c26e6a102dac92aa85ee97fee127791953507610
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / ice / ice_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include "ice.h"
9 #include "ice_lib.h"
10 #include "ice_dcb_lib.h"
11
12 #define DRV_VERSION     "0.7.5-k"
13 #define DRV_SUMMARY     "Intel(R) Ethernet Connection E800 Series Linux Driver"
14 const char ice_drv_ver[] = DRV_VERSION;
15 static const char ice_driver_string[] = DRV_SUMMARY;
16 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
17
18 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
19 MODULE_DESCRIPTION(DRV_SUMMARY);
20 MODULE_LICENSE("GPL v2");
21 MODULE_VERSION(DRV_VERSION);
22
23 static int debug = -1;
24 module_param(debug, int, 0644);
25 #ifndef CONFIG_DYNAMIC_DEBUG
26 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
27 #else
28 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
29 #endif /* !CONFIG_DYNAMIC_DEBUG */
30
31 static struct workqueue_struct *ice_wq;
32 static const struct net_device_ops ice_netdev_ops;
33
34 static void ice_rebuild(struct ice_pf *pf);
35
36 static void ice_vsi_release_all(struct ice_pf *pf);
37 static void ice_update_vsi_stats(struct ice_vsi *vsi);
38 static void ice_update_pf_stats(struct ice_pf *pf);
39
40 /**
41  * ice_get_tx_pending - returns number of Tx descriptors not processed
42  * @ring: the ring of descriptors
43  */
44 static u32 ice_get_tx_pending(struct ice_ring *ring)
45 {
46         u32 head, tail;
47
48         head = ring->next_to_clean;
49         tail = readl(ring->tail);
50
51         if (head != tail)
52                 return (head < tail) ?
53                         tail - head : (tail + ring->count - head);
54         return 0;
55 }
56
57 /**
58  * ice_check_for_hang_subtask - check for and recover hung queues
59  * @pf: pointer to PF struct
60  */
61 static void ice_check_for_hang_subtask(struct ice_pf *pf)
62 {
63         struct ice_vsi *vsi = NULL;
64         struct ice_hw *hw;
65         unsigned int i;
66         int packets;
67         u32 v;
68
69         ice_for_each_vsi(pf, v)
70                 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
71                         vsi = pf->vsi[v];
72                         break;
73                 }
74
75         if (!vsi || test_bit(__ICE_DOWN, vsi->state))
76                 return;
77
78         if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
79                 return;
80
81         hw = &vsi->back->hw;
82
83         for (i = 0; i < vsi->num_txq; i++) {
84                 struct ice_ring *tx_ring = vsi->tx_rings[i];
85
86                 if (tx_ring && tx_ring->desc) {
87                         /* If packet counter has not changed the queue is
88                          * likely stalled, so force an interrupt for this
89                          * queue.
90                          *
91                          * prev_pkt would be negative if there was no
92                          * pending work.
93                          */
94                         packets = tx_ring->stats.pkts & INT_MAX;
95                         if (tx_ring->tx_stats.prev_pkt == packets) {
96                                 /* Trigger sw interrupt to revive the queue */
97                                 ice_trigger_sw_intr(hw, tx_ring->q_vector);
98                                 continue;
99                         }
100
101                         /* Memory barrier between read of packet count and call
102                          * to ice_get_tx_pending()
103                          */
104                         smp_rmb();
105                         tx_ring->tx_stats.prev_pkt =
106                             ice_get_tx_pending(tx_ring) ? packets : -1;
107                 }
108         }
109 }
110
111 /**
112  * ice_init_mac_fltr - Set initial MAC filters
113  * @pf: board private structure
114  *
115  * Set initial set of MAC filters for PF VSI; configure filters for permanent
116  * address and broadcast address. If an error is encountered, netdevice will be
117  * unregistered.
118  */
119 static int ice_init_mac_fltr(struct ice_pf *pf)
120 {
121         LIST_HEAD(tmp_add_list);
122         u8 broadcast[ETH_ALEN];
123         struct ice_vsi *vsi;
124         int status;
125
126         vsi = ice_find_vsi_by_type(pf, ICE_VSI_PF);
127         if (!vsi)
128                 return -EINVAL;
129
130         /* To add a MAC filter, first add the MAC to a list and then
131          * pass the list to ice_add_mac.
132          */
133
134          /* Add a unicast MAC filter so the VSI can get its packets */
135         status = ice_add_mac_to_list(vsi, &tmp_add_list,
136                                      vsi->port_info->mac.perm_addr);
137         if (status)
138                 goto unregister;
139
140         /* VSI needs to receive broadcast traffic, so add the broadcast
141          * MAC address to the list as well.
142          */
143         eth_broadcast_addr(broadcast);
144         status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
145         if (status)
146                 goto free_mac_list;
147
148         /* Program MAC filters for entries in tmp_add_list */
149         status = ice_add_mac(&pf->hw, &tmp_add_list);
150         if (status)
151                 status = -ENOMEM;
152
153 free_mac_list:
154         ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
155
156 unregister:
157         /* We aren't useful with no MAC filters, so unregister if we
158          * had an error
159          */
160         if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
161                 dev_err(&pf->pdev->dev,
162                         "Could not add MAC filters error %d. Unregistering device\n",
163                         status);
164                 unregister_netdev(vsi->netdev);
165                 free_netdev(vsi->netdev);
166                 vsi->netdev = NULL;
167         }
168
169         return status;
170 }
171
172 /**
173  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
174  * @netdev: the net device on which the sync is happening
175  * @addr: MAC address to sync
176  *
177  * This is a callback function which is called by the in kernel device sync
178  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
179  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
180  * MAC filters from the hardware.
181  */
182 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
183 {
184         struct ice_netdev_priv *np = netdev_priv(netdev);
185         struct ice_vsi *vsi = np->vsi;
186
187         if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
188                 return -EINVAL;
189
190         return 0;
191 }
192
193 /**
194  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
195  * @netdev: the net device on which the unsync is happening
196  * @addr: MAC address to unsync
197  *
198  * This is a callback function which is called by the in kernel device unsync
199  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
200  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
201  * delete the MAC filters from the hardware.
202  */
203 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
204 {
205         struct ice_netdev_priv *np = netdev_priv(netdev);
206         struct ice_vsi *vsi = np->vsi;
207
208         if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
209                 return -EINVAL;
210
211         return 0;
212 }
213
214 /**
215  * ice_vsi_fltr_changed - check if filter state changed
216  * @vsi: VSI to be checked
217  *
218  * returns true if filter state has changed, false otherwise.
219  */
220 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
221 {
222         return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
223                test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
224                test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
225 }
226
227 /**
228  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
229  * @vsi: the VSI being configured
230  * @promisc_m: mask of promiscuous config bits
231  * @set_promisc: enable or disable promisc flag request
232  *
233  */
234 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
235 {
236         struct ice_hw *hw = &vsi->back->hw;
237         enum ice_status status = 0;
238
239         if (vsi->type != ICE_VSI_PF)
240                 return 0;
241
242         if (vsi->vlan_ena) {
243                 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
244                                                   set_promisc);
245         } else {
246                 if (set_promisc)
247                         status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
248                                                      0);
249                 else
250                         status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
251                                                        0);
252         }
253
254         if (status)
255                 return -EIO;
256
257         return 0;
258 }
259
260 /**
261  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
262  * @vsi: ptr to the VSI
263  *
264  * Push any outstanding VSI filter changes through the AdminQ.
265  */
266 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
267 {
268         struct device *dev = &vsi->back->pdev->dev;
269         struct net_device *netdev = vsi->netdev;
270         bool promisc_forced_on = false;
271         struct ice_pf *pf = vsi->back;
272         struct ice_hw *hw = &pf->hw;
273         enum ice_status status = 0;
274         u32 changed_flags = 0;
275         u8 promisc_m;
276         int err = 0;
277
278         if (!vsi->netdev)
279                 return -EINVAL;
280
281         while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
282                 usleep_range(1000, 2000);
283
284         changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
285         vsi->current_netdev_flags = vsi->netdev->flags;
286
287         INIT_LIST_HEAD(&vsi->tmp_sync_list);
288         INIT_LIST_HEAD(&vsi->tmp_unsync_list);
289
290         if (ice_vsi_fltr_changed(vsi)) {
291                 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
292                 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
293                 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
294
295                 /* grab the netdev's addr_list_lock */
296                 netif_addr_lock_bh(netdev);
297                 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
298                               ice_add_mac_to_unsync_list);
299                 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
300                               ice_add_mac_to_unsync_list);
301                 /* our temp lists are populated. release lock */
302                 netif_addr_unlock_bh(netdev);
303         }
304
305         /* Remove MAC addresses in the unsync list */
306         status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
307         ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
308         if (status) {
309                 netdev_err(netdev, "Failed to delete MAC filters\n");
310                 /* if we failed because of alloc failures, just bail */
311                 if (status == ICE_ERR_NO_MEMORY) {
312                         err = -ENOMEM;
313                         goto out;
314                 }
315         }
316
317         /* Add MAC addresses in the sync list */
318         status = ice_add_mac(hw, &vsi->tmp_sync_list);
319         ice_free_fltr_list(dev, &vsi->tmp_sync_list);
320         /* If filter is added successfully or already exists, do not go into
321          * 'if' condition and report it as error. Instead continue processing
322          * rest of the function.
323          */
324         if (status && status != ICE_ERR_ALREADY_EXISTS) {
325                 netdev_err(netdev, "Failed to add MAC filters\n");
326                 /* If there is no more space for new umac filters, VSI
327                  * should go into promiscuous mode. There should be some
328                  * space reserved for promiscuous filters.
329                  */
330                 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
331                     !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
332                                       vsi->state)) {
333                         promisc_forced_on = true;
334                         netdev_warn(netdev,
335                                     "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
336                                     vsi->vsi_num);
337                 } else {
338                         err = -EIO;
339                         goto out;
340                 }
341         }
342         /* check for changes in promiscuous modes */
343         if (changed_flags & IFF_ALLMULTI) {
344                 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
345                         if (vsi->vlan_ena)
346                                 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
347                         else
348                                 promisc_m = ICE_MCAST_PROMISC_BITS;
349
350                         err = ice_cfg_promisc(vsi, promisc_m, true);
351                         if (err) {
352                                 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
353                                            vsi->vsi_num);
354                                 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
355                                 goto out_promisc;
356                         }
357                 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
358                         if (vsi->vlan_ena)
359                                 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
360                         else
361                                 promisc_m = ICE_MCAST_PROMISC_BITS;
362
363                         err = ice_cfg_promisc(vsi, promisc_m, false);
364                         if (err) {
365                                 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
366                                            vsi->vsi_num);
367                                 vsi->current_netdev_flags |= IFF_ALLMULTI;
368                                 goto out_promisc;
369                         }
370                 }
371         }
372
373         if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
374             test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
375                 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
376                 if (vsi->current_netdev_flags & IFF_PROMISC) {
377                         /* Apply Rx filter rule to get traffic from wire */
378                         status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
379                                                   ICE_FLTR_RX);
380                         if (status) {
381                                 netdev_err(netdev, "Error setting default VSI %i Rx rule\n",
382                                            vsi->vsi_num);
383                                 vsi->current_netdev_flags &= ~IFF_PROMISC;
384                                 err = -EIO;
385                                 goto out_promisc;
386                         }
387                 } else {
388                         /* Clear Rx filter to remove traffic from wire */
389                         status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
390                                                   ICE_FLTR_RX);
391                         if (status) {
392                                 netdev_err(netdev, "Error clearing default VSI %i Rx rule\n",
393                                            vsi->vsi_num);
394                                 vsi->current_netdev_flags |= IFF_PROMISC;
395                                 err = -EIO;
396                                 goto out_promisc;
397                         }
398                 }
399         }
400         goto exit;
401
402 out_promisc:
403         set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
404         goto exit;
405 out:
406         /* if something went wrong then set the changed flag so we try again */
407         set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
408         set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
409 exit:
410         clear_bit(__ICE_CFG_BUSY, vsi->state);
411         return err;
412 }
413
414 /**
415  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
416  * @pf: board private structure
417  */
418 static void ice_sync_fltr_subtask(struct ice_pf *pf)
419 {
420         int v;
421
422         if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
423                 return;
424
425         clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
426
427         ice_for_each_vsi(pf, v)
428                 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
429                     ice_vsi_sync_fltr(pf->vsi[v])) {
430                         /* come back and try again later */
431                         set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
432                         break;
433                 }
434 }
435
436 /**
437  * ice_dis_vsi - pause a VSI
438  * @vsi: the VSI being paused
439  * @locked: is the rtnl_lock already held
440  */
441 static void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
442 {
443         if (test_bit(__ICE_DOWN, vsi->state))
444                 return;
445
446         set_bit(__ICE_NEEDS_RESTART, vsi->state);
447
448         if (vsi->type == ICE_VSI_PF && vsi->netdev) {
449                 if (netif_running(vsi->netdev)) {
450                         if (!locked) {
451                                 rtnl_lock();
452                                 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
453                                 rtnl_unlock();
454                         } else {
455                                 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
456                         }
457                 } else {
458                         ice_vsi_close(vsi);
459                 }
460         }
461 }
462
463 /**
464  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
465  * @pf: the PF
466  * @locked: is the rtnl_lock already held
467  */
468 #ifdef CONFIG_DCB
469 void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
470 #else
471 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
472 #endif /* CONFIG_DCB */
473 {
474         int v;
475
476         ice_for_each_vsi(pf, v)
477                 if (pf->vsi[v])
478                         ice_dis_vsi(pf->vsi[v], locked);
479 }
480
481 /**
482  * ice_prepare_for_reset - prep for the core to reset
483  * @pf: board private structure
484  *
485  * Inform or close all dependent features in prep for reset.
486  */
487 static void
488 ice_prepare_for_reset(struct ice_pf *pf)
489 {
490         struct ice_hw *hw = &pf->hw;
491         u8 i;
492
493         /* already prepared for reset */
494         if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
495                 return;
496
497         /* Notify VFs of impending reset */
498         if (ice_check_sq_alive(hw, &hw->mailboxq))
499                 ice_vc_notify_reset(pf);
500
501         /* Disable VFs until reset is completed */
502         for (i = 0; i < pf->num_alloc_vfs; i++)
503                 clear_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states);
504
505         /* disable the VSIs and their queues that are not already DOWN */
506         ice_pf_dis_all_vsi(pf, false);
507
508         if (hw->port_info)
509                 ice_sched_clear_port(hw->port_info);
510
511         ice_shutdown_all_ctrlq(hw);
512
513         set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
514 }
515
516 /**
517  * ice_do_reset - Initiate one of many types of resets
518  * @pf: board private structure
519  * @reset_type: reset type requested
520  * before this function was called.
521  */
522 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
523 {
524         struct device *dev = &pf->pdev->dev;
525         struct ice_hw *hw = &pf->hw;
526
527         dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
528         WARN_ON(in_interrupt());
529
530         ice_prepare_for_reset(pf);
531
532         /* trigger the reset */
533         if (ice_reset(hw, reset_type)) {
534                 dev_err(dev, "reset %d failed\n", reset_type);
535                 set_bit(__ICE_RESET_FAILED, pf->state);
536                 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
537                 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
538                 clear_bit(__ICE_PFR_REQ, pf->state);
539                 clear_bit(__ICE_CORER_REQ, pf->state);
540                 clear_bit(__ICE_GLOBR_REQ, pf->state);
541                 return;
542         }
543
544         /* PFR is a bit of a special case because it doesn't result in an OICR
545          * interrupt. So for PFR, rebuild after the reset and clear the reset-
546          * associated state bits.
547          */
548         if (reset_type == ICE_RESET_PFR) {
549                 pf->pfr_count++;
550                 ice_rebuild(pf);
551                 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
552                 clear_bit(__ICE_PFR_REQ, pf->state);
553                 ice_reset_all_vfs(pf, true);
554         }
555 }
556
557 /**
558  * ice_reset_subtask - Set up for resetting the device and driver
559  * @pf: board private structure
560  */
561 static void ice_reset_subtask(struct ice_pf *pf)
562 {
563         enum ice_reset_req reset_type = ICE_RESET_INVAL;
564
565         /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
566          * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
567          * of reset is pending and sets bits in pf->state indicating the reset
568          * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
569          * prepare for pending reset if not already (for PF software-initiated
570          * global resets the software should already be prepared for it as
571          * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
572          * by firmware or software on other PFs, that bit is not set so prepare
573          * for the reset now), poll for reset done, rebuild and return.
574          */
575         if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
576                 /* Perform the largest reset requested */
577                 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
578                         reset_type = ICE_RESET_CORER;
579                 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
580                         reset_type = ICE_RESET_GLOBR;
581                 /* return if no valid reset type requested */
582                 if (reset_type == ICE_RESET_INVAL)
583                         return;
584                 ice_prepare_for_reset(pf);
585
586                 /* make sure we are ready to rebuild */
587                 if (ice_check_reset(&pf->hw)) {
588                         set_bit(__ICE_RESET_FAILED, pf->state);
589                 } else {
590                         /* done with reset. start rebuild */
591                         pf->hw.reset_ongoing = false;
592                         ice_rebuild(pf);
593                         /* clear bit to resume normal operations, but
594                          * ICE_NEEDS_RESTART bit is set in case rebuild failed
595                          */
596                         clear_bit(__ICE_RESET_OICR_RECV, pf->state);
597                         clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
598                         clear_bit(__ICE_PFR_REQ, pf->state);
599                         clear_bit(__ICE_CORER_REQ, pf->state);
600                         clear_bit(__ICE_GLOBR_REQ, pf->state);
601                         ice_reset_all_vfs(pf, true);
602                 }
603
604                 return;
605         }
606
607         /* No pending resets to finish processing. Check for new resets */
608         if (test_bit(__ICE_PFR_REQ, pf->state))
609                 reset_type = ICE_RESET_PFR;
610         if (test_bit(__ICE_CORER_REQ, pf->state))
611                 reset_type = ICE_RESET_CORER;
612         if (test_bit(__ICE_GLOBR_REQ, pf->state))
613                 reset_type = ICE_RESET_GLOBR;
614         /* If no valid reset type requested just return */
615         if (reset_type == ICE_RESET_INVAL)
616                 return;
617
618         /* reset if not already down or busy */
619         if (!test_bit(__ICE_DOWN, pf->state) &&
620             !test_bit(__ICE_CFG_BUSY, pf->state)) {
621                 ice_do_reset(pf, reset_type);
622         }
623 }
624
625 /**
626  * ice_print_link_msg - print link up or down message
627  * @vsi: the VSI whose link status is being queried
628  * @isup: boolean for if the link is now up or down
629  */
630 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
631 {
632         struct ice_aqc_get_phy_caps_data *caps;
633         enum ice_status status;
634         const char *fec_req;
635         const char *speed;
636         const char *fec;
637         const char *fc;
638
639         if (!vsi)
640                 return;
641
642         if (vsi->current_isup == isup)
643                 return;
644
645         vsi->current_isup = isup;
646
647         if (!isup) {
648                 netdev_info(vsi->netdev, "NIC Link is Down\n");
649                 return;
650         }
651
652         switch (vsi->port_info->phy.link_info.link_speed) {
653         case ICE_AQ_LINK_SPEED_100GB:
654                 speed = "100 G";
655                 break;
656         case ICE_AQ_LINK_SPEED_50GB:
657                 speed = "50 G";
658                 break;
659         case ICE_AQ_LINK_SPEED_40GB:
660                 speed = "40 G";
661                 break;
662         case ICE_AQ_LINK_SPEED_25GB:
663                 speed = "25 G";
664                 break;
665         case ICE_AQ_LINK_SPEED_20GB:
666                 speed = "20 G";
667                 break;
668         case ICE_AQ_LINK_SPEED_10GB:
669                 speed = "10 G";
670                 break;
671         case ICE_AQ_LINK_SPEED_5GB:
672                 speed = "5 G";
673                 break;
674         case ICE_AQ_LINK_SPEED_2500MB:
675                 speed = "2.5 G";
676                 break;
677         case ICE_AQ_LINK_SPEED_1000MB:
678                 speed = "1 G";
679                 break;
680         case ICE_AQ_LINK_SPEED_100MB:
681                 speed = "100 M";
682                 break;
683         default:
684                 speed = "Unknown";
685                 break;
686         }
687
688         switch (vsi->port_info->fc.current_mode) {
689         case ICE_FC_FULL:
690                 fc = "Rx/Tx";
691                 break;
692         case ICE_FC_TX_PAUSE:
693                 fc = "Tx";
694                 break;
695         case ICE_FC_RX_PAUSE:
696                 fc = "Rx";
697                 break;
698         case ICE_FC_NONE:
699                 fc = "None";
700                 break;
701         default:
702                 fc = "Unknown";
703                 break;
704         }
705
706         /* Get FEC mode based on negotiated link info */
707         switch (vsi->port_info->phy.link_info.fec_info) {
708         case ICE_AQ_LINK_25G_RS_528_FEC_EN:
709                 /* fall through */
710         case ICE_AQ_LINK_25G_RS_544_FEC_EN:
711                 fec = "RS-FEC";
712                 break;
713         case ICE_AQ_LINK_25G_KR_FEC_EN:
714                 fec = "FC-FEC/BASE-R";
715                 break;
716         default:
717                 fec = "NONE";
718                 break;
719         }
720
721         /* Get FEC mode requested based on PHY caps last SW configuration */
722         caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL);
723         if (!caps) {
724                 fec_req = "Unknown";
725                 goto done;
726         }
727
728         status = ice_aq_get_phy_caps(vsi->port_info, false,
729                                      ICE_AQC_REPORT_SW_CFG, caps, NULL);
730         if (status)
731                 netdev_info(vsi->netdev, "Get phy capability failed.\n");
732
733         if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
734             caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
735                 fec_req = "RS-FEC";
736         else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
737                  caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
738                 fec_req = "FC-FEC/BASE-R";
739         else
740                 fec_req = "NONE";
741
742         devm_kfree(&vsi->back->pdev->dev, caps);
743
744 done:
745         netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Flow Control: %s\n",
746                     speed, fec_req, fec, fc);
747 }
748
749 /**
750  * ice_vsi_link_event - update the VSI's netdev
751  * @vsi: the VSI on which the link event occurred
752  * @link_up: whether or not the VSI needs to be set up or down
753  */
754 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
755 {
756         if (!vsi)
757                 return;
758
759         if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
760                 return;
761
762         if (vsi->type == ICE_VSI_PF) {
763                 if (link_up == netif_carrier_ok(vsi->netdev))
764                         return;
765
766                 if (link_up) {
767                         netif_carrier_on(vsi->netdev);
768                         netif_tx_wake_all_queues(vsi->netdev);
769                 } else {
770                         netif_carrier_off(vsi->netdev);
771                         netif_tx_stop_all_queues(vsi->netdev);
772                 }
773         }
774 }
775
776 /**
777  * ice_link_event - process the link event
778  * @pf: PF that the link event is associated with
779  * @pi: port_info for the port that the link event is associated with
780  * @link_up: true if the physical link is up and false if it is down
781  * @link_speed: current link speed received from the link event
782  *
783  * Returns 0 on success and negative on failure
784  */
785 static int
786 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
787                u16 link_speed)
788 {
789         struct ice_phy_info *phy_info;
790         struct ice_vsi *vsi;
791         u16 old_link_speed;
792         bool old_link;
793         int result;
794
795         phy_info = &pi->phy;
796         phy_info->link_info_old = phy_info->link_info;
797
798         old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
799         old_link_speed = phy_info->link_info_old.link_speed;
800
801         /* update the link info structures and re-enable link events,
802          * don't bail on failure due to other book keeping needed
803          */
804         result = ice_update_link_info(pi);
805         if (result)
806                 dev_dbg(&pf->pdev->dev,
807                         "Failed to update link status and re-enable link events for port %d\n",
808                         pi->lport);
809
810         /* if the old link up/down and speed is the same as the new */
811         if (link_up == old_link && link_speed == old_link_speed)
812                 return result;
813
814         vsi = ice_find_vsi_by_type(pf, ICE_VSI_PF);
815         if (!vsi || !vsi->port_info)
816                 return -EINVAL;
817
818         /* turn off PHY if media was removed */
819         if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
820             !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
821                 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
822
823                 result = ice_aq_set_link_restart_an(pi, false, NULL);
824                 if (result) {
825                         dev_dbg(&pf->pdev->dev,
826                                 "Failed to set link down, VSI %d error %d\n",
827                                 vsi->vsi_num, result);
828                         return result;
829                 }
830         }
831
832         ice_vsi_link_event(vsi, link_up);
833         ice_print_link_msg(vsi, link_up);
834
835         if (pf->num_alloc_vfs)
836                 ice_vc_notify_link_state(pf);
837
838         return result;
839 }
840
841 /**
842  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
843  * @pf: board private structure
844  */
845 static void ice_watchdog_subtask(struct ice_pf *pf)
846 {
847         int i;
848
849         /* if interface is down do nothing */
850         if (test_bit(__ICE_DOWN, pf->state) ||
851             test_bit(__ICE_CFG_BUSY, pf->state))
852                 return;
853
854         /* make sure we don't do these things too often */
855         if (time_before(jiffies,
856                         pf->serv_tmr_prev + pf->serv_tmr_period))
857                 return;
858
859         pf->serv_tmr_prev = jiffies;
860
861         /* Update the stats for active netdevs so the network stack
862          * can look at updated numbers whenever it cares to
863          */
864         ice_update_pf_stats(pf);
865         ice_for_each_vsi(pf, i)
866                 if (pf->vsi[i] && pf->vsi[i]->netdev)
867                         ice_update_vsi_stats(pf->vsi[i]);
868 }
869
870 /**
871  * ice_init_link_events - enable/initialize link events
872  * @pi: pointer to the port_info instance
873  *
874  * Returns -EIO on failure, 0 on success
875  */
876 static int ice_init_link_events(struct ice_port_info *pi)
877 {
878         u16 mask;
879
880         mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
881                        ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
882
883         if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
884                 dev_dbg(ice_hw_to_dev(pi->hw),
885                         "Failed to set link event mask for port %d\n",
886                         pi->lport);
887                 return -EIO;
888         }
889
890         if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
891                 dev_dbg(ice_hw_to_dev(pi->hw),
892                         "Failed to enable link events for port %d\n",
893                         pi->lport);
894                 return -EIO;
895         }
896
897         return 0;
898 }
899
900 /**
901  * ice_handle_link_event - handle link event via ARQ
902  * @pf: PF that the link event is associated with
903  * @event: event structure containing link status info
904  */
905 static int
906 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
907 {
908         struct ice_aqc_get_link_status_data *link_data;
909         struct ice_port_info *port_info;
910         int status;
911
912         link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
913         port_info = pf->hw.port_info;
914         if (!port_info)
915                 return -EINVAL;
916
917         status = ice_link_event(pf, port_info,
918                                 !!(link_data->link_info & ICE_AQ_LINK_UP),
919                                 le16_to_cpu(link_data->link_speed));
920         if (status)
921                 dev_dbg(&pf->pdev->dev,
922                         "Could not process link event, error %d\n", status);
923
924         return status;
925 }
926
927 /**
928  * __ice_clean_ctrlq - helper function to clean controlq rings
929  * @pf: ptr to struct ice_pf
930  * @q_type: specific Control queue type
931  */
932 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
933 {
934         struct ice_rq_event_info event;
935         struct ice_hw *hw = &pf->hw;
936         struct ice_ctl_q_info *cq;
937         u16 pending, i = 0;
938         const char *qtype;
939         u32 oldval, val;
940
941         /* Do not clean control queue if/when PF reset fails */
942         if (test_bit(__ICE_RESET_FAILED, pf->state))
943                 return 0;
944
945         switch (q_type) {
946         case ICE_CTL_Q_ADMIN:
947                 cq = &hw->adminq;
948                 qtype = "Admin";
949                 break;
950         case ICE_CTL_Q_MAILBOX:
951                 cq = &hw->mailboxq;
952                 qtype = "Mailbox";
953                 break;
954         default:
955                 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
956                          q_type);
957                 return 0;
958         }
959
960         /* check for error indications - PF_xx_AxQLEN register layout for
961          * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
962          */
963         val = rd32(hw, cq->rq.len);
964         if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
965                    PF_FW_ARQLEN_ARQCRIT_M)) {
966                 oldval = val;
967                 if (val & PF_FW_ARQLEN_ARQVFE_M)
968                         dev_dbg(&pf->pdev->dev,
969                                 "%s Receive Queue VF Error detected\n", qtype);
970                 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
971                         dev_dbg(&pf->pdev->dev,
972                                 "%s Receive Queue Overflow Error detected\n",
973                                 qtype);
974                 }
975                 if (val & PF_FW_ARQLEN_ARQCRIT_M)
976                         dev_dbg(&pf->pdev->dev,
977                                 "%s Receive Queue Critical Error detected\n",
978                                 qtype);
979                 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
980                          PF_FW_ARQLEN_ARQCRIT_M);
981                 if (oldval != val)
982                         wr32(hw, cq->rq.len, val);
983         }
984
985         val = rd32(hw, cq->sq.len);
986         if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
987                    PF_FW_ATQLEN_ATQCRIT_M)) {
988                 oldval = val;
989                 if (val & PF_FW_ATQLEN_ATQVFE_M)
990                         dev_dbg(&pf->pdev->dev,
991                                 "%s Send Queue VF Error detected\n", qtype);
992                 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
993                         dev_dbg(&pf->pdev->dev,
994                                 "%s Send Queue Overflow Error detected\n",
995                                 qtype);
996                 }
997                 if (val & PF_FW_ATQLEN_ATQCRIT_M)
998                         dev_dbg(&pf->pdev->dev,
999                                 "%s Send Queue Critical Error detected\n",
1000                                 qtype);
1001                 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1002                          PF_FW_ATQLEN_ATQCRIT_M);
1003                 if (oldval != val)
1004                         wr32(hw, cq->sq.len, val);
1005         }
1006
1007         event.buf_len = cq->rq_buf_size;
1008         event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
1009                                      GFP_KERNEL);
1010         if (!event.msg_buf)
1011                 return 0;
1012
1013         do {
1014                 enum ice_status ret;
1015                 u16 opcode;
1016
1017                 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1018                 if (ret == ICE_ERR_AQ_NO_WORK)
1019                         break;
1020                 if (ret) {
1021                         dev_err(&pf->pdev->dev,
1022                                 "%s Receive Queue event error %d\n", qtype,
1023                                 ret);
1024                         break;
1025                 }
1026
1027                 opcode = le16_to_cpu(event.desc.opcode);
1028
1029                 switch (opcode) {
1030                 case ice_aqc_opc_get_link_status:
1031                         if (ice_handle_link_event(pf, &event))
1032                                 dev_err(&pf->pdev->dev,
1033                                         "Could not handle link event\n");
1034                         break;
1035                 case ice_mbx_opc_send_msg_to_pf:
1036                         ice_vc_process_vf_msg(pf, &event);
1037                         break;
1038                 case ice_aqc_opc_fw_logging:
1039                         ice_output_fw_log(hw, &event.desc, event.msg_buf);
1040                         break;
1041                 case ice_aqc_opc_lldp_set_mib_change:
1042                         ice_dcb_process_lldp_set_mib_change(pf, &event);
1043                         break;
1044                 default:
1045                         dev_dbg(&pf->pdev->dev,
1046                                 "%s Receive Queue unknown event 0x%04x ignored\n",
1047                                 qtype, opcode);
1048                         break;
1049                 }
1050         } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1051
1052         devm_kfree(&pf->pdev->dev, event.msg_buf);
1053
1054         return pending && (i == ICE_DFLT_IRQ_WORK);
1055 }
1056
1057 /**
1058  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1059  * @hw: pointer to hardware info
1060  * @cq: control queue information
1061  *
1062  * returns true if there are pending messages in a queue, false if there aren't
1063  */
1064 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1065 {
1066         u16 ntu;
1067
1068         ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1069         return cq->rq.next_to_clean != ntu;
1070 }
1071
1072 /**
1073  * ice_clean_adminq_subtask - clean the AdminQ rings
1074  * @pf: board private structure
1075  */
1076 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1077 {
1078         struct ice_hw *hw = &pf->hw;
1079
1080         if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1081                 return;
1082
1083         if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1084                 return;
1085
1086         clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1087
1088         /* There might be a situation where new messages arrive to a control
1089          * queue between processing the last message and clearing the
1090          * EVENT_PENDING bit. So before exiting, check queue head again (using
1091          * ice_ctrlq_pending) and process new messages if any.
1092          */
1093         if (ice_ctrlq_pending(hw, &hw->adminq))
1094                 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1095
1096         ice_flush(hw);
1097 }
1098
1099 /**
1100  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1101  * @pf: board private structure
1102  */
1103 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1104 {
1105         struct ice_hw *hw = &pf->hw;
1106
1107         if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1108                 return;
1109
1110         if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1111                 return;
1112
1113         clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1114
1115         if (ice_ctrlq_pending(hw, &hw->mailboxq))
1116                 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1117
1118         ice_flush(hw);
1119 }
1120
1121 /**
1122  * ice_service_task_schedule - schedule the service task to wake up
1123  * @pf: board private structure
1124  *
1125  * If not already scheduled, this puts the task into the work queue.
1126  */
1127 static void ice_service_task_schedule(struct ice_pf *pf)
1128 {
1129         if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1130             !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1131             !test_bit(__ICE_NEEDS_RESTART, pf->state))
1132                 queue_work(ice_wq, &pf->serv_task);
1133 }
1134
1135 /**
1136  * ice_service_task_complete - finish up the service task
1137  * @pf: board private structure
1138  */
1139 static void ice_service_task_complete(struct ice_pf *pf)
1140 {
1141         WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1142
1143         /* force memory (pf->state) to sync before next service task */
1144         smp_mb__before_atomic();
1145         clear_bit(__ICE_SERVICE_SCHED, pf->state);
1146 }
1147
1148 /**
1149  * ice_service_task_stop - stop service task and cancel works
1150  * @pf: board private structure
1151  */
1152 static void ice_service_task_stop(struct ice_pf *pf)
1153 {
1154         set_bit(__ICE_SERVICE_DIS, pf->state);
1155
1156         if (pf->serv_tmr.function)
1157                 del_timer_sync(&pf->serv_tmr);
1158         if (pf->serv_task.func)
1159                 cancel_work_sync(&pf->serv_task);
1160
1161         clear_bit(__ICE_SERVICE_SCHED, pf->state);
1162 }
1163
1164 /**
1165  * ice_service_task_restart - restart service task and schedule works
1166  * @pf: board private structure
1167  *
1168  * This function is needed for suspend and resume works (e.g WoL scenario)
1169  */
1170 static void ice_service_task_restart(struct ice_pf *pf)
1171 {
1172         clear_bit(__ICE_SERVICE_DIS, pf->state);
1173         ice_service_task_schedule(pf);
1174 }
1175
1176 /**
1177  * ice_service_timer - timer callback to schedule service task
1178  * @t: pointer to timer_list
1179  */
1180 static void ice_service_timer(struct timer_list *t)
1181 {
1182         struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1183
1184         mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1185         ice_service_task_schedule(pf);
1186 }
1187
1188 /**
1189  * ice_handle_mdd_event - handle malicious driver detect event
1190  * @pf: pointer to the PF structure
1191  *
1192  * Called from service task. OICR interrupt handler indicates MDD event
1193  */
1194 static void ice_handle_mdd_event(struct ice_pf *pf)
1195 {
1196         struct ice_hw *hw = &pf->hw;
1197         bool mdd_detected = false;
1198         u32 reg;
1199         int i;
1200
1201         if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state))
1202                 return;
1203
1204         /* find what triggered the MDD event */
1205         reg = rd32(hw, GL_MDET_TX_PQM);
1206         if (reg & GL_MDET_TX_PQM_VALID_M) {
1207                 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1208                                 GL_MDET_TX_PQM_PF_NUM_S;
1209                 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1210                                 GL_MDET_TX_PQM_VF_NUM_S;
1211                 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1212                                 GL_MDET_TX_PQM_MAL_TYPE_S;
1213                 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1214                                 GL_MDET_TX_PQM_QNUM_S);
1215
1216                 if (netif_msg_tx_err(pf))
1217                         dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1218                                  event, queue, pf_num, vf_num);
1219                 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1220                 mdd_detected = true;
1221         }
1222
1223         reg = rd32(hw, GL_MDET_TX_TCLAN);
1224         if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1225                 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1226                                 GL_MDET_TX_TCLAN_PF_NUM_S;
1227                 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1228                                 GL_MDET_TX_TCLAN_VF_NUM_S;
1229                 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1230                                 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1231                 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1232                                 GL_MDET_TX_TCLAN_QNUM_S);
1233
1234                 if (netif_msg_rx_err(pf))
1235                         dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1236                                  event, queue, pf_num, vf_num);
1237                 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1238                 mdd_detected = true;
1239         }
1240
1241         reg = rd32(hw, GL_MDET_RX);
1242         if (reg & GL_MDET_RX_VALID_M) {
1243                 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1244                                 GL_MDET_RX_PF_NUM_S;
1245                 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1246                                 GL_MDET_RX_VF_NUM_S;
1247                 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1248                                 GL_MDET_RX_MAL_TYPE_S;
1249                 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1250                                 GL_MDET_RX_QNUM_S);
1251
1252                 if (netif_msg_rx_err(pf))
1253                         dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1254                                  event, queue, pf_num, vf_num);
1255                 wr32(hw, GL_MDET_RX, 0xffffffff);
1256                 mdd_detected = true;
1257         }
1258
1259         if (mdd_detected) {
1260                 bool pf_mdd_detected = false;
1261
1262                 reg = rd32(hw, PF_MDET_TX_PQM);
1263                 if (reg & PF_MDET_TX_PQM_VALID_M) {
1264                         wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1265                         dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1266                         pf_mdd_detected = true;
1267                 }
1268
1269                 reg = rd32(hw, PF_MDET_TX_TCLAN);
1270                 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1271                         wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1272                         dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1273                         pf_mdd_detected = true;
1274                 }
1275
1276                 reg = rd32(hw, PF_MDET_RX);
1277                 if (reg & PF_MDET_RX_VALID_M) {
1278                         wr32(hw, PF_MDET_RX, 0xFFFF);
1279                         dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
1280                         pf_mdd_detected = true;
1281                 }
1282                 /* Queue belongs to the PF initiate a reset */
1283                 if (pf_mdd_detected) {
1284                         set_bit(__ICE_NEEDS_RESTART, pf->state);
1285                         ice_service_task_schedule(pf);
1286                 }
1287         }
1288
1289         /* check to see if one of the VFs caused the MDD */
1290         for (i = 0; i < pf->num_alloc_vfs; i++) {
1291                 struct ice_vf *vf = &pf->vf[i];
1292
1293                 bool vf_mdd_detected = false;
1294
1295                 reg = rd32(hw, VP_MDET_TX_PQM(i));
1296                 if (reg & VP_MDET_TX_PQM_VALID_M) {
1297                         wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1298                         vf_mdd_detected = true;
1299                         dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1300                                  i);
1301                 }
1302
1303                 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1304                 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1305                         wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1306                         vf_mdd_detected = true;
1307                         dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1308                                  i);
1309                 }
1310
1311                 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1312                 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1313                         wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1314                         vf_mdd_detected = true;
1315                         dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1316                                  i);
1317                 }
1318
1319                 reg = rd32(hw, VP_MDET_RX(i));
1320                 if (reg & VP_MDET_RX_VALID_M) {
1321                         wr32(hw, VP_MDET_RX(i), 0xFFFF);
1322                         vf_mdd_detected = true;
1323                         dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
1324                                  i);
1325                 }
1326
1327                 if (vf_mdd_detected) {
1328                         vf->num_mdd_events++;
1329                         if (vf->num_mdd_events > 1)
1330                                 dev_info(&pf->pdev->dev, "VF %d has had %llu MDD events since last boot\n",
1331                                          i, vf->num_mdd_events);
1332                 }
1333         }
1334 }
1335
1336 /**
1337  * ice_force_phys_link_state - Force the physical link state
1338  * @vsi: VSI to force the physical link state to up/down
1339  * @link_up: true/false indicates to set the physical link to up/down
1340  *
1341  * Force the physical link state by getting the current PHY capabilities from
1342  * hardware and setting the PHY config based on the determined capabilities. If
1343  * link changes a link event will be triggered because both the Enable Automatic
1344  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1345  *
1346  * Returns 0 on success, negative on failure
1347  */
1348 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1349 {
1350         struct ice_aqc_get_phy_caps_data *pcaps;
1351         struct ice_aqc_set_phy_cfg_data *cfg;
1352         struct ice_port_info *pi;
1353         struct device *dev;
1354         int retcode;
1355
1356         if (!vsi || !vsi->port_info || !vsi->back)
1357                 return -EINVAL;
1358         if (vsi->type != ICE_VSI_PF)
1359                 return 0;
1360
1361         dev = &vsi->back->pdev->dev;
1362
1363         pi = vsi->port_info;
1364
1365         pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL);
1366         if (!pcaps)
1367                 return -ENOMEM;
1368
1369         retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1370                                       NULL);
1371         if (retcode) {
1372                 dev_err(dev,
1373                         "Failed to get phy capabilities, VSI %d error %d\n",
1374                         vsi->vsi_num, retcode);
1375                 retcode = -EIO;
1376                 goto out;
1377         }
1378
1379         /* No change in link */
1380         if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1381             link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1382                 goto out;
1383
1384         cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL);
1385         if (!cfg) {
1386                 retcode = -ENOMEM;
1387                 goto out;
1388         }
1389
1390         cfg->phy_type_low = pcaps->phy_type_low;
1391         cfg->phy_type_high = pcaps->phy_type_high;
1392         cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1393         cfg->low_power_ctrl = pcaps->low_power_ctrl;
1394         cfg->eee_cap = pcaps->eee_cap;
1395         cfg->eeer_value = pcaps->eeer_value;
1396         cfg->link_fec_opt = pcaps->link_fec_options;
1397         if (link_up)
1398                 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1399         else
1400                 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1401
1402         retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
1403         if (retcode) {
1404                 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1405                         vsi->vsi_num, retcode);
1406                 retcode = -EIO;
1407         }
1408
1409         devm_kfree(dev, cfg);
1410 out:
1411         devm_kfree(dev, pcaps);
1412         return retcode;
1413 }
1414
1415 /**
1416  * ice_check_media_subtask - Check for media; bring link up if detected.
1417  * @pf: pointer to PF struct
1418  */
1419 static void ice_check_media_subtask(struct ice_pf *pf)
1420 {
1421         struct ice_port_info *pi;
1422         struct ice_vsi *vsi;
1423         int err;
1424
1425         vsi = ice_find_vsi_by_type(pf, ICE_VSI_PF);
1426         if (!vsi)
1427                 return;
1428
1429         /* No need to check for media if it's already present or the interface
1430          * is down
1431          */
1432         if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) ||
1433             test_bit(__ICE_DOWN, vsi->state))
1434                 return;
1435
1436         /* Refresh link info and check if media is present */
1437         pi = vsi->port_info;
1438         err = ice_update_link_info(pi);
1439         if (err)
1440                 return;
1441
1442         if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1443                 err = ice_force_phys_link_state(vsi, true);
1444                 if (err)
1445                         return;
1446                 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1447
1448                 /* A Link Status Event will be generated; the event handler
1449                  * will complete bringing the interface up
1450                  */
1451         }
1452 }
1453
1454 /**
1455  * ice_service_task - manage and run subtasks
1456  * @work: pointer to work_struct contained by the PF struct
1457  */
1458 static void ice_service_task(struct work_struct *work)
1459 {
1460         struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1461         unsigned long start_time = jiffies;
1462
1463         /* subtasks */
1464
1465         /* process reset requests first */
1466         ice_reset_subtask(pf);
1467
1468         /* bail if a reset/recovery cycle is pending or rebuild failed */
1469         if (ice_is_reset_in_progress(pf->state) ||
1470             test_bit(__ICE_SUSPENDED, pf->state) ||
1471             test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1472                 ice_service_task_complete(pf);
1473                 return;
1474         }
1475
1476         ice_check_media_subtask(pf);
1477         ice_check_for_hang_subtask(pf);
1478         ice_sync_fltr_subtask(pf);
1479         ice_handle_mdd_event(pf);
1480         ice_process_vflr_event(pf);
1481         ice_watchdog_subtask(pf);
1482         ice_clean_adminq_subtask(pf);
1483         ice_clean_mailboxq_subtask(pf);
1484
1485         /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1486         ice_service_task_complete(pf);
1487
1488         /* If the tasks have taken longer than one service timer period
1489          * or there is more work to be done, reset the service timer to
1490          * schedule the service task now.
1491          */
1492         if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1493             test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1494             test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1495             test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1496             test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1497                 mod_timer(&pf->serv_tmr, jiffies);
1498 }
1499
1500 /**
1501  * ice_set_ctrlq_len - helper function to set controlq length
1502  * @hw: pointer to the HW instance
1503  */
1504 static void ice_set_ctrlq_len(struct ice_hw *hw)
1505 {
1506         hw->adminq.num_rq_entries = ICE_AQ_LEN;
1507         hw->adminq.num_sq_entries = ICE_AQ_LEN;
1508         hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1509         hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1510         hw->mailboxq.num_rq_entries = ICE_MBXQ_LEN;
1511         hw->mailboxq.num_sq_entries = ICE_MBXQ_LEN;
1512         hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1513         hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1514 }
1515
1516 /**
1517  * ice_irq_affinity_notify - Callback for affinity changes
1518  * @notify: context as to what irq was changed
1519  * @mask: the new affinity mask
1520  *
1521  * This is a callback function used by the irq_set_affinity_notifier function
1522  * so that we may register to receive changes to the irq affinity masks.
1523  */
1524 static void
1525 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1526                         const cpumask_t *mask)
1527 {
1528         struct ice_q_vector *q_vector =
1529                 container_of(notify, struct ice_q_vector, affinity_notify);
1530
1531         cpumask_copy(&q_vector->affinity_mask, mask);
1532 }
1533
1534 /**
1535  * ice_irq_affinity_release - Callback for affinity notifier release
1536  * @ref: internal core kernel usage
1537  *
1538  * This is a callback function used by the irq_set_affinity_notifier function
1539  * to inform the current notification subscriber that they will no longer
1540  * receive notifications.
1541  */
1542 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1543
1544 /**
1545  * ice_vsi_ena_irq - Enable IRQ for the given VSI
1546  * @vsi: the VSI being configured
1547  */
1548 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1549 {
1550         struct ice_hw *hw = &vsi->back->hw;
1551         int i;
1552
1553         ice_for_each_q_vector(vsi, i)
1554                 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1555
1556         ice_flush(hw);
1557         return 0;
1558 }
1559
1560 /**
1561  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1562  * @vsi: the VSI being configured
1563  * @basename: name for the vector
1564  */
1565 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1566 {
1567         int q_vectors = vsi->num_q_vectors;
1568         struct ice_pf *pf = vsi->back;
1569         int base = vsi->base_vector;
1570         int rx_int_idx = 0;
1571         int tx_int_idx = 0;
1572         int vector, err;
1573         int irq_num;
1574
1575         for (vector = 0; vector < q_vectors; vector++) {
1576                 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1577
1578                 irq_num = pf->msix_entries[base + vector].vector;
1579
1580                 if (q_vector->tx.ring && q_vector->rx.ring) {
1581                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1582                                  "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1583                         tx_int_idx++;
1584                 } else if (q_vector->rx.ring) {
1585                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1586                                  "%s-%s-%d", basename, "rx", rx_int_idx++);
1587                 } else if (q_vector->tx.ring) {
1588                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1589                                  "%s-%s-%d", basename, "tx", tx_int_idx++);
1590                 } else {
1591                         /* skip this unused q_vector */
1592                         continue;
1593                 }
1594                 err = devm_request_irq(&pf->pdev->dev, irq_num,
1595                                        vsi->irq_handler, 0,
1596                                        q_vector->name, q_vector);
1597                 if (err) {
1598                         netdev_err(vsi->netdev,
1599                                    "MSIX request_irq failed, error: %d\n", err);
1600                         goto free_q_irqs;
1601                 }
1602
1603                 /* register for affinity change notifications */
1604                 q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1605                 q_vector->affinity_notify.release = ice_irq_affinity_release;
1606                 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1607
1608                 /* assign the mask for this irq */
1609                 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1610         }
1611
1612         vsi->irqs_ready = true;
1613         return 0;
1614
1615 free_q_irqs:
1616         while (vector) {
1617                 vector--;
1618                 irq_num = pf->msix_entries[base + vector].vector,
1619                 irq_set_affinity_notifier(irq_num, NULL);
1620                 irq_set_affinity_hint(irq_num, NULL);
1621                 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1622         }
1623         return err;
1624 }
1625
1626 /**
1627  * ice_ena_misc_vector - enable the non-queue interrupts
1628  * @pf: board private structure
1629  */
1630 static void ice_ena_misc_vector(struct ice_pf *pf)
1631 {
1632         struct ice_hw *hw = &pf->hw;
1633         u32 val;
1634
1635         /* clear things first */
1636         wr32(hw, PFINT_OICR_ENA, 0);    /* disable all */
1637         rd32(hw, PFINT_OICR);           /* read to clear */
1638
1639         val = (PFINT_OICR_ECC_ERR_M |
1640                PFINT_OICR_MAL_DETECT_M |
1641                PFINT_OICR_GRST_M |
1642                PFINT_OICR_PCI_EXCEPTION_M |
1643                PFINT_OICR_VFLR_M |
1644                PFINT_OICR_HMC_ERR_M |
1645                PFINT_OICR_PE_CRITERR_M);
1646
1647         wr32(hw, PFINT_OICR_ENA, val);
1648
1649         /* SW_ITR_IDX = 0, but don't change INTENA */
1650         wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1651              GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1652 }
1653
1654 /**
1655  * ice_misc_intr - misc interrupt handler
1656  * @irq: interrupt number
1657  * @data: pointer to a q_vector
1658  */
1659 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1660 {
1661         struct ice_pf *pf = (struct ice_pf *)data;
1662         struct ice_hw *hw = &pf->hw;
1663         irqreturn_t ret = IRQ_NONE;
1664         u32 oicr, ena_mask;
1665
1666         set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1667         set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1668
1669         oicr = rd32(hw, PFINT_OICR);
1670         ena_mask = rd32(hw, PFINT_OICR_ENA);
1671
1672         if (oicr & PFINT_OICR_SWINT_M) {
1673                 ena_mask &= ~PFINT_OICR_SWINT_M;
1674                 pf->sw_int_count++;
1675         }
1676
1677         if (oicr & PFINT_OICR_MAL_DETECT_M) {
1678                 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
1679                 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
1680         }
1681         if (oicr & PFINT_OICR_VFLR_M) {
1682                 ena_mask &= ~PFINT_OICR_VFLR_M;
1683                 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
1684         }
1685
1686         if (oicr & PFINT_OICR_GRST_M) {
1687                 u32 reset;
1688
1689                 /* we have a reset warning */
1690                 ena_mask &= ~PFINT_OICR_GRST_M;
1691                 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1692                         GLGEN_RSTAT_RESET_TYPE_S;
1693
1694                 if (reset == ICE_RESET_CORER)
1695                         pf->corer_count++;
1696                 else if (reset == ICE_RESET_GLOBR)
1697                         pf->globr_count++;
1698                 else if (reset == ICE_RESET_EMPR)
1699                         pf->empr_count++;
1700                 else
1701                         dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n",
1702                                 reset);
1703
1704                 /* If a reset cycle isn't already in progress, we set a bit in
1705                  * pf->state so that the service task can start a reset/rebuild.
1706                  * We also make note of which reset happened so that peer
1707                  * devices/drivers can be informed.
1708                  */
1709                 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
1710                         if (reset == ICE_RESET_CORER)
1711                                 set_bit(__ICE_CORER_RECV, pf->state);
1712                         else if (reset == ICE_RESET_GLOBR)
1713                                 set_bit(__ICE_GLOBR_RECV, pf->state);
1714                         else
1715                                 set_bit(__ICE_EMPR_RECV, pf->state);
1716
1717                         /* There are couple of different bits at play here.
1718                          * hw->reset_ongoing indicates whether the hardware is
1719                          * in reset. This is set to true when a reset interrupt
1720                          * is received and set back to false after the driver
1721                          * has determined that the hardware is out of reset.
1722                          *
1723                          * __ICE_RESET_OICR_RECV in pf->state indicates
1724                          * that a post reset rebuild is required before the
1725                          * driver is operational again. This is set above.
1726                          *
1727                          * As this is the start of the reset/rebuild cycle, set
1728                          * both to indicate that.
1729                          */
1730                         hw->reset_ongoing = true;
1731                 }
1732         }
1733
1734         if (oicr & PFINT_OICR_HMC_ERR_M) {
1735                 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1736                 dev_dbg(&pf->pdev->dev,
1737                         "HMC Error interrupt - info 0x%x, data 0x%x\n",
1738                         rd32(hw, PFHMC_ERRORINFO),
1739                         rd32(hw, PFHMC_ERRORDATA));
1740         }
1741
1742         /* Report any remaining unexpected interrupts */
1743         oicr &= ena_mask;
1744         if (oicr) {
1745                 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1746                         oicr);
1747                 /* If a critical error is pending there is no choice but to
1748                  * reset the device.
1749                  */
1750                 if (oicr & (PFINT_OICR_PE_CRITERR_M |
1751                             PFINT_OICR_PCI_EXCEPTION_M |
1752                             PFINT_OICR_ECC_ERR_M)) {
1753                         set_bit(__ICE_PFR_REQ, pf->state);
1754                         ice_service_task_schedule(pf);
1755                 }
1756         }
1757         ret = IRQ_HANDLED;
1758
1759         if (!test_bit(__ICE_DOWN, pf->state)) {
1760                 ice_service_task_schedule(pf);
1761                 ice_irq_dynamic_ena(hw, NULL, NULL);
1762         }
1763
1764         return ret;
1765 }
1766
1767 /**
1768  * ice_dis_ctrlq_interrupts - disable control queue interrupts
1769  * @hw: pointer to HW structure
1770  */
1771 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
1772 {
1773         /* disable Admin queue Interrupt causes */
1774         wr32(hw, PFINT_FW_CTL,
1775              rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
1776
1777         /* disable Mailbox queue Interrupt causes */
1778         wr32(hw, PFINT_MBX_CTL,
1779              rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
1780
1781         /* disable Control queue Interrupt causes */
1782         wr32(hw, PFINT_OICR_CTL,
1783              rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
1784
1785         ice_flush(hw);
1786 }
1787
1788 /**
1789  * ice_free_irq_msix_misc - Unroll misc vector setup
1790  * @pf: board private structure
1791  */
1792 static void ice_free_irq_msix_misc(struct ice_pf *pf)
1793 {
1794         struct ice_hw *hw = &pf->hw;
1795
1796         ice_dis_ctrlq_interrupts(hw);
1797
1798         /* disable OICR interrupt */
1799         wr32(hw, PFINT_OICR_ENA, 0);
1800         ice_flush(hw);
1801
1802         if (pf->msix_entries) {
1803                 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
1804                 devm_free_irq(&pf->pdev->dev,
1805                               pf->msix_entries[pf->oicr_idx].vector, pf);
1806         }
1807
1808         pf->num_avail_sw_msix += 1;
1809         ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
1810 }
1811
1812 /**
1813  * ice_ena_ctrlq_interrupts - enable control queue interrupts
1814  * @hw: pointer to HW structure
1815  * @reg_idx: HW vector index to associate the control queue interrupts with
1816  */
1817 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
1818 {
1819         u32 val;
1820
1821         val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
1822                PFINT_OICR_CTL_CAUSE_ENA_M);
1823         wr32(hw, PFINT_OICR_CTL, val);
1824
1825         /* enable Admin queue Interrupt causes */
1826         val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
1827                PFINT_FW_CTL_CAUSE_ENA_M);
1828         wr32(hw, PFINT_FW_CTL, val);
1829
1830         /* enable Mailbox queue Interrupt causes */
1831         val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
1832                PFINT_MBX_CTL_CAUSE_ENA_M);
1833         wr32(hw, PFINT_MBX_CTL, val);
1834
1835         ice_flush(hw);
1836 }
1837
1838 /**
1839  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
1840  * @pf: board private structure
1841  *
1842  * This sets up the handler for MSIX 0, which is used to manage the
1843  * non-queue interrupts, e.g. AdminQ and errors. This is not used
1844  * when in MSI or Legacy interrupt mode.
1845  */
1846 static int ice_req_irq_msix_misc(struct ice_pf *pf)
1847 {
1848         struct ice_hw *hw = &pf->hw;
1849         int oicr_idx, err = 0;
1850
1851         if (!pf->int_name[0])
1852                 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
1853                          dev_driver_string(&pf->pdev->dev),
1854                          dev_name(&pf->pdev->dev));
1855
1856         /* Do not request IRQ but do enable OICR interrupt since settings are
1857          * lost during reset. Note that this function is called only during
1858          * rebuild path and not while reset is in progress.
1859          */
1860         if (ice_is_reset_in_progress(pf->state))
1861                 goto skip_req_irq;
1862
1863         /* reserve one vector in irq_tracker for misc interrupts */
1864         oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1865         if (oicr_idx < 0)
1866                 return oicr_idx;
1867
1868         pf->num_avail_sw_msix -= 1;
1869         pf->oicr_idx = oicr_idx;
1870
1871         err = devm_request_irq(&pf->pdev->dev,
1872                                pf->msix_entries[pf->oicr_idx].vector,
1873                                ice_misc_intr, 0, pf->int_name, pf);
1874         if (err) {
1875                 dev_err(&pf->pdev->dev,
1876                         "devm_request_irq for %s failed: %d\n",
1877                         pf->int_name, err);
1878                 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1879                 pf->num_avail_sw_msix += 1;
1880                 return err;
1881         }
1882
1883 skip_req_irq:
1884         ice_ena_misc_vector(pf);
1885
1886         ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
1887         wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
1888              ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
1889
1890         ice_flush(hw);
1891         ice_irq_dynamic_ena(hw, NULL, NULL);
1892
1893         return 0;
1894 }
1895
1896 /**
1897  * ice_napi_add - register NAPI handler for the VSI
1898  * @vsi: VSI for which NAPI handler is to be registered
1899  *
1900  * This function is only called in the driver's load path. Registering the NAPI
1901  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
1902  * reset/rebuild, etc.)
1903  */
1904 static void ice_napi_add(struct ice_vsi *vsi)
1905 {
1906         int v_idx;
1907
1908         if (!vsi->netdev)
1909                 return;
1910
1911         ice_for_each_q_vector(vsi, v_idx)
1912                 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
1913                                ice_napi_poll, NAPI_POLL_WEIGHT);
1914 }
1915
1916 /**
1917  * ice_cfg_netdev - Allocate, configure and register a netdev
1918  * @vsi: the VSI associated with the new netdev
1919  *
1920  * Returns 0 on success, negative value on failure
1921  */
1922 static int ice_cfg_netdev(struct ice_vsi *vsi)
1923 {
1924         netdev_features_t csumo_features;
1925         netdev_features_t vlano_features;
1926         netdev_features_t dflt_features;
1927         netdev_features_t tso_features;
1928         struct ice_netdev_priv *np;
1929         struct net_device *netdev;
1930         u8 mac_addr[ETH_ALEN];
1931         int err;
1932
1933         netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
1934                                     vsi->alloc_rxq);
1935         if (!netdev)
1936                 return -ENOMEM;
1937
1938         vsi->netdev = netdev;
1939         np = netdev_priv(netdev);
1940         np->vsi = vsi;
1941
1942         dflt_features = NETIF_F_SG      |
1943                         NETIF_F_HIGHDMA |
1944                         NETIF_F_RXHASH;
1945
1946         csumo_features = NETIF_F_RXCSUM   |
1947                          NETIF_F_IP_CSUM  |
1948                          NETIF_F_SCTP_CRC |
1949                          NETIF_F_IPV6_CSUM;
1950
1951         vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
1952                          NETIF_F_HW_VLAN_CTAG_TX     |
1953                          NETIF_F_HW_VLAN_CTAG_RX;
1954
1955         tso_features = NETIF_F_TSO;
1956
1957         /* set features that user can change */
1958         netdev->hw_features = dflt_features | csumo_features |
1959                               vlano_features | tso_features;
1960
1961         /* enable features */
1962         netdev->features |= netdev->hw_features;
1963         /* encap and VLAN devices inherit default, csumo and tso features */
1964         netdev->hw_enc_features |= dflt_features | csumo_features |
1965                                    tso_features;
1966         netdev->vlan_features |= dflt_features | csumo_features |
1967                                  tso_features;
1968
1969         if (vsi->type == ICE_VSI_PF) {
1970                 SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
1971                 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
1972
1973                 ether_addr_copy(netdev->dev_addr, mac_addr);
1974                 ether_addr_copy(netdev->perm_addr, mac_addr);
1975         }
1976
1977         netdev->priv_flags |= IFF_UNICAST_FLT;
1978
1979         /* assign netdev_ops */
1980         netdev->netdev_ops = &ice_netdev_ops;
1981
1982         /* setup watchdog timeout value to be 5 second */
1983         netdev->watchdog_timeo = 5 * HZ;
1984
1985         ice_set_ethtool_ops(netdev);
1986
1987         netdev->min_mtu = ETH_MIN_MTU;
1988         netdev->max_mtu = ICE_MAX_MTU;
1989
1990         err = register_netdev(vsi->netdev);
1991         if (err)
1992                 return err;
1993
1994         netif_carrier_off(vsi->netdev);
1995
1996         /* make sure transmit queues start off as stopped */
1997         netif_tx_stop_all_queues(vsi->netdev);
1998
1999         return 0;
2000 }
2001
2002 /**
2003  * ice_fill_rss_lut - Fill the RSS lookup table with default values
2004  * @lut: Lookup table
2005  * @rss_table_size: Lookup table size
2006  * @rss_size: Range of queue number for hashing
2007  */
2008 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2009 {
2010         u16 i;
2011
2012         for (i = 0; i < rss_table_size; i++)
2013                 lut[i] = i % rss_size;
2014 }
2015
2016 /**
2017  * ice_pf_vsi_setup - Set up a PF VSI
2018  * @pf: board private structure
2019  * @pi: pointer to the port_info instance
2020  *
2021  * Returns pointer to the successfully allocated VSI software struct
2022  * on success, otherwise returns NULL on failure.
2023  */
2024 static struct ice_vsi *
2025 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2026 {
2027         return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
2028 }
2029
2030 /**
2031  * ice_lb_vsi_setup - Set up a loopback VSI
2032  * @pf: board private structure
2033  * @pi: pointer to the port_info instance
2034  *
2035  * Returns pointer to the successfully allocated VSI software struct
2036  * on success, otherwise returns NULL on failure.
2037  */
2038 struct ice_vsi *
2039 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2040 {
2041         return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
2042 }
2043
2044 /**
2045  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
2046  * @netdev: network interface to be adjusted
2047  * @proto: unused protocol
2048  * @vid: VLAN ID to be added
2049  *
2050  * net_device_ops implementation for adding VLAN IDs
2051  */
2052 static int
2053 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
2054                     u16 vid)
2055 {
2056         struct ice_netdev_priv *np = netdev_priv(netdev);
2057         struct ice_vsi *vsi = np->vsi;
2058         int ret;
2059
2060         if (vid >= VLAN_N_VID) {
2061                 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2062                            vid, VLAN_N_VID);
2063                 return -EINVAL;
2064         }
2065
2066         if (vsi->info.pvid)
2067                 return -EINVAL;
2068
2069         /* Enable VLAN pruning when VLAN 0 is added */
2070         if (unlikely(!vid)) {
2071                 ret = ice_cfg_vlan_pruning(vsi, true, false);
2072                 if (ret)
2073                         return ret;
2074         }
2075
2076         /* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is
2077          * needed to continue allowing all untagged packets since VLAN prune
2078          * list is applied to all packets by the switch
2079          */
2080         ret = ice_vsi_add_vlan(vsi, vid);
2081         if (!ret) {
2082                 vsi->vlan_ena = true;
2083                 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2084         }
2085
2086         return ret;
2087 }
2088
2089 /**
2090  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
2091  * @netdev: network interface to be adjusted
2092  * @proto: unused protocol
2093  * @vid: VLAN ID to be removed
2094  *
2095  * net_device_ops implementation for removing VLAN IDs
2096  */
2097 static int
2098 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
2099                      u16 vid)
2100 {
2101         struct ice_netdev_priv *np = netdev_priv(netdev);
2102         struct ice_vsi *vsi = np->vsi;
2103         int ret;
2104
2105         if (vsi->info.pvid)
2106                 return -EINVAL;
2107
2108         /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
2109          * information
2110          */
2111         ret = ice_vsi_kill_vlan(vsi, vid);
2112         if (ret)
2113                 return ret;
2114
2115         /* Disable VLAN pruning when VLAN 0 is removed */
2116         if (unlikely(!vid))
2117                 ret = ice_cfg_vlan_pruning(vsi, false, false);
2118
2119         vsi->vlan_ena = false;
2120         set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2121         return ret;
2122 }
2123
2124 /**
2125  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2126  * @pf: board private structure
2127  *
2128  * Returns 0 on success, negative value on failure
2129  */
2130 static int ice_setup_pf_sw(struct ice_pf *pf)
2131 {
2132         struct ice_vsi *vsi;
2133         int status = 0;
2134
2135         if (ice_is_reset_in_progress(pf->state))
2136                 return -EBUSY;
2137
2138         vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2139         if (!vsi) {
2140                 status = -ENOMEM;
2141                 goto unroll_vsi_setup;
2142         }
2143
2144         status = ice_cfg_netdev(vsi);
2145         if (status) {
2146                 status = -ENODEV;
2147                 goto unroll_vsi_setup;
2148         }
2149
2150         /* registering the NAPI handler requires both the queues and
2151          * netdev to be created, which are done in ice_pf_vsi_setup()
2152          * and ice_cfg_netdev() respectively
2153          */
2154         ice_napi_add(vsi);
2155
2156         status = ice_init_mac_fltr(pf);
2157         if (status)
2158                 goto unroll_napi_add;
2159
2160         return status;
2161
2162 unroll_napi_add:
2163         if (vsi) {
2164                 ice_napi_del(vsi);
2165                 if (vsi->netdev) {
2166                         if (vsi->netdev->reg_state == NETREG_REGISTERED)
2167                                 unregister_netdev(vsi->netdev);
2168                         free_netdev(vsi->netdev);
2169                         vsi->netdev = NULL;
2170                 }
2171         }
2172
2173 unroll_vsi_setup:
2174         if (vsi) {
2175                 ice_vsi_free_q_vectors(vsi);
2176                 ice_vsi_delete(vsi);
2177                 ice_vsi_put_qs(vsi);
2178                 pf->q_left_tx += vsi->alloc_txq;
2179                 pf->q_left_rx += vsi->alloc_rxq;
2180                 ice_vsi_clear(vsi);
2181         }
2182         return status;
2183 }
2184
2185 /**
2186  * ice_determine_q_usage - Calculate queue distribution
2187  * @pf: board private structure
2188  *
2189  * Return -ENOMEM if we don't get enough queues for all ports
2190  */
2191 static void ice_determine_q_usage(struct ice_pf *pf)
2192 {
2193         u16 q_left_tx, q_left_rx;
2194
2195         q_left_tx = pf->hw.func_caps.common_cap.num_txq;
2196         q_left_rx = pf->hw.func_caps.common_cap.num_rxq;
2197
2198         pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
2199
2200         /* only 1 Rx queue unless RSS is enabled */
2201         if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2202                 pf->num_lan_rx = 1;
2203         else
2204                 pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
2205
2206         pf->q_left_tx = q_left_tx - pf->num_lan_tx;
2207         pf->q_left_rx = q_left_rx - pf->num_lan_rx;
2208 }
2209
2210 /**
2211  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2212  * @pf: board private structure to initialize
2213  */
2214 static void ice_deinit_pf(struct ice_pf *pf)
2215 {
2216         ice_service_task_stop(pf);
2217         mutex_destroy(&pf->sw_mutex);
2218         mutex_destroy(&pf->avail_q_mutex);
2219 }
2220
2221 /**
2222  * ice_init_pf - Initialize general software structures (struct ice_pf)
2223  * @pf: board private structure to initialize
2224  */
2225 static void ice_init_pf(struct ice_pf *pf)
2226 {
2227         bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
2228 #ifdef CONFIG_PCI_IOV
2229         if (pf->hw.func_caps.common_cap.sr_iov_1_1) {
2230                 struct ice_hw *hw = &pf->hw;
2231
2232                 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2233                 pf->num_vfs_supported = min_t(int, hw->func_caps.num_allocd_vfs,
2234                                               ICE_MAX_VF_COUNT);
2235         }
2236 #endif /* CONFIG_PCI_IOV */
2237
2238         mutex_init(&pf->sw_mutex);
2239         mutex_init(&pf->avail_q_mutex);
2240
2241         /* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
2242         mutex_lock(&pf->avail_q_mutex);
2243         bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
2244         bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
2245         mutex_unlock(&pf->avail_q_mutex);
2246
2247         if (pf->hw.func_caps.common_cap.rss_table_size)
2248                 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2249
2250         /* setup service timer and periodic service task */
2251         timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2252         pf->serv_tmr_period = HZ;
2253         INIT_WORK(&pf->serv_task, ice_service_task);
2254         clear_bit(__ICE_SERVICE_SCHED, pf->state);
2255 }
2256
2257 /**
2258  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2259  * @pf: board private structure
2260  *
2261  * compute the number of MSIX vectors required (v_budget) and request from
2262  * the OS. Return the number of vectors reserved or negative on failure
2263  */
2264 static int ice_ena_msix_range(struct ice_pf *pf)
2265 {
2266         int v_left, v_actual, v_budget = 0;
2267         int needed, err, i;
2268
2269         v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2270
2271         /* reserve one vector for miscellaneous handler */
2272         needed = 1;
2273         v_budget += needed;
2274         v_left -= needed;
2275
2276         /* reserve vectors for LAN traffic */
2277         pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
2278         v_budget += pf->num_lan_msix;
2279         v_left -= pf->num_lan_msix;
2280
2281         pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
2282                                         sizeof(*pf->msix_entries), GFP_KERNEL);
2283
2284         if (!pf->msix_entries) {
2285                 err = -ENOMEM;
2286                 goto exit_err;
2287         }
2288
2289         for (i = 0; i < v_budget; i++)
2290                 pf->msix_entries[i].entry = i;
2291
2292         /* actually reserve the vectors */
2293         v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2294                                          ICE_MIN_MSIX, v_budget);
2295
2296         if (v_actual < 0) {
2297                 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
2298                 err = v_actual;
2299                 goto msix_err;
2300         }
2301
2302         if (v_actual < v_budget) {
2303                 dev_warn(&pf->pdev->dev,
2304                          "not enough vectors. requested = %d, obtained = %d\n",
2305                          v_budget, v_actual);
2306                 if (v_actual >= (pf->num_lan_msix + 1)) {
2307                         pf->num_avail_sw_msix = v_actual -
2308                                                 (pf->num_lan_msix + 1);
2309                 } else if (v_actual >= 2) {
2310                         pf->num_lan_msix = 1;
2311                         pf->num_avail_sw_msix = v_actual - 2;
2312                 } else {
2313                         pci_disable_msix(pf->pdev);
2314                         err = -ERANGE;
2315                         goto msix_err;
2316                 }
2317         }
2318
2319         return v_actual;
2320
2321 msix_err:
2322         devm_kfree(&pf->pdev->dev, pf->msix_entries);
2323         goto exit_err;
2324
2325 exit_err:
2326         pf->num_lan_msix = 0;
2327         return err;
2328 }
2329
2330 /**
2331  * ice_dis_msix - Disable MSI-X interrupt setup in OS
2332  * @pf: board private structure
2333  */
2334 static void ice_dis_msix(struct ice_pf *pf)
2335 {
2336         pci_disable_msix(pf->pdev);
2337         devm_kfree(&pf->pdev->dev, pf->msix_entries);
2338         pf->msix_entries = NULL;
2339 }
2340
2341 /**
2342  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2343  * @pf: board private structure
2344  */
2345 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2346 {
2347         ice_dis_msix(pf);
2348
2349         if (pf->irq_tracker) {
2350                 devm_kfree(&pf->pdev->dev, pf->irq_tracker);
2351                 pf->irq_tracker = NULL;
2352         }
2353 }
2354
2355 /**
2356  * ice_init_interrupt_scheme - Determine proper interrupt scheme
2357  * @pf: board private structure to initialize
2358  */
2359 static int ice_init_interrupt_scheme(struct ice_pf *pf)
2360 {
2361         int vectors;
2362
2363         vectors = ice_ena_msix_range(pf);
2364
2365         if (vectors < 0)
2366                 return vectors;
2367
2368         /* set up vector assignment tracking */
2369         pf->irq_tracker =
2370                 devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) +
2371                              (sizeof(u16) * vectors), GFP_KERNEL);
2372         if (!pf->irq_tracker) {
2373                 ice_dis_msix(pf);
2374                 return -ENOMEM;
2375         }
2376
2377         /* populate SW interrupts pool with number of OS granted IRQs. */
2378         pf->num_avail_sw_msix = vectors;
2379         pf->irq_tracker->num_entries = vectors;
2380         pf->irq_tracker->end = pf->irq_tracker->num_entries;
2381
2382         return 0;
2383 }
2384
2385 /**
2386  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
2387  * @pf: pointer to the PF structure
2388  *
2389  * There is no error returned here because the driver should be able to handle
2390  * 128 Byte cache lines, so we only print a warning in case issues are seen,
2391  * specifically with Tx.
2392  */
2393 static void ice_verify_cacheline_size(struct ice_pf *pf)
2394 {
2395         if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
2396                 dev_warn(&pf->pdev->dev,
2397                          "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
2398                          ICE_CACHE_LINE_BYTES);
2399 }
2400
2401 /**
2402  * ice_probe - Device initialization routine
2403  * @pdev: PCI device information struct
2404  * @ent: entry in ice_pci_tbl
2405  *
2406  * Returns 0 on success, negative on failure
2407  */
2408 static int
2409 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
2410 {
2411         struct device *dev = &pdev->dev;
2412         struct ice_pf *pf;
2413         struct ice_hw *hw;
2414         int err;
2415
2416         /* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */
2417         err = pcim_enable_device(pdev);
2418         if (err)
2419                 return err;
2420
2421         err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
2422         if (err) {
2423                 dev_err(dev, "BAR0 I/O map error %d\n", err);
2424                 return err;
2425         }
2426
2427         pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
2428         if (!pf)
2429                 return -ENOMEM;
2430
2431         /* set up for high or low DMA */
2432         err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
2433         if (err)
2434                 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2435         if (err) {
2436                 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
2437                 return err;
2438         }
2439
2440         pci_enable_pcie_error_reporting(pdev);
2441         pci_set_master(pdev);
2442
2443         pf->pdev = pdev;
2444         pci_set_drvdata(pdev, pf);
2445         set_bit(__ICE_DOWN, pf->state);
2446         /* Disable service task until DOWN bit is cleared */
2447         set_bit(__ICE_SERVICE_DIS, pf->state);
2448
2449         hw = &pf->hw;
2450         hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
2451         hw->back = pf;
2452         hw->vendor_id = pdev->vendor;
2453         hw->device_id = pdev->device;
2454         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2455         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2456         hw->subsystem_device_id = pdev->subsystem_device;
2457         hw->bus.device = PCI_SLOT(pdev->devfn);
2458         hw->bus.func = PCI_FUNC(pdev->devfn);
2459         ice_set_ctrlq_len(hw);
2460
2461         pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
2462
2463 #ifndef CONFIG_DYNAMIC_DEBUG
2464         if (debug < -1)
2465                 hw->debug_mask = debug;
2466 #endif
2467
2468         err = ice_init_hw(hw);
2469         if (err) {
2470                 dev_err(dev, "ice_init_hw failed: %d\n", err);
2471                 err = -EIO;
2472                 goto err_exit_unroll;
2473         }
2474
2475         dev_info(dev, "firmware %d.%d.%05d api %d.%d\n",
2476                  hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
2477                  hw->api_maj_ver, hw->api_min_ver);
2478
2479         ice_init_pf(pf);
2480
2481         err = ice_init_pf_dcb(pf, false);
2482         if (err) {
2483                 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2484                 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
2485
2486                 /* do not fail overall init if DCB init fails */
2487                 err = 0;
2488         }
2489
2490         ice_determine_q_usage(pf);
2491
2492         pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
2493         if (!pf->num_alloc_vsi) {
2494                 err = -EIO;
2495                 goto err_init_pf_unroll;
2496         }
2497
2498         pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
2499                                GFP_KERNEL);
2500         if (!pf->vsi) {
2501                 err = -ENOMEM;
2502                 goto err_init_pf_unroll;
2503         }
2504
2505         err = ice_init_interrupt_scheme(pf);
2506         if (err) {
2507                 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
2508                 err = -EIO;
2509                 goto err_init_interrupt_unroll;
2510         }
2511
2512         /* Driver is mostly up */
2513         clear_bit(__ICE_DOWN, pf->state);
2514
2515         /* In case of MSIX we are going to setup the misc vector right here
2516          * to handle admin queue events etc. In case of legacy and MSI
2517          * the misc functionality and queue processing is combined in
2518          * the same vector and that gets setup at open.
2519          */
2520         err = ice_req_irq_msix_misc(pf);
2521         if (err) {
2522                 dev_err(dev, "setup of misc vector failed: %d\n", err);
2523                 goto err_init_interrupt_unroll;
2524         }
2525
2526         /* create switch struct for the switch element created by FW on boot */
2527         pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
2528         if (!pf->first_sw) {
2529                 err = -ENOMEM;
2530                 goto err_msix_misc_unroll;
2531         }
2532
2533         if (hw->evb_veb)
2534                 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
2535         else
2536                 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
2537
2538         pf->first_sw->pf = pf;
2539
2540         /* record the sw_id available for later use */
2541         pf->first_sw->sw_id = hw->port_info->sw_id;
2542
2543         err = ice_setup_pf_sw(pf);
2544         if (err) {
2545                 dev_err(dev, "probe failed due to setup PF switch:%d\n", err);
2546                 goto err_alloc_sw_unroll;
2547         }
2548
2549         clear_bit(__ICE_SERVICE_DIS, pf->state);
2550
2551         /* since everything is good, start the service timer */
2552         mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
2553
2554         err = ice_init_link_events(pf->hw.port_info);
2555         if (err) {
2556                 dev_err(dev, "ice_init_link_events failed: %d\n", err);
2557                 goto err_alloc_sw_unroll;
2558         }
2559
2560         ice_verify_cacheline_size(pf);
2561
2562         return 0;
2563
2564 err_alloc_sw_unroll:
2565         set_bit(__ICE_SERVICE_DIS, pf->state);
2566         set_bit(__ICE_DOWN, pf->state);
2567         devm_kfree(&pf->pdev->dev, pf->first_sw);
2568 err_msix_misc_unroll:
2569         ice_free_irq_msix_misc(pf);
2570 err_init_interrupt_unroll:
2571         ice_clear_interrupt_scheme(pf);
2572         devm_kfree(dev, pf->vsi);
2573 err_init_pf_unroll:
2574         ice_deinit_pf(pf);
2575         ice_deinit_hw(hw);
2576 err_exit_unroll:
2577         pci_disable_pcie_error_reporting(pdev);
2578         return err;
2579 }
2580
2581 /**
2582  * ice_remove - Device removal routine
2583  * @pdev: PCI device information struct
2584  */
2585 static void ice_remove(struct pci_dev *pdev)
2586 {
2587         struct ice_pf *pf = pci_get_drvdata(pdev);
2588         int i;
2589
2590         if (!pf)
2591                 return;
2592
2593         for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
2594                 if (!ice_is_reset_in_progress(pf->state))
2595                         break;
2596                 msleep(100);
2597         }
2598
2599         set_bit(__ICE_DOWN, pf->state);
2600         ice_service_task_stop(pf);
2601
2602         if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
2603                 ice_free_vfs(pf);
2604         ice_vsi_release_all(pf);
2605         ice_free_irq_msix_misc(pf);
2606         ice_for_each_vsi(pf, i) {
2607                 if (!pf->vsi[i])
2608                         continue;
2609                 ice_vsi_free_q_vectors(pf->vsi[i]);
2610         }
2611         ice_clear_interrupt_scheme(pf);
2612         ice_deinit_pf(pf);
2613         ice_deinit_hw(&pf->hw);
2614         pci_disable_pcie_error_reporting(pdev);
2615 }
2616
2617 /**
2618  * ice_pci_err_detected - warning that PCI error has been detected
2619  * @pdev: PCI device information struct
2620  * @err: the type of PCI error
2621  *
2622  * Called to warn that something happened on the PCI bus and the error handling
2623  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
2624  */
2625 static pci_ers_result_t
2626 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
2627 {
2628         struct ice_pf *pf = pci_get_drvdata(pdev);
2629
2630         if (!pf) {
2631                 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
2632                         __func__, err);
2633                 return PCI_ERS_RESULT_DISCONNECT;
2634         }
2635
2636         if (!test_bit(__ICE_SUSPENDED, pf->state)) {
2637                 ice_service_task_stop(pf);
2638
2639                 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
2640                         set_bit(__ICE_PFR_REQ, pf->state);
2641                         ice_prepare_for_reset(pf);
2642                 }
2643         }
2644
2645         return PCI_ERS_RESULT_NEED_RESET;
2646 }
2647
2648 /**
2649  * ice_pci_err_slot_reset - a PCI slot reset has just happened
2650  * @pdev: PCI device information struct
2651  *
2652  * Called to determine if the driver can recover from the PCI slot reset by
2653  * using a register read to determine if the device is recoverable.
2654  */
2655 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
2656 {
2657         struct ice_pf *pf = pci_get_drvdata(pdev);
2658         pci_ers_result_t result;
2659         int err;
2660         u32 reg;
2661
2662         err = pci_enable_device_mem(pdev);
2663         if (err) {
2664                 dev_err(&pdev->dev,
2665                         "Cannot re-enable PCI device after reset, error %d\n",
2666                         err);
2667                 result = PCI_ERS_RESULT_DISCONNECT;
2668         } else {
2669                 pci_set_master(pdev);
2670                 pci_restore_state(pdev);
2671                 pci_save_state(pdev);
2672                 pci_wake_from_d3(pdev, false);
2673
2674                 /* Check for life */
2675                 reg = rd32(&pf->hw, GLGEN_RTRIG);
2676                 if (!reg)
2677                         result = PCI_ERS_RESULT_RECOVERED;
2678                 else
2679                         result = PCI_ERS_RESULT_DISCONNECT;
2680         }
2681
2682         err = pci_cleanup_aer_uncorrect_error_status(pdev);
2683         if (err)
2684                 dev_dbg(&pdev->dev,
2685                         "pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
2686                         err);
2687                 /* non-fatal, continue */
2688
2689         return result;
2690 }
2691
2692 /**
2693  * ice_pci_err_resume - restart operations after PCI error recovery
2694  * @pdev: PCI device information struct
2695  *
2696  * Called to allow the driver to bring things back up after PCI error and/or
2697  * reset recovery have finished
2698  */
2699 static void ice_pci_err_resume(struct pci_dev *pdev)
2700 {
2701         struct ice_pf *pf = pci_get_drvdata(pdev);
2702
2703         if (!pf) {
2704                 dev_err(&pdev->dev,
2705                         "%s failed, device is unrecoverable\n", __func__);
2706                 return;
2707         }
2708
2709         if (test_bit(__ICE_SUSPENDED, pf->state)) {
2710                 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
2711                         __func__);
2712                 return;
2713         }
2714
2715         ice_do_reset(pf, ICE_RESET_PFR);
2716         ice_service_task_restart(pf);
2717         mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
2718 }
2719
2720 /**
2721  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
2722  * @pdev: PCI device information struct
2723  */
2724 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
2725 {
2726         struct ice_pf *pf = pci_get_drvdata(pdev);
2727
2728         if (!test_bit(__ICE_SUSPENDED, pf->state)) {
2729                 ice_service_task_stop(pf);
2730
2731                 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
2732                         set_bit(__ICE_PFR_REQ, pf->state);
2733                         ice_prepare_for_reset(pf);
2734                 }
2735         }
2736 }
2737
2738 /**
2739  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
2740  * @pdev: PCI device information struct
2741  */
2742 static void ice_pci_err_reset_done(struct pci_dev *pdev)
2743 {
2744         ice_pci_err_resume(pdev);
2745 }
2746
2747 /* ice_pci_tbl - PCI Device ID Table
2748  *
2749  * Wildcard entries (PCI_ANY_ID) should come last
2750  * Last entry must be all 0s
2751  *
2752  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
2753  *   Class, Class Mask, private data (not used) }
2754  */
2755 static const struct pci_device_id ice_pci_tbl[] = {
2756         { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
2757         { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
2758         { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
2759         /* required last entry */
2760         { 0, }
2761 };
2762 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
2763
2764 static const struct pci_error_handlers ice_pci_err_handler = {
2765         .error_detected = ice_pci_err_detected,
2766         .slot_reset = ice_pci_err_slot_reset,
2767         .reset_prepare = ice_pci_err_reset_prepare,
2768         .reset_done = ice_pci_err_reset_done,
2769         .resume = ice_pci_err_resume
2770 };
2771
2772 static struct pci_driver ice_driver = {
2773         .name = KBUILD_MODNAME,
2774         .id_table = ice_pci_tbl,
2775         .probe = ice_probe,
2776         .remove = ice_remove,
2777         .sriov_configure = ice_sriov_configure,
2778         .err_handler = &ice_pci_err_handler
2779 };
2780
2781 /**
2782  * ice_module_init - Driver registration routine
2783  *
2784  * ice_module_init is the first routine called when the driver is
2785  * loaded. All it does is register with the PCI subsystem.
2786  */
2787 static int __init ice_module_init(void)
2788 {
2789         int status;
2790
2791         pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
2792         pr_info("%s\n", ice_copyright);
2793
2794         ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
2795         if (!ice_wq) {
2796                 pr_err("Failed to create workqueue\n");
2797                 return -ENOMEM;
2798         }
2799
2800         status = pci_register_driver(&ice_driver);
2801         if (status) {
2802                 pr_err("failed to register PCI driver, err %d\n", status);
2803                 destroy_workqueue(ice_wq);
2804         }
2805
2806         return status;
2807 }
2808 module_init(ice_module_init);
2809
2810 /**
2811  * ice_module_exit - Driver exit cleanup routine
2812  *
2813  * ice_module_exit is called just before the driver is removed
2814  * from memory.
2815  */
2816 static void __exit ice_module_exit(void)
2817 {
2818         pci_unregister_driver(&ice_driver);
2819         destroy_workqueue(ice_wq);
2820         pr_info("module unloaded\n");
2821 }
2822 module_exit(ice_module_exit);
2823
2824 /**
2825  * ice_set_mac_address - NDO callback to set MAC address
2826  * @netdev: network interface device structure
2827  * @pi: pointer to an address structure
2828  *
2829  * Returns 0 on success, negative on failure
2830  */
2831 static int ice_set_mac_address(struct net_device *netdev, void *pi)
2832 {
2833         struct ice_netdev_priv *np = netdev_priv(netdev);
2834         struct ice_vsi *vsi = np->vsi;
2835         struct ice_pf *pf = vsi->back;
2836         struct ice_hw *hw = &pf->hw;
2837         struct sockaddr *addr = pi;
2838         enum ice_status status;
2839         LIST_HEAD(a_mac_list);
2840         LIST_HEAD(r_mac_list);
2841         u8 flags = 0;
2842         int err;
2843         u8 *mac;
2844
2845         mac = (u8 *)addr->sa_data;
2846
2847         if (!is_valid_ether_addr(mac))
2848                 return -EADDRNOTAVAIL;
2849
2850         if (ether_addr_equal(netdev->dev_addr, mac)) {
2851                 netdev_warn(netdev, "already using mac %pM\n", mac);
2852                 return 0;
2853         }
2854
2855         if (test_bit(__ICE_DOWN, pf->state) ||
2856             ice_is_reset_in_progress(pf->state)) {
2857                 netdev_err(netdev, "can't set mac %pM. device not ready\n",
2858                            mac);
2859                 return -EBUSY;
2860         }
2861
2862         /* When we change the MAC address we also have to change the MAC address
2863          * based filter rules that were created previously for the old MAC
2864          * address. So first, we remove the old filter rule using ice_remove_mac
2865          * and then create a new filter rule using ice_add_mac. Note that for
2866          * both these operations, we first need to form a "list" of MAC
2867          * addresses (even though in this case, we have only 1 MAC address to be
2868          * added/removed) and this done using ice_add_mac_to_list. Depending on
2869          * the ensuing operation this "list" of MAC addresses is either to be
2870          * added or removed from the filter.
2871          */
2872         err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
2873         if (err) {
2874                 err = -EADDRNOTAVAIL;
2875                 goto free_lists;
2876         }
2877
2878         status = ice_remove_mac(hw, &r_mac_list);
2879         if (status) {
2880                 err = -EADDRNOTAVAIL;
2881                 goto free_lists;
2882         }
2883
2884         err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
2885         if (err) {
2886                 err = -EADDRNOTAVAIL;
2887                 goto free_lists;
2888         }
2889
2890         status = ice_add_mac(hw, &a_mac_list);
2891         if (status) {
2892                 err = -EADDRNOTAVAIL;
2893                 goto free_lists;
2894         }
2895
2896 free_lists:
2897         /* free list entries */
2898         ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
2899         ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);
2900
2901         if (err) {
2902                 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
2903                            mac);
2904                 return err;
2905         }
2906
2907         /* change the netdev's MAC address */
2908         memcpy(netdev->dev_addr, mac, netdev->addr_len);
2909         netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
2910                    netdev->dev_addr);
2911
2912         /* write new MAC address to the firmware */
2913         flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
2914         status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
2915         if (status) {
2916                 netdev_err(netdev, "can't set MAC %pM. write to firmware failed.\n",
2917                            mac);
2918         }
2919         return 0;
2920 }
2921
2922 /**
2923  * ice_set_rx_mode - NDO callback to set the netdev filters
2924  * @netdev: network interface device structure
2925  */
2926 static void ice_set_rx_mode(struct net_device *netdev)
2927 {
2928         struct ice_netdev_priv *np = netdev_priv(netdev);
2929         struct ice_vsi *vsi = np->vsi;
2930
2931         if (!vsi)
2932                 return;
2933
2934         /* Set the flags to synchronize filters
2935          * ndo_set_rx_mode may be triggered even without a change in netdev
2936          * flags
2937          */
2938         set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
2939         set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
2940         set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
2941
2942         /* schedule our worker thread which will take care of
2943          * applying the new filter changes
2944          */
2945         ice_service_task_schedule(vsi->back);
2946 }
2947
2948 /**
2949  * ice_fdb_add - add an entry to the hardware database
2950  * @ndm: the input from the stack
2951  * @tb: pointer to array of nladdr (unused)
2952  * @dev: the net device pointer
2953  * @addr: the MAC address entry being added
2954  * @vid: VLAN ID
2955  * @flags: instructions from stack about fdb operation
2956  * @extack: netlink extended ack
2957  */
2958 static int
2959 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
2960             struct net_device *dev, const unsigned char *addr, u16 vid,
2961             u16 flags, struct netlink_ext_ack __always_unused *extack)
2962 {
2963         int err;
2964
2965         if (vid) {
2966                 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
2967                 return -EINVAL;
2968         }
2969         if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
2970                 netdev_err(dev, "FDB only supports static addresses\n");
2971                 return -EINVAL;
2972         }
2973
2974         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
2975                 err = dev_uc_add_excl(dev, addr);
2976         else if (is_multicast_ether_addr(addr))
2977                 err = dev_mc_add_excl(dev, addr);
2978         else
2979                 err = -EINVAL;
2980
2981         /* Only return duplicate errors if NLM_F_EXCL is set */
2982         if (err == -EEXIST && !(flags & NLM_F_EXCL))
2983                 err = 0;
2984
2985         return err;
2986 }
2987
2988 /**
2989  * ice_fdb_del - delete an entry from the hardware database
2990  * @ndm: the input from the stack
2991  * @tb: pointer to array of nladdr (unused)
2992  * @dev: the net device pointer
2993  * @addr: the MAC address entry being added
2994  * @vid: VLAN ID
2995  */
2996 static int
2997 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
2998             struct net_device *dev, const unsigned char *addr,
2999             __always_unused u16 vid)
3000 {
3001         int err;
3002
3003         if (ndm->ndm_state & NUD_PERMANENT) {
3004                 netdev_err(dev, "FDB only supports static addresses\n");
3005                 return -EINVAL;
3006         }
3007
3008         if (is_unicast_ether_addr(addr))
3009                 err = dev_uc_del(dev, addr);
3010         else if (is_multicast_ether_addr(addr))
3011                 err = dev_mc_del(dev, addr);
3012         else
3013                 err = -EINVAL;
3014
3015         return err;
3016 }
3017
3018 /**
3019  * ice_set_features - set the netdev feature flags
3020  * @netdev: ptr to the netdev being adjusted
3021  * @features: the feature set that the stack is suggesting
3022  */
3023 static int
3024 ice_set_features(struct net_device *netdev, netdev_features_t features)
3025 {
3026         struct ice_netdev_priv *np = netdev_priv(netdev);
3027         struct ice_vsi *vsi = np->vsi;
3028         int ret = 0;
3029
3030         /* Multiple features can be changed in one call so keep features in
3031          * separate if/else statements to guarantee each feature is checked
3032          */
3033         if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
3034                 ret = ice_vsi_manage_rss_lut(vsi, true);
3035         else if (!(features & NETIF_F_RXHASH) &&
3036                  netdev->features & NETIF_F_RXHASH)
3037                 ret = ice_vsi_manage_rss_lut(vsi, false);
3038
3039         if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3040             !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3041                 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3042         else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3043                  (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3044                 ret = ice_vsi_manage_vlan_stripping(vsi, false);
3045
3046         if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3047             !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3048                 ret = ice_vsi_manage_vlan_insertion(vsi);
3049         else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3050                  (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3051                 ret = ice_vsi_manage_vlan_insertion(vsi);
3052
3053         if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3054             !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3055                 ret = ice_cfg_vlan_pruning(vsi, true, false);
3056         else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3057                  (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3058                 ret = ice_cfg_vlan_pruning(vsi, false, false);
3059
3060         return ret;
3061 }
3062
3063 /**
3064  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
3065  * @vsi: VSI to setup VLAN properties for
3066  */
3067 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3068 {
3069         int ret = 0;
3070
3071         if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3072                 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3073         if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3074                 ret = ice_vsi_manage_vlan_insertion(vsi);
3075
3076         return ret;
3077 }
3078
3079 /**
3080  * ice_vsi_cfg - Setup the VSI
3081  * @vsi: the VSI being configured
3082  *
3083  * Return 0 on success and negative value on error
3084  */
3085 int ice_vsi_cfg(struct ice_vsi *vsi)
3086 {
3087         int err;
3088
3089         if (vsi->netdev) {
3090                 ice_set_rx_mode(vsi->netdev);
3091
3092                 err = ice_vsi_vlan_setup(vsi);
3093
3094                 if (err)
3095                         return err;
3096         }
3097         ice_vsi_cfg_dcb_rings(vsi);
3098
3099         err = ice_vsi_cfg_lan_txqs(vsi);
3100         if (!err)
3101                 err = ice_vsi_cfg_rxqs(vsi);
3102
3103         return err;
3104 }
3105
3106 /**
3107  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
3108  * @vsi: the VSI being configured
3109  */
3110 static void ice_napi_enable_all(struct ice_vsi *vsi)
3111 {
3112         int q_idx;
3113
3114         if (!vsi->netdev)
3115                 return;
3116
3117         ice_for_each_q_vector(vsi, q_idx) {
3118                 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3119
3120                 if (q_vector->rx.ring || q_vector->tx.ring)
3121                         napi_enable(&q_vector->napi);
3122         }
3123 }
3124
3125 /**
3126  * ice_up_complete - Finish the last steps of bringing up a connection
3127  * @vsi: The VSI being configured
3128  *
3129  * Return 0 on success and negative value on error
3130  */
3131 static int ice_up_complete(struct ice_vsi *vsi)
3132 {
3133         struct ice_pf *pf = vsi->back;
3134         int err;
3135
3136         ice_vsi_cfg_msix(vsi);
3137
3138         /* Enable only Rx rings, Tx rings were enabled by the FW when the
3139          * Tx queue group list was configured and the context bits were
3140          * programmed using ice_vsi_cfg_txqs
3141          */
3142         err = ice_vsi_start_rx_rings(vsi);
3143         if (err)
3144                 return err;
3145
3146         clear_bit(__ICE_DOWN, vsi->state);
3147         ice_napi_enable_all(vsi);
3148         ice_vsi_ena_irq(vsi);
3149
3150         if (vsi->port_info &&
3151             (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
3152             vsi->netdev) {
3153                 ice_print_link_msg(vsi, true);
3154                 netif_tx_start_all_queues(vsi->netdev);
3155                 netif_carrier_on(vsi->netdev);
3156         }
3157
3158         ice_service_task_schedule(pf);
3159
3160         return 0;
3161 }
3162
3163 /**
3164  * ice_up - Bring the connection back up after being down
3165  * @vsi: VSI being configured
3166  */
3167 int ice_up(struct ice_vsi *vsi)
3168 {
3169         int err;
3170
3171         err = ice_vsi_cfg(vsi);
3172         if (!err)
3173                 err = ice_up_complete(vsi);
3174
3175         return err;
3176 }
3177
3178 /**
3179  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
3180  * @ring: Tx or Rx ring to read stats from
3181  * @pkts: packets stats counter
3182  * @bytes: bytes stats counter
3183  *
3184  * This function fetches stats from the ring considering the atomic operations
3185  * that needs to be performed to read u64 values in 32 bit machine.
3186  */
3187 static void
3188 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
3189 {
3190         unsigned int start;
3191         *pkts = 0;
3192         *bytes = 0;
3193
3194         if (!ring)
3195                 return;
3196         do {
3197                 start = u64_stats_fetch_begin_irq(&ring->syncp);
3198                 *pkts = ring->stats.pkts;
3199                 *bytes = ring->stats.bytes;
3200         } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3201 }
3202
3203 /**
3204  * ice_update_vsi_ring_stats - Update VSI stats counters
3205  * @vsi: the VSI to be updated
3206  */
3207 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
3208 {
3209         struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
3210         struct ice_ring *ring;
3211         u64 pkts, bytes;
3212         int i;
3213
3214         /* reset netdev stats */
3215         vsi_stats->tx_packets = 0;
3216         vsi_stats->tx_bytes = 0;
3217         vsi_stats->rx_packets = 0;
3218         vsi_stats->rx_bytes = 0;
3219
3220         /* reset non-netdev (extended) stats */
3221         vsi->tx_restart = 0;
3222         vsi->tx_busy = 0;
3223         vsi->tx_linearize = 0;
3224         vsi->rx_buf_failed = 0;
3225         vsi->rx_page_failed = 0;
3226
3227         rcu_read_lock();
3228
3229         /* update Tx rings counters */
3230         ice_for_each_txq(vsi, i) {
3231                 ring = READ_ONCE(vsi->tx_rings[i]);
3232                 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3233                 vsi_stats->tx_packets += pkts;
3234                 vsi_stats->tx_bytes += bytes;
3235                 vsi->tx_restart += ring->tx_stats.restart_q;
3236                 vsi->tx_busy += ring->tx_stats.tx_busy;
3237                 vsi->tx_linearize += ring->tx_stats.tx_linearize;
3238         }
3239
3240         /* update Rx rings counters */
3241         ice_for_each_rxq(vsi, i) {
3242                 ring = READ_ONCE(vsi->rx_rings[i]);
3243                 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3244                 vsi_stats->rx_packets += pkts;
3245                 vsi_stats->rx_bytes += bytes;
3246                 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
3247                 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
3248         }
3249
3250         rcu_read_unlock();
3251 }
3252
3253 /**
3254  * ice_update_vsi_stats - Update VSI stats counters
3255  * @vsi: the VSI to be updated
3256  */
3257 static void ice_update_vsi_stats(struct ice_vsi *vsi)
3258 {
3259         struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
3260         struct ice_eth_stats *cur_es = &vsi->eth_stats;
3261         struct ice_pf *pf = vsi->back;
3262
3263         if (test_bit(__ICE_DOWN, vsi->state) ||
3264             test_bit(__ICE_CFG_BUSY, pf->state))
3265                 return;
3266
3267         /* get stats as recorded by Tx/Rx rings */
3268         ice_update_vsi_ring_stats(vsi);
3269
3270         /* get VSI stats as recorded by the hardware */
3271         ice_update_eth_stats(vsi);
3272
3273         cur_ns->tx_errors = cur_es->tx_errors;
3274         cur_ns->rx_dropped = cur_es->rx_discards;
3275         cur_ns->tx_dropped = cur_es->tx_discards;
3276         cur_ns->multicast = cur_es->rx_multicast;
3277
3278         /* update some more netdev stats if this is main VSI */
3279         if (vsi->type == ICE_VSI_PF) {
3280                 cur_ns->rx_crc_errors = pf->stats.crc_errors;
3281                 cur_ns->rx_errors = pf->stats.crc_errors +
3282                                     pf->stats.illegal_bytes;
3283                 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
3284                 /* record drops from the port level */
3285                 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
3286         }
3287 }
3288
3289 /**
3290  * ice_update_pf_stats - Update PF port stats counters
3291  * @pf: PF whose stats needs to be updated
3292  */
3293 static void ice_update_pf_stats(struct ice_pf *pf)
3294 {
3295         struct ice_hw_port_stats *prev_ps, *cur_ps;
3296         struct ice_hw *hw = &pf->hw;
3297         u8 pf_id;
3298
3299         prev_ps = &pf->stats_prev;
3300         cur_ps = &pf->stats;
3301         pf_id = hw->pf_id;
3302
3303         ice_stat_update40(hw, GLPRT_GORCL(pf_id), pf->stat_prev_loaded,
3304                           &prev_ps->eth.rx_bytes,
3305                           &cur_ps->eth.rx_bytes);
3306
3307         ice_stat_update40(hw, GLPRT_UPRCL(pf_id), pf->stat_prev_loaded,
3308                           &prev_ps->eth.rx_unicast,
3309                           &cur_ps->eth.rx_unicast);
3310
3311         ice_stat_update40(hw, GLPRT_MPRCL(pf_id), pf->stat_prev_loaded,
3312                           &prev_ps->eth.rx_multicast,
3313                           &cur_ps->eth.rx_multicast);
3314
3315         ice_stat_update40(hw, GLPRT_BPRCL(pf_id), pf->stat_prev_loaded,
3316                           &prev_ps->eth.rx_broadcast,
3317                           &cur_ps->eth.rx_broadcast);
3318
3319         ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
3320                           &prev_ps->eth.rx_discards,
3321                           &cur_ps->eth.rx_discards);
3322
3323         ice_stat_update40(hw, GLPRT_GOTCL(pf_id), pf->stat_prev_loaded,
3324                           &prev_ps->eth.tx_bytes,
3325                           &cur_ps->eth.tx_bytes);
3326
3327         ice_stat_update40(hw, GLPRT_UPTCL(pf_id), pf->stat_prev_loaded,
3328                           &prev_ps->eth.tx_unicast,
3329                           &cur_ps->eth.tx_unicast);
3330
3331         ice_stat_update40(hw, GLPRT_MPTCL(pf_id), pf->stat_prev_loaded,
3332                           &prev_ps->eth.tx_multicast,
3333                           &cur_ps->eth.tx_multicast);
3334
3335         ice_stat_update40(hw, GLPRT_BPTCL(pf_id), pf->stat_prev_loaded,
3336                           &prev_ps->eth.tx_broadcast,
3337                           &cur_ps->eth.tx_broadcast);
3338
3339         ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
3340                           &prev_ps->tx_dropped_link_down,
3341                           &cur_ps->tx_dropped_link_down);
3342
3343         ice_stat_update40(hw, GLPRT_PRC64L(pf_id), pf->stat_prev_loaded,
3344                           &prev_ps->rx_size_64, &cur_ps->rx_size_64);
3345
3346         ice_stat_update40(hw, GLPRT_PRC127L(pf_id), pf->stat_prev_loaded,
3347                           &prev_ps->rx_size_127, &cur_ps->rx_size_127);
3348
3349         ice_stat_update40(hw, GLPRT_PRC255L(pf_id), pf->stat_prev_loaded,
3350                           &prev_ps->rx_size_255, &cur_ps->rx_size_255);
3351
3352         ice_stat_update40(hw, GLPRT_PRC511L(pf_id), pf->stat_prev_loaded,
3353                           &prev_ps->rx_size_511, &cur_ps->rx_size_511);
3354
3355         ice_stat_update40(hw, GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
3356                           &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
3357
3358         ice_stat_update40(hw, GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
3359                           &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
3360
3361         ice_stat_update40(hw, GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
3362                           &prev_ps->rx_size_big, &cur_ps->rx_size_big);
3363
3364         ice_stat_update40(hw, GLPRT_PTC64L(pf_id), pf->stat_prev_loaded,
3365                           &prev_ps->tx_size_64, &cur_ps->tx_size_64);
3366
3367         ice_stat_update40(hw, GLPRT_PTC127L(pf_id), pf->stat_prev_loaded,
3368                           &prev_ps->tx_size_127, &cur_ps->tx_size_127);
3369
3370         ice_stat_update40(hw, GLPRT_PTC255L(pf_id), pf->stat_prev_loaded,
3371                           &prev_ps->tx_size_255, &cur_ps->tx_size_255);
3372
3373         ice_stat_update40(hw, GLPRT_PTC511L(pf_id), pf->stat_prev_loaded,
3374                           &prev_ps->tx_size_511, &cur_ps->tx_size_511);
3375
3376         ice_stat_update40(hw, GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
3377                           &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
3378
3379         ice_stat_update40(hw, GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
3380                           &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
3381
3382         ice_stat_update40(hw, GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
3383                           &prev_ps->tx_size_big, &cur_ps->tx_size_big);
3384
3385         ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
3386                           &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
3387
3388         ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
3389                           &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
3390
3391         ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
3392                           &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
3393
3394         ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
3395                           &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
3396
3397         ice_update_dcb_stats(pf);
3398
3399         ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
3400                           &prev_ps->crc_errors, &cur_ps->crc_errors);
3401
3402         ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
3403                           &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
3404
3405         ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
3406                           &prev_ps->mac_local_faults,
3407                           &cur_ps->mac_local_faults);
3408
3409         ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
3410                           &prev_ps->mac_remote_faults,
3411                           &cur_ps->mac_remote_faults);
3412
3413         ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
3414                           &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
3415
3416         ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
3417                           &prev_ps->rx_undersize, &cur_ps->rx_undersize);
3418
3419         ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
3420                           &prev_ps->rx_fragments, &cur_ps->rx_fragments);
3421
3422         ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
3423                           &prev_ps->rx_oversize, &cur_ps->rx_oversize);
3424
3425         ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
3426                           &prev_ps->rx_jabber, &cur_ps->rx_jabber);
3427
3428         pf->stat_prev_loaded = true;
3429 }
3430
3431 /**
3432  * ice_get_stats64 - get statistics for network device structure
3433  * @netdev: network interface device structure
3434  * @stats: main device statistics structure
3435  */
3436 static
3437 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3438 {
3439         struct ice_netdev_priv *np = netdev_priv(netdev);
3440         struct rtnl_link_stats64 *vsi_stats;
3441         struct ice_vsi *vsi = np->vsi;
3442
3443         vsi_stats = &vsi->net_stats;
3444
3445         if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
3446                 return;
3447         /* netdev packet/byte stats come from ring counter. These are obtained
3448          * by summing up ring counters (done by ice_update_vsi_ring_stats).
3449          */
3450         ice_update_vsi_ring_stats(vsi);
3451         stats->tx_packets = vsi_stats->tx_packets;
3452         stats->tx_bytes = vsi_stats->tx_bytes;
3453         stats->rx_packets = vsi_stats->rx_packets;
3454         stats->rx_bytes = vsi_stats->rx_bytes;
3455
3456         /* The rest of the stats can be read from the hardware but instead we
3457          * just return values that the watchdog task has already obtained from
3458          * the hardware.
3459          */
3460         stats->multicast = vsi_stats->multicast;
3461         stats->tx_errors = vsi_stats->tx_errors;
3462         stats->tx_dropped = vsi_stats->tx_dropped;
3463         stats->rx_errors = vsi_stats->rx_errors;
3464         stats->rx_dropped = vsi_stats->rx_dropped;
3465         stats->rx_crc_errors = vsi_stats->rx_crc_errors;
3466         stats->rx_length_errors = vsi_stats->rx_length_errors;
3467 }
3468
3469 /**
3470  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
3471  * @vsi: VSI having NAPI disabled
3472  */
3473 static void ice_napi_disable_all(struct ice_vsi *vsi)
3474 {
3475         int q_idx;
3476
3477         if (!vsi->netdev)
3478                 return;
3479
3480         ice_for_each_q_vector(vsi, q_idx) {
3481                 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3482
3483                 if (q_vector->rx.ring || q_vector->tx.ring)
3484                         napi_disable(&q_vector->napi);
3485         }
3486 }
3487
3488 /**
3489  * ice_down - Shutdown the connection
3490  * @vsi: The VSI being stopped
3491  */
3492 int ice_down(struct ice_vsi *vsi)
3493 {
3494         int i, tx_err, rx_err, link_err = 0;
3495
3496         /* Caller of this function is expected to set the
3497          * vsi->state __ICE_DOWN bit
3498          */
3499         if (vsi->netdev) {
3500                 netif_carrier_off(vsi->netdev);
3501                 netif_tx_disable(vsi->netdev);
3502         }
3503
3504         ice_vsi_dis_irq(vsi);
3505
3506         tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
3507         if (tx_err)
3508                 netdev_err(vsi->netdev,
3509                            "Failed stop Tx rings, VSI %d error %d\n",
3510                            vsi->vsi_num, tx_err);
3511
3512         rx_err = ice_vsi_stop_rx_rings(vsi);
3513         if (rx_err)
3514                 netdev_err(vsi->netdev,
3515                            "Failed stop Rx rings, VSI %d error %d\n",
3516                            vsi->vsi_num, rx_err);
3517
3518         ice_napi_disable_all(vsi);
3519
3520         if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
3521                 link_err = ice_force_phys_link_state(vsi, false);
3522                 if (link_err)
3523                         netdev_err(vsi->netdev,
3524                                    "Failed to set physical link down, VSI %d error %d\n",
3525                                    vsi->vsi_num, link_err);
3526         }
3527
3528         ice_for_each_txq(vsi, i)
3529                 ice_clean_tx_ring(vsi->tx_rings[i]);
3530
3531         ice_for_each_rxq(vsi, i)
3532                 ice_clean_rx_ring(vsi->rx_rings[i]);
3533
3534         if (tx_err || rx_err || link_err) {
3535                 netdev_err(vsi->netdev,
3536                            "Failed to close VSI 0x%04X on switch 0x%04X\n",
3537                            vsi->vsi_num, vsi->vsw->sw_id);
3538                 return -EIO;
3539         }
3540
3541         return 0;
3542 }
3543
3544 /**
3545  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
3546  * @vsi: VSI having resources allocated
3547  *
3548  * Return 0 on success, negative on failure
3549  */
3550 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
3551 {
3552         int i, err = 0;
3553
3554         if (!vsi->num_txq) {
3555                 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
3556                         vsi->vsi_num);
3557                 return -EINVAL;
3558         }
3559
3560         ice_for_each_txq(vsi, i) {
3561                 vsi->tx_rings[i]->netdev = vsi->netdev;
3562                 err = ice_setup_tx_ring(vsi->tx_rings[i]);
3563                 if (err)
3564                         break;
3565         }
3566
3567         return err;
3568 }
3569
3570 /**
3571  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
3572  * @vsi: VSI having resources allocated
3573  *
3574  * Return 0 on success, negative on failure
3575  */
3576 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
3577 {
3578         int i, err = 0;
3579
3580         if (!vsi->num_rxq) {
3581                 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
3582                         vsi->vsi_num);
3583                 return -EINVAL;
3584         }
3585
3586         ice_for_each_rxq(vsi, i) {
3587                 vsi->rx_rings[i]->netdev = vsi->netdev;
3588                 err = ice_setup_rx_ring(vsi->rx_rings[i]);
3589                 if (err)
3590                         break;
3591         }
3592
3593         return err;
3594 }
3595
3596 /**
3597  * ice_vsi_open - Called when a network interface is made active
3598  * @vsi: the VSI to open
3599  *
3600  * Initialization of the VSI
3601  *
3602  * Returns 0 on success, negative value on error
3603  */
3604 static int ice_vsi_open(struct ice_vsi *vsi)
3605 {
3606         char int_name[ICE_INT_NAME_STR_LEN];
3607         struct ice_pf *pf = vsi->back;
3608         int err;
3609
3610         /* allocate descriptors */
3611         err = ice_vsi_setup_tx_rings(vsi);
3612         if (err)
3613                 goto err_setup_tx;
3614
3615         err = ice_vsi_setup_rx_rings(vsi);
3616         if (err)
3617                 goto err_setup_rx;
3618
3619         err = ice_vsi_cfg(vsi);
3620         if (err)
3621                 goto err_setup_rx;
3622
3623         snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
3624                  dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
3625         err = ice_vsi_req_irq_msix(vsi, int_name);
3626         if (err)
3627                 goto err_setup_rx;
3628
3629         /* Notify the stack of the actual queue counts. */
3630         err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
3631         if (err)
3632                 goto err_set_qs;
3633
3634         err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
3635         if (err)
3636                 goto err_set_qs;
3637
3638         err = ice_up_complete(vsi);
3639         if (err)
3640                 goto err_up_complete;
3641
3642         return 0;
3643
3644 err_up_complete:
3645         ice_down(vsi);
3646 err_set_qs:
3647         ice_vsi_free_irq(vsi);
3648 err_setup_rx:
3649         ice_vsi_free_rx_rings(vsi);
3650 err_setup_tx:
3651         ice_vsi_free_tx_rings(vsi);
3652
3653         return err;
3654 }
3655
3656 /**
3657  * ice_vsi_release_all - Delete all VSIs
3658  * @pf: PF from which all VSIs are being removed
3659  */
3660 static void ice_vsi_release_all(struct ice_pf *pf)
3661 {
3662         int err, i;
3663
3664         if (!pf->vsi)
3665                 return;
3666
3667         ice_for_each_vsi(pf, i) {
3668                 if (!pf->vsi[i])
3669                         continue;
3670
3671                 err = ice_vsi_release(pf->vsi[i]);
3672                 if (err)
3673                         dev_dbg(&pf->pdev->dev,
3674                                 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
3675                                 i, err, pf->vsi[i]->vsi_num);
3676         }
3677 }
3678
3679 /**
3680  * ice_ena_vsi - resume a VSI
3681  * @vsi: the VSI being resume
3682  * @locked: is the rtnl_lock already held
3683  */
3684 static int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
3685 {
3686         int err = 0;
3687
3688         if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
3689                 return err;
3690
3691         clear_bit(__ICE_NEEDS_RESTART, vsi->state);
3692
3693         if (vsi->netdev && vsi->type == ICE_VSI_PF) {
3694                 struct net_device *netd = vsi->netdev;
3695
3696                 if (netif_running(vsi->netdev)) {
3697                         if (locked) {
3698                                 err = netd->netdev_ops->ndo_open(netd);
3699                         } else {
3700                                 rtnl_lock();
3701                                 err = netd->netdev_ops->ndo_open(netd);
3702                                 rtnl_unlock();
3703                         }
3704                 } else {
3705                         err = ice_vsi_open(vsi);
3706                 }
3707         }
3708
3709         return err;
3710 }
3711
3712 /**
3713  * ice_pf_ena_all_vsi - Resume all VSIs on a PF
3714  * @pf: the PF
3715  * @locked: is the rtnl_lock already held
3716  */
3717 #ifdef CONFIG_DCB
3718 int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked)
3719 #else
3720 static int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked)
3721 #endif /* CONFIG_DCB */
3722 {
3723         int v;
3724
3725         ice_for_each_vsi(pf, v)
3726                 if (pf->vsi[v])
3727                         if (ice_ena_vsi(pf->vsi[v], locked))
3728                                 return -EIO;
3729
3730         return 0;
3731 }
3732
3733 /**
3734  * ice_vsi_rebuild_all - rebuild all VSIs in PF
3735  * @pf: the PF
3736  */
3737 static int ice_vsi_rebuild_all(struct ice_pf *pf)
3738 {
3739         int i;
3740
3741         /* loop through pf->vsi array and reinit the VSI if found */
3742         ice_for_each_vsi(pf, i) {
3743                 int err;
3744
3745                 if (!pf->vsi[i])
3746                         continue;
3747
3748                 err = ice_vsi_rebuild(pf->vsi[i]);
3749                 if (err) {
3750                         dev_err(&pf->pdev->dev,
3751                                 "VSI at index %d rebuild failed\n",
3752                                 pf->vsi[i]->idx);
3753                         return err;
3754                 }
3755
3756                 dev_info(&pf->pdev->dev,
3757                          "VSI at index %d rebuilt. vsi_num = 0x%x\n",
3758                          pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
3759         }
3760
3761         return 0;
3762 }
3763
3764 /**
3765  * ice_vsi_replay_all - replay all VSIs configuration in the PF
3766  * @pf: the PF
3767  */
3768 static int ice_vsi_replay_all(struct ice_pf *pf)
3769 {
3770         struct ice_hw *hw = &pf->hw;
3771         enum ice_status ret;
3772         int i;
3773
3774         /* loop through pf->vsi array and replay the VSI if found */
3775         ice_for_each_vsi(pf, i) {
3776                 if (!pf->vsi[i])
3777                         continue;
3778
3779                 ret = ice_replay_vsi(hw, pf->vsi[i]->idx);
3780                 if (ret) {
3781                         dev_err(&pf->pdev->dev,
3782                                 "VSI at index %d replay failed %d\n",
3783                                 pf->vsi[i]->idx, ret);
3784                         return -EIO;
3785                 }
3786
3787                 /* Re-map HW VSI number, using VSI handle that has been
3788                  * previously validated in ice_replay_vsi() call above
3789                  */
3790                 pf->vsi[i]->vsi_num = ice_get_hw_vsi_num(hw, pf->vsi[i]->idx);
3791
3792                 dev_info(&pf->pdev->dev,
3793                          "VSI at index %d filter replayed successfully - vsi_num %i\n",
3794                          pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
3795         }
3796
3797         /* Clean up replay filter after successful re-configuration */
3798         ice_replay_post(hw);
3799         return 0;
3800 }
3801
3802 /**
3803  * ice_rebuild - rebuild after reset
3804  * @pf: PF to rebuild
3805  */
3806 static void ice_rebuild(struct ice_pf *pf)
3807 {
3808         struct device *dev = &pf->pdev->dev;
3809         struct ice_hw *hw = &pf->hw;
3810         enum ice_status ret;
3811         int err, i;
3812
3813         if (test_bit(__ICE_DOWN, pf->state))
3814                 goto clear_recovery;
3815
3816         dev_dbg(dev, "rebuilding PF\n");
3817
3818         ret = ice_init_all_ctrlq(hw);
3819         if (ret) {
3820                 dev_err(dev, "control queues init failed %d\n", ret);
3821                 goto err_init_ctrlq;
3822         }
3823
3824         ret = ice_clear_pf_cfg(hw);
3825         if (ret) {
3826                 dev_err(dev, "clear PF configuration failed %d\n", ret);
3827                 goto err_init_ctrlq;
3828         }
3829
3830         ice_clear_pxe_mode(hw);
3831
3832         ret = ice_get_caps(hw);
3833         if (ret) {
3834                 dev_err(dev, "ice_get_caps failed %d\n", ret);
3835                 goto err_init_ctrlq;
3836         }
3837
3838         err = ice_sched_init_port(hw->port_info);
3839         if (err)
3840                 goto err_sched_init_port;
3841
3842         ice_dcb_rebuild(pf);
3843
3844         err = ice_vsi_rebuild_all(pf);
3845         if (err) {
3846                 dev_err(dev, "ice_vsi_rebuild_all failed\n");
3847                 goto err_vsi_rebuild;
3848         }
3849
3850         err = ice_update_link_info(hw->port_info);
3851         if (err)
3852                 dev_err(&pf->pdev->dev, "Get link status error %d\n", err);
3853
3854         /* Replay all VSIs Configuration, including filters after reset */
3855         if (ice_vsi_replay_all(pf)) {
3856                 dev_err(&pf->pdev->dev,
3857                         "error replaying VSI configurations with switch filter rules\n");
3858                 goto err_vsi_rebuild;
3859         }
3860
3861         /* start misc vector */
3862         err = ice_req_irq_msix_misc(pf);
3863         if (err) {
3864                 dev_err(dev, "misc vector setup failed: %d\n", err);
3865                 goto err_vsi_rebuild;
3866         }
3867
3868         /* restart the VSIs that were rebuilt and running before the reset */
3869         err = ice_pf_ena_all_vsi(pf, false);
3870         if (err) {
3871                 dev_err(&pf->pdev->dev, "error enabling VSIs\n");
3872                 /* no need to disable VSIs in tear down path in ice_rebuild()
3873                  * since its already taken care in ice_vsi_open()
3874                  */
3875                 goto err_vsi_rebuild;
3876         }
3877
3878         ice_for_each_vsi(pf, i) {
3879                 bool link_up;
3880
3881                 if (!pf->vsi[i] || pf->vsi[i]->type != ICE_VSI_PF)
3882                         continue;
3883                 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
3884                 if (link_up) {
3885                         netif_carrier_on(pf->vsi[i]->netdev);
3886                         netif_tx_wake_all_queues(pf->vsi[i]->netdev);
3887                 } else {
3888                         netif_carrier_off(pf->vsi[i]->netdev);
3889                         netif_tx_stop_all_queues(pf->vsi[i]->netdev);
3890                 }
3891         }
3892
3893         /* if we get here, reset flow is successful */
3894         clear_bit(__ICE_RESET_FAILED, pf->state);
3895         return;
3896
3897 err_vsi_rebuild:
3898         ice_vsi_release_all(pf);
3899 err_sched_init_port:
3900         ice_sched_cleanup_all(hw);
3901 err_init_ctrlq:
3902         ice_shutdown_all_ctrlq(hw);
3903         set_bit(__ICE_RESET_FAILED, pf->state);
3904 clear_recovery:
3905         /* set this bit in PF state to control service task scheduling */
3906         set_bit(__ICE_NEEDS_RESTART, pf->state);
3907         dev_err(dev, "Rebuild failed, unload and reload driver\n");
3908 }
3909
3910 /**
3911  * ice_change_mtu - NDO callback to change the MTU
3912  * @netdev: network interface device structure
3913  * @new_mtu: new value for maximum frame size
3914  *
3915  * Returns 0 on success, negative on failure
3916  */
3917 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
3918 {
3919         struct ice_netdev_priv *np = netdev_priv(netdev);
3920         struct ice_vsi *vsi = np->vsi;
3921         struct ice_pf *pf = vsi->back;
3922         u8 count = 0;
3923
3924         if (new_mtu == netdev->mtu) {
3925                 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
3926                 return 0;
3927         }
3928
3929         if (new_mtu < netdev->min_mtu) {
3930                 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
3931                            netdev->min_mtu);
3932                 return -EINVAL;
3933         } else if (new_mtu > netdev->max_mtu) {
3934                 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
3935                            netdev->min_mtu);
3936                 return -EINVAL;
3937         }
3938         /* if a reset is in progress, wait for some time for it to complete */
3939         do {
3940                 if (ice_is_reset_in_progress(pf->state)) {
3941                         count++;
3942                         usleep_range(1000, 2000);
3943                 } else {
3944                         break;
3945                 }
3946
3947         } while (count < 100);
3948
3949         if (count == 100) {
3950                 netdev_err(netdev, "can't change MTU. Device is busy\n");
3951                 return -EBUSY;
3952         }
3953
3954         netdev->mtu = new_mtu;
3955
3956         /* if VSI is up, bring it down and then back up */
3957         if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
3958                 int err;
3959
3960                 err = ice_down(vsi);
3961                 if (err) {
3962                         netdev_err(netdev, "change MTU if_up err %d\n", err);
3963                         return err;
3964                 }
3965
3966                 err = ice_up(vsi);
3967                 if (err) {
3968                         netdev_err(netdev, "change MTU if_up err %d\n", err);
3969                         return err;
3970                 }
3971         }
3972
3973         netdev_info(netdev, "changed MTU to %d\n", new_mtu);
3974         return 0;
3975 }
3976
3977 /**
3978  * ice_set_rss - Set RSS keys and lut
3979  * @vsi: Pointer to VSI structure
3980  * @seed: RSS hash seed
3981  * @lut: Lookup table
3982  * @lut_size: Lookup table size
3983  *
3984  * Returns 0 on success, negative on failure
3985  */
3986 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
3987 {
3988         struct ice_pf *pf = vsi->back;
3989         struct ice_hw *hw = &pf->hw;
3990         enum ice_status status;
3991
3992         if (seed) {
3993                 struct ice_aqc_get_set_rss_keys *buf =
3994                                   (struct ice_aqc_get_set_rss_keys *)seed;
3995
3996                 status = ice_aq_set_rss_key(hw, vsi->idx, buf);
3997
3998                 if (status) {
3999                         dev_err(&pf->pdev->dev,
4000                                 "Cannot set RSS key, err %d aq_err %d\n",
4001                                 status, hw->adminq.rq_last_status);
4002                         return -EIO;
4003                 }
4004         }
4005
4006         if (lut) {
4007                 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4008                                             lut, lut_size);
4009                 if (status) {
4010                         dev_err(&pf->pdev->dev,
4011                                 "Cannot set RSS lut, err %d aq_err %d\n",
4012                                 status, hw->adminq.rq_last_status);
4013                         return -EIO;
4014                 }
4015         }
4016
4017         return 0;
4018 }
4019
4020 /**
4021  * ice_get_rss - Get RSS keys and lut
4022  * @vsi: Pointer to VSI structure
4023  * @seed: Buffer to store the keys
4024  * @lut: Buffer to store the lookup table entries
4025  * @lut_size: Size of buffer to store the lookup table entries
4026  *
4027  * Returns 0 on success, negative on failure
4028  */
4029 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4030 {
4031         struct ice_pf *pf = vsi->back;
4032         struct ice_hw *hw = &pf->hw;
4033         enum ice_status status;
4034
4035         if (seed) {
4036                 struct ice_aqc_get_set_rss_keys *buf =
4037                                   (struct ice_aqc_get_set_rss_keys *)seed;
4038
4039                 status = ice_aq_get_rss_key(hw, vsi->idx, buf);
4040                 if (status) {
4041                         dev_err(&pf->pdev->dev,
4042                                 "Cannot get RSS key, err %d aq_err %d\n",
4043                                 status, hw->adminq.rq_last_status);
4044                         return -EIO;
4045                 }
4046         }
4047
4048         if (lut) {
4049                 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4050                                             lut, lut_size);
4051                 if (status) {
4052                         dev_err(&pf->pdev->dev,
4053                                 "Cannot get RSS lut, err %d aq_err %d\n",
4054                                 status, hw->adminq.rq_last_status);
4055                         return -EIO;
4056                 }
4057         }
4058
4059         return 0;
4060 }
4061
4062 /**
4063  * ice_bridge_getlink - Get the hardware bridge mode
4064  * @skb: skb buff
4065  * @pid: process ID
4066  * @seq: RTNL message seq
4067  * @dev: the netdev being configured
4068  * @filter_mask: filter mask passed in
4069  * @nlflags: netlink flags passed in
4070  *
4071  * Return the bridge mode (VEB/VEPA)
4072  */
4073 static int
4074 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
4075                    struct net_device *dev, u32 filter_mask, int nlflags)
4076 {
4077         struct ice_netdev_priv *np = netdev_priv(dev);
4078         struct ice_vsi *vsi = np->vsi;
4079         struct ice_pf *pf = vsi->back;
4080         u16 bmode;
4081
4082         bmode = pf->first_sw->bridge_mode;
4083
4084         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
4085                                        filter_mask, NULL);
4086 }
4087
4088 /**
4089  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
4090  * @vsi: Pointer to VSI structure
4091  * @bmode: Hardware bridge mode (VEB/VEPA)
4092  *
4093  * Returns 0 on success, negative on failure
4094  */
4095 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
4096 {
4097         struct device *dev = &vsi->back->pdev->dev;
4098         struct ice_aqc_vsi_props *vsi_props;
4099         struct ice_hw *hw = &vsi->back->hw;
4100         struct ice_vsi_ctx *ctxt;
4101         enum ice_status status;
4102         int ret = 0;
4103
4104         vsi_props = &vsi->info;
4105
4106         ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
4107         if (!ctxt)
4108                 return -ENOMEM;
4109
4110         ctxt->info = vsi->info;
4111
4112         if (bmode == BRIDGE_MODE_VEB)
4113                 /* change from VEPA to VEB mode */
4114                 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4115         else
4116                 /* change from VEB to VEPA mode */
4117                 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4118         ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4119
4120         status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4121         if (status) {
4122                 dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
4123                         bmode, status, hw->adminq.sq_last_status);
4124                 ret = -EIO;
4125                 goto out;
4126         }
4127         /* Update sw flags for book keeping */
4128         vsi_props->sw_flags = ctxt->info.sw_flags;
4129
4130 out:
4131         devm_kfree(dev, ctxt);
4132         return ret;
4133 }
4134
4135 /**
4136  * ice_bridge_setlink - Set the hardware bridge mode
4137  * @dev: the netdev being configured
4138  * @nlh: RTNL message
4139  * @flags: bridge setlink flags
4140  * @extack: netlink extended ack
4141  *
4142  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
4143  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
4144  * not already set for all VSIs connected to this switch. And also update the
4145  * unicast switch filter rules for the corresponding switch of the netdev.
4146  */
4147 static int
4148 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
4149                    u16 __always_unused flags,
4150                    struct netlink_ext_ack __always_unused *extack)
4151 {
4152         struct ice_netdev_priv *np = netdev_priv(dev);
4153         struct ice_pf *pf = np->vsi->back;
4154         struct nlattr *attr, *br_spec;
4155         struct ice_hw *hw = &pf->hw;
4156         enum ice_status status;
4157         struct ice_sw *pf_sw;
4158         int rem, v, err = 0;
4159
4160         pf_sw = pf->first_sw;
4161         /* find the attribute in the netlink message */
4162         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
4163
4164         nla_for_each_nested(attr, br_spec, rem) {
4165                 __u16 mode;
4166
4167                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
4168                         continue;
4169                 mode = nla_get_u16(attr);
4170                 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
4171                         return -EINVAL;
4172                 /* Continue  if bridge mode is not being flipped */
4173                 if (mode == pf_sw->bridge_mode)
4174                         continue;
4175                 /* Iterates through the PF VSI list and update the loopback
4176                  * mode of the VSI
4177                  */
4178                 ice_for_each_vsi(pf, v) {
4179                         if (!pf->vsi[v])
4180                                 continue;
4181                         err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
4182                         if (err)
4183                                 return err;
4184                 }
4185
4186                 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
4187                 /* Update the unicast switch filter rules for the corresponding
4188                  * switch of the netdev
4189                  */
4190                 status = ice_update_sw_rule_bridge_mode(hw);
4191                 if (status) {
4192                         netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
4193                                    mode, status, hw->adminq.sq_last_status);
4194                         /* revert hw->evb_veb */
4195                         hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
4196                         return -EIO;
4197                 }
4198
4199                 pf_sw->bridge_mode = mode;
4200         }
4201
4202         return 0;
4203 }
4204
4205 /**
4206  * ice_tx_timeout - Respond to a Tx Hang
4207  * @netdev: network interface device structure
4208  */
4209 static void ice_tx_timeout(struct net_device *netdev)
4210 {
4211         struct ice_netdev_priv *np = netdev_priv(netdev);
4212         struct ice_ring *tx_ring = NULL;
4213         struct ice_vsi *vsi = np->vsi;
4214         struct ice_pf *pf = vsi->back;
4215         int hung_queue = -1;
4216         u32 i;
4217
4218         pf->tx_timeout_count++;
4219
4220         /* find the stopped queue the same way dev_watchdog() does */
4221         for (i = 0; i < netdev->num_tx_queues; i++) {
4222                 unsigned long trans_start;
4223                 struct netdev_queue *q;
4224
4225                 q = netdev_get_tx_queue(netdev, i);
4226                 trans_start = q->trans_start;
4227                 if (netif_xmit_stopped(q) &&
4228                     time_after(jiffies,
4229                                trans_start + netdev->watchdog_timeo)) {
4230                         hung_queue = i;
4231                         break;
4232                 }
4233         }
4234
4235         if (i == netdev->num_tx_queues)
4236                 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
4237         else
4238                 /* now that we have an index, find the tx_ring struct */
4239                 for (i = 0; i < vsi->num_txq; i++)
4240                         if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
4241                                 if (hung_queue == vsi->tx_rings[i]->q_index) {
4242                                         tx_ring = vsi->tx_rings[i];
4243                                         break;
4244                                 }
4245
4246         /* Reset recovery level if enough time has elapsed after last timeout.
4247          * Also ensure no new reset action happens before next timeout period.
4248          */
4249         if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
4250                 pf->tx_timeout_recovery_level = 1;
4251         else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
4252                                        netdev->watchdog_timeo)))
4253                 return;
4254
4255         if (tx_ring) {
4256                 struct ice_hw *hw = &pf->hw;
4257                 u32 head, val = 0;
4258
4259                 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) &
4260                         QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
4261                 /* Read interrupt register */
4262                 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
4263
4264                 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
4265                             vsi->vsi_num, hung_queue, tx_ring->next_to_clean,
4266                             head, tx_ring->next_to_use, val);
4267         }
4268
4269         pf->tx_timeout_last_recovery = jiffies;
4270         netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
4271                     pf->tx_timeout_recovery_level, hung_queue);
4272
4273         switch (pf->tx_timeout_recovery_level) {
4274         case 1:
4275                 set_bit(__ICE_PFR_REQ, pf->state);
4276                 break;
4277         case 2:
4278                 set_bit(__ICE_CORER_REQ, pf->state);
4279                 break;
4280         case 3:
4281                 set_bit(__ICE_GLOBR_REQ, pf->state);
4282                 break;
4283         default:
4284                 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
4285                 set_bit(__ICE_DOWN, pf->state);
4286                 set_bit(__ICE_NEEDS_RESTART, vsi->state);
4287                 set_bit(__ICE_SERVICE_DIS, pf->state);
4288                 break;
4289         }
4290
4291         ice_service_task_schedule(pf);
4292         pf->tx_timeout_recovery_level++;
4293 }
4294
4295 /**
4296  * ice_open - Called when a network interface becomes active
4297  * @netdev: network interface device structure
4298  *
4299  * The open entry point is called when a network interface is made
4300  * active by the system (IFF_UP). At this point all resources needed
4301  * for transmit and receive operations are allocated, the interrupt
4302  * handler is registered with the OS, the netdev watchdog is enabled,
4303  * and the stack is notified that the interface is ready.
4304  *
4305  * Returns 0 on success, negative value on failure
4306  */
4307 int ice_open(struct net_device *netdev)
4308 {
4309         struct ice_netdev_priv *np = netdev_priv(netdev);
4310         struct ice_vsi *vsi = np->vsi;
4311         struct ice_port_info *pi;
4312         int err;
4313
4314         if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
4315                 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
4316                 return -EIO;
4317         }
4318
4319         netif_carrier_off(netdev);
4320
4321         pi = vsi->port_info;
4322         err = ice_update_link_info(pi);
4323         if (err) {
4324                 netdev_err(netdev, "Failed to get link info, error %d\n",
4325                            err);
4326                 return err;
4327         }
4328
4329         /* Set PHY if there is media, otherwise, turn off PHY */
4330         if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
4331                 err = ice_force_phys_link_state(vsi, true);
4332                 if (err) {
4333                         netdev_err(netdev,
4334                                    "Failed to set physical link up, error %d\n",
4335                                    err);
4336                         return err;
4337                 }
4338         } else {
4339                 err = ice_aq_set_link_restart_an(pi, false, NULL);
4340                 if (err) {
4341                         netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
4342                                    vsi->vsi_num, err);
4343                         return err;
4344                 }
4345                 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags);
4346         }
4347
4348         err = ice_vsi_open(vsi);
4349         if (err)
4350                 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
4351                            vsi->vsi_num, vsi->vsw->sw_id);
4352         return err;
4353 }
4354
4355 /**
4356  * ice_stop - Disables a network interface
4357  * @netdev: network interface device structure
4358  *
4359  * The stop entry point is called when an interface is de-activated by the OS,
4360  * and the netdevice enters the DOWN state. The hardware is still under the
4361  * driver's control, but the netdev interface is disabled.
4362  *
4363  * Returns success only - not allowed to fail
4364  */
4365 int ice_stop(struct net_device *netdev)
4366 {
4367         struct ice_netdev_priv *np = netdev_priv(netdev);
4368         struct ice_vsi *vsi = np->vsi;
4369
4370         ice_vsi_close(vsi);
4371
4372         return 0;
4373 }
4374
4375 /**
4376  * ice_features_check - Validate encapsulated packet conforms to limits
4377  * @skb: skb buffer
4378  * @netdev: This port's netdev
4379  * @features: Offload features that the stack believes apply
4380  */
4381 static netdev_features_t
4382 ice_features_check(struct sk_buff *skb,
4383                    struct net_device __always_unused *netdev,
4384                    netdev_features_t features)
4385 {
4386         size_t len;
4387
4388         /* No point in doing any of this if neither checksum nor GSO are
4389          * being requested for this frame. We can rule out both by just
4390          * checking for CHECKSUM_PARTIAL
4391          */
4392         if (skb->ip_summed != CHECKSUM_PARTIAL)
4393                 return features;
4394
4395         /* We cannot support GSO if the MSS is going to be less than
4396          * 64 bytes. If it is then we need to drop support for GSO.
4397          */
4398         if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4399                 features &= ~NETIF_F_GSO_MASK;
4400
4401         len = skb_network_header(skb) - skb->data;
4402         if (len & ~(ICE_TXD_MACLEN_MAX))
4403                 goto out_rm_features;
4404
4405         len = skb_transport_header(skb) - skb_network_header(skb);
4406         if (len & ~(ICE_TXD_IPLEN_MAX))
4407                 goto out_rm_features;
4408
4409         if (skb->encapsulation) {
4410                 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4411                 if (len & ~(ICE_TXD_L4LEN_MAX))
4412                         goto out_rm_features;
4413
4414                 len = skb_inner_transport_header(skb) -
4415                       skb_inner_network_header(skb);
4416                 if (len & ~(ICE_TXD_IPLEN_MAX))
4417                         goto out_rm_features;
4418         }
4419
4420         return features;
4421 out_rm_features:
4422         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4423 }
4424
4425 static const struct net_device_ops ice_netdev_ops = {
4426         .ndo_open = ice_open,
4427         .ndo_stop = ice_stop,
4428         .ndo_start_xmit = ice_start_xmit,
4429         .ndo_features_check = ice_features_check,
4430         .ndo_set_rx_mode = ice_set_rx_mode,
4431         .ndo_set_mac_address = ice_set_mac_address,
4432         .ndo_validate_addr = eth_validate_addr,
4433         .ndo_change_mtu = ice_change_mtu,
4434         .ndo_get_stats64 = ice_get_stats64,
4435         .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
4436         .ndo_set_vf_mac = ice_set_vf_mac,
4437         .ndo_get_vf_config = ice_get_vf_cfg,
4438         .ndo_set_vf_trust = ice_set_vf_trust,
4439         .ndo_set_vf_vlan = ice_set_vf_port_vlan,
4440         .ndo_set_vf_link_state = ice_set_vf_link_state,
4441         .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
4442         .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
4443         .ndo_set_features = ice_set_features,
4444         .ndo_bridge_getlink = ice_bridge_getlink,
4445         .ndo_bridge_setlink = ice_bridge_setlink,
4446         .ndo_fdb_add = ice_fdb_add,
4447         .ndo_fdb_del = ice_fdb_del,
4448         .ndo_tx_timeout = ice_tx_timeout,
4449 };