1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
4 /* The driver transmit and receive code */
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <net/dsfield.h>
13 #include "ice_txrx_lib.h"
16 #include "ice_trace.h"
17 #include "ice_dcb_lib.h"
19 #include "ice_eswitch.h"
21 #define ICE_RX_HDR_SIZE 256
23 #define FDIR_DESC_RXDID 0x40
24 #define ICE_FDIR_CLEAN_DELAY 10
27 * ice_prgm_fdir_fltr - Program a Flow Director filter
28 * @vsi: VSI to send dummy packet
29 * @fdir_desc: flow director descriptor
30 * @raw_packet: allocated buffer for flow director
33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
36 struct ice_tx_buf *tx_buf, *first;
37 struct ice_fltr_desc *f_desc;
38 struct ice_tx_desc *tx_desc;
39 struct ice_tx_ring *tx_ring;
48 tx_ring = vsi->tx_rings[0];
49 if (!tx_ring || !tx_ring->desc)
53 /* we are using two descriptors to add/del a filter and we can wait */
54 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
57 msleep_interruptible(1);
60 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
63 if (dma_mapping_error(dev, dma))
66 /* grab the next descriptor */
67 i = tx_ring->next_to_use;
68 first = &tx_ring->tx_buf[i];
69 f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70 memcpy(f_desc, fdir_desc, sizeof(*f_desc));
73 i = (i < tx_ring->count) ? i : 0;
74 tx_desc = ICE_TX_DESC(tx_ring, i);
75 tx_buf = &tx_ring->tx_buf[i];
78 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
80 memset(tx_buf, 0, sizeof(*tx_buf));
81 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82 dma_unmap_addr_set(tx_buf, dma, dma);
84 tx_desc->buf_addr = cpu_to_le64(dma);
85 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
88 tx_buf->type = ICE_TX_BUF_DUMMY;
89 tx_buf->raw_buf = raw_packet;
91 tx_desc->cmd_type_offset_bsz =
92 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
94 /* Force memory write to complete before letting h/w know
95 * there are new descriptors to fetch.
99 /* mark the data descriptor to be watched */
100 first->next_to_watch = tx_desc;
102 writel(tx_ring->next_to_use, tx_ring->tail);
108 * ice_unmap_and_free_tx_buf - Release a Tx buffer
109 * @ring: the ring that owns the buffer
110 * @tx_buf: the buffer to free
113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
115 if (dma_unmap_len(tx_buf, len))
116 dma_unmap_page(ring->dev,
117 dma_unmap_addr(tx_buf, dma),
118 dma_unmap_len(tx_buf, len),
121 switch (tx_buf->type) {
122 case ICE_TX_BUF_DUMMY:
123 devm_kfree(ring->dev, tx_buf->raw_buf);
126 dev_kfree_skb_any(tx_buf->skb);
128 case ICE_TX_BUF_XDP_TX:
129 page_frag_free(tx_buf->raw_buf);
131 case ICE_TX_BUF_XDP_XMIT:
132 xdp_return_frame(tx_buf->xdpf);
136 tx_buf->next_to_watch = NULL;
137 tx_buf->type = ICE_TX_BUF_EMPTY;
138 dma_unmap_len_set(tx_buf, len, 0);
139 /* tx_buf must be completely set up in the transmit path */
142 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
144 return netdev_get_tx_queue(ring->netdev, ring->q_index);
148 * ice_clean_tx_ring - Free any empty Tx buffers
149 * @tx_ring: ring to be cleaned
151 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
156 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
157 ice_xsk_clean_xdp_ring(tx_ring);
161 /* ring already cleared, nothing to do */
162 if (!tx_ring->tx_buf)
165 /* Free all the Tx ring sk_buffs */
166 for (i = 0; i < tx_ring->count; i++)
167 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
170 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
172 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
174 /* Zero out the descriptor ring */
175 memset(tx_ring->desc, 0, size);
177 tx_ring->next_to_use = 0;
178 tx_ring->next_to_clean = 0;
180 if (!tx_ring->netdev)
183 /* cleanup Tx queue statistics */
184 netdev_tx_reset_queue(txring_txq(tx_ring));
188 * ice_free_tx_ring - Free Tx resources per queue
189 * @tx_ring: Tx descriptor ring for a specific queue
191 * Free all transmit software resources
193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
197 ice_clean_tx_ring(tx_ring);
198 devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199 tx_ring->tx_buf = NULL;
202 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
204 dmam_free_coherent(tx_ring->dev, size,
205 tx_ring->desc, tx_ring->dma);
206 tx_ring->desc = NULL;
211 * ice_clean_tx_irq - Reclaim resources after transmit completes
212 * @tx_ring: Tx ring to clean
213 * @napi_budget: Used to determine if we are in netpoll
215 * Returns true if there's any budget left (e.g. the clean is finished)
217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
219 unsigned int total_bytes = 0, total_pkts = 0;
220 unsigned int budget = ICE_DFLT_IRQ_WORK;
221 struct ice_vsi *vsi = tx_ring->vsi;
222 s16 i = tx_ring->next_to_clean;
223 struct ice_tx_desc *tx_desc;
224 struct ice_tx_buf *tx_buf;
226 /* get the bql data ready */
227 netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
229 tx_buf = &tx_ring->tx_buf[i];
230 tx_desc = ICE_TX_DESC(tx_ring, i);
233 prefetch(&vsi->state);
236 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
238 /* if next_to_watch is not set then there is no work pending */
242 /* follow the guidelines of other drivers */
243 prefetchw(&tx_buf->skb->users);
245 smp_rmb(); /* prevent any other reads prior to eop_desc */
247 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248 /* if the descriptor isn't done, no work yet to do */
249 if (!(eop_desc->cmd_type_offset_bsz &
250 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
253 /* clear next_to_watch to prevent false hangs */
254 tx_buf->next_to_watch = NULL;
256 /* update the statistics for this packet */
257 total_bytes += tx_buf->bytecount;
258 total_pkts += tx_buf->gso_segs;
261 napi_consume_skb(tx_buf->skb, napi_budget);
263 /* unmap skb header data */
264 dma_unmap_single(tx_ring->dev,
265 dma_unmap_addr(tx_buf, dma),
266 dma_unmap_len(tx_buf, len),
269 /* clear tx_buf data */
270 tx_buf->type = ICE_TX_BUF_EMPTY;
271 dma_unmap_len_set(tx_buf, len, 0);
273 /* unmap remaining buffers */
274 while (tx_desc != eop_desc) {
275 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
281 tx_buf = tx_ring->tx_buf;
282 tx_desc = ICE_TX_DESC(tx_ring, 0);
285 /* unmap any remaining paged data */
286 if (dma_unmap_len(tx_buf, len)) {
287 dma_unmap_page(tx_ring->dev,
288 dma_unmap_addr(tx_buf, dma),
289 dma_unmap_len(tx_buf, len),
291 dma_unmap_len_set(tx_buf, len, 0);
294 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
296 /* move us one more past the eop_desc for start of next pkt */
302 tx_buf = tx_ring->tx_buf;
303 tx_desc = ICE_TX_DESC(tx_ring, 0);
308 /* update budget accounting */
310 } while (likely(budget));
313 tx_ring->next_to_clean = i;
315 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321 /* Make sure that anybody stopping the queue after this
322 * sees the new next_to_clean.
325 if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326 !test_bit(ICE_VSI_DOWN, vsi->state)) {
327 netif_tx_wake_queue(txring_txq(tx_ring));
328 ++tx_ring->ring_stats->tx_stats.restart_q;
336 * ice_setup_tx_ring - Allocate the Tx descriptors
337 * @tx_ring: the Tx ring to set up
339 * Return 0 on success, negative on error
341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
343 struct device *dev = tx_ring->dev;
349 /* warn if we are about to overwrite the pointer */
350 WARN_ON(tx_ring->tx_buf);
352 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
354 if (!tx_ring->tx_buf)
357 /* round up to nearest page */
358 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
360 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
362 if (!tx_ring->desc) {
363 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
368 tx_ring->next_to_use = 0;
369 tx_ring->next_to_clean = 0;
370 tx_ring->ring_stats->tx_stats.prev_pkt = -1;
374 devm_kfree(dev, tx_ring->tx_buf);
375 tx_ring->tx_buf = NULL;
380 * ice_clean_rx_ring - Free Rx buffers
381 * @rx_ring: ring to be cleaned
383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
385 struct xdp_buff *xdp = &rx_ring->xdp;
386 struct device *dev = rx_ring->dev;
390 /* ring already cleared, nothing to do */
391 if (!rx_ring->rx_buf)
394 if (rx_ring->xsk_pool) {
395 ice_xsk_clean_rx_ring(rx_ring);
400 xdp_return_buff(xdp);
404 /* Free all the Rx ring sk_buffs */
405 for (i = 0; i < rx_ring->count; i++) {
406 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
411 /* Invalidate cache lines that may have been written to by
412 * device so that we avoid corrupting memory.
414 dma_sync_single_range_for_cpu(dev, rx_buf->dma,
419 /* free resources associated with mapping */
420 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
421 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
422 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
425 rx_buf->page_offset = 0;
429 if (rx_ring->xsk_pool)
430 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
432 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
434 /* Zero out the descriptor ring */
435 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
437 memset(rx_ring->desc, 0, size);
439 rx_ring->next_to_alloc = 0;
440 rx_ring->next_to_clean = 0;
441 rx_ring->first_desc = 0;
442 rx_ring->next_to_use = 0;
446 * ice_free_rx_ring - Free Rx resources
447 * @rx_ring: ring to clean the resources from
449 * Free all receive software resources
451 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
455 ice_clean_rx_ring(rx_ring);
456 if (rx_ring->vsi->type == ICE_VSI_PF)
457 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
458 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
459 rx_ring->xdp_prog = NULL;
460 if (rx_ring->xsk_pool) {
461 kfree(rx_ring->xdp_buf);
462 rx_ring->xdp_buf = NULL;
464 kfree(rx_ring->rx_buf);
465 rx_ring->rx_buf = NULL;
469 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
471 dmam_free_coherent(rx_ring->dev, size,
472 rx_ring->desc, rx_ring->dma);
473 rx_ring->desc = NULL;
478 * ice_setup_rx_ring - Allocate the Rx descriptors
479 * @rx_ring: the Rx ring to set up
481 * Return 0 on success, negative on error
483 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
485 struct device *dev = rx_ring->dev;
491 /* warn if we are about to overwrite the pointer */
492 WARN_ON(rx_ring->rx_buf);
494 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
495 if (!rx_ring->rx_buf)
498 /* round up to nearest page */
499 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
501 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
503 if (!rx_ring->desc) {
504 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
509 rx_ring->next_to_use = 0;
510 rx_ring->next_to_clean = 0;
511 rx_ring->first_desc = 0;
513 if (ice_is_xdp_ena_vsi(rx_ring->vsi))
514 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
516 if (rx_ring->vsi->type == ICE_VSI_PF &&
517 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
518 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
519 rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
524 kfree(rx_ring->rx_buf);
525 rx_ring->rx_buf = NULL;
530 * ice_rx_frame_truesize
531 * @rx_ring: ptr to Rx ring
534 * calculate the truesize with taking into the account PAGE_SIZE of
538 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, const unsigned int size)
540 unsigned int truesize;
542 #if (PAGE_SIZE < 8192)
543 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
545 truesize = rx_ring->rx_offset ?
546 SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
547 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
548 SKB_DATA_ALIGN(size);
554 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
556 * @xdp: xdp_buff used as input to the XDP program
557 * @xdp_prog: XDP program to run
558 * @xdp_ring: ring to be used for XDP_TX action
559 * @rx_buf: Rx buffer to store the XDP action
561 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
564 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
565 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring,
566 struct ice_rx_buf *rx_buf)
568 unsigned int ret = ICE_XDP_PASS;
574 act = bpf_prog_run_xdp(xdp_prog, xdp);
579 if (static_branch_unlikely(&ice_xdp_locking_key))
580 spin_lock(&xdp_ring->tx_lock);
581 ret = __ice_xmit_xdp_ring(xdp, xdp_ring, false);
582 if (static_branch_unlikely(&ice_xdp_locking_key))
583 spin_unlock(&xdp_ring->tx_lock);
584 if (ret == ICE_XDP_CONSUMED)
588 if (xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog))
593 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
597 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
600 ret = ICE_XDP_CONSUMED;
604 if (unlikely(xdp_buff_has_frags(xdp)))
605 ice_set_rx_bufs_act(xdp, rx_ring, ret);
609 * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
610 * @xdpf: XDP frame that will be converted to XDP buff
611 * @xdp_ring: XDP ring for transmission
613 static int ice_xmit_xdp_ring(const struct xdp_frame *xdpf,
614 struct ice_tx_ring *xdp_ring)
618 xdp.data_hard_start = (void *)xdpf;
619 xdp.data = xdpf->data;
620 xdp.data_end = xdp.data + xdpf->len;
621 xdp.frame_sz = xdpf->frame_sz;
622 xdp.flags = xdpf->flags;
624 return __ice_xmit_xdp_ring(&xdp, xdp_ring, true);
628 * ice_xdp_xmit - submit packets to XDP ring for transmission
630 * @n: number of XDP frames to be transmitted
631 * @frames: XDP frames to be transmitted
632 * @flags: transmit flags
634 * Returns number of frames successfully sent. Failed frames
635 * will be free'ed by XDP core.
636 * For error cases, a negative errno code is returned and no-frames
637 * are transmitted (caller must handle freeing frames).
640 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
643 struct ice_netdev_priv *np = netdev_priv(dev);
644 unsigned int queue_index = smp_processor_id();
645 struct ice_vsi *vsi = np->vsi;
646 struct ice_tx_ring *xdp_ring;
647 struct ice_tx_buf *tx_buf;
650 if (test_bit(ICE_VSI_DOWN, vsi->state))
653 if (!ice_is_xdp_ena_vsi(vsi))
656 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
659 if (static_branch_unlikely(&ice_xdp_locking_key)) {
660 queue_index %= vsi->num_xdp_txq;
661 xdp_ring = vsi->xdp_rings[queue_index];
662 spin_lock(&xdp_ring->tx_lock);
664 /* Generally, should not happen */
665 if (unlikely(queue_index >= vsi->num_xdp_txq))
667 xdp_ring = vsi->xdp_rings[queue_index];
670 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
671 for (i = 0; i < n; i++) {
672 const struct xdp_frame *xdpf = frames[i];
675 err = ice_xmit_xdp_ring(xdpf, xdp_ring);
676 if (err != ICE_XDP_TX)
681 tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
682 if (unlikely(flags & XDP_XMIT_FLUSH))
683 ice_xdp_ring_update_tail(xdp_ring);
685 if (static_branch_unlikely(&ice_xdp_locking_key))
686 spin_unlock(&xdp_ring->tx_lock);
692 * ice_alloc_mapped_page - recycle or make a new page
693 * @rx_ring: ring to use
694 * @bi: rx_buf struct to modify
696 * Returns true if the page was successfully allocated or
700 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
702 struct page *page = bi->page;
705 /* since we are recycling buffers we should seldom need to alloc */
709 /* alloc new page for storage */
710 page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
711 if (unlikely(!page)) {
712 rx_ring->ring_stats->rx_stats.alloc_page_failed++;
716 /* map page for use */
717 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
718 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
720 /* if mapping failed free memory back to system since
721 * there isn't much point in holding memory we can't use
723 if (dma_mapping_error(rx_ring->dev, dma)) {
724 __free_pages(page, ice_rx_pg_order(rx_ring));
725 rx_ring->ring_stats->rx_stats.alloc_page_failed++;
731 bi->page_offset = rx_ring->rx_offset;
732 page_ref_add(page, USHRT_MAX - 1);
733 bi->pagecnt_bias = USHRT_MAX;
739 * ice_alloc_rx_bufs - Replace used receive buffers
740 * @rx_ring: ring to place buffers on
741 * @cleaned_count: number of buffers to replace
743 * Returns false if all allocations were successful, true if any fail. Returning
744 * true signals to the caller that we didn't replace cleaned_count buffers and
745 * there is more work to do.
747 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
748 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
749 * multiple tail writes per call.
751 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, unsigned int cleaned_count)
753 union ice_32b_rx_flex_desc *rx_desc;
754 u16 ntu = rx_ring->next_to_use;
755 struct ice_rx_buf *bi;
757 /* do nothing if no valid netdev defined */
758 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
762 /* get the Rx descriptor and buffer based on next_to_use */
763 rx_desc = ICE_RX_DESC(rx_ring, ntu);
764 bi = &rx_ring->rx_buf[ntu];
767 /* if we fail here, we have work remaining */
768 if (!ice_alloc_mapped_page(rx_ring, bi))
771 /* sync the buffer for use by the device */
772 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
777 /* Refresh the desc even if buffer_addrs didn't change
778 * because each write-back erases this info.
780 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
785 if (unlikely(ntu == rx_ring->count)) {
786 rx_desc = ICE_RX_DESC(rx_ring, 0);
787 bi = rx_ring->rx_buf;
791 /* clear the status bits for the next_to_use descriptor */
792 rx_desc->wb.status_error0 = 0;
795 } while (cleaned_count);
797 if (rx_ring->next_to_use != ntu)
798 ice_release_rx_desc(rx_ring, ntu);
800 return !!cleaned_count;
804 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
805 * @rx_buf: Rx buffer to adjust
806 * @size: Size of adjustment
808 * Update the offset within page so that Rx buf will be ready to be reused.
809 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
810 * so the second half of page assigned to Rx buffer will be used, otherwise
811 * the offset is moved by "size" bytes
814 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
816 #if (PAGE_SIZE < 8192)
817 /* flip page offset to other buffer */
818 rx_buf->page_offset ^= size;
820 /* move offset up to the next cache line */
821 rx_buf->page_offset += size;
826 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
827 * @rx_buf: buffer containing the page
829 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
830 * which will assign the current buffer to the buffer that next_to_alloc is
831 * pointing to; otherwise, the DMA mapping needs to be destroyed and
835 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
837 unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
838 struct page *page = rx_buf->page;
840 /* avoid re-using remote and pfmemalloc pages */
841 if (!dev_page_is_reusable(page))
844 #if (PAGE_SIZE < 8192)
845 /* if we are only owner of page we can reuse it */
846 if (unlikely(rx_buf->pgcnt - pagecnt_bias > 1))
849 #define ICE_LAST_OFFSET \
850 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
851 if (rx_buf->page_offset > ICE_LAST_OFFSET)
853 #endif /* PAGE_SIZE < 8192) */
855 /* If we have drained the page fragment pool we need to update
856 * the pagecnt_bias and page count so that we fully restock the
857 * number of references the driver holds.
859 if (unlikely(pagecnt_bias == 1)) {
860 page_ref_add(page, USHRT_MAX - 1);
861 rx_buf->pagecnt_bias = USHRT_MAX;
868 * ice_add_xdp_frag - Add contents of Rx buffer to xdp buf as a frag
869 * @rx_ring: Rx descriptor ring to transact packets on
870 * @xdp: xdp buff to place the data into
871 * @rx_buf: buffer containing page to add
872 * @size: packet length from rx_desc
874 * This function will add the data contained in rx_buf->page to the xdp buf.
875 * It will just attach the page as a frag.
878 ice_add_xdp_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
879 struct ice_rx_buf *rx_buf, const unsigned int size)
881 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
886 if (!xdp_buff_has_frags(xdp)) {
888 sinfo->xdp_frags_size = 0;
889 xdp_buff_set_frags_flag(xdp);
892 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
893 if (unlikely(xdp_buff_has_frags(xdp)))
894 ice_set_rx_bufs_act(xdp, rx_ring, ICE_XDP_CONSUMED);
898 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buf->page,
899 rx_buf->page_offset, size);
900 sinfo->xdp_frags_size += size;
902 if (page_is_pfmemalloc(rx_buf->page))
903 xdp_buff_set_frag_pfmemalloc(xdp);
909 * ice_reuse_rx_page - page flip buffer and store it back on the ring
910 * @rx_ring: Rx descriptor ring to store buffers on
911 * @old_buf: donor buffer to have page reused
913 * Synchronizes page for reuse by the adapter
916 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
918 u16 nta = rx_ring->next_to_alloc;
919 struct ice_rx_buf *new_buf;
921 new_buf = &rx_ring->rx_buf[nta];
923 /* update, and store next to alloc */
925 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
927 /* Transfer page from old buffer to new buffer.
928 * Move each member individually to avoid possible store
929 * forwarding stalls and unnecessary copy of skb.
931 new_buf->dma = old_buf->dma;
932 new_buf->page = old_buf->page;
933 new_buf->page_offset = old_buf->page_offset;
934 new_buf->pagecnt_bias = old_buf->pagecnt_bias;
938 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
939 * @rx_ring: Rx descriptor ring to transact packets on
940 * @size: size of buffer to add to skb
941 * @ntc: index of next to clean element
943 * This function will pull an Rx buffer from the ring and synchronize it
944 * for use by the CPU.
946 static struct ice_rx_buf *
947 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
948 const unsigned int ntc)
950 struct ice_rx_buf *rx_buf;
952 rx_buf = &rx_ring->rx_buf[ntc];
954 #if (PAGE_SIZE < 8192)
955 page_count(rx_buf->page);
959 prefetchw(rx_buf->page);
963 /* we are reusing so sync this buffer for CPU use */
964 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
965 rx_buf->page_offset, size,
968 /* We have pulled a buffer for use, so decrement pagecnt_bias */
969 rx_buf->pagecnt_bias--;
975 * ice_build_skb - Build skb around an existing buffer
976 * @rx_ring: Rx descriptor ring to transact packets on
977 * @xdp: xdp_buff pointing to the data
979 * This function builds an skb around an existing XDP buffer, taking care
980 * to set up the skb correctly and avoid any memcpy overhead. Driver has
981 * already combined frags (if any) to skb_shared_info.
983 static struct sk_buff *
984 ice_build_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
986 u8 metasize = xdp->data - xdp->data_meta;
987 struct skb_shared_info *sinfo = NULL;
988 unsigned int nr_frags;
991 if (unlikely(xdp_buff_has_frags(xdp))) {
992 sinfo = xdp_get_shared_info_from_buff(xdp);
993 nr_frags = sinfo->nr_frags;
996 /* Prefetch first cache line of first page. If xdp->data_meta
997 * is unused, this points exactly as xdp->data, otherwise we
998 * likely have a consumer accessing first few bytes of meta
999 * data, and then actual data.
1001 net_prefetch(xdp->data_meta);
1002 /* build an skb around the page buffer */
1003 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
1007 /* must to record Rx queue, otherwise OS features such as
1008 * symmetric queue won't work
1010 skb_record_rx_queue(skb, rx_ring->q_index);
1012 /* update pointers within the skb to store the data */
1013 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1014 __skb_put(skb, xdp->data_end - xdp->data);
1016 skb_metadata_set(skb, metasize);
1018 if (unlikely(xdp_buff_has_frags(xdp)))
1019 xdp_update_skb_shared_info(skb, nr_frags,
1020 sinfo->xdp_frags_size,
1021 nr_frags * xdp->frame_sz,
1022 xdp_buff_is_frag_pfmemalloc(xdp));
1028 * ice_construct_skb - Allocate skb and populate it
1029 * @rx_ring: Rx descriptor ring to transact packets on
1030 * @xdp: xdp_buff pointing to the data
1032 * This function allocates an skb. It then populates it with the page
1033 * data from the current receive descriptor, taking care to set up the
1036 static struct sk_buff *
1037 ice_construct_skb(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
1039 unsigned int size = xdp->data_end - xdp->data;
1040 struct skb_shared_info *sinfo = NULL;
1041 struct ice_rx_buf *rx_buf;
1042 unsigned int nr_frags = 0;
1043 unsigned int headlen;
1044 struct sk_buff *skb;
1046 /* prefetch first cache line of first page */
1047 net_prefetch(xdp->data);
1049 if (unlikely(xdp_buff_has_frags(xdp))) {
1050 sinfo = xdp_get_shared_info_from_buff(xdp);
1051 nr_frags = sinfo->nr_frags;
1054 /* allocate a skb to store the frags */
1055 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
1056 GFP_ATOMIC | __GFP_NOWARN);
1060 rx_buf = &rx_ring->rx_buf[rx_ring->first_desc];
1061 skb_record_rx_queue(skb, rx_ring->q_index);
1062 /* Determine available headroom for copy */
1064 if (headlen > ICE_RX_HDR_SIZE)
1065 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1067 /* align pull length to size of long to optimize memcpy performance */
1068 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
1071 /* if we exhaust the linear part then add what is left as a frag */
1074 /* besides adding here a partial frag, we are going to add
1075 * frags from xdp_buff, make sure there is enough space for
1078 if (unlikely(nr_frags >= MAX_SKB_FRAGS - 1)) {
1082 skb_add_rx_frag(skb, 0, rx_buf->page,
1083 rx_buf->page_offset + headlen, size,
1086 /* buffer is unused, change the act that should be taken later
1087 * on; data was copied onto skb's linear part so there's no
1088 * need for adjusting page offset and we can reuse this buffer
1091 rx_buf->act = ICE_SKB_CONSUMED;
1094 if (unlikely(xdp_buff_has_frags(xdp))) {
1095 struct skb_shared_info *skinfo = skb_shinfo(skb);
1097 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
1098 sizeof(skb_frag_t) * nr_frags);
1100 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
1101 sinfo->xdp_frags_size,
1102 nr_frags * xdp->frame_sz,
1103 xdp_buff_is_frag_pfmemalloc(xdp));
1110 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1111 * @rx_ring: Rx descriptor ring to transact packets on
1112 * @rx_buf: Rx buffer to pull data from
1114 * This function will clean up the contents of the rx_buf. It will either
1115 * recycle the buffer or unmap it and free the associated resources.
1118 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf)
1123 if (ice_can_reuse_rx_page(rx_buf)) {
1124 /* hand second half of page back to the ring */
1125 ice_reuse_rx_page(rx_ring, rx_buf);
1127 /* we are not reusing the buffer so unmap it */
1128 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1129 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1131 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1134 /* clear contents of buffer_info */
1135 rx_buf->page = NULL;
1139 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1140 * @rx_ring: Rx descriptor ring to transact packets on
1141 * @budget: Total limit on number of packets to process
1143 * This function provides a "bounce buffer" approach to Rx interrupt
1144 * processing. The advantage to this is that on systems that have
1145 * expensive overhead for IOMMU access this provides a means of avoiding
1146 * it by maintaining the mapping of the page to the system.
1148 * Returns amount of work completed
1150 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1152 unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1153 unsigned int offset = rx_ring->rx_offset;
1154 struct xdp_buff *xdp = &rx_ring->xdp;
1155 u32 cached_ntc = rx_ring->first_desc;
1156 struct ice_tx_ring *xdp_ring = NULL;
1157 struct bpf_prog *xdp_prog = NULL;
1158 u32 ntc = rx_ring->next_to_clean;
1159 u32 cnt = rx_ring->count;
1165 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1166 #if (PAGE_SIZE < 8192)
1167 xdp->frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1170 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1172 xdp_ring = rx_ring->xdp_ring;
1173 cached_ntu = xdp_ring->next_to_use;
1176 /* start the loop to process Rx packets bounded by 'budget' */
1177 while (likely(total_rx_pkts < (unsigned int)budget)) {
1178 union ice_32b_rx_flex_desc *rx_desc;
1179 struct ice_rx_buf *rx_buf;
1180 struct sk_buff *skb;
1186 /* get the Rx desc from Rx ring based on 'next_to_clean' */
1187 rx_desc = ICE_RX_DESC(rx_ring, ntc);
1189 /* status_error_len will always be zero for unused descriptors
1190 * because it's cleared in cleanup, and overlaps with hdr_addr
1191 * which is always zero because packet split isn't used, if the
1192 * hardware wrote DD then it will be non-zero
1194 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1195 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1198 /* This memory barrier is needed to keep us from reading
1199 * any other fields out of the rx_desc until we know the
1204 ice_trace(clean_rx_irq, rx_ring, rx_desc);
1205 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1206 struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1208 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1210 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1213 rx_ring->first_desc = ntc;
1217 size = le16_to_cpu(rx_desc->wb.pkt_len) &
1218 ICE_RX_FLX_DESC_PKT_LEN_M;
1220 /* retrieve a buffer from the ring */
1221 rx_buf = ice_get_rx_buf(rx_ring, size, ntc);
1226 hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1228 xdp_prepare_buff(xdp, hard_start, offset, size, !!offset);
1229 #if (PAGE_SIZE > 4096)
1230 /* At larger PAGE_SIZE, frame_sz depend on len size */
1231 xdp->frame_sz = ice_rx_frame_truesize(rx_ring, size);
1233 xdp_buff_clear_frags_flag(xdp);
1234 } else if (ice_add_xdp_frag(rx_ring, xdp, rx_buf, size)) {
1240 /* skip if it is NOP desc */
1241 if (ice_is_non_eop(rx_ring, rx_desc))
1244 ice_run_xdp(rx_ring, xdp, xdp_prog, xdp_ring, rx_buf);
1245 if (rx_buf->act == ICE_XDP_PASS)
1247 total_rx_bytes += xdp_get_buff_len(xdp);
1251 rx_ring->first_desc = ntc;
1254 if (likely(ice_ring_uses_build_skb(rx_ring)))
1255 skb = ice_build_skb(rx_ring, xdp);
1257 skb = ice_construct_skb(rx_ring, xdp);
1258 /* exit if we failed to retrieve a buffer */
1260 rx_ring->ring_stats->rx_stats.alloc_page_failed++;
1261 rx_buf->act = ICE_XDP_CONSUMED;
1262 if (unlikely(xdp_buff_has_frags(xdp)))
1263 ice_set_rx_bufs_act(xdp, rx_ring,
1266 rx_ring->first_desc = ntc;
1270 rx_ring->first_desc = ntc;
1272 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1273 if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1275 dev_kfree_skb_any(skb);
1279 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
1281 /* pad the skb if needed, to make a valid ethernet frame */
1282 if (eth_skb_pad(skb))
1285 /* probably a little skewed due to removing CRC */
1286 total_rx_bytes += skb->len;
1288 /* populate checksum, VLAN, and protocol */
1289 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1290 ICE_RX_FLEX_DESC_PTYPE_M;
1292 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1294 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1295 /* send completed skb up the stack */
1296 ice_receive_skb(rx_ring, skb, vlan_tag);
1298 /* update budget accounting */
1302 first = rx_ring->first_desc;
1303 while (cached_ntc != first) {
1304 struct ice_rx_buf *buf = &rx_ring->rx_buf[cached_ntc];
1306 if (buf->act & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1307 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1308 xdp_xmit |= buf->act;
1309 } else if (buf->act & ICE_XDP_CONSUMED) {
1310 buf->pagecnt_bias++;
1311 } else if (buf->act == ICE_XDP_PASS) {
1312 ice_rx_buf_adjust_pg_offset(buf, xdp->frame_sz);
1315 ice_put_rx_buf(rx_ring, buf);
1316 if (++cached_ntc >= cnt)
1319 rx_ring->next_to_clean = ntc;
1320 /* return up to cleaned_count buffers to hardware */
1321 failure = ice_alloc_rx_bufs(rx_ring, ICE_RX_DESC_UNUSED(rx_ring));
1324 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, cached_ntu);
1326 if (rx_ring->ring_stats)
1327 ice_update_rx_ring_stats(rx_ring, total_rx_pkts,
1330 /* guarantee a trip back through this routine if there was a failure */
1331 return failure ? budget : (int)total_rx_pkts;
1334 static void __ice_update_sample(struct ice_q_vector *q_vector,
1335 struct ice_ring_container *rc,
1336 struct dim_sample *sample,
1339 u64 packets = 0, bytes = 0;
1342 struct ice_tx_ring *tx_ring;
1344 ice_for_each_tx_ring(tx_ring, *rc) {
1345 struct ice_ring_stats *ring_stats;
1347 ring_stats = tx_ring->ring_stats;
1350 packets += ring_stats->stats.pkts;
1351 bytes += ring_stats->stats.bytes;
1354 struct ice_rx_ring *rx_ring;
1356 ice_for_each_rx_ring(rx_ring, *rc) {
1357 struct ice_ring_stats *ring_stats;
1359 ring_stats = rx_ring->ring_stats;
1362 packets += ring_stats->stats.pkts;
1363 bytes += ring_stats->stats.bytes;
1367 dim_update_sample(q_vector->total_events, packets, bytes, sample);
1368 sample->comp_ctr = 0;
1370 /* if dim settings get stale, like when not updated for 1
1371 * second or longer, force it to start again. This addresses the
1372 * frequent case of an idle queue being switched to by the
1373 * scheduler. The 1,000 here means 1,000 milliseconds.
1375 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1376 rc->dim.state = DIM_START_MEASURE;
1380 * ice_net_dim - Update net DIM algorithm
1381 * @q_vector: the vector associated with the interrupt
1383 * Create a DIM sample and notify net_dim() so that it can possibly decide
1384 * a new ITR value based on incoming packets, bytes, and interrupts.
1386 * This function is a no-op if the ring is not configured to dynamic ITR.
1388 static void ice_net_dim(struct ice_q_vector *q_vector)
1390 struct ice_ring_container *tx = &q_vector->tx;
1391 struct ice_ring_container *rx = &q_vector->rx;
1393 if (ITR_IS_DYNAMIC(tx)) {
1394 struct dim_sample dim_sample;
1396 __ice_update_sample(q_vector, tx, &dim_sample, true);
1397 net_dim(&tx->dim, dim_sample);
1400 if (ITR_IS_DYNAMIC(rx)) {
1401 struct dim_sample dim_sample;
1403 __ice_update_sample(q_vector, rx, &dim_sample, false);
1404 net_dim(&rx->dim, dim_sample);
1409 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1410 * @itr_idx: interrupt throttling index
1411 * @itr: interrupt throttling value in usecs
1413 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1415 /* The ITR value is reported in microseconds, and the register value is
1416 * recorded in 2 microsecond units. For this reason we only need to
1417 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1418 * granularity as a shift instead of division. The mask makes sure the
1419 * ITR value is never odd so we don't accidentally write into the field
1420 * prior to the ITR field.
1422 itr &= ICE_ITR_MASK;
1424 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1425 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1426 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1430 * ice_enable_interrupt - re-enable MSI-X interrupt
1431 * @q_vector: the vector associated with the interrupt to enable
1433 * If the VSI is down, the interrupt will not be re-enabled. Also,
1434 * when enabling the interrupt always reset the wb_on_itr to false
1435 * and trigger a software interrupt to clean out internal state.
1437 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1439 struct ice_vsi *vsi = q_vector->vsi;
1440 bool wb_en = q_vector->wb_on_itr;
1443 if (test_bit(ICE_DOWN, vsi->state))
1446 /* trigger an ITR delayed software interrupt when exiting busy poll, to
1447 * make sure to catch any pending cleanups that might have been missed
1448 * due to interrupt state transition. If busy poll or poll isn't
1449 * enabled, then don't update ITR, and just enable the interrupt.
1452 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1454 q_vector->wb_on_itr = false;
1456 /* do two things here with a single write. Set up the third ITR
1457 * index to be used for software interrupt moderation, and then
1458 * trigger a software interrupt with a rate limit of 20K on
1459 * software interrupts, this will help avoid high interrupt
1460 * loads due to frequently polling and exiting polling.
1462 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1463 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1464 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1465 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1467 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1471 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1472 * @q_vector: q_vector to set WB_ON_ITR on
1474 * We need to tell hardware to write-back completed descriptors even when
1475 * interrupts are disabled. Descriptors will be written back on cache line
1476 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1477 * descriptors may not be written back if they don't fill a cache line until
1478 * the next interrupt.
1480 * This sets the write-back frequency to whatever was set previously for the
1481 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1482 * aren't meddling with the INTENA_M bit.
1484 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1486 struct ice_vsi *vsi = q_vector->vsi;
1488 /* already in wb_on_itr mode no need to change it */
1489 if (q_vector->wb_on_itr)
1492 /* use previously set ITR values for all of the ITR indices by
1493 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1494 * be static in non-adaptive mode (user configured)
1496 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1497 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1498 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1499 GLINT_DYN_CTL_WB_ON_ITR_M);
1501 q_vector->wb_on_itr = true;
1505 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1506 * @napi: napi struct with our devices info in it
1507 * @budget: amount of work driver is allowed to do this pass, in packets
1509 * This function will clean all queues associated with a q_vector.
1511 * Returns the amount of work done
1513 int ice_napi_poll(struct napi_struct *napi, int budget)
1515 struct ice_q_vector *q_vector =
1516 container_of(napi, struct ice_q_vector, napi);
1517 struct ice_tx_ring *tx_ring;
1518 struct ice_rx_ring *rx_ring;
1519 bool clean_complete = true;
1520 int budget_per_ring;
1523 /* Since the actual Tx work is minimal, we can give the Tx a larger
1524 * budget and be more aggressive about cleaning up the Tx descriptors.
1526 ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1529 if (tx_ring->xsk_pool)
1530 wd = ice_xmit_zc(tx_ring);
1531 else if (ice_ring_is_xdp(tx_ring))
1534 wd = ice_clean_tx_irq(tx_ring, budget);
1537 clean_complete = false;
1540 /* Handle case where we are called by netpoll with a budget of 0 */
1541 if (unlikely(budget <= 0))
1544 /* normally we have 1 Rx ring per q_vector */
1545 if (unlikely(q_vector->num_ring_rx > 1))
1546 /* We attempt to distribute budget to each Rx queue fairly, but
1547 * don't allow the budget to go below 1 because that would exit
1550 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1552 /* Max of 1 Rx ring in this q_vector so give it the budget */
1553 budget_per_ring = budget;
1555 ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1558 /* A dedicated path for zero-copy allows making a single
1559 * comparison in the irq context instead of many inside the
1560 * ice_clean_rx_irq function and makes the codebase cleaner.
1562 cleaned = rx_ring->xsk_pool ?
1563 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
1564 ice_clean_rx_irq(rx_ring, budget_per_ring);
1565 work_done += cleaned;
1566 /* if we clean as many as budgeted, we must not be done */
1567 if (cleaned >= budget_per_ring)
1568 clean_complete = false;
1571 /* If work not completed, return budget and polling will return */
1572 if (!clean_complete) {
1573 /* Set the writeback on ITR so partial completions of
1574 * cache-lines will still continue even if we're polling.
1576 ice_set_wb_on_itr(q_vector);
1580 /* Exit the polling mode, but don't re-enable interrupts if stack might
1581 * poll us due to busy-polling
1583 if (napi_complete_done(napi, work_done)) {
1584 ice_net_dim(q_vector);
1585 ice_enable_interrupt(q_vector);
1587 ice_set_wb_on_itr(q_vector);
1590 return min_t(int, work_done, budget - 1);
1594 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1595 * @tx_ring: the ring to be checked
1596 * @size: the size buffer we want to assure is available
1598 * Returns -EBUSY if a stop is needed, else 0
1600 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1602 netif_tx_stop_queue(txring_txq(tx_ring));
1603 /* Memory barrier before checking head and tail */
1606 /* Check again in a case another CPU has just made room available. */
1607 if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1610 /* A reprieve! - use start_queue because it doesn't call schedule */
1611 netif_tx_start_queue(txring_txq(tx_ring));
1612 ++tx_ring->ring_stats->tx_stats.restart_q;
1617 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1618 * @tx_ring: the ring to be checked
1619 * @size: the size buffer we want to assure is available
1621 * Returns 0 if stop is not needed
1623 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1625 if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1628 return __ice_maybe_stop_tx(tx_ring, size);
1632 * ice_tx_map - Build the Tx descriptor
1633 * @tx_ring: ring to send buffer on
1634 * @first: first buffer info buffer to use
1635 * @off: pointer to struct that holds offload parameters
1637 * This function loops over the skb data pointed to by *first
1638 * and gets a physical address for each memory location and programs
1639 * it and the length into the transmit descriptor.
1642 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1643 struct ice_tx_offload_params *off)
1645 u64 td_offset, td_tag, td_cmd;
1646 u16 i = tx_ring->next_to_use;
1647 unsigned int data_len, size;
1648 struct ice_tx_desc *tx_desc;
1649 struct ice_tx_buf *tx_buf;
1650 struct sk_buff *skb;
1655 td_tag = off->td_l2tag1;
1656 td_cmd = off->td_cmd;
1657 td_offset = off->td_offset;
1660 data_len = skb->data_len;
1661 size = skb_headlen(skb);
1663 tx_desc = ICE_TX_DESC(tx_ring, i);
1665 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1666 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1667 td_tag = first->vid;
1670 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1674 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1675 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1677 if (dma_mapping_error(tx_ring->dev, dma))
1680 /* record length, and DMA address */
1681 dma_unmap_len_set(tx_buf, len, size);
1682 dma_unmap_addr_set(tx_buf, dma, dma);
1684 /* align size to end of page */
1685 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1686 tx_desc->buf_addr = cpu_to_le64(dma);
1688 /* account for data chunks larger than the hardware
1691 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1692 tx_desc->cmd_type_offset_bsz =
1693 ice_build_ctob(td_cmd, td_offset, max_data,
1699 if (i == tx_ring->count) {
1700 tx_desc = ICE_TX_DESC(tx_ring, 0);
1707 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1708 tx_desc->buf_addr = cpu_to_le64(dma);
1711 if (likely(!data_len))
1714 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1720 if (i == tx_ring->count) {
1721 tx_desc = ICE_TX_DESC(tx_ring, 0);
1725 size = skb_frag_size(frag);
1728 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1731 tx_buf = &tx_ring->tx_buf[i];
1732 tx_buf->type = ICE_TX_BUF_FRAG;
1735 /* record SW timestamp if HW timestamp is not available */
1736 skb_tx_timestamp(first->skb);
1739 if (i == tx_ring->count)
1742 /* write last descriptor with RS and EOP bits */
1743 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1744 tx_desc->cmd_type_offset_bsz =
1745 ice_build_ctob(td_cmd, td_offset, size, td_tag);
1747 /* Force memory writes to complete before letting h/w know there
1748 * are new descriptors to fetch.
1750 * We also use this memory barrier to make certain all of the
1751 * status bits have been updated before next_to_watch is written.
1755 /* set next_to_watch value indicating a packet is present */
1756 first->next_to_watch = tx_desc;
1758 tx_ring->next_to_use = i;
1760 ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1762 /* notify HW of packet */
1763 kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1764 netdev_xmit_more());
1766 /* notify HW of packet */
1767 writel(i, tx_ring->tail);
1772 /* clear DMA mappings for failed tx_buf map */
1774 tx_buf = &tx_ring->tx_buf[i];
1775 ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1776 if (tx_buf == first)
1783 tx_ring->next_to_use = i;
1787 * ice_tx_csum - Enable Tx checksum offloads
1788 * @first: pointer to the first descriptor
1789 * @off: pointer to struct that holds offload parameters
1791 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1794 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1796 u32 l4_len = 0, l3_len = 0, l2_len = 0;
1797 struct sk_buff *skb = first->skb;
1807 __be16 frag_off, protocol;
1808 unsigned char *exthdr;
1809 u32 offset, cmd = 0;
1812 if (skb->ip_summed != CHECKSUM_PARTIAL)
1815 protocol = vlan_get_protocol(skb);
1817 if (eth_p_mpls(protocol)) {
1818 ip.hdr = skb_inner_network_header(skb);
1819 l4.hdr = skb_checksum_start(skb);
1821 ip.hdr = skb_network_header(skb);
1822 l4.hdr = skb_transport_header(skb);
1825 /* compute outer L2 header size */
1826 l2_len = ip.hdr - skb->data;
1827 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1829 /* set the tx_flags to indicate the IP protocol type. this is
1830 * required so that checksum header computation below is accurate.
1832 if (ip.v4->version == 4)
1833 first->tx_flags |= ICE_TX_FLAGS_IPV4;
1834 else if (ip.v6->version == 6)
1835 first->tx_flags |= ICE_TX_FLAGS_IPV6;
1837 if (skb->encapsulation) {
1838 bool gso_ena = false;
1841 /* define outer network header type */
1842 if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1843 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1844 ICE_TX_CTX_EIPT_IPV4 :
1845 ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1846 l4_proto = ip.v4->protocol;
1847 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1850 tunnel |= ICE_TX_CTX_EIPT_IPV6;
1851 exthdr = ip.hdr + sizeof(*ip.v6);
1852 l4_proto = ip.v6->nexthdr;
1853 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1854 &l4_proto, &frag_off);
1859 /* define outer transport */
1862 tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1863 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1866 tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1867 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1871 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1872 l4.hdr = skb_inner_network_header(skb);
1875 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1878 skb_checksum_help(skb);
1882 /* compute outer L3 header size */
1883 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1884 ICE_TXD_CTX_QW0_EIPLEN_S;
1886 /* switch IP header pointer from outer to inner header */
1887 ip.hdr = skb_inner_network_header(skb);
1889 /* compute tunnel header size */
1890 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1891 ICE_TXD_CTX_QW0_NATLEN_S;
1893 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1894 /* indicate if we need to offload outer UDP header */
1895 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1896 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1897 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1899 /* record tunnel offload values */
1900 off->cd_tunnel_params |= tunnel;
1902 /* set DTYP=1 to indicate that it's an Tx context descriptor
1903 * in IPsec tunnel mode with Tx offloads in Quad word 1
1905 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1907 /* switch L4 header pointer from outer to inner */
1908 l4.hdr = skb_inner_transport_header(skb);
1911 /* reset type as we transition from outer to inner headers */
1912 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1913 if (ip.v4->version == 4)
1914 first->tx_flags |= ICE_TX_FLAGS_IPV4;
1915 if (ip.v6->version == 6)
1916 first->tx_flags |= ICE_TX_FLAGS_IPV6;
1919 /* Enable IP checksum offloads */
1920 if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1921 l4_proto = ip.v4->protocol;
1922 /* the stack computes the IP header already, the only time we
1923 * need the hardware to recompute it is in the case of TSO.
1925 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1926 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1928 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1930 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1931 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1932 exthdr = ip.hdr + sizeof(*ip.v6);
1933 l4_proto = ip.v6->nexthdr;
1934 if (l4.hdr != exthdr)
1935 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1941 /* compute inner L3 header size */
1942 l3_len = l4.hdr - ip.hdr;
1943 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1945 /* Enable L4 checksum offloads */
1948 /* enable checksum offloads */
1949 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1950 l4_len = l4.tcp->doff;
1951 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1954 /* enable UDP checksum offload */
1955 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1956 l4_len = (sizeof(struct udphdr) >> 2);
1957 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1960 /* enable SCTP checksum offload */
1961 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1962 l4_len = sizeof(struct sctphdr) >> 2;
1963 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1967 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1969 skb_checksum_help(skb);
1974 off->td_offset |= offset;
1979 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1980 * @tx_ring: ring to send buffer on
1981 * @first: pointer to struct ice_tx_buf
1983 * Checks the skb and set up correspondingly several generic transmit flags
1984 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1987 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1989 struct sk_buff *skb = first->skb;
1991 /* nothing left to do, software offloaded VLAN */
1992 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1995 /* the VLAN ethertype/tpid is determined by VSI configuration and netdev
1996 * feature flags, which the driver only allows either 802.1Q or 802.1ad
1997 * VLAN offloads exclusively so we only care about the VLAN ID here
1999 if (skb_vlan_tag_present(skb)) {
2000 first->vid = skb_vlan_tag_get(skb);
2001 if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
2002 first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
2004 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2007 ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2011 * ice_tso - computes mss and TSO length to prepare for TSO
2012 * @first: pointer to struct ice_tx_buf
2013 * @off: pointer to struct that holds offload parameters
2015 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2018 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2020 struct sk_buff *skb = first->skb;
2031 u64 cd_mss, cd_tso_len;
2037 if (skb->ip_summed != CHECKSUM_PARTIAL)
2040 if (!skb_is_gso(skb))
2043 err = skb_cow_head(skb, 0);
2047 protocol = vlan_get_protocol(skb);
2049 if (eth_p_mpls(protocol))
2050 ip.hdr = skb_inner_network_header(skb);
2052 ip.hdr = skb_network_header(skb);
2053 l4.hdr = skb_checksum_start(skb);
2055 /* initialize outer IP header fields */
2056 if (ip.v4->version == 4) {
2060 ip.v6->payload_len = 0;
2063 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2067 SKB_GSO_UDP_TUNNEL |
2068 SKB_GSO_UDP_TUNNEL_CSUM)) {
2069 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2070 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2073 /* determine offset of outer transport header */
2074 l4_start = (u8)(l4.hdr - skb->data);
2076 /* remove payload length from outer checksum */
2077 paylen = skb->len - l4_start;
2078 csum_replace_by_diff(&l4.udp->check,
2079 (__force __wsum)htonl(paylen));
2082 /* reset pointers to inner headers */
2083 ip.hdr = skb_inner_network_header(skb);
2084 l4.hdr = skb_inner_transport_header(skb);
2086 /* initialize inner IP header fields */
2087 if (ip.v4->version == 4) {
2091 ip.v6->payload_len = 0;
2095 /* determine offset of transport header */
2096 l4_start = (u8)(l4.hdr - skb->data);
2098 /* remove payload length from checksum */
2099 paylen = skb->len - l4_start;
2101 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2102 csum_replace_by_diff(&l4.udp->check,
2103 (__force __wsum)htonl(paylen));
2104 /* compute length of UDP segmentation header */
2105 off->header_len = (u8)sizeof(l4.udp) + l4_start;
2107 csum_replace_by_diff(&l4.tcp->check,
2108 (__force __wsum)htonl(paylen));
2109 /* compute length of TCP segmentation header */
2110 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2113 /* update gso_segs and bytecount */
2114 first->gso_segs = skb_shinfo(skb)->gso_segs;
2115 first->bytecount += (first->gso_segs - 1) * off->header_len;
2117 cd_tso_len = skb->len - off->header_len;
2118 cd_mss = skb_shinfo(skb)->gso_size;
2120 /* record cdesc_qw1 with TSO parameters */
2121 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2122 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2123 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2124 (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2125 first->tx_flags |= ICE_TX_FLAGS_TSO;
2130 * ice_txd_use_count - estimate the number of descriptors needed for Tx
2131 * @size: transmit request size in bytes
2133 * Due to hardware alignment restrictions (4K alignment), we need to
2134 * assume that we can have no more than 12K of data per descriptor, even
2135 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2136 * Thus, we need to divide by 12K. But division is slow! Instead,
2137 * we decompose the operation into shifts and one relatively cheap
2138 * multiply operation.
2140 * To divide by 12K, we first divide by 4K, then divide by 3:
2141 * To divide by 4K, shift right by 12 bits
2142 * To divide by 3, multiply by 85, then divide by 256
2143 * (Divide by 256 is done by shifting right by 8 bits)
2144 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2145 * 3, we'll underestimate near each multiple of 12K. This is actually more
2146 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2147 * segment. For our purposes this is accurate out to 1M which is orders of
2148 * magnitude greater than our largest possible GSO size.
2150 * This would then be implemented as:
2151 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2153 * Since multiplication and division are commutative, we can reorder
2155 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2157 static unsigned int ice_txd_use_count(unsigned int size)
2159 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2163 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2166 * Returns number of data descriptors needed for this skb.
2168 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2170 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2171 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2172 unsigned int count = 0, size = skb_headlen(skb);
2175 count += ice_txd_use_count(size);
2180 size = skb_frag_size(frag++);
2187 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2190 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2191 * and so we need to figure out the cases where we need to linearize the skb.
2193 * For TSO we need to count the TSO header and segment payload separately.
2194 * As such we need to check cases where we have 7 fragments or more as we
2195 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2196 * the segment payload in the first descriptor, and another 7 for the
2199 static bool __ice_chk_linearize(struct sk_buff *skb)
2201 const skb_frag_t *frag, *stale;
2204 /* no need to check if number of frags is less than 7 */
2205 nr_frags = skb_shinfo(skb)->nr_frags;
2206 if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2209 /* We need to walk through the list and validate that each group
2210 * of 6 fragments totals at least gso_size.
2212 nr_frags -= ICE_MAX_BUF_TXD - 2;
2213 frag = &skb_shinfo(skb)->frags[0];
2215 /* Initialize size to the negative value of gso_size minus 1. We
2216 * use this as the worst case scenario in which the frag ahead
2217 * of us only provides one byte which is why we are limited to 6
2218 * descriptors for a single transmit as the header and previous
2219 * fragment are already consuming 2 descriptors.
2221 sum = 1 - skb_shinfo(skb)->gso_size;
2223 /* Add size of frags 0 through 4 to create our initial sum */
2224 sum += skb_frag_size(frag++);
2225 sum += skb_frag_size(frag++);
2226 sum += skb_frag_size(frag++);
2227 sum += skb_frag_size(frag++);
2228 sum += skb_frag_size(frag++);
2230 /* Walk through fragments adding latest fragment, testing it, and
2231 * then removing stale fragments from the sum.
2233 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2234 int stale_size = skb_frag_size(stale);
2236 sum += skb_frag_size(frag++);
2238 /* The stale fragment may present us with a smaller
2239 * descriptor than the actual fragment size. To account
2240 * for that we need to remove all the data on the front and
2241 * figure out what the remainder would be in the last
2242 * descriptor associated with the fragment.
2244 if (stale_size > ICE_MAX_DATA_PER_TXD) {
2245 int align_pad = -(skb_frag_off(stale)) &
2246 (ICE_MAX_READ_REQ_SIZE - 1);
2249 stale_size -= align_pad;
2252 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2253 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2254 } while (stale_size > ICE_MAX_DATA_PER_TXD);
2257 /* if sum is negative we failed to make sufficient progress */
2271 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2273 * @count: number of buffers used
2275 * Note: Our HW can't scatter-gather more than 8 fragments to build
2276 * a packet on the wire and so we need to figure out the cases where we
2277 * need to linearize the skb.
2279 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2281 /* Both TSO and single send will work if count is less than 8 */
2282 if (likely(count < ICE_MAX_BUF_TXD))
2285 if (skb_is_gso(skb))
2286 return __ice_chk_linearize(skb);
2288 /* we can support up to 8 data buffers for a single send */
2289 return count != ICE_MAX_BUF_TXD;
2293 * ice_tstamp - set up context descriptor for hardware timestamp
2294 * @tx_ring: pointer to the Tx ring to send buffer on
2295 * @skb: pointer to the SKB we're sending
2297 * @off: Tx offload parameters
2300 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2301 struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2305 /* only timestamp the outbound packet if the user has requested it */
2306 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2309 /* Tx timestamps cannot be sampled when doing TSO */
2310 if (first->tx_flags & ICE_TX_FLAGS_TSO)
2313 /* Grab an open timestamp slot */
2314 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2316 tx_ring->vsi->back->ptp.tx_hwtstamp_skipped++;
2320 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2321 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2322 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2323 first->tx_flags |= ICE_TX_FLAGS_TSYN;
2327 * ice_xmit_frame_ring - Sends buffer on Tx ring
2329 * @tx_ring: ring to send buffer on
2331 * Returns NETDEV_TX_OK if sent, else an error code
2334 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2336 struct ice_tx_offload_params offload = { 0 };
2337 struct ice_vsi *vsi = tx_ring->vsi;
2338 struct ice_tx_buf *first;
2343 ice_trace(xmit_frame_ring, tx_ring, skb);
2345 if (unlikely(ipv6_hopopt_jumbo_remove(skb)))
2348 count = ice_xmit_desc_count(skb);
2349 if (ice_chk_linearize(skb, count)) {
2350 if (__skb_linearize(skb))
2352 count = ice_txd_use_count(skb->len);
2353 tx_ring->ring_stats->tx_stats.tx_linearize++;
2356 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2357 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2358 * + 4 desc gap to avoid the cache line where head is,
2359 * + 1 desc for context descriptor,
2360 * otherwise try next time
2362 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2363 ICE_DESCS_FOR_CTX_DESC)) {
2364 tx_ring->ring_stats->tx_stats.tx_busy++;
2365 return NETDEV_TX_BUSY;
2368 /* prefetch for bql data which is infrequently used */
2369 netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2371 offload.tx_ring = tx_ring;
2373 /* record the location of the first descriptor for this packet */
2374 first = &tx_ring->tx_buf[tx_ring->next_to_use];
2376 first->type = ICE_TX_BUF_SKB;
2377 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2378 first->gso_segs = 1;
2379 first->tx_flags = 0;
2381 /* prepare the VLAN tagging flags for Tx */
2382 ice_tx_prepare_vlan_flags(tx_ring, first);
2383 if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2384 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2385 (ICE_TX_CTX_DESC_IL2TAG2 <<
2386 ICE_TXD_CTX_QW1_CMD_S));
2387 offload.cd_l2tag2 = first->vid;
2390 /* set up TSO offload */
2391 tso = ice_tso(first, &offload);
2395 /* always set up Tx checksum offload */
2396 csum = ice_tx_csum(first, &offload);
2400 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2401 eth = (struct ethhdr *)skb_mac_header(skb);
2402 if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2403 eth->h_proto == htons(ETH_P_LLDP)) &&
2404 vsi->type == ICE_VSI_PF &&
2405 vsi->port_info->qos_cfg.is_sw_lldp))
2406 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2407 ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2408 ICE_TXD_CTX_QW1_CMD_S);
2410 ice_tstamp(tx_ring, skb, first, &offload);
2411 if (ice_is_switchdev_running(vsi->back))
2412 ice_eswitch_set_target_vsi(skb, &offload);
2414 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2415 struct ice_tx_ctx_desc *cdesc;
2416 u16 i = tx_ring->next_to_use;
2418 /* grab the next descriptor */
2419 cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2421 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2423 /* setup context descriptor */
2424 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2425 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2426 cdesc->rsvd = cpu_to_le16(0);
2427 cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2430 ice_tx_map(tx_ring, first, &offload);
2431 return NETDEV_TX_OK;
2434 ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2435 dev_kfree_skb_any(skb);
2436 return NETDEV_TX_OK;
2440 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2442 * @netdev: network interface device structure
2444 * Returns NETDEV_TX_OK if sent, else an error code
2446 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2448 struct ice_netdev_priv *np = netdev_priv(netdev);
2449 struct ice_vsi *vsi = np->vsi;
2450 struct ice_tx_ring *tx_ring;
2452 tx_ring = vsi->tx_rings[skb->queue_mapping];
2454 /* hardware can't handle really short frames, hardware padding works
2457 if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2458 return NETDEV_TX_OK;
2460 return ice_xmit_frame_ring(skb, tx_ring);
2464 * ice_get_dscp_up - return the UP/TC value for a SKB
2465 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2466 * @skb: SKB to query for info to determine UP/TC
2468 * This function is to only be called when the PF is in L3 DSCP PFC mode
2470 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2474 if (skb->protocol == htons(ETH_P_IP))
2475 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2476 else if (skb->protocol == htons(ETH_P_IPV6))
2477 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2479 return dcbcfg->dscp_map[dscp];
2483 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2484 struct net_device *sb_dev)
2486 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2487 struct ice_dcbx_cfg *dcbcfg;
2489 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2490 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2491 skb->priority = ice_get_dscp_up(dcbcfg, skb);
2493 return netdev_pick_tx(netdev, skb, sb_dev);
2497 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2498 * @tx_ring: tx_ring to clean
2500 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2502 struct ice_vsi *vsi = tx_ring->vsi;
2503 s16 i = tx_ring->next_to_clean;
2504 int budget = ICE_DFLT_IRQ_WORK;
2505 struct ice_tx_desc *tx_desc;
2506 struct ice_tx_buf *tx_buf;
2508 tx_buf = &tx_ring->tx_buf[i];
2509 tx_desc = ICE_TX_DESC(tx_ring, i);
2510 i -= tx_ring->count;
2513 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2515 /* if next_to_watch is not set then there is no pending work */
2519 /* prevent any other reads prior to eop_desc */
2522 /* if the descriptor isn't done, no work to do */
2523 if (!(eop_desc->cmd_type_offset_bsz &
2524 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2527 /* clear next_to_watch to prevent false hangs */
2528 tx_buf->next_to_watch = NULL;
2529 tx_desc->buf_addr = 0;
2530 tx_desc->cmd_type_offset_bsz = 0;
2532 /* move past filter desc */
2537 i -= tx_ring->count;
2538 tx_buf = tx_ring->tx_buf;
2539 tx_desc = ICE_TX_DESC(tx_ring, 0);
2542 /* unmap the data header */
2543 if (dma_unmap_len(tx_buf, len))
2544 dma_unmap_single(tx_ring->dev,
2545 dma_unmap_addr(tx_buf, dma),
2546 dma_unmap_len(tx_buf, len),
2548 if (tx_buf->type == ICE_TX_BUF_DUMMY)
2549 devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2551 /* clear next_to_watch to prevent false hangs */
2552 tx_buf->type = ICE_TX_BUF_EMPTY;
2553 tx_buf->tx_flags = 0;
2554 tx_buf->next_to_watch = NULL;
2555 dma_unmap_len_set(tx_buf, len, 0);
2556 tx_desc->buf_addr = 0;
2557 tx_desc->cmd_type_offset_bsz = 0;
2559 /* move past eop_desc for start of next FD desc */
2564 i -= tx_ring->count;
2565 tx_buf = tx_ring->tx_buf;
2566 tx_desc = ICE_TX_DESC(tx_ring, 0);
2570 } while (likely(budget));
2572 i += tx_ring->count;
2573 tx_ring->next_to_clean = i;
2575 /* re-enable interrupt if needed */
2576 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);