efbc2968a7bf6a7e9d74d992fb6f576874ffac24
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / ice / ice_virtchnl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17                 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20         u32 vc_hdr;     /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21         u32 ice_hdr;    /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25         {VIRTCHNL_PROTO_HDR_NONE,       ICE_FLOW_SEG_HDR_NONE},
26         {VIRTCHNL_PROTO_HDR_ETH,        ICE_FLOW_SEG_HDR_ETH},
27         {VIRTCHNL_PROTO_HDR_S_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
28         {VIRTCHNL_PROTO_HDR_C_VLAN,     ICE_FLOW_SEG_HDR_VLAN},
29         {VIRTCHNL_PROTO_HDR_IPV4,       ICE_FLOW_SEG_HDR_IPV4 |
30                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
31         {VIRTCHNL_PROTO_HDR_IPV6,       ICE_FLOW_SEG_HDR_IPV6 |
32                                         ICE_FLOW_SEG_HDR_IPV_OTHER},
33         {VIRTCHNL_PROTO_HDR_TCP,        ICE_FLOW_SEG_HDR_TCP},
34         {VIRTCHNL_PROTO_HDR_UDP,        ICE_FLOW_SEG_HDR_UDP},
35         {VIRTCHNL_PROTO_HDR_SCTP,       ICE_FLOW_SEG_HDR_SCTP},
36         {VIRTCHNL_PROTO_HDR_PPPOE,      ICE_FLOW_SEG_HDR_PPPOE},
37         {VIRTCHNL_PROTO_HDR_GTPU_IP,    ICE_FLOW_SEG_HDR_GTPU_IP},
38         {VIRTCHNL_PROTO_HDR_GTPU_EH,    ICE_FLOW_SEG_HDR_GTPU_EH},
39         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40                                         ICE_FLOW_SEG_HDR_GTPU_DWN},
41         {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42                                         ICE_FLOW_SEG_HDR_GTPU_UP},
43         {VIRTCHNL_PROTO_HDR_L2TPV3,     ICE_FLOW_SEG_HDR_L2TPV3},
44         {VIRTCHNL_PROTO_HDR_ESP,        ICE_FLOW_SEG_HDR_ESP},
45         {VIRTCHNL_PROTO_HDR_AH,         ICE_FLOW_SEG_HDR_AH},
46         {VIRTCHNL_PROTO_HDR_PFCP,       ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50         u32 vc_hdr;             /* virtchnl headers
51                                  * (VIRTCHNL_PROTO_HDR_XXX)
52                                  */
53         u32 vc_hash_field;      /* virtchnl hash fields selector
54                                  * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55                                  */
56         u64 ice_hash_field;     /* ice hash fields
57                                  * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58                                  */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67         {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69                 ICE_FLOW_HASH_ETH},
70         {VIRTCHNL_PROTO_HDR_ETH,
71                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72                 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73         {VIRTCHNL_PROTO_HDR_S_VLAN,
74                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75                 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76         {VIRTCHNL_PROTO_HDR_C_VLAN,
77                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78                 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85                 ICE_FLOW_HASH_IPV4},
86         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97                 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98         {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106                 ICE_FLOW_HASH_IPV6},
107         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118                 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119         {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120                 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121         {VIRTCHNL_PROTO_HDR_TCP,
122                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124         {VIRTCHNL_PROTO_HDR_TCP,
125                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126                 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127         {VIRTCHNL_PROTO_HDR_TCP,
128                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130                 ICE_FLOW_HASH_TCP_PORT},
131         {VIRTCHNL_PROTO_HDR_UDP,
132                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134         {VIRTCHNL_PROTO_HDR_UDP,
135                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136                 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137         {VIRTCHNL_PROTO_HDR_UDP,
138                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140                 ICE_FLOW_HASH_UDP_PORT},
141         {VIRTCHNL_PROTO_HDR_SCTP,
142                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144         {VIRTCHNL_PROTO_HDR_SCTP,
145                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146                 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147         {VIRTCHNL_PROTO_HDR_SCTP,
148                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150                 ICE_FLOW_HASH_SCTP_PORT},
151         {VIRTCHNL_PROTO_HDR_PPPOE,
152                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153                 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154         {VIRTCHNL_PROTO_HDR_GTPU_IP,
155                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156                 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157         {VIRTCHNL_PROTO_HDR_L2TPV3,
158                 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159                 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160         {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161                 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162         {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163                 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164         {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165                 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178                     enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180         struct ice_hw *hw = &pf->hw;
181         struct ice_vf *vf;
182         unsigned int bkt;
183
184         mutex_lock(&pf->vfs.table_lock);
185         ice_for_each_vf(pf, bkt, vf) {
186                 /* Not all vfs are enabled so skip the ones that are not */
187                 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188                     !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189                         continue;
190
191                 /* Ignore return value on purpose - a given VF may fail, but
192                  * we need to keep going and send to all of them
193                  */
194                 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195                                       msglen, NULL);
196         }
197         mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209                  int ice_link_speed, bool link_up)
210 {
211         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212                 pfe->event_data.link_event_adv.link_status = link_up;
213                 /* Speed in Mbps */
214                 pfe->event_data.link_event_adv.link_speed =
215                         ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216         } else {
217                 pfe->event_data.link_event.link_status = link_up;
218                 /* Legacy method for virtchnl link speeds */
219                 pfe->event_data.link_event.link_speed =
220                         (enum virtchnl_link_speed)
221                         ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222         }
223 }
224
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233         struct virtchnl_pf_event pfe = { 0 };
234         struct ice_hw *hw = &vf->pf->hw;
235
236         pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237         pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239         if (ice_is_vf_link_up(vf))
240                 ice_set_pfe_link(vf, &pfe,
241                                  hw->port_info->phy.link_info.link_speed, true);
242         else
243                 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245         ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246                               VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247                               sizeof(pfe), NULL);
248 }
249
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256         struct ice_vf *vf;
257         unsigned int bkt;
258
259         mutex_lock(&pf->vfs.table_lock);
260         ice_for_each_vf(pf, bkt, vf)
261                 ice_vc_notify_vf_link_state(vf);
262         mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273         struct virtchnl_pf_event pfe;
274
275         if (!ice_has_vfs(pf))
276                 return;
277
278         pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279         pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280         ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281                             (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296                       enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298         struct device *dev;
299         struct ice_pf *pf;
300         int aq_ret;
301
302         pf = vf->pf;
303         dev = ice_pf_to_dev(pf);
304
305         aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306                                        msg, msglen, NULL);
307         if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308                 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309                          vf->vf_id, aq_ret,
310                          ice_aq_str(pf->hw.mailboxq.sq_last_status));
311                 return -EIO;
312         }
313
314         return 0;
315 }
316
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326         struct virtchnl_version_info info = {
327                 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328         };
329
330         vf->vf_ver = *(struct virtchnl_version_info *)msg;
331         /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332         if (VF_IS_V10(&vf->vf_ver))
333                 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336                                      VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337                                      sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351         struct ice_port_info *pi = ice_vf_get_port_info(vf);
352         u16 max_frame_size;
353
354         max_frame_size = pi->phy.link_info.max_frame_size;
355
356         if (ice_vf_is_port_vlan_ena(vf))
357                 max_frame_size -= VLAN_HLEN;
358
359         return max_frame_size;
360 }
361
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373                      u32 driver_caps)
374 {
375         if (ice_is_eswitch_mode_switchdev(vf->pf))
376                 /* In switchdev setting VLAN from VF isn't supported */
377                 return 0;
378
379         if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380                 /* VLAN offloads based on current device configuration */
381                 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382         } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383                 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384                  * these two conditions, which amounts to guest VLAN filtering
385                  * and offloads being based on the inner VLAN or the
386                  * inner/single VLAN respectively and don't allow VF to
387                  * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388                  */
389                 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390                         return VIRTCHNL_VF_OFFLOAD_VLAN;
391                 } else if (!ice_is_dvm_ena(hw) &&
392                            !ice_vf_is_port_vlan_ena(vf)) {
393                         /* configure backward compatible support for VFs that
394                          * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395                          * configured in SVM, and no port VLAN is configured
396                          */
397                         ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398                         return VIRTCHNL_VF_OFFLOAD_VLAN;
399                 } else if (ice_is_dvm_ena(hw)) {
400                         /* configure software offloaded VLAN support when DVM
401                          * is enabled, but no port VLAN is enabled
402                          */
403                         ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404                 }
405         }
406
407         return 0;
408 }
409
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420         struct virtchnl_vf_resource *vfres = NULL;
421         struct ice_hw *hw = &vf->pf->hw;
422         struct ice_vsi *vsi;
423         int len = 0;
424         int ret;
425
426         if (ice_check_vf_init(vf)) {
427                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428                 goto err;
429         }
430
431         len = sizeof(struct virtchnl_vf_resource);
432
433         vfres = kzalloc(len, GFP_KERNEL);
434         if (!vfres) {
435                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436                 len = 0;
437                 goto err;
438         }
439         if (VF_IS_V11(&vf->vf_ver))
440                 vf->driver_caps = *(u32 *)msg;
441         else
442                 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443                                   VIRTCHNL_VF_OFFLOAD_RSS_REG |
444                                   VIRTCHNL_VF_OFFLOAD_VLAN;
445
446         vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447         vsi = ice_get_vf_vsi(vf);
448         if (!vsi) {
449                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450                 goto err;
451         }
452
453         vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454                                                     vf->driver_caps);
455
456         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458         } else {
459                 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461                 else
462                         vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463         }
464
465         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467
468         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470
471         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473
474         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476
477         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479
480         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482
483         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485
486         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488
489         if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490                 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491
492         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494
495         if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496                 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497
498         vfres->num_vsis = 1;
499         /* Tx and Rx queue are equal for VF */
500         vfres->num_queue_pairs = vsi->num_txq;
501         vfres->max_vectors = vf->pf->vfs.num_msix_per;
502         vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
503         vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
504         vfres->max_mtu = ice_vc_get_max_frame_size(vf);
505
506         vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
507         vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
508         vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
509         ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
510                         vf->hw_lan_addr);
511
512         /* match guest capabilities */
513         vf->driver_caps = vfres->vf_cap_flags;
514
515         ice_vc_set_caps_allowlist(vf);
516         ice_vc_set_working_allowlist(vf);
517
518         set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
519
520 err:
521         /* send the response back to the VF */
522         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
523                                     (u8 *)vfres, len);
524
525         kfree(vfres);
526         return ret;
527 }
528
529 /**
530  * ice_vc_reset_vf_msg
531  * @vf: pointer to the VF info
532  *
533  * called from the VF to reset itself,
534  * unlike other virtchnl messages, PF driver
535  * doesn't send the response back to the VF
536  */
537 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
538 {
539         if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
540                 ice_reset_vf(vf, 0);
541 }
542
543 /**
544  * ice_vc_isvalid_vsi_id
545  * @vf: pointer to the VF info
546  * @vsi_id: VF relative VSI ID
547  *
548  * check for the valid VSI ID
549  */
550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
551 {
552         struct ice_pf *pf = vf->pf;
553         struct ice_vsi *vsi;
554
555         vsi = ice_find_vsi(pf, vsi_id);
556
557         return (vsi && (vsi->vf == vf));
558 }
559
560 /**
561  * ice_vc_isvalid_q_id
562  * @vf: pointer to the VF info
563  * @vsi_id: VSI ID
564  * @qid: VSI relative queue ID
565  *
566  * check for the valid queue ID
567  */
568 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
569 {
570         struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
571         /* allocated Tx and Rx queues should be always equal for VF VSI */
572         return (vsi && (qid < vsi->alloc_txq));
573 }
574
575 /**
576  * ice_vc_isvalid_ring_len
577  * @ring_len: length of ring
578  *
579  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
580  * or zero
581  */
582 static bool ice_vc_isvalid_ring_len(u16 ring_len)
583 {
584         return ring_len == 0 ||
585                (ring_len >= ICE_MIN_NUM_DESC &&
586                 ring_len <= ICE_MAX_NUM_DESC &&
587                 !(ring_len % ICE_REQ_DESC_MULTIPLE));
588 }
589
590 /**
591  * ice_vc_validate_pattern
592  * @vf: pointer to the VF info
593  * @proto: virtchnl protocol headers
594  *
595  * validate the pattern is supported or not.
596  *
597  * Return: true on success, false on error.
598  */
599 bool
600 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
601 {
602         bool is_ipv4 = false;
603         bool is_ipv6 = false;
604         bool is_udp = false;
605         u16 ptype = -1;
606         int i = 0;
607
608         while (i < proto->count &&
609                proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
610                 switch (proto->proto_hdr[i].type) {
611                 case VIRTCHNL_PROTO_HDR_ETH:
612                         ptype = ICE_PTYPE_MAC_PAY;
613                         break;
614                 case VIRTCHNL_PROTO_HDR_IPV4:
615                         ptype = ICE_PTYPE_IPV4_PAY;
616                         is_ipv4 = true;
617                         break;
618                 case VIRTCHNL_PROTO_HDR_IPV6:
619                         ptype = ICE_PTYPE_IPV6_PAY;
620                         is_ipv6 = true;
621                         break;
622                 case VIRTCHNL_PROTO_HDR_UDP:
623                         if (is_ipv4)
624                                 ptype = ICE_PTYPE_IPV4_UDP_PAY;
625                         else if (is_ipv6)
626                                 ptype = ICE_PTYPE_IPV6_UDP_PAY;
627                         is_udp = true;
628                         break;
629                 case VIRTCHNL_PROTO_HDR_TCP:
630                         if (is_ipv4)
631                                 ptype = ICE_PTYPE_IPV4_TCP_PAY;
632                         else if (is_ipv6)
633                                 ptype = ICE_PTYPE_IPV6_TCP_PAY;
634                         break;
635                 case VIRTCHNL_PROTO_HDR_SCTP:
636                         if (is_ipv4)
637                                 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
638                         else if (is_ipv6)
639                                 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
640                         break;
641                 case VIRTCHNL_PROTO_HDR_GTPU_IP:
642                 case VIRTCHNL_PROTO_HDR_GTPU_EH:
643                         if (is_ipv4)
644                                 ptype = ICE_MAC_IPV4_GTPU;
645                         else if (is_ipv6)
646                                 ptype = ICE_MAC_IPV6_GTPU;
647                         goto out;
648                 case VIRTCHNL_PROTO_HDR_L2TPV3:
649                         if (is_ipv4)
650                                 ptype = ICE_MAC_IPV4_L2TPV3;
651                         else if (is_ipv6)
652                                 ptype = ICE_MAC_IPV6_L2TPV3;
653                         goto out;
654                 case VIRTCHNL_PROTO_HDR_ESP:
655                         if (is_ipv4)
656                                 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
657                                                 ICE_MAC_IPV4_ESP;
658                         else if (is_ipv6)
659                                 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
660                                                 ICE_MAC_IPV6_ESP;
661                         goto out;
662                 case VIRTCHNL_PROTO_HDR_AH:
663                         if (is_ipv4)
664                                 ptype = ICE_MAC_IPV4_AH;
665                         else if (is_ipv6)
666                                 ptype = ICE_MAC_IPV6_AH;
667                         goto out;
668                 case VIRTCHNL_PROTO_HDR_PFCP:
669                         if (is_ipv4)
670                                 ptype = ICE_MAC_IPV4_PFCP_SESSION;
671                         else if (is_ipv6)
672                                 ptype = ICE_MAC_IPV6_PFCP_SESSION;
673                         goto out;
674                 default:
675                         break;
676                 }
677                 i++;
678         }
679
680 out:
681         return ice_hw_ptype_ena(&vf->pf->hw, ptype);
682 }
683
684 /**
685  * ice_vc_parse_rss_cfg - parses hash fields and headers from
686  * a specific virtchnl RSS cfg
687  * @hw: pointer to the hardware
688  * @rss_cfg: pointer to the virtchnl RSS cfg
689  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
690  * to configure
691  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
692  *
693  * Return true if all the protocol header and hash fields in the RSS cfg could
694  * be parsed, else return false
695  *
696  * This function parses the virtchnl RSS cfg to be the intended
697  * hash fields and the intended header for RSS configuration
698  */
699 static bool
700 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
701                      u32 *addl_hdrs, u64 *hash_flds)
702 {
703         const struct ice_vc_hash_field_match_type *hf_list;
704         const struct ice_vc_hdr_match_type *hdr_list;
705         int i, hf_list_len, hdr_list_len;
706
707         hf_list = ice_vc_hash_field_list;
708         hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
709         hdr_list = ice_vc_hdr_list;
710         hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
711
712         for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
713                 struct virtchnl_proto_hdr *proto_hdr =
714                                         &rss_cfg->proto_hdrs.proto_hdr[i];
715                 bool hdr_found = false;
716                 int j;
717
718                 /* Find matched ice headers according to virtchnl headers. */
719                 for (j = 0; j < hdr_list_len; j++) {
720                         struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
721
722                         if (proto_hdr->type == hdr_map.vc_hdr) {
723                                 *addl_hdrs |= hdr_map.ice_hdr;
724                                 hdr_found = true;
725                         }
726                 }
727
728                 if (!hdr_found)
729                         return false;
730
731                 /* Find matched ice hash fields according to
732                  * virtchnl hash fields.
733                  */
734                 for (j = 0; j < hf_list_len; j++) {
735                         struct ice_vc_hash_field_match_type hf_map = hf_list[j];
736
737                         if (proto_hdr->type == hf_map.vc_hdr &&
738                             proto_hdr->field_selector == hf_map.vc_hash_field) {
739                                 *hash_flds |= hf_map.ice_hash_field;
740                                 break;
741                         }
742                 }
743         }
744
745         return true;
746 }
747
748 /**
749  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
750  * RSS offloads
751  * @caps: VF driver negotiated capabilities
752  *
753  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
754  * else return false
755  */
756 static bool ice_vf_adv_rss_offload_ena(u32 caps)
757 {
758         return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
759 }
760
761 /**
762  * ice_vc_handle_rss_cfg
763  * @vf: pointer to the VF info
764  * @msg: pointer to the message buffer
765  * @add: add a RSS config if true, otherwise delete a RSS config
766  *
767  * This function adds/deletes a RSS config
768  */
769 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
770 {
771         u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
772         struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
773         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
774         struct device *dev = ice_pf_to_dev(vf->pf);
775         struct ice_hw *hw = &vf->pf->hw;
776         struct ice_vsi *vsi;
777
778         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
779                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
780                         vf->vf_id);
781                 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
782                 goto error_param;
783         }
784
785         if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
786                 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
787                         vf->vf_id);
788                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
789                 goto error_param;
790         }
791
792         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
793                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
794                 goto error_param;
795         }
796
797         if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
798             rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
799             rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
800                 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
801                         vf->vf_id);
802                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
803                 goto error_param;
804         }
805
806         vsi = ice_get_vf_vsi(vf);
807         if (!vsi) {
808                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
809                 goto error_param;
810         }
811
812         if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
813                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
814                 goto error_param;
815         }
816
817         if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
818                 struct ice_vsi_ctx *ctx;
819                 u8 lut_type, hash_type;
820                 int status;
821
822                 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
823                 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
824                                 ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
825
826                 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
827                 if (!ctx) {
828                         v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
829                         goto error_param;
830                 }
831
832                 ctx->info.q_opt_rss = ((lut_type <<
833                                         ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
834                                        ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
835                                        (hash_type &
836                                         ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
837
838                 /* Preserve existing queueing option setting */
839                 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
840                                           ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
841                 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
842                 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
843
844                 ctx->info.valid_sections =
845                                 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
846
847                 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
848                 if (status) {
849                         dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
850                                 status, ice_aq_str(hw->adminq.sq_last_status));
851                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
852                 } else {
853                         vsi->info.q_opt_rss = ctx->info.q_opt_rss;
854                 }
855
856                 kfree(ctx);
857         } else {
858                 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
859                 u64 hash_flds = ICE_HASH_INVALID;
860
861                 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
862                                           &hash_flds)) {
863                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
864                         goto error_param;
865                 }
866
867                 if (add) {
868                         if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
869                                             addl_hdrs)) {
870                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
871                                 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
872                                         vsi->vsi_num, v_ret);
873                         }
874                 } else {
875                         int status;
876
877                         status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
878                                                  addl_hdrs);
879                         /* We just ignore -ENOENT, because if two configurations
880                          * share the same profile remove one of them actually
881                          * removes both, since the profile is deleted.
882                          */
883                         if (status && status != -ENOENT) {
884                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885                                 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
886                                         vf->vf_id, status);
887                         }
888                 }
889         }
890
891 error_param:
892         return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
893 }
894
895 /**
896  * ice_vc_config_rss_key
897  * @vf: pointer to the VF info
898  * @msg: pointer to the msg buffer
899  *
900  * Configure the VF's RSS key
901  */
902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
903 {
904         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
905         struct virtchnl_rss_key *vrk =
906                 (struct virtchnl_rss_key *)msg;
907         struct ice_vsi *vsi;
908
909         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
910                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
911                 goto error_param;
912         }
913
914         if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
915                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
916                 goto error_param;
917         }
918
919         if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
920                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921                 goto error_param;
922         }
923
924         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
925                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926                 goto error_param;
927         }
928
929         vsi = ice_get_vf_vsi(vf);
930         if (!vsi) {
931                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
932                 goto error_param;
933         }
934
935         if (ice_set_rss_key(vsi, vrk->key))
936                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
937 error_param:
938         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
939                                      NULL, 0);
940 }
941
942 /**
943  * ice_vc_config_rss_lut
944  * @vf: pointer to the VF info
945  * @msg: pointer to the msg buffer
946  *
947  * Configure the VF's RSS LUT
948  */
949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
950 {
951         struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
952         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
953         struct ice_vsi *vsi;
954
955         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
956                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
957                 goto error_param;
958         }
959
960         if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
961                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
962                 goto error_param;
963         }
964
965         if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
966                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967                 goto error_param;
968         }
969
970         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
971                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972                 goto error_param;
973         }
974
975         vsi = ice_get_vf_vsi(vf);
976         if (!vsi) {
977                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
978                 goto error_param;
979         }
980
981         if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
982                 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
983 error_param:
984         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
985                                      NULL, 0);
986 }
987
988 /**
989  * ice_vc_cfg_promiscuous_mode_msg
990  * @vf: pointer to the VF info
991  * @msg: pointer to the msg buffer
992  *
993  * called from the VF to configure VF VSIs promiscuous mode
994  */
995 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
996 {
997         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
998         bool rm_promisc, alluni = false, allmulti = false;
999         struct virtchnl_promisc_info *info =
1000             (struct virtchnl_promisc_info *)msg;
1001         struct ice_vsi_vlan_ops *vlan_ops;
1002         int mcast_err = 0, ucast_err = 0;
1003         struct ice_pf *pf = vf->pf;
1004         struct ice_vsi *vsi;
1005         u8 mcast_m, ucast_m;
1006         struct device *dev;
1007         int ret = 0;
1008
1009         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011                 goto error_param;
1012         }
1013
1014         if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1015                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016                 goto error_param;
1017         }
1018
1019         vsi = ice_get_vf_vsi(vf);
1020         if (!vsi) {
1021                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1022                 goto error_param;
1023         }
1024
1025         dev = ice_pf_to_dev(pf);
1026         if (!ice_is_vf_trusted(vf)) {
1027                 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1028                         vf->vf_id);
1029                 /* Leave v_ret alone, lie to the VF on purpose. */
1030                 goto error_param;
1031         }
1032
1033         if (info->flags & FLAG_VF_UNICAST_PROMISC)
1034                 alluni = true;
1035
1036         if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1037                 allmulti = true;
1038
1039         rm_promisc = !allmulti && !alluni;
1040
1041         vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1042         if (rm_promisc)
1043                 ret = vlan_ops->ena_rx_filtering(vsi);
1044         else
1045                 ret = vlan_ops->dis_rx_filtering(vsi);
1046         if (ret) {
1047                 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1048                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1049                 goto error_param;
1050         }
1051
1052         ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1053
1054         if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1055                 if (alluni) {
1056                         /* in this case we're turning on promiscuous mode */
1057                         ret = ice_set_dflt_vsi(vsi);
1058                 } else {
1059                         /* in this case we're turning off promiscuous mode */
1060                         if (ice_is_dflt_vsi_in_use(vsi->port_info))
1061                                 ret = ice_clear_dflt_vsi(vsi);
1062                 }
1063
1064                 /* in this case we're turning on/off only
1065                  * allmulticast
1066                  */
1067                 if (allmulti)
1068                         mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1069                 else
1070                         mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1071
1072                 if (ret) {
1073                         dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1074                                 vf->vf_id, ret);
1075                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1076                         goto error_param;
1077                 }
1078         } else {
1079                 if (alluni)
1080                         ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1081                 else
1082                         ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1083
1084                 if (allmulti)
1085                         mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1086                 else
1087                         mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1088
1089                 if (ucast_err || mcast_err)
1090                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1091         }
1092
1093         if (!mcast_err) {
1094                 if (allmulti &&
1095                     !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1096                         dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1097                                  vf->vf_id);
1098                 else if (!allmulti &&
1099                          test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1100                                             vf->vf_states))
1101                         dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1102                                  vf->vf_id);
1103         } else {
1104                 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1105                         vf->vf_id, mcast_err);
1106         }
1107
1108         if (!ucast_err) {
1109                 if (alluni &&
1110                     !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1111                         dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1112                                  vf->vf_id);
1113                 else if (!alluni &&
1114                          test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1115                                             vf->vf_states))
1116                         dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1117                                  vf->vf_id);
1118         } else {
1119                 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1120                         vf->vf_id, ucast_err);
1121         }
1122
1123 error_param:
1124         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1125                                      v_ret, NULL, 0);
1126 }
1127
1128 /**
1129  * ice_vc_get_stats_msg
1130  * @vf: pointer to the VF info
1131  * @msg: pointer to the msg buffer
1132  *
1133  * called from the VF to get VSI stats
1134  */
1135 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1136 {
1137         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1138         struct virtchnl_queue_select *vqs =
1139                 (struct virtchnl_queue_select *)msg;
1140         struct ice_eth_stats stats = { 0 };
1141         struct ice_vsi *vsi;
1142
1143         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1144                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1145                 goto error_param;
1146         }
1147
1148         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1149                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1150                 goto error_param;
1151         }
1152
1153         vsi = ice_get_vf_vsi(vf);
1154         if (!vsi) {
1155                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1156                 goto error_param;
1157         }
1158
1159         ice_update_eth_stats(vsi);
1160
1161         stats = vsi->eth_stats;
1162
1163 error_param:
1164         /* send the response to the VF */
1165         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1166                                      (u8 *)&stats, sizeof(stats));
1167 }
1168
1169 /**
1170  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1171  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1172  *
1173  * Return true on successful validation, else false
1174  */
1175 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1176 {
1177         if ((!vqs->rx_queues && !vqs->tx_queues) ||
1178             vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1179             vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1180                 return false;
1181
1182         return true;
1183 }
1184
1185 /**
1186  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1187  * @vsi: VSI of the VF to configure
1188  * @q_idx: VF queue index used to determine the queue in the PF's space
1189  */
1190 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1191 {
1192         struct ice_hw *hw = &vsi->back->hw;
1193         u32 pfq = vsi->txq_map[q_idx];
1194         u32 reg;
1195
1196         reg = rd32(hw, QINT_TQCTL(pfq));
1197
1198         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1199          * this is most likely a poll mode VF driver, so don't enable an
1200          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1201          */
1202         if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1203                 return;
1204
1205         wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1206 }
1207
1208 /**
1209  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1210  * @vsi: VSI of the VF to configure
1211  * @q_idx: VF queue index used to determine the queue in the PF's space
1212  */
1213 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1214 {
1215         struct ice_hw *hw = &vsi->back->hw;
1216         u32 pfq = vsi->rxq_map[q_idx];
1217         u32 reg;
1218
1219         reg = rd32(hw, QINT_RQCTL(pfq));
1220
1221         /* MSI-X index 0 in the VF's space is always for the OICR, which means
1222          * this is most likely a poll mode VF driver, so don't enable an
1223          * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1224          */
1225         if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1226                 return;
1227
1228         wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1229 }
1230
1231 /**
1232  * ice_vc_ena_qs_msg
1233  * @vf: pointer to the VF info
1234  * @msg: pointer to the msg buffer
1235  *
1236  * called from the VF to enable all or specific queue(s)
1237  */
1238 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1239 {
1240         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1241         struct virtchnl_queue_select *vqs =
1242             (struct virtchnl_queue_select *)msg;
1243         struct ice_vsi *vsi;
1244         unsigned long q_map;
1245         u16 vf_q_id;
1246
1247         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1248                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1249                 goto error_param;
1250         }
1251
1252         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1253                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1254                 goto error_param;
1255         }
1256
1257         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1258                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1259                 goto error_param;
1260         }
1261
1262         vsi = ice_get_vf_vsi(vf);
1263         if (!vsi) {
1264                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1265                 goto error_param;
1266         }
1267
1268         /* Enable only Rx rings, Tx rings were enabled by the FW when the
1269          * Tx queue group list was configured and the context bits were
1270          * programmed using ice_vsi_cfg_txqs
1271          */
1272         q_map = vqs->rx_queues;
1273         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1274                 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1275                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1276                         goto error_param;
1277                 }
1278
1279                 /* Skip queue if enabled */
1280                 if (test_bit(vf_q_id, vf->rxq_ena))
1281                         continue;
1282
1283                 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1284                         dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1285                                 vf_q_id, vsi->vsi_num);
1286                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1287                         goto error_param;
1288                 }
1289
1290                 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1291                 set_bit(vf_q_id, vf->rxq_ena);
1292         }
1293
1294         q_map = vqs->tx_queues;
1295         for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1296                 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1297                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1298                         goto error_param;
1299                 }
1300
1301                 /* Skip queue if enabled */
1302                 if (test_bit(vf_q_id, vf->txq_ena))
1303                         continue;
1304
1305                 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1306                 set_bit(vf_q_id, vf->txq_ena);
1307         }
1308
1309         /* Set flag to indicate that queues are enabled */
1310         if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1311                 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1312
1313 error_param:
1314         /* send the response to the VF */
1315         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1316                                      NULL, 0);
1317 }
1318
1319 /**
1320  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1321  * @vf: VF to disable queue for
1322  * @vsi: VSI for the VF
1323  * @q_id: VF relative (0-based) queue ID
1324  *
1325  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1326  * disabled then clear q_id bit in the enabled queues bitmap and return
1327  * success. Otherwise return error.
1328  */
1329 static int
1330 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1331 {
1332         struct ice_txq_meta txq_meta = { 0 };
1333         struct ice_tx_ring *ring;
1334         int err;
1335
1336         if (!test_bit(q_id, vf->txq_ena))
1337                 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1338                         q_id, vsi->vsi_num);
1339
1340         ring = vsi->tx_rings[q_id];
1341         if (!ring)
1342                 return -EINVAL;
1343
1344         ice_fill_txq_meta(vsi, ring, &txq_meta);
1345
1346         err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1347         if (err) {
1348                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1349                         q_id, vsi->vsi_num);
1350                 return err;
1351         }
1352
1353         /* Clear enabled queues flag */
1354         clear_bit(q_id, vf->txq_ena);
1355
1356         return 0;
1357 }
1358
1359 /**
1360  * ice_vc_dis_qs_msg
1361  * @vf: pointer to the VF info
1362  * @msg: pointer to the msg buffer
1363  *
1364  * called from the VF to disable all or specific queue(s)
1365  */
1366 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1367 {
1368         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1369         struct virtchnl_queue_select *vqs =
1370             (struct virtchnl_queue_select *)msg;
1371         struct ice_vsi *vsi;
1372         unsigned long q_map;
1373         u16 vf_q_id;
1374
1375         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1376             !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1377                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1378                 goto error_param;
1379         }
1380
1381         if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1382                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1383                 goto error_param;
1384         }
1385
1386         if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1387                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1388                 goto error_param;
1389         }
1390
1391         vsi = ice_get_vf_vsi(vf);
1392         if (!vsi) {
1393                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1394                 goto error_param;
1395         }
1396
1397         if (vqs->tx_queues) {
1398                 q_map = vqs->tx_queues;
1399
1400                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1401                         if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1402                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1403                                 goto error_param;
1404                         }
1405
1406                         if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1407                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1408                                 goto error_param;
1409                         }
1410                 }
1411         }
1412
1413         q_map = vqs->rx_queues;
1414         /* speed up Rx queue disable by batching them if possible */
1415         if (q_map &&
1416             bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1417                 if (ice_vsi_stop_all_rx_rings(vsi)) {
1418                         dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1419                                 vsi->vsi_num);
1420                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1421                         goto error_param;
1422                 }
1423
1424                 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1425         } else if (q_map) {
1426                 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1427                         if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1428                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1429                                 goto error_param;
1430                         }
1431
1432                         /* Skip queue if not enabled */
1433                         if (!test_bit(vf_q_id, vf->rxq_ena))
1434                                 continue;
1435
1436                         if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1437                                                      true)) {
1438                                 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1439                                         vf_q_id, vsi->vsi_num);
1440                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1441                                 goto error_param;
1442                         }
1443
1444                         /* Clear enabled queues flag */
1445                         clear_bit(vf_q_id, vf->rxq_ena);
1446                 }
1447         }
1448
1449         /* Clear enabled queues flag */
1450         if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1451                 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1452
1453 error_param:
1454         /* send the response to the VF */
1455         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1456                                      NULL, 0);
1457 }
1458
1459 /**
1460  * ice_cfg_interrupt
1461  * @vf: pointer to the VF info
1462  * @vsi: the VSI being configured
1463  * @vector_id: vector ID
1464  * @map: vector map for mapping vectors to queues
1465  * @q_vector: structure for interrupt vector
1466  * configure the IRQ to queue map
1467  */
1468 static int
1469 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1470                   struct virtchnl_vector_map *map,
1471                   struct ice_q_vector *q_vector)
1472 {
1473         u16 vsi_q_id, vsi_q_id_idx;
1474         unsigned long qmap;
1475
1476         q_vector->num_ring_rx = 0;
1477         q_vector->num_ring_tx = 0;
1478
1479         qmap = map->rxq_map;
1480         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1481                 vsi_q_id = vsi_q_id_idx;
1482
1483                 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1484                         return VIRTCHNL_STATUS_ERR_PARAM;
1485
1486                 q_vector->num_ring_rx++;
1487                 q_vector->rx.itr_idx = map->rxitr_idx;
1488                 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1489                 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1490                                       q_vector->rx.itr_idx);
1491         }
1492
1493         qmap = map->txq_map;
1494         for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1495                 vsi_q_id = vsi_q_id_idx;
1496
1497                 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1498                         return VIRTCHNL_STATUS_ERR_PARAM;
1499
1500                 q_vector->num_ring_tx++;
1501                 q_vector->tx.itr_idx = map->txitr_idx;
1502                 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1503                 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1504                                       q_vector->tx.itr_idx);
1505         }
1506
1507         return VIRTCHNL_STATUS_SUCCESS;
1508 }
1509
1510 /**
1511  * ice_vc_cfg_irq_map_msg
1512  * @vf: pointer to the VF info
1513  * @msg: pointer to the msg buffer
1514  *
1515  * called from the VF to configure the IRQ to queue map
1516  */
1517 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1518 {
1519         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1520         u16 num_q_vectors_mapped, vsi_id, vector_id;
1521         struct virtchnl_irq_map_info *irqmap_info;
1522         struct virtchnl_vector_map *map;
1523         struct ice_pf *pf = vf->pf;
1524         struct ice_vsi *vsi;
1525         int i;
1526
1527         irqmap_info = (struct virtchnl_irq_map_info *)msg;
1528         num_q_vectors_mapped = irqmap_info->num_vectors;
1529
1530         /* Check to make sure number of VF vectors mapped is not greater than
1531          * number of VF vectors originally allocated, and check that
1532          * there is actually at least a single VF queue vector mapped
1533          */
1534         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1535             pf->vfs.num_msix_per < num_q_vectors_mapped ||
1536             !num_q_vectors_mapped) {
1537                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1538                 goto error_param;
1539         }
1540
1541         vsi = ice_get_vf_vsi(vf);
1542         if (!vsi) {
1543                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1544                 goto error_param;
1545         }
1546
1547         for (i = 0; i < num_q_vectors_mapped; i++) {
1548                 struct ice_q_vector *q_vector;
1549
1550                 map = &irqmap_info->vecmap[i];
1551
1552                 vector_id = map->vector_id;
1553                 vsi_id = map->vsi_id;
1554                 /* vector_id is always 0-based for each VF, and can never be
1555                  * larger than or equal to the max allowed interrupts per VF
1556                  */
1557                 if (!(vector_id < pf->vfs.num_msix_per) ||
1558                     !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1559                     (!vector_id && (map->rxq_map || map->txq_map))) {
1560                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1561                         goto error_param;
1562                 }
1563
1564                 /* No need to map VF miscellaneous or rogue vector */
1565                 if (!vector_id)
1566                         continue;
1567
1568                 /* Subtract non queue vector from vector_id passed by VF
1569                  * to get actual number of VSI queue vector array index
1570                  */
1571                 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1572                 if (!q_vector) {
1573                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1574                         goto error_param;
1575                 }
1576
1577                 /* lookout for the invalid queue index */
1578                 v_ret = (enum virtchnl_status_code)
1579                         ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1580                 if (v_ret)
1581                         goto error_param;
1582         }
1583
1584 error_param:
1585         /* send the response to the VF */
1586         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1587                                      NULL, 0);
1588 }
1589
1590 /**
1591  * ice_vc_cfg_qs_msg
1592  * @vf: pointer to the VF info
1593  * @msg: pointer to the msg buffer
1594  *
1595  * called from the VF to configure the Rx/Tx queues
1596  */
1597 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1598 {
1599         struct virtchnl_vsi_queue_config_info *qci =
1600             (struct virtchnl_vsi_queue_config_info *)msg;
1601         struct virtchnl_queue_pair_info *qpi;
1602         struct ice_pf *pf = vf->pf;
1603         struct ice_vsi *vsi;
1604         int i = -1, q_idx;
1605
1606         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1607                 goto error_param;
1608
1609         if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1610                 goto error_param;
1611
1612         vsi = ice_get_vf_vsi(vf);
1613         if (!vsi)
1614                 goto error_param;
1615
1616         if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1617             qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1618                 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1619                         vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1620                 goto error_param;
1621         }
1622
1623         for (i = 0; i < qci->num_queue_pairs; i++) {
1624                 qpi = &qci->qpair[i];
1625                 if (qpi->txq.vsi_id != qci->vsi_id ||
1626                     qpi->rxq.vsi_id != qci->vsi_id ||
1627                     qpi->rxq.queue_id != qpi->txq.queue_id ||
1628                     qpi->txq.headwb_enabled ||
1629                     !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1630                     !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1631                     !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1632                         goto error_param;
1633                 }
1634
1635                 q_idx = qpi->rxq.queue_id;
1636
1637                 /* make sure selected "q_idx" is in valid range of queues
1638                  * for selected "vsi"
1639                  */
1640                 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1641                         goto error_param;
1642                 }
1643
1644                 /* copy Tx queue info from VF into VSI */
1645                 if (qpi->txq.ring_len > 0) {
1646                         vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1647                         vsi->tx_rings[i]->count = qpi->txq.ring_len;
1648
1649                         /* Disable any existing queue first */
1650                         if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1651                                 goto error_param;
1652
1653                         /* Configure a queue with the requested settings */
1654                         if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1655                                 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1656                                          vf->vf_id, i);
1657                                 goto error_param;
1658                         }
1659                 }
1660
1661                 /* copy Rx queue info from VF into VSI */
1662                 if (qpi->rxq.ring_len > 0) {
1663                         u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1664                         u32 rxdid;
1665
1666                         vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1667                         vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1668
1669                         if (qpi->rxq.databuffer_size != 0 &&
1670                             (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1671                              qpi->rxq.databuffer_size < 1024))
1672                                 goto error_param;
1673                         vsi->rx_buf_len = qpi->rxq.databuffer_size;
1674                         vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1675                         if (qpi->rxq.max_pkt_size > max_frame_size ||
1676                             qpi->rxq.max_pkt_size < 64)
1677                                 goto error_param;
1678
1679                         vsi->max_frame = qpi->rxq.max_pkt_size;
1680                         /* add space for the port VLAN since the VF driver is
1681                          * not expected to account for it in the MTU
1682                          * calculation
1683                          */
1684                         if (ice_vf_is_port_vlan_ena(vf))
1685                                 vsi->max_frame += VLAN_HLEN;
1686
1687                         if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1688                                 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1689                                          vf->vf_id, i);
1690                                 goto error_param;
1691                         }
1692
1693                         /* If Rx flex desc is supported, select RXDID for Rx
1694                          * queues. Otherwise, use legacy 32byte descriptor
1695                          * format. Legacy 16byte descriptor is not supported.
1696                          * If this RXDID is selected, return error.
1697                          */
1698                         if (vf->driver_caps &
1699                             VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1700                                 rxdid = qpi->rxq.rxdid;
1701                                 if (!(BIT(rxdid) & pf->supported_rxdids))
1702                                         goto error_param;
1703                         } else {
1704                                 rxdid = ICE_RXDID_LEGACY_1;
1705                         }
1706
1707                         ice_write_qrxflxp_cntxt(&vsi->back->hw,
1708                                                 vsi->rxq_map[q_idx],
1709                                                 rxdid, 0x03, false);
1710                 }
1711         }
1712
1713         /* send the response to the VF */
1714         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1715                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1716 error_param:
1717         /* disable whatever we can */
1718         for (; i >= 0; i--) {
1719                 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1720                         dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1721                                 vf->vf_id, i);
1722                 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1723                         dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1724                                 vf->vf_id, i);
1725         }
1726
1727         /* send the response to the VF */
1728         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1729                                      VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1730 }
1731
1732 /**
1733  * ice_can_vf_change_mac
1734  * @vf: pointer to the VF info
1735  *
1736  * Return true if the VF is allowed to change its MAC filters, false otherwise
1737  */
1738 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1739 {
1740         /* If the VF MAC address has been set administratively (via the
1741          * ndo_set_vf_mac command), then deny permission to the VF to
1742          * add/delete unicast MAC addresses, unless the VF is trusted
1743          */
1744         if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1745                 return false;
1746
1747         return true;
1748 }
1749
1750 /**
1751  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1752  * @vc_ether_addr: used to extract the type
1753  */
1754 static u8
1755 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1756 {
1757         return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1758 }
1759
1760 /**
1761  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1762  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1763  */
1764 static bool
1765 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1766 {
1767         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1768
1769         return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1770 }
1771
1772 /**
1773  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1774  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1775  *
1776  * This function should only be called when the MAC address in
1777  * virtchnl_ether_addr is a valid unicast MAC
1778  */
1779 static bool
1780 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1781 {
1782         u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1783
1784         return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1785 }
1786
1787 /**
1788  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1789  * @vf: VF to update
1790  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1791  */
1792 static void
1793 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1794 {
1795         u8 *mac_addr = vc_ether_addr->addr;
1796
1797         if (!is_valid_ether_addr(mac_addr))
1798                 return;
1799
1800         /* only allow legacy VF drivers to set the device and hardware MAC if it
1801          * is zero and allow new VF drivers to set the hardware MAC if the type
1802          * was correctly specified over VIRTCHNL
1803          */
1804         if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1805              is_zero_ether_addr(vf->hw_lan_addr)) ||
1806             ice_is_vc_addr_primary(vc_ether_addr)) {
1807                 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1808                 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1809         }
1810
1811         /* hardware and device MACs are already set, but its possible that the
1812          * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1813          * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1814          * away for the legacy VF driver case as it will be updated in the
1815          * delete flow for this case
1816          */
1817         if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1818                 ether_addr_copy(vf->legacy_last_added_umac.addr,
1819                                 mac_addr);
1820                 vf->legacy_last_added_umac.time_modified = jiffies;
1821         }
1822 }
1823
1824 /**
1825  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1826  * @vf: pointer to the VF info
1827  * @vsi: pointer to the VF's VSI
1828  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1829  */
1830 static int
1831 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1832                     struct virtchnl_ether_addr *vc_ether_addr)
1833 {
1834         struct device *dev = ice_pf_to_dev(vf->pf);
1835         u8 *mac_addr = vc_ether_addr->addr;
1836         int ret;
1837
1838         /* device MAC already added */
1839         if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1840                 return 0;
1841
1842         if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1843                 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1844                 return -EPERM;
1845         }
1846
1847         ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1848         if (ret == -EEXIST) {
1849                 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1850                         vf->vf_id);
1851                 /* don't return since we might need to update
1852                  * the primary MAC in ice_vfhw_mac_add() below
1853                  */
1854         } else if (ret) {
1855                 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1856                         mac_addr, vf->vf_id, ret);
1857                 return ret;
1858         } else {
1859                 vf->num_mac++;
1860         }
1861
1862         ice_vfhw_mac_add(vf, vc_ether_addr);
1863
1864         return ret;
1865 }
1866
1867 /**
1868  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1869  * @last_added_umac: structure used to check expiration
1870  */
1871 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1872 {
1873 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME    msecs_to_jiffies(3000)
1874         return time_is_before_jiffies(last_added_umac->time_modified +
1875                                       ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1876 }
1877
1878 /**
1879  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1880  * @vf: VF to update
1881  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1882  *
1883  * only update cached hardware MAC for legacy VF drivers on delete
1884  * because we cannot guarantee order/type of MAC from the VF driver
1885  */
1886 static void
1887 ice_update_legacy_cached_mac(struct ice_vf *vf,
1888                              struct virtchnl_ether_addr *vc_ether_addr)
1889 {
1890         if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1891             ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1892                 return;
1893
1894         ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1895         ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1896 }
1897
1898 /**
1899  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1900  * @vf: VF to update
1901  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1902  */
1903 static void
1904 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1905 {
1906         u8 *mac_addr = vc_ether_addr->addr;
1907
1908         if (!is_valid_ether_addr(mac_addr) ||
1909             !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1910                 return;
1911
1912         /* allow the device MAC to be repopulated in the add flow and don't
1913          * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1914          * to be persistent on VM reboot and across driver unload/load, which
1915          * won't work if we clear the hardware MAC here
1916          */
1917         eth_zero_addr(vf->dev_lan_addr);
1918
1919         ice_update_legacy_cached_mac(vf, vc_ether_addr);
1920 }
1921
1922 /**
1923  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1924  * @vf: pointer to the VF info
1925  * @vsi: pointer to the VF's VSI
1926  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1927  */
1928 static int
1929 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1930                     struct virtchnl_ether_addr *vc_ether_addr)
1931 {
1932         struct device *dev = ice_pf_to_dev(vf->pf);
1933         u8 *mac_addr = vc_ether_addr->addr;
1934         int status;
1935
1936         if (!ice_can_vf_change_mac(vf) &&
1937             ether_addr_equal(vf->dev_lan_addr, mac_addr))
1938                 return 0;
1939
1940         status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1941         if (status == -ENOENT) {
1942                 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1943                         vf->vf_id);
1944                 return -ENOENT;
1945         } else if (status) {
1946                 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1947                         mac_addr, vf->vf_id, status);
1948                 return -EIO;
1949         }
1950
1951         ice_vfhw_mac_del(vf, vc_ether_addr);
1952
1953         vf->num_mac--;
1954
1955         return 0;
1956 }
1957
1958 /**
1959  * ice_vc_handle_mac_addr_msg
1960  * @vf: pointer to the VF info
1961  * @msg: pointer to the msg buffer
1962  * @set: true if MAC filters are being set, false otherwise
1963  *
1964  * add guest MAC address filter
1965  */
1966 static int
1967 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1968 {
1969         int (*ice_vc_cfg_mac)
1970                 (struct ice_vf *vf, struct ice_vsi *vsi,
1971                  struct virtchnl_ether_addr *virtchnl_ether_addr);
1972         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1973         struct virtchnl_ether_addr_list *al =
1974             (struct virtchnl_ether_addr_list *)msg;
1975         struct ice_pf *pf = vf->pf;
1976         enum virtchnl_ops vc_op;
1977         struct ice_vsi *vsi;
1978         int i;
1979
1980         if (set) {
1981                 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
1982                 ice_vc_cfg_mac = ice_vc_add_mac_addr;
1983         } else {
1984                 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
1985                 ice_vc_cfg_mac = ice_vc_del_mac_addr;
1986         }
1987
1988         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1989             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
1990                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1991                 goto handle_mac_exit;
1992         }
1993
1994         /* If this VF is not privileged, then we can't add more than a
1995          * limited number of addresses. Check to make sure that the
1996          * additions do not push us over the limit.
1997          */
1998         if (set && !ice_is_vf_trusted(vf) &&
1999             (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2000                 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2001                         vf->vf_id);
2002                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2003                 goto handle_mac_exit;
2004         }
2005
2006         vsi = ice_get_vf_vsi(vf);
2007         if (!vsi) {
2008                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2009                 goto handle_mac_exit;
2010         }
2011
2012         for (i = 0; i < al->num_elements; i++) {
2013                 u8 *mac_addr = al->list[i].addr;
2014                 int result;
2015
2016                 if (is_broadcast_ether_addr(mac_addr) ||
2017                     is_zero_ether_addr(mac_addr))
2018                         continue;
2019
2020                 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2021                 if (result == -EEXIST || result == -ENOENT) {
2022                         continue;
2023                 } else if (result) {
2024                         v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2025                         goto handle_mac_exit;
2026                 }
2027         }
2028
2029 handle_mac_exit:
2030         /* send the response to the VF */
2031         return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2032 }
2033
2034 /**
2035  * ice_vc_add_mac_addr_msg
2036  * @vf: pointer to the VF info
2037  * @msg: pointer to the msg buffer
2038  *
2039  * add guest MAC address filter
2040  */
2041 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2042 {
2043         return ice_vc_handle_mac_addr_msg(vf, msg, true);
2044 }
2045
2046 /**
2047  * ice_vc_del_mac_addr_msg
2048  * @vf: pointer to the VF info
2049  * @msg: pointer to the msg buffer
2050  *
2051  * remove guest MAC address filter
2052  */
2053 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2054 {
2055         return ice_vc_handle_mac_addr_msg(vf, msg, false);
2056 }
2057
2058 /**
2059  * ice_vc_request_qs_msg
2060  * @vf: pointer to the VF info
2061  * @msg: pointer to the msg buffer
2062  *
2063  * VFs get a default number of queues but can use this message to request a
2064  * different number. If the request is successful, PF will reset the VF and
2065  * return 0. If unsuccessful, PF will send message informing VF of number of
2066  * available queue pairs via virtchnl message response to VF.
2067  */
2068 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2069 {
2070         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2071         struct virtchnl_vf_res_request *vfres =
2072                 (struct virtchnl_vf_res_request *)msg;
2073         u16 req_queues = vfres->num_queue_pairs;
2074         struct ice_pf *pf = vf->pf;
2075         u16 max_allowed_vf_queues;
2076         u16 tx_rx_queue_left;
2077         struct device *dev;
2078         u16 cur_queues;
2079
2080         dev = ice_pf_to_dev(pf);
2081         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2082                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2083                 goto error_param;
2084         }
2085
2086         cur_queues = vf->num_vf_qs;
2087         tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2088                                  ice_get_avail_rxq_count(pf));
2089         max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2090         if (!req_queues) {
2091                 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2092                         vf->vf_id);
2093         } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2094                 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2095                         vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2096                 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2097         } else if (req_queues > cur_queues &&
2098                    req_queues - cur_queues > tx_rx_queue_left) {
2099                 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2100                          vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2101                 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2102                                                ICE_MAX_RSS_QS_PER_VF);
2103         } else {
2104                 /* request is successful, then reset VF */
2105                 vf->num_req_qs = req_queues;
2106                 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2107                 dev_info(dev, "VF %d granted request of %u queues.\n",
2108                          vf->vf_id, req_queues);
2109                 return 0;
2110         }
2111
2112 error_param:
2113         /* send the response to the VF */
2114         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2115                                      v_ret, (u8 *)vfres, sizeof(*vfres));
2116 }
2117
2118 /**
2119  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2120  * @caps: VF driver negotiated capabilities
2121  *
2122  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2123  */
2124 static bool ice_vf_vlan_offload_ena(u32 caps)
2125 {
2126         return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2127 }
2128
2129 /**
2130  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2131  * @vf: VF used to determine if VLAN promiscuous config is allowed
2132  */
2133 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2134 {
2135         if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2136              test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2137             test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2138                 return true;
2139
2140         return false;
2141 }
2142
2143 /**
2144  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2145  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2146  * @vlan: VLAN used to enable VLAN promiscuous
2147  *
2148  * This function should only be called if VLAN promiscuous mode is allowed,
2149  * which can be determined via ice_is_vlan_promisc_allowed().
2150  */
2151 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2152 {
2153         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2154         int status;
2155
2156         status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2157                                           vlan->vid);
2158         if (status && status != -EEXIST)
2159                 return status;
2160
2161         return 0;
2162 }
2163
2164 /**
2165  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2166  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2167  * @vlan: VLAN used to disable VLAN promiscuous
2168  *
2169  * This function should only be called if VLAN promiscuous mode is allowed,
2170  * which can be determined via ice_is_vlan_promisc_allowed().
2171  */
2172 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2173 {
2174         u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2175         int status;
2176
2177         status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2178                                             vlan->vid);
2179         if (status && status != -ENOENT)
2180                 return status;
2181
2182         return 0;
2183 }
2184
2185 /**
2186  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2187  * @vf: VF to check against
2188  * @vsi: VF's VSI
2189  *
2190  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2191  * wants to, so return false.
2192  *
2193  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2194  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2195  */
2196 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2197 {
2198         if (ice_is_vf_trusted(vf))
2199                 return false;
2200
2201 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS    1
2202         return ((ice_vsi_num_non_zero_vlans(vsi) +
2203                 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2204 }
2205
2206 /**
2207  * ice_vc_process_vlan_msg
2208  * @vf: pointer to the VF info
2209  * @msg: pointer to the msg buffer
2210  * @add_v: Add VLAN if true, otherwise delete VLAN
2211  *
2212  * Process virtchnl op to add or remove programmed guest VLAN ID
2213  */
2214 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2215 {
2216         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2217         struct virtchnl_vlan_filter_list *vfl =
2218             (struct virtchnl_vlan_filter_list *)msg;
2219         struct ice_pf *pf = vf->pf;
2220         bool vlan_promisc = false;
2221         struct ice_vsi *vsi;
2222         struct device *dev;
2223         int status = 0;
2224         int i;
2225
2226         dev = ice_pf_to_dev(pf);
2227         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2228                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2229                 goto error_param;
2230         }
2231
2232         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2233                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2234                 goto error_param;
2235         }
2236
2237         if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2238                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2239                 goto error_param;
2240         }
2241
2242         for (i = 0; i < vfl->num_elements; i++) {
2243                 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2244                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2245                         dev_err(dev, "invalid VF VLAN id %d\n",
2246                                 vfl->vlan_id[i]);
2247                         goto error_param;
2248                 }
2249         }
2250
2251         vsi = ice_get_vf_vsi(vf);
2252         if (!vsi) {
2253                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2254                 goto error_param;
2255         }
2256
2257         if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2258                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2259                          vf->vf_id);
2260                 /* There is no need to let VF know about being not trusted,
2261                  * so we can just return success message here
2262                  */
2263                 goto error_param;
2264         }
2265
2266         /* in DVM a VF can add/delete inner VLAN filters when
2267          * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2268          */
2269         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2270                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2271                 goto error_param;
2272         }
2273
2274         /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2275          * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2276          * allow vlan_promisc = true in SVM and if no port VLAN is configured
2277          */
2278         vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2279                 !ice_is_dvm_ena(&pf->hw) &&
2280                 !ice_vf_is_port_vlan_ena(vf);
2281
2282         if (add_v) {
2283                 for (i = 0; i < vfl->num_elements; i++) {
2284                         u16 vid = vfl->vlan_id[i];
2285                         struct ice_vlan vlan;
2286
2287                         if (ice_vf_has_max_vlans(vf, vsi)) {
2288                                 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2289                                          vf->vf_id);
2290                                 /* There is no need to let VF know about being
2291                                  * not trusted, so we can just return success
2292                                  * message here as well.
2293                                  */
2294                                 goto error_param;
2295                         }
2296
2297                         /* we add VLAN 0 by default for each VF so we can enable
2298                          * Tx VLAN anti-spoof without triggering MDD events so
2299                          * we don't need to add it again here
2300                          */
2301                         if (!vid)
2302                                 continue;
2303
2304                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2305                         status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2306                         if (status) {
2307                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2308                                 goto error_param;
2309                         }
2310
2311                         /* Enable VLAN filtering on first non-zero VLAN */
2312                         if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2313                                 if (vf->spoofchk) {
2314                                         status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2315                                         if (status) {
2316                                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2317                                                 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2318                                                         vid, status);
2319                                                 goto error_param;
2320                                         }
2321                                 }
2322                                 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2323                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2324                                         dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2325                                                 vid, status);
2326                                         goto error_param;
2327                                 }
2328                         } else if (vlan_promisc) {
2329                                 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2330                                 if (status) {
2331                                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2332                                         dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2333                                                 vid, status);
2334                                 }
2335                         }
2336                 }
2337         } else {
2338                 /* In case of non_trusted VF, number of VLAN elements passed
2339                  * to PF for removal might be greater than number of VLANs
2340                  * filter programmed for that VF - So, use actual number of
2341                  * VLANS added earlier with add VLAN opcode. In order to avoid
2342                  * removing VLAN that doesn't exist, which result to sending
2343                  * erroneous failed message back to the VF
2344                  */
2345                 int num_vf_vlan;
2346
2347                 num_vf_vlan = vsi->num_vlan;
2348                 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2349                         u16 vid = vfl->vlan_id[i];
2350                         struct ice_vlan vlan;
2351
2352                         /* we add VLAN 0 by default for each VF so we can enable
2353                          * Tx VLAN anti-spoof without triggering MDD events so
2354                          * we don't want a VIRTCHNL request to remove it
2355                          */
2356                         if (!vid)
2357                                 continue;
2358
2359                         vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2360                         status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2361                         if (status) {
2362                                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2363                                 goto error_param;
2364                         }
2365
2366                         /* Disable VLAN filtering when only VLAN 0 is left */
2367                         if (!ice_vsi_has_non_zero_vlans(vsi)) {
2368                                 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2369                                 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2370                         }
2371
2372                         if (vlan_promisc)
2373                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
2374                 }
2375         }
2376
2377 error_param:
2378         /* send the response to the VF */
2379         if (add_v)
2380                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2381                                              NULL, 0);
2382         else
2383                 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2384                                              NULL, 0);
2385 }
2386
2387 /**
2388  * ice_vc_add_vlan_msg
2389  * @vf: pointer to the VF info
2390  * @msg: pointer to the msg buffer
2391  *
2392  * Add and program guest VLAN ID
2393  */
2394 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2395 {
2396         return ice_vc_process_vlan_msg(vf, msg, true);
2397 }
2398
2399 /**
2400  * ice_vc_remove_vlan_msg
2401  * @vf: pointer to the VF info
2402  * @msg: pointer to the msg buffer
2403  *
2404  * remove programmed guest VLAN ID
2405  */
2406 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2407 {
2408         return ice_vc_process_vlan_msg(vf, msg, false);
2409 }
2410
2411 /**
2412  * ice_vc_ena_vlan_stripping
2413  * @vf: pointer to the VF info
2414  *
2415  * Enable VLAN header stripping for a given VF
2416  */
2417 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2418 {
2419         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2420         struct ice_vsi *vsi;
2421
2422         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2423                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2424                 goto error_param;
2425         }
2426
2427         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2428                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2429                 goto error_param;
2430         }
2431
2432         vsi = ice_get_vf_vsi(vf);
2433         if (!vsi) {
2434                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2435                 goto error_param;
2436         }
2437
2438         if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2439                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2440
2441 error_param:
2442         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2443                                      v_ret, NULL, 0);
2444 }
2445
2446 /**
2447  * ice_vc_dis_vlan_stripping
2448  * @vf: pointer to the VF info
2449  *
2450  * Disable VLAN header stripping for a given VF
2451  */
2452 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2453 {
2454         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2455         struct ice_vsi *vsi;
2456
2457         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2458                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2459                 goto error_param;
2460         }
2461
2462         if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2463                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2464                 goto error_param;
2465         }
2466
2467         vsi = ice_get_vf_vsi(vf);
2468         if (!vsi) {
2469                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2470                 goto error_param;
2471         }
2472
2473         if (vsi->inner_vlan_ops.dis_stripping(vsi))
2474                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2475
2476 error_param:
2477         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2478                                      v_ret, NULL, 0);
2479 }
2480
2481 /**
2482  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2483  * @vf: pointer to the VF info
2484  */
2485 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2486 {
2487         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2488         struct virtchnl_rss_hena *vrh = NULL;
2489         int len = 0, ret;
2490
2491         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2492                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2493                 goto err;
2494         }
2495
2496         if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2497                 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2498                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2499                 goto err;
2500         }
2501
2502         len = sizeof(struct virtchnl_rss_hena);
2503         vrh = kzalloc(len, GFP_KERNEL);
2504         if (!vrh) {
2505                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2506                 len = 0;
2507                 goto err;
2508         }
2509
2510         vrh->hena = ICE_DEFAULT_RSS_HENA;
2511 err:
2512         /* send the response back to the VF */
2513         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2514                                     (u8 *)vrh, len);
2515         kfree(vrh);
2516         return ret;
2517 }
2518
2519 /**
2520  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2521  * @vf: pointer to the VF info
2522  * @msg: pointer to the msg buffer
2523  */
2524 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2525 {
2526         struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2527         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2528         struct ice_pf *pf = vf->pf;
2529         struct ice_vsi *vsi;
2530         struct device *dev;
2531         int status;
2532
2533         dev = ice_pf_to_dev(pf);
2534
2535         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2536                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2537                 goto err;
2538         }
2539
2540         if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2541                 dev_err(dev, "RSS not supported by PF\n");
2542                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2543                 goto err;
2544         }
2545
2546         vsi = ice_get_vf_vsi(vf);
2547         if (!vsi) {
2548                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2549                 goto err;
2550         }
2551
2552         /* clear all previously programmed RSS configuration to allow VF drivers
2553          * the ability to customize the RSS configuration and/or completely
2554          * disable RSS
2555          */
2556         status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2557         if (status && !vrh->hena) {
2558                 /* only report failure to clear the current RSS configuration if
2559                  * that was clearly the VF's intention (i.e. vrh->hena = 0)
2560                  */
2561                 v_ret = ice_err_to_virt_err(status);
2562                 goto err;
2563         } else if (status) {
2564                 /* allow the VF to update the RSS configuration even on failure
2565                  * to clear the current RSS confguration in an attempt to keep
2566                  * RSS in a working state
2567                  */
2568                 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2569                          vf->vf_id);
2570         }
2571
2572         if (vrh->hena) {
2573                 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2574                 v_ret = ice_err_to_virt_err(status);
2575         }
2576
2577         /* send the response to the VF */
2578 err:
2579         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2580                                      NULL, 0);
2581 }
2582
2583 /**
2584  * ice_vc_query_rxdid - query RXDID supported by DDP package
2585  * @vf: pointer to VF info
2586  *
2587  * Called from VF to query a bitmap of supported flexible
2588  * descriptor RXDIDs of a DDP package.
2589  */
2590 static int ice_vc_query_rxdid(struct ice_vf *vf)
2591 {
2592         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2593         struct virtchnl_supported_rxdids *rxdid = NULL;
2594         struct ice_hw *hw = &vf->pf->hw;
2595         struct ice_pf *pf = vf->pf;
2596         int len = 0;
2597         int ret, i;
2598         u32 regval;
2599
2600         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2601                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2602                 goto err;
2603         }
2604
2605         if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2606                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2607                 goto err;
2608         }
2609
2610         len = sizeof(struct virtchnl_supported_rxdids);
2611         rxdid = kzalloc(len, GFP_KERNEL);
2612         if (!rxdid) {
2613                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2614                 len = 0;
2615                 goto err;
2616         }
2617
2618         /* Read flexiflag registers to determine whether the
2619          * corresponding RXDID is configured and supported or not.
2620          * Since Legacy 16byte descriptor format is not supported,
2621          * start from Legacy 32byte descriptor.
2622          */
2623         for (i = ICE_RXDID_LEGACY_1; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2624                 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2625                 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2626                         & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2627                         rxdid->supported_rxdids |= BIT(i);
2628         }
2629
2630         pf->supported_rxdids = rxdid->supported_rxdids;
2631
2632 err:
2633         ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2634                                     v_ret, (u8 *)rxdid, len);
2635         kfree(rxdid);
2636         return ret;
2637 }
2638
2639 /**
2640  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2641  * @vf: VF to enable/disable VLAN stripping for on initialization
2642  *
2643  * Set the default for VLAN stripping based on whether a port VLAN is configured
2644  * and the current VLAN mode of the device.
2645  */
2646 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2647 {
2648         struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2649
2650         if (!vsi)
2651                 return -EINVAL;
2652
2653         /* don't modify stripping if port VLAN is configured in SVM since the
2654          * port VLAN is based on the inner/single VLAN in SVM
2655          */
2656         if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2657                 return 0;
2658
2659         if (ice_vf_vlan_offload_ena(vf->driver_caps))
2660                 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2661         else
2662                 return vsi->inner_vlan_ops.dis_stripping(vsi);
2663 }
2664
2665 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2666 {
2667         if (vf->trusted)
2668                 return VLAN_N_VID;
2669         else
2670                 return ICE_MAX_VLAN_PER_VF;
2671 }
2672
2673 /**
2674  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2675  * @vf: VF that being checked for
2676  *
2677  * When the device is in double VLAN mode, check whether or not the outer VLAN
2678  * is allowed.
2679  */
2680 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2681 {
2682         if (ice_vf_is_port_vlan_ena(vf))
2683                 return true;
2684
2685         return false;
2686 }
2687
2688 /**
2689  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2690  * @vf: VF that capabilities are being set for
2691  * @caps: VLAN capabilities to populate
2692  *
2693  * Determine VLAN capabilities support based on whether a port VLAN is
2694  * configured. If a port VLAN is configured then the VF should use the inner
2695  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2696  * capabilies.
2697  */
2698 static void
2699 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2700 {
2701         struct virtchnl_vlan_supported_caps *supported_caps;
2702
2703         if (ice_vf_outer_vlan_not_allowed(vf)) {
2704                 /* until support for inner VLAN filtering is added when a port
2705                  * VLAN is configured, only support software offloaded inner
2706                  * VLANs when a port VLAN is confgured in DVM
2707                  */
2708                 supported_caps = &caps->filtering.filtering_support;
2709                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2710
2711                 supported_caps = &caps->offloads.stripping_support;
2712                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2713                                         VIRTCHNL_VLAN_TOGGLE |
2714                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2715                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2716
2717                 supported_caps = &caps->offloads.insertion_support;
2718                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2719                                         VIRTCHNL_VLAN_TOGGLE |
2720                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2721                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2722
2723                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2724                 caps->offloads.ethertype_match =
2725                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2726         } else {
2727                 supported_caps = &caps->filtering.filtering_support;
2728                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2729                 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2730                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2731                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2732                                         VIRTCHNL_VLAN_ETHERTYPE_AND;
2733                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2734                                                  VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2735                                                  VIRTCHNL_VLAN_ETHERTYPE_9100;
2736
2737                 supported_caps = &caps->offloads.stripping_support;
2738                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2739                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2740                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2741                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2742                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2743                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2744                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2745                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2746                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2747
2748                 supported_caps = &caps->offloads.insertion_support;
2749                 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2750                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2751                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2752                 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2753                                         VIRTCHNL_VLAN_ETHERTYPE_8100 |
2754                                         VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2755                                         VIRTCHNL_VLAN_ETHERTYPE_9100 |
2756                                         VIRTCHNL_VLAN_ETHERTYPE_XOR |
2757                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2758
2759                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2760
2761                 caps->offloads.ethertype_match =
2762                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2763         }
2764
2765         caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2766 }
2767
2768 /**
2769  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2770  * @vf: VF that capabilities are being set for
2771  * @caps: VLAN capabilities to populate
2772  *
2773  * Determine VLAN capabilities support based on whether a port VLAN is
2774  * configured. If a port VLAN is configured then the VF does not have any VLAN
2775  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2776  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2777  * VLAN fitlering and offload capabilities.
2778  */
2779 static void
2780 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2781 {
2782         struct virtchnl_vlan_supported_caps *supported_caps;
2783
2784         if (ice_vf_is_port_vlan_ena(vf)) {
2785                 supported_caps = &caps->filtering.filtering_support;
2786                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2787                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2788
2789                 supported_caps = &caps->offloads.stripping_support;
2790                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2791                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2792
2793                 supported_caps = &caps->offloads.insertion_support;
2794                 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2795                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2796
2797                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2798                 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2799                 caps->filtering.max_filters = 0;
2800         } else {
2801                 supported_caps = &caps->filtering.filtering_support;
2802                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2803                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2804                 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2805
2806                 supported_caps = &caps->offloads.stripping_support;
2807                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2808                                         VIRTCHNL_VLAN_TOGGLE |
2809                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2810                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2811
2812                 supported_caps = &caps->offloads.insertion_support;
2813                 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2814                                         VIRTCHNL_VLAN_TOGGLE |
2815                                         VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2816                 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2817
2818                 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2819                 caps->offloads.ethertype_match =
2820                         VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2821                 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2822         }
2823 }
2824
2825 /**
2826  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2827  * @vf: VF to determine VLAN capabilities for
2828  *
2829  * This will only be called if the VF and PF successfully negotiated
2830  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2831  *
2832  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2833  * is configured or not.
2834  */
2835 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2836 {
2837         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2838         struct virtchnl_vlan_caps *caps = NULL;
2839         int err, len = 0;
2840
2841         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2842                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2843                 goto out;
2844         }
2845
2846         caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2847         if (!caps) {
2848                 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2849                 goto out;
2850         }
2851         len = sizeof(*caps);
2852
2853         if (ice_is_dvm_ena(&vf->pf->hw))
2854                 ice_vc_set_dvm_caps(vf, caps);
2855         else
2856                 ice_vc_set_svm_caps(vf, caps);
2857
2858         /* store negotiated caps to prevent invalid VF messages */
2859         memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2860
2861 out:
2862         err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2863                                     v_ret, (u8 *)caps, len);
2864         kfree(caps);
2865         return err;
2866 }
2867
2868 /**
2869  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2870  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2871  * @tpid: VLAN TPID used for validation
2872  *
2873  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2874  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2875  */
2876 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2877 {
2878         enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2879
2880         switch (tpid) {
2881         case ETH_P_8021Q:
2882                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2883                 break;
2884         case ETH_P_8021AD:
2885                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2886                 break;
2887         case ETH_P_QINQ1:
2888                 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2889                 break;
2890         }
2891
2892         if (!(filtering_caps & vlan_ethertype))
2893                 return false;
2894
2895         return true;
2896 }
2897
2898 /**
2899  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2900  * @vc_vlan: virtchnl_vlan to validate
2901  *
2902  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2903  * false. Otherwise return true.
2904  */
2905 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2906 {
2907         if (!vc_vlan->tci || !vc_vlan->tpid)
2908                 return false;
2909
2910         return true;
2911 }
2912
2913 /**
2914  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2915  * @vfc: negotiated/supported VLAN filtering capabilities
2916  * @vfl: VLAN filter list from VF to validate
2917  *
2918  * Validate all of the filters in the VLAN filter list from the VF. If any of
2919  * the checks fail then return false. Otherwise return true.
2920  */
2921 static bool
2922 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2923                                  struct virtchnl_vlan_filter_list_v2 *vfl)
2924 {
2925         u16 i;
2926
2927         if (!vfl->num_elements)
2928                 return false;
2929
2930         for (i = 0; i < vfl->num_elements; i++) {
2931                 struct virtchnl_vlan_supported_caps *filtering_support =
2932                         &vfc->filtering_support;
2933                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2934                 struct virtchnl_vlan *outer = &vlan_fltr->outer;
2935                 struct virtchnl_vlan *inner = &vlan_fltr->inner;
2936
2937                 if ((ice_vc_is_valid_vlan(outer) &&
2938                      filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2939                     (ice_vc_is_valid_vlan(inner) &&
2940                      filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2941                         return false;
2942
2943                 if ((outer->tci_mask &&
2944                      !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2945                     (inner->tci_mask &&
2946                      !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2947                         return false;
2948
2949                 if (((outer->tci & VLAN_PRIO_MASK) &&
2950                      !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2951                     ((inner->tci & VLAN_PRIO_MASK) &&
2952                      !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2953                         return false;
2954
2955                 if ((ice_vc_is_valid_vlan(outer) &&
2956                      !ice_vc_validate_vlan_tpid(filtering_support->outer,
2957                                                 outer->tpid)) ||
2958                     (ice_vc_is_valid_vlan(inner) &&
2959                      !ice_vc_validate_vlan_tpid(filtering_support->inner,
2960                                                 inner->tpid)))
2961                         return false;
2962         }
2963
2964         return true;
2965 }
2966
2967 /**
2968  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2969  * @vc_vlan: struct virtchnl_vlan to transform
2970  */
2971 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2972 {
2973         struct ice_vlan vlan = { 0 };
2974
2975         vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2976         vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2977         vlan.tpid = vc_vlan->tpid;
2978
2979         return vlan;
2980 }
2981
2982 /**
2983  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
2984  * @vsi: VF's VSI used to perform the action
2985  * @vlan_action: function to perform the action with (i.e. add/del)
2986  * @vlan: VLAN filter to perform the action with
2987  */
2988 static int
2989 ice_vc_vlan_action(struct ice_vsi *vsi,
2990                    int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
2991                    struct ice_vlan *vlan)
2992 {
2993         int err;
2994
2995         err = vlan_action(vsi, vlan);
2996         if (err)
2997                 return err;
2998
2999         return 0;
3000 }
3001
3002 /**
3003  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3004  * @vf: VF used to delete the VLAN(s)
3005  * @vsi: VF's VSI used to delete the VLAN(s)
3006  * @vfl: virthchnl filter list used to delete the filters
3007  */
3008 static int
3009 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3010                  struct virtchnl_vlan_filter_list_v2 *vfl)
3011 {
3012         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3013         int err;
3014         u16 i;
3015
3016         for (i = 0; i < vfl->num_elements; i++) {
3017                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3018                 struct virtchnl_vlan *vc_vlan;
3019
3020                 vc_vlan = &vlan_fltr->outer;
3021                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3022                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3023
3024                         err = ice_vc_vlan_action(vsi,
3025                                                  vsi->outer_vlan_ops.del_vlan,
3026                                                  &vlan);
3027                         if (err)
3028                                 return err;
3029
3030                         if (vlan_promisc)
3031                                 ice_vf_dis_vlan_promisc(vsi, &vlan);
3032
3033                         /* Disable VLAN filtering when only VLAN 0 is left */
3034                         if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3035                                 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3036                                 if (err)
3037                                         return err;
3038                         }
3039                 }
3040
3041                 vc_vlan = &vlan_fltr->inner;
3042                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3043                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3044
3045                         err = ice_vc_vlan_action(vsi,
3046                                                  vsi->inner_vlan_ops.del_vlan,
3047                                                  &vlan);
3048                         if (err)
3049                                 return err;
3050
3051                         /* no support for VLAN promiscuous on inner VLAN unless
3052                          * we are in Single VLAN Mode (SVM)
3053                          */
3054                         if (!ice_is_dvm_ena(&vsi->back->hw)) {
3055                                 if (vlan_promisc)
3056                                         ice_vf_dis_vlan_promisc(vsi, &vlan);
3057
3058                                 /* Disable VLAN filtering when only VLAN 0 is left */
3059                                 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3060                                         err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3061                                         if (err)
3062                                                 return err;
3063                                 }
3064                         }
3065                 }
3066         }
3067
3068         return 0;
3069 }
3070
3071 /**
3072  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3073  * @vf: VF the message was received from
3074  * @msg: message received from the VF
3075  */
3076 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3077 {
3078         struct virtchnl_vlan_filter_list_v2 *vfl =
3079                 (struct virtchnl_vlan_filter_list_v2 *)msg;
3080         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3081         struct ice_vsi *vsi;
3082
3083         if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3084                                               vfl)) {
3085                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3086                 goto out;
3087         }
3088
3089         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3090                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3091                 goto out;
3092         }
3093
3094         vsi = ice_get_vf_vsi(vf);
3095         if (!vsi) {
3096                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3097                 goto out;
3098         }
3099
3100         if (ice_vc_del_vlans(vf, vsi, vfl))
3101                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3102
3103 out:
3104         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3105                                      0);
3106 }
3107
3108 /**
3109  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3110  * @vf: VF used to add the VLAN(s)
3111  * @vsi: VF's VSI used to add the VLAN(s)
3112  * @vfl: virthchnl filter list used to add the filters
3113  */
3114 static int
3115 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3116                  struct virtchnl_vlan_filter_list_v2 *vfl)
3117 {
3118         bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3119         int err;
3120         u16 i;
3121
3122         for (i = 0; i < vfl->num_elements; i++) {
3123                 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3124                 struct virtchnl_vlan *vc_vlan;
3125
3126                 vc_vlan = &vlan_fltr->outer;
3127                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3128                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3129
3130                         err = ice_vc_vlan_action(vsi,
3131                                                  vsi->outer_vlan_ops.add_vlan,
3132                                                  &vlan);
3133                         if (err)
3134                                 return err;
3135
3136                         if (vlan_promisc) {
3137                                 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3138                                 if (err)
3139                                         return err;
3140                         }
3141
3142                         /* Enable VLAN filtering on first non-zero VLAN */
3143                         if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3144                                 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3145                                 if (err)
3146                                         return err;
3147                         }
3148                 }
3149
3150                 vc_vlan = &vlan_fltr->inner;
3151                 if (ice_vc_is_valid_vlan(vc_vlan)) {
3152                         struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3153
3154                         err = ice_vc_vlan_action(vsi,
3155                                                  vsi->inner_vlan_ops.add_vlan,
3156                                                  &vlan);
3157                         if (err)
3158                                 return err;
3159
3160                         /* no support for VLAN promiscuous on inner VLAN unless
3161                          * we are in Single VLAN Mode (SVM)
3162                          */
3163                         if (!ice_is_dvm_ena(&vsi->back->hw)) {
3164                                 if (vlan_promisc) {
3165                                         err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3166                                         if (err)
3167                                                 return err;
3168                                 }
3169
3170                                 /* Enable VLAN filtering on first non-zero VLAN */
3171                                 if (vf->spoofchk && vlan.vid) {
3172                                         err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3173                                         if (err)
3174                                                 return err;
3175                                 }
3176                         }
3177                 }
3178         }
3179
3180         return 0;
3181 }
3182
3183 /**
3184  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3185  * @vsi: VF VSI used to get number of existing VLAN filters
3186  * @vfc: negotiated/supported VLAN filtering capabilities
3187  * @vfl: VLAN filter list from VF to validate
3188  *
3189  * Validate all of the filters in the VLAN filter list from the VF during the
3190  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3191  * Otherwise return true.
3192  */
3193 static bool
3194 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3195                                      struct virtchnl_vlan_filtering_caps *vfc,
3196                                      struct virtchnl_vlan_filter_list_v2 *vfl)
3197 {
3198         u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3199                 vfl->num_elements;
3200
3201         if (num_requested_filters > vfc->max_filters)
3202                 return false;
3203
3204         return ice_vc_validate_vlan_filter_list(vfc, vfl);
3205 }
3206
3207 /**
3208  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3209  * @vf: VF the message was received from
3210  * @msg: message received from the VF
3211  */
3212 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3213 {
3214         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3215         struct virtchnl_vlan_filter_list_v2 *vfl =
3216                 (struct virtchnl_vlan_filter_list_v2 *)msg;
3217         struct ice_vsi *vsi;
3218
3219         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3220                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3221                 goto out;
3222         }
3223
3224         if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3225                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3226                 goto out;
3227         }
3228
3229         vsi = ice_get_vf_vsi(vf);
3230         if (!vsi) {
3231                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3232                 goto out;
3233         }
3234
3235         if (!ice_vc_validate_add_vlan_filter_list(vsi,
3236                                                   &vf->vlan_v2_caps.filtering,
3237                                                   vfl)) {
3238                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3239                 goto out;
3240         }
3241
3242         if (ice_vc_add_vlans(vf, vsi, vfl))
3243                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3244
3245 out:
3246         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3247                                      0);
3248 }
3249
3250 /**
3251  * ice_vc_valid_vlan_setting - validate VLAN setting
3252  * @negotiated_settings: negotiated VLAN settings during VF init
3253  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3254  */
3255 static bool
3256 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3257 {
3258         if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3259                 return false;
3260
3261         /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3262          * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3263          */
3264         if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3265             hweight32(ethertype_setting) > 1)
3266                 return false;
3267
3268         /* ability to modify the VLAN setting was not negotiated */
3269         if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3270                 return false;
3271
3272         return true;
3273 }
3274
3275 /**
3276  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3277  * @caps: negotiated VLAN settings during VF init
3278  * @msg: message to validate
3279  *
3280  * Used to validate any VLAN virtchnl message sent as a
3281  * virtchnl_vlan_setting structure. Validates the message against the
3282  * negotiated/supported caps during VF driver init.
3283  */
3284 static bool
3285 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3286                               struct virtchnl_vlan_setting *msg)
3287 {
3288         if ((!msg->outer_ethertype_setting &&
3289              !msg->inner_ethertype_setting) ||
3290             (!caps->outer && !caps->inner))
3291                 return false;
3292
3293         if (msg->outer_ethertype_setting &&
3294             !ice_vc_valid_vlan_setting(caps->outer,
3295                                        msg->outer_ethertype_setting))
3296                 return false;
3297
3298         if (msg->inner_ethertype_setting &&
3299             !ice_vc_valid_vlan_setting(caps->inner,
3300                                        msg->inner_ethertype_setting))
3301                 return false;
3302
3303         return true;
3304 }
3305
3306 /**
3307  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3308  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3309  * @tpid: VLAN TPID to populate
3310  */
3311 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3312 {
3313         switch (ethertype_setting) {
3314         case VIRTCHNL_VLAN_ETHERTYPE_8100:
3315                 *tpid = ETH_P_8021Q;
3316                 break;
3317         case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3318                 *tpid = ETH_P_8021AD;
3319                 break;
3320         case VIRTCHNL_VLAN_ETHERTYPE_9100:
3321                 *tpid = ETH_P_QINQ1;
3322                 break;
3323         default:
3324                 *tpid = 0;
3325                 return -EINVAL;
3326         }
3327
3328         return 0;
3329 }
3330
3331 /**
3332  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3333  * @vsi: VF's VSI used to enable the VLAN offload
3334  * @ena_offload: function used to enable the VLAN offload
3335  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3336  */
3337 static int
3338 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3339                         int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3340                         u32 ethertype_setting)
3341 {
3342         u16 tpid;
3343         int err;
3344
3345         err = ice_vc_get_tpid(ethertype_setting, &tpid);
3346         if (err)
3347                 return err;
3348
3349         err = ena_offload(vsi, tpid);
3350         if (err)
3351                 return err;
3352
3353         return 0;
3354 }
3355
3356 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX  3
3357 #define ICE_L2TSEL_BIT_OFFSET           23
3358 enum ice_l2tsel {
3359         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3360         ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3361 };
3362
3363 /**
3364  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3365  * @vsi: VSI used to update l2tsel on
3366  * @l2tsel: l2tsel setting requested
3367  *
3368  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3369  * This will modify which descriptor field the first offloaded VLAN will be
3370  * stripped into.
3371  */
3372 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3373 {
3374         struct ice_hw *hw = &vsi->back->hw;
3375         u32 l2tsel_bit;
3376         int i;
3377
3378         if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3379                 l2tsel_bit = 0;
3380         else
3381                 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3382
3383         for (i = 0; i < vsi->alloc_rxq; i++) {
3384                 u16 pfq = vsi->rxq_map[i];
3385                 u32 qrx_context_offset;
3386                 u32 regval;
3387
3388                 qrx_context_offset =
3389                         QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3390
3391                 regval = rd32(hw, qrx_context_offset);
3392                 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3393                 regval |= l2tsel_bit;
3394                 wr32(hw, qrx_context_offset, regval);
3395         }
3396 }
3397
3398 /**
3399  * ice_vc_ena_vlan_stripping_v2_msg
3400  * @vf: VF the message was received from
3401  * @msg: message received from the VF
3402  *
3403  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3404  */
3405 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3406 {
3407         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3408         struct virtchnl_vlan_supported_caps *stripping_support;
3409         struct virtchnl_vlan_setting *strip_msg =
3410                 (struct virtchnl_vlan_setting *)msg;
3411         u32 ethertype_setting;
3412         struct ice_vsi *vsi;
3413
3414         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3415                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3416                 goto out;
3417         }
3418
3419         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3420                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3421                 goto out;
3422         }
3423
3424         vsi = ice_get_vf_vsi(vf);
3425         if (!vsi) {
3426                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3427                 goto out;
3428         }
3429
3430         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3431         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3432                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3433                 goto out;
3434         }
3435
3436         ethertype_setting = strip_msg->outer_ethertype_setting;
3437         if (ethertype_setting) {
3438                 if (ice_vc_ena_vlan_offload(vsi,
3439                                             vsi->outer_vlan_ops.ena_stripping,
3440                                             ethertype_setting)) {
3441                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3442                         goto out;
3443                 } else {
3444                         enum ice_l2tsel l2tsel =
3445                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3446
3447                         /* PF tells the VF that the outer VLAN tag is always
3448                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3449                          * inner is always extracted to
3450                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3451                          * support outer stripping so the first tag always ends
3452                          * up in L2TAG2_2ND and the second/inner tag, if
3453                          * enabled, is extracted in L2TAG1.
3454                          */
3455                         ice_vsi_update_l2tsel(vsi, l2tsel);
3456                 }
3457         }
3458
3459         ethertype_setting = strip_msg->inner_ethertype_setting;
3460         if (ethertype_setting &&
3461             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3462                                     ethertype_setting)) {
3463                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3464                 goto out;
3465         }
3466
3467 out:
3468         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3469                                      v_ret, NULL, 0);
3470 }
3471
3472 /**
3473  * ice_vc_dis_vlan_stripping_v2_msg
3474  * @vf: VF the message was received from
3475  * @msg: message received from the VF
3476  *
3477  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3478  */
3479 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3480 {
3481         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3482         struct virtchnl_vlan_supported_caps *stripping_support;
3483         struct virtchnl_vlan_setting *strip_msg =
3484                 (struct virtchnl_vlan_setting *)msg;
3485         u32 ethertype_setting;
3486         struct ice_vsi *vsi;
3487
3488         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3489                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3490                 goto out;
3491         }
3492
3493         if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3494                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3495                 goto out;
3496         }
3497
3498         vsi = ice_get_vf_vsi(vf);
3499         if (!vsi) {
3500                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3501                 goto out;
3502         }
3503
3504         stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3505         if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3506                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3507                 goto out;
3508         }
3509
3510         ethertype_setting = strip_msg->outer_ethertype_setting;
3511         if (ethertype_setting) {
3512                 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3513                         v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3514                         goto out;
3515                 } else {
3516                         enum ice_l2tsel l2tsel =
3517                                 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3518
3519                         /* PF tells the VF that the outer VLAN tag is always
3520                          * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3521                          * inner is always extracted to
3522                          * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3523                          * support inner stripping while outer stripping is
3524                          * disabled so that the first and only tag is extracted
3525                          * in L2TAG1.
3526                          */
3527                         ice_vsi_update_l2tsel(vsi, l2tsel);
3528                 }
3529         }
3530
3531         ethertype_setting = strip_msg->inner_ethertype_setting;
3532         if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3533                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3534                 goto out;
3535         }
3536
3537 out:
3538         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3539                                      v_ret, NULL, 0);
3540 }
3541
3542 /**
3543  * ice_vc_ena_vlan_insertion_v2_msg
3544  * @vf: VF the message was received from
3545  * @msg: message received from the VF
3546  *
3547  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3548  */
3549 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3550 {
3551         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3552         struct virtchnl_vlan_supported_caps *insertion_support;
3553         struct virtchnl_vlan_setting *insertion_msg =
3554                 (struct virtchnl_vlan_setting *)msg;
3555         u32 ethertype_setting;
3556         struct ice_vsi *vsi;
3557
3558         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3559                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3560                 goto out;
3561         }
3562
3563         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3564                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3565                 goto out;
3566         }
3567
3568         vsi = ice_get_vf_vsi(vf);
3569         if (!vsi) {
3570                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3571                 goto out;
3572         }
3573
3574         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3575         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3576                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3577                 goto out;
3578         }
3579
3580         ethertype_setting = insertion_msg->outer_ethertype_setting;
3581         if (ethertype_setting &&
3582             ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3583                                     ethertype_setting)) {
3584                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3585                 goto out;
3586         }
3587
3588         ethertype_setting = insertion_msg->inner_ethertype_setting;
3589         if (ethertype_setting &&
3590             ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3591                                     ethertype_setting)) {
3592                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3593                 goto out;
3594         }
3595
3596 out:
3597         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3598                                      v_ret, NULL, 0);
3599 }
3600
3601 /**
3602  * ice_vc_dis_vlan_insertion_v2_msg
3603  * @vf: VF the message was received from
3604  * @msg: message received from the VF
3605  *
3606  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3607  */
3608 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3609 {
3610         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3611         struct virtchnl_vlan_supported_caps *insertion_support;
3612         struct virtchnl_vlan_setting *insertion_msg =
3613                 (struct virtchnl_vlan_setting *)msg;
3614         u32 ethertype_setting;
3615         struct ice_vsi *vsi;
3616
3617         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3618                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3619                 goto out;
3620         }
3621
3622         if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3623                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3624                 goto out;
3625         }
3626
3627         vsi = ice_get_vf_vsi(vf);
3628         if (!vsi) {
3629                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3630                 goto out;
3631         }
3632
3633         insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3634         if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3635                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3636                 goto out;
3637         }
3638
3639         ethertype_setting = insertion_msg->outer_ethertype_setting;
3640         if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3641                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3642                 goto out;
3643         }
3644
3645         ethertype_setting = insertion_msg->inner_ethertype_setting;
3646         if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3647                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3648                 goto out;
3649         }
3650
3651 out:
3652         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3653                                      v_ret, NULL, 0);
3654 }
3655
3656 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3657         .get_ver_msg = ice_vc_get_ver_msg,
3658         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3659         .reset_vf = ice_vc_reset_vf_msg,
3660         .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3661         .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3662         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3663         .ena_qs_msg = ice_vc_ena_qs_msg,
3664         .dis_qs_msg = ice_vc_dis_qs_msg,
3665         .request_qs_msg = ice_vc_request_qs_msg,
3666         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3667         .config_rss_key = ice_vc_config_rss_key,
3668         .config_rss_lut = ice_vc_config_rss_lut,
3669         .get_stats_msg = ice_vc_get_stats_msg,
3670         .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3671         .add_vlan_msg = ice_vc_add_vlan_msg,
3672         .remove_vlan_msg = ice_vc_remove_vlan_msg,
3673         .query_rxdid = ice_vc_query_rxdid,
3674         .get_rss_hena = ice_vc_get_rss_hena,
3675         .set_rss_hena_msg = ice_vc_set_rss_hena,
3676         .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3677         .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3678         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3679         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3680         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3681         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3682         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3683         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3684         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3685         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3686         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3687         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3688 };
3689
3690 /**
3691  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3692  * @vf: the VF to switch ops
3693  */
3694 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3695 {
3696         vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3697 }
3698
3699 /**
3700  * ice_vc_repr_add_mac
3701  * @vf: pointer to VF
3702  * @msg: virtchannel message
3703  *
3704  * When port representors are created, we do not add MAC rule
3705  * to firmware, we store it so that PF could report same
3706  * MAC as VF.
3707  */
3708 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3709 {
3710         enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3711         struct virtchnl_ether_addr_list *al =
3712             (struct virtchnl_ether_addr_list *)msg;
3713         struct ice_vsi *vsi;
3714         struct ice_pf *pf;
3715         int i;
3716
3717         if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3718             !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3719                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3720                 goto handle_mac_exit;
3721         }
3722
3723         pf = vf->pf;
3724
3725         vsi = ice_get_vf_vsi(vf);
3726         if (!vsi) {
3727                 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3728                 goto handle_mac_exit;
3729         }
3730
3731         for (i = 0; i < al->num_elements; i++) {
3732                 u8 *mac_addr = al->list[i].addr;
3733
3734                 if (!is_unicast_ether_addr(mac_addr) ||
3735                     ether_addr_equal(mac_addr, vf->hw_lan_addr))
3736                         continue;
3737
3738                 if (vf->pf_set_mac) {
3739                         dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3740                         v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3741                         goto handle_mac_exit;
3742                 }
3743
3744                 ice_vfhw_mac_add(vf, &al->list[i]);
3745                 vf->num_mac++;
3746                 break;
3747         }
3748
3749 handle_mac_exit:
3750         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3751                                      v_ret, NULL, 0);
3752 }
3753
3754 /**
3755  * ice_vc_repr_del_mac - response with success for deleting MAC
3756  * @vf: pointer to VF
3757  * @msg: virtchannel message
3758  *
3759  * Respond with success to not break normal VF flow.
3760  * For legacy VF driver try to update cached MAC address.
3761  */
3762 static int
3763 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3764 {
3765         struct virtchnl_ether_addr_list *al =
3766                 (struct virtchnl_ether_addr_list *)msg;
3767
3768         ice_update_legacy_cached_mac(vf, &al->list[0]);
3769
3770         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3771                                      VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3772 }
3773
3774 static int
3775 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3776 {
3777         dev_dbg(ice_pf_to_dev(vf->pf),
3778                 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3779                 vf->vf_id);
3780         return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3781                                      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3782                                      NULL, 0);
3783 }
3784
3785 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3786         .get_ver_msg = ice_vc_get_ver_msg,
3787         .get_vf_res_msg = ice_vc_get_vf_res_msg,
3788         .reset_vf = ice_vc_reset_vf_msg,
3789         .add_mac_addr_msg = ice_vc_repr_add_mac,
3790         .del_mac_addr_msg = ice_vc_repr_del_mac,
3791         .cfg_qs_msg = ice_vc_cfg_qs_msg,
3792         .ena_qs_msg = ice_vc_ena_qs_msg,
3793         .dis_qs_msg = ice_vc_dis_qs_msg,
3794         .request_qs_msg = ice_vc_request_qs_msg,
3795         .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3796         .config_rss_key = ice_vc_config_rss_key,
3797         .config_rss_lut = ice_vc_config_rss_lut,
3798         .get_stats_msg = ice_vc_get_stats_msg,
3799         .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3800         .add_vlan_msg = ice_vc_add_vlan_msg,
3801         .remove_vlan_msg = ice_vc_remove_vlan_msg,
3802         .query_rxdid = ice_vc_query_rxdid,
3803         .get_rss_hena = ice_vc_get_rss_hena,
3804         .set_rss_hena_msg = ice_vc_set_rss_hena,
3805         .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3806         .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3807         .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3808         .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3809         .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3810         .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3811         .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3812         .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3813         .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3814         .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3815         .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3816         .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3817 };
3818
3819 /**
3820  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3821  * @vf: the VF to switch ops
3822  */
3823 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3824 {
3825         vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3826 }
3827
3828 /**
3829  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3830  * @vf: the VF to check
3831  * @mbxdata: data about the state of the mailbox
3832  *
3833  * Detect if a given VF might be malicious and attempting to overflow the PF
3834  * mailbox. If so, log a warning message and ignore this event.
3835  */
3836 static bool
3837 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3838 {
3839         bool report_malvf = false;
3840         struct device *dev;
3841         struct ice_pf *pf;
3842         int status;
3843
3844         pf = vf->pf;
3845         dev = ice_pf_to_dev(pf);
3846
3847         if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3848                 return vf->mbx_info.malicious;
3849
3850         /* check to see if we have a newly malicious VF */
3851         status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3852                                           &report_malvf);
3853         if (status)
3854                 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3855                                      vf->vf_id, vf->dev_lan_addr, status);
3856
3857         if (report_malvf) {
3858                 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3859                 u8 zero_addr[ETH_ALEN] = {};
3860
3861                 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3862                          vf->dev_lan_addr,
3863                          pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3864         }
3865
3866         return vf->mbx_info.malicious;
3867 }
3868
3869 /**
3870  * ice_vc_process_vf_msg - Process request from VF
3871  * @pf: pointer to the PF structure
3872  * @event: pointer to the AQ event
3873  * @mbxdata: information used to detect VF attempting mailbox overflow
3874  *
3875  * called from the common asq/arq handler to
3876  * process request from VF
3877  */
3878 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3879                            struct ice_mbx_data *mbxdata)
3880 {
3881         u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3882         s16 vf_id = le16_to_cpu(event->desc.retval);
3883         const struct ice_virtchnl_ops *ops;
3884         u16 msglen = event->msg_len;
3885         u8 *msg = event->msg_buf;
3886         struct ice_vf *vf = NULL;
3887         struct device *dev;
3888         int err = 0;
3889
3890         dev = ice_pf_to_dev(pf);
3891
3892         vf = ice_get_vf_by_id(pf, vf_id);
3893         if (!vf) {
3894                 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3895                         vf_id, v_opcode, msglen);
3896                 return;
3897         }
3898
3899         mutex_lock(&vf->cfg_lock);
3900
3901         /* Check if the VF is trying to overflow the mailbox */
3902         if (ice_is_malicious_vf(vf, mbxdata))
3903                 goto finish;
3904
3905         /* Check if VF is disabled. */
3906         if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3907                 err = -EPERM;
3908                 goto error_handler;
3909         }
3910
3911         ops = vf->virtchnl_ops;
3912
3913         /* Perform basic checks on the msg */
3914         err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3915         if (err) {
3916                 if (err == VIRTCHNL_STATUS_ERR_PARAM)
3917                         err = -EPERM;
3918                 else
3919                         err = -EINVAL;
3920         }
3921
3922 error_handler:
3923         if (err) {
3924                 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3925                                       NULL, 0);
3926                 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3927                         vf_id, v_opcode, msglen, err);
3928                 goto finish;
3929         }
3930
3931         if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3932                 ice_vc_send_msg_to_vf(vf, v_opcode,
3933                                       VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3934                                       0);
3935                 goto finish;
3936         }
3937
3938         switch (v_opcode) {
3939         case VIRTCHNL_OP_VERSION:
3940                 err = ops->get_ver_msg(vf, msg);
3941                 break;
3942         case VIRTCHNL_OP_GET_VF_RESOURCES:
3943                 err = ops->get_vf_res_msg(vf, msg);
3944                 if (ice_vf_init_vlan_stripping(vf))
3945                         dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3946                                 vf->vf_id);
3947                 ice_vc_notify_vf_link_state(vf);
3948                 break;
3949         case VIRTCHNL_OP_RESET_VF:
3950                 clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
3951                 ops->reset_vf(vf);
3952                 break;
3953         case VIRTCHNL_OP_ADD_ETH_ADDR:
3954                 err = ops->add_mac_addr_msg(vf, msg);
3955                 break;
3956         case VIRTCHNL_OP_DEL_ETH_ADDR:
3957                 err = ops->del_mac_addr_msg(vf, msg);
3958                 break;
3959         case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3960                 err = ops->cfg_qs_msg(vf, msg);
3961                 break;
3962         case VIRTCHNL_OP_ENABLE_QUEUES:
3963                 err = ops->ena_qs_msg(vf, msg);
3964                 ice_vc_notify_vf_link_state(vf);
3965                 break;
3966         case VIRTCHNL_OP_DISABLE_QUEUES:
3967                 err = ops->dis_qs_msg(vf, msg);
3968                 break;
3969         case VIRTCHNL_OP_REQUEST_QUEUES:
3970                 err = ops->request_qs_msg(vf, msg);
3971                 break;
3972         case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3973                 err = ops->cfg_irq_map_msg(vf, msg);
3974                 break;
3975         case VIRTCHNL_OP_CONFIG_RSS_KEY:
3976                 err = ops->config_rss_key(vf, msg);
3977                 break;
3978         case VIRTCHNL_OP_CONFIG_RSS_LUT:
3979                 err = ops->config_rss_lut(vf, msg);
3980                 break;
3981         case VIRTCHNL_OP_GET_STATS:
3982                 err = ops->get_stats_msg(vf, msg);
3983                 break;
3984         case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3985                 err = ops->cfg_promiscuous_mode_msg(vf, msg);
3986                 break;
3987         case VIRTCHNL_OP_ADD_VLAN:
3988                 err = ops->add_vlan_msg(vf, msg);
3989                 break;
3990         case VIRTCHNL_OP_DEL_VLAN:
3991                 err = ops->remove_vlan_msg(vf, msg);
3992                 break;
3993         case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
3994                 err = ops->query_rxdid(vf);
3995                 break;
3996         case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
3997                 err = ops->get_rss_hena(vf);
3998                 break;
3999         case VIRTCHNL_OP_SET_RSS_HENA:
4000                 err = ops->set_rss_hena_msg(vf, msg);
4001                 break;
4002         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4003                 err = ops->ena_vlan_stripping(vf);
4004                 break;
4005         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4006                 err = ops->dis_vlan_stripping(vf);
4007                 break;
4008         case VIRTCHNL_OP_ADD_FDIR_FILTER:
4009                 err = ops->add_fdir_fltr_msg(vf, msg);
4010                 break;
4011         case VIRTCHNL_OP_DEL_FDIR_FILTER:
4012                 err = ops->del_fdir_fltr_msg(vf, msg);
4013                 break;
4014         case VIRTCHNL_OP_ADD_RSS_CFG:
4015                 err = ops->handle_rss_cfg_msg(vf, msg, true);
4016                 break;
4017         case VIRTCHNL_OP_DEL_RSS_CFG:
4018                 err = ops->handle_rss_cfg_msg(vf, msg, false);
4019                 break;
4020         case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4021                 err = ops->get_offload_vlan_v2_caps(vf);
4022                 break;
4023         case VIRTCHNL_OP_ADD_VLAN_V2:
4024                 err = ops->add_vlan_v2_msg(vf, msg);
4025                 break;
4026         case VIRTCHNL_OP_DEL_VLAN_V2:
4027                 err = ops->remove_vlan_v2_msg(vf, msg);
4028                 break;
4029         case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4030                 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4031                 break;
4032         case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4033                 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4034                 break;
4035         case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4036                 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4037                 break;
4038         case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4039                 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4040                 break;
4041         case VIRTCHNL_OP_UNKNOWN:
4042         default:
4043                 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4044                         vf_id);
4045                 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4046                                             VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4047                                             NULL, 0);
4048                 break;
4049         }
4050         if (err) {
4051                 /* Helper function cares less about error return values here
4052                  * as it is busy with pending work.
4053                  */
4054                 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4055                          vf_id, v_opcode, err);
4056         }
4057
4058 finish:
4059         mutex_unlock(&vf->cfg_lock);
4060         ice_put_vf(vf);
4061 }