51427cb4971a5c5291ca0ef1e93e4f1cd0744375
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / ice / ice_xsk.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14
15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17         return &rx_ring->xdp_buf[idx];
18 }
19
20 /**
21  * ice_qp_reset_stats - Resets all stats for rings of given index
22  * @vsi: VSI that contains rings of interest
23  * @q_idx: ring index in array
24  */
25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27         memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
28                sizeof(vsi->rx_rings[q_idx]->rx_stats));
29         memset(&vsi->tx_rings[q_idx]->stats, 0,
30                sizeof(vsi->tx_rings[q_idx]->stats));
31         if (ice_is_xdp_ena_vsi(vsi))
32                 memset(&vsi->xdp_rings[q_idx]->stats, 0,
33                        sizeof(vsi->xdp_rings[q_idx]->stats));
34 }
35
36 /**
37  * ice_qp_clean_rings - Cleans all the rings of a given index
38  * @vsi: VSI that contains rings of interest
39  * @q_idx: ring index in array
40  */
41 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
42 {
43         ice_clean_tx_ring(vsi->tx_rings[q_idx]);
44         if (ice_is_xdp_ena_vsi(vsi))
45                 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
46         ice_clean_rx_ring(vsi->rx_rings[q_idx]);
47 }
48
49 /**
50  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
51  * @vsi: VSI that has netdev
52  * @q_vector: q_vector that has NAPI context
53  * @enable: true for enable, false for disable
54  */
55 static void
56 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
57                      bool enable)
58 {
59         if (!vsi->netdev || !q_vector)
60                 return;
61
62         if (enable)
63                 napi_enable(&q_vector->napi);
64         else
65                 napi_disable(&q_vector->napi);
66 }
67
68 /**
69  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
70  * @vsi: the VSI that contains queue vector being un-configured
71  * @rx_ring: Rx ring that will have its IRQ disabled
72  * @q_vector: queue vector
73  */
74 static void
75 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
76                  struct ice_q_vector *q_vector)
77 {
78         struct ice_pf *pf = vsi->back;
79         struct ice_hw *hw = &pf->hw;
80         int base = vsi->base_vector;
81         u16 reg;
82         u32 val;
83
84         /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
85          * here only QINT_RQCTL
86          */
87         reg = rx_ring->reg_idx;
88         val = rd32(hw, QINT_RQCTL(reg));
89         val &= ~QINT_RQCTL_CAUSE_ENA_M;
90         wr32(hw, QINT_RQCTL(reg), val);
91
92         if (q_vector) {
93                 u16 v_idx = q_vector->v_idx;
94
95                 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
96                 ice_flush(hw);
97                 synchronize_irq(pf->msix_entries[v_idx + base].vector);
98         }
99 }
100
101 /**
102  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
103  * @vsi: the VSI that contains queue vector
104  * @q_vector: queue vector
105  */
106 static void
107 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
108 {
109         u16 reg_idx = q_vector->reg_idx;
110         struct ice_pf *pf = vsi->back;
111         struct ice_hw *hw = &pf->hw;
112         struct ice_tx_ring *tx_ring;
113         struct ice_rx_ring *rx_ring;
114
115         ice_cfg_itr(hw, q_vector);
116
117         ice_for_each_tx_ring(tx_ring, q_vector->tx)
118                 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
119                                       q_vector->tx.itr_idx);
120
121         ice_for_each_rx_ring(rx_ring, q_vector->rx)
122                 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
123                                       q_vector->rx.itr_idx);
124
125         ice_flush(hw);
126 }
127
128 /**
129  * ice_qvec_ena_irq - Enable IRQ for given queue vector
130  * @vsi: the VSI that contains queue vector
131  * @q_vector: queue vector
132  */
133 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
134 {
135         struct ice_pf *pf = vsi->back;
136         struct ice_hw *hw = &pf->hw;
137
138         ice_irq_dynamic_ena(hw, vsi, q_vector);
139
140         ice_flush(hw);
141 }
142
143 /**
144  * ice_qp_dis - Disables a queue pair
145  * @vsi: VSI of interest
146  * @q_idx: ring index in array
147  *
148  * Returns 0 on success, negative on failure.
149  */
150 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
151 {
152         struct ice_txq_meta txq_meta = { };
153         struct ice_q_vector *q_vector;
154         struct ice_tx_ring *tx_ring;
155         struct ice_rx_ring *rx_ring;
156         int timeout = 50;
157         int err;
158
159         if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
160                 return -EINVAL;
161
162         tx_ring = vsi->tx_rings[q_idx];
163         rx_ring = vsi->rx_rings[q_idx];
164         q_vector = rx_ring->q_vector;
165
166         while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
167                 timeout--;
168                 if (!timeout)
169                         return -EBUSY;
170                 usleep_range(1000, 2000);
171         }
172         netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
173
174         ice_qvec_dis_irq(vsi, rx_ring, q_vector);
175
176         ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
177         err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
178         if (err)
179                 return err;
180         if (ice_is_xdp_ena_vsi(vsi)) {
181                 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
182
183                 memset(&txq_meta, 0, sizeof(txq_meta));
184                 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
185                 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
186                                            &txq_meta);
187                 if (err)
188                         return err;
189         }
190         err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
191         if (err)
192                 return err;
193
194         ice_qvec_toggle_napi(vsi, q_vector, false);
195         ice_qp_clean_rings(vsi, q_idx);
196         ice_qp_reset_stats(vsi, q_idx);
197
198         return 0;
199 }
200
201 /**
202  * ice_qp_ena - Enables a queue pair
203  * @vsi: VSI of interest
204  * @q_idx: ring index in array
205  *
206  * Returns 0 on success, negative on failure.
207  */
208 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
209 {
210         struct ice_aqc_add_tx_qgrp *qg_buf;
211         struct ice_q_vector *q_vector;
212         struct ice_tx_ring *tx_ring;
213         struct ice_rx_ring *rx_ring;
214         u16 size;
215         int err;
216
217         if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
218                 return -EINVAL;
219
220         size = struct_size(qg_buf, txqs, 1);
221         qg_buf = kzalloc(size, GFP_KERNEL);
222         if (!qg_buf)
223                 return -ENOMEM;
224
225         qg_buf->num_txqs = 1;
226
227         tx_ring = vsi->tx_rings[q_idx];
228         rx_ring = vsi->rx_rings[q_idx];
229         q_vector = rx_ring->q_vector;
230
231         err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
232         if (err)
233                 goto free_buf;
234
235         if (ice_is_xdp_ena_vsi(vsi)) {
236                 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
237
238                 memset(qg_buf, 0, size);
239                 qg_buf->num_txqs = 1;
240                 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
241                 if (err)
242                         goto free_buf;
243                 ice_set_ring_xdp(xdp_ring);
244                 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
245         }
246
247         err = ice_vsi_cfg_rxq(rx_ring);
248         if (err)
249                 goto free_buf;
250
251         ice_qvec_cfg_msix(vsi, q_vector);
252
253         err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
254         if (err)
255                 goto free_buf;
256
257         clear_bit(ICE_CFG_BUSY, vsi->state);
258         ice_qvec_toggle_napi(vsi, q_vector, true);
259         ice_qvec_ena_irq(vsi, q_vector);
260
261         netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
262 free_buf:
263         kfree(qg_buf);
264         return err;
265 }
266
267 /**
268  * ice_xsk_pool_disable - disable a buffer pool region
269  * @vsi: Current VSI
270  * @qid: queue ID
271  *
272  * Returns 0 on success, negative on failure
273  */
274 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
275 {
276         struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
277
278         if (!pool)
279                 return -EINVAL;
280
281         clear_bit(qid, vsi->af_xdp_zc_qps);
282         xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
283
284         return 0;
285 }
286
287 /**
288  * ice_xsk_pool_enable - enable a buffer pool region
289  * @vsi: Current VSI
290  * @pool: pointer to a requested buffer pool region
291  * @qid: queue ID
292  *
293  * Returns 0 on success, negative on failure
294  */
295 static int
296 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
297 {
298         int err;
299
300         if (vsi->type != ICE_VSI_PF)
301                 return -EINVAL;
302
303         if (qid >= vsi->netdev->real_num_rx_queues ||
304             qid >= vsi->netdev->real_num_tx_queues)
305                 return -EINVAL;
306
307         err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
308                                ICE_RX_DMA_ATTR);
309         if (err)
310                 return err;
311
312         set_bit(qid, vsi->af_xdp_zc_qps);
313
314         return 0;
315 }
316
317 /**
318  * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
319  * @vsi: Current VSI
320  * @pool: buffer pool to enable/associate to a ring, NULL to disable
321  * @qid: queue ID
322  *
323  * Returns 0 on success, negative on failure
324  */
325 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
326 {
327         bool if_running, pool_present = !!pool;
328         int ret = 0, pool_failure = 0;
329
330         if (!is_power_of_2(vsi->rx_rings[qid]->count) ||
331             !is_power_of_2(vsi->tx_rings[qid]->count)) {
332                 netdev_err(vsi->netdev, "Please align ring sizes to power of 2\n");
333                 pool_failure = -EINVAL;
334                 goto failure;
335         }
336
337         if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
338
339         if (if_running) {
340                 ret = ice_qp_dis(vsi, qid);
341                 if (ret) {
342                         netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
343                         goto xsk_pool_if_up;
344                 }
345         }
346
347         pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
348                                       ice_xsk_pool_disable(vsi, qid);
349
350 xsk_pool_if_up:
351         if (if_running) {
352                 ret = ice_qp_ena(vsi, qid);
353                 if (!ret && pool_present)
354                         napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
355                 else if (ret)
356                         netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
357         }
358
359 failure:
360         if (pool_failure) {
361                 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
362                            pool_present ? "en" : "dis", pool_failure);
363                 return pool_failure;
364         }
365
366         return ret;
367 }
368
369 /**
370  * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
371  * @pool: XSK Buffer pool to pull the buffers from
372  * @xdp: SW ring of xdp_buff that will hold the buffers
373  * @rx_desc: Pointer to Rx descriptors that will be filled
374  * @count: The number of buffers to allocate
375  *
376  * This function allocates a number of Rx buffers from the fill ring
377  * or the internal recycle mechanism and places them on the Rx ring.
378  *
379  * Note that ring wrap should be handled by caller of this function.
380  *
381  * Returns the amount of allocated Rx descriptors
382  */
383 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
384                              union ice_32b_rx_flex_desc *rx_desc, u16 count)
385 {
386         dma_addr_t dma;
387         u16 buffs;
388         int i;
389
390         buffs = xsk_buff_alloc_batch(pool, xdp, count);
391         for (i = 0; i < buffs; i++) {
392                 dma = xsk_buff_xdp_get_dma(*xdp);
393                 rx_desc->read.pkt_addr = cpu_to_le64(dma);
394                 rx_desc->wb.status_error0 = 0;
395
396                 rx_desc++;
397                 xdp++;
398         }
399
400         return buffs;
401 }
402
403 /**
404  * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
405  * @rx_ring: Rx ring
406  * @count: The number of buffers to allocate
407  *
408  * Place the @count of descriptors onto Rx ring. Handle the ring wrap
409  * for case where space from next_to_use up to the end of ring is less
410  * than @count. Finally do a tail bump.
411  *
412  * Returns true if all allocations were successful, false if any fail.
413  */
414 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
415 {
416         union ice_32b_rx_flex_desc *rx_desc;
417         u32 nb_buffs_extra = 0, nb_buffs;
418         u16 ntu = rx_ring->next_to_use;
419         u16 total_count = count;
420         struct xdp_buff **xdp;
421
422         rx_desc = ICE_RX_DESC(rx_ring, ntu);
423         xdp = ice_xdp_buf(rx_ring, ntu);
424
425         if (ntu + count >= rx_ring->count) {
426                 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
427                                                    rx_desc,
428                                                    rx_ring->count - ntu);
429                 rx_desc = ICE_RX_DESC(rx_ring, 0);
430                 xdp = ice_xdp_buf(rx_ring, 0);
431                 ntu = 0;
432                 count -= nb_buffs_extra;
433                 ice_release_rx_desc(rx_ring, 0);
434         }
435
436         nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
437
438         ntu += nb_buffs;
439         if (ntu == rx_ring->count)
440                 ntu = 0;
441
442         if (rx_ring->next_to_use != ntu)
443                 ice_release_rx_desc(rx_ring, ntu);
444
445         return total_count == (nb_buffs_extra + nb_buffs);
446 }
447
448 /**
449  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
450  * @rx_ring: Rx ring
451  * @count: The number of buffers to allocate
452  *
453  * Wrapper for internal allocation routine; figure out how many tail
454  * bumps should take place based on the given threshold
455  *
456  * Returns true if all calls to internal alloc routine succeeded
457  */
458 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
459 {
460         u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
461         u16 batched, leftover, i, tail_bumps;
462
463         batched = ALIGN_DOWN(count, rx_thresh);
464         tail_bumps = batched / rx_thresh;
465         leftover = count & (rx_thresh - 1);
466
467         for (i = 0; i < tail_bumps; i++)
468                 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
469                         return false;
470         return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
471 }
472
473 /**
474  * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
475  * @rx_ring: Rx ring
476  */
477 static void ice_bump_ntc(struct ice_rx_ring *rx_ring)
478 {
479         int ntc = rx_ring->next_to_clean + 1;
480
481         ntc = (ntc < rx_ring->count) ? ntc : 0;
482         rx_ring->next_to_clean = ntc;
483         prefetch(ICE_RX_DESC(rx_ring, ntc));
484 }
485
486 /**
487  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
488  * @rx_ring: Rx ring
489  * @xdp: Pointer to XDP buffer
490  *
491  * This function allocates a new skb from a zero-copy Rx buffer.
492  *
493  * Returns the skb on success, NULL on failure.
494  */
495 static struct sk_buff *
496 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
497 {
498         unsigned int totalsize = xdp->data_end - xdp->data_meta;
499         unsigned int metasize = xdp->data - xdp->data_meta;
500         struct sk_buff *skb;
501
502         net_prefetch(xdp->data_meta);
503
504         skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
505                                GFP_ATOMIC | __GFP_NOWARN);
506         if (unlikely(!skb))
507                 return NULL;
508
509         memcpy(__skb_put(skb, totalsize), xdp->data_meta,
510                ALIGN(totalsize, sizeof(long)));
511
512         if (metasize) {
513                 skb_metadata_set(skb, metasize);
514                 __skb_pull(skb, metasize);
515         }
516
517         xsk_buff_free(xdp);
518         return skb;
519 }
520
521 /**
522  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
523  * @rx_ring: Rx ring
524  * @xdp: xdp_buff used as input to the XDP program
525  * @xdp_prog: XDP program to run
526  * @xdp_ring: ring to be used for XDP_TX action
527  *
528  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
529  */
530 static int
531 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
532                struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
533 {
534         int err, result = ICE_XDP_PASS;
535         u32 act;
536
537         act = bpf_prog_run_xdp(xdp_prog, xdp);
538
539         if (likely(act == XDP_REDIRECT)) {
540                 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
541                 if (err)
542                         goto out_failure;
543                 return ICE_XDP_REDIR;
544         }
545
546         switch (act) {
547         case XDP_PASS:
548                 break;
549         case XDP_TX:
550                 result = ice_xmit_xdp_buff(xdp, xdp_ring);
551                 if (result == ICE_XDP_CONSUMED)
552                         goto out_failure;
553                 break;
554         default:
555                 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
556                 fallthrough;
557         case XDP_ABORTED:
558 out_failure:
559                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
560                 fallthrough;
561         case XDP_DROP:
562                 result = ICE_XDP_CONSUMED;
563                 break;
564         }
565
566         return result;
567 }
568
569 /**
570  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
571  * @rx_ring: AF_XDP Rx ring
572  * @budget: NAPI budget
573  *
574  * Returns number of processed packets on success, remaining budget on failure.
575  */
576 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
577 {
578         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
579         struct ice_tx_ring *xdp_ring;
580         unsigned int xdp_xmit = 0;
581         struct bpf_prog *xdp_prog;
582         bool failure = false;
583
584         /* ZC patch is enabled only when XDP program is set,
585          * so here it can not be NULL
586          */
587         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
588         xdp_ring = rx_ring->xdp_ring;
589
590         while (likely(total_rx_packets < (unsigned int)budget)) {
591                 union ice_32b_rx_flex_desc *rx_desc;
592                 unsigned int size, xdp_res = 0;
593                 struct xdp_buff *xdp;
594                 struct sk_buff *skb;
595                 u16 stat_err_bits;
596                 u16 vlan_tag = 0;
597                 u16 rx_ptype;
598
599                 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
600
601                 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
602                 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
603                         break;
604
605                 /* This memory barrier is needed to keep us from reading
606                  * any other fields out of the rx_desc until we have
607                  * verified the descriptor has been written back.
608                  */
609                 dma_rmb();
610
611                 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean);
612
613                 size = le16_to_cpu(rx_desc->wb.pkt_len) &
614                                    ICE_RX_FLX_DESC_PKT_LEN_M;
615                 if (!size) {
616                         xdp->data = NULL;
617                         xdp->data_end = NULL;
618                         xdp->data_hard_start = NULL;
619                         xdp->data_meta = NULL;
620                         goto construct_skb;
621                 }
622
623                 xsk_buff_set_size(xdp, size);
624                 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool);
625
626                 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring);
627                 if (xdp_res) {
628                         if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))
629                                 xdp_xmit |= xdp_res;
630                         else
631                                 xsk_buff_free(xdp);
632
633                         total_rx_bytes += size;
634                         total_rx_packets++;
635
636                         ice_bump_ntc(rx_ring);
637                         continue;
638                 }
639 construct_skb:
640                 /* XDP_PASS path */
641                 skb = ice_construct_skb_zc(rx_ring, xdp);
642                 if (!skb) {
643                         rx_ring->rx_stats.alloc_buf_failed++;
644                         break;
645                 }
646
647                 ice_bump_ntc(rx_ring);
648
649                 if (eth_skb_pad(skb)) {
650                         skb = NULL;
651                         continue;
652                 }
653
654                 total_rx_bytes += skb->len;
655                 total_rx_packets++;
656
657                 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
658
659                 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
660                                        ICE_RX_FLEX_DESC_PTYPE_M;
661
662                 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
663                 ice_receive_skb(rx_ring, skb, vlan_tag);
664         }
665
666         failure = !ice_alloc_rx_bufs_zc(rx_ring, ICE_DESC_UNUSED(rx_ring));
667
668         ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
669         ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
670
671         if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
672                 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
673                         xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
674                 else
675                         xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
676
677                 return (int)total_rx_packets;
678         }
679
680         return failure ? budget : (int)total_rx_packets;
681 }
682
683 /**
684  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
685  * @xdp_ring: XDP Tx ring
686  * @tx_buf: Tx buffer to clean
687  */
688 static void
689 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf)
690 {
691         xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
692         xdp_ring->xdp_tx_active--;
693         dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
694                          dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
695         dma_unmap_len_set(tx_buf, len, 0);
696 }
697
698 /**
699  * ice_clean_xdp_irq_zc - Reclaim resources after transmit completes on XDP ring
700  * @xdp_ring: XDP ring to clean
701  * @napi_budget: amount of descriptors that NAPI allows us to clean
702  *
703  * Returns count of cleaned descriptors
704  */
705 static u16 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring, int napi_budget)
706 {
707         u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
708         int budget = napi_budget / tx_thresh;
709         u16 next_dd = xdp_ring->next_dd;
710         u16 ntc, cleared_dds = 0;
711
712         do {
713                 struct ice_tx_desc *next_dd_desc;
714                 u16 desc_cnt = xdp_ring->count;
715                 struct ice_tx_buf *tx_buf;
716                 u32 xsk_frames;
717                 u16 i;
718
719                 next_dd_desc = ICE_TX_DESC(xdp_ring, next_dd);
720                 if (!(next_dd_desc->cmd_type_offset_bsz &
721                     cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
722                         break;
723
724                 cleared_dds++;
725                 xsk_frames = 0;
726                 if (likely(!xdp_ring->xdp_tx_active)) {
727                         xsk_frames = tx_thresh;
728                         goto skip;
729                 }
730
731                 ntc = xdp_ring->next_to_clean;
732
733                 for (i = 0; i < tx_thresh; i++) {
734                         tx_buf = &xdp_ring->tx_buf[ntc];
735
736                         if (tx_buf->raw_buf) {
737                                 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
738                                 tx_buf->raw_buf = NULL;
739                         } else {
740                                 xsk_frames++;
741                         }
742
743                         ntc++;
744                         if (ntc >= xdp_ring->count)
745                                 ntc = 0;
746                 }
747 skip:
748                 xdp_ring->next_to_clean += tx_thresh;
749                 if (xdp_ring->next_to_clean >= desc_cnt)
750                         xdp_ring->next_to_clean -= desc_cnt;
751                 if (xsk_frames)
752                         xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
753                 next_dd_desc->cmd_type_offset_bsz = 0;
754                 next_dd = next_dd + tx_thresh;
755                 if (next_dd >= desc_cnt)
756                         next_dd = tx_thresh - 1;
757         } while (--budget);
758
759         xdp_ring->next_dd = next_dd;
760
761         return cleared_dds * tx_thresh;
762 }
763
764 /**
765  * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
766  * @xdp_ring: XDP ring to produce the HW Tx descriptor on
767  * @desc: AF_XDP descriptor to pull the DMA address and length from
768  * @total_bytes: bytes accumulator that will be used for stats update
769  */
770 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
771                          unsigned int *total_bytes)
772 {
773         struct ice_tx_desc *tx_desc;
774         dma_addr_t dma;
775
776         dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
777         xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
778
779         tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
780         tx_desc->buf_addr = cpu_to_le64(dma);
781         tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
782                                                       0, desc->len, 0);
783
784         *total_bytes += desc->len;
785 }
786
787 /**
788  * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
789  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
790  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
791  * @total_bytes: bytes accumulator that will be used for stats update
792  */
793 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
794                                unsigned int *total_bytes)
795 {
796         u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
797         u16 ntu = xdp_ring->next_to_use;
798         struct ice_tx_desc *tx_desc;
799         u32 i;
800
801         loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
802                 dma_addr_t dma;
803
804                 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
805                 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
806
807                 tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
808                 tx_desc->buf_addr = cpu_to_le64(dma);
809                 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
810                                                               0, descs[i].len, 0);
811
812                 *total_bytes += descs[i].len;
813         }
814
815         xdp_ring->next_to_use = ntu;
816
817         if (xdp_ring->next_to_use > xdp_ring->next_rs) {
818                 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
819                 tx_desc->cmd_type_offset_bsz |=
820                         cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
821                 xdp_ring->next_rs += tx_thresh;
822         }
823 }
824
825 /**
826  * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
827  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
828  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
829  * @nb_pkts: count of packets to be send
830  * @total_bytes: bytes accumulator that will be used for stats update
831  */
832 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
833                                 u32 nb_pkts, unsigned int *total_bytes)
834 {
835         u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
836         u32 batched, leftover, i;
837
838         batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
839         leftover = nb_pkts & (PKTS_PER_BATCH - 1);
840         for (i = 0; i < batched; i += PKTS_PER_BATCH)
841                 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
842         for (; i < batched + leftover; i++)
843                 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
844
845         if (xdp_ring->next_to_use > xdp_ring->next_rs) {
846                 struct ice_tx_desc *tx_desc;
847
848                 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
849                 tx_desc->cmd_type_offset_bsz |=
850                         cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
851                 xdp_ring->next_rs += tx_thresh;
852         }
853 }
854
855 /**
856  * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
857  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
858  * @budget: number of free descriptors on HW Tx ring that can be used
859  * @napi_budget: amount of descriptors that NAPI allows us to clean
860  *
861  * Returns true if there is no more work that needs to be done, false otherwise
862  */
863 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, u32 budget, int napi_budget)
864 {
865         struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
866         u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
867         u32 nb_pkts, nb_processed = 0;
868         unsigned int total_bytes = 0;
869
870         if (budget < tx_thresh)
871                 budget += ice_clean_xdp_irq_zc(xdp_ring, napi_budget);
872
873         nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
874         if (!nb_pkts)
875                 return true;
876
877         if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
878                 struct ice_tx_desc *tx_desc;
879
880                 nb_processed = xdp_ring->count - xdp_ring->next_to_use;
881                 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
882                 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
883                 tx_desc->cmd_type_offset_bsz |=
884                         cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
885                 xdp_ring->next_rs = tx_thresh - 1;
886                 xdp_ring->next_to_use = 0;
887         }
888
889         ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
890                             &total_bytes);
891
892         ice_xdp_ring_update_tail(xdp_ring);
893         ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
894
895         if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
896                 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
897
898         return nb_pkts < budget;
899 }
900
901 /**
902  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
903  * @netdev: net_device
904  * @queue_id: queue to wake up
905  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
906  *
907  * Returns negative on error, zero otherwise.
908  */
909 int
910 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
911                u32 __always_unused flags)
912 {
913         struct ice_netdev_priv *np = netdev_priv(netdev);
914         struct ice_q_vector *q_vector;
915         struct ice_vsi *vsi = np->vsi;
916         struct ice_tx_ring *ring;
917
918         if (test_bit(ICE_DOWN, vsi->state))
919                 return -ENETDOWN;
920
921         if (!ice_is_xdp_ena_vsi(vsi))
922                 return -ENXIO;
923
924         if (queue_id >= vsi->num_txq)
925                 return -ENXIO;
926
927         if (!vsi->xdp_rings[queue_id]->xsk_pool)
928                 return -ENXIO;
929
930         ring = vsi->xdp_rings[queue_id];
931
932         /* The idea here is that if NAPI is running, mark a miss, so
933          * it will run again. If not, trigger an interrupt and
934          * schedule the NAPI from interrupt context. If NAPI would be
935          * scheduled here, the interrupt affinity would not be
936          * honored.
937          */
938         q_vector = ring->q_vector;
939         if (!napi_if_scheduled_mark_missed(&q_vector->napi))
940                 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
941
942         return 0;
943 }
944
945 /**
946  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
947  * @vsi: VSI to be checked
948  *
949  * Returns true if any of the Rx rings has an AF_XDP buff pool attached
950  */
951 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
952 {
953         int i;
954
955         ice_for_each_rxq(vsi, i) {
956                 if (xsk_get_pool_from_qid(vsi->netdev, i))
957                         return true;
958         }
959
960         return false;
961 }
962
963 /**
964  * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
965  * @rx_ring: ring to be cleaned
966  */
967 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
968 {
969         u16 count_mask = rx_ring->count - 1;
970         u16 ntc = rx_ring->next_to_clean;
971         u16 ntu = rx_ring->next_to_use;
972
973         for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) {
974                 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
975
976                 xsk_buff_free(xdp);
977         }
978 }
979
980 /**
981  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
982  * @xdp_ring: XDP_Tx ring
983  */
984 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
985 {
986         u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
987         u32 xsk_frames = 0;
988
989         while (ntc != ntu) {
990                 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
991
992                 if (tx_buf->raw_buf)
993                         ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
994                 else
995                         xsk_frames++;
996
997                 tx_buf->raw_buf = NULL;
998
999                 ntc++;
1000                 if (ntc >= xdp_ring->count)
1001                         ntc = 0;
1002         }
1003
1004         if (xsk_frames)
1005                 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1006 }