u0 = (struct my_u0 *)tx_desc;
445                         if (i == tx_ring->next_to_use &&
446                             i == tx_ring->next_to_clean)
447                                 next_desc = " NTC/U";
448                         else if (i == tx_ring->next_to_use)
449                                 next_desc = " NTU";
450                         else if (i == tx_ring->next_to_clean)
451                                 next_desc = " NTC";
452                         else
453                                 next_desc = "";
454
455                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
456                                 i, le64_to_cpu(u0->a),
457                                 le64_to_cpu(u0->b),
458                                 (u64)dma_unmap_addr(buffer_info, dma),
459                                 dma_unmap_len(buffer_info, len),
460                                 buffer_info->next_to_watch,
461                                 (u64)buffer_info->time_stamp,
462                                 buffer_info->skb, next_desc);
463
464                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
465                                 print_hex_dump(KERN_INFO, "",
466                                         DUMP_PREFIX_ADDRESS,
467                                         16, 1, buffer_info->skb->data,
468                                         dma_unmap_len(buffer_info, len),
469                                         true);
470                 }
471         }
472
473         /* Print RX Rings Summary */
474 rx_ring_summary:
475         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476         pr_info("Queue [NTU] [NTC]\n");
477         for (n = 0; n < adapter->num_rx_queues; n++) {
478                 rx_ring = adapter->rx_ring[n];
479                 pr_info(" %5d %5X %5X\n",
480                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
481         }
482
483         /* Print RX Rings */
484         if (!netif_msg_rx_status(adapter))
485                 goto exit;
486
487         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488
489         /* Advanced Receive Descriptor (Read) Format
490          *    63                                           1        0
491          *    +-----------------------------------------------------+
492          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
493          *    +----------------------------------------------+------+
494          *  8 |       Header Buffer Address [63:1]           |  DD  |
495          *    +-----------------------------------------------------+
496          *
497          *
498          * Advanced Receive Descriptor (Write-Back) Format
499          *
500          *   63       48 47    32 31  30      21 20 17 16   4 3     0
501          *   +------------------------------------------------------+
502          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
503          *   | Checksum   Ident  |   |           |    | Type | Type |
504          *   +------------------------------------------------------+
505          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506          *   +------------------------------------------------------+
507          *   63       48 47    32 31            20 19               0
508          */
509
510         for (n = 0; n < adapter->num_rx_queues; n++) {
511                 rx_ring = adapter->rx_ring[n];
512                 pr_info("------------------------------------\n");
513                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514                 pr_info("------------------------------------\n");
515                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
516                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
517
518                 for (i = 0; i < rx_ring->count; i++) {
519                         const char *next_desc;
520                         struct igb_rx_buffer *buffer_info;
521                         buffer_info = &rx_ring->rx_buffer_info[i];
522                         rx_desc = IGB_RX_DESC(rx_ring, i);
523                         u0 = (struct my_u0 *)rx_desc;
524                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
525
526                         if (i == rx_ring->next_to_use)
527                                 next_desc = " NTU";
528                         else if (i == rx_ring->next_to_clean)
529                                 next_desc = " NTC";
530                         else
531                                 next_desc = "";
532
533                         if (staterr & E1000_RXD_STAT_DD) {
534                                 /* Descriptor Done */
535                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
536                                         "RWB", i,
537                                         le64_to_cpu(u0->a),
538                                         le64_to_cpu(u0->b),
539                                         next_desc);
540                         } else {
541                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
542                                         "R  ", i,
543                                         le64_to_cpu(u0->a),
544                                         le64_to_cpu(u0->b),
545                                         (u64)buffer_info->dma,
546                                         next_desc);
547
548                                 if (netif_msg_pktdata(adapter) &&
549                                     buffer_info->dma && buffer_info->page) {
550                                         print_hex_dump(KERN_INFO, "",
551                                           DUMP_PREFIX_ADDRESS,
552                                           16, 1,
553                                           page_address(buffer_info->page) +
554                                                       buffer_info->page_offset,
555                                           IGB_RX_BUFSZ, true);
556                                 }
557                         }
558                 }
559         }
560
561 exit:
562         return;
563 }
564
565 /**
566  *  igb_get_i2c_data - Reads the I2C SDA data bit
567  *  @hw: pointer to hardware structure
568  *  @i2cctl: Current value of I2CCTL register
569  *
570  *  Returns the I2C data bit value
571  **/
572 static int igb_get_i2c_data(void *data)
573 {
574         struct igb_adapter *adapter = (struct igb_adapter *)data;
575         struct e1000_hw *hw = &adapter->hw;
576         s32 i2cctl = rd32(E1000_I2CPARAMS);
577
578         return !!(i2cctl & E1000_I2C_DATA_IN);
579 }
580
581 /**
582  *  igb_set_i2c_data - Sets the I2C data bit
583  *  @data: pointer to hardware structure
584  *  @state: I2C data value (0 or 1) to set
585  *
586  *  Sets the I2C data bit
587  **/
588 static void igb_set_i2c_data(void *data, int state)
589 {
590         struct igb_adapter *adapter = (struct igb_adapter *)data;
591         struct e1000_hw *hw = &adapter->hw;
592         s32 i2cctl = rd32(E1000_I2CPARAMS);
593
594         if (state)
595                 i2cctl |= E1000_I2C_DATA_OUT;
596         else
597                 i2cctl &= ~E1000_I2C_DATA_OUT;
598
599         i2cctl &= ~E1000_I2C_DATA_OE_N;
600         i2cctl |= E1000_I2C_CLK_OE_N;
601         wr32(E1000_I2CPARAMS, i2cctl);
602         wrfl();
603
604 }
605
606 /**
607  *  igb_set_i2c_clk - Sets the I2C SCL clock
608  *  @data: pointer to hardware structure
609  *  @state: state to set clock
610  *
611  *  Sets the I2C clock line to state
612  **/
613 static void igb_set_i2c_clk(void *data, int state)
614 {
615         struct igb_adapter *adapter = (struct igb_adapter *)data;
616         struct e1000_hw *hw = &adapter->hw;
617         s32 i2cctl = rd32(E1000_I2CPARAMS);
618
619         if (state) {
620                 i2cctl |= E1000_I2C_CLK_OUT;
621                 i2cctl &= ~E1000_I2C_CLK_OE_N;
622         } else {
623                 i2cctl &= ~E1000_I2C_CLK_OUT;
624                 i2cctl &= ~E1000_I2C_CLK_OE_N;
625         }
626         wr32(E1000_I2CPARAMS, i2cctl);
627         wrfl();
628 }
629
630 /**
631  *  igb_get_i2c_clk - Gets the I2C SCL clock state
632  *  @data: pointer to hardware structure
633  *
634  *  Gets the I2C clock state
635  **/
636 static int igb_get_i2c_clk(void *data)
637 {
638         struct igb_adapter *adapter = (struct igb_adapter *)data;
639         struct e1000_hw *hw = &adapter->hw;
640         s32 i2cctl = rd32(E1000_I2CPARAMS);
641
642         return !!(i2cctl & E1000_I2C_CLK_IN);
643 }
644
645 static const struct i2c_algo_bit_data igb_i2c_algo = {
646         .setsda         = igb_set_i2c_data,
647         .setscl         = igb_set_i2c_clk,
648         .getsda         = igb_get_i2c_data,
649         .getscl         = igb_get_i2c_clk,
650         .udelay         = 5,
651         .timeout        = 20,
652 };
653
654 /**
655  *  igb_get_hw_dev - return device
656  *  @hw: pointer to hardware structure
657  *
658  *  used by hardware layer to print debugging information
659  **/
660 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
661 {
662         struct igb_adapter *adapter = hw->back;
663         return adapter->netdev;
664 }
665
666 /**
667  *  igb_init_module - Driver Registration Routine
668  *
669  *  igb_init_module is the first routine called when the driver is
670  *  loaded. All it does is register with the PCI subsystem.
671  **/
672 static int __init igb_init_module(void)
673 {
674         int ret;
675
676         pr_info("%s - version %s\n",
677                igb_driver_string, igb_driver_version);
678         pr_info("%s\n", igb_copyright);
679
680 #ifdef CONFIG_IGB_DCA
681         dca_register_notify(&dca_notifier);
682 #endif
683         ret = pci_register_driver(&igb_driver);
684         return ret;
685 }
686
687 module_init(igb_init_module);
688
689 /**
690  *  igb_exit_module - Driver Exit Cleanup Routine
691  *
692  *  igb_exit_module is called just before the driver is removed
693  *  from memory.
694  **/
695 static void __exit igb_exit_module(void)
696 {
697 #ifdef CONFIG_IGB_DCA
698         dca_unregister_notify(&dca_notifier);
699 #endif
700         pci_unregister_driver(&igb_driver);
701 }
702
703 module_exit(igb_exit_module);
704
705 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
706 /**
707  *  igb_cache_ring_register - Descriptor ring to register mapping
708  *  @adapter: board private structure to initialize
709  *
710  *  Once we know the feature-set enabled for the device, we'll cache
711  *  the register offset the descriptor ring is assigned to.
712  **/
713 static void igb_cache_ring_register(struct igb_adapter *adapter)
714 {
715         int i = 0, j = 0;
716         u32 rbase_offset = adapter->vfs_allocated_count;
717
718         switch (adapter->hw.mac.type) {
719         case e1000_82576:
720                 /* The queues are allocated for virtualization such that VF 0
721                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
722                  * In order to avoid collision we start at the first free queue
723                  * and continue consuming queues in the same sequence
724                  */
725                 if (adapter->vfs_allocated_count) {
726                         for (; i < adapter->rss_queues; i++)
727                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
728                                                                Q_IDX_82576(i);
729                 }
730                 /* Fall through */
731         case e1000_82575:
732         case e1000_82580:
733         case e1000_i350:
734         case e1000_i354:
735         case e1000_i210:
736         case e1000_i211:
737                 /* Fall through */
738         default:
739                 for (; i < adapter->num_rx_queues; i++)
740                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
741                 for (; j < adapter->num_tx_queues; j++)
742                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
743                 break;
744         }
745 }
746
747 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
748 {
749         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
750         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
751         u32 value = 0;
752
753         if (E1000_REMOVED(hw_addr))
754                 return ~value;
755
756         value = readl(&hw_addr[reg]);
757
758         /* reads should not return all F's */
759         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
760                 struct net_device *netdev = igb->netdev;
761                 hw->hw_addr = NULL;
762                 netif_device_detach(netdev);
763                 netdev_err(netdev, "PCIe link lost, device now detached\n");
764         }
765
766         return value;
767 }
768
769 /**
770  *  igb_write_ivar - configure ivar for given MSI-X vector
771  *  @hw: pointer to the HW structure
772  *  @msix_vector: vector number we are allocating to a given ring
773  *  @index: row index of IVAR register to write within IVAR table
774  *  @offset: column offset of in IVAR, should be multiple of 8
775  *
776  *  This function is intended to handle the writing of the IVAR register
777  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
778  *  each containing an cause allocation for an Rx and Tx ring, and a
779  *  variable number of rows depending on the number of queues supported.
780  **/
781 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
782                            int index, int offset)
783 {
784         u32 ivar = array_rd32(E1000_IVAR0, index);
785
786         /* clear any bits that are currently set */
787         ivar &= ~((u32)0xFF << offset);
788
789         /* write vector and valid bit */
790         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
791
792         array_wr32(E1000_IVAR0, index, ivar);
793 }
794
795 #define IGB_N0_QUEUE -1
796 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
797 {
798         struct igb_adapter *adapter = q_vector->adapter;
799         struct e1000_hw *hw = &adapter->hw;
800         int rx_queue = IGB_N0_QUEUE;
801         int tx_queue = IGB_N0_QUEUE;
802         u32 msixbm = 0;
803
804         if (q_vector->rx.ring)
805                 rx_queue = q_vector->rx.ring->reg_idx;
806         if (q_vector->tx.ring)
807                 tx_queue = q_vector->tx.ring->reg_idx;
808
809         switch (hw->mac.type) {
810         case e1000_82575:
811                 /* The 82575 assigns vectors using a bitmask, which matches the
812                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
813                  * or more queues to a vector, we write the appropriate bits
814                  * into the MSIXBM register for that vector.
815                  */
816                 if (rx_queue > IGB_N0_QUEUE)
817                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
818                 if (tx_queue > IGB_N0_QUEUE)
819                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
820                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
821                         msixbm |= E1000_EIMS_OTHER;
822                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
823                 q_vector->eims_value = msixbm;
824                 break;
825         case e1000_82576:
826                 /* 82576 uses a table that essentially consists of 2 columns
827                  * with 8 rows.  The ordering is column-major so we use the
828                  * lower 3 bits as the row index, and the 4th bit as the
829                  * column offset.
830                  */
831                 if (rx_queue > IGB_N0_QUEUE)
832                         igb_write_ivar(hw, msix_vector,
833                                        rx_queue & 0x7,
834                                        (rx_queue & 0x8) << 1);
835                 if (tx_queue > IGB_N0_QUEUE)
836                         igb_write_ivar(hw, msix_vector,
837                                        tx_queue & 0x7,
838                                        ((tx_queue & 0x8) << 1) + 8);
839                 q_vector->eims_value = BIT(msix_vector);
840                 break;
841         case e1000_82580:
842         case e1000_i350:
843         case e1000_i354:
844         case e1000_i210:
845         case e1000_i211:
846                 /* On 82580 and newer adapters the scheme is similar to 82576
847                  * however instead of ordering column-major we have things
848                  * ordered row-major.  So we traverse the table by using
849                  * bit 0 as the column offset, and the remaining bits as the
850                  * row index.
851                  */
852                 if (rx_queue > IGB_N0_QUEUE)
853                         igb_write_ivar(hw, msix_vector,
854                                        rx_queue >> 1,
855                                        (rx_queue & 0x1) << 4);
856                 if (tx_queue > IGB_N0_QUEUE)
857                         igb_write_ivar(hw, msix_vector,
858                                        tx_queue >> 1,
859                                        ((tx_queue & 0x1) << 4) + 8);
860                 q_vector->eims_value = BIT(msix_vector);
861                 break;
862         default:
863                 BUG();
864                 break;
865         }
866
867         /* add q_vector eims value to global eims_enable_mask */
868         adapter->eims_enable_mask |= q_vector->eims_value;
869
870         /* configure q_vector to set itr on first interrupt */
871         q_vector->set_itr = 1;
872 }
873
874 /**
875  *  igb_configure_msix - Configure MSI-X hardware
876  *  @adapter: board private structure to initialize
877  *
878  *  igb_configure_msix sets up the hardware to properly
879  *  generate MSI-X interrupts.
880  **/
881 static void igb_configure_msix(struct igb_adapter *adapter)
882 {
883         u32 tmp;
884         int i, vector = 0;
885         struct e1000_hw *hw = &adapter->hw;
886
887         adapter->eims_enable_mask = 0;
888
889         /* set vector for other causes, i.e. link changes */
890         switch (hw->mac.type) {
891         case e1000_82575:
892                 tmp = rd32(E1000_CTRL_EXT);
893                 /* enable MSI-X PBA support*/
894                 tmp |= E1000_CTRL_EXT_PBA_CLR;
895
896                 /* Auto-Mask interrupts upon ICR read. */
897                 tmp |= E1000_CTRL_EXT_EIAME;
898                 tmp |= E1000_CTRL_EXT_IRCA;
899
900                 wr32(E1000_CTRL_EXT, tmp);
901
902                 /* enable msix_other interrupt */
903                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
904                 adapter->eims_other = E1000_EIMS_OTHER;
905
906                 break;
907
908         case e1000_82576:
909         case e1000_82580:
910         case e1000_i350:
911         case e1000_i354:
912         case e1000_i210:
913         case e1000_i211:
914                 /* Turn on MSI-X capability first, or our settings
915                  * won't stick.  And it will take days to debug.
916                  */
917                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
918                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
919                      E1000_GPIE_NSICR);
920
921                 /* enable msix_other interrupt */
922                 adapter->eims_other = BIT(vector);
923                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
924
925                 wr32(E1000_IVAR_MISC, tmp);
926                 break;
927         default:
928                 /* do nothing, since nothing else supports MSI-X */
929                 break;
930         } /* switch (hw->mac.type) */
931
932         adapter->eims_enable_mask |= adapter->eims_other;
933
934         for (i = 0; i < adapter->num_q_vectors; i++)
935                 igb_assign_vector(adapter->q_vector[i], vector++);
936
937         wrfl();
938 }
939
940 /**
941  *  igb_request_msix - Initialize MSI-X interrupts
942  *  @adapter: board private structure to initialize
943  *
944  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
945  *  kernel.
946  **/
947 static int igb_request_msix(struct igb_adapter *adapter)
948 {
949         struct net_device *netdev = adapter->netdev;
950         int i, err = 0, vector = 0, free_vector = 0;
951
952         err = request_irq(adapter->msix_entries[vector].vector,
953                           igb_msix_other, 0, netdev->name, adapter);
954         if (err)
955                 goto err_out;
956
957         for (i = 0; i < adapter->num_q_vectors; i++) {
958                 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960                 vector++;
961
962                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
963
964                 if (q_vector->rx.ring && q_vector->tx.ring)
965                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966                                 q_vector->rx.ring->queue_index);
967                 else if (q_vector->tx.ring)
968                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969                                 q_vector->tx.ring->queue_index);
970                 else if (q_vector->rx.ring)
971                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972                                 q_vector->rx.ring->queue_index);
973                 else
974                         sprintf(q_vector->name, "%s-unused", netdev->name);
975
976                 err = request_irq(adapter->msix_entries[vector].vector,
977                                   igb_msix_ring, 0, q_vector->name,
978                                   q_vector);
979                 if (err)
980                         goto err_free;
981         }
982
983         igb_configure_msix(adapter);
984         return 0;
985
986 err_free:
987         /* free already assigned IRQs */
988         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990         vector--;
991         for (i = 0; i < vector; i++) {
992                 free_irq(adapter->msix_entries[free_vector++].vector,
993                          adapter->q_vector[i]);
994         }
995 err_out:
996         return err;
997 }
998
999 /**
1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001  *  @adapter: board private structure to initialize
1002  *  @v_idx: Index of vector to be freed
1003  *
1004  *  This function frees the memory allocated to the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010         adapter->q_vector[v_idx] = NULL;
1011
1012         /* igb_get_stats64() might access the rings on this vector,
1013          * we must wait a grace period before freeing it.
1014          */
1015         if (q_vector)
1016                 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020  *  igb_reset_q_vector - Reset config for interrupt vector
1021  *  @adapter: board private structure to initialize
1022  *  @v_idx: Index of vector to be reset
1023  *
1024  *  If NAPI is enabled it will delete any references to the
1025  *  NAPI struct. This is preparation for igb_free_q_vector.
1026  **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032          * allocated. So, q_vector is NULL so we should stop here.
1033          */
1034         if (!q_vector)
1035                 return;
1036
1037         if (q_vector->tx.ring)
1038                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040         if (q_vector->rx.ring)
1041                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043         netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049         int v_idx = adapter->num_q_vectors;
1050
1051         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052                 pci_disable_msix(adapter->pdev);
1053         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054                 pci_disable_msi(adapter->pdev);
1055
1056         while (v_idx--)
1057                 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1062  *  @adapter: board private structure to initialize
1063  *
1064  *  This function frees the memory allocated to the q_vectors.  In addition if
1065  *  NAPI is enabled it will delete any references to the NAPI struct prior
1066  *  to freeing the q_vector.
1067  **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070         int v_idx = adapter->num_q_vectors;
1071
1072         adapter->num_tx_queues = 0;
1073         adapter->num_rx_queues = 0;
1074         adapter->num_q_vectors = 0;
1075
1076         while (v_idx--) {
1077                 igb_reset_q_vector(adapter, v_idx);
1078                 igb_free_q_vector(adapter, v_idx);
1079         }
1080 }
1081
1082 /**
1083  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084  *  @adapter: board private structure to initialize
1085  *
1086  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1087  *  MSI-X interrupts allocated.
1088  */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091         igb_free_q_vectors(adapter);
1092         igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1097  *  @adapter: board private structure to initialize
1098  *  @msix: boolean value of MSIX capability
1099  *
1100  *  Attempt to configure interrupts using the best available
1101  *  capabilities of the hardware and kernel.
1102  **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105         int err;
1106         int numvecs, i;
1107
1108         if (!msix)
1109                 goto msi_only;
1110         adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112         /* Number of supported queues. */
1113         adapter->num_rx_queues = adapter->rss_queues;
1114         if (adapter->vfs_allocated_count)
1115                 adapter->num_tx_queues = 1;
1116         else
1117                 adapter->num_tx_queues = adapter->rss_queues;
1118
1119         /* start with one vector for every Rx queue */
1120         numvecs = adapter->num_rx_queues;
1121
1122         /* if Tx handler is separate add 1 for every Tx queue */
1123         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124                 numvecs += adapter->num_tx_queues;
1125
1126         /* store the number of vectors reserved for queues */
1127         adapter->num_q_vectors = numvecs;
1128
1129         /* add 1 vector for link status interrupts */
1130         numvecs++;
1131         for (i = 0; i < numvecs; i++)
1132                 adapter->msix_entries[i].entry = i;
1133
1134         err = pci_enable_msix_range(adapter->pdev,
1135                                     adapter->msix_entries,
1136                                     numvecs,
1137                                     numvecs);
1138         if (err > 0)
1139                 return;
1140
1141         igb_reset_interrupt_capability(adapter);
1142
1143         /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147         /* disable SR-IOV for non MSI-X configurations */
1148         if (adapter->vf_data) {
1149                 struct e1000_hw *hw = &adapter->hw;
1150                 /* disable iov and allow time for transactions to clear */
1151                 pci_disable_sriov(adapter->pdev);
1152                 msleep(500);
1153
1154                 kfree(adapter->vf_data);
1155                 adapter->vf_data = NULL;
1156                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157                 wrfl();
1158                 msleep(100);
1159                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160         }
1161 #endif
1162         adapter->vfs_allocated_count = 0;
1163         adapter->rss_queues = 1;
1164         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165         adapter->num_rx_queues = 1;
1166         adapter->num_tx_queues = 1;
1167         adapter->num_q_vectors = 1;
1168         if (!pci_enable_msi(adapter->pdev))
1169                 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173                          struct igb_ring_container *head)
1174 {
1175         head->ring = ring;
1176         head->count++;
1177 }
1178
1179 /**
1180  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181  *  @adapter: board private structure to initialize
1182  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1183  *  @v_idx: index of vector in adapter struct
1184  *  @txr_count: total number of Tx rings to allocate
1185  *  @txr_idx: index of first Tx ring to allocate
1186  *  @rxr_count: total number of Rx rings to allocate
1187  *  @rxr_idx: index of first Rx ring to allocate
1188  *
1189  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1190  **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192                               int v_count, int v_idx,
1193                               int txr_count, int txr_idx,
1194                               int rxr_count, int rxr_idx)
1195 {
1196         struct igb_q_vector *q_vector;
1197         struct igb_ring *ring;
1198         int ring_count, size;
1199
1200         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201         if (txr_count > 1 || rxr_count > 1)
1202                 return -ENOMEM;
1203
1204         ring_count = txr_count + rxr_count;
1205         size = sizeof(struct igb_q_vector) +
1206                (sizeof(struct igb_ring) * ring_count);
1207
1208         /* allocate q_vector and rings */
1209         q_vector = adapter->q_vector[v_idx];
1210         if (!q_vector) {
1211                 q_vector = kzalloc(size, GFP_KERNEL);
1212         } else if (size > ksize(q_vector)) {
1213                 kfree_rcu(q_vector, rcu);
1214                 q_vector = kzalloc(size, GFP_KERNEL);
1215         } else {
1216                 memset(q_vector, 0, size);
1217         }
1218         if (!q_vector)
1219                 return -ENOMEM;
1220
1221         /* initialize NAPI */
1222         netif_napi_add(adapter->netdev, &q_vector->napi,
1223                        igb_poll, 64);
1224
1225         /* tie q_vector and adapter together */
1226         adapter->q_vector[v_idx] = q_vector;
1227         q_vector->adapter = adapter;
1228
1229         /* initialize work limits */
1230         q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232         /* initialize ITR configuration */
1233         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234         q_vector->itr_val = IGB_START_ITR;
1235
1236         /* initialize pointer to rings */
1237         ring = q_vector->ring;
1238
1239         /* intialize ITR */
1240         if (rxr_count) {
1241                 /* rx or rx/tx vector */
1242                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243                         q_vector->itr_val = adapter->rx_itr_setting;
1244         } else {
1245                 /* tx only vector */
1246                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247                         q_vector->itr_val = adapter->tx_itr_setting;
1248         }
1249
1250         if (txr_count) {
1251                 /* assign generic ring traits */
1252                 ring->dev = &adapter->pdev->dev;
1253                 ring->netdev = adapter->netdev;
1254
1255                 /* configure backlink on ring */
1256                 ring->q_vector = q_vector;
1257
1258                 /* update q_vector Tx values */
1259                 igb_add_ring(ring, &q_vector->tx);
1260
1261                 /* For 82575, context index must be unique per ring. */
1262                 if (adapter->hw.mac.type == e1000_82575)
1263                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265                 /* apply Tx specific ring traits */
1266                 ring->count = adapter->tx_ring_count;
1267                 ring->queue_index = txr_idx;
1268
1269                 u64_stats_init(&ring->tx_syncp);
1270                 u64_stats_init(&ring->tx_syncp2);
1271
1272                 /* assign ring to adapter */
1273                 adapter->tx_ring[txr_idx] = ring;
1274
1275                 /* push pointer to next ring */
1276                 ring++;
1277         }
1278
1279         if (rxr_count) {
1280                 /* assign generic ring traits */
1281                 ring->dev = &adapter->pdev->dev;
1282                 ring->netdev = adapter->netdev;
1283
1284                 /* configure backlink on ring */
1285                 ring->q_vector = q_vector;
1286
1287                 /* update q_vector Rx values */
1288                 igb_add_ring(ring, &q_vector->rx);
1289
1290                 /* set flag indicating ring supports SCTP checksum offload */
1291                 if (adapter->hw.mac.type >= e1000_82576)
1292                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294                 /* On i350, i354, i210, and i211, loopback VLAN packets
1295                  * have the tag byte-swapped.
1296                  */
1297                 if (adapter->hw.mac.type >= e1000_i350)
1298                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300                 /* apply Rx specific ring traits */
1301                 ring->count = adapter->rx_ring_count;
1302                 ring->queue_index = rxr_idx;
1303
1304                 u64_stats_init(&ring->rx_syncp);
1305
1306                 /* assign ring to adapter */
1307                 adapter->rx_ring[rxr_idx] = ring;
1308         }
1309
1310         return 0;
1311 }
1312
1313
1314 /**
1315  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316  *  @adapter: board private structure to initialize
1317  *
1318  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1319  *  return -ENOMEM.
1320  **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323         int q_vectors = adapter->num_q_vectors;
1324         int rxr_remaining = adapter->num_rx_queues;
1325         int txr_remaining = adapter->num_tx_queues;
1326         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327         int err;
1328
1329         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330                 for (; rxr_remaining; v_idx++) {
1331                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332                                                  0, 0, 1, rxr_idx);
1333
1334                         if (err)
1335                                 goto err_out;
1336
1337                         /* update counts and index */
1338                         rxr_remaining--;
1339                         rxr_idx++;
1340                 }
1341         }
1342
1343         for (; v_idx < q_vectors; v_idx++) {
1344                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348                                          tqpv, txr_idx, rqpv, rxr_idx);
1349
1350                 if (err)
1351                         goto err_out;
1352
1353                 /* update counts and index */
1354                 rxr_remaining -= rqpv;
1355                 txr_remaining -= tqpv;
1356                 rxr_idx++;
1357                 txr_idx++;
1358         }
1359
1360         return 0;
1361
1362 err_out:
1363         adapter->num_tx_queues = 0;
1364         adapter->num_rx_queues = 0;
1365         adapter->num_q_vectors = 0;
1366
1367         while (v_idx--)
1368                 igb_free_q_vector(adapter, v_idx);
1369
1370         return -ENOMEM;
1371 }
1372
1373 /**
1374  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375  *  @adapter: board private structure to initialize
1376  *  @msix: boolean value of MSIX capability
1377  *
1378  *  This function initializes the interrupts and allocates all of the queues.
1379  **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382         struct pci_dev *pdev = adapter->pdev;
1383         int err;
1384
1385         igb_set_interrupt_capability(adapter, msix);
1386
1387         err = igb_alloc_q_vectors(adapter);
1388         if (err) {
1389                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390                 goto err_alloc_q_vectors;
1391         }
1392
1393         igb_cache_ring_register(adapter);
1394
1395         return 0;
1396
1397 err_alloc_q_vectors:
1398         igb_reset_interrupt_capability(adapter);
1399         return err;
1400 }
1401
1402 /**
1403  *  igb_request_irq - initialize interrupts
1404  *  @adapter: board private structure to initialize
1405  *
1406  *  Attempts to configure interrupts using the best available
1407  *  capabilities of the hardware and kernel.
1408  **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411         struct net_device *netdev = adapter->netdev;
1412         struct pci_dev *pdev = adapter->pdev;
1413         int err = 0;
1414
1415         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416                 err = igb_request_msix(adapter);
1417                 if (!err)
1418                         goto request_done;
1419                 /* fall back to MSI */
1420                 igb_free_all_tx_resources(adapter);
1421                 igb_free_all_rx_resources(adapter);
1422
1423                 igb_clear_interrupt_scheme(adapter);
1424                 err = igb_init_interrupt_scheme(adapter, false);
1425                 if (err)
1426                         goto request_done;
1427
1428                 igb_setup_all_tx_resources(adapter);
1429                 igb_setup_all_rx_resources(adapter);
1430                 igb_configure(adapter);
1431         }
1432
1433         igb_assign_vector(adapter->q_vector[0], 0);
1434
1435         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437                                   netdev->name, adapter);
1438                 if (!err)
1439                         goto request_done;
1440
1441                 /* fall back to legacy interrupts */
1442                 igb_reset_interrupt_capability(adapter);
1443                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444         }
1445
1446         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447                           netdev->name, adapter);
1448
1449         if (err)
1450                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451                         err);
1452
1453 request_done:
1454         return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460                 int vector = 0, i;
1461
1462                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464                 for (i = 0; i < adapter->num_q_vectors; i++)
1465                         free_irq(adapter->msix_entries[vector++].vector,
1466                                  adapter->q_vector[i]);
1467         } else {
1468                 free_irq(adapter->pdev->irq, adapter);
1469         }
1470 }
1471
1472 /**
1473  *  igb_irq_disable - Mask off interrupt generation on the NIC
1474  *  @adapter: board private structure
1475  **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478         struct e1000_hw *hw = &adapter->hw;
1479
1480         /* we need to be careful when disabling interrupts.  The VFs are also
1481          * mapped into these registers and so clearing the bits can cause
1482          * issues on the VF drivers so we only need to clear what we set
1483          */
1484         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485                 u32 regval = rd32(E1000_EIAM);
1486
1487                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489                 regval = rd32(E1000_EIAC);
1490                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491         }
1492
1493         wr32(E1000_IAM, 0);
1494         wr32(E1000_IMC, ~0);
1495         wrfl();
1496         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497                 int i;
1498
1499                 for (i = 0; i < adapter->num_q_vectors; i++)
1500                         synchronize_irq(adapter->msix_entries[i].vector);
1501         } else {
1502                 synchronize_irq(adapter->pdev->irq);
1503         }
1504 }
1505
1506 /**
1507  *  igb_irq_enable - Enable default interrupt generation settings
1508  *  @adapter: board private structure
1509  **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512         struct e1000_hw *hw = &adapter->hw;
1513
1514         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516                 u32 regval = rd32(E1000_EIAC);
1517
1518                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519                 regval = rd32(E1000_EIAM);
1520                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522                 if (adapter->vfs_allocated_count) {
1523                         wr32(E1000_MBVFIMR, 0xFF);
1524                         ims |= E1000_IMS_VMMB;
1525                 }
1526                 wr32(E1000_IMS, ims);
1527         } else {
1528                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529                                 E1000_IMS_DRSTA);
1530                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531                                 E1000_IMS_DRSTA);
1532         }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537         struct e1000_hw *hw = &adapter->hw;
1538         u16 pf_id = adapter->vfs_allocated_count;
1539         u16 vid = adapter->hw.mng_cookie.vlan_id;
1540         u16 old_vid = adapter->mng_vlan_id;
1541
1542         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543                 /* add VID to filter table */
1544                 igb_vfta_set(hw, vid, pf_id, true, true);
1545                 adapter->mng_vlan_id = vid;
1546         } else {
1547                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548         }
1549
1550         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551             (vid != old_vid) &&
1552             !test_bit(old_vid, adapter->active_vlans)) {
1553                 /* remove VID from filter table */
1554                 igb_vfta_set(hw, vid, pf_id, false, true);
1555         }
1556 }
1557
1558 /**
1559  *  igb_release_hw_control - release control of the h/w to f/w
1560  *  @adapter: address of board private structure
1561  *
1562  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563  *  For ASF and Pass Through versions of f/w this means that the
1564  *  driver is no longer loaded.
1565  **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568         struct e1000_hw *hw = &adapter->hw;
1569         u32 ctrl_ext;
1570
1571         /* Let firmware take over control of h/w */
1572         ctrl_ext = rd32(E1000_CTRL_EXT);
1573         wr32(E1000_CTRL_EXT,
1574                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578  *  igb_get_hw_control - get control of the h/w from f/w
1579  *  @adapter: address of board private structure
1580  *
1581  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582  *  For ASF and Pass Through versions of f/w this means that
1583  *  the driver is loaded.
1584  **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587         struct e1000_hw *hw = &adapter->hw;
1588         u32 ctrl_ext;
1589
1590         /* Let firmware know the driver has taken over */
1591         ctrl_ext = rd32(E1000_CTRL_EXT);
1592         wr32(E1000_CTRL_EXT,
1593                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
1596 /**
1597  *  igb_configure - configure the hardware for RX and TX
1598  *  @adapter: private board structure
1599  **/
1600 static void igb_configure(struct igb_adapter *adapter)
1601 {
1602         struct net_device *netdev = adapter->netdev;
1603         int i;
1604
1605         igb_get_hw_control(adapter);
1606         igb_set_rx_mode(netdev);
1607
1608         igb_restore_vlan(adapter);
1609
1610         igb_setup_tctl(adapter);
1611         igb_setup_mrqc(adapter);
1612         igb_setup_rctl(adapter);
1613
1614         igb_configure_tx(adapter);
1615         igb_configure_rx(adapter);
1616
1617         igb_rx_fifo_flush_82575(&adapter->hw);
1618
1619         /* call igb_desc_unused which always leaves
1620          * at least 1 descriptor unused to make sure
1621          * next_to_use != next_to_clean
1622          */
1623         for (i = 0; i < adapter->num_rx_queues; i++) {
1624                 struct igb_ring *ring = adapter->rx_ring[i];
1625                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1626         }
1627 }
1628
1629 /**
1630  *  igb_power_up_link - Power up the phy/serdes link
1631  *  @adapter: address of board private structure
1632  **/
1633 void igb_power_up_link(struct igb_adapter *adapter)
1634 {
1635         igb_reset_phy(&adapter->hw);
1636
1637         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1638                 igb_power_up_phy_copper(&adapter->hw);
1639         else
1640                 igb_power_up_serdes_link_82575(&adapter->hw);
1641
1642         igb_setup_link(&adapter->hw);
1643 }
1644
1645 /**
1646  *  igb_power_down_link - Power down the phy/serdes link
1647  *  @adapter: address of board private structure
1648  */
1649 static void igb_power_down_link(struct igb_adapter *adapter)
1650 {
1651         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1652                 igb_power_down_phy_copper_82575(&adapter->hw);
1653         else
1654                 igb_shutdown_serdes_link_82575(&adapter->hw);
1655 }
1656
1657 /**
1658  * Detect and switch function for Media Auto Sense
1659  * @adapter: address of the board private structure
1660  **/
1661 static void igb_check_swap_media(struct igb_adapter *adapter)
1662 {
1663         struct e1000_hw *hw = &adapter->hw;
1664         u32 ctrl_ext, connsw;
1665         bool swap_now = false;
1666
1667         ctrl_ext = rd32(E1000_CTRL_EXT);
1668         connsw = rd32(E1000_CONNSW);
1669
1670         /* need to live swap if current media is copper and we have fiber/serdes
1671          * to go to.
1672          */
1673
1674         if ((hw->phy.media_type == e1000_media_type_copper) &&
1675             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1676                 swap_now = true;
1677         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1678                 /* copper signal takes time to appear */
1679                 if (adapter->copper_tries < 4) {
1680                         adapter->copper_tries++;
1681                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1682                         wr32(E1000_CONNSW, connsw);
1683                         return;
1684                 } else {
1685                         adapter->copper_tries = 0;
1686                         if ((connsw & E1000_CONNSW_PHYSD) &&
1687                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1688                                 swap_now = true;
1689                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1690                                 wr32(E1000_CONNSW, connsw);
1691                         }
1692                 }
1693         }
1694
1695         if (!swap_now)
1696                 return;
1697
1698         switch (hw->phy.media_type) {
1699         case e1000_media_type_copper:
1700                 netdev_info(adapter->netdev,
1701                         "MAS: changing media to fiber/serdes\n");
1702                 ctrl_ext |=
1703                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705                 adapter->copper_tries = 0;
1706                 break;
1707         case e1000_media_type_internal_serdes:
1708         case e1000_media_type_fiber:
1709                 netdev_info(adapter->netdev,
1710                         "MAS: changing media to copper\n");
1711                 ctrl_ext &=
1712                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1713                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1714                 break;
1715         default:
1716                 /* shouldn't get here during regular operation */
1717                 netdev_err(adapter->netdev,
1718                         "AMS: Invalid media type found, returning\n");
1719                 break;
1720         }
1721         wr32(E1000_CTRL_EXT, ctrl_ext);
1722 }
1723
1724 /**
1725  *  igb_up - Open the interface and prepare it to handle traffic
1726  *  @adapter: board private structure
1727  **/
1728 int igb_up(struct igb_adapter *adapter)
1729 {
1730         struct e1000_hw *hw = &adapter->hw;
1731         int i;
1732
1733         /* hardware has been reset, we need to reload some things */
1734         igb_configure(adapter);
1735
1736         clear_bit(__IGB_DOWN, &adapter->state);
1737
1738         for (i = 0; i < adapter->num_q_vectors; i++)
1739                 napi_enable(&(adapter->q_vector[i]->napi));
1740
1741         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1742                 igb_configure_msix(adapter);
1743         else
1744                 igb_assign_vector(adapter->q_vector[0], 0);
1745
1746         /* Clear any pending interrupts. */
1747         rd32(E1000_ICR);
1748         igb_irq_enable(adapter);
1749
1750         /* notify VFs that reset has been completed */
1751         if (adapter->vfs_allocated_count) {
1752                 u32 reg_data = rd32(E1000_CTRL_EXT);
1753
1754                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1755                 wr32(E1000_CTRL_EXT, reg_data);
1756         }
1757
1758         netif_tx_start_all_queues(adapter->netdev);
1759
1760         /* start the watchdog. */
1761         hw->mac.get_link_status = 1;
1762         schedule_work(&adapter->watchdog_task);
1763
1764         if ((adapter->flags & IGB_FLAG_EEE) &&
1765             (!hw->dev_spec._82575.eee_disable))
1766                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1767
1768         return 0;
1769 }
1770
1771 void igb_down(struct igb_adapter *adapter)
1772 {
1773         struct net_device *netdev = adapter->netdev;
1774         struct e1000_hw *hw = &adapter->hw;
1775         u32 tctl, rctl;
1776         int i;
1777
1778         /* signal that we're down so the interrupt handler does not
1779          * reschedule our watchdog timer
1780          */
1781         set_bit(__IGB_DOWN, &adapter->state);
1782
1783         /* disable receives in the hardware */
1784         rctl = rd32(E1000_RCTL);
1785         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1786         /* flush and sleep below */
1787
1788         netif_carrier_off(netdev);
1789         netif_tx_stop_all_queues(netdev);
1790
1791         /* disable transmits in the hardware */
1792         tctl = rd32(E1000_TCTL);
1793         tctl &= ~E1000_TCTL_EN;
1794         wr32(E1000_TCTL, tctl);
1795         /* flush both disables and wait for them to finish */
1796         wrfl();
1797         usleep_range(10000, 11000);
1798
1799         igb_irq_disable(adapter);
1800
1801         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1802
1803         for (i = 0; i < adapter->num_q_vectors; i++) {
1804                 if (adapter->q_vector[i]) {
1805                         napi_synchronize(&adapter->q_vector[i]->napi);
1806                         napi_disable(&adapter->q_vector[i]->napi);
1807                 }
1808         }
1809
1810         del_timer_sync(&adapter->watchdog_timer);
1811         del_timer_sync(&adapter->phy_info_timer);
1812
1813         /* record the stats before reset*/
1814         spin_lock(&adapter->stats64_lock);
1815         igb_update_stats(adapter, &adapter->stats64);
1816         spin_unlock(&adapter->stats64_lock);
1817
1818         adapter->link_speed = 0;
1819         adapter->link_duplex = 0;
1820
1821         if (!pci_channel_offline(adapter->pdev))
1822                 igb_reset(adapter);
1823
1824         /* clear VLAN promisc flag so VFTA will be updated if necessary */
1825         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1826
1827         igb_clean_all_tx_rings(adapter);
1828         igb_clean_all_rx_rings(adapter);
1829 #ifdef CONFIG_IGB_DCA
1830
1831         /* since we reset the hardware DCA settings were cleared */
1832         igb_setup_dca(adapter);
1833 #endif
1834 }
1835
1836 void igb_reinit_locked(struct igb_adapter *adapter)
1837 {
1838         WARN_ON(in_interrupt());
1839         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1840                 usleep_range(1000, 2000);
1841         igb_down(adapter);
1842         igb_up(adapter);
1843         clear_bit(__IGB_RESETTING, &adapter->state);
1844 }
1845
1846 /** igb_enable_mas - Media Autosense re-enable after swap
1847  *
1848  * @adapter: adapter struct
1849  **/
1850 static void igb_enable_mas(struct igb_adapter *adapter)
1851 {
1852         struct e1000_hw *hw = &adapter->hw;
1853         u32 connsw = rd32(E1000_CONNSW);
1854
1855         /* configure for SerDes media detect */
1856         if ((hw->phy.media_type == e1000_media_type_copper) &&
1857             (!(connsw & E1000_CONNSW_SERDESD))) {
1858                 connsw |= E1000_CONNSW_ENRGSRC;
1859                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1860                 wr32(E1000_CONNSW, connsw);
1861                 wrfl();
1862         }
1863 }
1864
1865 void igb_reset(struct igb_adapter *adapter)
1866 {
1867         struct pci_dev *pdev = adapter->pdev;
1868         struct e1000_hw *hw = &adapter->hw;
1869         struct e1000_mac_info *mac = &hw->mac;
1870         struct e1000_fc_info *fc = &hw->fc;
1871         u32 pba, hwm;
1872
1873         /* Repartition Pba for greater than 9k mtu
1874          * To take effect CTRL.RST is required.
1875          */
1876         switch (mac->type) {
1877         case e1000_i350:
1878         case e1000_i354:
1879         case e1000_82580:
1880                 pba = rd32(E1000_RXPBS);
1881                 pba = igb_rxpbs_adjust_82580(pba);
1882                 break;
1883         case e1000_82576:
1884                 pba = rd32(E1000_RXPBS);
1885                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1886                 break;
1887         case e1000_82575:
1888         case e1000_i210:
1889         case e1000_i211:
1890         default:
1891                 pba = E1000_PBA_34K;
1892                 break;
1893         }
1894
1895         if (mac->type == e1000_82575) {
1896                 u32 min_rx_space, min_tx_space, needed_tx_space;
1897
1898                 /* write Rx PBA so that hardware can report correct Tx PBA */
1899                 wr32(E1000_PBA, pba);
1900
1901                 /* To maintain wire speed transmits, the Tx FIFO should be
1902                  * large enough to accommodate two full transmit packets,
1903                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1904                  * the Rx FIFO should be large enough to accommodate at least
1905                  * one full receive packet and is similarly rounded up and
1906                  * expressed in KB.
1907                  */
1908                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1909
1910                 /* The Tx FIFO also stores 16 bytes of information about the Tx
1911                  * but don't include Ethernet FCS because hardware appends it.
1912                  * We only need to round down to the nearest 512 byte block
1913                  * count since the value we care about is 2 frames, not 1.
1914                  */
1915                 min_tx_space = adapter->max_frame_size;
1916                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1917                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1918
1919                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1920                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1921
1922                 /* If current Tx allocation is less than the min Tx FIFO size,
1923                  * and the min Tx FIFO size is less than the current Rx FIFO
1924                  * allocation, take space away from current Rx allocation.
1925                  */
1926                 if (needed_tx_space < pba) {
1927                         pba -= needed_tx_space;
1928
1929                         /* if short on Rx space, Rx wins and must trump Tx
1930                          * adjustment
1931                          */
1932                         if (pba < min_rx_space)
1933                                 pba = min_rx_space;
1934                 }
1935
1936                 /* adjust PBA for jumbo frames */
1937                 wr32(E1000_PBA, pba);
1938         }
1939
1940         /* flow control settings
1941          * The high water mark must be low enough to fit one full frame
1942          * after transmitting the pause frame.  As such we must have enough
1943          * space to allow for us to complete our current transmit and then
1944          * receive the frame that is in progress from the link partner.
1945          * Set it to:
1946          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1947          */
1948         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1949
1950         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1951         fc->low_water = fc->high_water - 16;
1952         fc->pause_time = 0xFFFF;
1953         fc->send_xon = 1;
1954         fc->current_mode = fc->requested_mode;
1955
1956         /* disable receive for all VFs and wait one second */
1957         if (adapter->vfs_allocated_count) {
1958                 int i;
1959
1960                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962
1963                 /* ping all the active vfs to let them know we are going down */
1964                 igb_ping_all_vfs(adapter);
1965
1966                 /* disable transmits and receives */
1967                 wr32(E1000_VFRE, 0);
1968                 wr32(E1000_VFTE, 0);
1969         }
1970
1971         /* Allow time for pending master requests to run */
1972         hw->mac.ops.reset_hw(hw);
1973         wr32(E1000_WUC, 0);
1974
1975         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976                 /* need to resetup here after media swap */
1977                 adapter->ei.get_invariants(hw);
1978                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979         }
1980         if ((mac->type == e1000_82575) &&
1981             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1982                 igb_enable_mas(adapter);
1983         }
1984         if (hw->mac.ops.init_hw(hw))
1985                 dev_err(&pdev->dev, "Hardware Error\n");
1986
1987         /* Flow control settings reset on hardware reset, so guarantee flow
1988          * control is off when forcing speed.
1989          */
1990         if (!hw->mac.autoneg)
1991                 igb_force_mac_fc(hw);
1992
1993         igb_init_dmac(adapter, pba);
1994 #ifdef CONFIG_IGB_HWMON
1995         /* Re-initialize the thermal sensor on i350 devices. */
1996         if (!test_bit(__IGB_DOWN, &adapter->state)) {
1997                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1998                         /* If present, re-initialize the external thermal sensor
1999                          * interface.
2000                          */
2001                         if (adapter->ets)
2002                                 mac->ops.init_thermal_sensor_thresh(hw);
2003                 }
2004         }
2005 #endif
2006         /* Re-establish EEE setting */
2007         if (hw->phy.media_type == e1000_media_type_copper) {
2008                 switch (mac->type) {
2009                 case e1000_i350:
2010                 case e1000_i210:
2011                 case e1000_i211:
2012                         igb_set_eee_i350(hw, true, true);
2013                         break;
2014                 case e1000_i354:
2015                         igb_set_eee_i354(hw, true, true);
2016                         break;
2017                 default:
2018                         break;
2019                 }
2020         }
2021         if (!netif_running(adapter->netdev))
2022                 igb_power_down_link(adapter);
2023
2024         igb_update_mng_vlan(adapter);
2025
2026         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2027         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2028
2029         /* Re-enable PTP, where applicable. */
2030         igb_ptp_reset(adapter);
2031
2032         igb_get_phy_info(hw);
2033 }
2034
2035 static netdev_features_t igb_fix_features(struct net_device *netdev,
2036         netdev_features_t features)
2037 {
2038         /* Since there is no support for separate Rx/Tx vlan accel
2039          * enable/disable make sure Tx flag is always in same state as Rx.
2040          */
2041         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2042                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2043         else
2044                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2045
2046         return features;
2047 }
2048
2049 static int igb_set_features(struct net_device *netdev,
2050         netdev_features_t features)
2051 {
2052         netdev_features_t changed = netdev->features ^ features;
2053         struct igb_adapter *adapter = netdev_priv(netdev);
2054
2055         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2056                 igb_vlan_mode(netdev, features);
2057
2058         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2059                 return 0;
2060
2061         netdev->features = features;
2062
2063         if (netif_running(netdev))
2064                 igb_reinit_locked(adapter);
2065         else
2066                 igb_reset(adapter);
2067
2068         return 0;
2069 }
2070
2071 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2072                            struct net_device *dev,
2073                            const unsigned char *addr, u16 vid,
2074                            u16 flags)
2075 {
2076         /* guarantee we can provide a unique filter for the unicast address */
2077         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2078                 struct igb_adapter *adapter = netdev_priv(dev);
2079                 struct e1000_hw *hw = &adapter->hw;
2080                 int vfn = adapter->vfs_allocated_count;
2081                 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2082
2083                 if (netdev_uc_count(dev) >= rar_entries)
2084                         return -ENOMEM;
2085         }
2086
2087         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2088 }
2089
2090 #define IGB_MAX_MAC_HDR_LEN     127
2091 #define IGB_MAX_NETWORK_HDR_LEN 511
2092
2093 static netdev_features_t
2094 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2095                    netdev_features_t features)
2096 {
2097         unsigned int network_hdr_len, mac_hdr_len;
2098
2099         /* Make certain the headers can be described by a context descriptor */
2100         mac_hdr_len = skb_network_header(skb) - skb->data;
2101         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2102                 return features & ~(NETIF_F_HW_CSUM |
2103                                     NETIF_F_SCTP_CRC |
2104                                     NETIF_F_HW_VLAN_CTAG_TX |
2105                                     NETIF_F_TSO |
2106                                     NETIF_F_TSO6);
2107
2108         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2109         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2110                 return features & ~(NETIF_F_HW_CSUM |
2111                                     NETIF_F_SCTP_CRC |
2112                                     NETIF_F_TSO |
2113                                     NETIF_F_TSO6);
2114
2115         /* We can only support IPV4 TSO in tunnels if we can mangle the
2116          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2117          */
2118         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2119                 features &= ~NETIF_F_TSO;
2120
2121         return features;
2122 }
2123
2124 static const struct net_device_ops igb_netdev_ops = {
2125         .ndo_open               = igb_open,
2126         .ndo_stop               = igb_close,
2127         .ndo_start_xmit         = igb_xmit_frame,
2128         .ndo_get_stats64        = igb_get_stats64,
2129         .ndo_set_rx_mode        = igb_set_rx_mode,
2130         .ndo_set_mac_address    = igb_set_mac,
2131         .ndo_change_mtu         = igb_change_mtu,
2132         .ndo_do_ioctl           = igb_ioctl,
2133         .ndo_tx_timeout         = igb_tx_timeout,
2134         .ndo_validate_addr      = eth_validate_addr,
2135         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2136         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2137         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2138         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2139         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2140         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2141         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2142 #ifdef CONFIG_NET_POLL_CONTROLLER
2143         .ndo_poll_controller    = igb_netpoll,
2144 #endif
2145         .ndo_fix_features       = igb_fix_features,
2146         .ndo_set_features       = igb_set_features,
2147         .ndo_fdb_add            = igb_ndo_fdb_add,
2148         .ndo_features_check     = igb_features_check,
2149 };
2150
2151 /**
2152  * igb_set_fw_version - Configure version string for ethtool
2153  * @adapter: adapter struct
2154  **/
2155 void igb_set_fw_version(struct igb_adapter *adapter)
2156 {
2157         struct e1000_hw *hw = &adapter->hw;
2158         struct e1000_fw_version fw;
2159
2160         igb_get_fw_version(hw, &fw);
2161
2162         switch (hw->mac.type) {
2163         case e1000_i210:
2164         case e1000_i211:
2165                 if (!(igb_get_flash_presence_i210(hw))) {
2166                         snprintf(adapter->fw_version,
2167                                  sizeof(adapter->fw_version),
2168                                  "%2d.%2d-%d",
2169                                  fw.invm_major, fw.invm_minor,
2170                                  fw.invm_img_type);
2171                         break;
2172                 }
2173                 /* fall through */
2174         default:
2175                 /* if option is rom valid, display its version too */
2176                 if (fw.or_valid) {
2177                         snprintf(adapter->fw_version,
2178                                  sizeof(adapter->fw_version),
2179                                  "%d.%d, 0x%08x, %d.%d.%d",
2180                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2181                                  fw.or_major, fw.or_build, fw.or_patch);
2182                 /* no option rom */
2183                 } else if (fw.etrack_id != 0X0000) {
2184                         snprintf(adapter->fw_version,
2185                             sizeof(adapter->fw_version),
2186                             "%d.%d, 0x%08x",
2187                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2188                 } else {
2189                 snprintf(adapter->fw_version,
2190                     sizeof(adapter->fw_version),
2191                     "%d.%d.%d",
2192                     fw.eep_major, fw.eep_minor, fw.eep_build);
2193                 }
2194                 break;
2195         }
2196 }
2197
2198 /**
2199  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2200  *
2201  * @adapter: adapter struct
2202  **/
2203 static void igb_init_mas(struct igb_adapter *adapter)
2204 {
2205         struct e1000_hw *hw = &adapter->hw;
2206         u16 eeprom_data;
2207
2208         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2209         switch (hw->bus.func) {
2210         case E1000_FUNC_0:
2211                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2212                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2213                         netdev_info(adapter->netdev,
2214                                 "MAS: Enabling Media Autosense for port %d\n",
2215                                 hw->bus.func);
2216                 }
2217                 break;
2218         case E1000_FUNC_1:
2219                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2220                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2221                         netdev_info(adapter->netdev,
2222                                 "MAS: Enabling Media Autosense for port %d\n",
2223                                 hw->bus.func);
2224                 }
2225                 break;
2226         case E1000_FUNC_2:
2227                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2228                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2229                         netdev_info(adapter->netdev,
2230                                 "MAS: Enabling Media Autosense for port %d\n",
2231                                 hw->bus.func);
2232                 }
2233                 break;
2234         case E1000_FUNC_3:
2235                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2236                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2237                         netdev_info(adapter->netdev,
2238                                 "MAS: Enabling Media Autosense for port %d\n",
2239                                 hw->bus.func);
2240                 }
2241                 break;
2242         default:
2243                 /* Shouldn't get here */
2244                 netdev_err(adapter->netdev,
2245                         "MAS: Invalid port configuration, returning\n");
2246                 break;
2247         }
2248 }
2249
2250 /**
2251  *  igb_init_i2c - Init I2C interface
2252  *  @adapter: pointer to adapter structure
2253  **/
2254 static s32 igb_init_i2c(struct igb_adapter *adapter)
2255 {
2256         s32 status = 0;
2257
2258         /* I2C interface supported on i350 devices */
2259         if (adapter->hw.mac.type != e1000_i350)
2260                 return 0;
2261
2262         /* Initialize the i2c bus which is controlled by the registers.
2263          * This bus will use the i2c_algo_bit structue that implements
2264          * the protocol through toggling of the 4 bits in the register.
2265          */
2266         adapter->i2c_adap.owner = THIS_MODULE;
2267         adapter->i2c_algo = igb_i2c_algo;
2268         adapter->i2c_algo.data = adapter;
2269         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2270         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2271         strlcpy(adapter->i2c_adap.name, "igb BB",
2272                 sizeof(adapter->i2c_adap.name));
2273         status = i2c_bit_add_bus(&adapter->i2c_adap);
2274         return status;
2275 }
2276
2277 /**
2278  *  igb_probe - Device Initialization Routine
2279  *  @pdev: PCI device information struct
2280  *  @ent: entry in igb_pci_tbl
2281  *
2282  *  Returns 0 on success, negative on failure
2283  *
2284  *  igb_probe initializes an adapter identified by a pci_dev structure.
2285  *  The OS initialization, configuring of the adapter private structure,
2286  *  and a hardware reset occur.
2287  **/
2288 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2289 {
2290         struct net_device *netdev;
2291         struct igb_adapter *adapter;
2292         struct e1000_hw *hw;
2293         u16 eeprom_data = 0;
2294         s32 ret_val;
2295         static int global_quad_port_a; /* global quad port a indication */
2296         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2297         int err, pci_using_dac;
2298         u8 part_str[E1000_PBANUM_LENGTH];
2299
2300         /* Catch broken hardware that put the wrong VF device ID in
2301          * the PCIe SR-IOV capability.
2302          */
2303         if (pdev->is_virtfn) {
2304                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2305                         pci_name(pdev), pdev->vendor, pdev->device);
2306                 return -EINVAL;
2307         }
2308
2309         err = pci_enable_device_mem(pdev);
2310         if (err)
2311                 return err;
2312
2313         pci_using_dac = 0;
2314         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2315         if (!err) {
2316                 pci_using_dac = 1;
2317         } else {
2318                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2319                 if (err) {
2320                         dev_err(&pdev->dev,
2321                                 "No usable DMA configuration, aborting\n");
2322                         goto err_dma;
2323                 }
2324         }
2325
2326         err = pci_request_mem_regions(pdev, igb_driver_name);
2327         if (err)
2328                 goto err_pci_reg;
2329
2330         pci_enable_pcie_error_reporting(pdev);
2331
2332         pci_set_master(pdev);
2333         pci_save_state(pdev);
2334
2335         err = -ENOMEM;
2336         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2337                                    IGB_MAX_TX_QUEUES);
2338         if (!netdev)
2339                 goto err_alloc_etherdev;
2340
2341         SET_NETDEV_DEV(netdev, &pdev->dev);
2342
2343         pci_set_drvdata(pdev, netdev);
2344         adapter = netdev_priv(netdev);
2345         adapter->netdev = netdev;
2346         adapter->pdev = pdev;
2347         hw = &adapter->hw;
2348         hw->back = adapter;
2349         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2350
2351         err = -EIO;
2352         adapter->io_addr = pci_iomap(pdev, 0, 0);
2353         if (!adapter->io_addr)
2354                 goto err_ioremap;
2355         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2356         hw->hw_addr = adapter->io_addr;
2357
2358         netdev->netdev_ops = &igb_netdev_ops;
2359         igb_set_ethtool_ops(netdev);
2360         netdev->watchdog_timeo = 5 * HZ;
2361
2362         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2363
2364         netdev->mem_start = pci_resource_start(pdev, 0);
2365         netdev->mem_end = pci_resource_end(pdev, 0);
2366
2367         /* PCI config space info */
2368         hw->vendor_id = pdev->vendor;
2369         hw->device_id = pdev->device;
2370         hw->revision_id = pdev->revision;
2371         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2372         hw->subsystem_device_id = pdev->subsystem_device;
2373
2374         /* Copy the default MAC, PHY and NVM function pointers */
2375         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2376         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2377         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2378         /* Initialize skew-specific constants */
2379         err = ei->get_invariants(hw);
2380         if (err)
2381                 goto err_sw_init;
2382
2383         /* setup the private structure */
2384         err = igb_sw_init(adapter);
2385         if (err)
2386                 goto err_sw_init;
2387
2388         igb_get_bus_info_pcie(hw);
2389
2390         hw->phy.autoneg_wait_to_complete = false;
2391
2392         /* Copper options */
2393         if (hw->phy.media_type == e1000_media_type_copper) {
2394                 hw->phy.mdix = AUTO_ALL_MODES;
2395                 hw->phy.disable_polarity_correction = false;
2396                 hw->phy.ms_type = e1000_ms_hw_default;
2397         }
2398
2399         if (igb_check_reset_block(hw))
2400                 dev_info(&pdev->dev,
2401                         "PHY reset is blocked due to SOL/IDER session.\n");
2402
2403         /* features is initialized to 0 in allocation, it might have bits
2404          * set by igb_sw_init so we should use an or instead of an
2405          * assignment.
2406          */
2407         netdev->features |= NETIF_F_SG |
2408                             NETIF_F_TSO |
2409                             NETIF_F_TSO6 |
2410                             NETIF_F_RXHASH |
2411                             NETIF_F_RXCSUM |
2412                             NETIF_F_HW_CSUM;
2413
2414         if (hw->mac.type >= e1000_82576)
2415                 netdev->features |= NETIF_F_SCTP_CRC;
2416
2417 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2418                                   NETIF_F_GSO_GRE_CSUM | \
2419                                   NETIF_F_GSO_IPXIP4 | \
2420                                   NETIF_F_GSO_IPXIP6 | \
2421                                   NETIF_F_GSO_UDP_TUNNEL | \
2422                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
2423
2424         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2425         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2426
2427         /* copy netdev features into list of user selectable features */
2428         netdev->hw_features |= netdev->features |
2429                                NETIF_F_HW_VLAN_CTAG_RX |
2430                                NETIF_F_HW_VLAN_CTAG_TX |
2431                                NETIF_F_RXALL;
2432
2433         if (hw->mac.type >= e1000_i350)
2434                 netdev->hw_features |= NETIF_F_NTUPLE;
2435
2436         if (pci_using_dac)
2437                 netdev->features |= NETIF_F_HIGHDMA;
2438
2439         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2440         netdev->mpls_features |= NETIF_F_HW_CSUM;
2441         netdev->hw_enc_features |= netdev->vlan_features;
2442
2443         /* set this bit last since it cannot be part of vlan_features */
2444         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2445                             NETIF_F_HW_VLAN_CTAG_RX |
2446                             NETIF_F_HW_VLAN_CTAG_TX;
2447
2448         netdev->priv_flags |= IFF_SUPP_NOFCS;
2449
2450         netdev->priv_flags |= IFF_UNICAST_FLT;
2451
2452         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2453
2454         /* before reading the NVM, reset the controller to put the device in a
2455          * known good starting state
2456          */
2457         hw->mac.ops.reset_hw(hw);
2458
2459         /* make sure the NVM is good , i211/i210 parts can have special NVM
2460          * that doesn't contain a checksum
2461          */
2462         switch (hw->mac.type) {
2463         case e1000_i210:
2464         case e1000_i211:
2465                 if (igb_get_flash_presence_i210(hw)) {
2466                         if (hw->nvm.ops.validate(hw) < 0) {
2467                                 dev_err(&pdev->dev,
2468                                         "The NVM Checksum Is Not Valid\n");
2469                                 err = -EIO;
2470                                 goto err_eeprom;
2471                         }
2472                 }
2473                 break;
2474         default:
2475                 if (hw->nvm.ops.validate(hw) < 0) {
2476                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2477                         err = -EIO;
2478                         goto err_eeprom;
2479                 }
2480                 break;
2481         }
2482
2483         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2484                 /* copy the MAC address out of the NVM */
2485                 if (hw->mac.ops.read_mac_addr(hw))
2486                         dev_err(&pdev->dev, "NVM Read Error\n");
2487         }
2488
2489         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2490
2491         if (!is_valid_ether_addr(netdev->dev_addr)) {
2492                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2493                 err = -EIO;
2494                 goto err_eeprom;
2495         }
2496
2497         /* get firmware version for ethtool -i */
2498         igb_set_fw_version(adapter);
2499
2500         /* configure RXPBSIZE and TXPBSIZE */
2501         if (hw->mac.type == e1000_i210) {
2502                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2503                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2504         }
2505
2506         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2507                     (unsigned long) adapter);
2508         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2509                     (unsigned long) adapter);
2510
2511         INIT_WORK(&adapter->reset_task, igb_reset_task);
2512         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2513
2514         /* Initialize link properties that are user-changeable */
2515         adapter->fc_autoneg = true;
2516         hw->mac.autoneg = true;
2517         hw->phy.autoneg_advertised = 0x2f;
2518
2519         hw->fc.requested_mode = e1000_fc_default;
2520         hw->fc.current_mode = e1000_fc_default;
2521
2522         igb_validate_mdi_setting(hw);
2523
2524         /* By default, support wake on port A */
2525         if (hw->bus.func == 0)
2526                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2527
2528         /* Check the NVM for wake support on non-port A ports */
2529         if (hw->mac.type >= e1000_82580)
2530                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2531                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2532                                  &eeprom_data);
2533         else if (hw->bus.func == 1)
2534                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2535
2536         if (eeprom_data & IGB_EEPROM_APME)
2537                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2538
2539         /* now that we have the eeprom settings, apply the special cases where
2540          * the eeprom may be wrong or the board simply won't support wake on
2541          * lan on a particular port
2542          */
2543         switch (pdev->device) {
2544         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2545                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2546                 break;
2547         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2548         case E1000_DEV_ID_82576_FIBER:
2549         case E1000_DEV_ID_82576_SERDES:
2550                 /* Wake events only supported on port A for dual fiber
2551                  * regardless of eeprom setting
2552                  */
2553                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2554                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2555                 break;
2556         case E1000_DEV_ID_82576_QUAD_COPPER:
2557         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2558                 /* if quad port adapter, disable WoL on all but port A */
2559                 if (global_quad_port_a != 0)
2560                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2561                 else
2562                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2563                 /* Reset for multiple quad port adapters */
2564                 if (++global_quad_port_a == 4)
2565                         global_quad_port_a = 0;
2566                 break;
2567         default:
2568                 /* If the device can't wake, don't set software support */
2569                 if (!device_can_wakeup(&adapter->pdev->dev))
2570                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2571         }
2572
2573         /* initialize the wol settings based on the eeprom settings */
2574         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2575                 adapter->wol |= E1000_WUFC_MAG;
2576
2577         /* Some vendors want WoL disabled by default, but still supported */
2578         if ((hw->mac.type == e1000_i350) &&
2579             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2580                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2581                 adapter->wol = 0;
2582         }
2583
2584         /* Some vendors want the ability to Use the EEPROM setting as
2585          * enable/disable only, and not for capability
2586          */
2587         if (((hw->mac.type == e1000_i350) ||
2588              (hw->mac.type == e1000_i354)) &&
2589             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2590                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2591                 adapter->wol = 0;
2592         }
2593         if (hw->mac.type == e1000_i350) {
2594                 if (((pdev->subsystem_device == 0x5001) ||
2595                      (pdev->subsystem_device == 0x5002)) &&
2596                                 (hw->bus.func == 0)) {
2597                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2598                         adapter->wol = 0;
2599                 }
2600                 if (pdev->subsystem_device == 0x1F52)
2601                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2602         }
2603
2604         device_set_wakeup_enable(&adapter->pdev->dev,
2605                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2606
2607         /* reset the hardware with the new settings */
2608         igb_reset(adapter);
2609
2610         /* Init the I2C interface */
2611         err = igb_init_i2c(adapter);
2612         if (err) {
2613                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2614                 goto err_eeprom;
2615         }
2616
2617         /* let the f/w know that the h/w is now under the control of the
2618          * driver.
2619          */
2620         igb_get_hw_control(adapter);
2621
2622         strcpy(netdev->name, "eth%d");
2623         err = register_netdev(netdev);
2624         if (err)
2625                 goto err_register;
2626
2627         /* carrier off reporting is important to ethtool even BEFORE open */
2628         netif_carrier_off(netdev);
2629
2630 #ifdef CONFIG_IGB_DCA
2631         if (dca_add_requester(&pdev->dev) == 0) {
2632                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2633                 dev_info(&pdev->dev, "DCA enabled\n");
2634                 igb_setup_dca(adapter);
2635         }
2636
2637 #endif
2638 #ifdef CONFIG_IGB_HWMON
2639         /* Initialize the thermal sensor on i350 devices. */
2640         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2641                 u16 ets_word;
2642
2643                 /* Read the NVM to determine if this i350 device supports an
2644                  * external thermal sensor.
2645                  */
2646                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2647                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2648                         adapter->ets = true;
2649                 else
2650                         adapter->ets = false;
2651                 if (igb_sysfs_init(adapter))
2652                         dev_err(&pdev->dev,
2653                                 "failed to allocate sysfs resources\n");
2654         } else {
2655                 adapter->ets = false;
2656         }
2657 #endif
2658         /* Check if Media Autosense is enabled */
2659         adapter->ei = *ei;
2660         if (hw->dev_spec._82575.mas_capable)
2661                 igb_init_mas(adapter);
2662
2663         /* do hw tstamp init after resetting */
2664         igb_ptp_init(adapter);
2665
2666         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2667         /* print bus type/speed/width info, not applicable to i354 */
2668         if (hw->mac.type != e1000_i354) {
2669                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2670                          netdev->name,
2671                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2672                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2673                            "unknown"),
2674                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2675                           "Width x4" :
2676                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2677                           "Width x2" :
2678                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2679                           "Width x1" : "unknown"), netdev->dev_addr);
2680         }
2681
2682         if ((hw->mac.type >= e1000_i210 ||
2683              igb_get_flash_presence_i210(hw))) {
2684                 ret_val = igb_read_part_string(hw, part_str,
2685                                                E1000_PBANUM_LENGTH);
2686         } else {
2687                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2688         }
2689
2690         if (ret_val)
2691                 strcpy(part_str, "Unknown");
2692         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2693         dev_info(&pdev->dev,
2694                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2695                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2696                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2697                 adapter->num_rx_queues, adapter->num_tx_queues);
2698         if (hw->phy.media_type == e1000_media_type_copper) {
2699                 switch (hw->mac.type) {
2700                 case e1000_i350:
2701                 case e1000_i210:
2702                 case e1000_i211:
2703                         /* Enable EEE for internal copper PHY devices */
2704                         err = igb_set_eee_i350(hw, true, true);
2705                         if ((!err) &&
2706                             (!hw->dev_spec._82575.eee_disable)) {
2707                                 adapter->eee_advert =
2708                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2709                                 adapter->flags |= IGB_FLAG_EEE;
2710                         }
2711                         break;
2712                 case e1000_i354:
2713                         if ((rd32(E1000_CTRL_EXT) &
2714                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2715                                 err = igb_set_eee_i354(hw, true, true);
2716                                 if ((!err) &&
2717                                         (!hw->dev_spec._82575.eee_disable)) {
2718                                         adapter->eee_advert =
2719                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2720                                         adapter->flags |= IGB_FLAG_EEE;
2721                                 }
2722                         }
2723                         break;
2724                 default:
2725                         break;
2726                 }
2727         }
2728         pm_runtime_put_noidle(&pdev->dev);
2729         return 0;
2730
2731 err_register:
2732         igb_release_hw_control(adapter);
2733         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2734 err_eeprom:
2735         if (!igb_check_reset_block(hw))
2736                 igb_reset_phy(hw);
2737
2738         if (hw->flash_address)
2739                 iounmap(hw->flash_address);
2740 err_sw_init:
2741         kfree(adapter->shadow_vfta);
2742         igb_clear_interrupt_scheme(adapter);
2743 #ifdef CONFIG_PCI_IOV
2744         igb_disable_sriov(pdev);
2745 #endif
2746         pci_iounmap(pdev, adapter->io_addr);
2747 err_ioremap:
2748         free_netdev(netdev);
2749 err_alloc_etherdev:
2750         pci_release_mem_regions(pdev);
2751 err_pci_reg:
2752 err_dma:
2753         pci_disable_device(pdev);
2754         return err;
2755 }
2756
2757 #ifdef CONFIG_PCI_IOV
2758 static int igb_disable_sriov(struct pci_dev *pdev)
2759 {
2760         struct net_device *netdev = pci_get_drvdata(pdev);
2761         struct igb_adapter *adapter = netdev_priv(netdev);
2762         struct e1000_hw *hw = &adapter->hw;
2763
2764         /* reclaim resources allocated to VFs */
2765         if (adapter->vf_data) {
2766                 /* disable iov and allow time for transactions to clear */
2767                 if (pci_vfs_assigned(pdev)) {
2768                         dev_warn(&pdev->dev,
2769                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2770                         return -EPERM;
2771                 } else {
2772                         pci_disable_sriov(pdev);
2773                         msleep(500);
2774                 }
2775
2776                 kfree(adapter->vf_data);
2777                 adapter->vf_data = NULL;
2778                 adapter->vfs_allocated_count = 0;
2779                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2780                 wrfl();
2781                 msleep(100);
2782                 dev_info(&pdev->dev, "IOV Disabled\n");
2783
2784                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2785                 adapter->flags |= IGB_FLAG_DMAC;
2786         }
2787
2788         return 0;
2789 }
2790
2791 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2792 {
2793         struct net_device *netdev = pci_get_drvdata(pdev);
2794         struct igb_adapter *adapter = netdev_priv(netdev);
2795         int old_vfs = pci_num_vf(pdev);
2796         int err = 0;
2797         int i;
2798
2799         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2800                 err = -EPERM;
2801                 goto out;
2802         }
2803         if (!num_vfs)
2804                 goto out;
2805
2806         if (old_vfs) {
2807                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2808                          old_vfs, max_vfs);
2809                 adapter->vfs_allocated_count = old_vfs;
2810         } else
2811                 adapter->vfs_allocated_count = num_vfs;
2812
2813         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2814                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2815
2816         /* if allocation failed then we do not support SR-IOV */
2817         if (!adapter->vf_data) {
2818                 adapter->vfs_allocated_count = 0;
2819                 dev_err(&pdev->dev,
2820                         "Unable to allocate memory for VF Data Storage\n");
2821                 err = -ENOMEM;
2822                 goto out;
2823         }
2824
2825         /* only call pci_enable_sriov() if no VFs are allocated already */
2826         if (!old_vfs) {
2827                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2828                 if (err)
2829                         goto err_out;
2830         }
2831         dev_info(&pdev->dev, "%d VFs allocated\n",
2832                  adapter->vfs_allocated_count);
2833         for (i = 0; i < adapter->vfs_allocated_count; i++)
2834                 igb_vf_configure(adapter, i);
2835
2836         /* DMA Coalescing is not supported in IOV mode. */
2837         adapter->flags &= ~IGB_FLAG_DMAC;
2838         goto out;
2839
2840 err_out:
2841         kfree(adapter->vf_data);
2842         adapter->vf_data = NULL;
2843         adapter->vfs_allocated_count = 0;
2844 out:
2845         return err;
2846 }
2847
2848 #endif
2849 /**
2850  *  igb_remove_i2c - Cleanup  I2C interface
2851  *  @adapter: pointer to adapter structure
2852  **/
2853 static void igb_remove_i2c(struct igb_adapter *adapter)
2854 {
2855         /* free the adapter bus structure */
2856         i2c_del_adapter(&adapter->i2c_adap);
2857 }
2858
2859 /**
2860  *  igb_remove - Device Removal Routine
2861  *  @pdev: PCI device information struct
2862  *
2863  *  igb_remove is called by the PCI subsystem to alert the driver
2864  *  that it should release a PCI device.  The could be caused by a
2865  *  Hot-Plug event, or because the driver is going to be removed from
2866  *  memory.
2867  **/
2868 static void igb_remove(struct pci_dev *pdev)
2869 {
2870         struct net_device *netdev = pci_get_drvdata(pdev);
2871         struct igb_adapter *adapter = netdev_priv(netdev);
2872         struct e1000_hw *hw = &adapter->hw;
2873
2874         pm_runtime_get_noresume(&pdev->dev);
2875 #ifdef CONFIG_IGB_HWMON
2876         igb_sysfs_exit(adapter);
2877 #endif
2878         igb_remove_i2c(adapter);
2879         igb_ptp_stop(adapter);
2880         /* The watchdog timer may be rescheduled, so explicitly
2881          * disable watchdog from being rescheduled.
2882          */
2883         set_bit(__IGB_DOWN, &adapter->state);
2884         del_timer_sync(&adapter->watchdog_timer);
2885         del_timer_sync(&adapter->phy_info_timer);
2886
2887         cancel_work_sync(&adapter->reset_task);
2888         cancel_work_sync(&adapter->watchdog_task);
2889
2890 #ifdef CONFIG_IGB_DCA
2891         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2892                 dev_info(&pdev->dev, "DCA disabled\n");
2893                 dca_remove_requester(&pdev->dev);
2894                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2895                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2896         }
2897 #endif
2898
2899         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2900          * would have already happened in close and is redundant.
2901          */
2902         igb_release_hw_control(adapter);
2903
2904 #ifdef CONFIG_PCI_IOV
2905         igb_disable_sriov(pdev);
2906 #endif
2907
2908         unregister_netdev(netdev);
2909
2910         igb_clear_interrupt_scheme(adapter);
2911
2912         pci_iounmap(pdev, adapter->io_addr);
2913         if (hw->flash_address)
2914                 iounmap(hw->flash_address);
2915         pci_release_mem_regions(pdev);
2916
2917         kfree(adapter->shadow_vfta);
2918         free_netdev(netdev);
2919
2920         pci_disable_pcie_error_reporting(pdev);
2921
2922         pci_disable_device(pdev);
2923 }
2924
2925 /**
2926  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2927  *  @adapter: board private structure to initialize
2928  *
2929  *  This function initializes the vf specific data storage and then attempts to
2930  *  allocate the VFs.  The reason for ordering it this way is because it is much
2931  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2932  *  the memory for the VFs.
2933  **/
2934 static void igb_probe_vfs(struct igb_adapter *adapter)
2935 {
2936 #ifdef CONFIG_PCI_IOV
2937         struct pci_dev *pdev = adapter->pdev;
2938         struct e1000_hw *hw = &adapter->hw;
2939
2940         /* Virtualization features not supported on i210 family. */
2941         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2942                 return;
2943
2944         /* Of the below we really only want the effect of getting
2945          * IGB_FLAG_HAS_MSIX set (if available), without which
2946          * igb_enable_sriov() has no effect.
2947          */
2948         igb_set_interrupt_capability(adapter, true);
2949         igb_reset_interrupt_capability(adapter);
2950
2951         pci_sriov_set_totalvfs(pdev, 7);
2952         igb_enable_sriov(pdev, max_vfs);
2953
2954 #endif /* CONFIG_PCI_IOV */
2955 }
2956
2957 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2958 {
2959         struct e1000_hw *hw = &adapter->hw;
2960         u32 max_rss_queues;
2961
2962         /* Determine the maximum number of RSS queues supported. */
2963         switch (hw->mac.type) {
2964         case e1000_i211:
2965                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2966                 break;
2967         case e1000_82575:
2968         case e1000_i210:
2969                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2970                 break;
2971         case e1000_i350:
2972                 /* I350 cannot do RSS and SR-IOV at the same time */
2973                 if (!!adapter->vfs_allocated_count) {
2974                         max_rss_queues = 1;
2975                         break;
2976                 }
2977                 /* fall through */
2978         case e1000_82576:
2979                 if (!!adapter->vfs_allocated_count) {
2980                         max_rss_queues = 2;
2981                         break;
2982                 }
2983                 /* fall through */
2984         case e1000_82580:
2985         case e1000_i354:
2986         default:
2987                 max_rss_queues = IGB_MAX_RX_QUEUES;
2988                 break;
2989         }
2990
2991         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2992
2993         igb_set_flag_queue_pairs(adapter, max_rss_queues);
2994 }
2995
2996 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2997                               const u32 max_rss_queues)
2998 {
2999         struct e1000_hw *hw = &adapter->hw;
3000
3001         /* Determine if we need to pair queues. */
3002         switch (hw->mac.type) {
3003         case e1000_82575:
3004         case e1000_i211:
3005                 /* Device supports enough interrupts without queue pairing. */
3006                 break;
3007         case e1000_82576:
3008         case e1000_82580:
3009         case e1000_i350:
3010         case e1000_i354:
3011         case e1000_i210:
3012         default:
3013                 /* If rss_queues > half of max_rss_queues, pair the queues in
3014                  * order to conserve interrupts due to limited supply.
3015                  */
3016                 if (adapter->rss_queues > (max_rss_queues / 2))
3017                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3018                 else
3019                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3020                 break;
3021         }
3022 }
3023
3024 /**
3025  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3026  *  @adapter: board private structure to initialize
3027  *
3028  *  igb_sw_init initializes the Adapter private data structure.
3029  *  Fields are initialized based on PCI device information and
3030  *  OS network device settings (MTU size).
3031  **/
3032 static int igb_sw_init(struct igb_adapter *adapter)
3033 {
3034         struct e1000_hw *hw = &adapter->hw;
3035         struct net_device *netdev = adapter->netdev;
3036         struct pci_dev *pdev = adapter->pdev;
3037
3038         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3039
3040         /* set default ring sizes */
3041         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3042         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3043
3044         /* set default ITR values */
3045         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3046         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3047
3048         /* set default work limits */
3049         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3050
3051         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3052                                   VLAN_HLEN;
3053         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3054
3055         spin_lock_init(&adapter->stats64_lock);
3056 #ifdef CONFIG_PCI_IOV
3057         switch (hw->mac.type) {
3058         case e1000_82576:
3059         case e1000_i350:
3060                 if (max_vfs > 7) {
3061                         dev_warn(&pdev->dev,
3062                                  "Maximum of 7 VFs per PF, using max\n");
3063                         max_vfs = adapter->vfs_allocated_count = 7;
3064                 } else
3065                         adapter->vfs_allocated_count = max_vfs;
3066                 if (adapter->vfs_allocated_count)
3067                         dev_warn(&pdev->dev,
3068                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3069                 break;
3070         default:
3071                 break;
3072         }
3073 #endif /* CONFIG_PCI_IOV */
3074
3075         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3076         adapter->flags |= IGB_FLAG_HAS_MSIX;
3077
3078         igb_probe_vfs(adapter);
3079
3080         igb_init_queue_configuration(adapter);
3081
3082         /* Setup and initialize a copy of the hw vlan table array */
3083         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3084                                        GFP_ATOMIC);
3085
3086         /* This call may decrease the number of queues */
3087         if (igb_init_interrupt_scheme(adapter, true)) {
3088                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3089                 return -ENOMEM;
3090         }
3091
3092         /* Explicitly disable IRQ since the NIC can be in any state. */
3093         igb_irq_disable(adapter);
3094
3095         if (hw->mac.type >= e1000_i350)
3096                 adapter->flags &= ~IGB_FLAG_DMAC;
3097
3098         set_bit(__IGB_DOWN, &adapter->state);
3099         return 0;
3100 }
3101
3102 /**
3103  *  igb_open - Called when a network interface is made active
3104  *  @netdev: network interface device structure
3105  *
3106  *  Returns 0 on success, negative value on failure
3107  *
3108  *  The open entry point is called when a network interface is made
3109  *  active by the system (IFF_UP).  At this point all resources needed
3110  *  for transmit and receive operations are allocated, the interrupt
3111  *  handler is registered with the OS, the watchdog timer is started,
3112  *  and the stack is notified that the interface is ready.
3113  **/
3114 static int __igb_open(struct net_device *netdev, bool resuming)
3115 {
3116         struct igb_adapter *adapter = netdev_priv(netdev);
3117         struct e1000_hw *hw = &adapter->hw;
3118         struct pci_dev *pdev = adapter->pdev;
3119         int err;
3120         int i;
3121
3122         /* disallow open during test */
3123         if (test_bit(__IGB_TESTING, &adapter->state)) {
3124                 WARN_ON(resuming);
3125                 return -EBUSY;
3126         }
3127
3128         if (!resuming)
3129                 pm_runtime_get_sync(&pdev->dev);
3130
3131         netif_carrier_off(netdev);
3132
3133         /* allocate transmit descriptors */
3134         err = igb_setup_all_tx_resources(adapter);
3135         if (err)
3136                 goto err_setup_tx;
3137
3138         /* allocate receive descriptors */
3139         err = igb_setup_all_rx_resources(adapter);
3140         if (err)
3141                 goto err_setup_rx;
3142
3143         igb_power_up_link(adapter);
3144
3145         /* before we allocate an interrupt, we must be ready to handle it.
3146          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3147          * as soon as we call pci_request_irq, so we have to setup our
3148          * clean_rx handler before we do so.
3149          */
3150         igb_configure(adapter);
3151
3152         err = igb_request_irq(adapter);
3153         if (err)
3154                 goto err_req_irq;
3155
3156         /* Notify the stack of the actual queue counts. */
3157         err = netif_set_real_num_tx_queues(adapter->netdev,
3158                                            adapter->num_tx_queues);
3159         if (err)
3160                 goto err_set_queues;
3161
3162         err = netif_set_real_num_rx_queues(adapter->netdev,
3163                                            adapter->num_rx_queues);
3164         if (err)
3165                 goto err_set_queues;
3166
3167         /* From here on the code is the same as igb_up() */
3168         clear_bit(__IGB_DOWN, &adapter->state);
3169
3170         for (i = 0; i < adapter->num_q_vectors; i++)
3171                 napi_enable(&(adapter->q_vector[i]->napi));
3172
3173         /* Clear any pending interrupts. */
3174         rd32(E1000_ICR);
3175
3176         igb_irq_enable(adapter);
3177
3178         /* notify VFs that reset has been completed */
3179         if (adapter->vfs_allocated_count) {
3180                 u32 reg_data = rd32(E1000_CTRL_EXT);
3181
3182                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3183                 wr32(E1000_CTRL_EXT, reg_data);
3184         }
3185
3186         netif_tx_start_all_queues(netdev);
3187
3188         if (!resuming)
3189                 pm_runtime_put(&pdev->dev);
3190
3191         /* start the watchdog. */
3192         hw->mac.get_link_status = 1;
3193         schedule_work(&adapter->watchdog_task);
3194
3195         return 0;
3196
3197 err_set_queues:
3198         igb_free_irq(adapter);
3199 err_req_irq:
3200         igb_release_hw_control(adapter);
3201         igb_power_down_link(adapter);
3202         igb_free_all_rx_resources(adapter);
3203 err_setup_rx:
3204         igb_free_all_tx_resources(adapter);
3205 err_setup_tx:
3206         igb_reset(adapter);
3207         if (!resuming)
3208                 pm_runtime_put(&pdev->dev);
3209
3210         return err;
3211 }
3212
3213 int igb_open(struct net_device *netdev)
3214 {
3215         return __igb_open(netdev, false);
3216 }
3217
3218 /**
3219  *  igb_close - Disables a network interface
3220  *  @netdev: network interface device structure
3221  *
3222  *  Returns 0, this is not allowed to fail
3223  *
3224  *  The close entry point is called when an interface is de-activated
3225  *  by the OS.  The hardware is still under the driver's control, but
3226  *  needs to be disabled.  A global MAC reset is issued to stop the
3227  *  hardware, and all transmit and receive resources are freed.
3228  **/
3229 static int __igb_close(struct net_device *netdev, bool suspending)
3230 {
3231         struct igb_adapter *adapter = netdev_priv(netdev);
3232         struct pci_dev *pdev = adapter->pdev;
3233
3234         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3235
3236         if (!suspending)
3237                 pm_runtime_get_sync(&pdev->dev);
3238
3239         igb_down(adapter);
3240         igb_free_irq(adapter);
3241
3242         igb_free_all_tx_resources(adapter);
3243         igb_free_all_rx_resources(adapter);
3244
3245         if (!suspending)
3246                 pm_runtime_put_sync(&pdev->dev);
3247         return 0;
3248 }
3249
3250 int igb_close(struct net_device *netdev)
3251 {
3252         return __igb_close(netdev, false);
3253 }
3254
3255 /**
3256  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3257  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3258  *
3259  *  Return 0 on success, negative on failure
3260  **/
3261 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3262 {
3263         struct device *dev = tx_ring->dev;
3264         int size;
3265
3266         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3267
3268         tx_ring->tx_buffer_info = vzalloc(size);
3269         if (!tx_ring->tx_buffer_info)
3270                 goto err;
3271
3272         /* round up to nearest 4K */
3273         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3274         tx_ring->size = ALIGN(tx_ring->size, 4096);
3275
3276         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3277                                            &tx_ring->dma, GFP_KERNEL);
3278         if (!tx_ring->desc)
3279                 goto err;
3280
3281         tx_ring->next_to_use = 0;
3282         tx_ring->next_to_clean = 0;
3283
3284         return 0;
3285
3286 err:
3287         vfree(tx_ring->tx_buffer_info);
3288         tx_ring->tx_buffer_info = NULL;
3289         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3290         return -ENOMEM;
3291 }
3292
3293 /**
3294  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3295  *                               (Descriptors) for all queues
3296  *  @adapter: board private structure
3297  *
3298  *  Return 0 on success, negative on failure
3299  **/
3300 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3301 {
3302         struct pci_dev *pdev = adapter->pdev;
3303         int i, err = 0;
3304
3305         for (i = 0; i < adapter->num_tx_queues; i++) {
3306                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3307                 if (err) {
3308                         dev_err(&pdev->dev,
3309                                 "Allocation for Tx Queue %u failed\n", i);
3310                         for (i--; i >= 0; i--)
3311                                 igb_free_tx_resources(adapter->tx_ring[i]);
3312                         break;
3313                 }
3314         }
3315
3316         return err;
3317 }
3318
3319 /**
3320  *  igb_setup_tctl - configure the transmit control registers
3321  *  @adapter: Board private structure
3322  **/
3323 void igb_setup_tctl(struct igb_adapter *adapter)
3324 {
3325         struct e1000_hw *hw = &adapter->hw;
3326         u32 tctl;
3327
3328         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3329         wr32(E1000_TXDCTL(0), 0);
3330
3331         /* Program the Transmit Control Register */
3332         tctl = rd32(E1000_TCTL);
3333         tctl &= ~E1000_TCTL_CT;
3334         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3335                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3336
3337         igb_config_collision_dist(hw);
3338
3339         /* Enable transmits */
3340         tctl |= E1000_TCTL_EN;
3341
3342         wr32(E1000_TCTL, tctl);
3343 }
3344
3345 /**
3346  *  igb_configure_tx_ring - Configure transmit ring after Reset
3347  *  @adapter: board private structure
3348  *  @ring: tx ring to configure
3349  *
3350  *  Configure a transmit ring after a reset.
3351  **/
3352 void igb_configure_tx_ring(struct igb_adapter *adapter,
3353                            struct igb_ring *ring)
3354 {
3355         struct e1000_hw *hw = &adapter->hw;
3356         u32 txdctl = 0;
3357         u64 tdba = ring->dma;
3358         int reg_idx = ring->reg_idx;
3359
3360         /* disable the queue */
3361         wr32(E1000_TXDCTL(reg_idx), 0);
3362         wrfl();
3363         mdelay(10);
3364
3365         wr32(E1000_TDLEN(reg_idx),
3366              ring->count * sizeof(union e1000_adv_tx_desc));
3367         wr32(E1000_TDBAL(reg_idx),
3368              tdba & 0x00000000ffffffffULL);
3369         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3370
3371         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3372         wr32(E1000_TDH(reg_idx), 0);
3373         writel(0, ring->tail);
3374
3375         txdctl |= IGB_TX_PTHRESH;
3376         txdctl |= IGB_TX_HTHRESH << 8;
3377         txdctl |= IGB_TX_WTHRESH << 16;
3378
3379         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3380         wr32(E1000_TXDCTL(reg_idx), txdctl);
3381 }
3382
3383 /**
3384  *  igb_configure_tx - Configure transmit Unit after Reset
3385  *  @adapter: board private structure
3386  *
3387  *  Configure the Tx unit of the MAC after a reset.
3388  **/
3389 static void igb_configure_tx(struct igb_adapter *adapter)
3390 {
3391         int i;
3392
3393         for (i = 0; i < adapter->num_tx_queues; i++)
3394                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3395 }
3396
3397 /**
3398  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3399  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3400  *
3401  *  Returns 0 on success, negative on failure
3402  **/
3403 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3404 {
3405         struct device *dev = rx_ring->dev;
3406         int size;
3407
3408         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3409
3410         rx_ring->rx_buffer_info = vzalloc(size);
3411         if (!rx_ring->rx_buffer_info)
3412                 goto err;
3413
3414         /* Round up to nearest 4K */
3415         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3416         rx_ring->size = ALIGN(rx_ring->size, 4096);
3417
3418         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3419                                            &rx_ring->dma, GFP_KERNEL);
3420         if (!rx_ring->desc)
3421                 goto err;
3422
3423         rx_ring->next_to_alloc = 0;
3424         rx_ring->next_to_clean = 0;
3425         rx_ring->next_to_use = 0;
3426
3427         return 0;
3428
3429 err:
3430         vfree(rx_ring->rx_buffer_info);
3431         rx_ring->rx_buffer_info = NULL;
3432         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3433         return -ENOMEM;
3434 }
3435
3436 /**
3437  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3438  *                               (Descriptors) for all queues
3439  *  @adapter: board private structure
3440  *
3441  *  Return 0 on success, negative on failure
3442  **/
3443 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3444 {
3445         struct pci_dev *pdev = adapter->pdev;
3446         int i, err = 0;
3447
3448         for (i = 0; i < adapter->num_rx_queues; i++) {
3449                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3450                 if (err) {
3451                         dev_err(&pdev->dev,
3452                                 "Allocation for Rx Queue %u failed\n", i);
3453                         for (i--; i >= 0; i--)
3454                                 igb_free_rx_resources(adapter->rx_ring[i]);
3455                         break;
3456                 }
3457         }
3458
3459         return err;
3460 }
3461
3462 /**
3463  *  igb_setup_mrqc - configure the multiple receive queue control registers
3464  *  @adapter: Board private structure
3465  **/
3466 static void igb_setup_mrqc(struct igb_adapter *adapter)
3467 {
3468         struct e1000_hw *hw = &adapter->hw;
3469         u32 mrqc, rxcsum;
3470         u32 j, num_rx_queues;
3471         u32 rss_key[10];
3472
3473         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3474         for (j = 0; j < 10; j++)
3475                 wr32(E1000_RSSRK(j), rss_key[j]);
3476
3477         num_rx_queues = adapter->rss_queues;
3478
3479         switch (hw->mac.type) {
3480         case e1000_82576:
3481                 /* 82576 supports 2 RSS queues for SR-IOV */
3482                 if (adapter->vfs_allocated_count)
3483                         num_rx_queues = 2;
3484                 break;
3485         default:
3486                 break;
3487         }
3488
3489         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3490                 for (j = 0; j < IGB_RETA_SIZE; j++)
3491                         adapter->rss_indir_tbl[j] =
3492                         (j * num_rx_queues) / IGB_RETA_SIZE;
3493                 adapter->rss_indir_tbl_init = num_rx_queues;
3494         }
3495         igb_write_rss_indir_tbl(adapter);
3496
3497         /* Disable raw packet checksumming so that RSS hash is placed in
3498          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3499          * offloads as they are enabled by default
3500          */
3501         rxcsum = rd32(E1000_RXCSUM);
3502         rxcsum |= E1000_RXCSUM_PCSD;
3503
3504         if (adapter->hw.mac.type >= e1000_82576)
3505                 /* Enable Receive Checksum Offload for SCTP */
3506                 rxcsum |= E1000_RXCSUM_CRCOFL;
3507
3508         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3509         wr32(E1000_RXCSUM, rxcsum);
3510
3511         /* Generate RSS hash based on packet types, TCP/UDP
3512          * port numbers and/or IPv4/v6 src and dst addresses
3513          */
3514         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3515                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3516                E1000_MRQC_RSS_FIELD_IPV6 |
3517                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3518                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3519
3520         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3521                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3522         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3523                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3524
3525         /* If VMDq is enabled then we set the appropriate mode for that, else
3526          * we default to RSS so that an RSS hash is calculated per packet even
3527          * if we are only using one queue
3528          */
3529         if (adapter->vfs_allocated_count) {
3530                 if (hw->mac.type > e1000_82575) {
3531                         /* Set the default pool for the PF's first queue */
3532                         u32 vtctl = rd32(E1000_VT_CTL);
3533
3534                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3535                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3536                         vtctl |= adapter->vfs_allocated_count <<
3537                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3538                         wr32(E1000_VT_CTL, vtctl);
3539                 }
3540                 if (adapter->rss_queues > 1)
3541                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3542                 else
3543                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3544         } else {
3545                 if (hw->mac.type != e1000_i211)
3546                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3547         }
3548         igb_vmm_control(adapter);
3549
3550         wr32(E1000_MRQC, mrqc);
3551 }
3552
3553 /**
3554  *  igb_setup_rctl - configure the receive control registers
3555  *  @adapter: Board private structure
3556  **/
3557 void igb_setup_rctl(struct igb_adapter *adapter)
3558 {
3559         struct e1000_hw *hw = &adapter->hw;
3560         u32 rctl;
3561
3562         rctl = rd32(E1000_RCTL);
3563
3564         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3565         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3566
3567         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3568                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3569
3570         /* enable stripping of CRC. It's unlikely this will break BMC
3571          * redirection as it did with e1000. Newer features require
3572          * that the HW strips the CRC.
3573          */
3574         rctl |= E1000_RCTL_SECRC;
3575
3576         /* disable store bad packets and clear size bits. */
3577         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3578
3579         /* enable LPE to allow for reception of jumbo frames */
3580         rctl |= E1000_RCTL_LPE;
3581
3582         /* disable queue 0 to prevent tail write w/o re-config */
3583         wr32(E1000_RXDCTL(0), 0);
3584
3585         /* Attention!!!  For SR-IOV PF driver operations you must enable
3586          * queue drop for all VF and PF queues to prevent head of line blocking
3587          * if an un-trusted VF does not provide descriptors to hardware.
3588          */
3589         if (adapter->vfs_allocated_count) {
3590                 /* set all queue drop enable bits */
3591                 wr32(E1000_QDE, ALL_QUEUES);
3592         }
3593
3594         /* This is useful for sniffing bad packets. */
3595         if (adapter->netdev->features & NETIF_F_RXALL) {
3596                 /* UPE and MPE will be handled by normal PROMISC logic
3597                  * in e1000e_set_rx_mode
3598                  */
3599                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3600                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3601                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3602
3603                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3604                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3605                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3606                  * and that breaks VLANs.
3607                  */
3608         }
3609
3610         wr32(E1000_RCTL, rctl);
3611 }
3612
3613 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3614                                    int vfn)
3615 {
3616         struct e1000_hw *hw = &adapter->hw;
3617         u32 vmolr;
3618
3619         if (size > MAX_JUMBO_FRAME_SIZE)
3620                 size = MAX_JUMBO_FRAME_SIZE;
3621
3622         vmolr = rd32(E1000_VMOLR(vfn));
3623         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3624         vmolr |= size | E1000_VMOLR_LPE;
3625         wr32(E1000_VMOLR(vfn), vmolr);
3626
3627         return 0;
3628 }
3629
3630 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3631                                          int vfn, bool enable)
3632 {
3633         struct e1000_hw *hw = &adapter->hw;
3634         u32 val, reg;
3635
3636         if (hw->mac.type < e1000_82576)
3637                 return;
3638
3639         if (hw->mac.type == e1000_i350)
3640                 reg = E1000_DVMOLR(vfn);
3641         else
3642                 reg = E1000_VMOLR(vfn);
3643
3644         val = rd32(reg);
3645         if (enable)
3646                 val |= E1000_VMOLR_STRVLAN;
3647         else
3648                 val &= ~(E1000_VMOLR_STRVLAN);
3649         wr32(reg, val);
3650 }
3651
3652 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3653                                  int vfn, bool aupe)
3654 {
3655         struct e1000_hw *hw = &adapter->hw;
3656         u32 vmolr;
3657
3658         /* This register exists only on 82576 and newer so if we are older then
3659          * we should exit and do nothing
3660          */
3661         if (hw->mac.type < e1000_82576)
3662                 return;
3663
3664         vmolr = rd32(E1000_VMOLR(vfn));
3665         if (aupe)
3666                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3667         else
3668                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3669
3670         /* clear all bits that might not be set */
3671         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3672
3673         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3674                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3675         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3676          * multicast packets
3677          */
3678         if (vfn <= adapter->vfs_allocated_count)
3679                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3680
3681         wr32(E1000_VMOLR(vfn), vmolr);
3682 }
3683
3684 /**
3685  *  igb_configure_rx_ring - Configure a receive ring after Reset
3686  *  @adapter: board private structure
3687  *  @ring: receive ring to be configured
3688  *
3689  *  Configure the Rx unit of the MAC after a reset.
3690  **/
3691 void igb_configure_rx_ring(struct igb_adapter *adapter,
3692                            struct igb_ring *ring)
3693 {
3694         struct e1000_hw *hw = &adapter->hw;
3695         u64 rdba = ring->dma;
3696         int reg_idx = ring->reg_idx;
3697         u32 srrctl = 0, rxdctl = 0;
3698
3699         /* disable the queue */
3700         wr32(E1000_RXDCTL(reg_idx), 0);
3701
3702         /* Set DMA base address registers */
3703         wr32(E1000_RDBAL(reg_idx),
3704              rdba & 0x00000000ffffffffULL);
3705         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3706         wr32(E1000_RDLEN(reg_idx),
3707              ring->count * sizeof(union e1000_adv_rx_desc));
3708
3709         /* initialize head and tail */
3710         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3711         wr32(E1000_RDH(reg_idx), 0);
3712         writel(0, ring->tail);
3713
3714         /* set descriptor configuration */
3715         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3716         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3717         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3718         if (hw->mac.type >= e1000_82580)
3719                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3720         /* Only set Drop Enable if we are supporting multiple queues */
3721         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3722                 srrctl |= E1000_SRRCTL_DROP_EN;
3723
3724         wr32(E1000_SRRCTL(reg_idx), srrctl);
3725
3726         /* set filtering for VMDQ pools */
3727         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3728
3729         rxdctl |= IGB_RX_PTHRESH;
3730         rxdctl |= IGB_RX_HTHRESH << 8;
3731         rxdctl |= IGB_RX_WTHRESH << 16;
3732
3733         /* enable receive descriptor fetching */
3734         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3735         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3736 }
3737
3738 /**
3739  *  igb_configure_rx - Configure receive Unit after Reset
3740  *  @adapter: board private structure
3741  *
3742  *  Configure the Rx unit of the MAC after a reset.
3743  **/
3744 static void igb_configure_rx(struct igb_adapter *adapter)
3745 {
3746         int i;
3747
3748         /* set the correct pool for the PF default MAC address in entry 0 */
3749         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3750                          adapter->vfs_allocated_count);
3751
3752         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3753          * the Base and Length of the Rx Descriptor Ring
3754          */
3755         for (i = 0; i < adapter->num_rx_queues; i++)
3756                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3757 }
3758
3759 /**
3760  *  igb_free_tx_resources - Free Tx Resources per Queue
3761  *  @tx_ring: Tx descriptor ring for a specific queue
3762  *
3763  *  Free all transmit software resources
3764  **/
3765 void igb_free_tx_resources(struct igb_ring *tx_ring)
3766 {
3767         igb_clean_tx_ring(tx_ring);
3768
3769         vfree(tx_ring->tx_buffer_info);
3770         tx_ring->tx_buffer_info = NULL;
3771
3772         /* if not set, then don't free */
3773         if (!tx_ring->desc)
3774                 return;
3775
3776         dma_free_coherent(tx_ring->dev, tx_ring->size,
3777                           tx_ring->desc, tx_ring->dma);
3778
3779         tx_ring->desc = NULL;
3780 }
3781
3782 /**
3783  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3784  *  @adapter: board private structure
3785  *
3786  *  Free all transmit software resources
3787  **/
3788 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3789 {
3790         int i;
3791
3792         for (i = 0; i < adapter->num_tx_queues; i++)
3793                 if (adapter->tx_ring[i])
3794                         igb_free_tx_resources(adapter->tx_ring[i]);
3795 }
3796
3797 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3798                                     struct igb_tx_buffer *tx_buffer)
3799 {
3800         if (tx_buffer->skb) {
3801                 dev_kfree_skb_any(tx_buffer->skb);
3802                 if (dma_unmap_len(tx_buffer, len))
3803                         dma_unmap_single(ring->dev,
3804                                          dma_unmap_addr(tx_buffer, dma),
3805                                          dma_unmap_len(tx_buffer, len),
3806                                          DMA_TO_DEVICE);
3807         } else if (dma_unmap_len(tx_buffer, len)) {
3808                 dma_unmap_page(ring->dev,
3809                                dma_unmap_addr(tx_buffer, dma),
3810                                dma_unmap_len(tx_buffer, len),
3811                                DMA_TO_DEVICE);
3812         }
3813         tx_buffer->next_to_watch = NULL;
3814         tx_buffer->skb = NULL;
3815         dma_unmap_len_set(tx_buffer, len, 0);
3816         /* buffer_info must be completely set up in the transmit path */
3817 }
3818
3819 /**
3820  *  igb_clean_tx_ring - Free Tx Buffers
3821  *  @tx_ring: ring to be cleaned
3822  **/
3823 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3824 {
3825         struct igb_tx_buffer *buffer_info;
3826         unsigned long size;
3827         u16 i;
3828
3829         if (!tx_ring->tx_buffer_info)
3830                 return;
3831         /* Free all the Tx ring sk_buffs */
3832
3833         for (i = 0; i < tx_ring->count; i++) {
3834                 buffer_info = &tx_ring->tx_buffer_info[i];
3835                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3836         }
3837
3838         netdev_tx_reset_queue(txring_txq(tx_ring));
3839
3840         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3841         memset(tx_ring->tx_buffer_info, 0, size);
3842
3843         /* Zero out the descriptor ring */
3844         memset(tx_ring->desc, 0, tx_ring->size);
3845
3846         tx_ring->next_to_use = 0;
3847         tx_ring->next_to_clean = 0;
3848 }
3849
3850 /**
3851  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3852  *  @adapter: board private structure
3853  **/
3854 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3855 {
3856         int i;
3857
3858         for (i = 0; i < adapter->num_tx_queues; i++)
3859                 if (adapter->tx_ring[i])
3860                         igb_clean_tx_ring(adapter->tx_ring[i]);
3861 }
3862
3863 /**
3864  *  igb_free_rx_resources - Free Rx Resources
3865  *  @rx_ring: ring to clean the resources from
3866  *
3867  *  Free all receive software resources
3868  **/
3869 void igb_free_rx_resources(struct igb_ring *rx_ring)
3870 {
3871         igb_clean_rx_ring(rx_ring);
3872
3873         vfree(rx_ring->rx_buffer_info);
3874         rx_ring->rx_buffer_info = NULL;
3875
3876         /* if not set, then don't free */
3877         if (!rx_ring->desc)
3878                 return;
3879
3880         dma_free_coherent(rx_ring->dev, rx_ring->size,
3881                           rx_ring->desc, rx_ring->dma);
3882
3883         rx_ring->desc = NULL;
3884 }
3885
3886 /**
3887  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3888  *  @adapter: board private structure
3889  *
3890  *  Free all receive software resources
3891  **/
3892 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3893 {
3894         int i;
3895
3896         for (i = 0; i < adapter->num_rx_queues; i++)
3897                 if (adapter->rx_ring[i])
3898                         igb_free_rx_resources(adapter->rx_ring[i]);
3899 }
3900
3901 /**
3902  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3903  *  @rx_ring: ring to free buffers from
3904  **/
3905 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3906 {
3907         unsigned long size;
3908         u16 i;
3909
3910         if (rx_ring->skb)
3911                 dev_kfree_skb(rx_ring->skb);
3912         rx_ring->skb = NULL;
3913
3914         if (!rx_ring->rx_buffer_info)
3915                 return;
3916
3917         /* Free all the Rx ring sk_buffs */
3918         for (i = 0; i < rx_ring->count; i++) {
3919                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3920
3921                 if (!buffer_info->page)
3922                         continue;
3923
3924                 dma_unmap_page(rx_ring->dev,
3925                                buffer_info->dma,
3926                                PAGE_SIZE,
3927                                DMA_FROM_DEVICE);
3928                 __free_page(buffer_info->page);
3929
3930                 buffer_info->page = NULL;
3931         }
3932
3933         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3934         memset(rx_ring->rx_buffer_info, 0, size);
3935
3936         /* Zero out the descriptor ring */
3937         memset(rx_ring->desc, 0, rx_ring->size);
3938
3939         rx_ring->next_to_alloc = 0;
3940         rx_ring->next_to_clean = 0;
3941         rx_ring->next_to_use = 0;
3942 }
3943
3944 /**
3945  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3946  *  @adapter: board private structure
3947  **/
3948 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3949 {
3950         int i;
3951
3952         for (i = 0; i < adapter->num_rx_queues; i++)
3953                 if (adapter->rx_ring[i])
3954                         igb_clean_rx_ring(adapter->rx_ring[i]);
3955 }
3956
3957 /**
3958  *  igb_set_mac - Change the Ethernet Address of the NIC
3959  *  @netdev: network interface device structure
3960  *  @p: pointer to an address structure
3961  *
3962  *  Returns 0 on success, negative on failure
3963  **/
3964 static int igb_set_mac(struct net_device *netdev, void *p)
3965 {
3966         struct igb_adapter *adapter = netdev_priv(netdev);
3967         struct e1000_hw *hw = &adapter->hw;
3968         struct sockaddr *addr = p;
3969
3970         if (!is_valid_ether_addr(addr->sa_data))
3971                 return -EADDRNOTAVAIL;
3972
3973         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3974         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3975
3976         /* set the correct pool for the new PF MAC address in entry 0 */
3977         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3978                          adapter->vfs_allocated_count);
3979
3980         return 0;
3981 }
3982
3983 /**
3984  *  igb_write_mc_addr_list - write multicast addresses to MTA
3985  *  @netdev: network interface device structure
3986  *
3987  *  Writes multicast address list to the MTA hash table.
3988  *  Returns: -ENOMEM on failure
3989  *           0 on no addresses written
3990  *           X on writing X addresses to MTA
3991  **/
3992 static int igb_write_mc_addr_list(struct net_device *netdev)
3993 {
3994         struct igb_adapter *adapter = netdev_priv(netdev);
3995         struct e1000_hw *hw = &adapter->hw;
3996         struct netdev_hw_addr *ha;
3997         u8  *mta_list;
3998         int i;
3999
4000         if (netdev_mc_empty(netdev)) {
4001                 /* nothing to program, so clear mc list */
4002                 igb_update_mc_addr_list(hw, NULL, 0);
4003                 igb_restore_vf_multicasts(adapter);
4004                 return 0;
4005         }
4006
4007         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4008         if (!mta_list)
4009                 return -ENOMEM;
4010
4011         /* The shared function expects a packed array of only addresses. */
4012         i = 0;
4013         netdev_for_each_mc_addr(ha, netdev)
4014                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4015
4016         igb_update_mc_addr_list(hw, mta_list, i);
4017         kfree(mta_list);
4018
4019         return netdev_mc_count(netdev);
4020 }
4021
4022 /**
4023  *  igb_write_uc_addr_list - write unicast addresses to RAR table
4024  *  @netdev: network interface device structure
4025  *
4026  *  Writes unicast address list to the RAR table.
4027  *  Returns: -ENOMEM on failure/insufficient address space
4028  *           0 on no addresses written
4029  *           X on writing X addresses to the RAR table
4030  **/
4031 static int igb_write_uc_addr_list(struct net_device *netdev)
4032 {
4033         struct igb_adapter *adapter = netdev_priv(netdev);
4034         struct e1000_hw *hw = &adapter->hw;
4035         unsigned int vfn = adapter->vfs_allocated_count;
4036         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4037         int count = 0;
4038
4039         /* return ENOMEM indicating insufficient memory for addresses */
4040         if (netdev_uc_count(netdev) > rar_entries)
4041                 return -ENOMEM;
4042
4043         if (!netdev_uc_empty(netdev) && rar_entries) {
4044                 struct netdev_hw_addr *ha;
4045
4046                 netdev_for_each_uc_addr(ha, netdev) {
4047                         if (!rar_entries)
4048                                 break;
4049                         igb_rar_set_qsel(adapter, ha->addr,
4050                                          rar_entries--,
4051                                          vfn);
4052                         count++;
4053                 }
4054         }
4055         /* write the addresses in reverse order to avoid write combining */
4056         for (; rar_entries > 0 ; rar_entries--) {
4057                 wr32(E1000_RAH(rar_entries), 0);
4058                 wr32(E1000_RAL(rar_entries), 0);
4059         }
4060         wrfl();
4061
4062         return count;
4063 }
4064
4065 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4066 {
4067         struct e1000_hw *hw = &adapter->hw;
4068         u32 i, pf_id;
4069
4070         switch (hw->mac.type) {
4071         case e1000_i210:
4072         case e1000_i211:
4073         case e1000_i350:
4074                 /* VLAN filtering needed for VLAN prio filter */
4075                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4076                         break;
4077                 /* fall through */
4078         case e1000_82576:
4079         case e1000_82580:
4080         case e1000_i354:
4081                 /* VLAN filtering needed for pool filtering */
4082                 if (adapter->vfs_allocated_count)
4083                         break;
4084                 /* fall through */
4085         default:
4086                 return 1;
4087         }
4088
4089         /* We are already in VLAN promisc, nothing to do */
4090         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4091                 return 0;
4092
4093         if (!adapter->vfs_allocated_count)
4094                 goto set_vfta;
4095
4096         /* Add PF to all active pools */
4097         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4098
4099         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4100                 u32 vlvf = rd32(E1000_VLVF(i));
4101
4102                 vlvf |= BIT(pf_id);
4103                 wr32(E1000_VLVF(i), vlvf);
4104         }
4105
4106 set_vfta:
4107         /* Set all bits in the VLAN filter table array */
4108         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4109                 hw->mac.ops.write_vfta(hw, i, ~0U);
4110
4111         /* Set flag so we don't redo unnecessary work */
4112         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4113
4114         return 0;
4115 }
4116
4117 #define VFTA_BLOCK_SIZE 8
4118 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4119 {
4120         struct e1000_hw *hw = &adapter->hw;
4121         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4122         u32 vid_start = vfta_offset * 32;
4123         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4124         u32 i, vid, word, bits, pf_id;
4125
4126         /* guarantee that we don't scrub out management VLAN */
4127         vid = adapter->mng_vlan_id;
4128         if (vid >= vid_start && vid < vid_end)
4129                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4130
4131         if (!adapter->vfs_allocated_count)
4132                 goto set_vfta;
4133
4134         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4135
4136         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4137                 u32 vlvf = rd32(E1000_VLVF(i));
4138
4139                 /* pull VLAN ID from VLVF */
4140                 vid = vlvf & VLAN_VID_MASK;
4141
4142                 /* only concern ourselves with a certain range */
4143                 if (vid < vid_start || vid >= vid_end)
4144                         continue;
4145
4146                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4147                         /* record VLAN ID in VFTA */
4148                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4149
4150                         /* if PF is part of this then continue */
4151                         if (test_bit(vid, adapter->active_vlans))
4152                                 continue;
4153                 }
4154
4155                 /* remove PF from the pool */
4156                 bits = ~BIT(pf_id);
4157                 bits &= rd32(E1000_VLVF(i));
4158                 wr32(E1000_VLVF(i), bits);
4159         }
4160
4161 set_vfta:
4162         /* extract values from active_vlans and write back to VFTA */
4163         for (i = VFTA_BLOCK_SIZE; i--;) {
4164                 vid = (vfta_offset + i) * 32;
4165                 word = vid / BITS_PER_LONG;
4166                 bits = vid % BITS_PER_LONG;
4167
4168                 vfta[i] |= adapter->active_vlans[word] >> bits;
4169
4170                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4171         }
4172 }
4173
4174 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4175 {
4176         u32 i;
4177
4178         /* We are not in VLAN promisc, nothing to do */
4179         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4180                 return;
4181
4182         /* Set flag so we don't redo unnecessary work */
4183         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4184
4185         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4186                 igb_scrub_vfta(adapter, i);
4187 }
4188
4189 /**
4190  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4191  *  @netdev: network interface device structure
4192  *
4193  *  The set_rx_mode entry point is called whenever the unicast or multicast
4194  *  address lists or the network interface flags are updated.  This routine is
4195  *  responsible for configuring the hardware for proper unicast, multicast,
4196  *  promiscuous mode, and all-multi behavior.
4197  **/
4198 static void igb_set_rx_mode(struct net_device *netdev)
4199 {
4200         struct igb_adapter *adapter = netdev_priv(netdev);
4201         struct e1000_hw *hw = &adapter->hw;
4202         unsigned int vfn = adapter->vfs_allocated_count;
4203         u32 rctl = 0, vmolr = 0;
4204         int count;
4205
4206         /* Check for Promiscuous and All Multicast modes */
4207         if (netdev->flags & IFF_PROMISC) {
4208                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4209                 vmolr |= E1000_VMOLR_MPME;
4210
4211                 /* enable use of UTA filter to force packets to default pool */
4212                 if (hw->mac.type == e1000_82576)
4213                         vmolr |= E1000_VMOLR_ROPE;
4214         } else {
4215                 if (netdev->flags & IFF_ALLMULTI) {
4216                         rctl |= E1000_RCTL_MPE;
4217                         vmolr |= E1000_VMOLR_MPME;
4218                 } else {
4219                         /* Write addresses to the MTA, if the attempt fails
4220                          * then we should just turn on promiscuous mode so
4221                          * that we can at least receive multicast traffic
4222                          */
4223                         count = igb_write_mc_addr_list(netdev);
4224                         if (count < 0) {
4225                                 rctl |= E1000_RCTL_MPE;
4226                                 vmolr |= E1000_VMOLR_MPME;
4227                         } else if (count) {
4228                                 vmolr |= E1000_VMOLR_ROMPE;
4229                         }
4230                 }
4231         }
4232
4233         /* Write addresses to available RAR registers, if there is not
4234          * sufficient space to store all the addresses then enable
4235          * unicast promiscuous mode
4236          */
4237         count = igb_write_uc_addr_list(netdev);
4238         if (count < 0) {
4239                 rctl |= E1000_RCTL_UPE;
4240                 vmolr |= E1000_VMOLR_ROPE;
4241         }
4242
4243         /* enable VLAN filtering by default */
4244         rctl |= E1000_RCTL_VFE;
4245
4246         /* disable VLAN filtering for modes that require it */
4247         if ((netdev->flags & IFF_PROMISC) ||
4248             (netdev->features & NETIF_F_RXALL)) {
4249                 /* if we fail to set all rules then just clear VFE */
4250                 if (igb_vlan_promisc_enable(adapter))
4251                         rctl &= ~E1000_RCTL_VFE;
4252         } else {
4253                 igb_vlan_promisc_disable(adapter);
4254         }
4255
4256         /* update state of unicast, multicast, and VLAN filtering modes */
4257         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4258                                      E1000_RCTL_VFE);
4259         wr32(E1000_RCTL, rctl);
4260
4261         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4262          * the VMOLR to enable the appropriate modes.  Without this workaround
4263          * we will have issues with VLAN tag stripping not being done for frames
4264          * that are only arriving because we are the default pool
4265          */
4266         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4267                 return;
4268
4269         /* set UTA to appropriate mode */
4270         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4271
4272         vmolr |= rd32(E1000_VMOLR(vfn)) &
4273                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4274
4275         /* enable Rx jumbo frames, no need for restriction */
4276         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4277         vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4278
4279         wr32(E1000_VMOLR(vfn), vmolr);
4280         wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4281
4282         igb_restore_vf_multicasts(adapter);
4283 }
4284
4285 static void igb_check_wvbr(struct igb_adapter *adapter)
4286 {
4287         struct e1000_hw *hw = &adapter->hw;
4288         u32 wvbr = 0;
4289
4290         switch (hw->mac.type) {
4291         case e1000_82576:
4292         case e1000_i350:
4293                 wvbr = rd32(E1000_WVBR);
4294                 if (!wvbr)
4295                         return;
4296                 break;
4297         default:
4298                 break;
4299         }
4300
4301         adapter->wvbr |= wvbr;
4302 }
4303
4304 #define IGB_STAGGERED_QUEUE_OFFSET 8
4305
4306 static void igb_spoof_check(struct igb_adapter *adapter)
4307 {
4308         int j;
4309
4310         if (!adapter->wvbr)
4311                 return;
4312
4313         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4314                 if (adapter->wvbr & BIT(j) ||
4315                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4316                         dev_warn(&adapter->pdev->dev,
4317                                 "Spoof event(s) detected on VF %d\n", j);
4318                         adapter->wvbr &=
4319                                 ~(BIT(j) |
4320                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4321                 }
4322         }
4323 }
4324
4325 /* Need to wait a few seconds after link up to get diagnostic information from
4326  * the phy
4327  */
4328 static void igb_update_phy_info(unsigned long data)
4329 {
4330         struct igb_adapter *adapter = (struct igb_adapter *) data;
4331         igb_get_phy_info(&adapter->hw);
4332 }
4333
4334 /**
4335  *  igb_has_link - check shared code for link and determine up/down
4336  *  @adapter: pointer to driver private info
4337  **/
4338 bool igb_has_link(struct igb_adapter *adapter)
4339 {
4340         struct e1000_hw *hw = &adapter->hw;
4341         bool link_active = false;
4342
4343         /* get_link_status is set on LSC (link status) interrupt or
4344          * rx sequence error interrupt.  get_link_status will stay
4345          * false until the e1000_check_for_link establishes link
4346          * for copper adapters ONLY
4347          */
4348         switch (hw->phy.media_type) {
4349         case e1000_media_type_copper:
4350                 if (!hw->mac.get_link_status)
4351                         return true;
4352         case e1000_media_type_internal_serdes:
4353                 hw->mac.ops.check_for_link(hw);
4354                 link_active = !hw->mac.get_link_status;
4355                 break;
4356         default:
4357         case e1000_media_type_unknown:
4358                 break;
4359         }
4360
4361         if (((hw->mac.type == e1000_i210) ||
4362              (hw->mac.type == e1000_i211)) &&
4363              (hw->phy.id == I210_I_PHY_ID)) {
4364                 if (!netif_carrier_ok(adapter->netdev)) {
4365                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4366                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4367                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4368                         adapter->link_check_timeout = jiffies;
4369                 }
4370         }
4371
4372         return link_active;
4373 }
4374
4375 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4376 {
4377         bool ret = false;
4378         u32 ctrl_ext, thstat;
4379
4380         /* check for thermal sensor event on i350 copper only */
4381         if (hw->mac.type == e1000_i350) {
4382                 thstat = rd32(E1000_THSTAT);
4383                 ctrl_ext = rd32(E1000_CTRL_EXT);
4384
4385                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4386                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4387                         ret = !!(thstat & event);
4388         }
4389
4390         return ret;
4391 }
4392
4393 /**
4394  *  igb_check_lvmmc - check for malformed packets received
4395  *  and indicated in LVMMC register
4396  *  @adapter: pointer to adapter
4397  **/
4398 static void igb_check_lvmmc(struct igb_adapter *adapter)
4399 {
4400         struct e1000_hw *hw = &adapter->hw;
4401         u32 lvmmc;
4402
4403         lvmmc = rd32(E1000_LVMMC);
4404         if (lvmmc) {
4405                 if (unlikely(net_ratelimit())) {
4406                         netdev_warn(adapter->netdev,
4407                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4408                                     lvmmc);
4409                 }
4410         }
4411 }
4412
4413 /**
4414  *  igb_watchdog - Timer Call-back
4415  *  @data: pointer to adapter cast into an unsigned long
4416  **/
4417 static void igb_watchdog(unsigned long data)
4418 {
4419         struct igb_adapter *adapter = (struct igb_adapter *)data;
4420         /* Do the rest outside of interrupt context */
4421         schedule_work(&adapter->watchdog_task);
4422 }
4423
4424 static void igb_watchdog_task(struct work_struct *work)
4425 {
4426         struct igb_adapter *adapter = container_of(work,
4427                                                    struct igb_adapter,
4428                                                    watchdog_task);
4429         struct e1000_hw *hw = &adapter->hw;
4430         struct e1000_phy_info *phy = &hw->phy;
4431         struct net_device *netdev = adapter->netdev;
4432         u32 link;
4433         int i;
4434         u32 connsw;
4435         u16 phy_data, retry_count = 20;
4436
4437         link = igb_has_link(adapter);
4438
4439         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4440                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4441                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4442                 else
4443                         link = false;
4444         }
4445
4446         /* Force link down if we have fiber to swap to */
4447         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4448                 if (hw->phy.media_type == e1000_media_type_copper) {
4449                         connsw = rd32(E1000_CONNSW);
4450                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4451                                 link = 0;
4452                 }
4453         }
4454         if (link) {
4455                 /* Perform a reset if the media type changed. */
4456                 if (hw->dev_spec._82575.media_changed) {
4457                         hw->dev_spec._82575.media_changed = false;
4458                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4459                         igb_reset(adapter);
4460                 }
4461                 /* Cancel scheduled suspend requests. */
4462                 pm_runtime_resume(netdev->dev.parent);
4463
4464                 if (!netif_carrier_ok(netdev)) {
4465                         u32 ctrl;
4466
4467                         hw->mac.ops.get_speed_and_duplex(hw,
4468                                                          &adapter->link_speed,
4469                                                          &adapter->link_duplex);
4470
4471                         ctrl = rd32(E1000_CTRL);
4472                         /* Links status message must follow this format */
4473                         netdev_info(netdev,
4474                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4475                                netdev->name,
4476                                adapter->link_speed,
4477                                adapter->link_duplex == FULL_DUPLEX ?
4478                                "Full" : "Half",
4479                                (ctrl & E1000_CTRL_TFCE) &&
4480                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4481                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4482                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4483
4484                         /* disable EEE if enabled */
4485                         if ((adapter->flags & IGB_FLAG_EEE) &&
4486                                 (adapter->link_duplex == HALF_DUPLEX)) {
4487                                 dev_info(&adapter->pdev->dev,
4488                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4489                                 adapter->hw.dev_spec._82575.eee_disable = true;
4490                                 adapter->flags &= ~IGB_FLAG_EEE;
4491                         }
4492
4493                         /* check if SmartSpeed worked */
4494                         igb_check_downshift(hw);
4495                         if (phy->speed_downgraded)
4496                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4497
4498                         /* check for thermal sensor event */
4499                         if (igb_thermal_sensor_event(hw,
4500                             E1000_THSTAT_LINK_THROTTLE))
4501                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4502
4503                         /* adjust timeout factor according to speed/duplex */
4504                         adapter->tx_timeout_factor = 1;
4505                         switch (adapter->link_speed) {
4506                         case SPEED_10:
4507                                 adapter->tx_timeout_factor = 14;
4508                                 break;
4509                         case SPEED_100:
4510                                 /* maybe add some timeout factor ? */
4511                                 break;
4512                         }
4513
4514                         if (adapter->link_speed != SPEED_1000)
4515                                 goto no_wait;
4516
4517                         /* wait for Remote receiver status OK */
4518 retry_read_status:
4519                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4520                                               &phy_data)) {
4521                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4522                                     retry_count) {
4523                                         msleep(100);
4524                                         retry_count--;
4525                                         goto retry_read_status;
4526                                 } else if (!retry_count) {
4527                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4528                                 }
4529                         } else {
4530                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4531                         }
4532 no_wait:
4533                         netif_carrier_on(netdev);
4534
4535                         igb_ping_all_vfs(adapter);
4536                         igb_check_vf_rate_limit(adapter);
4537
4538                         /* link state has changed, schedule phy info update */
4539                         if (!test_bit(__IGB_DOWN, &adapter->state))
4540                                 mod_timer(&adapter->phy_info_timer,
4541                                           round_jiffies(jiffies + 2 * HZ));
4542                 }
4543         } else {
4544                 if (netif_carrier_ok(netdev)) {
4545                         adapter->link_speed = 0;
4546                         adapter->link_duplex = 0;
4547
4548                         /* check for thermal sensor event */
4549                         if (igb_thermal_sensor_event(hw,
4550                             E1000_THSTAT_PWR_DOWN)) {
4551                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4552                         }
4553
4554                         /* Links status message must follow this format */
4555                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4556                                netdev->name);
4557                         netif_carrier_off(netdev);
4558
4559                         igb_ping_all_vfs(adapter);
4560
4561                         /* link state has changed, schedule phy info update */
4562                         if (!test_bit(__IGB_DOWN, &adapter->state))
4563                                 mod_timer(&adapter->phy_info_timer,
4564                                           round_jiffies(jiffies + 2 * HZ));
4565
4566                         /* link is down, time to check for alternate media */
4567                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4568                                 igb_check_swap_media(adapter);
4569                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4570                                         schedule_work(&adapter->reset_task);
4571                                         /* return immediately */
4572                                         return;
4573                                 }
4574                         }
4575                         pm_schedule_suspend(netdev->dev.parent,
4576                                             MSEC_PER_SEC * 5);
4577
4578                 /* also check for alternate media here */
4579                 } else if (!netif_carrier_ok(netdev) &&
4580                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4581                         igb_check_swap_media(adapter);
4582                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4583                                 schedule_work(&adapter->reset_task);
4584                                 /* return immediately */
4585                                 return;
4586                         }
4587                 }
4588         }
4589
4590         spin_lock(&adapter->stats64_lock);
4591         igb_update_stats(adapter, &adapter->stats64);
4592         spin_unlock(&adapter->stats64_lock);
4593
4594         for (i = 0; i < adapter->num_tx_queues; i++) {
4595                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4596                 if (!netif_carrier_ok(netdev)) {
4597                         /* We've lost link, so the controller stops DMA,
4598                          * but we've got queued Tx work that's never going
4599                          * to get done, so reset controller to flush Tx.
4600                          * (Do the reset outside of interrupt context).
4601                          */
4602                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4603                                 adapter->tx_timeout_count++;
4604                                 schedule_work(&adapter->reset_task);
4605                                 /* return immediately since reset is imminent */
4606                                 return;
4607                         }
4608                 }
4609
4610                 /* Force detection of hung controller every watchdog period */
4611                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4612         }
4613
4614         /* Cause software interrupt to ensure Rx ring is cleaned */
4615         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4616                 u32 eics = 0;
4617
4618                 for (i = 0; i < adapter->num_q_vectors; i++)
4619                         eics |= adapter->q_vector[i]->eims_value;
4620                 wr32(E1000_EICS, eics);
4621         } else {
4622                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4623         }
4624
4625         igb_spoof_check(adapter);
4626         igb_ptp_rx_hang(adapter);
4627
4628         /* Check LVMMC register on i350/i354 only */
4629         if ((adapter->hw.mac.type == e1000_i350) ||
4630             (adapter->hw.mac.type == e1000_i354))
4631                 igb_check_lvmmc(adapter);
4632
4633         /* Reset the timer */
4634         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4635                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4636                         mod_timer(&adapter->watchdog_timer,
4637                                   round_jiffies(jiffies +  HZ));
4638                 else
4639                         mod_timer(&adapter->watchdog_timer,
4640                                   round_jiffies(jiffies + 2 * HZ));
4641         }
4642 }
4643
4644 enum latency_range {
4645         lowest_latency = 0,
4646         low_latency = 1,
4647         bulk_latency = 2,
4648         latency_invalid = 255
4649 };
4650
4651 /**
4652  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4653  *  @q_vector: pointer to q_vector
4654  *
4655  *  Stores a new ITR value based on strictly on packet size.  This
4656  *  algorithm is less sophisticated than that used in igb_update_itr,
4657  *  due to the difficulty of synchronizing statistics across multiple
4658  *  receive rings.  The divisors and thresholds used by this function
4659  *  were determined based on theoretical maximum wire speed and testing
4660  *  data, in order to minimize response time while increasing bulk
4661  *  throughput.
4662  *  This functionality is controlled by ethtool's coalescing settings.
4663  *  NOTE:  This function is called only when operating in a multiqueue
4664  *         receive environment.
4665  **/
4666 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4667 {
4668         int new_val = q_vector->itr_val;
4669         int avg_wire_size = 0;
4670         struct igb_adapter *adapter = q_vector->adapter;
4671         unsigned int packets;
4672
4673         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4674          * ints/sec - ITR timer value of 120 ticks.
4675          */
4676         if (adapter->link_speed != SPEED_1000) {
4677                 new_val = IGB_4K_ITR;
4678                 goto set_itr_val;
4679         }
4680
4681         packets = q_vector->rx.total_packets;
4682         if (packets)
4683                 avg_wire_size = q_vector->rx.total_bytes / packets;
4684
4685         packets = q_vector->tx.total_packets;
4686         if (packets)
4687                 avg_wire_size = max_t(u32, avg_wire_size,
4688                                       q_vector->tx.total_bytes / packets);
4689
4690         /* if avg_wire_size isn't set no work was done */
4691         if (!avg_wire_size)
4692                 goto clear_counts;
4693
4694         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4695         avg_wire_size += 24;
4696
4697         /* Don't starve jumbo frames */
4698         avg_wire_size = min(avg_wire_size, 3000);
4699
4700         /* Give a little boost to mid-size frames */
4701         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4702                 new_val = avg_wire_size / 3;
4703         else
4704                 new_val = avg_wire_size / 2;
4705
4706         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4707         if (new_val < IGB_20K_ITR &&
4708             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4709              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4710                 new_val = IGB_20K_ITR;
4711
4712 set_itr_val:
4713         if (new_val != q_vector->itr_val) {
4714                 q_vector->itr_val = new_val;
4715                 q_vector->set_itr = 1;
4716         }
4717 clear_counts:
4718         q_vector->rx.total_bytes = 0;
4719         q_vector->rx.total_packets = 0;
4720         q_vector->tx.total_bytes = 0;
4721         q_vector->tx.total_packets = 0;
4722 }
4723
4724 /**
4725  *  igb_update_itr - update the dynamic ITR value based on statistics
4726  *  @q_vector: pointer to q_vector
4727  *  @ring_container: ring info to update the itr for
4728  *
4729  *  Stores a new ITR value based on packets and byte
4730  *  counts during the last interrupt.  The advantage of per interrupt
4731  *  computation is faster updates and more accurate ITR for the current
4732  *  traffic pattern.  Constants in this function were computed
4733  *  based on theoretical maximum wire speed and thresholds were set based
4734  *  on testing data as well as attempting to minimize response time
4735  *  while increasing bulk throughput.
4736  *  This functionality is controlled by ethtool's coalescing settings.
4737  *  NOTE:  These calculations are only valid when operating in a single-
4738  *         queue environment.
4739  **/
4740 static void igb_update_itr(struct igb_q_vector *q_vector,
4741                            struct igb_ring_container *ring_container)
4742 {
4743         unsigned int packets = ring_container->total_packets;
4744         unsigned int bytes = ring_container->total_bytes;
4745         u8 itrval = ring_container->itr;
4746
4747         /* no packets, exit with status unchanged */
4748         if (packets == 0)
4749                 return;
4750
4751         switch (itrval) {
4752         case lowest_latency:
4753                 /* handle TSO and jumbo frames */
4754                 if (bytes/packets > 8000)
4755                         itrval = bulk_latency;
4756                 else if ((packets < 5) && (bytes > 512))
4757                         itrval = low_latency;
4758                 break;
4759         case low_latency:  /* 50 usec aka 20000 ints/s */
4760                 if (bytes > 10000) {
4761                         /* this if handles the TSO accounting */
4762                         if (bytes/packets > 8000)
4763                                 itrval = bulk_latency;
4764                         else if ((packets < 10) || ((bytes/packets) > 1200))
4765                                 itrval = bulk_latency;
4766                         else if ((packets > 35))
4767                                 itrval = lowest_latency;
4768                 } else if (bytes/packets > 2000) {
4769                         itrval = bulk_latency;
4770                 } else if (packets <= 2 && bytes < 512) {
4771                         itrval = lowest_latency;
4772                 }
4773                 break;
4774         case bulk_latency: /* 250 usec aka 4000 ints/s */
4775                 if (bytes > 25000) {
4776                         if (packets > 35)
4777                                 itrval = low_latency;
4778                 } else if (bytes < 1500) {
4779                         itrval = low_latency;
4780                 }
4781                 break;
4782         }
4783
4784         /* clear work counters since we have the values we need */
4785         ring_container->total_bytes = 0;
4786         ring_container->total_packets = 0;
4787
4788         /* write updated itr to ring container */
4789         ring_container->itr = itrval;
4790 }
4791
4792 static void igb_set_itr(struct igb_q_vector *q_vector)
4793 {
4794         struct igb_adapter *adapter = q_vector->adapter;
4795         u32 new_itr = q_vector->itr_val;
4796         u8 current_itr = 0;
4797
4798         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4799         if (adapter->link_speed != SPEED_1000) {
4800                 current_itr = 0;
4801                 new_itr = IGB_4K_ITR;
4802                 goto set_itr_now;
4803         }
4804
4805         igb_update_itr(q_vector, &q_vector->tx);
4806         igb_update_itr(q_vector, &q_vector->rx);
4807
4808         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4809
4810         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4811         if (current_itr == lowest_latency &&
4812             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4813              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4814                 current_itr = low_latency;
4815
4816         switch (current_itr) {
4817         /* counts and packets in update_itr are dependent on these numbers */
4818         case lowest_latency:
4819                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4820                 break;
4821         case low_latency:
4822                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4823                 break;
4824         case bulk_latency:
4825                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4826                 break;
4827         default:
4828                 break;
4829         }
4830
4831 set_itr_now:
4832         if (new_itr != q_vector->itr_val) {
4833                 /* this attempts to bias the interrupt rate towards Bulk
4834                  * by adding intermediate steps when interrupt rate is
4835                  * increasing
4836                  */
4837                 new_itr = new_itr > q_vector->itr_val ?
4838                           max((new_itr * q_vector->itr_val) /
4839                           (new_itr + (q_vector->itr_val >> 2)),
4840                           new_itr) : new_itr;
4841                 /* Don't write the value here; it resets the adapter's
4842                  * internal timer, and causes us to delay far longer than
4843                  * we should between interrupts.  Instead, we write the ITR
4844                  * value at the beginning of the next interrupt so the timing
4845                  * ends up being correct.
4846                  */
4847                 q_vector->itr_val = new_itr;
4848                 q_vector->set_itr = 1;
4849         }
4850 }
4851
4852 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4853                             u32 type_tucmd, u32 mss_l4len_idx)
4854 {
4855         struct e1000_adv_tx_context_desc *context_desc;
4856         u16 i = tx_ring->next_to_use;
4857
4858         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4859
4860         i++;
4861         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4862
4863         /* set bits to identify this as an advanced context descriptor */
4864         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4865
4866         /* For 82575, context index must be unique per ring. */
4867         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4868                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4869
4870         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4871         context_desc->seqnum_seed       = 0;
4872         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4873         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4874 }
4875
4876 static int igb_tso(struct igb_ring *tx_ring,
4877                    struct igb_tx_buffer *first,
4878                    u8 *hdr_len)
4879 {
4880         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4881         struct sk_buff *skb = first->skb;
4882         union {
4883                 struct iphdr *v4;
4884                 struct ipv6hdr *v6;
4885                 unsigned char *hdr;
4886         } ip;
4887         union {
4888                 struct tcphdr *tcp;
4889                 unsigned char *hdr;
4890         } l4;
4891         u32 paylen, l4_offset;
4892         int err;
4893
4894         if (skb->ip_summed != CHECKSUM_PARTIAL)
4895                 return 0;
4896
4897         if (!skb_is_gso(skb))
4898                 return 0;
4899
4900         err = skb_cow_head(skb, 0);
4901         if (err < 0)
4902                 return err;
4903
4904         ip.hdr = skb_network_header(skb);
4905         l4.hdr = skb_checksum_start(skb);
4906
4907         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4908         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4909
4910         /* initialize outer IP header fields */
4911         if (ip.v4->version == 4) {
4912                 /* IP header will have to cancel out any data that
4913                  * is not a part of the outer IP header
4914                  */
4915                 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4916                                                   csum_unfold(l4.tcp->check)));
4917                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4918
4919                 ip.v4->tot_len = 0;
4920                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4921                                    IGB_TX_FLAGS_CSUM |
4922                                    IGB_TX_FLAGS_IPV4;
4923         } else {
4924                 ip.v6->payload_len = 0;
4925                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4926                                    IGB_TX_FLAGS_CSUM;
4927         }
4928
4929         /* determine offset of inner transport header */
4930         l4_offset = l4.hdr - skb->data;
4931
4932         /* compute length of segmentation header */
4933         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4934
4935         /* remove payload length from inner checksum */
4936         paylen = skb->len - l4_offset;
4937         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
4938
4939         /* update gso size and bytecount with header size */
4940         first->gso_segs = skb_shinfo(skb)->gso_segs;
4941         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4942
4943         /* MSS L4LEN IDX */
4944         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
4945         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4946
4947         /* VLAN MACLEN IPLEN */
4948         vlan_macip_lens = l4.hdr - ip.hdr;
4949         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
4950         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4951
4952         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4953
4954         return 1;
4955 }
4956
4957 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4958 {
4959         unsigned int offset = 0;
4960
4961         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4962
4963         return offset == skb_checksum_start_offset(skb);
4964 }
4965
4966 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4967 {
4968         struct sk_buff *skb = first->skb;
4969         u32 vlan_macip_lens = 0;
4970         u32 type_tucmd = 0;
4971
4972         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4973 csum_failed:
4974                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4975                         return;
4976                 goto no_csum;
4977         }
4978
4979         switch (skb->csum_offset) {
4980         case offsetof(struct tcphdr, check):
4981                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4982                 /* fall through */
4983         case offsetof(struct udphdr, check):
4984                 break;
4985         case offsetof(struct sctphdr, checksum):
4986                 /* validate that this is actually an SCTP request */
4987                 if (((first->protocol == htons(ETH_P_IP)) &&
4988                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4989                     ((first->protocol == htons(ETH_P_IPV6)) &&
4990                      igb_ipv6_csum_is_sctp(skb))) {
4991                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4992                         break;
4993                 }
4994         default:
4995                 skb_checksum_help(skb);
4996                 goto csum_failed;
4997         }
4998
4999         /* update TX checksum flag */
5000         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5001         vlan_macip_lens = skb_checksum_start_offset(skb) -
5002                           skb_network_offset(skb);
5003 no_csum:
5004         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5005         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5006
5007         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5008 }
5009
5010 #define IGB_SET_FLAG(_input, _flag, _result) \
5011         ((_flag <= _result) ? \
5012          ((u32)(_input & _flag) * (_result / _flag)) : \
5013          ((u32)(_input & _flag) / (_flag / _result)))
5014
5015 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5016 {
5017         /* set type for advanced descriptor with frame checksum insertion */
5018         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5019                        E1000_ADVTXD_DCMD_DEXT |
5020                        E1000_ADVTXD_DCMD_IFCS;
5021
5022         /* set HW vlan bit if vlan is present */
5023         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5024                                  (E1000_ADVTXD_DCMD_VLE));
5025
5026         /* set segmentation bits for TSO */
5027         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5028                                  (E1000_ADVTXD_DCMD_TSE));
5029
5030         /* set timestamp bit if present */
5031         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5032                                  (E1000_ADVTXD_MAC_TSTAMP));
5033
5034         /* insert frame checksum */
5035         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5036
5037         return cmd_type;
5038 }
5039
5040 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5041                                  union e1000_adv_tx_desc *tx_desc,
5042                                  u32 tx_flags, unsigned int paylen)
5043 {
5044         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5045
5046         /* 82575 requires a unique index per ring */
5047         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5048                 olinfo_status |= tx_ring->reg_idx << 4;
5049
5050         /* insert L4 checksum */
5051         olinfo_status |= IGB_SET_FLAG(tx_flags,
5052                                       IGB_TX_FLAGS_CSUM,
5053                                       (E1000_TXD_POPTS_TXSM << 8));
5054
5055         /* insert IPv4 checksum */
5056         olinfo_status |= IGB_SET_FLAG(tx_flags,
5057                                       IGB_TX_FLAGS_IPV4,
5058                                       (E1000_TXD_POPTS_IXSM << 8));
5059
5060         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5061 }
5062
5063 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5064 {
5065         struct net_device *netdev = tx_ring->netdev;
5066
5067         netif_stop_subqueue(netdev, tx_ring->queue_index);
5068
5069         /* Herbert's original patch had:
5070          *  smp_mb__after_netif_stop_queue();
5071          * but since that doesn't exist yet, just open code it.
5072          */
5073         smp_mb();
5074
5075         /* We need to check again in a case another CPU has just
5076          * made room available.
5077          */
5078         if (igb_desc_unused(tx_ring) < size)
5079                 return -EBUSY;
5080
5081         /* A reprieve! */
5082         netif_wake_subqueue(netdev, tx_ring->queue_index);
5083
5084         u64_stats_update_begin(&tx_ring->tx_syncp2);
5085         tx_ring->tx_stats.restart_queue2++;
5086         u64_stats_update_end(&tx_ring->tx_syncp2);
5087
5088         return 0;
5089 }
5090
5091 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5092 {
5093         if (igb_desc_unused(tx_ring) >= size)
5094                 return 0;
5095         return __igb_maybe_stop_tx(tx_ring, size);
5096 }
5097
5098 static void igb_tx_map(struct igb_ring *tx_ring,
5099                        struct igb_tx_buffer *first,
5100                        const u8 hdr_len)
5101 {
5102         struct sk_buff *skb = first->skb;
5103         struct igb_tx_buffer *tx_buffer;
5104         union e1000_adv_tx_desc *tx_desc;
5105         struct skb_frag_struct *frag;
5106         dma_addr_t dma;
5107         unsigned int data_len, size;
5108         u32 tx_flags = first->tx_flags;
5109         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5110         u16 i = tx_ring->next_to_use;
5111
5112         tx_desc = IGB_TX_DESC(tx_ring, i);
5113
5114         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5115
5116         size = skb_headlen(skb);
5117         data_len = skb->data_len;
5118
5119         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5120
5121         tx_buffer = first;
5122
5123         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5124                 if (dma_mapping_error(tx_ring->dev, dma))
5125                         goto dma_error;
5126
5127                 /* record length, and DMA address */
5128                 dma_unmap_len_set(tx_buffer, len, size);
5129                 dma_unmap_addr_set(tx_buffer, dma, dma);
5130
5131                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5132
5133                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5134                         tx_desc->read.cmd_type_len =
5135                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5136
5137                         i++;
5138                         tx_desc++;
5139                         if (i == tx_ring->count) {
5140                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5141                                 i = 0;
5142                         }
5143                         tx_desc->read.olinfo_status = 0;
5144
5145                         dma += IGB_MAX_DATA_PER_TXD;
5146                         size -= IGB_MAX_DATA_PER_TXD;
5147
5148                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5149                 }
5150
5151                 if (likely(!data_len))
5152                         break;
5153
5154                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5155
5156                 i++;
5157                 tx_desc++;
5158                 if (i == tx_ring->count) {
5159                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5160                         i = 0;
5161                 }
5162                 tx_desc->read.olinfo_status = 0;
5163
5164                 size = skb_frag_size(frag);
5165                 data_len -= size;
5166
5167                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5168                                        size, DMA_TO_DEVICE);
5169
5170                 tx_buffer = &tx_ring->tx_buffer_info[i];
5171         }
5172
5173         /* write last descriptor with RS and EOP bits */
5174         cmd_type |= size | IGB_TXD_DCMD;
5175         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5176
5177         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5178
5179         /* set the timestamp */
5180         first->time_stamp = jiffies;
5181
5182         /* Force memory writes to complete before letting h/w know there
5183          * are new descriptors to fetch.  (Only applicable for weak-ordered
5184          * memory model archs, such as IA-64).
5185          *
5186          * We also need this memory barrier to make certain all of the
5187          * status bits have been updated before next_to_watch is written.
5188          */
5189         wmb();
5190
5191         /* set next_to_watch value indicating a packet is present */
5192         first->next_to_watch = tx_desc;
5193
5194         i++;
5195         if (i == tx_ring->count)
5196                 i = 0;
5197
5198         tx_ring->next_to_use = i;
5199
5200         /* Make sure there is space in the ring for the next send. */
5201         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5202
5203         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5204                 writel(i, tx_ring->tail);
5205
5206                 /* we need this if more than one processor can write to our tail
5207                  * at a time, it synchronizes IO on IA64/Altix systems
5208                  */
5209                 mmiowb();
5210         }
5211         return;
5212
5213 dma_error:
5214         dev_err(tx_ring->dev, "TX DMA map failed\n");
5215
5216         /* clear dma mappings for failed tx_buffer_info map */
5217         for (;;) {
5218                 tx_buffer = &tx_ring->tx_buffer_info[i];
5219                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5220                 if (tx_buffer == first)
5221                         break;
5222                 if (i == 0)
5223                         i = tx_ring->count;
5224                 i--;
5225         }
5226
5227         tx_ring->next_to_use = i;
5228 }
5229
5230 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5231                                 struct igb_ring *tx_ring)
5232 {
5233         struct igb_tx_buffer *first;
5234         int tso;
5235         u32 tx_flags = 0;
5236         unsigned short f;
5237         u16 count = TXD_USE_COUNT(skb_headlen(skb));
5238         __be16 protocol = vlan_get_protocol(skb);
5239         u8 hdr_len = 0;
5240
5241         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5242          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5243          *       + 2 desc gap to keep tail from touching head,
5244          *       + 1 desc for context descriptor,
5245          * otherwise try next time
5246          */
5247         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5248                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5249
5250         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5251                 /* this is a hard error */
5252                 return NETDEV_TX_BUSY;
5253         }
5254
5255         /* record the location of the first descriptor for this packet */
5256         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5257         first->skb = skb;
5258         first->bytecount = skb->len;
5259         first->gso_segs = 1;
5260
5261         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5262                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5263
5264                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5265                                            &adapter->state)) {
5266                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5267                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5268
5269                         adapter->ptp_tx_skb = skb_get(skb);
5270                         adapter->ptp_tx_start = jiffies;
5271                         if (adapter->hw.mac.type == e1000_82576)
5272                                 schedule_work(&adapter->ptp_tx_work);
5273                 }
5274         }
5275
5276         skb_tx_timestamp(skb);
5277
5278         if (skb_vlan_tag_present(skb)) {
5279                 tx_flags |= IGB_TX_FLAGS_VLAN;
5280                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5281         }
5282
5283         /* record initial flags and protocol */
5284         first->tx_flags = tx_flags;
5285         first->protocol = protocol;
5286
5287         tso = igb_tso(tx_ring, first, &hdr_len);
5288         if (tso < 0)
5289                 goto out_drop;
5290         else if (!tso)
5291                 igb_tx_csum(tx_ring, first);
5292
5293         igb_tx_map(tx_ring, first, hdr_len);
5294
5295         return NETDEV_TX_OK;
5296
5297 out_drop:
5298         igb_unmap_and_free_tx_resource(tx_ring, first);
5299
5300         return NETDEV_TX_OK;
5301 }
5302
5303 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5304                                                     struct sk_buff *skb)
5305 {
5306         unsigned int r_idx = skb->queue_mapping;
5307
5308         if (r_idx >= adapter->num_tx_queues)
5309                 r_idx = r_idx % adapter->num_tx_queues;
5310
5311         return adapter->tx_ring[r_idx];
5312 }
5313
5314 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5315                                   struct net_device *netdev)
5316 {
5317         struct igb_adapter *adapter = netdev_priv(netdev);
5318
5319         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5320          * in order to meet this minimum size requirement.
5321          */
5322         if (skb_put_padto(skb, 17))
5323                 return NETDEV_TX_OK;
5324
5325         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5326 }
5327
5328 /**
5329  *  igb_tx_timeout - Respond to a Tx Hang
5330  *  @netdev: network interface device structure
5331  **/
5332 static void igb_tx_timeout(struct net_device *netdev)
5333 {
5334         struct igb_adapter *adapter = netdev_priv(netdev);
5335         struct e1000_hw *hw = &adapter->hw;
5336
5337         /* Do the reset outside of interrupt context */
5338         adapter->tx_timeout_count++;
5339
5340         if (hw->mac.type >= e1000_82580)
5341                 hw->dev_spec._82575.global_device_reset = true;
5342
5343         schedule_work(&adapter->reset_task);
5344         wr32(E1000_EICS,
5345              (adapter->eims_enable_mask & ~adapter->eims_other));
5346 }
5347
5348 static void igb_reset_task(struct work_struct *work)
5349 {
5350         struct igb_adapter *adapter;
5351         adapter = container_of(work, struct igb_adapter, reset_task);
5352
5353         igb_dump(adapter);
5354         netdev_err(adapter->netdev, "Reset adapter\n");
5355         igb_reinit_locked(adapter);
5356 }
5357
5358 /**
5359  *  igb_get_stats64 - Get System Network Statistics
5360  *  @netdev: network interface device structure
5361  *  @stats: rtnl_link_stats64 pointer
5362  **/
5363 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5364                                                 struct rtnl_link_stats64 *stats)
5365 {
5366         struct igb_adapter *adapter = netdev_priv(netdev);
5367
5368         spin_lock(&adapter->stats64_lock);
5369         igb_update_stats(adapter, &adapter->stats64);
5370         memcpy(stats, &adapter->stats64, sizeof(*stats));
5371         spin_unlock(&adapter->stats64_lock);
5372
5373         return stats;
5374 }
5375
5376 /**
5377  *  igb_change_mtu - Change the Maximum Transfer Unit
5378  *  @netdev: network interface device structure
5379  *  @new_mtu: new value for maximum frame size
5380  *
5381  *  Returns 0 on success, negative on failure
5382  **/
5383 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5384 {
5385         struct igb_adapter *adapter = netdev_priv(netdev);
5386         struct pci_dev *pdev = adapter->pdev;
5387         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5388
5389         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5390                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5391                 return -EINVAL;
5392         }
5393
5394 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5395         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5396                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5397                 return -EINVAL;
5398         }
5399
5400         /* adjust max frame to be at least the size of a standard frame */
5401         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5402                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5403
5404         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5405                 usleep_range(1000, 2000);
5406
5407         /* igb_down has a dependency on max_frame_size */
5408         adapter->max_frame_size = max_frame;
5409
5410         if (netif_running(netdev))
5411                 igb_down(adapter);
5412
5413         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5414                  netdev->mtu, new_mtu);
5415         netdev->mtu = new_mtu;
5416
5417         if (netif_running(netdev))
5418                 igb_up(adapter);
5419         else
5420                 igb_reset(adapter);
5421
5422         clear_bit(__IGB_RESETTING, &adapter->state);
5423
5424         return 0;
5425 }
5426
5427 /**
5428  *  igb_update_stats - Update the board statistics counters
5429  *  @adapter: board private structure
5430  **/
5431 void igb_update_stats(struct igb_adapter *adapter,
5432                       struct rtnl_link_stats64 *net_stats)
5433 {
5434         struct e1000_hw *hw = &adapter->hw;
5435         struct pci_dev *pdev = adapter->pdev;
5436         u32 reg, mpc;
5437         int i;
5438         u64 bytes, packets;
5439         unsigned int start;
5440         u64 _bytes, _packets;
5441
5442         /* Prevent stats update while adapter is being reset, or if the pci
5443          * connection is down.
5444          */
5445         if (adapter->link_speed == 0)
5446                 return;
5447         if (pci_channel_offline(pdev))
5448                 return;
5449
5450         bytes = 0;
5451         packets = 0;
5452
5453         rcu_read_lock();
5454         for (i = 0; i < adapter->num_rx_queues; i++) {
5455                 struct igb_ring *ring = adapter->rx_ring[i];
5456                 u32 rqdpc = rd32(E1000_RQDPC(i));
5457                 if (hw->mac.type >= e1000_i210)
5458                         wr32(E1000_RQDPC(i), 0);
5459
5460                 if (rqdpc) {
5461                         ring->rx_stats.drops += rqdpc;
5462                         net_stats->rx_fifo_errors += rqdpc;
5463                 }
5464
5465                 do {
5466                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5467                         _bytes = ring->rx_stats.bytes;
5468                         _packets = ring->rx_stats.packets;
5469                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5470                 bytes += _bytes;
5471                 packets += _packets;
5472         }
5473
5474         net_stats->rx_bytes = bytes;
5475         net_stats->rx_packets = packets;
5476
5477         bytes = 0;
5478         packets = 0;
5479         for (i = 0; i < adapter->num_tx_queues; i++) {
5480                 struct igb_ring *ring = adapter->tx_ring[i];
5481                 do {
5482                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5483                         _bytes = ring->tx_stats.bytes;
5484                         _packets = ring->tx_stats.packets;
5485                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5486                 bytes += _bytes;
5487                 packets += _packets;
5488         }
5489         net_stats->tx_bytes = bytes;
5490         net_stats->tx_packets = packets;
5491         rcu_read_unlock();
5492
5493         /* read stats registers */
5494         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5495         adapter->stats.gprc += rd32(E1000_GPRC);
5496         adapter->stats.gorc += rd32(E1000_GORCL);
5497         rd32(E1000_GORCH); /* clear GORCL */
5498         adapter->stats.bprc += rd32(E1000_BPRC);
5499         adapter->stats.mprc += rd32(E1000_MPRC);
5500         adapter->stats.roc += rd32(E1000_ROC);
5501
5502         adapter->stats.prc64 += rd32(E1000_PRC64);
5503         adapter->stats.prc127 += rd32(E1000_PRC127);
5504         adapter->stats.prc255 += rd32(E1000_PRC255);
5505         adapter->stats.prc511 += rd32(E1000_PRC511);
5506         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5507         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5508         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5509         adapter->stats.sec += rd32(E1000_SEC);
5510
5511         mpc = rd32(E1000_MPC);
5512         adapter->stats.mpc += mpc;
5513         net_stats->rx_fifo_errors += mpc;
5514         adapter->stats.scc += rd32(E1000_SCC);
5515         adapter->stats.ecol += rd32(E1000_ECOL);
5516         adapter->stats.mcc += rd32(E1000_MCC);
5517         adapter->stats.latecol += rd32(E1000_LATECOL);
5518         adapter->stats.dc += rd32(E1000_DC);
5519         adapter->stats.rlec += rd32(E1000_RLEC);
5520         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5521         adapter->stats.xontxc += rd32(E1000_XONTXC);
5522         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5523         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5524         adapter->stats.fcruc += rd32(E1000_FCRUC);
5525         adapter->stats.gptc += rd32(E1000_GPTC);
5526         adapter->stats.gotc += rd32(E1000_GOTCL);
5527         rd32(E1000_GOTCH); /* clear GOTCL */
5528         adapter->stats.rnbc += rd32(E1000_RNBC);
5529         adapter->stats.ruc += rd32(E1000_RUC);
5530         adapter->stats.rfc += rd32(E1000_RFC);
5531         adapter->stats.rjc += rd32(E1000_RJC);
5532         adapter->stats.tor += rd32(E1000_TORH);
5533         adapter->stats.tot += rd32(E1000_TOTH);
5534         adapter->stats.tpr += rd32(E1000_TPR);
5535
5536         adapter->stats.ptc64 += rd32(E1000_PTC64);
5537         adapter->stats.ptc127 += rd32(E1000_PTC127);
5538         adapter->stats.ptc255 += rd32(E1000_PTC255);
5539         adapter->stats.ptc511 += rd32(E1000_PTC511);
5540         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5541         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5542
5543         adapter->stats.mptc += rd32(E1000_MPTC);
5544         adapter->stats.bptc += rd32(E1000_BPTC);
5545
5546         adapter->stats.tpt += rd32(E1000_TPT);
5547         adapter->stats.colc += rd32(E1000_COLC);
5548
5549         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5550         /* read internal phy specific stats */
5551         reg = rd32(E1000_CTRL_EXT);
5552         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5553                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5554
5555                 /* this stat has invalid values on i210/i211 */
5556                 if ((hw->mac.type != e1000_i210) &&
5557                     (hw->mac.type != e1000_i211))
5558                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5559         }
5560
5561         adapter->stats.tsctc += rd32(E1000_TSCTC);
5562         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5563
5564         adapter->stats.iac += rd32(E1000_IAC);
5565         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5566         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5567         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5568         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5569         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5570         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5571         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5572         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5573
5574         /* Fill out the OS statistics structure */
5575         net_stats->multicast = adapter->stats.mprc;
5576         net_stats->collisions = adapter->stats.colc;
5577
5578         /* Rx Errors */
5579
5580         /* RLEC on some newer hardware can be incorrect so build
5581          * our own version based on RUC and ROC
5582          */
5583         net_stats->rx_errors = adapter->stats.rxerrc +
5584                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5585                 adapter->stats.ruc + adapter->stats.roc +
5586                 adapter->stats.cexterr;
5587         net_stats->rx_length_errors = adapter->stats.ruc +
5588                                       adapter->stats.roc;
5589         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5590         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5591         net_stats->rx_missed_errors = adapter->stats.mpc;
5592
5593         /* Tx Errors */
5594         net_stats->tx_errors = adapter->stats.ecol +
5595                                adapter->stats.latecol;
5596         net_stats->tx_aborted_errors = adapter->stats.ecol;
5597         net_stats->tx_window_errors = adapter->stats.latecol;
5598         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5599
5600         /* Tx Dropped needs to be maintained elsewhere */
5601
5602         /* Management Stats */
5603         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5604         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5605         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5606
5607         /* OS2BMC Stats */
5608         reg = rd32(E1000_MANC);
5609         if (reg & E1000_MANC_EN_BMC2OS) {
5610                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5611                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5612                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5613                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5614         }
5615 }
5616
5617 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5618 {
5619         struct e1000_hw *hw = &adapter->hw;
5620         struct ptp_clock_event event;
5621         struct timespec64 ts;
5622         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5623
5624         if (tsicr & TSINTR_SYS_WRAP) {
5625                 event.type = PTP_CLOCK_PPS;
5626                 if (adapter->ptp_caps.pps)
5627                         ptp_clock_event(adapter->ptp_clock, &event);
5628                 else
5629                         dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5630                 ack |= TSINTR_SYS_WRAP;
5631         }
5632
5633         if (tsicr & E1000_TSICR_TXTS) {
5634                 /* retrieve hardware timestamp */
5635                 schedule_work(&adapter->ptp_tx_work);
5636                 ack |= E1000_TSICR_TXTS;
5637         }
5638
5639         if (tsicr & TSINTR_TT0) {
5640                 spin_lock(&adapter->tmreg_lock);
5641                 ts = timespec64_add(adapter->perout[0].start,
5642                                     adapter->perout[0].period);
5643                 /* u32 conversion of tv_sec is safe until y2106 */
5644                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5645                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5646                 tsauxc = rd32(E1000_TSAUXC);
5647                 tsauxc |= TSAUXC_EN_TT0;
5648                 wr32(E1000_TSAUXC, tsauxc);
5649                 adapter->perout[0].start = ts;
5650                 spin_unlock(&adapter->tmreg_lock);
5651                 ack |= TSINTR_TT0;
5652         }
5653
5654         if (tsicr & TSINTR_TT1) {
5655                 spin_lock(&adapter->tmreg_lock);
5656                 ts = timespec64_add(adapter->perout[1].start,
5657                                     adapter->perout[1].period);
5658                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5659                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5660                 tsauxc = rd32(E1000_TSAUXC);
5661                 tsauxc |= TSAUXC_EN_TT1;
5662                 wr32(E1000_TSAUXC, tsauxc);
5663                 adapter->perout[1].start = ts;
5664                 spin_unlock(&adapter->tmreg_lock);
5665                 ack |= TSINTR_TT1;
5666         }
5667
5668         if (tsicr & TSINTR_AUTT0) {
5669                 nsec = rd32(E1000_AUXSTMPL0);
5670                 sec  = rd32(E1000_AUXSTMPH0);
5671                 event.type = PTP_CLOCK_EXTTS;
5672                 event.index = 0;
5673                 event.timestamp = sec * 1000000000ULL + nsec;
5674                 ptp_clock_event(adapter->ptp_clock, &event);
5675                 ack |= TSINTR_AUTT0;
5676         }
5677
5678         if (tsicr & TSINTR_AUTT1) {
5679                 nsec = rd32(E1000_AUXSTMPL1);
5680                 sec  = rd32(E1000_AUXSTMPH1);
5681                 event.type = PTP_CLOCK_EXTTS;
5682                 event.index = 1;
5683                 event.timestamp = sec * 1000000000ULL + nsec;
5684                 ptp_clock_event(adapter->ptp_clock, &event);
5685                 ack |= TSINTR_AUTT1;
5686         }
5687
5688         /* acknowledge the interrupts */
5689         wr32(E1000_TSICR, ack);
5690 }
5691
5692 static irqreturn_t igb_msix_other(int irq, void *data)
5693 {
5694         struct igb_adapter *adapter = data;
5695         struct e1000_hw *hw = &adapter->hw;
5696         u32 icr = rd32(E1000_ICR);
5697         /* reading ICR causes bit 31 of EICR to be cleared */
5698
5699         if (icr & E1000_ICR_DRSTA)
5700                 schedule_work(&adapter->reset_task);
5701
5702         if (icr & E1000_ICR_DOUTSYNC) {
5703                 /* HW is reporting DMA is out of sync */
5704                 adapter->stats.doosync++;
5705                 /* The DMA Out of Sync is also indication of a spoof event
5706                  * in IOV mode. Check the Wrong VM Behavior register to
5707                  * see if it is really a spoof event.
5708                  */
5709                 igb_check_wvbr(adapter);
5710         }
5711
5712         /* Check for a mailbox event */
5713         if (icr & E1000_ICR_VMMB)
5714                 igb_msg_task(adapter);
5715
5716         if (icr & E1000_ICR_LSC) {
5717                 hw->mac.get_link_status = 1;
5718                 /* guard against interrupt when we're going down */
5719                 if (!test_bit(__IGB_DOWN, &adapter->state))
5720                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5721         }
5722
5723         if (icr & E1000_ICR_TS)
5724                 igb_tsync_interrupt(adapter);
5725
5726         wr32(E1000_EIMS, adapter->eims_other);
5727
5728         return IRQ_HANDLED;
5729 }
5730
5731 static void igb_write_itr(struct igb_q_vector *q_vector)
5732 {
5733         struct igb_adapter *adapter = q_vector->adapter;
5734         u32 itr_val = q_vector->itr_val & 0x7FFC;
5735
5736         if (!q_vector->set_itr)
5737                 return;
5738
5739         if (!itr_val)
5740                 itr_val = 0x4;
5741
5742         if (adapter->hw.mac.type == e1000_82575)
5743                 itr_val |= itr_val << 16;
5744         else
5745                 itr_val |= E1000_EITR_CNT_IGNR;
5746
5747         writel(itr_val, q_vector->itr_register);
5748         q_vector->set_itr = 0;
5749 }
5750
5751 static irqreturn_t igb_msix_ring(int irq, void *data)
5752 {
5753         struct igb_q_vector *q_vector = data;
5754
5755         /* Write the ITR value calculated from the previous interrupt. */
5756         igb_write_itr(q_vector);
5757
5758         napi_schedule(&q_vector->napi);
5759
5760         return IRQ_HANDLED;
5761 }
5762
5763 #ifdef CONFIG_IGB_DCA
5764 static void igb_update_tx_dca(struct igb_adapter *adapter,
5765                               struct igb_ring *tx_ring,
5766                               int cpu)
5767 {
5768         struct e1000_hw *hw = &adapter->hw;
5769         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5770
5771         if (hw->mac.type != e1000_82575)
5772                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5773
5774         /* We can enable relaxed ordering for reads, but not writes when
5775          * DCA is enabled.  This is due to a known issue in some chipsets
5776          * which will cause the DCA tag to be cleared.
5777          */
5778         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5779                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5780                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5781
5782         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5783 }
5784
5785 static void igb_update_rx_dca(struct igb_adapter *adapter,
5786                               struct igb_ring *rx_ring,
5787                               int cpu)
5788 {
5789         struct e1000_hw *hw = &adapter->hw;
5790         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5791
5792         if (hw->mac.type != e1000_82575)
5793                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5794
5795         /* We can enable relaxed ordering for reads, but not writes when
5796          * DCA is enabled.  This is due to a known issue in some chipsets
5797          * which will cause the DCA tag to be cleared.
5798          */
5799         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5800                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5801
5802         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5803 }
5804
5805 static void igb_update_dca(struct igb_q_vector *q_vector)
5806 {
5807         struct igb_adapter *adapter = q_vector->adapter;
5808         int cpu = get_cpu();
5809
5810         if (q_vector->cpu == cpu)
5811                 goto out_no_update;
5812
5813         if (q_vector->tx.ring)
5814                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5815
5816         if (q_vector->rx.ring)
5817                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5818
5819         q_vector->cpu = cpu;
5820 out_no_update:
5821         put_cpu();
5822 }
5823
5824 static void igb_setup_dca(struct igb_adapter *adapter)
5825 {
5826         struct e1000_hw *hw = &adapter->hw;
5827         int i;
5828
5829         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5830                 return;
5831
5832         /* Always use CB2 mode, difference is masked in the CB driver. */
5833         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5834
5835         for (i = 0; i < adapter->num_q_vectors; i++) {
5836                 adapter->q_vector[i]->cpu = -1;
5837                 igb_update_dca(adapter->q_vector[i]);
5838         }
5839 }
5840
5841 static int __igb_notify_dca(struct device *dev, void *data)
5842 {
5843         struct net_device *netdev = dev_get_drvdata(dev);
5844         struct igb_adapter *adapter = netdev_priv(netdev);
5845         struct pci_dev *pdev = adapter->pdev;
5846         struct e1000_hw *hw = &adapter->hw;
5847         unsigned long event = *(unsigned long *)data;
5848
5849         switch (event) {
5850         case DCA_PROVIDER_ADD:
5851                 /* if already enabled, don't do it again */
5852                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5853                         break;
5854                 if (dca_add_requester(dev) == 0) {
5855                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5856                         dev_info(&pdev->dev, "DCA enabled\n");
5857                         igb_setup_dca(adapter);
5858                         break;
5859                 }
5860                 /* Fall Through since DCA is disabled. */
5861         case DCA_PROVIDER_REMOVE:
5862                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5863                         /* without this a class_device is left
5864                          * hanging around in the sysfs model
5865                          */
5866                         dca_remove_requester(dev);
5867                         dev_info(&pdev->dev, "DCA disabled\n");
5868                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5869                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5870                 }
5871                 break;
5872         }
5873
5874         return 0;
5875 }
5876
5877 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5878                           void *p)
5879 {
5880         int ret_val;
5881
5882         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5883                                          __igb_notify_dca);
5884
5885         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5886 }
5887 #endif /* CONFIG_IGB_DCA */
5888
5889 #ifdef CONFIG_PCI_IOV
5890 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5891 {
5892         unsigned char mac_addr[ETH_ALEN];
5893
5894         eth_zero_addr(mac_addr);
5895         igb_set_vf_mac(adapter, vf, mac_addr);
5896
5897         /* By default spoof check is enabled for all VFs */
5898         adapter->vf_data[vf].spoofchk_enabled = true;
5899
5900         return 0;
5901 }
5902
5903 #endif
5904 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5905 {
5906         struct e1000_hw *hw = &adapter->hw;
5907         u32 ping;
5908         int i;
5909
5910         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5911                 ping = E1000_PF_CONTROL_MSG;
5912                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5913                         ping |= E1000_VT_MSGTYPE_CTS;
5914                 igb_write_mbx(hw, &ping, 1, i);
5915         }
5916 }
5917
5918 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5919 {
5920         struct e1000_hw *hw = &adapter->hw;
5921         u32 vmolr = rd32(E1000_VMOLR(vf));
5922         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5923
5924         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5925                             IGB_VF_FLAG_MULTI_PROMISC);
5926         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5927
5928         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5929                 vmolr |= E1000_VMOLR_MPME;
5930                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5931                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5932         } else {
5933                 /* if we have hashes and we are clearing a multicast promisc
5934                  * flag we need to write the hashes to the MTA as this step
5935                  * was previously skipped
5936                  */
5937                 if (vf_data->num_vf_mc_hashes > 30) {
5938                         vmolr |= E1000_VMOLR_MPME;
5939                 } else if (vf_data->num_vf_mc_hashes) {
5940                         int j;
5941
5942                         vmolr |= E1000_VMOLR_ROMPE;
5943                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5944                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5945                 }
5946         }
5947
5948         wr32(E1000_VMOLR(vf), vmolr);
5949
5950         /* there are flags left unprocessed, likely not supported */
5951         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5952                 return -EINVAL;
5953
5954         return 0;
5955 }
5956
5957 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5958                                   u32 *msgbuf, u32 vf)
5959 {
5960         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5961         u16 *hash_list = (u16 *)&msgbuf[1];
5962         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5963         int i;
5964
5965         /* salt away the number of multicast addresses assigned
5966          * to this VF for later use to restore when the PF multi cast
5967          * list changes
5968          */
5969         vf_data->num_vf_mc_hashes = n;
5970
5971         /* only up to 30 hash values supported */
5972         if (n > 30)
5973                 n = 30;
5974
5975         /* store the hashes for later use */
5976         for (i = 0; i < n; i++)
5977                 vf_data->vf_mc_hashes[i] = hash_list[i];
5978
5979         /* Flush and reset the mta with the new values */
5980         igb_set_rx_mode(adapter->netdev);
5981
5982         return 0;
5983 }
5984
5985 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5986 {
5987         struct e1000_hw *hw = &adapter->hw;
5988         struct vf_data_storage *vf_data;
5989         int i, j;
5990
5991         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5992                 u32 vmolr = rd32(E1000_VMOLR(i));
5993
5994                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5995
5996                 vf_data = &adapter->vf_data[i];
5997
5998                 if ((vf_data->num_vf_mc_hashes > 30) ||
5999                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6000                         vmolr |= E1000_VMOLR_MPME;
6001                 } else if (vf_data->num_vf_mc_hashes) {
6002                         vmolr |= E1000_VMOLR_ROMPE;
6003                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6004                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6005                 }
6006                 wr32(E1000_VMOLR(i), vmolr);
6007         }
6008 }
6009
6010 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6011 {
6012         struct e1000_hw *hw = &adapter->hw;
6013         u32 pool_mask, vlvf_mask, i;
6014
6015         /* create mask for VF and other pools */
6016         pool_mask = E1000_VLVF_POOLSEL_MASK;
6017         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6018
6019         /* drop PF from pool bits */
6020         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6021                              adapter->vfs_allocated_count);
6022
6023         /* Find the vlan filter for this id */
6024         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6025                 u32 vlvf = rd32(E1000_VLVF(i));
6026                 u32 vfta_mask, vid, vfta;
6027
6028                 /* remove the vf from the pool */
6029                 if (!(vlvf & vlvf_mask))
6030                         continue;
6031
6032                 /* clear out bit from VLVF */
6033                 vlvf ^= vlvf_mask;
6034
6035                 /* if other pools are present, just remove ourselves */
6036                 if (vlvf & pool_mask)
6037                         goto update_vlvfb;
6038
6039                 /* if PF is present, leave VFTA */
6040                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6041                         goto update_vlvf;
6042
6043                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6044                 vfta_mask = BIT(vid % 32);
6045
6046                 /* clear bit from VFTA */
6047                 vfta = adapter->shadow_vfta[vid / 32];
6048                 if (vfta & vfta_mask)
6049                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6050 update_vlvf:
6051                 /* clear pool selection enable */
6052                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6053                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6054                 else
6055                         vlvf = 0;
6056 update_vlvfb:
6057                 /* clear pool bits */
6058                 wr32(E1000_VLVF(i), vlvf);
6059         }
6060 }
6061
6062 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6063 {
6064         u32 vlvf;
6065         int idx;
6066
6067         /* short cut the special case */
6068         if (vlan == 0)
6069                 return 0;
6070
6071         /* Search for the VLAN id in the VLVF entries */
6072         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6073                 vlvf = rd32(E1000_VLVF(idx));
6074                 if ((vlvf & VLAN_VID_MASK) == vlan)
6075                         break;
6076         }
6077
6078         return idx;
6079 }
6080
6081 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6082 {
6083         struct e1000_hw *hw = &adapter->hw;
6084         u32 bits, pf_id;
6085         int idx;
6086
6087         idx = igb_find_vlvf_entry(hw, vid);
6088         if (!idx)
6089                 return;
6090
6091         /* See if any other pools are set for this VLAN filter
6092          * entry other than the PF.
6093          */
6094         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6095         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6096         bits &= rd32(E1000_VLVF(idx));
6097
6098         /* Disable the filter so this falls into the default pool. */
6099         if (!bits) {
6100                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6101                         wr32(E1000_VLVF(idx), BIT(pf_id));
6102                 else
6103                         wr32(E1000_VLVF(idx), 0);
6104         }
6105 }
6106
6107 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6108                            bool add, u32 vf)
6109 {
6110         int pf_id = adapter->vfs_allocated_count;
6111         struct e1000_hw *hw = &adapter->hw;
6112         int err;
6113
6114         /* If VLAN overlaps with one the PF is currently monitoring make
6115          * sure that we are able to allocate a VLVF entry.  This may be
6116          * redundant but it guarantees PF will maintain visibility to
6117          * the VLAN.
6118          */
6119         if (add && test_bit(vid, adapter->active_vlans)) {
6120                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6121                 if (err)
6122                         return err;
6123         }
6124
6125         err = igb_vfta_set(hw, vid, vf, add, false);
6126
6127         if (add && !err)
6128                 return err;
6129
6130         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6131          * we may need to drop the PF pool bit in order to allow us to free
6132          * up the VLVF resources.
6133          */
6134         if (test_bit(vid, adapter->active_vlans) ||
6135             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6136                 igb_update_pf_vlvf(adapter, vid);
6137
6138         return err;
6139 }
6140
6141 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6142 {
6143         struct e1000_hw *hw = &adapter->hw;
6144
6145         if (vid)
6146                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6147         else
6148                 wr32(E1000_VMVIR(vf), 0);
6149 }
6150
6151 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6152                                 u16 vlan, u8 qos)
6153 {
6154         int err;
6155
6156         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6157         if (err)
6158                 return err;
6159
6160         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6161         igb_set_vmolr(adapter, vf, !vlan);
6162
6163         /* revoke access to previous VLAN */
6164         if (vlan != adapter->vf_data[vf].pf_vlan)
6165                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6166                                 false, vf);
6167
6168         adapter->vf_data[vf].pf_vlan = vlan;
6169         adapter->vf_data[vf].pf_qos = qos;
6170         igb_set_vf_vlan_strip(adapter, vf, true);
6171         dev_info(&adapter->pdev->dev,
6172                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6173         if (test_bit(__IGB_DOWN, &adapter->state)) {
6174                 dev_warn(&adapter->pdev->dev,
6175                          "The VF VLAN has been set, but the PF device is not up.\n");
6176                 dev_warn(&adapter->pdev->dev,
6177                          "Bring the PF device up before attempting to use the VF device.\n");
6178         }
6179
6180         return err;
6181 }
6182
6183 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6184 {
6185         /* Restore tagless access via VLAN 0 */
6186         igb_set_vf_vlan(adapter, 0, true, vf);
6187
6188         igb_set_vmvir(adapter, 0, vf);
6189         igb_set_vmolr(adapter, vf, true);
6190
6191         /* Remove any PF assigned VLAN */
6192         if (adapter->vf_data[vf].pf_vlan)
6193                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6194                                 false, vf);
6195
6196         adapter->vf_data[vf].pf_vlan = 0;
6197         adapter->vf_data[vf].pf_qos = 0;
6198         igb_set_vf_vlan_strip(adapter, vf, false);
6199
6200         return 0;
6201 }
6202
6203 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6204                                int vf, u16 vlan, u8 qos)
6205 {
6206         struct igb_adapter *adapter = netdev_priv(netdev);
6207
6208         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6209                 return -EINVAL;
6210
6211         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6212                                igb_disable_port_vlan(adapter, vf);
6213 }
6214
6215 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6216 {
6217         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6218         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6219         int ret;
6220
6221         if (adapter->vf_data[vf].pf_vlan)
6222                 return -1;
6223
6224         /* VLAN 0 is a special case, don't allow it to be removed */
6225         if (!vid && !add)
6226                 return 0;
6227
6228         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6229         if (!ret)
6230                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6231         return ret;
6232 }
6233
6234 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6235 {
6236         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6237
6238         /* clear flags - except flag that indicates PF has set the MAC */
6239         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6240         vf_data->last_nack = jiffies;
6241
6242         /* reset vlans for device */
6243         igb_clear_vf_vfta(adapter, vf);
6244         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6245         igb_set_vmvir(adapter, vf_data->pf_vlan |
6246                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6247         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6248         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6249
6250         /* reset multicast table array for vf */
6251         adapter->vf_data[vf].num_vf_mc_hashes = 0;
6252
6253         /* Flush and reset the mta with the new values */
6254         igb_set_rx_mode(adapter->netdev);
6255 }
6256
6257 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6258 {
6259         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6260
6261         /* clear mac address as we were hotplug removed/added */
6262         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6263                 eth_zero_addr(vf_mac);
6264
6265         /* process remaining reset events */
6266         igb_vf_reset(adapter, vf);
6267 }
6268
6269 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6270 {
6271         struct e1000_hw *hw = &adapter->hw;
6272         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6273         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6274         u32 reg, msgbuf[3];
6275         u8 *addr = (u8 *)(&msgbuf[1]);
6276
6277         /* process all the same items cleared in a function level reset */
6278         igb_vf_reset(adapter, vf);
6279
6280         /* set vf mac address */
6281         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6282
6283         /* enable transmit and receive for vf */
6284         reg = rd32(E1000_VFTE);
6285         wr32(E1000_VFTE, reg | BIT(vf));
6286         reg = rd32(E1000_VFRE);
6287         wr32(E1000_VFRE, reg | BIT(vf));
6288
6289         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6290
6291         /* reply to reset with ack and vf mac address */
6292         if (!is_zero_ether_addr(vf_mac)) {
6293                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6294                 memcpy(addr, vf_mac, ETH_ALEN);
6295         } else {
6296                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6297         }
6298         igb_write_mbx(hw, msgbuf, 3, vf);
6299 }
6300
6301 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6302 {
6303         /* The VF MAC Address is stored in a packed array of bytes
6304          * starting at the second 32 bit word of the msg array
6305          */
6306         unsigned char *addr = (char *)&msg[1];
6307         int err = -1;
6308
6309         if (is_valid_ether_addr(addr))
6310                 err = igb_set_vf_mac(adapter, vf, addr);
6311
6312         return err;
6313 }
6314
6315 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6316 {
6317         struct e1000_hw *hw = &adapter->hw;
6318         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6319         u32 msg = E1000_VT_MSGTYPE_NACK;
6320
6321         /* if device isn't clear to send it shouldn't be reading either */
6322         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6323             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6324                 igb_write_mbx(hw, &msg, 1, vf);
6325                 vf_data->last_nack = jiffies;
6326         }
6327 }
6328
6329 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6330 {
6331         struct pci_dev *pdev = adapter->pdev;
6332         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6333         struct e1000_hw *hw = &adapter->hw;
6334         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6335         s32 retval;
6336
6337         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6338
6339         if (retval) {
6340                 /* if receive failed revoke VF CTS stats and restart init */
6341                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6342                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6343                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6344                         return;
6345                 goto out;
6346         }
6347
6348         /* this is a message we already processed, do nothing */
6349         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6350                 return;
6351
6352         /* until the vf completes a reset it should not be
6353          * allowed to start any configuration.
6354          */
6355         if (msgbuf[0] == E1000_VF_RESET) {
6356                 igb_vf_reset_msg(adapter, vf);
6357                 return;
6358         }
6359
6360         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6361                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6362                         return;
6363                 retval = -1;
6364                 goto out;
6365         }
6366
6367         switch ((msgbuf[0] & 0xFFFF)) {
6368         case E1000_VF_SET_MAC_ADDR:
6369                 retval = -EINVAL;
6370                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6371                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6372                 else
6373                         dev_warn(&pdev->dev,
6374                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6375                                  vf);
6376                 break;
6377         case E1000_VF_SET_PROMISC:
6378                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6379                 break;
6380         case E1000_VF_SET_MULTICAST:
6381                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6382                 break;
6383         case E1000_VF_SET_LPE:
6384                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6385                 break;
6386         case E1000_VF_SET_VLAN:
6387                 retval = -1;
6388                 if (vf_data->pf_vlan)
6389                         dev_warn(&pdev->dev,
6390                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6391                                  vf);
6392                 else
6393                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6394                 break;
6395         default:
6396                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6397                 retval = -1;
6398                 break;
6399         }
6400
6401         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6402 out:
6403         /* notify the VF of the results of what it sent us */
6404         if (retval)
6405                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6406         else
6407                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6408
6409         igb_write_mbx(hw, msgbuf, 1, vf);
6410 }
6411
6412 static void igb_msg_task(struct igb_adapter *adapter)
6413 {
6414         struct e1000_hw *hw = &adapter->hw;
6415         u32 vf;
6416
6417         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6418                 /* process any reset requests */
6419                 if (!igb_check_for_rst(hw, vf))
6420                         igb_vf_reset_event(adapter, vf);
6421
6422                 /* process any messages pending */
6423                 if (!igb_check_for_msg(hw, vf))
6424                         igb_rcv_msg_from_vf(adapter, vf);
6425
6426                 /* process any acks */
6427                 if (!igb_check_for_ack(hw, vf))
6428                         igb_rcv_ack_from_vf(adapter, vf);
6429         }
6430 }
6431
6432 /**
6433  *  igb_set_uta - Set unicast filter table address
6434  *  @adapter: board private structure
6435  *  @set: boolean indicating if we are setting or clearing bits
6436  *
6437  *  The unicast table address is a register array of 32-bit registers.
6438  *  The table is meant to be used in a way similar to how the MTA is used
6439  *  however due to certain limitations in the hardware it is necessary to
6440  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6441  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6442  **/
6443 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6444 {
6445         struct e1000_hw *hw = &adapter->hw;
6446         u32 uta = set ? ~0 : 0;
6447         int i;
6448
6449         /* we only need to do this if VMDq is enabled */
6450         if (!adapter->vfs_allocated_count)
6451                 return;
6452
6453         for (i = hw->mac.uta_reg_count; i--;)
6454                 array_wr32(E1000_UTA, i, uta);
6455 }
6456
6457 /**
6458  *  igb_intr_msi - Interrupt Handler
6459  *  @irq: interrupt number
6460  *  @data: pointer to a network interface device structure
6461  **/
6462 static irqreturn_t igb_intr_msi(int irq, void *data)
6463 {
6464         struct igb_adapter *adapter = data;
6465         struct igb_q_vector *q_vector = adapter->q_vector[0];
6466         struct e1000_hw *hw = &adapter->hw;
6467         /* read ICR disables interrupts using IAM */
6468         u32 icr = rd32(E1000_ICR);
6469
6470         igb_write_itr(q_vector);
6471
6472         if (icr & E1000_ICR_DRSTA)
6473                 schedule_work(&adapter->reset_task);
6474
6475         if (icr & E1000_ICR_DOUTSYNC) {
6476                 /* HW is reporting DMA is out of sync */
6477                 adapter->stats.doosync++;
6478         }
6479
6480         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6481                 hw->mac.get_link_status = 1;
6482                 if (!test_bit(__IGB_DOWN, &adapter->state))
6483                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6484         }
6485
6486         if (icr & E1000_ICR_TS)
6487                 igb_tsync_interrupt(adapter);
6488
6489         napi_schedule(&q_vector->napi);
6490
6491         return IRQ_HANDLED;
6492 }
6493
6494 /**
6495  *  igb_intr - Legacy Interrupt Handler
6496  *  @irq: interrupt number
6497  *  @data: pointer to a network interface device structure
6498  **/
6499 static irqreturn_t igb_intr(int irq, void *data)
6500 {
6501         struct igb_adapter *adapter = data;
6502         struct igb_q_vector *q_vector = adapter->q_vector[0];
6503         struct e1000_hw *hw = &adapter->hw;
6504         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6505          * need for the IMC write
6506          */
6507         u32 icr = rd32(E1000_ICR);
6508
6509         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6510          * not set, then the adapter didn't send an interrupt
6511          */
6512         if (!(icr & E1000_ICR_INT_ASSERTED))
6513                 return IRQ_NONE;
6514
6515         igb_write_itr(q_vector);
6516
6517         if (icr & E1000_ICR_DRSTA)
6518                 schedule_work(&adapter->reset_task);
6519
6520         if (icr & E1000_ICR_DOUTSYNC) {
6521                 /* HW is reporting DMA is out of sync */
6522                 adapter->stats.doosync++;
6523         }
6524
6525         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6526                 hw->mac.get_link_status = 1;
6527                 /* guard against interrupt when we're going down */
6528                 if (!test_bit(__IGB_DOWN, &adapter->state))
6529                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6530         }
6531
6532         if (icr & E1000_ICR_TS)
6533                 igb_tsync_interrupt(adapter);
6534
6535         napi_schedule(&q_vector->napi);
6536
6537         return IRQ_HANDLED;
6538 }
6539
6540 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6541 {
6542         struct igb_adapter *adapter = q_vector->adapter;
6543         struct e1000_hw *hw = &adapter->hw;
6544
6545         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6546             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6547                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6548                         igb_set_itr(q_vector);
6549                 else
6550                         igb_update_ring_itr(q_vector);
6551         }
6552
6553         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6554                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6555                         wr32(E1000_EIMS, q_vector->eims_value);
6556                 else
6557                         igb_irq_enable(adapter);
6558         }
6559 }
6560
6561 /**
6562  *  igb_poll - NAPI Rx polling callback
6563  *  @napi: napi polling structure
6564  *  @budget: count of how many packets we should handle
6565  **/
6566 static int igb_poll(struct napi_struct *napi, int budget)
6567 {
6568         struct igb_q_vector *q_vector = container_of(napi,
6569                                                      struct igb_q_vector,
6570                                                      napi);
6571         bool clean_complete = true;
6572         int work_done = 0;
6573
6574 #ifdef CONFIG_IGB_DCA
6575         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6576                 igb_update_dca(q_vector);
6577 #endif
6578         if (q_vector->tx.ring)
6579                 clean_complete = igb_clean_tx_irq(q_vector, budget);
6580
6581         if (q_vector->rx.ring) {
6582                 int cleaned = igb_clean_rx_irq(q_vector, budget);
6583
6584                 work_done += cleaned;
6585                 if (cleaned >= budget)
6586                         clean_complete = false;
6587         }
6588
6589         /* If all work not completed, return budget and keep polling */
6590         if (!clean_complete)
6591                 return budget;
6592
6593         /* If not enough Rx work done, exit the polling mode */
6594         napi_complete_done(napi, work_done);
6595         igb_ring_irq_enable(q_vector);
6596
6597         return 0;
6598 }
6599
6600 /**
6601  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6602  *  @q_vector: pointer to q_vector containing needed info
6603  *  @napi_budget: Used to determine if we are in netpoll
6604  *
6605  *  returns true if ring is completely cleaned
6606  **/
6607 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6608 {
6609         struct igb_adapter *adapter = q_vector->adapter;
6610         struct igb_ring *tx_ring = q_vector->tx.ring;
6611         struct igb_tx_buffer *tx_buffer;
6612         union e1000_adv_tx_desc *tx_desc;
6613         unsigned int total_bytes = 0, total_packets = 0;
6614         unsigned int budget = q_vector->tx.work_limit;
6615         unsigned int i = tx_ring->next_to_clean;
6616
6617         if (test_bit(__IGB_DOWN, &adapter->state))
6618                 return true;
6619
6620         tx_buffer = &tx_ring->tx_buffer_info[i];
6621         tx_desc = IGB_TX_DESC(tx_ring, i);
6622         i -= tx_ring->count;
6623
6624         do {
6625                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6626
6627                 /* if next_to_watch is not set then there is no work pending */
6628                 if (!eop_desc)
6629                         break;
6630
6631                 /* prevent any other reads prior to eop_desc */
6632                 read_barrier_depends();
6633
6634                 /* if DD is not set pending work has not been completed */
6635                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6636                         break;
6637
6638                 /* clear next_to_watch to prevent false hangs */
6639                 tx_buffer->next_to_watch = NULL;
6640
6641                 /* update the statistics for this packet */
6642                 total_bytes += tx_buffer->bytecount;
6643                 total_packets += tx_buffer->gso_segs;
6644
6645                 /* free the skb */
6646                 napi_consume_skb(tx_buffer->skb, napi_budget);
6647
6648                 /* unmap skb header data */
6649                 dma_unmap_single(tx_ring->dev,
6650                                  dma_unmap_addr(tx_buffer, dma),
6651                                  dma_unmap_len(tx_buffer, len),
6652                                  DMA_TO_DEVICE);
6653
6654                 /* clear tx_buffer data */
6655                 tx_buffer->skb = NULL;
6656                 dma_unmap_len_set(tx_buffer, len, 0);
6657
6658                 /* clear last DMA location and unmap remaining buffers */
6659                 while (tx_desc != eop_desc) {
6660                         tx_buffer++;
6661                         tx_desc++;
6662                         i++;
6663                         if (unlikely(!i)) {
6664                                 i -= tx_ring->count;
6665                                 tx_buffer = tx_ring->tx_buffer_info;
6666                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6667                         }
6668
6669                         /* unmap any remaining paged data */
6670                         if (dma_unmap_len(tx_buffer, len)) {
6671                                 dma_unmap_page(tx_ring->dev,
6672                                                dma_unmap_addr(tx_buffer, dma),
6673                                                dma_unmap_len(tx_buffer, len),
6674                                                DMA_TO_DEVICE);
6675                                 dma_unmap_len_set(tx_buffer, len, 0);
6676                         }
6677                 }
6678
6679                 /* move us one more past the eop_desc for start of next pkt */
6680                 tx_buffer++;
6681                 tx_desc++;
6682                 i++;
6683                 if (unlikely(!i)) {
6684                         i -= tx_ring->count;
6685                         tx_buffer = tx_ring->tx_buffer_info;
6686                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6687                 }
6688
6689                 /* issue prefetch for next Tx descriptor */
6690                 prefetch(tx_desc);
6691
6692                 /* update budget accounting */
6693                 budget--;
6694         } while (likely(budget));
6695
6696         netdev_tx_completed_queue(txring_txq(tx_ring),
6697                                   total_packets, total_bytes);
6698         i += tx_ring->count;
6699         tx_ring->next_to_clean = i;
6700         u64_stats_update_begin(&tx_ring->tx_syncp);
6701         tx_ring->tx_stats.bytes += total_bytes;
6702         tx_ring->tx_stats.packets += total_packets;
6703         u64_stats_update_end(&tx_ring->tx_syncp);
6704         q_vector->tx.total_bytes += total_bytes;
6705         q_vector->tx.total_packets += total_packets;
6706
6707         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6708                 struct e1000_hw *hw = &adapter->hw;
6709
6710                 /* Detect a transmit hang in hardware, this serializes the
6711                  * check with the clearing of time_stamp and movement of i
6712                  */
6713                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6714                 if (tx_buffer->next_to_watch &&
6715                     time_after(jiffies, tx_buffer->time_stamp +
6716                                (adapter->tx_timeout_factor * HZ)) &&
6717                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6718
6719                         /* detected Tx unit hang */
6720                         dev_err(tx_ring->dev,
6721                                 "Detected Tx Unit Hang\n"
6722                                 "  Tx Queue             <%d>\n"
6723                                 "  TDH                  <%x>\n"
6724                                 "  TDT                  <%x>\n"
6725                                 "  next_to_use          <%x>\n"
6726                                 "  next_to_clean        <%x>\n"
6727                                 "buffer_info[next_to_clean]\n"
6728                                 "  time_stamp           <%lx>\n"
6729                                 "  next_to_watch        <%p>\n"
6730                                 "  jiffies              <%lx>\n"
6731                                 "  desc.status          <%x>\n",
6732                                 tx_ring->queue_index,
6733                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6734                                 readl(tx_ring->tail),
6735                                 tx_ring->next_to_use,
6736                                 tx_ring->next_to_clean,
6737                                 tx_buffer->time_stamp,
6738                                 tx_buffer->next_to_watch,
6739                                 jiffies,
6740                                 tx_buffer->next_to_watch->wb.status);
6741                         netif_stop_subqueue(tx_ring->netdev,
6742                                             tx_ring->queue_index);
6743
6744                         /* we are about to reset, no point in enabling stuff */
6745                         return true;
6746                 }
6747         }
6748
6749 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6750         if (unlikely(total_packets &&
6751             netif_carrier_ok(tx_ring->netdev) &&
6752             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6753                 /* Make sure that anybody stopping the queue after this
6754                  * sees the new next_to_clean.
6755                  */
6756                 smp_mb();
6757                 if (__netif_subqueue_stopped(tx_ring->netdev,
6758                                              tx_ring->queue_index) &&
6759                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6760                         netif_wake_subqueue(tx_ring->netdev,
6761                                             tx_ring->queue_index);
6762
6763                         u64_stats_update_begin(&tx_ring->tx_syncp);
6764                         tx_ring->tx_stats.restart_queue++;
6765                         u64_stats_update_end(&tx_ring->tx_syncp);
6766                 }
6767         }
6768
6769         return !!budget;
6770 }
6771
6772 /**
6773  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6774  *  @rx_ring: rx descriptor ring to store buffers on
6775  *  @old_buff: donor buffer to have page reused
6776  *
6777  *  Synchronizes page for reuse by the adapter
6778  **/
6779 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6780                               struct igb_rx_buffer *old_buff)
6781 {
6782         struct igb_rx_buffer *new_buff;
6783         u16 nta = rx_ring->next_to_alloc;
6784
6785         new_buff = &rx_ring->rx_buffer_info[nta];
6786
6787         /* update, and store next to alloc */
6788         nta++;
6789         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6790
6791         /* transfer page from old buffer to new buffer */
6792         *new_buff = *old_buff;
6793
6794         /* sync the buffer for use by the device */
6795         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6796                                          old_buff->page_offset,
6797                                          IGB_RX_BUFSZ,
6798                                          DMA_FROM_DEVICE);
6799 }
6800
6801 static inline bool igb_page_is_reserved(struct page *page)
6802 {
6803         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6804 }
6805
6806 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6807                                   struct page *page,
6808                                   unsigned int truesize)
6809 {
6810         /* avoid re-using remote pages */
6811         if (unlikely(igb_page_is_reserved(page)))
6812                 return false;
6813
6814 #if (PAGE_SIZE < 8192)
6815         /* if we are only owner of page we can reuse it */
6816         if (unlikely(page_count(page) != 1))
6817                 return false;
6818
6819         /* flip page offset to other buffer */
6820         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6821 #else
6822         /* move offset up to the next cache line */
6823         rx_buffer->page_offset += truesize;
6824
6825         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6826                 return false;
6827 #endif
6828
6829         /* Even if we own the page, we are not allowed to use atomic_set()
6830          * This would break get_page_unless_zero() users.
6831          */
6832         page_ref_inc(page);
6833
6834         return true;
6835 }
6836
6837 /**
6838  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6839  *  @rx_ring: rx descriptor ring to transact packets on
6840  *  @rx_buffer: buffer containing page to add
6841  *  @rx_desc: descriptor containing length of buffer written by hardware
6842  *  @skb: sk_buff to place the data into
6843  *
6844  *  This function will add the data contained in rx_buffer->page to the skb.
6845  *  This is done either through a direct copy if the data in the buffer is
6846  *  less than the skb header size, otherwise it will just attach the page as
6847  *  a frag to the skb.
6848  *
6849  *  The function will then update the page offset if necessary and return
6850  *  true if the buffer can be reused by the adapter.
6851  **/
6852 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6853                             struct igb_rx_buffer *rx_buffer,
6854                             union e1000_adv_rx_desc *rx_desc,
6855                             struct sk_buff *skb)
6856 {
6857         struct page *page = rx_buffer->page;
6858         unsigned char *va = page_address(page) + rx_buffer->page_offset;
6859         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6860 #if (PAGE_SIZE < 8192)
6861         unsigned int truesize = IGB_RX_BUFSZ;
6862 #else
6863         unsigned int truesize = SKB_DATA_ALIGN(size);
6864 #endif
6865         unsigned int pull_len;
6866
6867         if (unlikely(skb_is_nonlinear(skb)))
6868                 goto add_tail_frag;
6869
6870         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6871                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6872                 va += IGB_TS_HDR_LEN;
6873                 size -= IGB_TS_HDR_LEN;
6874         }
6875
6876         if (likely(size <= IGB_RX_HDR_LEN)) {
6877                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6878
6879                 /* page is not reserved, we can reuse buffer as-is */
6880                 if (likely(!igb_page_is_reserved(page)))
6881                         return true;
6882
6883                 /* this page cannot be reused so discard it */
6884                 __free_page(page);
6885                 return false;
6886         }
6887
6888         /* we need the header to contain the greater of either ETH_HLEN or
6889          * 60 bytes if the skb->len is less than 60 for skb_pad.
6890          */
6891         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6892
6893         /* align pull length to size of long to optimize memcpy performance */
6894         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6895
6896         /* update all of the pointers */
6897         va += pull_len;
6898         size -= pull_len;
6899
6900 add_tail_frag:
6901         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6902                         (unsigned long)va & ~PAGE_MASK, size, truesize);
6903
6904         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6905 }
6906
6907 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6908                                            union e1000_adv_rx_desc *rx_desc,
6909                                            struct sk_buff *skb)
6910 {
6911         struct igb_rx_buffer *rx_buffer;
6912         struct page *page;
6913
6914         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6915         page = rx_buffer->page;
6916         prefetchw(page);
6917
6918         if (likely(!skb)) {
6919                 void *page_addr = page_address(page) +
6920                                   rx_buffer->page_offset;
6921
6922                 /* prefetch first cache line of first page */
6923                 prefetch(page_addr);
6924 #if L1_CACHE_BYTES < 128
6925                 prefetch(page_addr + L1_CACHE_BYTES);
6926 #endif
6927
6928                 /* allocate a skb to store the frags */
6929                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6930                 if (unlikely(!skb)) {
6931                         rx_ring->rx_stats.alloc_failed++;
6932                         return NULL;
6933                 }
6934
6935                 /* we will be copying header into skb->data in
6936                  * pskb_may_pull so it is in our interest to prefetch
6937                  * it now to avoid a possible cache miss
6938                  */
6939                 prefetchw(skb->data);
6940         }
6941
6942         /* we are reusing so sync this buffer for CPU use */
6943         dma_sync_single_range_for_cpu(rx_ring->dev,
6944                                       rx_buffer->dma,
6945                                       rx_buffer->page_offset,
6946                                       IGB_RX_BUFSZ,
6947                                       DMA_FROM_DEVICE);
6948
6949         /* pull page into skb */
6950         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6951                 /* hand second half of page back to the ring */
6952                 igb_reuse_rx_page(rx_ring, rx_buffer);
6953         } else {
6954                 /* we are not reusing the buffer so unmap it */
6955                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6956                                PAGE_SIZE, DMA_FROM_DEVICE);
6957         }
6958
6959         /* clear contents of rx_buffer */
6960         rx_buffer->page = NULL;
6961
6962         return skb;
6963 }
6964
6965 static inline void igb_rx_checksum(struct igb_ring *ring,
6966                                    union e1000_adv_rx_desc *rx_desc,
6967                                    struct sk_buff *skb)
6968 {
6969         skb_checksum_none_assert(skb);
6970
6971         /* Ignore Checksum bit is set */
6972         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6973                 return;
6974
6975         /* Rx checksum disabled via ethtool */
6976         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6977                 return;
6978
6979         /* TCP/UDP checksum error bit is set */
6980         if (igb_test_staterr(rx_desc,
6981                              E1000_RXDEXT_STATERR_TCPE |
6982                              E1000_RXDEXT_STATERR_IPE)) {
6983                 /* work around errata with sctp packets where the TCPE aka
6984                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6985                  * packets, (aka let the stack check the crc32c)
6986                  */
6987                 if (!((skb->len == 60) &&
6988                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6989                         u64_stats_update_begin(&ring->rx_syncp);
6990                         ring->rx_stats.csum_err++;
6991                         u64_stats_update_end(&ring->rx_syncp);
6992                 }
6993                 /* let the stack verify checksum errors */
6994                 return;
6995         }
6996         /* It must be a TCP or UDP packet with a valid checksum */
6997         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6998                                       E1000_RXD_STAT_UDPCS))
6999                 skb->ip_summed = CHECKSUM_UNNECESSARY;
7000
7001         dev_dbg(ring->dev, "cksum success: bits %08X\n",
7002                 le32_to_cpu(rx_desc->wb.upper.status_error));
7003 }
7004
7005 static inline void igb_rx_hash(struct igb_ring *ring,
7006                                union e1000_adv_rx_desc *rx_desc,
7007                                struct sk_buff *skb)
7008 {
7009         if (ring->netdev->features & NETIF_F_RXHASH)
7010                 skb_set_hash(skb,
7011                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7012                              PKT_HASH_TYPE_L3);
7013 }
7014
7015 /**
7016  *  igb_is_non_eop - process handling of non-EOP buffers
7017  *  @rx_ring: Rx ring being processed
7018  *  @rx_desc: Rx descriptor for current buffer
7019  *  @skb: current socket buffer containing buffer in progress
7020  *
7021  *  This function updates next to clean.  If the buffer is an EOP buffer
7022  *  this function exits returning false, otherwise it will place the
7023  *  sk_buff in the next buffer to be chained and return true indicating
7024  *  that this is in fact a non-EOP buffer.
7025  **/
7026 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7027                            union e1000_adv_rx_desc *rx_desc)
7028 {
7029         u32 ntc = rx_ring->next_to_clean + 1;
7030
7031         /* fetch, update, and store next to clean */
7032         ntc = (ntc < rx_ring->count) ? ntc : 0;
7033         rx_ring->next_to_clean = ntc;
7034
7035         prefetch(IGB_RX_DESC(rx_ring, ntc));
7036
7037         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7038                 return false;
7039
7040         return true;
7041 }
7042
7043 /**
7044  *  igb_cleanup_headers - Correct corrupted or empty headers
7045  *  @rx_ring: rx descriptor ring packet is being transacted on
7046  *  @rx_desc: pointer to the EOP Rx descriptor
7047  *  @skb: pointer to current skb being fixed
7048  *
7049  *  Address the case where we are pulling data in on pages only
7050  *  and as such no data is present in the skb header.
7051  *
7052  *  In addition if skb is not at least 60 bytes we need to pad it so that
7053  *  it is large enough to qualify as a valid Ethernet frame.
7054  *
7055  *  Returns true if an error was encountered and skb was freed.
7056  **/
7057 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7058                                 union e1000_adv_rx_desc *rx_desc,
7059                                 struct sk_buff *skb)
7060 {
7061         if (unlikely((igb_test_staterr(rx_desc,
7062                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7063                 struct net_device *netdev = rx_ring->netdev;
7064                 if (!(netdev->features & NETIF_F_RXALL)) {
7065                         dev_kfree_skb_any(skb);
7066                         return true;
7067                 }
7068         }
7069
7070         /* if eth_skb_pad returns an error the skb was freed */
7071         if (eth_skb_pad(skb))
7072                 return true;
7073
7074         return false;
7075 }
7076
7077 /**
7078  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7079  *  @rx_ring: rx descriptor ring packet is being transacted on
7080  *  @rx_desc: pointer to the EOP Rx descriptor
7081  *  @skb: pointer to current skb being populated
7082  *
7083  *  This function checks the ring, descriptor, and packet information in
7084  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7085  *  other fields within the skb.
7086  **/
7087 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7088                                    union e1000_adv_rx_desc *rx_desc,
7089                                    struct sk_buff *skb)
7090 {
7091         struct net_device *dev = rx_ring->netdev;
7092
7093         igb_rx_hash(rx_ring, rx_desc, skb);
7094
7095         igb_rx_checksum(rx_ring, rx_desc, skb);
7096
7097         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7098             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7099                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7100
7101         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7102             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7103                 u16 vid;
7104
7105                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7106                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7107                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7108                 else
7109                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7110
7111                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7112         }
7113
7114         skb_record_rx_queue(skb, rx_ring->queue_index);
7115
7116         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7117 }
7118
7119 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7120 {
7121         struct igb_ring *rx_ring = q_vector->rx.ring;
7122         struct sk_buff *skb = rx_ring->skb;
7123         unsigned int total_bytes = 0, total_packets = 0;
7124         u16 cleaned_count = igb_desc_unused(rx_ring);
7125
7126         while (likely(total_packets < budget)) {
7127                 union e1000_adv_rx_desc *rx_desc;
7128
7129                 /* return some buffers to hardware, one at a time is too slow */
7130                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7131                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
7132                         cleaned_count = 0;
7133                 }
7134
7135                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7136
7137                 if (!rx_desc->wb.upper.status_error)
7138                         break;
7139
7140                 /* This memory barrier is needed to keep us from reading
7141                  * any other fields out of the rx_desc until we know the
7142                  * descriptor has been written back
7143                  */
7144                 dma_rmb();
7145
7146                 /* retrieve a buffer from the ring */
7147                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7148
7149                 /* exit if we failed to retrieve a buffer */
7150                 if (!skb)
7151                         break;
7152
7153                 cleaned_count++;
7154
7155                 /* fetch next buffer in frame if non-eop */
7156                 if (igb_is_non_eop(rx_ring, rx_desc))
7157                         continue;
7158
7159                 /* verify the packet layout is correct */
7160                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7161                         skb = NULL;
7162                         continue;
7163                 }
7164
7165                 /* probably a little skewed due to removing CRC */
7166                 total_bytes += skb->len;
7167
7168                 /* populate checksum, timestamp, VLAN, and protocol */
7169                 igb_process_skb_fields(rx_ring, rx_desc, skb);
7170
7171                 napi_gro_receive(&q_vector->napi, skb);
7172
7173                 /* reset skb pointer */
7174                 skb = NULL;
7175
7176                 /* update budget accounting */
7177                 total_packets++;
7178         }
7179
7180         /* place incomplete frames back on ring for completion */
7181         rx_ring->skb = skb;
7182
7183         u64_stats_update_begin(&rx_ring->rx_syncp);
7184         rx_ring->rx_stats.packets += total_packets;
7185         rx_ring->rx_stats.bytes += total_bytes;
7186         u64_stats_update_end(&rx_ring->rx_syncp);
7187         q_vector->rx.total_packets += total_packets;
7188         q_vector->rx.total_bytes += total_bytes;
7189
7190         if (cleaned_count)
7191                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7192
7193         return total_packets;
7194 }
7195
7196 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7197                                   struct igb_rx_buffer *bi)
7198 {
7199         struct page *page = bi->page;
7200         dma_addr_t dma;
7201
7202         /* since we are recycling buffers we should seldom need to alloc */
7203         if (likely(page))
7204                 return true;
7205
7206         /* alloc new page for storage */
7207         page = dev_alloc_page();
7208         if (unlikely(!page)) {
7209                 rx_ring->rx_stats.alloc_failed++;
7210                 return false;
7211         }
7212
7213         /* map page for use */
7214         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7215
7216         /* if mapping failed free memory back to system since
7217          * there isn't much point in holding memory we can't use
7218          */
7219         if (dma_mapping_error(rx_ring->dev, dma)) {
7220                 __free_page(page);
7221
7222                 rx_ring->rx_stats.alloc_failed++;
7223                 return false;
7224         }
7225
7226         bi->dma = dma;
7227         bi->page = page;
7228         bi->page_offset = 0;
7229
7230         return true;
7231 }
7232
7233 /**
7234  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7235  *  @adapter: address of board private structure
7236  **/
7237 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7238 {
7239         union e1000_adv_rx_desc *rx_desc;
7240         struct igb_rx_buffer *bi;
7241         u16 i = rx_ring->next_to_use;
7242
7243         /* nothing to do */
7244         if (!cleaned_count)
7245                 return;
7246
7247         rx_desc = IGB_RX_DESC(rx_ring, i);
7248         bi = &rx_ring->rx_buffer_info[i];
7249         i -= rx_ring->count;
7250
7251         do {
7252                 if (!igb_alloc_mapped_page(rx_ring, bi))
7253                         break;
7254
7255                 /* Refresh the desc even if buffer_addrs didn't change
7256                  * because each write-back erases this info.
7257                  */
7258                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7259
7260                 rx_desc++;
7261                 bi++;
7262                 i++;
7263                 if (unlikely(!i)) {
7264                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7265                         bi = rx_ring->rx_buffer_info;
7266                         i -= rx_ring->count;
7267                 }
7268
7269                 /* clear the status bits for the next_to_use descriptor */
7270                 rx_desc->wb.upper.status_error = 0;
7271
7272                 cleaned_count--;
7273         } while (cleaned_count);
7274
7275         i += rx_ring->count;
7276
7277         if (rx_ring->next_to_use != i) {
7278                 /* record the next descriptor to use */
7279                 rx_ring->next_to_use = i;
7280
7281                 /* update next to alloc since we have filled the ring */
7282                 rx_ring->next_to_alloc = i;
7283
7284                 /* Force memory writes to complete before letting h/w
7285                  * know there are new descriptors to fetch.  (Only
7286                  * applicable for weak-ordered memory model archs,
7287                  * such as IA-64).
7288                  */
7289                 wmb();
7290                 writel(i, rx_ring->tail);
7291         }
7292 }
7293
7294 /**
7295  * igb_mii_ioctl -
7296  * @netdev:
7297  * @ifreq:
7298  * @cmd:
7299  **/
7300 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7301 {
7302         struct igb_adapter *adapter = netdev_priv(netdev);
7303         struct mii_ioctl_data *data = if_mii(ifr);
7304
7305         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7306                 return -EOPNOTSUPP;
7307
7308         switch (cmd) {
7309         case SIOCGMIIPHY:
7310                 data->phy_id = adapter->hw.phy.addr;
7311                 break;
7312         case SIOCGMIIREG:
7313                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7314                                      &data->val_out))
7315                         return -EIO;
7316                 break;
7317         case SIOCSMIIREG:
7318         default:
7319                 return -EOPNOTSUPP;
7320         }
7321         return 0;
7322 }
7323
7324 /**
7325  * igb_ioctl -
7326  * @netdev:
7327  * @ifreq:
7328  * @cmd:
7329  **/
7330 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7331 {
7332         switch (cmd) {
7333         case SIOCGMIIPHY:
7334         case SIOCGMIIREG:
7335         case SIOCSMIIREG:
7336                 return igb_mii_ioctl(netdev, ifr, cmd);
7337         case SIOCGHWTSTAMP:
7338                 return igb_ptp_get_ts_config(netdev, ifr);
7339         case SIOCSHWTSTAMP:
7340                 return igb_ptp_set_ts_config(netdev, ifr);
7341         default:
7342                 return -EOPNOTSUPP;
7343         }
7344 }
7345
7346 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7347 {
7348         struct igb_adapter *adapter = hw->back;
7349
7350         pci_read_config_word(adapter->pdev, reg, value);
7351 }
7352
7353 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7354 {
7355         struct igb_adapter *adapter = hw->back;
7356
7357         pci_write_config_word(adapter->pdev, reg, *value);
7358 }
7359
7360 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7361 {
7362         struct igb_adapter *adapter = hw->back;
7363
7364         if (pcie_capability_read_word(adapter->pdev, reg, value))
7365                 return -E1000_ERR_CONFIG;
7366
7367         return 0;
7368 }
7369
7370 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7371 {
7372         struct igb_adapter *adapter = hw->back;
7373
7374         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7375                 return -E1000_ERR_CONFIG;
7376
7377         return 0;
7378 }
7379
7380 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7381 {
7382         struct igb_adapter *adapter = netdev_priv(netdev);
7383         struct e1000_hw *hw = &adapter->hw;
7384         u32 ctrl, rctl;
7385         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7386
7387         if (enable) {
7388                 /* enable VLAN tag insert/strip */
7389                 ctrl = rd32(E1000_CTRL);
7390                 ctrl |= E1000_CTRL_VME;
7391                 wr32(E1000_CTRL, ctrl);
7392
7393                 /* Disable CFI check */
7394                 rctl = rd32(E1000_RCTL);
7395                 rctl &= ~E1000_RCTL_CFIEN;
7396                 wr32(E1000_RCTL, rctl);
7397         } else {
7398                 /* disable VLAN tag insert/strip */
7399                 ctrl = rd32(E1000_CTRL);
7400                 ctrl &= ~E1000_CTRL_VME;
7401                 wr32(E1000_CTRL, ctrl);
7402         }
7403
7404         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7405 }
7406
7407 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7408                                __be16 proto, u16 vid)
7409 {
7410         struct igb_adapter *adapter = netdev_priv(netdev);
7411         struct e1000_hw *hw = &adapter->hw;
7412         int pf_id = adapter->vfs_allocated_count;
7413
7414         /* add the filter since PF can receive vlans w/o entry in vlvf */
7415         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7416                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7417
7418         set_bit(vid, adapter->active_vlans);
7419
7420         return 0;
7421 }
7422
7423 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7424                                 __be16 proto, u16 vid)
7425 {
7426         struct igb_adapter *adapter = netdev_priv(netdev);
7427         int pf_id = adapter->vfs_allocated_count;
7428         struct e1000_hw *hw = &adapter->hw;
7429
7430         /* remove VID from filter table */
7431         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7432                 igb_vfta_set(hw, vid, pf_id, false, true);
7433
7434         clear_bit(vid, adapter->active_vlans);
7435
7436         return 0;
7437 }
7438
7439 static void igb_restore_vlan(struct igb_adapter *adapter)
7440 {
7441         u16 vid = 1;
7442
7443         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7444         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7445
7446         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7447                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7448 }
7449
7450 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7451 {
7452         struct pci_dev *pdev = adapter->pdev;
7453         struct e1000_mac_info *mac = &adapter->hw.mac;
7454
7455         mac->autoneg = 0;
7456
7457         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7458          * for the switch() below to work
7459          */
7460         if ((spd & 1) || (dplx & ~1))
7461                 goto err_inval;
7462
7463         /* Fiber NIC's only allow 1000 gbps Full duplex
7464          * and 100Mbps Full duplex for 100baseFx sfp
7465          */
7466         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7467                 switch (spd + dplx) {
7468                 case SPEED_10 + DUPLEX_HALF:
7469                 case SPEED_10 + DUPLEX_FULL:
7470                 case SPEED_100 + DUPLEX_HALF:
7471                         goto err_inval;
7472                 default:
7473                         break;
7474                 }
7475         }
7476
7477         switch (spd + dplx) {
7478         case SPEED_10 + DUPLEX_HALF:
7479                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7480                 break;
7481         case SPEED_10 + DUPLEX_FULL:
7482                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7483                 break;
7484         case SPEED_100 + DUPLEX_HALF:
7485                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7486                 break;
7487         case SPEED_100 + DUPLEX_FULL:
7488                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7489                 break;
7490         case SPEED_1000 + DUPLEX_FULL:
7491                 mac->autoneg = 1;
7492                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7493                 break;
7494         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7495         default:
7496                 goto err_inval;
7497         }
7498
7499         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7500         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7501
7502         return 0;
7503
7504 err_inval:
7505         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7506         return -EINVAL;
7507 }
7508
7509 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7510                           bool runtime)
7511 {
7512         struct net_device *netdev = pci_get_drvdata(pdev);
7513         struct igb_adapter *adapter = netdev_priv(netdev);
7514         struct e1000_hw *hw = &adapter->hw;
7515         u32 ctrl, rctl, status;
7516         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7517 #ifdef CONFIG_PM
7518         int retval = 0;
7519 #endif
7520
7521         netif_device_detach(netdev);
7522
7523         if (netif_running(netdev))
7524                 __igb_close(netdev, true);
7525
7526         igb_clear_interrupt_scheme(adapter);
7527
7528 #ifdef CONFIG_PM
7529         retval = pci_save_state(pdev);
7530         if (retval)
7531                 return retval;
7532 #endif
7533
7534         status = rd32(E1000_STATUS);
7535         if (status & E1000_STATUS_LU)
7536                 wufc &= ~E1000_WUFC_LNKC;
7537
7538         if (wufc) {
7539                 igb_setup_rctl(adapter);
7540                 igb_set_rx_mode(netdev);
7541
7542                 /* turn on all-multi mode if wake on multicast is enabled */
7543                 if (wufc & E1000_WUFC_MC) {
7544                         rctl = rd32(E1000_RCTL);
7545                         rctl |= E1000_RCTL_MPE;
7546                         wr32(E1000_RCTL, rctl);
7547                 }
7548
7549                 ctrl = rd32(E1000_CTRL);
7550                 /* advertise wake from D3Cold */
7551                 #define E1000_CTRL_ADVD3WUC 0x00100000
7552                 /* phy power management enable */
7553                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7554                 ctrl |= E1000_CTRL_ADVD3WUC;
7555                 wr32(E1000_CTRL, ctrl);
7556
7557                 /* Allow time for pending master requests to run */
7558                 igb_disable_pcie_master(hw);
7559
7560                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7561                 wr32(E1000_WUFC, wufc);
7562         } else {
7563                 wr32(E1000_WUC, 0);
7564                 wr32(E1000_WUFC, 0);
7565         }
7566
7567         *enable_wake = wufc || adapter->en_mng_pt;
7568         if (!*enable_wake)
7569                 igb_power_down_link(adapter);
7570         else
7571                 igb_power_up_link(adapter);
7572
7573         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7574          * would have already happened in close and is redundant.
7575          */
7576         igb_release_hw_control(adapter);
7577
7578         pci_disable_device(pdev);
7579
7580         return 0;
7581 }
7582
7583 #ifdef CONFIG_PM
7584 #ifdef CONFIG_PM_SLEEP
7585 static int igb_suspend(struct device *dev)
7586 {
7587         int retval;
7588         bool wake;
7589         struct pci_dev *pdev = to_pci_dev(dev);
7590
7591         retval = __igb_shutdown(pdev, &wake, 0);
7592         if (retval)
7593                 return retval;
7594
7595         if (wake) {
7596                 pci_prepare_to_sleep(pdev);
7597         } else {
7598                 pci_wake_from_d3(pdev, false);
7599                 pci_set_power_state(pdev, PCI_D3hot);
7600         }
7601
7602         return 0;
7603 }
7604 #endif /* CONFIG_PM_SLEEP */
7605
7606 static int igb_resume(struct device *dev)
7607 {
7608         struct pci_dev *pdev = to_pci_dev(dev);
7609         struct net_device *netdev = pci_get_drvdata(pdev);
7610         struct igb_adapter *adapter = netdev_priv(netdev);
7611         struct e1000_hw *hw = &adapter->hw;
7612         u32 err;
7613
7614         pci_set_power_state(pdev, PCI_D0);
7615         pci_restore_state(pdev);
7616         pci_save_state(pdev);
7617
7618         if (!pci_device_is_present(pdev))
7619                 return -ENODEV;
7620         err = pci_enable_device_mem(pdev);
7621         if (err) {
7622                 dev_err(&pdev->dev,
7623                         "igb: Cannot enable PCI device from suspend\n");
7624                 return err;
7625         }
7626         pci_set_master(pdev);
7627
7628         pci_enable_wake(pdev, PCI_D3hot, 0);
7629         pci_enable_wake(pdev, PCI_D3cold, 0);
7630
7631         if (igb_init_interrupt_scheme(adapter, true)) {
7632                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7633                 return -ENOMEM;
7634         }
7635
7636         igb_reset(adapter);
7637
7638         /* let the f/w know that the h/w is now under the control of the
7639          * driver.
7640          */
7641         igb_get_hw_control(adapter);
7642
7643         wr32(E1000_WUS, ~0);
7644
7645         if (netdev->flags & IFF_UP) {
7646                 rtnl_lock();
7647                 err = __igb_open(netdev, true);
7648                 rtnl_unlock();
7649                 if (err)
7650                         return err;
7651         }
7652
7653         netif_device_attach(netdev);
7654         return 0;
7655 }
7656
7657 static int igb_runtime_idle(struct device *dev)
7658 {
7659         struct pci_dev *pdev = to_pci_dev(dev);
7660         struct net_device *netdev = pci_get_drvdata(pdev);
7661         struct igb_adapter *adapter = netdev_priv(netdev);
7662
7663         if (!igb_has_link(adapter))
7664                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7665
7666         return -EBUSY;
7667 }
7668
7669 static int igb_runtime_suspend(struct device *dev)
7670 {
7671         struct pci_dev *pdev = to_pci_dev(dev);
7672         int retval;
7673         bool wake;
7674
7675         retval = __igb_shutdown(pdev, &wake, 1);
7676         if (retval)
7677                 return retval;
7678
7679         if (wake) {
7680                 pci_prepare_to_sleep(pdev);
7681         } else {
7682                 pci_wake_from_d3(pdev, false);
7683                 pci_set_power_state(pdev, PCI_D3hot);
7684         }
7685
7686         return 0;
7687 }
7688
7689 static int igb_runtime_resume(struct device *dev)
7690 {
7691         return igb_resume(dev);
7692 }
7693 #endif /* CONFIG_PM */
7694
7695 static void igb_shutdown(struct pci_dev *pdev)
7696 {
7697         bool wake;
7698
7699         __igb_shutdown(pdev, &wake, 0);
7700
7701         if (system_state == SYSTEM_POWER_OFF) {
7702                 pci_wake_from_d3(pdev, wake);
7703                 pci_set_power_state(pdev, PCI_D3hot);
7704         }
7705 }
7706
7707 #ifdef CONFIG_PCI_IOV
7708 static int igb_sriov_reinit(struct pci_dev *dev)
7709 {
7710         struct net_device *netdev = pci_get_drvdata(dev);
7711         struct igb_adapter *adapter = netdev_priv(netdev);
7712         struct pci_dev *pdev = adapter->pdev;
7713
7714         rtnl_lock();
7715
7716         if (netif_running(netdev))
7717                 igb_close(netdev);
7718         else
7719                 igb_reset(adapter);
7720
7721         igb_clear_interrupt_scheme(adapter);
7722
7723         igb_init_queue_configuration(adapter);
7724
7725         if (igb_init_interrupt_scheme(adapter, true)) {
7726                 rtnl_unlock();
7727                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7728                 return -ENOMEM;
7729         }
7730
7731         if (netif_running(netdev))
7732                 igb_open(netdev);
7733
7734         rtnl_unlock();
7735
7736         return 0;
7737 }
7738
7739 static int igb_pci_disable_sriov(struct pci_dev *dev)
7740 {
7741         int err = igb_disable_sriov(dev);
7742
7743         if (!err)
7744                 err = igb_sriov_reinit(dev);
7745
7746         return err;
7747 }
7748
7749 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7750 {
7751         int err = igb_enable_sriov(dev, num_vfs);
7752
7753         if (err)
7754                 goto out;
7755
7756         err = igb_sriov_reinit(dev);
7757         if (!err)
7758                 return num_vfs;
7759
7760 out:
7761         return err;
7762 }
7763
7764 #endif
7765 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7766 {
7767 #ifdef CONFIG_PCI_IOV
7768         if (num_vfs == 0)
7769                 return igb_pci_disable_sriov(dev);
7770         else
7771                 return igb_pci_enable_sriov(dev, num_vfs);
7772 #endif
7773         return 0;
7774 }
7775
7776 #ifdef CONFIG_NET_POLL_CONTROLLER
7777 /* Polling 'interrupt' - used by things like netconsole to send skbs
7778  * without having to re-enable interrupts. It's not called while
7779  * the interrupt routine is executing.
7780  */
7781 static void igb_netpoll(struct net_device *netdev)
7782 {
7783         struct igb_adapter *adapter = netdev_priv(netdev);
7784         struct e1000_hw *hw = &adapter->hw;
7785         struct igb_q_vector *q_vector;
7786         int i;
7787
7788         for (i = 0; i < adapter->num_q_vectors; i++) {
7789                 q_vector = adapter->q_vector[i];
7790                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7791                         wr32(E1000_EIMC, q_vector->eims_value);
7792                 else
7793                         igb_irq_disable(adapter);
7794                 napi_schedule(&q_vector->napi);
7795         }
7796 }
7797 #endif /* CONFIG_NET_POLL_CONTROLLER */
7798
7799 /**
7800  *  igb_io_error_detected - called when PCI error is detected
7801  *  @pdev: Pointer to PCI device
7802  *  @state: The current pci connection state
7803  *
7804  *  This function is called after a PCI bus error affecting
7805  *  this device has been detected.
7806  **/
7807 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7808                                               pci_channel_state_t state)
7809 {
7810         struct net_device *netdev = pci_get_drvdata(pdev);
7811         struct igb_adapter *adapter = netdev_priv(netdev);
7812
7813         netif_device_detach(netdev);
7814
7815         if (state == pci_channel_io_perm_failure)
7816                 return PCI_ERS_RESULT_DISCONNECT;
7817
7818         if (netif_running(netdev))
7819                 igb_down(adapter);
7820         pci_disable_device(pdev);
7821
7822         /* Request a slot slot reset. */
7823         return PCI_ERS_RESULT_NEED_RESET;
7824 }
7825
7826 /**
7827  *  igb_io_slot_reset - called after the pci bus has been reset.
7828  *  @pdev: Pointer to PCI device
7829  *
7830  *  Restart the card from scratch, as if from a cold-boot. Implementation
7831  *  resembles the first-half of the igb_resume routine.
7832  **/
7833 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7834 {
7835         struct net_device *netdev = pci_get_drvdata(pdev);
7836         struct igb_adapter *adapter = netdev_priv(netdev);
7837         struct e1000_hw *hw = &adapter->hw;
7838         pci_ers_result_t result;
7839         int err;
7840
7841         if (pci_enable_device_mem(pdev)) {
7842                 dev_err(&pdev->dev,
7843                         "Cannot re-enable PCI device after reset.\n");
7844                 result = PCI_ERS_RESULT_DISCONNECT;
7845         } else {
7846                 pci_set_master(pdev);
7847                 pci_restore_state(pdev);
7848                 pci_save_state(pdev);
7849
7850                 pci_enable_wake(pdev, PCI_D3hot, 0);
7851                 pci_enable_wake(pdev, PCI_D3cold, 0);
7852
7853                 igb_reset(adapter);
7854                 wr32(E1000_WUS, ~0);
7855                 result = PCI_ERS_RESULT_RECOVERED;
7856         }
7857
7858         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7859         if (err) {
7860                 dev_err(&pdev->dev,
7861                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7862                         err);
7863                 /* non-fatal, continue */
7864         }
7865
7866         return result;
7867 }
7868
7869 /**
7870  *  igb_io_resume - called when traffic can start flowing again.
7871  *  @pdev: Pointer to PCI device
7872  *
7873  *  This callback is called when the error recovery driver tells us that
7874  *  its OK to resume normal operation. Implementation resembles the
7875  *  second-half of the igb_resume routine.
7876  */
7877 static void igb_io_resume(struct pci_dev *pdev)
7878 {
7879         struct net_device *netdev = pci_get_drvdata(pdev);
7880         struct igb_adapter *adapter = netdev_priv(netdev);
7881
7882         if (netif_running(netdev)) {
7883                 if (igb_up(adapter)) {
7884                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7885                         return;
7886                 }
7887         }
7888
7889         netif_device_attach(netdev);
7890
7891         /* let the f/w know that the h/w is now under the control of the
7892          * driver.
7893          */
7894         igb_get_hw_control(adapter);
7895 }
7896
7897 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7898                              u8 qsel)
7899 {
7900         struct e1000_hw *hw = &adapter->hw;
7901         u32 rar_low, rar_high;
7902
7903         /* HW expects these to be in network order when they are plugged
7904          * into the registers which are little endian.  In order to guarantee
7905          * that ordering we need to do an leXX_to_cpup here in order to be
7906          * ready for the byteswap that occurs with writel
7907          */
7908         rar_low = le32_to_cpup((__le32 *)(addr));
7909         rar_high = le16_to_cpup((__le16 *)(addr + 4));
7910
7911         /* Indicate to hardware the Address is Valid. */
7912         rar_high |= E1000_RAH_AV;
7913
7914         if (hw->mac.type == e1000_82575)
7915                 rar_high |= E1000_RAH_POOL_1 * qsel;
7916         else
7917                 rar_high |= E1000_RAH_POOL_1 << qsel;
7918
7919         wr32(E1000_RAL(index), rar_low);
7920         wrfl();
7921         wr32(E1000_RAH(index), rar_high);
7922         wrfl();
7923 }
7924
7925 static int igb_set_vf_mac(struct igb_adapter *adapter,
7926                           int vf, unsigned char *mac_addr)
7927 {
7928         struct e1000_hw *hw = &adapter->hw;
7929         /* VF MAC addresses start at end of receive addresses and moves
7930          * towards the first, as a result a collision should not be possible
7931          */
7932         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7933
7934         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7935
7936         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7937
7938         return 0;
7939 }
7940
7941 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7942 {
7943         struct igb_adapter *adapter = netdev_priv(netdev);
7944         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7945                 return -EINVAL;
7946         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7947         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7948         dev_info(&adapter->pdev->dev,
7949                  "Reload the VF driver to make this change effective.");
7950         if (test_bit(__IGB_DOWN, &adapter->state)) {
7951                 dev_warn(&adapter->pdev->dev,
7952                          "The VF MAC address has been set, but the PF device is not up.\n");
7953                 dev_warn(&adapter->pdev->dev,
7954                          "Bring the PF device up before attempting to use the VF device.\n");
7955         }
7956         return igb_set_vf_mac(adapter, vf, mac);
7957 }
7958
7959 static int igb_link_mbps(int internal_link_speed)
7960 {
7961         switch (internal_link_speed) {
7962         case SPEED_100:
7963                 return 100;
7964         case SPEED_1000:
7965                 return 1000;
7966         default:
7967                 return 0;
7968         }
7969 }
7970
7971 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7972                                   int link_speed)
7973 {
7974         int rf_dec, rf_int;
7975         u32 bcnrc_val;
7976
7977         if (tx_rate != 0) {
7978                 /* Calculate the rate factor values to set */
7979                 rf_int = link_speed / tx_rate;
7980                 rf_dec = (link_speed - (rf_int * tx_rate));
7981                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
7982                          tx_rate;
7983
7984                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7985                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7986                               E1000_RTTBCNRC_RF_INT_MASK);
7987                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7988         } else {
7989                 bcnrc_val = 0;
7990         }
7991
7992         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7993         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7994          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7995          */
7996         wr32(E1000_RTTBCNRM, 0x14);
7997         wr32(E1000_RTTBCNRC, bcnrc_val);
7998 }
7999
8000 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8001 {
8002         int actual_link_speed, i;
8003         bool reset_rate = false;
8004
8005         /* VF TX rate limit was not set or not supported */
8006         if ((adapter->vf_rate_link_speed == 0) ||
8007             (adapter->hw.mac.type != e1000_82576))
8008                 return;
8009
8010         actual_link_speed = igb_link_mbps(adapter->link_speed);
8011         if (actual_link_speed != adapter->vf_rate_link_speed) {
8012                 reset_rate = true;
8013                 adapter->vf_rate_link_speed = 0;
8014                 dev_info(&adapter->pdev->dev,
8015                          "Link speed has been changed. VF Transmit rate is disabled\n");
8016         }
8017
8018         for (i = 0; i < adapter->vfs_allocated_count; i++) {
8019                 if (reset_rate)
8020                         adapter->vf_data[i].tx_rate = 0;
8021
8022                 igb_set_vf_rate_limit(&adapter->hw, i,
8023                                       adapter->vf_data[i].tx_rate,
8024                                       actual_link_speed);
8025         }
8026 }
8027
8028 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8029                              int min_tx_rate, int max_tx_rate)
8030 {
8031         struct igb_adapter *adapter = netdev_priv(netdev);
8032         struct e1000_hw *hw = &adapter->hw;
8033         int actual_link_speed;
8034
8035         if (hw->mac.type != e1000_82576)
8036                 return -EOPNOTSUPP;
8037
8038         if (min_tx_rate)
8039                 return -EINVAL;
8040
8041         actual_link_speed = igb_link_mbps(adapter->link_speed);
8042         if ((vf >= adapter->vfs_allocated_count) ||
8043             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8044             (max_tx_rate < 0) ||
8045             (max_tx_rate > actual_link_speed))
8046                 return -EINVAL;
8047
8048         adapter->vf_rate_link_speed = actual_link_speed;
8049         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8050         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8051
8052         return 0;
8053 }
8054
8055 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8056                                    bool setting)
8057 {
8058         struct igb_adapter *adapter = netdev_priv(netdev);
8059         struct e1000_hw *hw = &adapter->hw;
8060         u32 reg_val, reg_offset;
8061
8062         if (!adapter->vfs_allocated_count)
8063                 return -EOPNOTSUPP;
8064
8065         if (vf >= adapter->vfs_allocated_count)
8066                 return -EINVAL;
8067
8068         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8069         reg_val = rd32(reg_offset);
8070         if (setting)
8071                 reg_val |= (BIT(vf) |
8072                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8073         else
8074                 reg_val &= ~(BIT(vf) |
8075                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8076         wr32(reg_offset, reg_val);
8077
8078         adapter->vf_data[vf].spoofchk_enabled = setting;
8079         return 0;
8080 }
8081
8082 static int igb_ndo_get_vf_config(struct net_device *netdev,
8083                                  int vf, struct ifla_vf_info *ivi)
8084 {
8085         struct igb_adapter *adapter = netdev_priv(netdev);
8086         if (vf >= adapter->vfs_allocated_count)
8087                 return -EINVAL;
8088         ivi->vf = vf;
8089         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8090         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8091         ivi->min_tx_rate = 0;
8092         ivi->vlan = adapter->vf_data[vf].pf_vlan;
8093         ivi->qos = adapter->vf_data[vf].pf_qos;
8094         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8095         return 0;
8096 }
8097
8098 static void igb_vmm_control(struct igb_adapter *adapter)
8099 {
8100         struct e1000_hw *hw = &adapter->hw;
8101         u32 reg;
8102
8103         switch (hw->mac.type) {
8104         case e1000_82575:
8105         case e1000_i210:
8106         case e1000_i211:
8107         case e1000_i354:
8108         default:
8109                 /* replication is not supported for 82575 */
8110                 return;
8111         case e1000_82576:
8112                 /* notify HW that the MAC is adding vlan tags */
8113                 reg = rd32(E1000_DTXCTL);
8114                 reg |= E1000_DTXCTL_VLAN_ADDED;
8115                 wr32(E1000_DTXCTL, reg);
8116                 /* Fall through */
8117         case e1000_82580:
8118                 /* enable replication vlan tag stripping */
8119                 reg = rd32(E1000_RPLOLR);
8120                 reg |= E1000_RPLOLR_STRVLAN;
8121                 wr32(E1000_RPLOLR, reg);
8122                 /* Fall through */
8123         case e1000_i350:
8124                 /* none of the above registers are supported by i350 */
8125                 break;
8126         }
8127
8128         if (adapter->vfs_allocated_count) {
8129                 igb_vmdq_set_loopback_pf(hw, true);
8130                 igb_vmdq_set_replication_pf(hw, true);
8131                 igb_vmdq_set_anti_spoofing_pf(hw, true,
8132                                               adapter->vfs_allocated_count);
8133         } else {
8134                 igb_vmdq_set_loopback_pf(hw, false);
8135                 igb_vmdq_set_replication_pf(hw, false);
8136         }
8137 }
8138
8139 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8140 {
8141         struct e1000_hw *hw = &adapter->hw;
8142         u32 dmac_thr;
8143         u16 hwm;
8144
8145         if (hw->mac.type > e1000_82580) {
8146                 if (adapter->flags & IGB_FLAG_DMAC) {
8147                         u32 reg;
8148
8149                         /* force threshold to 0. */
8150                         wr32(E1000_DMCTXTH, 0);
8151
8152                         /* DMA Coalescing high water mark needs to be greater
8153                          * than the Rx threshold. Set hwm to PBA - max frame
8154                          * size in 16B units, capping it at PBA - 6KB.
8155                          */
8156                         hwm = 64 * (pba - 6);
8157                         reg = rd32(E1000_FCRTC);
8158                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8159                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8160                                 & E1000_FCRTC_RTH_COAL_MASK);
8161                         wr32(E1000_FCRTC, reg);
8162
8163                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8164                          * frame size, capping it at PBA - 10KB.
8165                          */
8166                         dmac_thr = pba - 10;
8167                         reg = rd32(E1000_DMACR);
8168                         reg &= ~E1000_DMACR_DMACTHR_MASK;
8169                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8170                                 & E1000_DMACR_DMACTHR_MASK);
8171
8172                         /* transition to L0x or L1 if available..*/
8173                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8174
8175                         /* watchdog timer= +-1000 usec in 32usec intervals */
8176                         reg |= (1000 >> 5);
8177
8178                         /* Disable BMC-to-OS Watchdog Enable */
8179                         if (hw->mac.type != e1000_i354)
8180                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8181
8182                         wr32(E1000_DMACR, reg);
8183
8184                         /* no lower threshold to disable
8185                          * coalescing(smart fifb)-UTRESH=0
8186                          */
8187                         wr32(E1000_DMCRTRH, 0);
8188
8189                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8190
8191                         wr32(E1000_DMCTLX, reg);
8192
8193                         /* free space in tx packet buffer to wake from
8194                          * DMA coal
8195                          */
8196                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8197                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8198
8199                         /* make low power state decision controlled
8200                          * by DMA coal
8201                          */
8202                         reg = rd32(E1000_PCIEMISC);
8203                         reg &= ~E1000_PCIEMISC_LX_DECISION;
8204                         wr32(E1000_PCIEMISC, reg);
8205                 } /* endif adapter->dmac is not disabled */
8206         } else if (hw->mac.type == e1000_82580) {
8207                 u32 reg = rd32(E1000_PCIEMISC);
8208
8209                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8210                 wr32(E1000_DMACR, 0);
8211         }
8212 }
8213
8214 /**
8215  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8216  *  @hw: pointer to hardware structure
8217  *  @byte_offset: byte offset to read
8218  *  @dev_addr: device address
8219  *  @data: value read
8220  *
8221  *  Performs byte read operation over I2C interface at
8222  *  a specified device address.
8223  **/
8224 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8225                       u8 dev_addr, u8 *data)
8226 {
8227         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8228         struct i2c_client *this_client = adapter->i2c_client;
8229         s32 status;
8230         u16 swfw_mask = 0;
8231
8232         if (!this_client)
8233                 return E1000_ERR_I2C;
8234
8235         swfw_mask = E1000_SWFW_PHY0_SM;
8236
8237         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8238                 return E1000_ERR_SWFW_SYNC;
8239
8240         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8241         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8242
8243         if (status < 0)
8244                 return E1000_ERR_I2C;
8245         else {
8246                 *data = status;
8247                 return 0;
8248         }
8249 }
8250
8251 /**
8252  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8253  *  @hw: pointer to hardware structure
8254  *  @byte_offset: byte offset to write
8255  *  @dev_addr: device address
8256  *  @data: value to write
8257  *
8258  *  Performs byte write operation over I2C interface at
8259  *  a specified device address.
8260  **/
8261 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8262                        u8 dev_addr, u8 data)
8263 {
8264         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8265         struct i2c_client *this_client = adapter->i2c_client;
8266         s32 status;
8267         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8268
8269         if (!this_client)
8270                 return E1000_ERR_I2C;
8271
8272         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8273                 return E1000_ERR_SWFW_SYNC;
8274         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8275         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8276
8277         if (status)
8278                 return E1000_ERR_I2C;
8279         else
8280                 return 0;
8281
8282 }
8283
8284 int igb_reinit_queues(struct igb_adapter *adapter)
8285 {
8286         struct net_device *netdev = adapter->netdev;
8287         struct pci_dev *pdev = adapter->pdev;
8288         int err = 0;
8289
8290         if (netif_running(netdev))
8291                 igb_close(netdev);
8292
8293         igb_reset_interrupt_capability(adapter);
8294
8295         if (igb_init_interrupt_scheme(adapter, true)) {
8296                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8297                 return -ENOMEM;
8298         }
8299
8300         if (netif_running(netdev))
8301                 err = igb_open(netdev);
8302
8303         return err;
8304 }
8305 /* igb_main.c */