Merge tag 'rtc-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / i40e / i40e_xsk.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2018 Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7
8 #include "i40e.h"
9 #include "i40e_txrx_common.h"
10 #include "i40e_xsk.h"
11
12 /**
13  * i40e_xsk_umem_dma_map - DMA maps all UMEM memory for the netdev
14  * @vsi: Current VSI
15  * @umem: UMEM to DMA map
16  *
17  * Returns 0 on success, <0 on failure
18  **/
19 static int i40e_xsk_umem_dma_map(struct i40e_vsi *vsi, struct xdp_umem *umem)
20 {
21         struct i40e_pf *pf = vsi->back;
22         struct device *dev;
23         unsigned int i, j;
24         dma_addr_t dma;
25
26         dev = &pf->pdev->dev;
27         for (i = 0; i < umem->npgs; i++) {
28                 dma = dma_map_page_attrs(dev, umem->pgs[i], 0, PAGE_SIZE,
29                                          DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
30                 if (dma_mapping_error(dev, dma))
31                         goto out_unmap;
32
33                 umem->pages[i].dma = dma;
34         }
35
36         return 0;
37
38 out_unmap:
39         for (j = 0; j < i; j++) {
40                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
41                                      DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
42                 umem->pages[i].dma = 0;
43         }
44
45         return -1;
46 }
47
48 /**
49  * i40e_xsk_umem_dma_unmap - DMA unmaps all UMEM memory for the netdev
50  * @vsi: Current VSI
51  * @umem: UMEM to DMA map
52  **/
53 static void i40e_xsk_umem_dma_unmap(struct i40e_vsi *vsi, struct xdp_umem *umem)
54 {
55         struct i40e_pf *pf = vsi->back;
56         struct device *dev;
57         unsigned int i;
58
59         dev = &pf->pdev->dev;
60
61         for (i = 0; i < umem->npgs; i++) {
62                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
63                                      DMA_BIDIRECTIONAL, I40E_RX_DMA_ATTR);
64
65                 umem->pages[i].dma = 0;
66         }
67 }
68
69 /**
70  * i40e_xsk_umem_enable - Enable/associate a UMEM to a certain ring/qid
71  * @vsi: Current VSI
72  * @umem: UMEM
73  * @qid: Rx ring to associate UMEM to
74  *
75  * Returns 0 on success, <0 on failure
76  **/
77 static int i40e_xsk_umem_enable(struct i40e_vsi *vsi, struct xdp_umem *umem,
78                                 u16 qid)
79 {
80         struct net_device *netdev = vsi->netdev;
81         struct xdp_umem_fq_reuse *reuseq;
82         bool if_running;
83         int err;
84
85         if (vsi->type != I40E_VSI_MAIN)
86                 return -EINVAL;
87
88         if (qid >= vsi->num_queue_pairs)
89                 return -EINVAL;
90
91         if (qid >= netdev->real_num_rx_queues ||
92             qid >= netdev->real_num_tx_queues)
93                 return -EINVAL;
94
95         reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
96         if (!reuseq)
97                 return -ENOMEM;
98
99         xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
100
101         err = i40e_xsk_umem_dma_map(vsi, umem);
102         if (err)
103                 return err;
104
105         set_bit(qid, vsi->af_xdp_zc_qps);
106
107         if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
108
109         if (if_running) {
110                 err = i40e_queue_pair_disable(vsi, qid);
111                 if (err)
112                         return err;
113
114                 err = i40e_queue_pair_enable(vsi, qid);
115                 if (err)
116                         return err;
117
118                 /* Kick start the NAPI context so that receiving will start */
119                 err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX);
120                 if (err)
121                         return err;
122         }
123
124         return 0;
125 }
126
127 /**
128  * i40e_xsk_umem_disable - Disassociate a UMEM from a certain ring/qid
129  * @vsi: Current VSI
130  * @qid: Rx ring to associate UMEM to
131  *
132  * Returns 0 on success, <0 on failure
133  **/
134 static int i40e_xsk_umem_disable(struct i40e_vsi *vsi, u16 qid)
135 {
136         struct net_device *netdev = vsi->netdev;
137         struct xdp_umem *umem;
138         bool if_running;
139         int err;
140
141         umem = xdp_get_umem_from_qid(netdev, qid);
142         if (!umem)
143                 return -EINVAL;
144
145         if_running = netif_running(vsi->netdev) && i40e_enabled_xdp_vsi(vsi);
146
147         if (if_running) {
148                 err = i40e_queue_pair_disable(vsi, qid);
149                 if (err)
150                         return err;
151         }
152
153         clear_bit(qid, vsi->af_xdp_zc_qps);
154         i40e_xsk_umem_dma_unmap(vsi, umem);
155
156         if (if_running) {
157                 err = i40e_queue_pair_enable(vsi, qid);
158                 if (err)
159                         return err;
160
161                 /* Kick start the NAPI context so that receiving will start */
162                 err = i40e_xsk_wakeup(vsi->netdev, qid, XDP_WAKEUP_RX);
163                 if (err)
164                         return err;
165         }
166
167         return 0;
168 }
169
170 /**
171  * i40e_xsk_umem_setup - Enable/disassociate a UMEM to/from a ring/qid
172  * @vsi: Current VSI
173  * @umem: UMEM to enable/associate to a ring, or NULL to disable
174  * @qid: Rx ring to (dis)associate UMEM (from)to
175  *
176  * This function enables or disables a UMEM to a certain ring.
177  *
178  * Returns 0 on success, <0 on failure
179  **/
180 int i40e_xsk_umem_setup(struct i40e_vsi *vsi, struct xdp_umem *umem,
181                         u16 qid)
182 {
183         return umem ? i40e_xsk_umem_enable(vsi, umem, qid) :
184                 i40e_xsk_umem_disable(vsi, qid);
185 }
186
187 /**
188  * i40e_run_xdp_zc - Executes an XDP program on an xdp_buff
189  * @rx_ring: Rx ring
190  * @xdp: xdp_buff used as input to the XDP program
191  *
192  * This function enables or disables a UMEM to a certain ring.
193  *
194  * Returns any of I40E_XDP_{PASS, CONSUMED, TX, REDIR}
195  **/
196 static int i40e_run_xdp_zc(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
197 {
198         struct xdp_umem *umem = rx_ring->xsk_umem;
199         int err, result = I40E_XDP_PASS;
200         struct i40e_ring *xdp_ring;
201         struct bpf_prog *xdp_prog;
202         u64 offset;
203         u32 act;
204
205         rcu_read_lock();
206         /* NB! xdp_prog will always be !NULL, due to the fact that
207          * this path is enabled by setting an XDP program.
208          */
209         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
210         act = bpf_prog_run_xdp(xdp_prog, xdp);
211         offset = xdp->data - xdp->data_hard_start;
212
213         xdp->handle = xsk_umem_adjust_offset(umem, xdp->handle, offset);
214
215         switch (act) {
216         case XDP_PASS:
217                 break;
218         case XDP_TX:
219                 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
220                 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
221                 break;
222         case XDP_REDIRECT:
223                 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
224                 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
225                 break;
226         default:
227                 bpf_warn_invalid_xdp_action(act);
228                 /* fall through */
229         case XDP_ABORTED:
230                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
231                 /* fallthrough -- handle aborts by dropping packet */
232         case XDP_DROP:
233                 result = I40E_XDP_CONSUMED;
234                 break;
235         }
236         rcu_read_unlock();
237         return result;
238 }
239
240 /**
241  * i40e_alloc_buffer_zc - Allocates an i40e_rx_buffer
242  * @rx_ring: Rx ring
243  * @bi: Rx buffer to populate
244  *
245  * This function allocates an Rx buffer. The buffer can come from fill
246  * queue, or via the recycle queue (next_to_alloc).
247  *
248  * Returns true for a successful allocation, false otherwise
249  **/
250 static bool i40e_alloc_buffer_zc(struct i40e_ring *rx_ring,
251                                  struct i40e_rx_buffer *bi)
252 {
253         struct xdp_umem *umem = rx_ring->xsk_umem;
254         void *addr = bi->addr;
255         u64 handle, hr;
256
257         if (addr) {
258                 rx_ring->rx_stats.page_reuse_count++;
259                 return true;
260         }
261
262         if (!xsk_umem_peek_addr(umem, &handle)) {
263                 rx_ring->rx_stats.alloc_page_failed++;
264                 return false;
265         }
266
267         hr = umem->headroom + XDP_PACKET_HEADROOM;
268
269         bi->dma = xdp_umem_get_dma(umem, handle);
270         bi->dma += hr;
271
272         bi->addr = xdp_umem_get_data(umem, handle);
273         bi->addr += hr;
274
275         bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
276
277         xsk_umem_discard_addr(umem);
278         return true;
279 }
280
281 /**
282  * i40e_alloc_buffer_slow_zc - Allocates an i40e_rx_buffer
283  * @rx_ring: Rx ring
284  * @bi: Rx buffer to populate
285  *
286  * This function allocates an Rx buffer. The buffer can come from fill
287  * queue, or via the reuse queue.
288  *
289  * Returns true for a successful allocation, false otherwise
290  **/
291 static bool i40e_alloc_buffer_slow_zc(struct i40e_ring *rx_ring,
292                                       struct i40e_rx_buffer *bi)
293 {
294         struct xdp_umem *umem = rx_ring->xsk_umem;
295         u64 handle, hr;
296
297         if (!xsk_umem_peek_addr_rq(umem, &handle)) {
298                 rx_ring->rx_stats.alloc_page_failed++;
299                 return false;
300         }
301
302         handle &= rx_ring->xsk_umem->chunk_mask;
303
304         hr = umem->headroom + XDP_PACKET_HEADROOM;
305
306         bi->dma = xdp_umem_get_dma(umem, handle);
307         bi->dma += hr;
308
309         bi->addr = xdp_umem_get_data(umem, handle);
310         bi->addr += hr;
311
312         bi->handle = xsk_umem_adjust_offset(umem, handle, umem->headroom);
313
314         xsk_umem_discard_addr_rq(umem);
315         return true;
316 }
317
318 static __always_inline bool
319 __i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count,
320                            bool alloc(struct i40e_ring *rx_ring,
321                                       struct i40e_rx_buffer *bi))
322 {
323         u16 ntu = rx_ring->next_to_use;
324         union i40e_rx_desc *rx_desc;
325         struct i40e_rx_buffer *bi;
326         bool ok = true;
327
328         rx_desc = I40E_RX_DESC(rx_ring, ntu);
329         bi = &rx_ring->rx_bi[ntu];
330         do {
331                 if (!alloc(rx_ring, bi)) {
332                         ok = false;
333                         goto no_buffers;
334                 }
335
336                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 0,
337                                                  rx_ring->rx_buf_len,
338                                                  DMA_BIDIRECTIONAL);
339
340                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
341
342                 rx_desc++;
343                 bi++;
344                 ntu++;
345
346                 if (unlikely(ntu == rx_ring->count)) {
347                         rx_desc = I40E_RX_DESC(rx_ring, 0);
348                         bi = rx_ring->rx_bi;
349                         ntu = 0;
350                 }
351
352                 rx_desc->wb.qword1.status_error_len = 0;
353                 count--;
354         } while (count);
355
356 no_buffers:
357         if (rx_ring->next_to_use != ntu)
358                 i40e_release_rx_desc(rx_ring, ntu);
359
360         return ok;
361 }
362
363 /**
364  * i40e_alloc_rx_buffers_zc - Allocates a number of Rx buffers
365  * @rx_ring: Rx ring
366  * @count: The number of buffers to allocate
367  *
368  * This function allocates a number of Rx buffers from the reuse queue
369  * or fill ring and places them on the Rx ring.
370  *
371  * Returns true for a successful allocation, false otherwise
372  **/
373 bool i40e_alloc_rx_buffers_zc(struct i40e_ring *rx_ring, u16 count)
374 {
375         return __i40e_alloc_rx_buffers_zc(rx_ring, count,
376                                           i40e_alloc_buffer_slow_zc);
377 }
378
379 /**
380  * i40e_alloc_rx_buffers_fast_zc - Allocates a number of Rx buffers
381  * @rx_ring: Rx ring
382  * @count: The number of buffers to allocate
383  *
384  * This function allocates a number of Rx buffers from the fill ring
385  * or the internal recycle mechanism and places them on the Rx ring.
386  *
387  * Returns true for a successful allocation, false otherwise
388  **/
389 static bool i40e_alloc_rx_buffers_fast_zc(struct i40e_ring *rx_ring, u16 count)
390 {
391         return __i40e_alloc_rx_buffers_zc(rx_ring, count,
392                                           i40e_alloc_buffer_zc);
393 }
394
395 /**
396  * i40e_get_rx_buffer_zc - Return the current Rx buffer
397  * @rx_ring: Rx ring
398  * @size: The size of the rx buffer (read from descriptor)
399  *
400  * This function returns the current, received Rx buffer, and also
401  * does DMA synchronization.  the Rx ring.
402  *
403  * Returns the received Rx buffer
404  **/
405 static struct i40e_rx_buffer *i40e_get_rx_buffer_zc(struct i40e_ring *rx_ring,
406                                                     const unsigned int size)
407 {
408         struct i40e_rx_buffer *bi;
409
410         bi = &rx_ring->rx_bi[rx_ring->next_to_clean];
411
412         /* we are reusing so sync this buffer for CPU use */
413         dma_sync_single_range_for_cpu(rx_ring->dev,
414                                       bi->dma, 0,
415                                       size,
416                                       DMA_BIDIRECTIONAL);
417
418         return bi;
419 }
420
421 /**
422  * i40e_reuse_rx_buffer_zc - Recycle an Rx buffer
423  * @rx_ring: Rx ring
424  * @old_bi: The Rx buffer to recycle
425  *
426  * This function recycles a finished Rx buffer, and places it on the
427  * recycle queue (next_to_alloc).
428  **/
429 static void i40e_reuse_rx_buffer_zc(struct i40e_ring *rx_ring,
430                                     struct i40e_rx_buffer *old_bi)
431 {
432         struct i40e_rx_buffer *new_bi = &rx_ring->rx_bi[rx_ring->next_to_alloc];
433         u16 nta = rx_ring->next_to_alloc;
434
435         /* update, and store next to alloc */
436         nta++;
437         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
438
439         /* transfer page from old buffer to new buffer */
440         new_bi->dma = old_bi->dma;
441         new_bi->addr = old_bi->addr;
442         new_bi->handle = old_bi->handle;
443
444         old_bi->addr = NULL;
445 }
446
447 /**
448  * i40e_zca_free - Free callback for MEM_TYPE_ZERO_COPY allocations
449  * @alloc: Zero-copy allocator
450  * @handle: Buffer handle
451  **/
452 void i40e_zca_free(struct zero_copy_allocator *alloc, unsigned long handle)
453 {
454         struct i40e_rx_buffer *bi;
455         struct i40e_ring *rx_ring;
456         u64 hr, mask;
457         u16 nta;
458
459         rx_ring = container_of(alloc, struct i40e_ring, zca);
460         hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
461         mask = rx_ring->xsk_umem->chunk_mask;
462
463         nta = rx_ring->next_to_alloc;
464         bi = &rx_ring->rx_bi[nta];
465
466         nta++;
467         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
468
469         handle &= mask;
470
471         bi->dma = xdp_umem_get_dma(rx_ring->xsk_umem, handle);
472         bi->dma += hr;
473
474         bi->addr = xdp_umem_get_data(rx_ring->xsk_umem, handle);
475         bi->addr += hr;
476
477         bi->handle = xsk_umem_adjust_offset(rx_ring->xsk_umem, (u64)handle,
478                                             rx_ring->xsk_umem->headroom);
479 }
480
481 /**
482  * i40e_construct_skb_zc - Create skbufff from zero-copy Rx buffer
483  * @rx_ring: Rx ring
484  * @bi: Rx buffer
485  * @xdp: xdp_buff
486  *
487  * This functions allocates a new skb from a zero-copy Rx buffer.
488  *
489  * Returns the skb, or NULL on failure.
490  **/
491 static struct sk_buff *i40e_construct_skb_zc(struct i40e_ring *rx_ring,
492                                              struct i40e_rx_buffer *bi,
493                                              struct xdp_buff *xdp)
494 {
495         unsigned int metasize = xdp->data - xdp->data_meta;
496         unsigned int datasize = xdp->data_end - xdp->data;
497         struct sk_buff *skb;
498
499         /* allocate a skb to store the frags */
500         skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
501                                xdp->data_end - xdp->data_hard_start,
502                                GFP_ATOMIC | __GFP_NOWARN);
503         if (unlikely(!skb))
504                 return NULL;
505
506         skb_reserve(skb, xdp->data - xdp->data_hard_start);
507         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
508         if (metasize)
509                 skb_metadata_set(skb, metasize);
510
511         i40e_reuse_rx_buffer_zc(rx_ring, bi);
512         return skb;
513 }
514
515 /**
516  * i40e_inc_ntc: Advance the next_to_clean index
517  * @rx_ring: Rx ring
518  **/
519 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
520 {
521         u32 ntc = rx_ring->next_to_clean + 1;
522
523         ntc = (ntc < rx_ring->count) ? ntc : 0;
524         rx_ring->next_to_clean = ntc;
525         prefetch(I40E_RX_DESC(rx_ring, ntc));
526 }
527
528 /**
529  * i40e_clean_rx_irq_zc - Consumes Rx packets from the hardware ring
530  * @rx_ring: Rx ring
531  * @budget: NAPI budget
532  *
533  * Returns amount of work completed
534  **/
535 int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
536 {
537         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
538         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
539         unsigned int xdp_res, xdp_xmit = 0;
540         bool failure = false;
541         struct sk_buff *skb;
542         struct xdp_buff xdp;
543
544         xdp.rxq = &rx_ring->xdp_rxq;
545
546         while (likely(total_rx_packets < (unsigned int)budget)) {
547                 struct i40e_rx_buffer *bi;
548                 union i40e_rx_desc *rx_desc;
549                 unsigned int size;
550                 u64 qword;
551
552                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
553                         failure = failure ||
554                                   !i40e_alloc_rx_buffers_fast_zc(rx_ring,
555                                                                  cleaned_count);
556                         cleaned_count = 0;
557                 }
558
559                 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
560                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
561
562                 /* This memory barrier is needed to keep us from reading
563                  * any other fields out of the rx_desc until we have
564                  * verified the descriptor has been written back.
565                  */
566                 dma_rmb();
567
568                 bi = i40e_clean_programming_status(rx_ring, rx_desc,
569                                                    qword);
570                 if (unlikely(bi)) {
571                         i40e_reuse_rx_buffer_zc(rx_ring, bi);
572                         cleaned_count++;
573                         continue;
574                 }
575
576                 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
577                        I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
578                 if (!size)
579                         break;
580
581                 bi = i40e_get_rx_buffer_zc(rx_ring, size);
582                 xdp.data = bi->addr;
583                 xdp.data_meta = xdp.data;
584                 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
585                 xdp.data_end = xdp.data + size;
586                 xdp.handle = bi->handle;
587
588                 xdp_res = i40e_run_xdp_zc(rx_ring, &xdp);
589                 if (xdp_res) {
590                         if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
591                                 xdp_xmit |= xdp_res;
592                                 bi->addr = NULL;
593                         } else {
594                                 i40e_reuse_rx_buffer_zc(rx_ring, bi);
595                         }
596
597                         total_rx_bytes += size;
598                         total_rx_packets++;
599
600                         cleaned_count++;
601                         i40e_inc_ntc(rx_ring);
602                         continue;
603                 }
604
605                 /* XDP_PASS path */
606
607                 /* NB! We are not checking for errors using
608                  * i40e_test_staterr with
609                  * BIT(I40E_RXD_QW1_ERROR_SHIFT). This is due to that
610                  * SBP is *not* set in PRT_SBPVSI (default not set).
611                  */
612                 skb = i40e_construct_skb_zc(rx_ring, bi, &xdp);
613                 if (!skb) {
614                         rx_ring->rx_stats.alloc_buff_failed++;
615                         break;
616                 }
617
618                 cleaned_count++;
619                 i40e_inc_ntc(rx_ring);
620
621                 if (eth_skb_pad(skb))
622                         continue;
623
624                 total_rx_bytes += skb->len;
625                 total_rx_packets++;
626
627                 i40e_process_skb_fields(rx_ring, rx_desc, skb);
628                 napi_gro_receive(&rx_ring->q_vector->napi, skb);
629         }
630
631         i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
632         i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
633
634         if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) {
635                 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
636                         xsk_set_rx_need_wakeup(rx_ring->xsk_umem);
637                 else
638                         xsk_clear_rx_need_wakeup(rx_ring->xsk_umem);
639
640                 return (int)total_rx_packets;
641         }
642         return failure ? budget : (int)total_rx_packets;
643 }
644
645 /**
646  * i40e_xmit_zc - Performs zero-copy Tx AF_XDP
647  * @xdp_ring: XDP Tx ring
648  * @budget: NAPI budget
649  *
650  * Returns true if the work is finished.
651  **/
652 static bool i40e_xmit_zc(struct i40e_ring *xdp_ring, unsigned int budget)
653 {
654         struct i40e_tx_desc *tx_desc = NULL;
655         struct i40e_tx_buffer *tx_bi;
656         bool work_done = true;
657         struct xdp_desc desc;
658         dma_addr_t dma;
659
660         while (budget-- > 0) {
661                 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
662                         xdp_ring->tx_stats.tx_busy++;
663                         work_done = false;
664                         break;
665                 }
666
667                 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
668                         break;
669
670                 dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
671
672                 dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
673                                            DMA_BIDIRECTIONAL);
674
675                 tx_bi = &xdp_ring->tx_bi[xdp_ring->next_to_use];
676                 tx_bi->bytecount = desc.len;
677
678                 tx_desc = I40E_TX_DESC(xdp_ring, xdp_ring->next_to_use);
679                 tx_desc->buffer_addr = cpu_to_le64(dma);
680                 tx_desc->cmd_type_offset_bsz =
681                         build_ctob(I40E_TX_DESC_CMD_ICRC
682                                    | I40E_TX_DESC_CMD_EOP,
683                                    0, desc.len, 0);
684
685                 xdp_ring->next_to_use++;
686                 if (xdp_ring->next_to_use == xdp_ring->count)
687                         xdp_ring->next_to_use = 0;
688         }
689
690         if (tx_desc) {
691                 /* Request an interrupt for the last frame and bump tail ptr. */
692                 tx_desc->cmd_type_offset_bsz |= (I40E_TX_DESC_CMD_RS <<
693                                                  I40E_TXD_QW1_CMD_SHIFT);
694                 i40e_xdp_ring_update_tail(xdp_ring);
695
696                 xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
697                 if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem))
698                         xsk_clear_tx_need_wakeup(xdp_ring->xsk_umem);
699         }
700
701         return !!budget && work_done;
702 }
703
704 /**
705  * i40e_clean_xdp_tx_buffer - Frees and unmaps an XDP Tx entry
706  * @tx_ring: XDP Tx ring
707  * @tx_bi: Tx buffer info to clean
708  **/
709 static void i40e_clean_xdp_tx_buffer(struct i40e_ring *tx_ring,
710                                      struct i40e_tx_buffer *tx_bi)
711 {
712         xdp_return_frame(tx_bi->xdpf);
713         dma_unmap_single(tx_ring->dev,
714                          dma_unmap_addr(tx_bi, dma),
715                          dma_unmap_len(tx_bi, len), DMA_TO_DEVICE);
716         dma_unmap_len_set(tx_bi, len, 0);
717 }
718
719 /**
720  * i40e_clean_xdp_tx_irq - Completes AF_XDP entries, and cleans XDP entries
721  * @tx_ring: XDP Tx ring
722  * @tx_bi: Tx buffer info to clean
723  *
724  * Returns true if cleanup/tranmission is done.
725  **/
726 bool i40e_clean_xdp_tx_irq(struct i40e_vsi *vsi,
727                            struct i40e_ring *tx_ring, int napi_budget)
728 {
729         unsigned int ntc, total_bytes = 0, budget = vsi->work_limit;
730         u32 i, completed_frames, frames_ready, xsk_frames = 0;
731         struct xdp_umem *umem = tx_ring->xsk_umem;
732         u32 head_idx = i40e_get_head(tx_ring);
733         bool work_done = true, xmit_done;
734         struct i40e_tx_buffer *tx_bi;
735
736         if (head_idx < tx_ring->next_to_clean)
737                 head_idx += tx_ring->count;
738         frames_ready = head_idx - tx_ring->next_to_clean;
739
740         if (frames_ready == 0) {
741                 goto out_xmit;
742         } else if (frames_ready > budget) {
743                 completed_frames = budget;
744                 work_done = false;
745         } else {
746                 completed_frames = frames_ready;
747         }
748
749         ntc = tx_ring->next_to_clean;
750
751         for (i = 0; i < completed_frames; i++) {
752                 tx_bi = &tx_ring->tx_bi[ntc];
753
754                 if (tx_bi->xdpf)
755                         i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
756                 else
757                         xsk_frames++;
758
759                 tx_bi->xdpf = NULL;
760                 total_bytes += tx_bi->bytecount;
761
762                 if (++ntc >= tx_ring->count)
763                         ntc = 0;
764         }
765
766         tx_ring->next_to_clean += completed_frames;
767         if (unlikely(tx_ring->next_to_clean >= tx_ring->count))
768                 tx_ring->next_to_clean -= tx_ring->count;
769
770         if (xsk_frames)
771                 xsk_umem_complete_tx(umem, xsk_frames);
772
773         i40e_arm_wb(tx_ring, vsi, budget);
774         i40e_update_tx_stats(tx_ring, completed_frames, total_bytes);
775
776 out_xmit:
777         if (xsk_umem_uses_need_wakeup(tx_ring->xsk_umem)) {
778                 if (tx_ring->next_to_clean == tx_ring->next_to_use)
779                         xsk_set_tx_need_wakeup(tx_ring->xsk_umem);
780                 else
781                         xsk_clear_tx_need_wakeup(tx_ring->xsk_umem);
782         }
783
784         xmit_done = i40e_xmit_zc(tx_ring, budget);
785
786         return work_done && xmit_done;
787 }
788
789 /**
790  * i40e_xsk_wakeup - Implements the ndo_xsk_wakeup
791  * @dev: the netdevice
792  * @queue_id: queue id to wake up
793  * @flags: ignored in our case since we have Rx and Tx in the same NAPI.
794  *
795  * Returns <0 for errors, 0 otherwise.
796  **/
797 int i40e_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
798 {
799         struct i40e_netdev_priv *np = netdev_priv(dev);
800         struct i40e_vsi *vsi = np->vsi;
801         struct i40e_ring *ring;
802
803         if (test_bit(__I40E_VSI_DOWN, vsi->state))
804                 return -ENETDOWN;
805
806         if (!i40e_enabled_xdp_vsi(vsi))
807                 return -ENXIO;
808
809         if (queue_id >= vsi->num_queue_pairs)
810                 return -ENXIO;
811
812         if (!vsi->xdp_rings[queue_id]->xsk_umem)
813                 return -ENXIO;
814
815         ring = vsi->xdp_rings[queue_id];
816
817         /* The idea here is that if NAPI is running, mark a miss, so
818          * it will run again. If not, trigger an interrupt and
819          * schedule the NAPI from interrupt context. If NAPI would be
820          * scheduled here, the interrupt affinity would not be
821          * honored.
822          */
823         if (!napi_if_scheduled_mark_missed(&ring->q_vector->napi))
824                 i40e_force_wb(vsi, ring->q_vector);
825
826         return 0;
827 }
828
829 void i40e_xsk_clean_rx_ring(struct i40e_ring *rx_ring)
830 {
831         u16 i;
832
833         for (i = 0; i < rx_ring->count; i++) {
834                 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
835
836                 if (!rx_bi->addr)
837                         continue;
838
839                 xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_bi->handle);
840                 rx_bi->addr = NULL;
841         }
842 }
843
844 /**
845  * i40e_xsk_clean_xdp_ring - Clean the XDP Tx ring on shutdown
846  * @xdp_ring: XDP Tx ring
847  **/
848 void i40e_xsk_clean_tx_ring(struct i40e_ring *tx_ring)
849 {
850         u16 ntc = tx_ring->next_to_clean, ntu = tx_ring->next_to_use;
851         struct xdp_umem *umem = tx_ring->xsk_umem;
852         struct i40e_tx_buffer *tx_bi;
853         u32 xsk_frames = 0;
854
855         while (ntc != ntu) {
856                 tx_bi = &tx_ring->tx_bi[ntc];
857
858                 if (tx_bi->xdpf)
859                         i40e_clean_xdp_tx_buffer(tx_ring, tx_bi);
860                 else
861                         xsk_frames++;
862
863                 tx_bi->xdpf = NULL;
864
865                 ntc++;
866                 if (ntc >= tx_ring->count)
867                         ntc = 0;
868         }
869
870         if (xsk_frames)
871                 xsk_umem_complete_tx(umem, xsk_frames);
872 }
873
874 /**
875  * i40e_xsk_any_rx_ring_enabled - Checks if Rx rings have AF_XDP UMEM attached
876  * @vsi: vsi
877  *
878  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
879  **/
880 bool i40e_xsk_any_rx_ring_enabled(struct i40e_vsi *vsi)
881 {
882         struct net_device *netdev = vsi->netdev;
883         int i;
884
885         for (i = 0; i < vsi->num_queue_pairs; i++) {
886                 if (xdp_get_umem_from_qid(netdev, i))
887                         return true;
888         }
889
890         return false;
891 }