c30d41d6e4260d4830c82ccb1dd6b0bcec3bfa1d
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53
54 #include "e1000.h"
55
56 #define DRV_EXTRAVERSION "-k"
57
58 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
61
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66
67 static const struct e1000_info *e1000_info_tbl[] = {
68         [board_82571]           = &e1000_82571_info,
69         [board_82572]           = &e1000_82572_info,
70         [board_82573]           = &e1000_82573_info,
71         [board_82574]           = &e1000_82574_info,
72         [board_82583]           = &e1000_82583_info,
73         [board_80003es2lan]     = &e1000_es2_info,
74         [board_ich8lan]         = &e1000_ich8_info,
75         [board_ich9lan]         = &e1000_ich9_info,
76         [board_ich10lan]        = &e1000_ich10_info,
77         [board_pchlan]          = &e1000_pch_info,
78         [board_pch2lan]         = &e1000_pch2_info,
79         [board_pch_lpt]         = &e1000_pch_lpt_info,
80 };
81
82 struct e1000_reg_info {
83         u32 ofs;
84         char *name;
85 };
86
87 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
88         /* General Registers */
89         {E1000_CTRL, "CTRL"},
90         {E1000_STATUS, "STATUS"},
91         {E1000_CTRL_EXT, "CTRL_EXT"},
92
93         /* Interrupt Registers */
94         {E1000_ICR, "ICR"},
95
96         /* Rx Registers */
97         {E1000_RCTL, "RCTL"},
98         {E1000_RDLEN(0), "RDLEN"},
99         {E1000_RDH(0), "RDH"},
100         {E1000_RDT(0), "RDT"},
101         {E1000_RDTR, "RDTR"},
102         {E1000_RXDCTL(0), "RXDCTL"},
103         {E1000_ERT, "ERT"},
104         {E1000_RDBAL(0), "RDBAL"},
105         {E1000_RDBAH(0), "RDBAH"},
106         {E1000_RDFH, "RDFH"},
107         {E1000_RDFT, "RDFT"},
108         {E1000_RDFHS, "RDFHS"},
109         {E1000_RDFTS, "RDFTS"},
110         {E1000_RDFPC, "RDFPC"},
111
112         /* Tx Registers */
113         {E1000_TCTL, "TCTL"},
114         {E1000_TDBAL(0), "TDBAL"},
115         {E1000_TDBAH(0), "TDBAH"},
116         {E1000_TDLEN(0), "TDLEN"},
117         {E1000_TDH(0), "TDH"},
118         {E1000_TDT(0), "TDT"},
119         {E1000_TIDV, "TIDV"},
120         {E1000_TXDCTL(0), "TXDCTL"},
121         {E1000_TADV, "TADV"},
122         {E1000_TARC(0), "TARC"},
123         {E1000_TDFH, "TDFH"},
124         {E1000_TDFT, "TDFT"},
125         {E1000_TDFHS, "TDFHS"},
126         {E1000_TDFTS, "TDFTS"},
127         {E1000_TDFPC, "TDFPC"},
128
129         /* List Terminator */
130         {0, NULL}
131 };
132
133 /**
134  * e1000_regdump - register printout routine
135  * @hw: pointer to the HW structure
136  * @reginfo: pointer to the register info table
137  **/
138 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
139 {
140         int n = 0;
141         char rname[16];
142         u32 regs[8];
143
144         switch (reginfo->ofs) {
145         case E1000_RXDCTL(0):
146                 for (n = 0; n < 2; n++)
147                         regs[n] = __er32(hw, E1000_RXDCTL(n));
148                 break;
149         case E1000_TXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_TXDCTL(n));
152                 break;
153         case E1000_TARC(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TARC(n));
156                 break;
157         default:
158                 pr_info("%-15s %08x\n",
159                         reginfo->name, __er32(hw, reginfo->ofs));
160                 return;
161         }
162
163         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
164         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
165 }
166
167 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
168                                  struct e1000_buffer *bi)
169 {
170         int i;
171         struct e1000_ps_page *ps_page;
172
173         for (i = 0; i < adapter->rx_ps_pages; i++) {
174                 ps_page = &bi->ps_pages[i];
175
176                 if (ps_page->page) {
177                         pr_info("packet dump for ps_page %d:\n", i);
178                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
179                                        16, 1, page_address(ps_page->page),
180                                        PAGE_SIZE, true);
181                 }
182         }
183 }
184
185 /**
186  * e1000e_dump - Print registers, Tx-ring and Rx-ring
187  * @adapter: board private structure
188  **/
189 static void e1000e_dump(struct e1000_adapter *adapter)
190 {
191         struct net_device *netdev = adapter->netdev;
192         struct e1000_hw *hw = &adapter->hw;
193         struct e1000_reg_info *reginfo;
194         struct e1000_ring *tx_ring = adapter->tx_ring;
195         struct e1000_tx_desc *tx_desc;
196         struct my_u0 {
197                 __le64 a;
198                 __le64 b;
199         } *u0;
200         struct e1000_buffer *buffer_info;
201         struct e1000_ring *rx_ring = adapter->rx_ring;
202         union e1000_rx_desc_packet_split *rx_desc_ps;
203         union e1000_rx_desc_extended *rx_desc;
204         struct my_u1 {
205                 __le64 a;
206                 __le64 b;
207                 __le64 c;
208                 __le64 d;
209         } *u1;
210         u32 staterr;
211         int i = 0;
212
213         if (!netif_msg_hw(adapter))
214                 return;
215
216         /* Print netdevice Info */
217         if (netdev) {
218                 dev_info(&adapter->pdev->dev, "Net device Info\n");
219                 pr_info("Device Name     state            trans_start      last_rx\n");
220                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
221                         netdev->state, netdev->trans_start, netdev->last_rx);
222         }
223
224         /* Print Registers */
225         dev_info(&adapter->pdev->dev, "Register Dump\n");
226         pr_info(" Register Name   Value\n");
227         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
228              reginfo->name; reginfo++) {
229                 e1000_regdump(hw, reginfo);
230         }
231
232         /* Print Tx Ring Summary */
233         if (!netdev || !netif_running(netdev))
234                 return;
235
236         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
237         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
238         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
239         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
240                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
241                 (unsigned long long)buffer_info->dma,
242                 buffer_info->length,
243                 buffer_info->next_to_watch,
244                 (unsigned long long)buffer_info->time_stamp);
245
246         /* Print Tx Ring */
247         if (!netif_msg_tx_done(adapter))
248                 goto rx_ring_summary;
249
250         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
251
252         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
253          *
254          * Legacy Transmit Descriptor
255          *   +--------------------------------------------------------------+
256          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
257          *   +--------------------------------------------------------------+
258          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
259          *   +--------------------------------------------------------------+
260          *   63       48 47        36 35    32 31     24 23    16 15        0
261          *
262          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
263          *   63      48 47    40 39       32 31             16 15    8 7      0
264          *   +----------------------------------------------------------------+
265          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
266          *   +----------------------------------------------------------------+
267          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
268          *   +----------------------------------------------------------------+
269          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
270          *
271          * Extended Data Descriptor (DTYP=0x1)
272          *   +----------------------------------------------------------------+
273          * 0 |                     Buffer Address [63:0]                      |
274          *   +----------------------------------------------------------------+
275          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
276          *   +----------------------------------------------------------------+
277          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
278          */
279         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
280         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
281         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
282         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
283                 const char *next_desc;
284                 tx_desc = E1000_TX_DESC(*tx_ring, i);
285                 buffer_info = &tx_ring->buffer_info[i];
286                 u0 = (struct my_u0 *)tx_desc;
287                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
288                         next_desc = " NTC/U";
289                 else if (i == tx_ring->next_to_use)
290                         next_desc = " NTU";
291                 else if (i == tx_ring->next_to_clean)
292                         next_desc = " NTC";
293                 else
294                         next_desc = "";
295                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
296                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
297                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
298                         i,
299                         (unsigned long long)le64_to_cpu(u0->a),
300                         (unsigned long long)le64_to_cpu(u0->b),
301                         (unsigned long long)buffer_info->dma,
302                         buffer_info->length, buffer_info->next_to_watch,
303                         (unsigned long long)buffer_info->time_stamp,
304                         buffer_info->skb, next_desc);
305
306                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
307                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
308                                        16, 1, buffer_info->skb->data,
309                                        buffer_info->skb->len, true);
310         }
311
312         /* Print Rx Ring Summary */
313 rx_ring_summary:
314         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
315         pr_info("Queue [NTU] [NTC]\n");
316         pr_info(" %5d %5X %5X\n",
317                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
318
319         /* Print Rx Ring */
320         if (!netif_msg_rx_status(adapter))
321                 return;
322
323         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
324         switch (adapter->rx_ps_pages) {
325         case 1:
326         case 2:
327         case 3:
328                 /* [Extended] Packet Split Receive Descriptor Format
329                  *
330                  *    +-----------------------------------------------------+
331                  *  0 |                Buffer Address 0 [63:0]              |
332                  *    +-----------------------------------------------------+
333                  *  8 |                Buffer Address 1 [63:0]              |
334                  *    +-----------------------------------------------------+
335                  * 16 |                Buffer Address 2 [63:0]              |
336                  *    +-----------------------------------------------------+
337                  * 24 |                Buffer Address 3 [63:0]              |
338                  *    +-----------------------------------------------------+
339                  */
340                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
341                 /* [Extended] Receive Descriptor (Write-Back) Format
342                  *
343                  *   63       48 47    32 31     13 12    8 7    4 3        0
344                  *   +------------------------------------------------------+
345                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
346                  *   | Checksum | Ident  |         | Queue |      |  Type   |
347                  *   +------------------------------------------------------+
348                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
349                  *   +------------------------------------------------------+
350                  *   63       48 47    32 31            20 19               0
351                  */
352                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
353                 for (i = 0; i < rx_ring->count; i++) {
354                         const char *next_desc;
355                         buffer_info = &rx_ring->buffer_info[i];
356                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
357                         u1 = (struct my_u1 *)rx_desc_ps;
358                         staterr =
359                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
360
361                         if (i == rx_ring->next_to_use)
362                                 next_desc = " NTU";
363                         else if (i == rx_ring->next_to_clean)
364                                 next_desc = " NTC";
365                         else
366                                 next_desc = "";
367
368                         if (staterr & E1000_RXD_STAT_DD) {
369                                 /* Descriptor Done */
370                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
371                                         "RWB", i,
372                                         (unsigned long long)le64_to_cpu(u1->a),
373                                         (unsigned long long)le64_to_cpu(u1->b),
374                                         (unsigned long long)le64_to_cpu(u1->c),
375                                         (unsigned long long)le64_to_cpu(u1->d),
376                                         buffer_info->skb, next_desc);
377                         } else {
378                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
379                                         "R  ", i,
380                                         (unsigned long long)le64_to_cpu(u1->a),
381                                         (unsigned long long)le64_to_cpu(u1->b),
382                                         (unsigned long long)le64_to_cpu(u1->c),
383                                         (unsigned long long)le64_to_cpu(u1->d),
384                                         (unsigned long long)buffer_info->dma,
385                                         buffer_info->skb, next_desc);
386
387                                 if (netif_msg_pktdata(adapter))
388                                         e1000e_dump_ps_pages(adapter,
389                                                              buffer_info);
390                         }
391                 }
392                 break;
393         default:
394         case 0:
395                 /* Extended Receive Descriptor (Read) Format
396                  *
397                  *   +-----------------------------------------------------+
398                  * 0 |                Buffer Address [63:0]                |
399                  *   +-----------------------------------------------------+
400                  * 8 |                      Reserved                       |
401                  *   +-----------------------------------------------------+
402                  */
403                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
404                 /* Extended Receive Descriptor (Write-Back) Format
405                  *
406                  *   63       48 47    32 31    24 23            4 3        0
407                  *   +------------------------------------------------------+
408                  *   |     RSS Hash      |        |               |         |
409                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
410                  *   | Packet   | IP     |        |               |  Type   |
411                  *   | Checksum | Ident  |        |               |         |
412                  *   +------------------------------------------------------+
413                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
414                  *   +------------------------------------------------------+
415                  *   63       48 47    32 31            20 19               0
416                  */
417                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
418
419                 for (i = 0; i < rx_ring->count; i++) {
420                         const char *next_desc;
421
422                         buffer_info = &rx_ring->buffer_info[i];
423                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
424                         u1 = (struct my_u1 *)rx_desc;
425                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
426
427                         if (i == rx_ring->next_to_use)
428                                 next_desc = " NTU";
429                         else if (i == rx_ring->next_to_clean)
430                                 next_desc = " NTC";
431                         else
432                                 next_desc = "";
433
434                         if (staterr & E1000_RXD_STAT_DD) {
435                                 /* Descriptor Done */
436                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
437                                         "RWB", i,
438                                         (unsigned long long)le64_to_cpu(u1->a),
439                                         (unsigned long long)le64_to_cpu(u1->b),
440                                         buffer_info->skb, next_desc);
441                         } else {
442                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
443                                         "R  ", i,
444                                         (unsigned long long)le64_to_cpu(u1->a),
445                                         (unsigned long long)le64_to_cpu(u1->b),
446                                         (unsigned long long)buffer_info->dma,
447                                         buffer_info->skb, next_desc);
448
449                                 if (netif_msg_pktdata(adapter) &&
450                                     buffer_info->skb)
451                                         print_hex_dump(KERN_INFO, "",
452                                                        DUMP_PREFIX_ADDRESS, 16,
453                                                        1,
454                                                        buffer_info->skb->data,
455                                                        adapter->rx_buffer_len,
456                                                        true);
457                         }
458                 }
459         }
460 }
461
462 /**
463  * e1000_desc_unused - calculate if we have unused descriptors
464  **/
465 static int e1000_desc_unused(struct e1000_ring *ring)
466 {
467         if (ring->next_to_clean > ring->next_to_use)
468                 return ring->next_to_clean - ring->next_to_use - 1;
469
470         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
471 }
472
473 /**
474  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
475  * @adapter: board private structure
476  * @hwtstamps: time stamp structure to update
477  * @systim: unsigned 64bit system time value.
478  *
479  * Convert the system time value stored in the RX/TXSTMP registers into a
480  * hwtstamp which can be used by the upper level time stamping functions.
481  *
482  * The 'systim_lock' spinlock is used to protect the consistency of the
483  * system time value. This is needed because reading the 64 bit time
484  * value involves reading two 32 bit registers. The first read latches the
485  * value.
486  **/
487 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
488                                       struct skb_shared_hwtstamps *hwtstamps,
489                                       u64 systim)
490 {
491         u64 ns;
492         unsigned long flags;
493
494         spin_lock_irqsave(&adapter->systim_lock, flags);
495         ns = timecounter_cyc2time(&adapter->tc, systim);
496         spin_unlock_irqrestore(&adapter->systim_lock, flags);
497
498         memset(hwtstamps, 0, sizeof(*hwtstamps));
499         hwtstamps->hwtstamp = ns_to_ktime(ns);
500 }
501
502 /**
503  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
504  * @adapter: board private structure
505  * @status: descriptor extended error and status field
506  * @skb: particular skb to include time stamp
507  *
508  * If the time stamp is valid, convert it into the timecounter ns value
509  * and store that result into the shhwtstamps structure which is passed
510  * up the network stack.
511  **/
512 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
513                                struct sk_buff *skb)
514 {
515         struct e1000_hw *hw = &adapter->hw;
516         u64 rxstmp;
517
518         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
519             !(status & E1000_RXDEXT_STATERR_TST) ||
520             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
521                 return;
522
523         /* The Rx time stamp registers contain the time stamp.  No other
524          * received packet will be time stamped until the Rx time stamp
525          * registers are read.  Because only one packet can be time stamped
526          * at a time, the register values must belong to this packet and
527          * therefore none of the other additional attributes need to be
528          * compared.
529          */
530         rxstmp = (u64)er32(RXSTMPL);
531         rxstmp |= (u64)er32(RXSTMPH) << 32;
532         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
533
534         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
535 }
536
537 /**
538  * e1000_receive_skb - helper function to handle Rx indications
539  * @adapter: board private structure
540  * @staterr: descriptor extended error and status field as written by hardware
541  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
542  * @skb: pointer to sk_buff to be indicated to stack
543  **/
544 static void e1000_receive_skb(struct e1000_adapter *adapter,
545                               struct net_device *netdev, struct sk_buff *skb,
546                               u32 staterr, __le16 vlan)
547 {
548         u16 tag = le16_to_cpu(vlan);
549
550         e1000e_rx_hwtstamp(adapter, staterr, skb);
551
552         skb->protocol = eth_type_trans(skb, netdev);
553
554         if (staterr & E1000_RXD_STAT_VP)
555                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
556
557         napi_gro_receive(&adapter->napi, skb);
558 }
559
560 /**
561  * e1000_rx_checksum - Receive Checksum Offload
562  * @adapter: board private structure
563  * @status_err: receive descriptor status and error fields
564  * @csum: receive descriptor csum field
565  * @sk_buff: socket buffer with received data
566  **/
567 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
568                               struct sk_buff *skb)
569 {
570         u16 status = (u16)status_err;
571         u8 errors = (u8)(status_err >> 24);
572
573         skb_checksum_none_assert(skb);
574
575         /* Rx checksum disabled */
576         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
577                 return;
578
579         /* Ignore Checksum bit is set */
580         if (status & E1000_RXD_STAT_IXSM)
581                 return;
582
583         /* TCP/UDP checksum error bit or IP checksum error bit is set */
584         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
585                 /* let the stack verify checksum errors */
586                 adapter->hw_csum_err++;
587                 return;
588         }
589
590         /* TCP/UDP Checksum has not been calculated */
591         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
592                 return;
593
594         /* It must be a TCP or UDP packet with a valid checksum */
595         skb->ip_summed = CHECKSUM_UNNECESSARY;
596         adapter->hw_csum_good++;
597 }
598
599 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
600 {
601         struct e1000_adapter *adapter = rx_ring->adapter;
602         struct e1000_hw *hw = &adapter->hw;
603         s32 ret_val = __ew32_prepare(hw);
604
605         writel(i, rx_ring->tail);
606
607         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
608                 u32 rctl = er32(RCTL);
609                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
610                 e_err("ME firmware caused invalid RDT - resetting\n");
611                 schedule_work(&adapter->reset_task);
612         }
613 }
614
615 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
616 {
617         struct e1000_adapter *adapter = tx_ring->adapter;
618         struct e1000_hw *hw = &adapter->hw;
619         s32 ret_val = __ew32_prepare(hw);
620
621         writel(i, tx_ring->tail);
622
623         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
624                 u32 tctl = er32(TCTL);
625                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
626                 e_err("ME firmware caused invalid TDT - resetting\n");
627                 schedule_work(&adapter->reset_task);
628         }
629 }
630
631 /**
632  * e1000_alloc_rx_buffers - Replace used receive buffers
633  * @rx_ring: Rx descriptor ring
634  **/
635 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
636                                    int cleaned_count, gfp_t gfp)
637 {
638         struct e1000_adapter *adapter = rx_ring->adapter;
639         struct net_device *netdev = adapter->netdev;
640         struct pci_dev *pdev = adapter->pdev;
641         union e1000_rx_desc_extended *rx_desc;
642         struct e1000_buffer *buffer_info;
643         struct sk_buff *skb;
644         unsigned int i;
645         unsigned int bufsz = adapter->rx_buffer_len;
646
647         i = rx_ring->next_to_use;
648         buffer_info = &rx_ring->buffer_info[i];
649
650         while (cleaned_count--) {
651                 skb = buffer_info->skb;
652                 if (skb) {
653                         skb_trim(skb, 0);
654                         goto map_skb;
655                 }
656
657                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
658                 if (!skb) {
659                         /* Better luck next round */
660                         adapter->alloc_rx_buff_failed++;
661                         break;
662                 }
663
664                 buffer_info->skb = skb;
665 map_skb:
666                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
667                                                   adapter->rx_buffer_len,
668                                                   DMA_FROM_DEVICE);
669                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
670                         dev_err(&pdev->dev, "Rx DMA map failed\n");
671                         adapter->rx_dma_failed++;
672                         break;
673                 }
674
675                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
676                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
677
678                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
679                         /* Force memory writes to complete before letting h/w
680                          * know there are new descriptors to fetch.  (Only
681                          * applicable for weak-ordered memory model archs,
682                          * such as IA-64).
683                          */
684                         wmb();
685                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
686                                 e1000e_update_rdt_wa(rx_ring, i);
687                         else
688                                 writel(i, rx_ring->tail);
689                 }
690                 i++;
691                 if (i == rx_ring->count)
692                         i = 0;
693                 buffer_info = &rx_ring->buffer_info[i];
694         }
695
696         rx_ring->next_to_use = i;
697 }
698
699 /**
700  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
701  * @rx_ring: Rx descriptor ring
702  **/
703 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
704                                       int cleaned_count, gfp_t gfp)
705 {
706         struct e1000_adapter *adapter = rx_ring->adapter;
707         struct net_device *netdev = adapter->netdev;
708         struct pci_dev *pdev = adapter->pdev;
709         union e1000_rx_desc_packet_split *rx_desc;
710         struct e1000_buffer *buffer_info;
711         struct e1000_ps_page *ps_page;
712         struct sk_buff *skb;
713         unsigned int i, j;
714
715         i = rx_ring->next_to_use;
716         buffer_info = &rx_ring->buffer_info[i];
717
718         while (cleaned_count--) {
719                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
720
721                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
722                         ps_page = &buffer_info->ps_pages[j];
723                         if (j >= adapter->rx_ps_pages) {
724                                 /* all unused desc entries get hw null ptr */
725                                 rx_desc->read.buffer_addr[j + 1] =
726                                     ~cpu_to_le64(0);
727                                 continue;
728                         }
729                         if (!ps_page->page) {
730                                 ps_page->page = alloc_page(gfp);
731                                 if (!ps_page->page) {
732                                         adapter->alloc_rx_buff_failed++;
733                                         goto no_buffers;
734                                 }
735                                 ps_page->dma = dma_map_page(&pdev->dev,
736                                                             ps_page->page,
737                                                             0, PAGE_SIZE,
738                                                             DMA_FROM_DEVICE);
739                                 if (dma_mapping_error(&pdev->dev,
740                                                       ps_page->dma)) {
741                                         dev_err(&adapter->pdev->dev,
742                                                 "Rx DMA page map failed\n");
743                                         adapter->rx_dma_failed++;
744                                         goto no_buffers;
745                                 }
746                         }
747                         /* Refresh the desc even if buffer_addrs
748                          * didn't change because each write-back
749                          * erases this info.
750                          */
751                         rx_desc->read.buffer_addr[j + 1] =
752                             cpu_to_le64(ps_page->dma);
753                 }
754
755                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
756                                                   gfp);
757
758                 if (!skb) {
759                         adapter->alloc_rx_buff_failed++;
760                         break;
761                 }
762
763                 buffer_info->skb = skb;
764                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
765                                                   adapter->rx_ps_bsize0,
766                                                   DMA_FROM_DEVICE);
767                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
768                         dev_err(&pdev->dev, "Rx DMA map failed\n");
769                         adapter->rx_dma_failed++;
770                         /* cleanup skb */
771                         dev_kfree_skb_any(skb);
772                         buffer_info->skb = NULL;
773                         break;
774                 }
775
776                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
777
778                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
779                         /* Force memory writes to complete before letting h/w
780                          * know there are new descriptors to fetch.  (Only
781                          * applicable for weak-ordered memory model archs,
782                          * such as IA-64).
783                          */
784                         wmb();
785                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
786                                 e1000e_update_rdt_wa(rx_ring, i << 1);
787                         else
788                                 writel(i << 1, rx_ring->tail);
789                 }
790
791                 i++;
792                 if (i == rx_ring->count)
793                         i = 0;
794                 buffer_info = &rx_ring->buffer_info[i];
795         }
796
797 no_buffers:
798         rx_ring->next_to_use = i;
799 }
800
801 /**
802  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
803  * @rx_ring: Rx descriptor ring
804  * @cleaned_count: number of buffers to allocate this pass
805  **/
806
807 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
808                                          int cleaned_count, gfp_t gfp)
809 {
810         struct e1000_adapter *adapter = rx_ring->adapter;
811         struct net_device *netdev = adapter->netdev;
812         struct pci_dev *pdev = adapter->pdev;
813         union e1000_rx_desc_extended *rx_desc;
814         struct e1000_buffer *buffer_info;
815         struct sk_buff *skb;
816         unsigned int i;
817         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
818
819         i = rx_ring->next_to_use;
820         buffer_info = &rx_ring->buffer_info[i];
821
822         while (cleaned_count--) {
823                 skb = buffer_info->skb;
824                 if (skb) {
825                         skb_trim(skb, 0);
826                         goto check_page;
827                 }
828
829                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
830                 if (unlikely(!skb)) {
831                         /* Better luck next round */
832                         adapter->alloc_rx_buff_failed++;
833                         break;
834                 }
835
836                 buffer_info->skb = skb;
837 check_page:
838                 /* allocate a new page if necessary */
839                 if (!buffer_info->page) {
840                         buffer_info->page = alloc_page(gfp);
841                         if (unlikely(!buffer_info->page)) {
842                                 adapter->alloc_rx_buff_failed++;
843                                 break;
844                         }
845                 }
846
847                 if (!buffer_info->dma) {
848                         buffer_info->dma = dma_map_page(&pdev->dev,
849                                                         buffer_info->page, 0,
850                                                         PAGE_SIZE,
851                                                         DMA_FROM_DEVICE);
852                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
853                                 adapter->alloc_rx_buff_failed++;
854                                 break;
855                         }
856                 }
857
858                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
859                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
860
861                 if (unlikely(++i == rx_ring->count))
862                         i = 0;
863                 buffer_info = &rx_ring->buffer_info[i];
864         }
865
866         if (likely(rx_ring->next_to_use != i)) {
867                 rx_ring->next_to_use = i;
868                 if (unlikely(i-- == 0))
869                         i = (rx_ring->count - 1);
870
871                 /* Force memory writes to complete before letting h/w
872                  * know there are new descriptors to fetch.  (Only
873                  * applicable for weak-ordered memory model archs,
874                  * such as IA-64).
875                  */
876                 wmb();
877                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
878                         e1000e_update_rdt_wa(rx_ring, i);
879                 else
880                         writel(i, rx_ring->tail);
881         }
882 }
883
884 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
885                                  struct sk_buff *skb)
886 {
887         if (netdev->features & NETIF_F_RXHASH)
888                 skb->rxhash = le32_to_cpu(rss);
889 }
890
891 /**
892  * e1000_clean_rx_irq - Send received data up the network stack
893  * @rx_ring: Rx descriptor ring
894  *
895  * the return value indicates whether actual cleaning was done, there
896  * is no guarantee that everything was cleaned
897  **/
898 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
899                                int work_to_do)
900 {
901         struct e1000_adapter *adapter = rx_ring->adapter;
902         struct net_device *netdev = adapter->netdev;
903         struct pci_dev *pdev = adapter->pdev;
904         struct e1000_hw *hw = &adapter->hw;
905         union e1000_rx_desc_extended *rx_desc, *next_rxd;
906         struct e1000_buffer *buffer_info, *next_buffer;
907         u32 length, staterr;
908         unsigned int i;
909         int cleaned_count = 0;
910         bool cleaned = false;
911         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
912
913         i = rx_ring->next_to_clean;
914         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
915         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
916         buffer_info = &rx_ring->buffer_info[i];
917
918         while (staterr & E1000_RXD_STAT_DD) {
919                 struct sk_buff *skb;
920
921                 if (*work_done >= work_to_do)
922                         break;
923                 (*work_done)++;
924                 rmb();  /* read descriptor and rx_buffer_info after status DD */
925
926                 skb = buffer_info->skb;
927                 buffer_info->skb = NULL;
928
929                 prefetch(skb->data - NET_IP_ALIGN);
930
931                 i++;
932                 if (i == rx_ring->count)
933                         i = 0;
934                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
935                 prefetch(next_rxd);
936
937                 next_buffer = &rx_ring->buffer_info[i];
938
939                 cleaned = true;
940                 cleaned_count++;
941                 dma_unmap_single(&pdev->dev, buffer_info->dma,
942                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
943                 buffer_info->dma = 0;
944
945                 length = le16_to_cpu(rx_desc->wb.upper.length);
946
947                 /* !EOP means multiple descriptors were used to store a single
948                  * packet, if that's the case we need to toss it.  In fact, we
949                  * need to toss every packet with the EOP bit clear and the
950                  * next frame that _does_ have the EOP bit set, as it is by
951                  * definition only a frame fragment
952                  */
953                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
954                         adapter->flags2 |= FLAG2_IS_DISCARDING;
955
956                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
957                         /* All receives must fit into a single buffer */
958                         e_dbg("Receive packet consumed multiple buffers\n");
959                         /* recycle */
960                         buffer_info->skb = skb;
961                         if (staterr & E1000_RXD_STAT_EOP)
962                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
963                         goto next_desc;
964                 }
965
966                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
967                              !(netdev->features & NETIF_F_RXALL))) {
968                         /* recycle */
969                         buffer_info->skb = skb;
970                         goto next_desc;
971                 }
972
973                 /* adjust length to remove Ethernet CRC */
974                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
975                         /* If configured to store CRC, don't subtract FCS,
976                          * but keep the FCS bytes out of the total_rx_bytes
977                          * counter
978                          */
979                         if (netdev->features & NETIF_F_RXFCS)
980                                 total_rx_bytes -= 4;
981                         else
982                                 length -= 4;
983                 }
984
985                 total_rx_bytes += length;
986                 total_rx_packets++;
987
988                 /* code added for copybreak, this should improve
989                  * performance for small packets with large amounts
990                  * of reassembly being done in the stack
991                  */
992                 if (length < copybreak) {
993                         struct sk_buff *new_skb =
994                             netdev_alloc_skb_ip_align(netdev, length);
995                         if (new_skb) {
996                                 skb_copy_to_linear_data_offset(new_skb,
997                                                                -NET_IP_ALIGN,
998                                                                (skb->data -
999                                                                 NET_IP_ALIGN),
1000                                                                (length +
1001                                                                 NET_IP_ALIGN));
1002                                 /* save the skb in buffer_info as good */
1003                                 buffer_info->skb = skb;
1004                                 skb = new_skb;
1005                         }
1006                         /* else just continue with the old one */
1007                 }
1008                 /* end copybreak code */
1009                 skb_put(skb, length);
1010
1011                 /* Receive Checksum Offload */
1012                 e1000_rx_checksum(adapter, staterr, skb);
1013
1014                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1015
1016                 e1000_receive_skb(adapter, netdev, skb, staterr,
1017                                   rx_desc->wb.upper.vlan);
1018
1019 next_desc:
1020                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1021
1022                 /* return some buffers to hardware, one at a time is too slow */
1023                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1024                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1025                                               GFP_ATOMIC);
1026                         cleaned_count = 0;
1027                 }
1028
1029                 /* use prefetched values */
1030                 rx_desc = next_rxd;
1031                 buffer_info = next_buffer;
1032
1033                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1034         }
1035         rx_ring->next_to_clean = i;
1036
1037         cleaned_count = e1000_desc_unused(rx_ring);
1038         if (cleaned_count)
1039                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1040
1041         adapter->total_rx_bytes += total_rx_bytes;
1042         adapter->total_rx_packets += total_rx_packets;
1043         return cleaned;
1044 }
1045
1046 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1047                             struct e1000_buffer *buffer_info)
1048 {
1049         struct e1000_adapter *adapter = tx_ring->adapter;
1050
1051         if (buffer_info->dma) {
1052                 if (buffer_info->mapped_as_page)
1053                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1054                                        buffer_info->length, DMA_TO_DEVICE);
1055                 else
1056                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1057                                          buffer_info->length, DMA_TO_DEVICE);
1058                 buffer_info->dma = 0;
1059         }
1060         if (buffer_info->skb) {
1061                 dev_kfree_skb_any(buffer_info->skb);
1062                 buffer_info->skb = NULL;
1063         }
1064         buffer_info->time_stamp = 0;
1065 }
1066
1067 static void e1000_print_hw_hang(struct work_struct *work)
1068 {
1069         struct e1000_adapter *adapter = container_of(work,
1070                                                      struct e1000_adapter,
1071                                                      print_hang_task);
1072         struct net_device *netdev = adapter->netdev;
1073         struct e1000_ring *tx_ring = adapter->tx_ring;
1074         unsigned int i = tx_ring->next_to_clean;
1075         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1076         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1077         struct e1000_hw *hw = &adapter->hw;
1078         u16 phy_status, phy_1000t_status, phy_ext_status;
1079         u16 pci_status;
1080
1081         if (test_bit(__E1000_DOWN, &adapter->state))
1082                 return;
1083
1084         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1085                 /* May be block on write-back, flush and detect again
1086                  * flush pending descriptor writebacks to memory
1087                  */
1088                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1089                 /* execute the writes immediately */
1090                 e1e_flush();
1091                 /* Due to rare timing issues, write to TIDV again to ensure
1092                  * the write is successful
1093                  */
1094                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1095                 /* execute the writes immediately */
1096                 e1e_flush();
1097                 adapter->tx_hang_recheck = true;
1098                 return;
1099         }
1100         /* Real hang detected */
1101         adapter->tx_hang_recheck = false;
1102         netif_stop_queue(netdev);
1103
1104         e1e_rphy(hw, MII_BMSR, &phy_status);
1105         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1106         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1107
1108         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1109
1110         /* detected Hardware unit hang */
1111         e_err("Detected Hardware Unit Hang:\n"
1112               "  TDH                  <%x>\n"
1113               "  TDT                  <%x>\n"
1114               "  next_to_use          <%x>\n"
1115               "  next_to_clean        <%x>\n"
1116               "buffer_info[next_to_clean]:\n"
1117               "  time_stamp           <%lx>\n"
1118               "  next_to_watch        <%x>\n"
1119               "  jiffies              <%lx>\n"
1120               "  next_to_watch.status <%x>\n"
1121               "MAC Status             <%x>\n"
1122               "PHY Status             <%x>\n"
1123               "PHY 1000BASE-T Status  <%x>\n"
1124               "PHY Extended Status    <%x>\n"
1125               "PCI Status             <%x>\n",
1126               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1127               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1128               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1129               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1130
1131         /* Suggest workaround for known h/w issue */
1132         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1133                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1134 }
1135
1136 /**
1137  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1138  * @work: pointer to work struct
1139  *
1140  * This work function polls the TSYNCTXCTL valid bit to determine when a
1141  * timestamp has been taken for the current stored skb.  The timestamp must
1142  * be for this skb because only one such packet is allowed in the queue.
1143  */
1144 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1145 {
1146         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1147                                                      tx_hwtstamp_work);
1148         struct e1000_hw *hw = &adapter->hw;
1149
1150         if (!adapter->tx_hwtstamp_skb)
1151                 return;
1152
1153         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1154                 struct skb_shared_hwtstamps shhwtstamps;
1155                 u64 txstmp;
1156
1157                 txstmp = er32(TXSTMPL);
1158                 txstmp |= (u64)er32(TXSTMPH) << 32;
1159
1160                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1161
1162                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1163                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1164                 adapter->tx_hwtstamp_skb = NULL;
1165         } else {
1166                 /* reschedule to check later */
1167                 schedule_work(&adapter->tx_hwtstamp_work);
1168         }
1169 }
1170
1171 /**
1172  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1173  * @tx_ring: Tx descriptor ring
1174  *
1175  * the return value indicates whether actual cleaning was done, there
1176  * is no guarantee that everything was cleaned
1177  **/
1178 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1179 {
1180         struct e1000_adapter *adapter = tx_ring->adapter;
1181         struct net_device *netdev = adapter->netdev;
1182         struct e1000_hw *hw = &adapter->hw;
1183         struct e1000_tx_desc *tx_desc, *eop_desc;
1184         struct e1000_buffer *buffer_info;
1185         unsigned int i, eop;
1186         unsigned int count = 0;
1187         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1188         unsigned int bytes_compl = 0, pkts_compl = 0;
1189
1190         i = tx_ring->next_to_clean;
1191         eop = tx_ring->buffer_info[i].next_to_watch;
1192         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1193
1194         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1195                (count < tx_ring->count)) {
1196                 bool cleaned = false;
1197                 rmb();          /* read buffer_info after eop_desc */
1198                 for (; !cleaned; count++) {
1199                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1200                         buffer_info = &tx_ring->buffer_info[i];
1201                         cleaned = (i == eop);
1202
1203                         if (cleaned) {
1204                                 total_tx_packets += buffer_info->segs;
1205                                 total_tx_bytes += buffer_info->bytecount;
1206                                 if (buffer_info->skb) {
1207                                         bytes_compl += buffer_info->skb->len;
1208                                         pkts_compl++;
1209                                 }
1210                         }
1211
1212                         e1000_put_txbuf(tx_ring, buffer_info);
1213                         tx_desc->upper.data = 0;
1214
1215                         i++;
1216                         if (i == tx_ring->count)
1217                                 i = 0;
1218                 }
1219
1220                 if (i == tx_ring->next_to_use)
1221                         break;
1222                 eop = tx_ring->buffer_info[i].next_to_watch;
1223                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1224         }
1225
1226         tx_ring->next_to_clean = i;
1227
1228         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1229
1230 #define TX_WAKE_THRESHOLD 32
1231         if (count && netif_carrier_ok(netdev) &&
1232             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1233                 /* Make sure that anybody stopping the queue after this
1234                  * sees the new next_to_clean.
1235                  */
1236                 smp_mb();
1237
1238                 if (netif_queue_stopped(netdev) &&
1239                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1240                         netif_wake_queue(netdev);
1241                         ++adapter->restart_queue;
1242                 }
1243         }
1244
1245         if (adapter->detect_tx_hung) {
1246                 /* Detect a transmit hang in hardware, this serializes the
1247                  * check with the clearing of time_stamp and movement of i
1248                  */
1249                 adapter->detect_tx_hung = false;
1250                 if (tx_ring->buffer_info[i].time_stamp &&
1251                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1252                                + (adapter->tx_timeout_factor * HZ)) &&
1253                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1254                         schedule_work(&adapter->print_hang_task);
1255                 else
1256                         adapter->tx_hang_recheck = false;
1257         }
1258         adapter->total_tx_bytes += total_tx_bytes;
1259         adapter->total_tx_packets += total_tx_packets;
1260         return count < tx_ring->count;
1261 }
1262
1263 /**
1264  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1265  * @rx_ring: Rx descriptor ring
1266  *
1267  * the return value indicates whether actual cleaning was done, there
1268  * is no guarantee that everything was cleaned
1269  **/
1270 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1271                                   int work_to_do)
1272 {
1273         struct e1000_adapter *adapter = rx_ring->adapter;
1274         struct e1000_hw *hw = &adapter->hw;
1275         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1276         struct net_device *netdev = adapter->netdev;
1277         struct pci_dev *pdev = adapter->pdev;
1278         struct e1000_buffer *buffer_info, *next_buffer;
1279         struct e1000_ps_page *ps_page;
1280         struct sk_buff *skb;
1281         unsigned int i, j;
1282         u32 length, staterr;
1283         int cleaned_count = 0;
1284         bool cleaned = false;
1285         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1286
1287         i = rx_ring->next_to_clean;
1288         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1289         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1290         buffer_info = &rx_ring->buffer_info[i];
1291
1292         while (staterr & E1000_RXD_STAT_DD) {
1293                 if (*work_done >= work_to_do)
1294                         break;
1295                 (*work_done)++;
1296                 skb = buffer_info->skb;
1297                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1298
1299                 /* in the packet split case this is header only */
1300                 prefetch(skb->data - NET_IP_ALIGN);
1301
1302                 i++;
1303                 if (i == rx_ring->count)
1304                         i = 0;
1305                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1306                 prefetch(next_rxd);
1307
1308                 next_buffer = &rx_ring->buffer_info[i];
1309
1310                 cleaned = true;
1311                 cleaned_count++;
1312                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1313                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1314                 buffer_info->dma = 0;
1315
1316                 /* see !EOP comment in other Rx routine */
1317                 if (!(staterr & E1000_RXD_STAT_EOP))
1318                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1319
1320                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1321                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1322                         dev_kfree_skb_irq(skb);
1323                         if (staterr & E1000_RXD_STAT_EOP)
1324                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1325                         goto next_desc;
1326                 }
1327
1328                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1329                              !(netdev->features & NETIF_F_RXALL))) {
1330                         dev_kfree_skb_irq(skb);
1331                         goto next_desc;
1332                 }
1333
1334                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1335
1336                 if (!length) {
1337                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1338                         dev_kfree_skb_irq(skb);
1339                         goto next_desc;
1340                 }
1341
1342                 /* Good Receive */
1343                 skb_put(skb, length);
1344
1345                 {
1346                         /* this looks ugly, but it seems compiler issues make
1347                          * it more efficient than reusing j
1348                          */
1349                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1350
1351                         /* page alloc/put takes too long and effects small
1352                          * packet throughput, so unsplit small packets and
1353                          * save the alloc/put only valid in softirq (napi)
1354                          * context to call kmap_*
1355                          */
1356                         if (l1 && (l1 <= copybreak) &&
1357                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1358                                 u8 *vaddr;
1359
1360                                 ps_page = &buffer_info->ps_pages[0];
1361
1362                                 /* there is no documentation about how to call
1363                                  * kmap_atomic, so we can't hold the mapping
1364                                  * very long
1365                                  */
1366                                 dma_sync_single_for_cpu(&pdev->dev,
1367                                                         ps_page->dma,
1368                                                         PAGE_SIZE,
1369                                                         DMA_FROM_DEVICE);
1370                                 vaddr = kmap_atomic(ps_page->page);
1371                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1372                                 kunmap_atomic(vaddr);
1373                                 dma_sync_single_for_device(&pdev->dev,
1374                                                            ps_page->dma,
1375                                                            PAGE_SIZE,
1376                                                            DMA_FROM_DEVICE);
1377
1378                                 /* remove the CRC */
1379                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1380                                         if (!(netdev->features & NETIF_F_RXFCS))
1381                                                 l1 -= 4;
1382                                 }
1383
1384                                 skb_put(skb, l1);
1385                                 goto copydone;
1386                         }       /* if */
1387                 }
1388
1389                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1390                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1391                         if (!length)
1392                                 break;
1393
1394                         ps_page = &buffer_info->ps_pages[j];
1395                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1396                                        DMA_FROM_DEVICE);
1397                         ps_page->dma = 0;
1398                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1399                         ps_page->page = NULL;
1400                         skb->len += length;
1401                         skb->data_len += length;
1402                         skb->truesize += PAGE_SIZE;
1403                 }
1404
1405                 /* strip the ethernet crc, problem is we're using pages now so
1406                  * this whole operation can get a little cpu intensive
1407                  */
1408                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1409                         if (!(netdev->features & NETIF_F_RXFCS))
1410                                 pskb_trim(skb, skb->len - 4);
1411                 }
1412
1413 copydone:
1414                 total_rx_bytes += skb->len;
1415                 total_rx_packets++;
1416
1417                 e1000_rx_checksum(adapter, staterr, skb);
1418
1419                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1420
1421                 if (rx_desc->wb.upper.header_status &
1422                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1423                         adapter->rx_hdr_split++;
1424
1425                 e1000_receive_skb(adapter, netdev, skb, staterr,
1426                                   rx_desc->wb.middle.vlan);
1427
1428 next_desc:
1429                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1430                 buffer_info->skb = NULL;
1431
1432                 /* return some buffers to hardware, one at a time is too slow */
1433                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1434                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1435                                               GFP_ATOMIC);
1436                         cleaned_count = 0;
1437                 }
1438
1439                 /* use prefetched values */
1440                 rx_desc = next_rxd;
1441                 buffer_info = next_buffer;
1442
1443                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1444         }
1445         rx_ring->next_to_clean = i;
1446
1447         cleaned_count = e1000_desc_unused(rx_ring);
1448         if (cleaned_count)
1449                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1450
1451         adapter->total_rx_bytes += total_rx_bytes;
1452         adapter->total_rx_packets += total_rx_packets;
1453         return cleaned;
1454 }
1455
1456 /**
1457  * e1000_consume_page - helper function
1458  **/
1459 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1460                                u16 length)
1461 {
1462         bi->page = NULL;
1463         skb->len += length;
1464         skb->data_len += length;
1465         skb->truesize += PAGE_SIZE;
1466 }
1467
1468 /**
1469  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1470  * @adapter: board private structure
1471  *
1472  * the return value indicates whether actual cleaning was done, there
1473  * is no guarantee that everything was cleaned
1474  **/
1475 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1476                                      int work_to_do)
1477 {
1478         struct e1000_adapter *adapter = rx_ring->adapter;
1479         struct net_device *netdev = adapter->netdev;
1480         struct pci_dev *pdev = adapter->pdev;
1481         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1482         struct e1000_buffer *buffer_info, *next_buffer;
1483         u32 length, staterr;
1484         unsigned int i;
1485         int cleaned_count = 0;
1486         bool cleaned = false;
1487         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1488         struct skb_shared_info *shinfo;
1489
1490         i = rx_ring->next_to_clean;
1491         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1492         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1493         buffer_info = &rx_ring->buffer_info[i];
1494
1495         while (staterr & E1000_RXD_STAT_DD) {
1496                 struct sk_buff *skb;
1497
1498                 if (*work_done >= work_to_do)
1499                         break;
1500                 (*work_done)++;
1501                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1502
1503                 skb = buffer_info->skb;
1504                 buffer_info->skb = NULL;
1505
1506                 ++i;
1507                 if (i == rx_ring->count)
1508                         i = 0;
1509                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1510                 prefetch(next_rxd);
1511
1512                 next_buffer = &rx_ring->buffer_info[i];
1513
1514                 cleaned = true;
1515                 cleaned_count++;
1516                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1517                                DMA_FROM_DEVICE);
1518                 buffer_info->dma = 0;
1519
1520                 length = le16_to_cpu(rx_desc->wb.upper.length);
1521
1522                 /* errors is only valid for DD + EOP descriptors */
1523                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1524                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1525                               !(netdev->features & NETIF_F_RXALL)))) {
1526                         /* recycle both page and skb */
1527                         buffer_info->skb = skb;
1528                         /* an error means any chain goes out the window too */
1529                         if (rx_ring->rx_skb_top)
1530                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1531                         rx_ring->rx_skb_top = NULL;
1532                         goto next_desc;
1533                 }
1534 #define rxtop (rx_ring->rx_skb_top)
1535                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1536                         /* this descriptor is only the beginning (or middle) */
1537                         if (!rxtop) {
1538                                 /* this is the beginning of a chain */
1539                                 rxtop = skb;
1540                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1541                                                    0, length);
1542                         } else {
1543                                 /* this is the middle of a chain */
1544                                 shinfo = skb_shinfo(rxtop);
1545                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1546                                                    buffer_info->page, 0,
1547                                                    length);
1548                                 /* re-use the skb, only consumed the page */
1549                                 buffer_info->skb = skb;
1550                         }
1551                         e1000_consume_page(buffer_info, rxtop, length);
1552                         goto next_desc;
1553                 } else {
1554                         if (rxtop) {
1555                                 /* end of the chain */
1556                                 shinfo = skb_shinfo(rxtop);
1557                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1558                                                    buffer_info->page, 0,
1559                                                    length);
1560                                 /* re-use the current skb, we only consumed the
1561                                  * page
1562                                  */
1563                                 buffer_info->skb = skb;
1564                                 skb = rxtop;
1565                                 rxtop = NULL;
1566                                 e1000_consume_page(buffer_info, skb, length);
1567                         } else {
1568                                 /* no chain, got EOP, this buf is the packet
1569                                  * copybreak to save the put_page/alloc_page
1570                                  */
1571                                 if (length <= copybreak &&
1572                                     skb_tailroom(skb) >= length) {
1573                                         u8 *vaddr;
1574                                         vaddr = kmap_atomic(buffer_info->page);
1575                                         memcpy(skb_tail_pointer(skb), vaddr,
1576                                                length);
1577                                         kunmap_atomic(vaddr);
1578                                         /* re-use the page, so don't erase
1579                                          * buffer_info->page
1580                                          */
1581                                         skb_put(skb, length);
1582                                 } else {
1583                                         skb_fill_page_desc(skb, 0,
1584                                                            buffer_info->page, 0,
1585                                                            length);
1586                                         e1000_consume_page(buffer_info, skb,
1587                                                            length);
1588                                 }
1589                         }
1590                 }
1591
1592                 /* Receive Checksum Offload */
1593                 e1000_rx_checksum(adapter, staterr, skb);
1594
1595                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1596
1597                 /* probably a little skewed due to removing CRC */
1598                 total_rx_bytes += skb->len;
1599                 total_rx_packets++;
1600
1601                 /* eth type trans needs skb->data to point to something */
1602                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1603                         e_err("pskb_may_pull failed.\n");
1604                         dev_kfree_skb_irq(skb);
1605                         goto next_desc;
1606                 }
1607
1608                 e1000_receive_skb(adapter, netdev, skb, staterr,
1609                                   rx_desc->wb.upper.vlan);
1610
1611 next_desc:
1612                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1613
1614                 /* return some buffers to hardware, one at a time is too slow */
1615                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1616                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1617                                               GFP_ATOMIC);
1618                         cleaned_count = 0;
1619                 }
1620
1621                 /* use prefetched values */
1622                 rx_desc = next_rxd;
1623                 buffer_info = next_buffer;
1624
1625                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1626         }
1627         rx_ring->next_to_clean = i;
1628
1629         cleaned_count = e1000_desc_unused(rx_ring);
1630         if (cleaned_count)
1631                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1632
1633         adapter->total_rx_bytes += total_rx_bytes;
1634         adapter->total_rx_packets += total_rx_packets;
1635         return cleaned;
1636 }
1637
1638 /**
1639  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1640  * @rx_ring: Rx descriptor ring
1641  **/
1642 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1643 {
1644         struct e1000_adapter *adapter = rx_ring->adapter;
1645         struct e1000_buffer *buffer_info;
1646         struct e1000_ps_page *ps_page;
1647         struct pci_dev *pdev = adapter->pdev;
1648         unsigned int i, j;
1649
1650         /* Free all the Rx ring sk_buffs */
1651         for (i = 0; i < rx_ring->count; i++) {
1652                 buffer_info = &rx_ring->buffer_info[i];
1653                 if (buffer_info->dma) {
1654                         if (adapter->clean_rx == e1000_clean_rx_irq)
1655                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1656                                                  adapter->rx_buffer_len,
1657                                                  DMA_FROM_DEVICE);
1658                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1659                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1660                                                PAGE_SIZE, DMA_FROM_DEVICE);
1661                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1662                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1663                                                  adapter->rx_ps_bsize0,
1664                                                  DMA_FROM_DEVICE);
1665                         buffer_info->dma = 0;
1666                 }
1667
1668                 if (buffer_info->page) {
1669                         put_page(buffer_info->page);
1670                         buffer_info->page = NULL;
1671                 }
1672
1673                 if (buffer_info->skb) {
1674                         dev_kfree_skb(buffer_info->skb);
1675                         buffer_info->skb = NULL;
1676                 }
1677
1678                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1679                         ps_page = &buffer_info->ps_pages[j];
1680                         if (!ps_page->page)
1681                                 break;
1682                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1683                                        DMA_FROM_DEVICE);
1684                         ps_page->dma = 0;
1685                         put_page(ps_page->page);
1686                         ps_page->page = NULL;
1687                 }
1688         }
1689
1690         /* there also may be some cached data from a chained receive */
1691         if (rx_ring->rx_skb_top) {
1692                 dev_kfree_skb(rx_ring->rx_skb_top);
1693                 rx_ring->rx_skb_top = NULL;
1694         }
1695
1696         /* Zero out the descriptor ring */
1697         memset(rx_ring->desc, 0, rx_ring->size);
1698
1699         rx_ring->next_to_clean = 0;
1700         rx_ring->next_to_use = 0;
1701         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1702
1703         writel(0, rx_ring->head);
1704         if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1705                 e1000e_update_rdt_wa(rx_ring, 0);
1706         else
1707                 writel(0, rx_ring->tail);
1708 }
1709
1710 static void e1000e_downshift_workaround(struct work_struct *work)
1711 {
1712         struct e1000_adapter *adapter = container_of(work,
1713                                                      struct e1000_adapter,
1714                                                      downshift_task);
1715
1716         if (test_bit(__E1000_DOWN, &adapter->state))
1717                 return;
1718
1719         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1720 }
1721
1722 /**
1723  * e1000_intr_msi - Interrupt Handler
1724  * @irq: interrupt number
1725  * @data: pointer to a network interface device structure
1726  **/
1727 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1728 {
1729         struct net_device *netdev = data;
1730         struct e1000_adapter *adapter = netdev_priv(netdev);
1731         struct e1000_hw *hw = &adapter->hw;
1732         u32 icr = er32(ICR);
1733
1734         /* read ICR disables interrupts using IAM */
1735         if (icr & E1000_ICR_LSC) {
1736                 hw->mac.get_link_status = true;
1737                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1738                  * disconnect (LSC) before accessing any PHY registers
1739                  */
1740                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1741                     (!(er32(STATUS) & E1000_STATUS_LU)))
1742                         schedule_work(&adapter->downshift_task);
1743
1744                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1745                  * link down event; disable receives here in the ISR and reset
1746                  * adapter in watchdog
1747                  */
1748                 if (netif_carrier_ok(netdev) &&
1749                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1750                         /* disable receives */
1751                         u32 rctl = er32(RCTL);
1752                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1753                         adapter->flags |= FLAG_RESTART_NOW;
1754                 }
1755                 /* guard against interrupt when we're going down */
1756                 if (!test_bit(__E1000_DOWN, &adapter->state))
1757                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1758         }
1759
1760         /* Reset on uncorrectable ECC error */
1761         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1762                 u32 pbeccsts = er32(PBECCSTS);
1763
1764                 adapter->corr_errors +=
1765                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1766                 adapter->uncorr_errors +=
1767                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1768                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1769
1770                 /* Do the reset outside of interrupt context */
1771                 schedule_work(&adapter->reset_task);
1772
1773                 /* return immediately since reset is imminent */
1774                 return IRQ_HANDLED;
1775         }
1776
1777         if (napi_schedule_prep(&adapter->napi)) {
1778                 adapter->total_tx_bytes = 0;
1779                 adapter->total_tx_packets = 0;
1780                 adapter->total_rx_bytes = 0;
1781                 adapter->total_rx_packets = 0;
1782                 __napi_schedule(&adapter->napi);
1783         }
1784
1785         return IRQ_HANDLED;
1786 }
1787
1788 /**
1789  * e1000_intr - Interrupt Handler
1790  * @irq: interrupt number
1791  * @data: pointer to a network interface device structure
1792  **/
1793 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1794 {
1795         struct net_device *netdev = data;
1796         struct e1000_adapter *adapter = netdev_priv(netdev);
1797         struct e1000_hw *hw = &adapter->hw;
1798         u32 rctl, icr = er32(ICR);
1799
1800         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1801                 return IRQ_NONE;        /* Not our interrupt */
1802
1803         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1804          * not set, then the adapter didn't send an interrupt
1805          */
1806         if (!(icr & E1000_ICR_INT_ASSERTED))
1807                 return IRQ_NONE;
1808
1809         /* Interrupt Auto-Mask...upon reading ICR,
1810          * interrupts are masked.  No need for the
1811          * IMC write
1812          */
1813
1814         if (icr & E1000_ICR_LSC) {
1815                 hw->mac.get_link_status = true;
1816                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1817                  * disconnect (LSC) before accessing any PHY registers
1818                  */
1819                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1820                     (!(er32(STATUS) & E1000_STATUS_LU)))
1821                         schedule_work(&adapter->downshift_task);
1822
1823                 /* 80003ES2LAN workaround--
1824                  * For packet buffer work-around on link down event;
1825                  * disable receives here in the ISR and
1826                  * reset adapter in watchdog
1827                  */
1828                 if (netif_carrier_ok(netdev) &&
1829                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1830                         /* disable receives */
1831                         rctl = er32(RCTL);
1832                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1833                         adapter->flags |= FLAG_RESTART_NOW;
1834                 }
1835                 /* guard against interrupt when we're going down */
1836                 if (!test_bit(__E1000_DOWN, &adapter->state))
1837                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1838         }
1839
1840         /* Reset on uncorrectable ECC error */
1841         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1842                 u32 pbeccsts = er32(PBECCSTS);
1843
1844                 adapter->corr_errors +=
1845                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1846                 adapter->uncorr_errors +=
1847                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1848                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1849
1850                 /* Do the reset outside of interrupt context */
1851                 schedule_work(&adapter->reset_task);
1852
1853                 /* return immediately since reset is imminent */
1854                 return IRQ_HANDLED;
1855         }
1856
1857         if (napi_schedule_prep(&adapter->napi)) {
1858                 adapter->total_tx_bytes = 0;
1859                 adapter->total_tx_packets = 0;
1860                 adapter->total_rx_bytes = 0;
1861                 adapter->total_rx_packets = 0;
1862                 __napi_schedule(&adapter->napi);
1863         }
1864
1865         return IRQ_HANDLED;
1866 }
1867
1868 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1869 {
1870         struct net_device *netdev = data;
1871         struct e1000_adapter *adapter = netdev_priv(netdev);
1872         struct e1000_hw *hw = &adapter->hw;
1873         u32 icr = er32(ICR);
1874
1875         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1876                 if (!test_bit(__E1000_DOWN, &adapter->state))
1877                         ew32(IMS, E1000_IMS_OTHER);
1878                 return IRQ_NONE;
1879         }
1880
1881         if (icr & adapter->eiac_mask)
1882                 ew32(ICS, (icr & adapter->eiac_mask));
1883
1884         if (icr & E1000_ICR_OTHER) {
1885                 if (!(icr & E1000_ICR_LSC))
1886                         goto no_link_interrupt;
1887                 hw->mac.get_link_status = true;
1888                 /* guard against interrupt when we're going down */
1889                 if (!test_bit(__E1000_DOWN, &adapter->state))
1890                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1891         }
1892
1893 no_link_interrupt:
1894         if (!test_bit(__E1000_DOWN, &adapter->state))
1895                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1896
1897         return IRQ_HANDLED;
1898 }
1899
1900 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1901 {
1902         struct net_device *netdev = data;
1903         struct e1000_adapter *adapter = netdev_priv(netdev);
1904         struct e1000_hw *hw = &adapter->hw;
1905         struct e1000_ring *tx_ring = adapter->tx_ring;
1906
1907         adapter->total_tx_bytes = 0;
1908         adapter->total_tx_packets = 0;
1909
1910         if (!e1000_clean_tx_irq(tx_ring))
1911                 /* Ring was not completely cleaned, so fire another interrupt */
1912                 ew32(ICS, tx_ring->ims_val);
1913
1914         return IRQ_HANDLED;
1915 }
1916
1917 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1918 {
1919         struct net_device *netdev = data;
1920         struct e1000_adapter *adapter = netdev_priv(netdev);
1921         struct e1000_ring *rx_ring = adapter->rx_ring;
1922
1923         /* Write the ITR value calculated at the end of the
1924          * previous interrupt.
1925          */
1926         if (rx_ring->set_itr) {
1927                 writel(1000000000 / (rx_ring->itr_val * 256),
1928                        rx_ring->itr_register);
1929                 rx_ring->set_itr = 0;
1930         }
1931
1932         if (napi_schedule_prep(&adapter->napi)) {
1933                 adapter->total_rx_bytes = 0;
1934                 adapter->total_rx_packets = 0;
1935                 __napi_schedule(&adapter->napi);
1936         }
1937         return IRQ_HANDLED;
1938 }
1939
1940 /**
1941  * e1000_configure_msix - Configure MSI-X hardware
1942  *
1943  * e1000_configure_msix sets up the hardware to properly
1944  * generate MSI-X interrupts.
1945  **/
1946 static void e1000_configure_msix(struct e1000_adapter *adapter)
1947 {
1948         struct e1000_hw *hw = &adapter->hw;
1949         struct e1000_ring *rx_ring = adapter->rx_ring;
1950         struct e1000_ring *tx_ring = adapter->tx_ring;
1951         int vector = 0;
1952         u32 ctrl_ext, ivar = 0;
1953
1954         adapter->eiac_mask = 0;
1955
1956         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1957         if (hw->mac.type == e1000_82574) {
1958                 u32 rfctl = er32(RFCTL);
1959                 rfctl |= E1000_RFCTL_ACK_DIS;
1960                 ew32(RFCTL, rfctl);
1961         }
1962
1963         /* Configure Rx vector */
1964         rx_ring->ims_val = E1000_IMS_RXQ0;
1965         adapter->eiac_mask |= rx_ring->ims_val;
1966         if (rx_ring->itr_val)
1967                 writel(1000000000 / (rx_ring->itr_val * 256),
1968                        rx_ring->itr_register);
1969         else
1970                 writel(1, rx_ring->itr_register);
1971         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1972
1973         /* Configure Tx vector */
1974         tx_ring->ims_val = E1000_IMS_TXQ0;
1975         vector++;
1976         if (tx_ring->itr_val)
1977                 writel(1000000000 / (tx_ring->itr_val * 256),
1978                        tx_ring->itr_register);
1979         else
1980                 writel(1, tx_ring->itr_register);
1981         adapter->eiac_mask |= tx_ring->ims_val;
1982         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1983
1984         /* set vector for Other Causes, e.g. link changes */
1985         vector++;
1986         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1987         if (rx_ring->itr_val)
1988                 writel(1000000000 / (rx_ring->itr_val * 256),
1989                        hw->hw_addr + E1000_EITR_82574(vector));
1990         else
1991                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1992
1993         /* Cause Tx interrupts on every write back */
1994         ivar |= (1 << 31);
1995
1996         ew32(IVAR, ivar);
1997
1998         /* enable MSI-X PBA support */
1999         ctrl_ext = er32(CTRL_EXT);
2000         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2001
2002         /* Auto-Mask Other interrupts upon ICR read */
2003         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2004         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2005         ew32(CTRL_EXT, ctrl_ext);
2006         e1e_flush();
2007 }
2008
2009 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2010 {
2011         if (adapter->msix_entries) {
2012                 pci_disable_msix(adapter->pdev);
2013                 kfree(adapter->msix_entries);
2014                 adapter->msix_entries = NULL;
2015         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2016                 pci_disable_msi(adapter->pdev);
2017                 adapter->flags &= ~FLAG_MSI_ENABLED;
2018         }
2019 }
2020
2021 /**
2022  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2023  *
2024  * Attempt to configure interrupts using the best available
2025  * capabilities of the hardware and kernel.
2026  **/
2027 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2028 {
2029         int err;
2030         int i;
2031
2032         switch (adapter->int_mode) {
2033         case E1000E_INT_MODE_MSIX:
2034                 if (adapter->flags & FLAG_HAS_MSIX) {
2035                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2036                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2037                                                         sizeof(struct
2038                                                                msix_entry),
2039                                                         GFP_KERNEL);
2040                         if (adapter->msix_entries) {
2041                                 for (i = 0; i < adapter->num_vectors; i++)
2042                                         adapter->msix_entries[i].entry = i;
2043
2044                                 err = pci_enable_msix(adapter->pdev,
2045                                                       adapter->msix_entries,
2046                                                       adapter->num_vectors);
2047                                 if (err == 0)
2048                                         return;
2049                         }
2050                         /* MSI-X failed, so fall through and try MSI */
2051                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2052                         e1000e_reset_interrupt_capability(adapter);
2053                 }
2054                 adapter->int_mode = E1000E_INT_MODE_MSI;
2055                 /* Fall through */
2056         case E1000E_INT_MODE_MSI:
2057                 if (!pci_enable_msi(adapter->pdev)) {
2058                         adapter->flags |= FLAG_MSI_ENABLED;
2059                 } else {
2060                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2061                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2062                 }
2063                 /* Fall through */
2064         case E1000E_INT_MODE_LEGACY:
2065                 /* Don't do anything; this is the system default */
2066                 break;
2067         }
2068
2069         /* store the number of vectors being used */
2070         adapter->num_vectors = 1;
2071 }
2072
2073 /**
2074  * e1000_request_msix - Initialize MSI-X interrupts
2075  *
2076  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2077  * kernel.
2078  **/
2079 static int e1000_request_msix(struct e1000_adapter *adapter)
2080 {
2081         struct net_device *netdev = adapter->netdev;
2082         int err = 0, vector = 0;
2083
2084         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2085                 snprintf(adapter->rx_ring->name,
2086                          sizeof(adapter->rx_ring->name) - 1,
2087                          "%s-rx-0", netdev->name);
2088         else
2089                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2090         err = request_irq(adapter->msix_entries[vector].vector,
2091                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2092                           netdev);
2093         if (err)
2094                 return err;
2095         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2096             E1000_EITR_82574(vector);
2097         adapter->rx_ring->itr_val = adapter->itr;
2098         vector++;
2099
2100         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2101                 snprintf(adapter->tx_ring->name,
2102                          sizeof(adapter->tx_ring->name) - 1,
2103                          "%s-tx-0", netdev->name);
2104         else
2105                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2106         err = request_irq(adapter->msix_entries[vector].vector,
2107                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2108                           netdev);
2109         if (err)
2110                 return err;
2111         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2112             E1000_EITR_82574(vector);
2113         adapter->tx_ring->itr_val = adapter->itr;
2114         vector++;
2115
2116         err = request_irq(adapter->msix_entries[vector].vector,
2117                           e1000_msix_other, 0, netdev->name, netdev);
2118         if (err)
2119                 return err;
2120
2121         e1000_configure_msix(adapter);
2122
2123         return 0;
2124 }
2125
2126 /**
2127  * e1000_request_irq - initialize interrupts
2128  *
2129  * Attempts to configure interrupts using the best available
2130  * capabilities of the hardware and kernel.
2131  **/
2132 static int e1000_request_irq(struct e1000_adapter *adapter)
2133 {
2134         struct net_device *netdev = adapter->netdev;
2135         int err;
2136
2137         if (adapter->msix_entries) {
2138                 err = e1000_request_msix(adapter);
2139                 if (!err)
2140                         return err;
2141                 /* fall back to MSI */
2142                 e1000e_reset_interrupt_capability(adapter);
2143                 adapter->int_mode = E1000E_INT_MODE_MSI;
2144                 e1000e_set_interrupt_capability(adapter);
2145         }
2146         if (adapter->flags & FLAG_MSI_ENABLED) {
2147                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2148                                   netdev->name, netdev);
2149                 if (!err)
2150                         return err;
2151
2152                 /* fall back to legacy interrupt */
2153                 e1000e_reset_interrupt_capability(adapter);
2154                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2155         }
2156
2157         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2158                           netdev->name, netdev);
2159         if (err)
2160                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2161
2162         return err;
2163 }
2164
2165 static void e1000_free_irq(struct e1000_adapter *adapter)
2166 {
2167         struct net_device *netdev = adapter->netdev;
2168
2169         if (adapter->msix_entries) {
2170                 int vector = 0;
2171
2172                 free_irq(adapter->msix_entries[vector].vector, netdev);
2173                 vector++;
2174
2175                 free_irq(adapter->msix_entries[vector].vector, netdev);
2176                 vector++;
2177
2178                 /* Other Causes interrupt vector */
2179                 free_irq(adapter->msix_entries[vector].vector, netdev);
2180                 return;
2181         }
2182
2183         free_irq(adapter->pdev->irq, netdev);
2184 }
2185
2186 /**
2187  * e1000_irq_disable - Mask off interrupt generation on the NIC
2188  **/
2189 static void e1000_irq_disable(struct e1000_adapter *adapter)
2190 {
2191         struct e1000_hw *hw = &adapter->hw;
2192
2193         ew32(IMC, ~0);
2194         if (adapter->msix_entries)
2195                 ew32(EIAC_82574, 0);
2196         e1e_flush();
2197
2198         if (adapter->msix_entries) {
2199                 int i;
2200                 for (i = 0; i < adapter->num_vectors; i++)
2201                         synchronize_irq(adapter->msix_entries[i].vector);
2202         } else {
2203                 synchronize_irq(adapter->pdev->irq);
2204         }
2205 }
2206
2207 /**
2208  * e1000_irq_enable - Enable default interrupt generation settings
2209  **/
2210 static void e1000_irq_enable(struct e1000_adapter *adapter)
2211 {
2212         struct e1000_hw *hw = &adapter->hw;
2213
2214         if (adapter->msix_entries) {
2215                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2216                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2217         } else if (hw->mac.type == e1000_pch_lpt) {
2218                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2219         } else {
2220                 ew32(IMS, IMS_ENABLE_MASK);
2221         }
2222         e1e_flush();
2223 }
2224
2225 /**
2226  * e1000e_get_hw_control - get control of the h/w from f/w
2227  * @adapter: address of board private structure
2228  *
2229  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2230  * For ASF and Pass Through versions of f/w this means that
2231  * the driver is loaded. For AMT version (only with 82573)
2232  * of the f/w this means that the network i/f is open.
2233  **/
2234 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2235 {
2236         struct e1000_hw *hw = &adapter->hw;
2237         u32 ctrl_ext;
2238         u32 swsm;
2239
2240         /* Let firmware know the driver has taken over */
2241         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2242                 swsm = er32(SWSM);
2243                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2244         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2245                 ctrl_ext = er32(CTRL_EXT);
2246                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2247         }
2248 }
2249
2250 /**
2251  * e1000e_release_hw_control - release control of the h/w to f/w
2252  * @adapter: address of board private structure
2253  *
2254  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2255  * For ASF and Pass Through versions of f/w this means that the
2256  * driver is no longer loaded. For AMT version (only with 82573) i
2257  * of the f/w this means that the network i/f is closed.
2258  *
2259  **/
2260 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2261 {
2262         struct e1000_hw *hw = &adapter->hw;
2263         u32 ctrl_ext;
2264         u32 swsm;
2265
2266         /* Let firmware taken over control of h/w */
2267         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268                 swsm = er32(SWSM);
2269                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2270         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271                 ctrl_ext = er32(CTRL_EXT);
2272                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2273         }
2274 }
2275
2276 /**
2277  * e1000_alloc_ring_dma - allocate memory for a ring structure
2278  **/
2279 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2280                                 struct e1000_ring *ring)
2281 {
2282         struct pci_dev *pdev = adapter->pdev;
2283
2284         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2285                                         GFP_KERNEL);
2286         if (!ring->desc)
2287                 return -ENOMEM;
2288
2289         return 0;
2290 }
2291
2292 /**
2293  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2294  * @tx_ring: Tx descriptor ring
2295  *
2296  * Return 0 on success, negative on failure
2297  **/
2298 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2299 {
2300         struct e1000_adapter *adapter = tx_ring->adapter;
2301         int err = -ENOMEM, size;
2302
2303         size = sizeof(struct e1000_buffer) * tx_ring->count;
2304         tx_ring->buffer_info = vzalloc(size);
2305         if (!tx_ring->buffer_info)
2306                 goto err;
2307
2308         /* round up to nearest 4K */
2309         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2310         tx_ring->size = ALIGN(tx_ring->size, 4096);
2311
2312         err = e1000_alloc_ring_dma(adapter, tx_ring);
2313         if (err)
2314                 goto err;
2315
2316         tx_ring->next_to_use = 0;
2317         tx_ring->next_to_clean = 0;
2318
2319         return 0;
2320 err:
2321         vfree(tx_ring->buffer_info);
2322         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2323         return err;
2324 }
2325
2326 /**
2327  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2328  * @rx_ring: Rx descriptor ring
2329  *
2330  * Returns 0 on success, negative on failure
2331  **/
2332 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2333 {
2334         struct e1000_adapter *adapter = rx_ring->adapter;
2335         struct e1000_buffer *buffer_info;
2336         int i, size, desc_len, err = -ENOMEM;
2337
2338         size = sizeof(struct e1000_buffer) * rx_ring->count;
2339         rx_ring->buffer_info = vzalloc(size);
2340         if (!rx_ring->buffer_info)
2341                 goto err;
2342
2343         for (i = 0; i < rx_ring->count; i++) {
2344                 buffer_info = &rx_ring->buffer_info[i];
2345                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2346                                                 sizeof(struct e1000_ps_page),
2347                                                 GFP_KERNEL);
2348                 if (!buffer_info->ps_pages)
2349                         goto err_pages;
2350         }
2351
2352         desc_len = sizeof(union e1000_rx_desc_packet_split);
2353
2354         /* Round up to nearest 4K */
2355         rx_ring->size = rx_ring->count * desc_len;
2356         rx_ring->size = ALIGN(rx_ring->size, 4096);
2357
2358         err = e1000_alloc_ring_dma(adapter, rx_ring);
2359         if (err)
2360                 goto err_pages;
2361
2362         rx_ring->next_to_clean = 0;
2363         rx_ring->next_to_use = 0;
2364         rx_ring->rx_skb_top = NULL;
2365
2366         return 0;
2367
2368 err_pages:
2369         for (i = 0; i < rx_ring->count; i++) {
2370                 buffer_info = &rx_ring->buffer_info[i];
2371                 kfree(buffer_info->ps_pages);
2372         }
2373 err:
2374         vfree(rx_ring->buffer_info);
2375         e_err("Unable to allocate memory for the receive descriptor ring\n");
2376         return err;
2377 }
2378
2379 /**
2380  * e1000_clean_tx_ring - Free Tx Buffers
2381  * @tx_ring: Tx descriptor ring
2382  **/
2383 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2384 {
2385         struct e1000_adapter *adapter = tx_ring->adapter;
2386         struct e1000_buffer *buffer_info;
2387         unsigned long size;
2388         unsigned int i;
2389
2390         for (i = 0; i < tx_ring->count; i++) {
2391                 buffer_info = &tx_ring->buffer_info[i];
2392                 e1000_put_txbuf(tx_ring, buffer_info);
2393         }
2394
2395         netdev_reset_queue(adapter->netdev);
2396         size = sizeof(struct e1000_buffer) * tx_ring->count;
2397         memset(tx_ring->buffer_info, 0, size);
2398
2399         memset(tx_ring->desc, 0, tx_ring->size);
2400
2401         tx_ring->next_to_use = 0;
2402         tx_ring->next_to_clean = 0;
2403
2404         writel(0, tx_ring->head);
2405         if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2406                 e1000e_update_tdt_wa(tx_ring, 0);
2407         else
2408                 writel(0, tx_ring->tail);
2409 }
2410
2411 /**
2412  * e1000e_free_tx_resources - Free Tx Resources per Queue
2413  * @tx_ring: Tx descriptor ring
2414  *
2415  * Free all transmit software resources
2416  **/
2417 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2418 {
2419         struct e1000_adapter *adapter = tx_ring->adapter;
2420         struct pci_dev *pdev = adapter->pdev;
2421
2422         e1000_clean_tx_ring(tx_ring);
2423
2424         vfree(tx_ring->buffer_info);
2425         tx_ring->buffer_info = NULL;
2426
2427         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2428                           tx_ring->dma);
2429         tx_ring->desc = NULL;
2430 }
2431
2432 /**
2433  * e1000e_free_rx_resources - Free Rx Resources
2434  * @rx_ring: Rx descriptor ring
2435  *
2436  * Free all receive software resources
2437  **/
2438 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2439 {
2440         struct e1000_adapter *adapter = rx_ring->adapter;
2441         struct pci_dev *pdev = adapter->pdev;
2442         int i;
2443
2444         e1000_clean_rx_ring(rx_ring);
2445
2446         for (i = 0; i < rx_ring->count; i++)
2447                 kfree(rx_ring->buffer_info[i].ps_pages);
2448
2449         vfree(rx_ring->buffer_info);
2450         rx_ring->buffer_info = NULL;
2451
2452         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2453                           rx_ring->dma);
2454         rx_ring->desc = NULL;
2455 }
2456
2457 /**
2458  * e1000_update_itr - update the dynamic ITR value based on statistics
2459  * @adapter: pointer to adapter
2460  * @itr_setting: current adapter->itr
2461  * @packets: the number of packets during this measurement interval
2462  * @bytes: the number of bytes during this measurement interval
2463  *
2464  *      Stores a new ITR value based on packets and byte
2465  *      counts during the last interrupt.  The advantage of per interrupt
2466  *      computation is faster updates and more accurate ITR for the current
2467  *      traffic pattern.  Constants in this function were computed
2468  *      based on theoretical maximum wire speed and thresholds were set based
2469  *      on testing data as well as attempting to minimize response time
2470  *      while increasing bulk throughput.  This functionality is controlled
2471  *      by the InterruptThrottleRate module parameter.
2472  **/
2473 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2474 {
2475         unsigned int retval = itr_setting;
2476
2477         if (packets == 0)
2478                 return itr_setting;
2479
2480         switch (itr_setting) {
2481         case lowest_latency:
2482                 /* handle TSO and jumbo frames */
2483                 if (bytes / packets > 8000)
2484                         retval = bulk_latency;
2485                 else if ((packets < 5) && (bytes > 512))
2486                         retval = low_latency;
2487                 break;
2488         case low_latency:       /* 50 usec aka 20000 ints/s */
2489                 if (bytes > 10000) {
2490                         /* this if handles the TSO accounting */
2491                         if (bytes / packets > 8000)
2492                                 retval = bulk_latency;
2493                         else if ((packets < 10) || ((bytes / packets) > 1200))
2494                                 retval = bulk_latency;
2495                         else if ((packets > 35))
2496                                 retval = lowest_latency;
2497                 } else if (bytes / packets > 2000) {
2498                         retval = bulk_latency;
2499                 } else if (packets <= 2 && bytes < 512) {
2500                         retval = lowest_latency;
2501                 }
2502                 break;
2503         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2504                 if (bytes > 25000) {
2505                         if (packets > 35)
2506                                 retval = low_latency;
2507                 } else if (bytes < 6000) {
2508                         retval = low_latency;
2509                 }
2510                 break;
2511         }
2512
2513         return retval;
2514 }
2515
2516 static void e1000_set_itr(struct e1000_adapter *adapter)
2517 {
2518         u16 current_itr;
2519         u32 new_itr = adapter->itr;
2520
2521         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2522         if (adapter->link_speed != SPEED_1000) {
2523                 current_itr = 0;
2524                 new_itr = 4000;
2525                 goto set_itr_now;
2526         }
2527
2528         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2529                 new_itr = 0;
2530                 goto set_itr_now;
2531         }
2532
2533         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2534                                            adapter->total_tx_packets,
2535                                            adapter->total_tx_bytes);
2536         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2537         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2538                 adapter->tx_itr = low_latency;
2539
2540         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2541                                            adapter->total_rx_packets,
2542                                            adapter->total_rx_bytes);
2543         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2544         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2545                 adapter->rx_itr = low_latency;
2546
2547         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2548
2549         /* counts and packets in update_itr are dependent on these numbers */
2550         switch (current_itr) {
2551         case lowest_latency:
2552                 new_itr = 70000;
2553                 break;
2554         case low_latency:
2555                 new_itr = 20000;        /* aka hwitr = ~200 */
2556                 break;
2557         case bulk_latency:
2558                 new_itr = 4000;
2559                 break;
2560         default:
2561                 break;
2562         }
2563
2564 set_itr_now:
2565         if (new_itr != adapter->itr) {
2566                 /* this attempts to bias the interrupt rate towards Bulk
2567                  * by adding intermediate steps when interrupt rate is
2568                  * increasing
2569                  */
2570                 new_itr = new_itr > adapter->itr ?
2571                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2572                 adapter->itr = new_itr;
2573                 adapter->rx_ring->itr_val = new_itr;
2574                 if (adapter->msix_entries)
2575                         adapter->rx_ring->set_itr = 1;
2576                 else
2577                         e1000e_write_itr(adapter, new_itr);
2578         }
2579 }
2580
2581 /**
2582  * e1000e_write_itr - write the ITR value to the appropriate registers
2583  * @adapter: address of board private structure
2584  * @itr: new ITR value to program
2585  *
2586  * e1000e_write_itr determines if the adapter is in MSI-X mode
2587  * and, if so, writes the EITR registers with the ITR value.
2588  * Otherwise, it writes the ITR value into the ITR register.
2589  **/
2590 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2591 {
2592         struct e1000_hw *hw = &adapter->hw;
2593         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2594
2595         if (adapter->msix_entries) {
2596                 int vector;
2597
2598                 for (vector = 0; vector < adapter->num_vectors; vector++)
2599                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2600         } else {
2601                 ew32(ITR, new_itr);
2602         }
2603 }
2604
2605 /**
2606  * e1000_alloc_queues - Allocate memory for all rings
2607  * @adapter: board private structure to initialize
2608  **/
2609 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2610 {
2611         int size = sizeof(struct e1000_ring);
2612
2613         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2614         if (!adapter->tx_ring)
2615                 goto err;
2616         adapter->tx_ring->count = adapter->tx_ring_count;
2617         adapter->tx_ring->adapter = adapter;
2618
2619         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2620         if (!adapter->rx_ring)
2621                 goto err;
2622         adapter->rx_ring->count = adapter->rx_ring_count;
2623         adapter->rx_ring->adapter = adapter;
2624
2625         return 0;
2626 err:
2627         e_err("Unable to allocate memory for queues\n");
2628         kfree(adapter->rx_ring);
2629         kfree(adapter->tx_ring);
2630         return -ENOMEM;
2631 }
2632
2633 /**
2634  * e1000e_poll - NAPI Rx polling callback
2635  * @napi: struct associated with this polling callback
2636  * @weight: number of packets driver is allowed to process this poll
2637  **/
2638 static int e1000e_poll(struct napi_struct *napi, int weight)
2639 {
2640         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2641                                                      napi);
2642         struct e1000_hw *hw = &adapter->hw;
2643         struct net_device *poll_dev = adapter->netdev;
2644         int tx_cleaned = 1, work_done = 0;
2645
2646         adapter = netdev_priv(poll_dev);
2647
2648         if (!adapter->msix_entries ||
2649             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2650                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2651
2652         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2653
2654         if (!tx_cleaned)
2655                 work_done = weight;
2656
2657         /* If weight not fully consumed, exit the polling mode */
2658         if (work_done < weight) {
2659                 if (adapter->itr_setting & 3)
2660                         e1000_set_itr(adapter);
2661                 napi_complete(napi);
2662                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2663                         if (adapter->msix_entries)
2664                                 ew32(IMS, adapter->rx_ring->ims_val);
2665                         else
2666                                 e1000_irq_enable(adapter);
2667                 }
2668         }
2669
2670         return work_done;
2671 }
2672
2673 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2674                                  __always_unused __be16 proto, u16 vid)
2675 {
2676         struct e1000_adapter *adapter = netdev_priv(netdev);
2677         struct e1000_hw *hw = &adapter->hw;
2678         u32 vfta, index;
2679
2680         /* don't update vlan cookie if already programmed */
2681         if ((adapter->hw.mng_cookie.status &
2682              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2683             (vid == adapter->mng_vlan_id))
2684                 return 0;
2685
2686         /* add VID to filter table */
2687         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2688                 index = (vid >> 5) & 0x7F;
2689                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2690                 vfta |= (1 << (vid & 0x1F));
2691                 hw->mac.ops.write_vfta(hw, index, vfta);
2692         }
2693
2694         set_bit(vid, adapter->active_vlans);
2695
2696         return 0;
2697 }
2698
2699 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2700                                   __always_unused __be16 proto, u16 vid)
2701 {
2702         struct e1000_adapter *adapter = netdev_priv(netdev);
2703         struct e1000_hw *hw = &adapter->hw;
2704         u32 vfta, index;
2705
2706         if ((adapter->hw.mng_cookie.status &
2707              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2708             (vid == adapter->mng_vlan_id)) {
2709                 /* release control to f/w */
2710                 e1000e_release_hw_control(adapter);
2711                 return 0;
2712         }
2713
2714         /* remove VID from filter table */
2715         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2716                 index = (vid >> 5) & 0x7F;
2717                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2718                 vfta &= ~(1 << (vid & 0x1F));
2719                 hw->mac.ops.write_vfta(hw, index, vfta);
2720         }
2721
2722         clear_bit(vid, adapter->active_vlans);
2723
2724         return 0;
2725 }
2726
2727 /**
2728  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2729  * @adapter: board private structure to initialize
2730  **/
2731 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2732 {
2733         struct net_device *netdev = adapter->netdev;
2734         struct e1000_hw *hw = &adapter->hw;
2735         u32 rctl;
2736
2737         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2738                 /* disable VLAN receive filtering */
2739                 rctl = er32(RCTL);
2740                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2741                 ew32(RCTL, rctl);
2742
2743                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2744                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2745                                                adapter->mng_vlan_id);
2746                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2747                 }
2748         }
2749 }
2750
2751 /**
2752  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2753  * @adapter: board private structure to initialize
2754  **/
2755 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2756 {
2757         struct e1000_hw *hw = &adapter->hw;
2758         u32 rctl;
2759
2760         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2761                 /* enable VLAN receive filtering */
2762                 rctl = er32(RCTL);
2763                 rctl |= E1000_RCTL_VFE;
2764                 rctl &= ~E1000_RCTL_CFIEN;
2765                 ew32(RCTL, rctl);
2766         }
2767 }
2768
2769 /**
2770  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2771  * @adapter: board private structure to initialize
2772  **/
2773 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2774 {
2775         struct e1000_hw *hw = &adapter->hw;
2776         u32 ctrl;
2777
2778         /* disable VLAN tag insert/strip */
2779         ctrl = er32(CTRL);
2780         ctrl &= ~E1000_CTRL_VME;
2781         ew32(CTRL, ctrl);
2782 }
2783
2784 /**
2785  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2786  * @adapter: board private structure to initialize
2787  **/
2788 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2789 {
2790         struct e1000_hw *hw = &adapter->hw;
2791         u32 ctrl;
2792
2793         /* enable VLAN tag insert/strip */
2794         ctrl = er32(CTRL);
2795         ctrl |= E1000_CTRL_VME;
2796         ew32(CTRL, ctrl);
2797 }
2798
2799 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2800 {
2801         struct net_device *netdev = adapter->netdev;
2802         u16 vid = adapter->hw.mng_cookie.vlan_id;
2803         u16 old_vid = adapter->mng_vlan_id;
2804
2805         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2806                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2807                 adapter->mng_vlan_id = vid;
2808         }
2809
2810         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2811                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2812 }
2813
2814 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2815 {
2816         u16 vid;
2817
2818         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2819
2820         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2821             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2822 }
2823
2824 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2825 {
2826         struct e1000_hw *hw = &adapter->hw;
2827         u32 manc, manc2h, mdef, i, j;
2828
2829         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2830                 return;
2831
2832         manc = er32(MANC);
2833
2834         /* enable receiving management packets to the host. this will probably
2835          * generate destination unreachable messages from the host OS, but
2836          * the packets will be handled on SMBUS
2837          */
2838         manc |= E1000_MANC_EN_MNG2HOST;
2839         manc2h = er32(MANC2H);
2840
2841         switch (hw->mac.type) {
2842         default:
2843                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2844                 break;
2845         case e1000_82574:
2846         case e1000_82583:
2847                 /* Check if IPMI pass-through decision filter already exists;
2848                  * if so, enable it.
2849                  */
2850                 for (i = 0, j = 0; i < 8; i++) {
2851                         mdef = er32(MDEF(i));
2852
2853                         /* Ignore filters with anything other than IPMI ports */
2854                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2855                                 continue;
2856
2857                         /* Enable this decision filter in MANC2H */
2858                         if (mdef)
2859                                 manc2h |= (1 << i);
2860
2861                         j |= mdef;
2862                 }
2863
2864                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2865                         break;
2866
2867                 /* Create new decision filter in an empty filter */
2868                 for (i = 0, j = 0; i < 8; i++)
2869                         if (er32(MDEF(i)) == 0) {
2870                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2871                                                E1000_MDEF_PORT_664));
2872                                 manc2h |= (1 << 1);
2873                                 j++;
2874                                 break;
2875                         }
2876
2877                 if (!j)
2878                         e_warn("Unable to create IPMI pass-through filter\n");
2879                 break;
2880         }
2881
2882         ew32(MANC2H, manc2h);
2883         ew32(MANC, manc);
2884 }
2885
2886 /**
2887  * e1000_configure_tx - Configure Transmit Unit after Reset
2888  * @adapter: board private structure
2889  *
2890  * Configure the Tx unit of the MAC after a reset.
2891  **/
2892 static void e1000_configure_tx(struct e1000_adapter *adapter)
2893 {
2894         struct e1000_hw *hw = &adapter->hw;
2895         struct e1000_ring *tx_ring = adapter->tx_ring;
2896         u64 tdba;
2897         u32 tdlen, tarc;
2898
2899         /* Setup the HW Tx Head and Tail descriptor pointers */
2900         tdba = tx_ring->dma;
2901         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2902         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2903         ew32(TDBAH(0), (tdba >> 32));
2904         ew32(TDLEN(0), tdlen);
2905         ew32(TDH(0), 0);
2906         ew32(TDT(0), 0);
2907         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2908         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2909
2910         /* Set the Tx Interrupt Delay register */
2911         ew32(TIDV, adapter->tx_int_delay);
2912         /* Tx irq moderation */
2913         ew32(TADV, adapter->tx_abs_int_delay);
2914
2915         if (adapter->flags2 & FLAG2_DMA_BURST) {
2916                 u32 txdctl = er32(TXDCTL(0));
2917                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2918                             E1000_TXDCTL_WTHRESH);
2919                 /* set up some performance related parameters to encourage the
2920                  * hardware to use the bus more efficiently in bursts, depends
2921                  * on the tx_int_delay to be enabled,
2922                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2923                  * hthresh = 1 ==> prefetch when one or more available
2924                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2925                  * BEWARE: this seems to work but should be considered first if
2926                  * there are Tx hangs or other Tx related bugs
2927                  */
2928                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2929                 ew32(TXDCTL(0), txdctl);
2930         }
2931         /* erratum work around: set txdctl the same for both queues */
2932         ew32(TXDCTL(1), er32(TXDCTL(0)));
2933
2934         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2935                 tarc = er32(TARC(0));
2936                 /* set the speed mode bit, we'll clear it if we're not at
2937                  * gigabit link later
2938                  */
2939 #define SPEED_MODE_BIT (1 << 21)
2940                 tarc |= SPEED_MODE_BIT;
2941                 ew32(TARC(0), tarc);
2942         }
2943
2944         /* errata: program both queues to unweighted RR */
2945         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2946                 tarc = er32(TARC(0));
2947                 tarc |= 1;
2948                 ew32(TARC(0), tarc);
2949                 tarc = er32(TARC(1));
2950                 tarc |= 1;
2951                 ew32(TARC(1), tarc);
2952         }
2953
2954         /* Setup Transmit Descriptor Settings for eop descriptor */
2955         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2956
2957         /* only set IDE if we are delaying interrupts using the timers */
2958         if (adapter->tx_int_delay)
2959                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2960
2961         /* enable Report Status bit */
2962         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2963
2964         hw->mac.ops.config_collision_dist(hw);
2965 }
2966
2967 /**
2968  * e1000_setup_rctl - configure the receive control registers
2969  * @adapter: Board private structure
2970  **/
2971 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2972                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2973 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2974 {
2975         struct e1000_hw *hw = &adapter->hw;
2976         u32 rctl, rfctl;
2977         u32 pages = 0;
2978
2979         /* Workaround Si errata on PCHx - configure jumbo frame flow */
2980         if ((hw->mac.type >= e1000_pch2lan) &&
2981             (adapter->netdev->mtu > ETH_DATA_LEN) &&
2982             e1000_lv_jumbo_workaround_ich8lan(hw, true))
2983                 e_dbg("failed to enable jumbo frame workaround mode\n");
2984
2985         /* Program MC offset vector base */
2986         rctl = er32(RCTL);
2987         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2988         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2989             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2990             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2991
2992         /* Do not Store bad packets */
2993         rctl &= ~E1000_RCTL_SBP;
2994
2995         /* Enable Long Packet receive */
2996         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2997                 rctl &= ~E1000_RCTL_LPE;
2998         else
2999                 rctl |= E1000_RCTL_LPE;
3000
3001         /* Some systems expect that the CRC is included in SMBUS traffic. The
3002          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3003          * host memory when this is enabled
3004          */
3005         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3006                 rctl |= E1000_RCTL_SECRC;
3007
3008         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3009         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3010                 u16 phy_data;
3011
3012                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3013                 phy_data &= 0xfff8;
3014                 phy_data |= (1 << 2);
3015                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3016
3017                 e1e_rphy(hw, 22, &phy_data);
3018                 phy_data &= 0x0fff;
3019                 phy_data |= (1 << 14);
3020                 e1e_wphy(hw, 0x10, 0x2823);
3021                 e1e_wphy(hw, 0x11, 0x0003);
3022                 e1e_wphy(hw, 22, phy_data);
3023         }
3024
3025         /* Setup buffer sizes */
3026         rctl &= ~E1000_RCTL_SZ_4096;
3027         rctl |= E1000_RCTL_BSEX;
3028         switch (adapter->rx_buffer_len) {
3029         case 2048:
3030         default:
3031                 rctl |= E1000_RCTL_SZ_2048;
3032                 rctl &= ~E1000_RCTL_BSEX;
3033                 break;
3034         case 4096:
3035                 rctl |= E1000_RCTL_SZ_4096;
3036                 break;
3037         case 8192:
3038                 rctl |= E1000_RCTL_SZ_8192;
3039                 break;
3040         case 16384:
3041                 rctl |= E1000_RCTL_SZ_16384;
3042                 break;
3043         }
3044
3045         /* Enable Extended Status in all Receive Descriptors */
3046         rfctl = er32(RFCTL);
3047         rfctl |= E1000_RFCTL_EXTEN;
3048         ew32(RFCTL, rfctl);
3049
3050         /* 82571 and greater support packet-split where the protocol
3051          * header is placed in skb->data and the packet data is
3052          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3053          * In the case of a non-split, skb->data is linearly filled,
3054          * followed by the page buffers.  Therefore, skb->data is
3055          * sized to hold the largest protocol header.
3056          *
3057          * allocations using alloc_page take too long for regular MTU
3058          * so only enable packet split for jumbo frames
3059          *
3060          * Using pages when the page size is greater than 16k wastes
3061          * a lot of memory, since we allocate 3 pages at all times
3062          * per packet.
3063          */
3064         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3065         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3066                 adapter->rx_ps_pages = pages;
3067         else
3068                 adapter->rx_ps_pages = 0;
3069
3070         if (adapter->rx_ps_pages) {
3071                 u32 psrctl = 0;
3072
3073                 /* Enable Packet split descriptors */
3074                 rctl |= E1000_RCTL_DTYP_PS;
3075
3076                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3077
3078                 switch (adapter->rx_ps_pages) {
3079                 case 3:
3080                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3081                         /* fall-through */
3082                 case 2:
3083                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3084                         /* fall-through */
3085                 case 1:
3086                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3087                         break;
3088                 }
3089
3090                 ew32(PSRCTL, psrctl);
3091         }
3092
3093         /* This is useful for sniffing bad packets. */
3094         if (adapter->netdev->features & NETIF_F_RXALL) {
3095                 /* UPE and MPE will be handled by normal PROMISC logic
3096                  * in e1000e_set_rx_mode
3097                  */
3098                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3099                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3100                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3101
3102                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3103                           E1000_RCTL_DPF |      /* Allow filtered pause */
3104                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3105                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3106                  * and that breaks VLANs.
3107                  */
3108         }
3109
3110         ew32(RCTL, rctl);
3111         /* just started the receive unit, no need to restart */
3112         adapter->flags &= ~FLAG_RESTART_NOW;
3113 }
3114
3115 /**
3116  * e1000_configure_rx - Configure Receive Unit after Reset
3117  * @adapter: board private structure
3118  *
3119  * Configure the Rx unit of the MAC after a reset.
3120  **/
3121 static void e1000_configure_rx(struct e1000_adapter *adapter)
3122 {
3123         struct e1000_hw *hw = &adapter->hw;
3124         struct e1000_ring *rx_ring = adapter->rx_ring;
3125         u64 rdba;
3126         u32 rdlen, rctl, rxcsum, ctrl_ext;
3127
3128         if (adapter->rx_ps_pages) {
3129                 /* this is a 32 byte descriptor */
3130                 rdlen = rx_ring->count *
3131                     sizeof(union e1000_rx_desc_packet_split);
3132                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3133                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3134         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3135                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3136                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3137                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3138         } else {
3139                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3140                 adapter->clean_rx = e1000_clean_rx_irq;
3141                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3142         }
3143
3144         /* disable receives while setting up the descriptors */
3145         rctl = er32(RCTL);
3146         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3147                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3148         e1e_flush();
3149         usleep_range(10000, 20000);
3150
3151         if (adapter->flags2 & FLAG2_DMA_BURST) {
3152                 /* set the writeback threshold (only takes effect if the RDTR
3153                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3154                  * enable prefetching of 0x20 Rx descriptors
3155                  * granularity = 01
3156                  * wthresh = 04,
3157                  * hthresh = 04,
3158                  * pthresh = 0x20
3159                  */
3160                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3161                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3162
3163                 /* override the delay timers for enabling bursting, only if
3164                  * the value was not set by the user via module options
3165                  */
3166                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3167                         adapter->rx_int_delay = BURST_RDTR;
3168                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3169                         adapter->rx_abs_int_delay = BURST_RADV;
3170         }
3171
3172         /* set the Receive Delay Timer Register */
3173         ew32(RDTR, adapter->rx_int_delay);
3174
3175         /* irq moderation */
3176         ew32(RADV, adapter->rx_abs_int_delay);
3177         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3178                 e1000e_write_itr(adapter, adapter->itr);
3179
3180         ctrl_ext = er32(CTRL_EXT);
3181         /* Auto-Mask interrupts upon ICR access */
3182         ctrl_ext |= E1000_CTRL_EXT_IAME;
3183         ew32(IAM, 0xffffffff);
3184         ew32(CTRL_EXT, ctrl_ext);
3185         e1e_flush();
3186
3187         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3188          * the Base and Length of the Rx Descriptor Ring
3189          */
3190         rdba = rx_ring->dma;
3191         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3192         ew32(RDBAH(0), (rdba >> 32));
3193         ew32(RDLEN(0), rdlen);
3194         ew32(RDH(0), 0);
3195         ew32(RDT(0), 0);
3196         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3197         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3198
3199         /* Enable Receive Checksum Offload for TCP and UDP */
3200         rxcsum = er32(RXCSUM);
3201         if (adapter->netdev->features & NETIF_F_RXCSUM)
3202                 rxcsum |= E1000_RXCSUM_TUOFL;
3203         else
3204                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3205         ew32(RXCSUM, rxcsum);
3206
3207         /* With jumbo frames, excessive C-state transition latencies result
3208          * in dropped transactions.
3209          */
3210         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3211                 u32 lat =
3212                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3213                      adapter->max_frame_size) * 8 / 1000;
3214
3215                 if (adapter->flags & FLAG_IS_ICH) {
3216                         u32 rxdctl = er32(RXDCTL(0));
3217                         ew32(RXDCTL(0), rxdctl | 0x3);
3218                 }
3219
3220                 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3221         } else {
3222                 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3223                                       PM_QOS_DEFAULT_VALUE);
3224         }
3225
3226         /* Enable Receives */
3227         ew32(RCTL, rctl);
3228 }
3229
3230 /**
3231  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3232  * @netdev: network interface device structure
3233  *
3234  * Writes multicast address list to the MTA hash table.
3235  * Returns: -ENOMEM on failure
3236  *                0 on no addresses written
3237  *                X on writing X addresses to MTA
3238  */
3239 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3240 {
3241         struct e1000_adapter *adapter = netdev_priv(netdev);
3242         struct e1000_hw *hw = &adapter->hw;
3243         struct netdev_hw_addr *ha;
3244         u8 *mta_list;
3245         int i;
3246
3247         if (netdev_mc_empty(netdev)) {
3248                 /* nothing to program, so clear mc list */
3249                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3250                 return 0;
3251         }
3252
3253         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3254         if (!mta_list)
3255                 return -ENOMEM;
3256
3257         /* update_mc_addr_list expects a packed array of only addresses. */
3258         i = 0;
3259         netdev_for_each_mc_addr(ha, netdev)
3260             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3261
3262         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3263         kfree(mta_list);
3264
3265         return netdev_mc_count(netdev);
3266 }
3267
3268 /**
3269  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3270  * @netdev: network interface device structure
3271  *
3272  * Writes unicast address list to the RAR table.
3273  * Returns: -ENOMEM on failure/insufficient address space
3274  *                0 on no addresses written
3275  *                X on writing X addresses to the RAR table
3276  **/
3277 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3278 {
3279         struct e1000_adapter *adapter = netdev_priv(netdev);
3280         struct e1000_hw *hw = &adapter->hw;
3281         unsigned int rar_entries = hw->mac.rar_entry_count;
3282         int count = 0;
3283
3284         /* save a rar entry for our hardware address */
3285         rar_entries--;
3286
3287         /* save a rar entry for the LAA workaround */
3288         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3289                 rar_entries--;
3290
3291         /* return ENOMEM indicating insufficient memory for addresses */
3292         if (netdev_uc_count(netdev) > rar_entries)
3293                 return -ENOMEM;
3294
3295         if (!netdev_uc_empty(netdev) && rar_entries) {
3296                 struct netdev_hw_addr *ha;
3297
3298                 /* write the addresses in reverse order to avoid write
3299                  * combining
3300                  */
3301                 netdev_for_each_uc_addr(ha, netdev) {
3302                         if (!rar_entries)
3303                                 break;
3304                         hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3305                         count++;
3306                 }
3307         }
3308
3309         /* zero out the remaining RAR entries not used above */
3310         for (; rar_entries > 0; rar_entries--) {
3311                 ew32(RAH(rar_entries), 0);
3312                 ew32(RAL(rar_entries), 0);
3313         }
3314         e1e_flush();
3315
3316         return count;
3317 }
3318
3319 /**
3320  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3321  * @netdev: network interface device structure
3322  *
3323  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3324  * address list or the network interface flags are updated.  This routine is
3325  * responsible for configuring the hardware for proper unicast, multicast,
3326  * promiscuous mode, and all-multi behavior.
3327  **/
3328 static void e1000e_set_rx_mode(struct net_device *netdev)
3329 {
3330         struct e1000_adapter *adapter = netdev_priv(netdev);
3331         struct e1000_hw *hw = &adapter->hw;
3332         u32 rctl;
3333
3334         /* Check for Promiscuous and All Multicast modes */
3335         rctl = er32(RCTL);
3336
3337         /* clear the affected bits */
3338         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3339
3340         if (netdev->flags & IFF_PROMISC) {
3341                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3342                 /* Do not hardware filter VLANs in promisc mode */
3343                 e1000e_vlan_filter_disable(adapter);
3344         } else {
3345                 int count;
3346
3347                 if (netdev->flags & IFF_ALLMULTI) {
3348                         rctl |= E1000_RCTL_MPE;
3349                 } else {
3350                         /* Write addresses to the MTA, if the attempt fails
3351                          * then we should just turn on promiscuous mode so
3352                          * that we can at least receive multicast traffic
3353                          */
3354                         count = e1000e_write_mc_addr_list(netdev);
3355                         if (count < 0)
3356                                 rctl |= E1000_RCTL_MPE;
3357                 }
3358                 e1000e_vlan_filter_enable(adapter);
3359                 /* Write addresses to available RAR registers, if there is not
3360                  * sufficient space to store all the addresses then enable
3361                  * unicast promiscuous mode
3362                  */
3363                 count = e1000e_write_uc_addr_list(netdev);
3364                 if (count < 0)
3365                         rctl |= E1000_RCTL_UPE;
3366         }
3367
3368         ew32(RCTL, rctl);
3369
3370         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3371                 e1000e_vlan_strip_enable(adapter);
3372         else
3373                 e1000e_vlan_strip_disable(adapter);
3374 }
3375
3376 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3377 {
3378         struct e1000_hw *hw = &adapter->hw;
3379         u32 mrqc, rxcsum;
3380         int i;
3381         static const u32 rsskey[10] = {
3382                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3383                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3384         };
3385
3386         /* Fill out hash function seed */
3387         for (i = 0; i < 10; i++)
3388                 ew32(RSSRK(i), rsskey[i]);
3389
3390         /* Direct all traffic to queue 0 */
3391         for (i = 0; i < 32; i++)
3392                 ew32(RETA(i), 0);
3393
3394         /* Disable raw packet checksumming so that RSS hash is placed in
3395          * descriptor on writeback.
3396          */
3397         rxcsum = er32(RXCSUM);
3398         rxcsum |= E1000_RXCSUM_PCSD;
3399
3400         ew32(RXCSUM, rxcsum);
3401
3402         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3403                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3404                 E1000_MRQC_RSS_FIELD_IPV6 |
3405                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3406                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3407
3408         ew32(MRQC, mrqc);
3409 }
3410
3411 /**
3412  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3413  * @adapter: board private structure
3414  * @timinca: pointer to returned time increment attributes
3415  *
3416  * Get attributes for incrementing the System Time Register SYSTIML/H at
3417  * the default base frequency, and set the cyclecounter shift value.
3418  **/
3419 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3420 {
3421         struct e1000_hw *hw = &adapter->hw;
3422         u32 incvalue, incperiod, shift;
3423
3424         /* Make sure clock is enabled on I217 before checking the frequency */
3425         if ((hw->mac.type == e1000_pch_lpt) &&
3426             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3427             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3428                 u32 fextnvm7 = er32(FEXTNVM7);
3429
3430                 if (!(fextnvm7 & (1 << 0))) {
3431                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3432                         e1e_flush();
3433                 }
3434         }
3435
3436         switch (hw->mac.type) {
3437         case e1000_pch2lan:
3438         case e1000_pch_lpt:
3439                 /* On I217, the clock frequency is 25MHz or 96MHz as
3440                  * indicated by the System Clock Frequency Indication
3441                  */
3442                 if ((hw->mac.type != e1000_pch_lpt) ||
3443                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3444                         /* Stable 96MHz frequency */
3445                         incperiod = INCPERIOD_96MHz;
3446                         incvalue = INCVALUE_96MHz;
3447                         shift = INCVALUE_SHIFT_96MHz;
3448                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3449                         break;
3450                 }
3451                 /* fall-through */
3452         case e1000_82574:
3453         case e1000_82583:
3454                 /* Stable 25MHz frequency */
3455                 incperiod = INCPERIOD_25MHz;
3456                 incvalue = INCVALUE_25MHz;
3457                 shift = INCVALUE_SHIFT_25MHz;
3458                 adapter->cc.shift = shift;
3459                 break;
3460         default:
3461                 return -EINVAL;
3462         }
3463
3464         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3465                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3466
3467         return 0;
3468 }
3469
3470 /**
3471  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3472  * @adapter: board private structure
3473  *
3474  * Outgoing time stamping can be enabled and disabled. Play nice and
3475  * disable it when requested, although it shouldn't cause any overhead
3476  * when no packet needs it. At most one packet in the queue may be
3477  * marked for time stamping, otherwise it would be impossible to tell
3478  * for sure to which packet the hardware time stamp belongs.
3479  *
3480  * Incoming time stamping has to be configured via the hardware filters.
3481  * Not all combinations are supported, in particular event type has to be
3482  * specified. Matching the kind of event packet is not supported, with the
3483  * exception of "all V2 events regardless of level 2 or 4".
3484  **/
3485 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3486                                   struct hwtstamp_config *config)
3487 {
3488         struct e1000_hw *hw = &adapter->hw;
3489         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3490         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3491         u32 rxmtrl = 0;
3492         u16 rxudp = 0;
3493         bool is_l4 = false;
3494         bool is_l2 = false;
3495         u32 regval;
3496         s32 ret_val;
3497
3498         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3499                 return -EINVAL;
3500
3501         /* flags reserved for future extensions - must be zero */
3502         if (config->flags)
3503                 return -EINVAL;
3504
3505         switch (config->tx_type) {
3506         case HWTSTAMP_TX_OFF:
3507                 tsync_tx_ctl = 0;
3508                 break;
3509         case HWTSTAMP_TX_ON:
3510                 break;
3511         default:
3512                 return -ERANGE;
3513         }
3514
3515         switch (config->rx_filter) {
3516         case HWTSTAMP_FILTER_NONE:
3517                 tsync_rx_ctl = 0;
3518                 break;
3519         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3520                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3521                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3522                 is_l4 = true;
3523                 break;
3524         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3525                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3526                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3527                 is_l4 = true;
3528                 break;
3529         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3530                 /* Also time stamps V2 L2 Path Delay Request/Response */
3531                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3532                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3533                 is_l2 = true;
3534                 break;
3535         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3536                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3537                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3538                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3539                 is_l2 = true;
3540                 break;
3541         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3542                 /* Hardware cannot filter just V2 L4 Sync messages;
3543                  * fall-through to V2 (both L2 and L4) Sync.
3544                  */
3545         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3546                 /* Also time stamps V2 Path Delay Request/Response. */
3547                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3548                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3549                 is_l2 = true;
3550                 is_l4 = true;
3551                 break;
3552         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3553                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3554                  * fall-through to V2 (both L2 and L4) Delay Request.
3555                  */
3556         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3557                 /* Also time stamps V2 Path Delay Request/Response. */
3558                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3559                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3560                 is_l2 = true;
3561                 is_l4 = true;
3562                 break;
3563         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3564         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3565                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3566                  * fall-through to all V2 (both L2 and L4) Events.
3567                  */
3568         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3569                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3570                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3571                 is_l2 = true;
3572                 is_l4 = true;
3573                 break;
3574         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3575                 /* For V1, the hardware can only filter Sync messages or
3576                  * Delay Request messages but not both so fall-through to
3577                  * time stamp all packets.
3578                  */
3579         case HWTSTAMP_FILTER_ALL:
3580                 is_l2 = true;
3581                 is_l4 = true;
3582                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3583                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3584                 break;
3585         default:
3586                 return -ERANGE;
3587         }
3588
3589         adapter->hwtstamp_config = *config;
3590
3591         /* enable/disable Tx h/w time stamping */
3592         regval = er32(TSYNCTXCTL);
3593         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3594         regval |= tsync_tx_ctl;
3595         ew32(TSYNCTXCTL, regval);
3596         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3597             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3598                 e_err("Timesync Tx Control register not set as expected\n");
3599                 return -EAGAIN;
3600         }
3601
3602         /* enable/disable Rx h/w time stamping */
3603         regval = er32(TSYNCRXCTL);
3604         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3605         regval |= tsync_rx_ctl;
3606         ew32(TSYNCRXCTL, regval);
3607         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3608                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3609             (regval & (E1000_TSYNCRXCTL_ENABLED |
3610                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3611                 e_err("Timesync Rx Control register not set as expected\n");
3612                 return -EAGAIN;
3613         }
3614
3615         /* L2: define ethertype filter for time stamped packets */
3616         if (is_l2)
3617                 rxmtrl |= ETH_P_1588;
3618
3619         /* define which PTP packets get time stamped */
3620         ew32(RXMTRL, rxmtrl);
3621
3622         /* Filter by destination port */
3623         if (is_l4) {
3624                 rxudp = PTP_EV_PORT;
3625                 cpu_to_be16s(&rxudp);
3626         }
3627         ew32(RXUDP, rxudp);
3628
3629         e1e_flush();
3630
3631         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3632         er32(RXSTMPH);
3633         er32(TXSTMPH);
3634
3635         /* Get and set the System Time Register SYSTIM base frequency */
3636         ret_val = e1000e_get_base_timinca(adapter, &regval);
3637         if (ret_val)
3638                 return ret_val;
3639         ew32(TIMINCA, regval);
3640
3641         /* reset the ns time counter */
3642         timecounter_init(&adapter->tc, &adapter->cc,
3643                          ktime_to_ns(ktime_get_real()));
3644
3645         return 0;
3646 }
3647
3648 /**
3649  * e1000_configure - configure the hardware for Rx and Tx
3650  * @adapter: private board structure
3651  **/
3652 static void e1000_configure(struct e1000_adapter *adapter)
3653 {
3654         struct e1000_ring *rx_ring = adapter->rx_ring;
3655
3656         e1000e_set_rx_mode(adapter->netdev);
3657
3658         e1000_restore_vlan(adapter);
3659         e1000_init_manageability_pt(adapter);
3660
3661         e1000_configure_tx(adapter);
3662
3663         if (adapter->netdev->features & NETIF_F_RXHASH)
3664                 e1000e_setup_rss_hash(adapter);
3665         e1000_setup_rctl(adapter);
3666         e1000_configure_rx(adapter);
3667         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3668 }
3669
3670 /**
3671  * e1000e_power_up_phy - restore link in case the phy was powered down
3672  * @adapter: address of board private structure
3673  *
3674  * The phy may be powered down to save power and turn off link when the
3675  * driver is unloaded and wake on lan is not enabled (among others)
3676  * *** this routine MUST be followed by a call to e1000e_reset ***
3677  **/
3678 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3679 {
3680         if (adapter->hw.phy.ops.power_up)
3681                 adapter->hw.phy.ops.power_up(&adapter->hw);
3682
3683         adapter->hw.mac.ops.setup_link(&adapter->hw);
3684 }
3685
3686 /**
3687  * e1000_power_down_phy - Power down the PHY
3688  *
3689  * Power down the PHY so no link is implied when interface is down.
3690  * The PHY cannot be powered down if management or WoL is active.
3691  */
3692 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3693 {
3694         /* WoL is enabled */
3695         if (adapter->wol)
3696                 return;
3697
3698         if (adapter->hw.phy.ops.power_down)
3699                 adapter->hw.phy.ops.power_down(&adapter->hw);
3700 }
3701
3702 /**
3703  * e1000e_reset - bring the hardware into a known good state
3704  *
3705  * This function boots the hardware and enables some settings that
3706  * require a configuration cycle of the hardware - those cannot be
3707  * set/changed during runtime. After reset the device needs to be
3708  * properly configured for Rx, Tx etc.
3709  */
3710 void e1000e_reset(struct e1000_adapter *adapter)
3711 {
3712         struct e1000_mac_info *mac = &adapter->hw.mac;
3713         struct e1000_fc_info *fc = &adapter->hw.fc;
3714         struct e1000_hw *hw = &adapter->hw;
3715         u32 tx_space, min_tx_space, min_rx_space;
3716         u32 pba = adapter->pba;
3717         u16 hwm;
3718
3719         /* reset Packet Buffer Allocation to default */
3720         ew32(PBA, pba);
3721
3722         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3723                 /* To maintain wire speed transmits, the Tx FIFO should be
3724                  * large enough to accommodate two full transmit packets,
3725                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3726                  * the Rx FIFO should be large enough to accommodate at least
3727                  * one full receive packet and is similarly rounded up and
3728                  * expressed in KB.
3729                  */
3730                 pba = er32(PBA);
3731                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3732                 tx_space = pba >> 16;
3733                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3734                 pba &= 0xffff;
3735                 /* the Tx fifo also stores 16 bytes of information about the Tx
3736                  * but don't include ethernet FCS because hardware appends it
3737                  */
3738                 min_tx_space = (adapter->max_frame_size +
3739                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3740                 min_tx_space = ALIGN(min_tx_space, 1024);
3741                 min_tx_space >>= 10;
3742                 /* software strips receive CRC, so leave room for it */
3743                 min_rx_space = adapter->max_frame_size;
3744                 min_rx_space = ALIGN(min_rx_space, 1024);
3745                 min_rx_space >>= 10;
3746
3747                 /* If current Tx allocation is less than the min Tx FIFO size,
3748                  * and the min Tx FIFO size is less than the current Rx FIFO
3749                  * allocation, take space away from current Rx allocation
3750                  */
3751                 if ((tx_space < min_tx_space) &&
3752                     ((min_tx_space - tx_space) < pba)) {
3753                         pba -= min_tx_space - tx_space;
3754
3755                         /* if short on Rx space, Rx wins and must trump Tx
3756                          * adjustment
3757                          */
3758                         if (pba < min_rx_space)
3759                                 pba = min_rx_space;
3760                 }
3761
3762                 ew32(PBA, pba);
3763         }
3764
3765         /* flow control settings
3766          *
3767          * The high water mark must be low enough to fit one full frame
3768          * (or the size used for early receive) above it in the Rx FIFO.
3769          * Set it to the lower of:
3770          * - 90% of the Rx FIFO size, and
3771          * - the full Rx FIFO size minus one full frame
3772          */
3773         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3774                 fc->pause_time = 0xFFFF;
3775         else
3776                 fc->pause_time = E1000_FC_PAUSE_TIME;
3777         fc->send_xon = true;
3778         fc->current_mode = fc->requested_mode;
3779
3780         switch (hw->mac.type) {
3781         case e1000_ich9lan:
3782         case e1000_ich10lan:
3783                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3784                         pba = 14;
3785                         ew32(PBA, pba);
3786                         fc->high_water = 0x2800;
3787                         fc->low_water = fc->high_water - 8;
3788                         break;
3789                 }
3790                 /* fall-through */
3791         default:
3792                 hwm = min(((pba << 10) * 9 / 10),
3793                           ((pba << 10) - adapter->max_frame_size));
3794
3795                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3796                 fc->low_water = fc->high_water - 8;
3797                 break;
3798         case e1000_pchlan:
3799                 /* Workaround PCH LOM adapter hangs with certain network
3800                  * loads.  If hangs persist, try disabling Tx flow control.
3801                  */
3802                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3803                         fc->high_water = 0x3500;
3804                         fc->low_water = 0x1500;
3805                 } else {
3806                         fc->high_water = 0x5000;
3807                         fc->low_water = 0x3000;
3808                 }
3809                 fc->refresh_time = 0x1000;
3810                 break;
3811         case e1000_pch2lan:
3812         case e1000_pch_lpt:
3813                 fc->refresh_time = 0x0400;
3814
3815                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3816                         fc->high_water = 0x05C20;
3817                         fc->low_water = 0x05048;
3818                         fc->pause_time = 0x0650;
3819                         break;
3820                 }
3821
3822                 pba = 14;
3823                 ew32(PBA, pba);
3824                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3825                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3826                 break;
3827         }
3828
3829         /* Alignment of Tx data is on an arbitrary byte boundary with the
3830          * maximum size per Tx descriptor limited only to the transmit
3831          * allocation of the packet buffer minus 96 bytes with an upper
3832          * limit of 24KB due to receive synchronization limitations.
3833          */
3834         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3835                                        24 << 10);
3836
3837         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3838          * fit in receive buffer.
3839          */
3840         if (adapter->itr_setting & 0x3) {
3841                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3842                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3843                                 dev_info(&adapter->pdev->dev,
3844                                          "Interrupt Throttle Rate off\n");
3845                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3846                                 e1000e_write_itr(adapter, 0);
3847                         }
3848                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3849                         dev_info(&adapter->pdev->dev,
3850                                  "Interrupt Throttle Rate on\n");
3851                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3852                         adapter->itr = 20000;
3853                         e1000e_write_itr(adapter, adapter->itr);
3854                 }
3855         }
3856
3857         /* Allow time for pending master requests to run */
3858         mac->ops.reset_hw(hw);
3859
3860         /* For parts with AMT enabled, let the firmware know
3861          * that the network interface is in control
3862          */
3863         if (adapter->flags & FLAG_HAS_AMT)
3864                 e1000e_get_hw_control(adapter);
3865
3866         ew32(WUC, 0);
3867
3868         if (mac->ops.init_hw(hw))
3869                 e_err("Hardware Error\n");
3870
3871         e1000_update_mng_vlan(adapter);
3872
3873         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3874         ew32(VET, ETH_P_8021Q);
3875
3876         e1000e_reset_adaptive(hw);
3877
3878         /* initialize systim and reset the ns time counter */
3879         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3880
3881         /* Set EEE advertisement as appropriate */
3882         if (adapter->flags2 & FLAG2_HAS_EEE) {
3883                 s32 ret_val;
3884                 u16 adv_addr;
3885
3886                 switch (hw->phy.type) {
3887                 case e1000_phy_82579:
3888                         adv_addr = I82579_EEE_ADVERTISEMENT;
3889                         break;
3890                 case e1000_phy_i217:
3891                         adv_addr = I217_EEE_ADVERTISEMENT;
3892                         break;
3893                 default:
3894                         dev_err(&adapter->pdev->dev,
3895                                 "Invalid PHY type setting EEE advertisement\n");
3896                         return;
3897                 }
3898
3899                 ret_val = hw->phy.ops.acquire(hw);
3900                 if (ret_val) {
3901                         dev_err(&adapter->pdev->dev,
3902                                 "EEE advertisement - unable to acquire PHY\n");
3903                         return;
3904                 }
3905
3906                 e1000_write_emi_reg_locked(hw, adv_addr,
3907                                            hw->dev_spec.ich8lan.eee_disable ?
3908                                            0 : adapter->eee_advert);
3909
3910                 hw->phy.ops.release(hw);
3911         }
3912
3913         if (!netif_running(adapter->netdev) &&
3914             !test_bit(__E1000_TESTING, &adapter->state)) {
3915                 e1000_power_down_phy(adapter);
3916                 return;
3917         }
3918
3919         e1000_get_phy_info(hw);
3920
3921         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3922             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3923                 u16 phy_data = 0;
3924                 /* speed up time to link by disabling smart power down, ignore
3925                  * the return value of this function because there is nothing
3926                  * different we would do if it failed
3927                  */
3928                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3929                 phy_data &= ~IGP02E1000_PM_SPD;
3930                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3931         }
3932 }
3933
3934 int e1000e_up(struct e1000_adapter *adapter)
3935 {
3936         struct e1000_hw *hw = &adapter->hw;
3937
3938         /* hardware has been reset, we need to reload some things */
3939         e1000_configure(adapter);
3940
3941         clear_bit(__E1000_DOWN, &adapter->state);
3942
3943         if (adapter->msix_entries)
3944                 e1000_configure_msix(adapter);
3945         e1000_irq_enable(adapter);
3946
3947         netif_start_queue(adapter->netdev);
3948
3949         /* fire a link change interrupt to start the watchdog */
3950         if (adapter->msix_entries)
3951                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3952         else
3953                 ew32(ICS, E1000_ICS_LSC);
3954
3955         return 0;
3956 }
3957
3958 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3959 {
3960         struct e1000_hw *hw = &adapter->hw;
3961
3962         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3963                 return;
3964
3965         /* flush pending descriptor writebacks to memory */
3966         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3967         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3968
3969         /* execute the writes immediately */
3970         e1e_flush();
3971
3972         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3973          * write is successful
3974          */
3975         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3976         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3977
3978         /* execute the writes immediately */
3979         e1e_flush();
3980 }
3981
3982 static void e1000e_update_stats(struct e1000_adapter *adapter);
3983
3984 void e1000e_down(struct e1000_adapter *adapter)
3985 {
3986         struct net_device *netdev = adapter->netdev;
3987         struct e1000_hw *hw = &adapter->hw;
3988         u32 tctl, rctl;
3989
3990         /* signal that we're down so the interrupt handler does not
3991          * reschedule our watchdog timer
3992          */
3993         set_bit(__E1000_DOWN, &adapter->state);
3994
3995         /* disable receives in the hardware */
3996         rctl = er32(RCTL);
3997         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3998                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3999         /* flush and sleep below */
4000
4001         netif_stop_queue(netdev);
4002
4003         /* disable transmits in the hardware */
4004         tctl = er32(TCTL);
4005         tctl &= ~E1000_TCTL_EN;
4006         ew32(TCTL, tctl);
4007
4008         /* flush both disables and wait for them to finish */
4009         e1e_flush();
4010         usleep_range(10000, 20000);
4011
4012         e1000_irq_disable(adapter);
4013
4014         napi_synchronize(&adapter->napi);
4015
4016         del_timer_sync(&adapter->watchdog_timer);
4017         del_timer_sync(&adapter->phy_info_timer);
4018
4019         netif_carrier_off(netdev);
4020
4021         spin_lock(&adapter->stats64_lock);
4022         e1000e_update_stats(adapter);
4023         spin_unlock(&adapter->stats64_lock);
4024
4025         e1000e_flush_descriptors(adapter);
4026         e1000_clean_tx_ring(adapter->tx_ring);
4027         e1000_clean_rx_ring(adapter->rx_ring);
4028
4029         adapter->link_speed = 0;
4030         adapter->link_duplex = 0;
4031
4032         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4033         if ((hw->mac.type >= e1000_pch2lan) &&
4034             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4035             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4036                 e_dbg("failed to disable jumbo frame workaround mode\n");
4037
4038         if (!pci_channel_offline(adapter->pdev))
4039                 e1000e_reset(adapter);
4040
4041         /* TODO: for power management, we could drop the link and
4042          * pci_disable_device here.
4043          */
4044 }
4045
4046 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4047 {
4048         might_sleep();
4049         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4050                 usleep_range(1000, 2000);
4051         e1000e_down(adapter);
4052         e1000e_up(adapter);
4053         clear_bit(__E1000_RESETTING, &adapter->state);
4054 }
4055
4056 /**
4057  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4058  * @cc: cyclecounter structure
4059  **/
4060 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4061 {
4062         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4063                                                      cc);
4064         struct e1000_hw *hw = &adapter->hw;
4065         cycle_t systim;
4066
4067         /* latch SYSTIMH on read of SYSTIML */
4068         systim = (cycle_t)er32(SYSTIML);
4069         systim |= (cycle_t)er32(SYSTIMH) << 32;
4070
4071         return systim;
4072 }
4073
4074 /**
4075  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4076  * @adapter: board private structure to initialize
4077  *
4078  * e1000_sw_init initializes the Adapter private data structure.
4079  * Fields are initialized based on PCI device information and
4080  * OS network device settings (MTU size).
4081  **/
4082 static int e1000_sw_init(struct e1000_adapter *adapter)
4083 {
4084         struct net_device *netdev = adapter->netdev;
4085
4086         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4087         adapter->rx_ps_bsize0 = 128;
4088         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4089         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4090         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4091         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4092
4093         spin_lock_init(&adapter->stats64_lock);
4094
4095         e1000e_set_interrupt_capability(adapter);
4096
4097         if (e1000_alloc_queues(adapter))
4098                 return -ENOMEM;
4099
4100         /* Setup hardware time stamping cyclecounter */
4101         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4102                 adapter->cc.read = e1000e_cyclecounter_read;
4103                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4104                 adapter->cc.mult = 1;
4105                 /* cc.shift set in e1000e_get_base_tininca() */
4106
4107                 spin_lock_init(&adapter->systim_lock);
4108                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4109         }
4110
4111         /* Explicitly disable IRQ since the NIC can be in any state. */
4112         e1000_irq_disable(adapter);
4113
4114         set_bit(__E1000_DOWN, &adapter->state);
4115         return 0;
4116 }
4117
4118 /**
4119  * e1000_intr_msi_test - Interrupt Handler
4120  * @irq: interrupt number
4121  * @data: pointer to a network interface device structure
4122  **/
4123 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4124 {
4125         struct net_device *netdev = data;
4126         struct e1000_adapter *adapter = netdev_priv(netdev);
4127         struct e1000_hw *hw = &adapter->hw;
4128         u32 icr = er32(ICR);
4129
4130         e_dbg("icr is %08X\n", icr);
4131         if (icr & E1000_ICR_RXSEQ) {
4132                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4133                 /* Force memory writes to complete before acknowledging the
4134                  * interrupt is handled.
4135                  */
4136                 wmb();
4137         }
4138
4139         return IRQ_HANDLED;
4140 }
4141
4142 /**
4143  * e1000_test_msi_interrupt - Returns 0 for successful test
4144  * @adapter: board private struct
4145  *
4146  * code flow taken from tg3.c
4147  **/
4148 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4149 {
4150         struct net_device *netdev = adapter->netdev;
4151         struct e1000_hw *hw = &adapter->hw;
4152         int err;
4153
4154         /* poll_enable hasn't been called yet, so don't need disable */
4155         /* clear any pending events */
4156         er32(ICR);
4157
4158         /* free the real vector and request a test handler */
4159         e1000_free_irq(adapter);
4160         e1000e_reset_interrupt_capability(adapter);
4161
4162         /* Assume that the test fails, if it succeeds then the test
4163          * MSI irq handler will unset this flag
4164          */
4165         adapter->flags |= FLAG_MSI_TEST_FAILED;
4166
4167         err = pci_enable_msi(adapter->pdev);
4168         if (err)
4169                 goto msi_test_failed;
4170
4171         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4172                           netdev->name, netdev);
4173         if (err) {
4174                 pci_disable_msi(adapter->pdev);
4175                 goto msi_test_failed;
4176         }
4177
4178         /* Force memory writes to complete before enabling and firing an
4179          * interrupt.
4180          */
4181         wmb();
4182
4183         e1000_irq_enable(adapter);
4184
4185         /* fire an unusual interrupt on the test handler */
4186         ew32(ICS, E1000_ICS_RXSEQ);
4187         e1e_flush();
4188         msleep(100);
4189
4190         e1000_irq_disable(adapter);
4191
4192         rmb();                  /* read flags after interrupt has been fired */
4193
4194         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4195                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4196                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4197         } else {
4198                 e_dbg("MSI interrupt test succeeded!\n");
4199         }
4200
4201         free_irq(adapter->pdev->irq, netdev);
4202         pci_disable_msi(adapter->pdev);
4203
4204 msi_test_failed:
4205         e1000e_set_interrupt_capability(adapter);
4206         return e1000_request_irq(adapter);
4207 }
4208
4209 /**
4210  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4211  * @adapter: board private struct
4212  *
4213  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4214  **/
4215 static int e1000_test_msi(struct e1000_adapter *adapter)
4216 {
4217         int err;
4218         u16 pci_cmd;
4219
4220         if (!(adapter->flags & FLAG_MSI_ENABLED))
4221                 return 0;
4222
4223         /* disable SERR in case the MSI write causes a master abort */
4224         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4225         if (pci_cmd & PCI_COMMAND_SERR)
4226                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4227                                       pci_cmd & ~PCI_COMMAND_SERR);
4228
4229         err = e1000_test_msi_interrupt(adapter);
4230
4231         /* re-enable SERR */
4232         if (pci_cmd & PCI_COMMAND_SERR) {
4233                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4234                 pci_cmd |= PCI_COMMAND_SERR;
4235                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4236         }
4237
4238         return err;
4239 }
4240
4241 /**
4242  * e1000_open - Called when a network interface is made active
4243  * @netdev: network interface device structure
4244  *
4245  * Returns 0 on success, negative value on failure
4246  *
4247  * The open entry point is called when a network interface is made
4248  * active by the system (IFF_UP).  At this point all resources needed
4249  * for transmit and receive operations are allocated, the interrupt
4250  * handler is registered with the OS, the watchdog timer is started,
4251  * and the stack is notified that the interface is ready.
4252  **/
4253 static int e1000_open(struct net_device *netdev)
4254 {
4255         struct e1000_adapter *adapter = netdev_priv(netdev);
4256         struct e1000_hw *hw = &adapter->hw;
4257         struct pci_dev *pdev = adapter->pdev;
4258         int err;
4259
4260         /* disallow open during test */
4261         if (test_bit(__E1000_TESTING, &adapter->state))
4262                 return -EBUSY;
4263
4264         pm_runtime_get_sync(&pdev->dev);
4265
4266         netif_carrier_off(netdev);
4267
4268         /* allocate transmit descriptors */
4269         err = e1000e_setup_tx_resources(adapter->tx_ring);
4270         if (err)
4271                 goto err_setup_tx;
4272
4273         /* allocate receive descriptors */
4274         err = e1000e_setup_rx_resources(adapter->rx_ring);
4275         if (err)
4276                 goto err_setup_rx;
4277
4278         /* If AMT is enabled, let the firmware know that the network
4279          * interface is now open and reset the part to a known state.
4280          */
4281         if (adapter->flags & FLAG_HAS_AMT) {
4282                 e1000e_get_hw_control(adapter);
4283                 e1000e_reset(adapter);
4284         }
4285
4286         e1000e_power_up_phy(adapter);
4287
4288         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4289         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4290                 e1000_update_mng_vlan(adapter);
4291
4292         /* DMA latency requirement to workaround jumbo issue */
4293         pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4294                            PM_QOS_DEFAULT_VALUE);
4295
4296         /* before we allocate an interrupt, we must be ready to handle it.
4297          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4298          * as soon as we call pci_request_irq, so we have to setup our
4299          * clean_rx handler before we do so.
4300          */
4301         e1000_configure(adapter);
4302
4303         err = e1000_request_irq(adapter);
4304         if (err)
4305                 goto err_req_irq;
4306
4307         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4308          * ignore e1000e MSI messages, which means we need to test our MSI
4309          * interrupt now
4310          */
4311         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4312                 err = e1000_test_msi(adapter);
4313                 if (err) {
4314                         e_err("Interrupt allocation failed\n");
4315                         goto err_req_irq;
4316                 }
4317         }
4318
4319         /* From here on the code is the same as e1000e_up() */
4320         clear_bit(__E1000_DOWN, &adapter->state);
4321
4322         napi_enable(&adapter->napi);
4323
4324         e1000_irq_enable(adapter);
4325
4326         adapter->tx_hang_recheck = false;
4327         netif_start_queue(netdev);
4328
4329         adapter->idle_check = true;
4330         hw->mac.get_link_status = true;
4331         pm_runtime_put(&pdev->dev);
4332
4333         /* fire a link status change interrupt to start the watchdog */
4334         if (adapter->msix_entries)
4335                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4336         else
4337                 ew32(ICS, E1000_ICS_LSC);
4338
4339         return 0;
4340
4341 err_req_irq:
4342         e1000e_release_hw_control(adapter);
4343         e1000_power_down_phy(adapter);
4344         e1000e_free_rx_resources(adapter->rx_ring);
4345 err_setup_rx:
4346         e1000e_free_tx_resources(adapter->tx_ring);
4347 err_setup_tx:
4348         e1000e_reset(adapter);
4349         pm_runtime_put_sync(&pdev->dev);
4350
4351         return err;
4352 }
4353
4354 /**
4355  * e1000_close - Disables a network interface
4356  * @netdev: network interface device structure
4357  *
4358  * Returns 0, this is not allowed to fail
4359  *
4360  * The close entry point is called when an interface is de-activated
4361  * by the OS.  The hardware is still under the drivers control, but
4362  * needs to be disabled.  A global MAC reset is issued to stop the
4363  * hardware, and all transmit and receive resources are freed.
4364  **/
4365 static int e1000_close(struct net_device *netdev)
4366 {
4367         struct e1000_adapter *adapter = netdev_priv(netdev);
4368         struct pci_dev *pdev = adapter->pdev;
4369         int count = E1000_CHECK_RESET_COUNT;
4370
4371         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4372                 usleep_range(10000, 20000);
4373
4374         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4375
4376         pm_runtime_get_sync(&pdev->dev);
4377
4378         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4379                 e1000e_down(adapter);
4380                 e1000_free_irq(adapter);
4381         }
4382
4383         napi_disable(&adapter->napi);
4384
4385         e1000_power_down_phy(adapter);
4386
4387         e1000e_free_tx_resources(adapter->tx_ring);
4388         e1000e_free_rx_resources(adapter->rx_ring);
4389
4390         /* kill manageability vlan ID if supported, but not if a vlan with
4391          * the same ID is registered on the host OS (let 8021q kill it)
4392          */
4393         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4394                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4395                                        adapter->mng_vlan_id);
4396
4397         /* If AMT is enabled, let the firmware know that the network
4398          * interface is now closed
4399          */
4400         if ((adapter->flags & FLAG_HAS_AMT) &&
4401             !test_bit(__E1000_TESTING, &adapter->state))
4402                 e1000e_release_hw_control(adapter);
4403
4404         pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4405
4406         pm_runtime_put_sync(&pdev->dev);
4407
4408         return 0;
4409 }
4410
4411 /**
4412  * e1000_set_mac - Change the Ethernet Address of the NIC
4413  * @netdev: network interface device structure
4414  * @p: pointer to an address structure
4415  *
4416  * Returns 0 on success, negative on failure
4417  **/
4418 static int e1000_set_mac(struct net_device *netdev, void *p)
4419 {
4420         struct e1000_adapter *adapter = netdev_priv(netdev);
4421         struct e1000_hw *hw = &adapter->hw;
4422         struct sockaddr *addr = p;
4423
4424         if (!is_valid_ether_addr(addr->sa_data))
4425                 return -EADDRNOTAVAIL;
4426
4427         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4428         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4429
4430         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4431
4432         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4433                 /* activate the work around */
4434                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4435
4436                 /* Hold a copy of the LAA in RAR[14] This is done so that
4437                  * between the time RAR[0] gets clobbered  and the time it
4438                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4439                  * of the RARs and no incoming packets directed to this port
4440                  * are dropped. Eventually the LAA will be in RAR[0] and
4441                  * RAR[14]
4442                  */
4443                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4444                                     adapter->hw.mac.rar_entry_count - 1);
4445         }
4446
4447         return 0;
4448 }
4449
4450 /**
4451  * e1000e_update_phy_task - work thread to update phy
4452  * @work: pointer to our work struct
4453  *
4454  * this worker thread exists because we must acquire a
4455  * semaphore to read the phy, which we could msleep while
4456  * waiting for it, and we can't msleep in a timer.
4457  **/
4458 static void e1000e_update_phy_task(struct work_struct *work)
4459 {
4460         struct e1000_adapter *adapter = container_of(work,
4461                                                      struct e1000_adapter,
4462                                                      update_phy_task);
4463
4464         if (test_bit(__E1000_DOWN, &adapter->state))
4465                 return;
4466
4467         e1000_get_phy_info(&adapter->hw);
4468 }
4469
4470 /**
4471  * e1000_update_phy_info - timre call-back to update PHY info
4472  * @data: pointer to adapter cast into an unsigned long
4473  *
4474  * Need to wait a few seconds after link up to get diagnostic information from
4475  * the phy
4476  **/
4477 static void e1000_update_phy_info(unsigned long data)
4478 {
4479         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4480
4481         if (test_bit(__E1000_DOWN, &adapter->state))
4482                 return;
4483
4484         schedule_work(&adapter->update_phy_task);
4485 }
4486
4487 /**
4488  * e1000e_update_phy_stats - Update the PHY statistics counters
4489  * @adapter: board private structure
4490  *
4491  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4492  **/
4493 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4494 {
4495         struct e1000_hw *hw = &adapter->hw;
4496         s32 ret_val;
4497         u16 phy_data;
4498
4499         ret_val = hw->phy.ops.acquire(hw);
4500         if (ret_val)
4501                 return;
4502
4503         /* A page set is expensive so check if already on desired page.
4504          * If not, set to the page with the PHY status registers.
4505          */
4506         hw->phy.addr = 1;
4507         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4508                                            &phy_data);
4509         if (ret_val)
4510                 goto release;
4511         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4512                 ret_val = hw->phy.ops.set_page(hw,
4513                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4514                 if (ret_val)
4515                         goto release;
4516         }
4517
4518         /* Single Collision Count */
4519         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4520         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4521         if (!ret_val)
4522                 adapter->stats.scc += phy_data;
4523
4524         /* Excessive Collision Count */
4525         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4526         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4527         if (!ret_val)
4528                 adapter->stats.ecol += phy_data;
4529
4530         /* Multiple Collision Count */
4531         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4532         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4533         if (!ret_val)
4534                 adapter->stats.mcc += phy_data;
4535
4536         /* Late Collision Count */
4537         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4538         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4539         if (!ret_val)
4540                 adapter->stats.latecol += phy_data;
4541
4542         /* Collision Count - also used for adaptive IFS */
4543         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4544         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4545         if (!ret_val)
4546                 hw->mac.collision_delta = phy_data;
4547
4548         /* Defer Count */
4549         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4550         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4551         if (!ret_val)
4552                 adapter->stats.dc += phy_data;
4553
4554         /* Transmit with no CRS */
4555         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4556         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4557         if (!ret_val)
4558                 adapter->stats.tncrs += phy_data;
4559
4560 release:
4561         hw->phy.ops.release(hw);
4562 }
4563
4564 /**
4565  * e1000e_update_stats - Update the board statistics counters
4566  * @adapter: board private structure
4567  **/
4568 static void e1000e_update_stats(struct e1000_adapter *adapter)
4569 {
4570         struct net_device *netdev = adapter->netdev;
4571         struct e1000_hw *hw = &adapter->hw;
4572         struct pci_dev *pdev = adapter->pdev;
4573
4574         /* Prevent stats update while adapter is being reset, or if the pci
4575          * connection is down.
4576          */
4577         if (adapter->link_speed == 0)
4578                 return;
4579         if (pci_channel_offline(pdev))
4580                 return;
4581
4582         adapter->stats.crcerrs += er32(CRCERRS);
4583         adapter->stats.gprc += er32(GPRC);
4584         adapter->stats.gorc += er32(GORCL);
4585         er32(GORCH);            /* Clear gorc */
4586         adapter->stats.bprc += er32(BPRC);
4587         adapter->stats.mprc += er32(MPRC);
4588         adapter->stats.roc += er32(ROC);
4589
4590         adapter->stats.mpc += er32(MPC);
4591
4592         /* Half-duplex statistics */
4593         if (adapter->link_duplex == HALF_DUPLEX) {
4594                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4595                         e1000e_update_phy_stats(adapter);
4596                 } else {
4597                         adapter->stats.scc += er32(SCC);
4598                         adapter->stats.ecol += er32(ECOL);
4599                         adapter->stats.mcc += er32(MCC);
4600                         adapter->stats.latecol += er32(LATECOL);
4601                         adapter->stats.dc += er32(DC);
4602
4603                         hw->mac.collision_delta = er32(COLC);
4604
4605                         if ((hw->mac.type != e1000_82574) &&
4606                             (hw->mac.type != e1000_82583))
4607                                 adapter->stats.tncrs += er32(TNCRS);
4608                 }
4609                 adapter->stats.colc += hw->mac.collision_delta;
4610         }
4611
4612         adapter->stats.xonrxc += er32(XONRXC);
4613         adapter->stats.xontxc += er32(XONTXC);
4614         adapter->stats.xoffrxc += er32(XOFFRXC);
4615         adapter->stats.xofftxc += er32(XOFFTXC);
4616         adapter->stats.gptc += er32(GPTC);
4617         adapter->stats.gotc += er32(GOTCL);
4618         er32(GOTCH);            /* Clear gotc */
4619         adapter->stats.rnbc += er32(RNBC);
4620         adapter->stats.ruc += er32(RUC);
4621
4622         adapter->stats.mptc += er32(MPTC);
4623         adapter->stats.bptc += er32(BPTC);
4624
4625         /* used for adaptive IFS */
4626
4627         hw->mac.tx_packet_delta = er32(TPT);
4628         adapter->stats.tpt += hw->mac.tx_packet_delta;
4629
4630         adapter->stats.algnerrc += er32(ALGNERRC);
4631         adapter->stats.rxerrc += er32(RXERRC);
4632         adapter->stats.cexterr += er32(CEXTERR);
4633         adapter->stats.tsctc += er32(TSCTC);
4634         adapter->stats.tsctfc += er32(TSCTFC);
4635
4636         /* Fill out the OS statistics structure */
4637         netdev->stats.multicast = adapter->stats.mprc;
4638         netdev->stats.collisions = adapter->stats.colc;
4639
4640         /* Rx Errors */
4641
4642         /* RLEC on some newer hardware can be incorrect so build
4643          * our own version based on RUC and ROC
4644          */
4645         netdev->stats.rx_errors = adapter->stats.rxerrc +
4646             adapter->stats.crcerrs + adapter->stats.algnerrc +
4647             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4648         netdev->stats.rx_length_errors = adapter->stats.ruc +
4649             adapter->stats.roc;
4650         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4651         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4652         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4653
4654         /* Tx Errors */
4655         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4656         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4657         netdev->stats.tx_window_errors = adapter->stats.latecol;
4658         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4659
4660         /* Tx Dropped needs to be maintained elsewhere */
4661
4662         /* Management Stats */
4663         adapter->stats.mgptc += er32(MGTPTC);
4664         adapter->stats.mgprc += er32(MGTPRC);
4665         adapter->stats.mgpdc += er32(MGTPDC);
4666
4667         /* Correctable ECC Errors */
4668         if (hw->mac.type == e1000_pch_lpt) {
4669                 u32 pbeccsts = er32(PBECCSTS);
4670                 adapter->corr_errors +=
4671                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4672                 adapter->uncorr_errors +=
4673                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4674                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4675         }
4676 }
4677
4678 /**
4679  * e1000_phy_read_status - Update the PHY register status snapshot
4680  * @adapter: board private structure
4681  **/
4682 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4683 {
4684         struct e1000_hw *hw = &adapter->hw;
4685         struct e1000_phy_regs *phy = &adapter->phy_regs;
4686
4687         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4688             (er32(STATUS) & E1000_STATUS_LU) &&
4689             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4690                 int ret_val;
4691
4692                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4693                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4694                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4695                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4696                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4697                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4698                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4699                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4700                 if (ret_val)
4701                         e_warn("Error reading PHY register\n");
4702         } else {
4703                 /* Do not read PHY registers if link is not up
4704                  * Set values to typical power-on defaults
4705                  */
4706                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4707                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4708                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4709                              BMSR_ERCAP);
4710                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4711                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4712                 phy->lpa = 0;
4713                 phy->expansion = EXPANSION_ENABLENPAGE;
4714                 phy->ctrl1000 = ADVERTISE_1000FULL;
4715                 phy->stat1000 = 0;
4716                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4717         }
4718 }
4719
4720 static void e1000_print_link_info(struct e1000_adapter *adapter)
4721 {
4722         struct e1000_hw *hw = &adapter->hw;
4723         u32 ctrl = er32(CTRL);
4724
4725         /* Link status message must follow this format for user tools */
4726         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4727                 adapter->netdev->name, adapter->link_speed,
4728                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4729                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4730                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4731                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4732 }
4733
4734 static bool e1000e_has_link(struct e1000_adapter *adapter)
4735 {
4736         struct e1000_hw *hw = &adapter->hw;
4737         bool link_active = false;
4738         s32 ret_val = 0;
4739
4740         /* get_link_status is set on LSC (link status) interrupt or
4741          * Rx sequence error interrupt.  get_link_status will stay
4742          * false until the check_for_link establishes link
4743          * for copper adapters ONLY
4744          */
4745         switch (hw->phy.media_type) {
4746         case e1000_media_type_copper:
4747                 if (hw->mac.get_link_status) {
4748                         ret_val = hw->mac.ops.check_for_link(hw);
4749                         link_active = !hw->mac.get_link_status;
4750                 } else {
4751                         link_active = true;
4752                 }
4753                 break;
4754         case e1000_media_type_fiber:
4755                 ret_val = hw->mac.ops.check_for_link(hw);
4756                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4757                 break;
4758         case e1000_media_type_internal_serdes:
4759                 ret_val = hw->mac.ops.check_for_link(hw);
4760                 link_active = adapter->hw.mac.serdes_has_link;
4761                 break;
4762         default:
4763         case e1000_media_type_unknown:
4764                 break;
4765         }
4766
4767         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4768             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4769                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4770                 e_info("Gigabit has been disabled, downgrading speed\n");
4771         }
4772
4773         return link_active;
4774 }
4775
4776 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4777 {
4778         /* make sure the receive unit is started */
4779         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4780             (adapter->flags & FLAG_RESTART_NOW)) {
4781                 struct e1000_hw *hw = &adapter->hw;
4782                 u32 rctl = er32(RCTL);
4783                 ew32(RCTL, rctl | E1000_RCTL_EN);
4784                 adapter->flags &= ~FLAG_RESTART_NOW;
4785         }
4786 }
4787
4788 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4789 {
4790         struct e1000_hw *hw = &adapter->hw;
4791
4792         /* With 82574 controllers, PHY needs to be checked periodically
4793          * for hung state and reset, if two calls return true
4794          */
4795         if (e1000_check_phy_82574(hw))
4796                 adapter->phy_hang_count++;
4797         else
4798                 adapter->phy_hang_count = 0;
4799
4800         if (adapter->phy_hang_count > 1) {
4801                 adapter->phy_hang_count = 0;
4802                 schedule_work(&adapter->reset_task);
4803         }
4804 }
4805
4806 /**
4807  * e1000_watchdog - Timer Call-back
4808  * @data: pointer to adapter cast into an unsigned long
4809  **/
4810 static void e1000_watchdog(unsigned long data)
4811 {
4812         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4813
4814         /* Do the rest outside of interrupt context */
4815         schedule_work(&adapter->watchdog_task);
4816
4817         /* TODO: make this use queue_delayed_work() */
4818 }
4819
4820 static void e1000_watchdog_task(struct work_struct *work)
4821 {
4822         struct e1000_adapter *adapter = container_of(work,
4823                                                      struct e1000_adapter,
4824                                                      watchdog_task);
4825         struct net_device *netdev = adapter->netdev;
4826         struct e1000_mac_info *mac = &adapter->hw.mac;
4827         struct e1000_phy_info *phy = &adapter->hw.phy;
4828         struct e1000_ring *tx_ring = adapter->tx_ring;
4829         struct e1000_hw *hw = &adapter->hw;
4830         u32 link, tctl;
4831
4832         if (test_bit(__E1000_DOWN, &adapter->state))
4833                 return;
4834
4835         link = e1000e_has_link(adapter);
4836         if ((netif_carrier_ok(netdev)) && link) {
4837                 /* Cancel scheduled suspend requests. */
4838                 pm_runtime_resume(netdev->dev.parent);
4839
4840                 e1000e_enable_receives(adapter);
4841                 goto link_up;
4842         }
4843
4844         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4845             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4846                 e1000_update_mng_vlan(adapter);
4847
4848         if (link) {
4849                 if (!netif_carrier_ok(netdev)) {
4850                         bool txb2b = true;
4851
4852                         /* Cancel scheduled suspend requests. */
4853                         pm_runtime_resume(netdev->dev.parent);
4854
4855                         /* update snapshot of PHY registers on LSC */
4856                         e1000_phy_read_status(adapter);
4857                         mac->ops.get_link_up_info(&adapter->hw,
4858                                                   &adapter->link_speed,
4859                                                   &adapter->link_duplex);
4860                         e1000_print_link_info(adapter);
4861
4862                         /* check if SmartSpeed worked */
4863                         e1000e_check_downshift(hw);
4864                         if (phy->speed_downgraded)
4865                                 netdev_warn(netdev,
4866                                             "Link Speed was downgraded by SmartSpeed\n");
4867
4868                         /* On supported PHYs, check for duplex mismatch only
4869                          * if link has autonegotiated at 10/100 half
4870                          */
4871                         if ((hw->phy.type == e1000_phy_igp_3 ||
4872                              hw->phy.type == e1000_phy_bm) &&
4873                             hw->mac.autoneg &&
4874                             (adapter->link_speed == SPEED_10 ||
4875                              adapter->link_speed == SPEED_100) &&
4876                             (adapter->link_duplex == HALF_DUPLEX)) {
4877                                 u16 autoneg_exp;
4878
4879                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4880
4881                                 if (!(autoneg_exp & EXPANSION_NWAY))
4882                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4883                         }
4884
4885                         /* adjust timeout factor according to speed/duplex */
4886                         adapter->tx_timeout_factor = 1;
4887                         switch (adapter->link_speed) {
4888                         case SPEED_10:
4889                                 txb2b = false;
4890                                 adapter->tx_timeout_factor = 16;
4891                                 break;
4892                         case SPEED_100:
4893                                 txb2b = false;
4894                                 adapter->tx_timeout_factor = 10;
4895                                 break;
4896                         }
4897
4898                         /* workaround: re-program speed mode bit after
4899                          * link-up event
4900                          */
4901                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4902                             !txb2b) {
4903                                 u32 tarc0;
4904                                 tarc0 = er32(TARC(0));
4905                                 tarc0 &= ~SPEED_MODE_BIT;
4906                                 ew32(TARC(0), tarc0);
4907                         }
4908
4909                         /* disable TSO for pcie and 10/100 speeds, to avoid
4910                          * some hardware issues
4911                          */
4912                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4913                                 switch (adapter->link_speed) {
4914                                 case SPEED_10:
4915                                 case SPEED_100:
4916                                         e_info("10/100 speed: disabling TSO\n");
4917                                         netdev->features &= ~NETIF_F_TSO;
4918                                         netdev->features &= ~NETIF_F_TSO6;
4919                                         break;
4920                                 case SPEED_1000:
4921                                         netdev->features |= NETIF_F_TSO;
4922                                         netdev->features |= NETIF_F_TSO6;
4923                                         break;
4924                                 default:
4925                                         /* oops */
4926                                         break;
4927                                 }
4928                         }
4929
4930                         /* enable transmits in the hardware, need to do this
4931                          * after setting TARC(0)
4932                          */
4933                         tctl = er32(TCTL);
4934                         tctl |= E1000_TCTL_EN;
4935                         ew32(TCTL, tctl);
4936
4937                         /* Perform any post-link-up configuration before
4938                          * reporting link up.
4939                          */
4940                         if (phy->ops.cfg_on_link_up)
4941                                 phy->ops.cfg_on_link_up(hw);
4942
4943                         netif_carrier_on(netdev);
4944
4945                         if (!test_bit(__E1000_DOWN, &adapter->state))
4946                                 mod_timer(&adapter->phy_info_timer,
4947                                           round_jiffies(jiffies + 2 * HZ));
4948                 }
4949         } else {
4950                 if (netif_carrier_ok(netdev)) {
4951                         adapter->link_speed = 0;
4952                         adapter->link_duplex = 0;
4953                         /* Link status message must follow this format */
4954                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4955                         netif_carrier_off(netdev);
4956                         if (!test_bit(__E1000_DOWN, &adapter->state))
4957                                 mod_timer(&adapter->phy_info_timer,
4958                                           round_jiffies(jiffies + 2 * HZ));
4959
4960                         /* The link is lost so the controller stops DMA.
4961                          * If there is queued Tx work that cannot be done
4962                          * or if on an 8000ES2LAN which requires a Rx packet
4963                          * buffer work-around on link down event, reset the
4964                          * controller to flush the Tx/Rx packet buffers.
4965                          * (Do the reset outside of interrupt context).
4966                          */
4967                         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) ||
4968                             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
4969                                 adapter->flags |= FLAG_RESTART_NOW;
4970                         else
4971                                 pm_schedule_suspend(netdev->dev.parent,
4972                                                     LINK_TIMEOUT);
4973                 }
4974         }
4975
4976 link_up:
4977         spin_lock(&adapter->stats64_lock);
4978         e1000e_update_stats(adapter);
4979
4980         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4981         adapter->tpt_old = adapter->stats.tpt;
4982         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4983         adapter->colc_old = adapter->stats.colc;
4984
4985         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4986         adapter->gorc_old = adapter->stats.gorc;
4987         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4988         adapter->gotc_old = adapter->stats.gotc;
4989         spin_unlock(&adapter->stats64_lock);
4990
4991         if (adapter->flags & FLAG_RESTART_NOW) {
4992                 schedule_work(&adapter->reset_task);
4993                 /* return immediately since reset is imminent */
4994                 return;
4995         }
4996
4997         e1000e_update_adaptive(&adapter->hw);
4998
4999         /* Simple mode for Interrupt Throttle Rate (ITR) */
5000         if (adapter->itr_setting == 4) {
5001                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5002                  * Total asymmetrical Tx or Rx gets ITR=8000;
5003                  * everyone else is between 2000-8000.
5004                  */
5005                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5006                 u32 dif = (adapter->gotc > adapter->gorc ?
5007                            adapter->gotc - adapter->gorc :
5008                            adapter->gorc - adapter->gotc) / 10000;
5009                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5010
5011                 e1000e_write_itr(adapter, itr);
5012         }
5013
5014         /* Cause software interrupt to ensure Rx ring is cleaned */
5015         if (adapter->msix_entries)
5016                 ew32(ICS, adapter->rx_ring->ims_val);
5017         else
5018                 ew32(ICS, E1000_ICS_RXDMT0);
5019
5020         /* flush pending descriptors to memory before detecting Tx hang */
5021         e1000e_flush_descriptors(adapter);
5022
5023         /* Force detection of hung controller every watchdog period */
5024         adapter->detect_tx_hung = true;
5025
5026         /* With 82571 controllers, LAA may be overwritten due to controller
5027          * reset from the other port. Set the appropriate LAA in RAR[0]
5028          */
5029         if (e1000e_get_laa_state_82571(hw))
5030                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5031
5032         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5033                 e1000e_check_82574_phy_workaround(adapter);
5034
5035         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5036         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5037                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5038                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5039                         er32(RXSTMPH);
5040                         adapter->rx_hwtstamp_cleared++;
5041                 } else {
5042                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5043                 }
5044         }
5045
5046         /* Reset the timer */
5047         if (!test_bit(__E1000_DOWN, &adapter->state))
5048                 mod_timer(&adapter->watchdog_timer,
5049                           round_jiffies(jiffies + 2 * HZ));
5050 }
5051
5052 #define E1000_TX_FLAGS_CSUM             0x00000001
5053 #define E1000_TX_FLAGS_VLAN             0x00000002
5054 #define E1000_TX_FLAGS_TSO              0x00000004
5055 #define E1000_TX_FLAGS_IPV4             0x00000008
5056 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5057 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5058 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5059 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5060
5061 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5062 {
5063         struct e1000_context_desc *context_desc;
5064         struct e1000_buffer *buffer_info;
5065         unsigned int i;
5066         u32 cmd_length = 0;
5067         u16 ipcse = 0, mss;
5068         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5069
5070         if (!skb_is_gso(skb))
5071                 return 0;
5072
5073         if (skb_header_cloned(skb)) {
5074                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5075
5076                 if (err)
5077                         return err;
5078         }
5079
5080         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5081         mss = skb_shinfo(skb)->gso_size;
5082         if (skb->protocol == htons(ETH_P_IP)) {
5083                 struct iphdr *iph = ip_hdr(skb);
5084                 iph->tot_len = 0;
5085                 iph->check = 0;
5086                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5087                                                          0, IPPROTO_TCP, 0);
5088                 cmd_length = E1000_TXD_CMD_IP;
5089                 ipcse = skb_transport_offset(skb) - 1;
5090         } else if (skb_is_gso_v6(skb)) {
5091                 ipv6_hdr(skb)->payload_len = 0;
5092                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5093                                                        &ipv6_hdr(skb)->daddr,
5094                                                        0, IPPROTO_TCP, 0);
5095                 ipcse = 0;
5096         }
5097         ipcss = skb_network_offset(skb);
5098         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5099         tucss = skb_transport_offset(skb);
5100         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5101
5102         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5103                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5104
5105         i = tx_ring->next_to_use;
5106         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5107         buffer_info = &tx_ring->buffer_info[i];
5108
5109         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5110         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5111         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5112         context_desc->upper_setup.tcp_fields.tucss = tucss;
5113         context_desc->upper_setup.tcp_fields.tucso = tucso;
5114         context_desc->upper_setup.tcp_fields.tucse = 0;
5115         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5116         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5117         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5118
5119         buffer_info->time_stamp = jiffies;
5120         buffer_info->next_to_watch = i;
5121
5122         i++;
5123         if (i == tx_ring->count)
5124                 i = 0;
5125         tx_ring->next_to_use = i;
5126
5127         return 1;
5128 }
5129
5130 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5131 {
5132         struct e1000_adapter *adapter = tx_ring->adapter;
5133         struct e1000_context_desc *context_desc;
5134         struct e1000_buffer *buffer_info;
5135         unsigned int i;
5136         u8 css;
5137         u32 cmd_len = E1000_TXD_CMD_DEXT;
5138         __be16 protocol;
5139
5140         if (skb->ip_summed != CHECKSUM_PARTIAL)
5141                 return 0;
5142
5143         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5144                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5145         else
5146                 protocol = skb->protocol;
5147
5148         switch (protocol) {
5149         case cpu_to_be16(ETH_P_IP):
5150                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5151                         cmd_len |= E1000_TXD_CMD_TCP;
5152                 break;
5153         case cpu_to_be16(ETH_P_IPV6):
5154                 /* XXX not handling all IPV6 headers */
5155                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5156                         cmd_len |= E1000_TXD_CMD_TCP;
5157                 break;
5158         default:
5159                 if (unlikely(net_ratelimit()))
5160                         e_warn("checksum_partial proto=%x!\n",
5161                                be16_to_cpu(protocol));
5162                 break;
5163         }
5164
5165         css = skb_checksum_start_offset(skb);
5166
5167         i = tx_ring->next_to_use;
5168         buffer_info = &tx_ring->buffer_info[i];
5169         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5170
5171         context_desc->lower_setup.ip_config = 0;
5172         context_desc->upper_setup.tcp_fields.tucss = css;
5173         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5174         context_desc->upper_setup.tcp_fields.tucse = 0;
5175         context_desc->tcp_seg_setup.data = 0;
5176         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5177
5178         buffer_info->time_stamp = jiffies;
5179         buffer_info->next_to_watch = i;
5180
5181         i++;
5182         if (i == tx_ring->count)
5183                 i = 0;
5184         tx_ring->next_to_use = i;
5185
5186         return 1;
5187 }
5188
5189 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5190                         unsigned int first, unsigned int max_per_txd,
5191                         unsigned int nr_frags)
5192 {
5193         struct e1000_adapter *adapter = tx_ring->adapter;
5194         struct pci_dev *pdev = adapter->pdev;
5195         struct e1000_buffer *buffer_info;
5196         unsigned int len = skb_headlen(skb);
5197         unsigned int offset = 0, size, count = 0, i;
5198         unsigned int f, bytecount, segs;
5199
5200         i = tx_ring->next_to_use;
5201
5202         while (len) {
5203                 buffer_info = &tx_ring->buffer_info[i];
5204                 size = min(len, max_per_txd);
5205
5206                 buffer_info->length = size;
5207                 buffer_info->time_stamp = jiffies;
5208                 buffer_info->next_to_watch = i;
5209                 buffer_info->dma = dma_map_single(&pdev->dev,
5210                                                   skb->data + offset,
5211                                                   size, DMA_TO_DEVICE);
5212                 buffer_info->mapped_as_page = false;
5213                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5214                         goto dma_error;
5215
5216                 len -= size;
5217                 offset += size;
5218                 count++;
5219
5220                 if (len) {
5221                         i++;
5222                         if (i == tx_ring->count)
5223                                 i = 0;
5224                 }
5225         }
5226
5227         for (f = 0; f < nr_frags; f++) {
5228                 const struct skb_frag_struct *frag;
5229
5230                 frag = &skb_shinfo(skb)->frags[f];
5231                 len = skb_frag_size(frag);
5232                 offset = 0;
5233
5234                 while (len) {
5235                         i++;
5236                         if (i == tx_ring->count)
5237                                 i = 0;
5238
5239                         buffer_info = &tx_ring->buffer_info[i];
5240                         size = min(len, max_per_txd);
5241
5242                         buffer_info->length = size;
5243                         buffer_info->time_stamp = jiffies;
5244                         buffer_info->next_to_watch = i;
5245                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5246                                                             offset, size,
5247                                                             DMA_TO_DEVICE);
5248                         buffer_info->mapped_as_page = true;
5249                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5250                                 goto dma_error;
5251
5252                         len -= size;
5253                         offset += size;
5254                         count++;
5255                 }
5256         }
5257
5258         segs = skb_shinfo(skb)->gso_segs ? : 1;
5259         /* multiply data chunks by size of headers */
5260         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5261
5262         tx_ring->buffer_info[i].skb = skb;
5263         tx_ring->buffer_info[i].segs = segs;
5264         tx_ring->buffer_info[i].bytecount = bytecount;
5265         tx_ring->buffer_info[first].next_to_watch = i;
5266
5267         return count;
5268
5269 dma_error:
5270         dev_err(&pdev->dev, "Tx DMA map failed\n");
5271         buffer_info->dma = 0;
5272         if (count)
5273                 count--;
5274
5275         while (count--) {
5276                 if (i == 0)
5277                         i += tx_ring->count;
5278                 i--;
5279                 buffer_info = &tx_ring->buffer_info[i];
5280                 e1000_put_txbuf(tx_ring, buffer_info);
5281         }
5282
5283         return 0;
5284 }
5285
5286 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5287 {
5288         struct e1000_adapter *adapter = tx_ring->adapter;
5289         struct e1000_tx_desc *tx_desc = NULL;
5290         struct e1000_buffer *buffer_info;
5291         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5292         unsigned int i;
5293
5294         if (tx_flags & E1000_TX_FLAGS_TSO) {
5295                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5296                     E1000_TXD_CMD_TSE;
5297                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5298
5299                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5300                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5301         }
5302
5303         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5304                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5305                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5306         }
5307
5308         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5309                 txd_lower |= E1000_TXD_CMD_VLE;
5310                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5311         }
5312
5313         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5314                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5315
5316         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5317                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5318                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5319         }
5320
5321         i = tx_ring->next_to_use;
5322
5323         do {
5324                 buffer_info = &tx_ring->buffer_info[i];
5325                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5326                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5327                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5328                                                   buffer_info->length);
5329                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5330
5331                 i++;
5332                 if (i == tx_ring->count)
5333                         i = 0;
5334         } while (--count > 0);
5335
5336         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5337
5338         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5339         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5340                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5341
5342         /* Force memory writes to complete before letting h/w
5343          * know there are new descriptors to fetch.  (Only
5344          * applicable for weak-ordered memory model archs,
5345          * such as IA-64).
5346          */
5347         wmb();
5348
5349         tx_ring->next_to_use = i;
5350
5351         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5352                 e1000e_update_tdt_wa(tx_ring, i);
5353         else
5354                 writel(i, tx_ring->tail);
5355
5356         /* we need this if more than one processor can write to our tail
5357          * at a time, it synchronizes IO on IA64/Altix systems
5358          */
5359         mmiowb();
5360 }
5361
5362 #define MINIMUM_DHCP_PACKET_SIZE 282
5363 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5364                                     struct sk_buff *skb)
5365 {
5366         struct e1000_hw *hw = &adapter->hw;
5367         u16 length, offset;
5368
5369         if (vlan_tx_tag_present(skb) &&
5370             !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5371               (adapter->hw.mng_cookie.status &
5372                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5373                 return 0;
5374
5375         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5376                 return 0;
5377
5378         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5379                 return 0;
5380
5381         {
5382                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5383                 struct udphdr *udp;
5384
5385                 if (ip->protocol != IPPROTO_UDP)
5386                         return 0;
5387
5388                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5389                 if (ntohs(udp->dest) != 67)
5390                         return 0;
5391
5392                 offset = (u8 *)udp + 8 - skb->data;
5393                 length = skb->len - offset;
5394                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5395         }
5396
5397         return 0;
5398 }
5399
5400 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5401 {
5402         struct e1000_adapter *adapter = tx_ring->adapter;
5403
5404         netif_stop_queue(adapter->netdev);
5405         /* Herbert's original patch had:
5406          *  smp_mb__after_netif_stop_queue();
5407          * but since that doesn't exist yet, just open code it.
5408          */
5409         smp_mb();
5410
5411         /* We need to check again in a case another CPU has just
5412          * made room available.
5413          */
5414         if (e1000_desc_unused(tx_ring) < size)
5415                 return -EBUSY;
5416
5417         /* A reprieve! */
5418         netif_start_queue(adapter->netdev);
5419         ++adapter->restart_queue;
5420         return 0;
5421 }
5422
5423 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5424 {
5425         BUG_ON(size > tx_ring->count);
5426
5427         if (e1000_desc_unused(tx_ring) >= size)
5428                 return 0;
5429         return __e1000_maybe_stop_tx(tx_ring, size);
5430 }
5431
5432 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5433                                     struct net_device *netdev)
5434 {
5435         struct e1000_adapter *adapter = netdev_priv(netdev);
5436         struct e1000_ring *tx_ring = adapter->tx_ring;
5437         unsigned int first;
5438         unsigned int tx_flags = 0;
5439         unsigned int len = skb_headlen(skb);
5440         unsigned int nr_frags;
5441         unsigned int mss;
5442         int count = 0;
5443         int tso;
5444         unsigned int f;
5445
5446         if (test_bit(__E1000_DOWN, &adapter->state)) {
5447                 dev_kfree_skb_any(skb);
5448                 return NETDEV_TX_OK;
5449         }
5450
5451         if (skb->len <= 0) {
5452                 dev_kfree_skb_any(skb);
5453                 return NETDEV_TX_OK;
5454         }
5455
5456         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5457          * pad skb in order to meet this minimum size requirement
5458          */
5459         if (unlikely(skb->len < 17)) {
5460                 if (skb_pad(skb, 17 - skb->len))
5461                         return NETDEV_TX_OK;
5462                 skb->len = 17;
5463                 skb_set_tail_pointer(skb, 17);
5464         }
5465
5466         mss = skb_shinfo(skb)->gso_size;
5467         if (mss) {
5468                 u8 hdr_len;
5469
5470                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5471                  * points to just header, pull a few bytes of payload from
5472                  * frags into skb->data
5473                  */
5474                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5475                 /* we do this workaround for ES2LAN, but it is un-necessary,
5476                  * avoiding it could save a lot of cycles
5477                  */
5478                 if (skb->data_len && (hdr_len == len)) {
5479                         unsigned int pull_size;
5480
5481                         pull_size = min_t(unsigned int, 4, skb->data_len);
5482                         if (!__pskb_pull_tail(skb, pull_size)) {
5483                                 e_err("__pskb_pull_tail failed.\n");
5484                                 dev_kfree_skb_any(skb);
5485                                 return NETDEV_TX_OK;
5486                         }
5487                         len = skb_headlen(skb);
5488                 }
5489         }
5490
5491         /* reserve a descriptor for the offload context */
5492         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5493                 count++;
5494         count++;
5495
5496         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5497
5498         nr_frags = skb_shinfo(skb)->nr_frags;
5499         for (f = 0; f < nr_frags; f++)
5500                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5501                                       adapter->tx_fifo_limit);
5502
5503         if (adapter->hw.mac.tx_pkt_filtering)
5504                 e1000_transfer_dhcp_info(adapter, skb);
5505
5506         /* need: count + 2 desc gap to keep tail from touching
5507          * head, otherwise try next time
5508          */
5509         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5510                 return NETDEV_TX_BUSY;
5511
5512         if (vlan_tx_tag_present(skb)) {
5513                 tx_flags |= E1000_TX_FLAGS_VLAN;
5514                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5515         }
5516
5517         first = tx_ring->next_to_use;
5518
5519         tso = e1000_tso(tx_ring, skb);
5520         if (tso < 0) {
5521                 dev_kfree_skb_any(skb);
5522                 return NETDEV_TX_OK;
5523         }
5524
5525         if (tso)
5526                 tx_flags |= E1000_TX_FLAGS_TSO;
5527         else if (e1000_tx_csum(tx_ring, skb))
5528                 tx_flags |= E1000_TX_FLAGS_CSUM;
5529
5530         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5531          * 82571 hardware supports TSO capabilities for IPv6 as well...
5532          * no longer assume, we must.
5533          */
5534         if (skb->protocol == htons(ETH_P_IP))
5535                 tx_flags |= E1000_TX_FLAGS_IPV4;
5536
5537         if (unlikely(skb->no_fcs))
5538                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5539
5540         /* if count is 0 then mapping error has occurred */
5541         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5542                              nr_frags);
5543         if (count) {
5544                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5545                              !adapter->tx_hwtstamp_skb)) {
5546                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5547                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5548                         adapter->tx_hwtstamp_skb = skb_get(skb);
5549                         schedule_work(&adapter->tx_hwtstamp_work);
5550                 } else {
5551                         skb_tx_timestamp(skb);
5552                 }
5553
5554                 netdev_sent_queue(netdev, skb->len);
5555                 e1000_tx_queue(tx_ring, tx_flags, count);
5556                 /* Make sure there is space in the ring for the next send. */
5557                 e1000_maybe_stop_tx(tx_ring,
5558                                     (MAX_SKB_FRAGS *
5559                                      DIV_ROUND_UP(PAGE_SIZE,
5560                                                   adapter->tx_fifo_limit) + 2));
5561         } else {
5562                 dev_kfree_skb_any(skb);
5563                 tx_ring->buffer_info[first].time_stamp = 0;
5564                 tx_ring->next_to_use = first;
5565         }
5566
5567         return NETDEV_TX_OK;
5568 }
5569
5570 /**
5571  * e1000_tx_timeout - Respond to a Tx Hang
5572  * @netdev: network interface device structure
5573  **/
5574 static void e1000_tx_timeout(struct net_device *netdev)
5575 {
5576         struct e1000_adapter *adapter = netdev_priv(netdev);
5577
5578         /* Do the reset outside of interrupt context */
5579         adapter->tx_timeout_count++;
5580         schedule_work(&adapter->reset_task);
5581 }
5582
5583 static void e1000_reset_task(struct work_struct *work)
5584 {
5585         struct e1000_adapter *adapter;
5586         adapter = container_of(work, struct e1000_adapter, reset_task);
5587
5588         /* don't run the task if already down */
5589         if (test_bit(__E1000_DOWN, &adapter->state))
5590                 return;
5591
5592         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5593                 e1000e_dump(adapter);
5594                 e_err("Reset adapter unexpectedly\n");
5595         }
5596         e1000e_reinit_locked(adapter);
5597 }
5598
5599 /**
5600  * e1000_get_stats64 - Get System Network Statistics
5601  * @netdev: network interface device structure
5602  * @stats: rtnl_link_stats64 pointer
5603  *
5604  * Returns the address of the device statistics structure.
5605  **/
5606 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5607                                              struct rtnl_link_stats64 *stats)
5608 {
5609         struct e1000_adapter *adapter = netdev_priv(netdev);
5610
5611         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5612         spin_lock(&adapter->stats64_lock);
5613         e1000e_update_stats(adapter);
5614         /* Fill out the OS statistics structure */
5615         stats->rx_bytes = adapter->stats.gorc;
5616         stats->rx_packets = adapter->stats.gprc;
5617         stats->tx_bytes = adapter->stats.gotc;
5618         stats->tx_packets = adapter->stats.gptc;
5619         stats->multicast = adapter->stats.mprc;
5620         stats->collisions = adapter->stats.colc;
5621
5622         /* Rx Errors */
5623
5624         /* RLEC on some newer hardware can be incorrect so build
5625          * our own version based on RUC and ROC
5626          */
5627         stats->rx_errors = adapter->stats.rxerrc +
5628             adapter->stats.crcerrs + adapter->stats.algnerrc +
5629             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5630         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5631         stats->rx_crc_errors = adapter->stats.crcerrs;
5632         stats->rx_frame_errors = adapter->stats.algnerrc;
5633         stats->rx_missed_errors = adapter->stats.mpc;
5634
5635         /* Tx Errors */
5636         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5637         stats->tx_aborted_errors = adapter->stats.ecol;
5638         stats->tx_window_errors = adapter->stats.latecol;
5639         stats->tx_carrier_errors = adapter->stats.tncrs;
5640
5641         /* Tx Dropped needs to be maintained elsewhere */
5642
5643         spin_unlock(&adapter->stats64_lock);
5644         return stats;
5645 }
5646
5647 /**
5648  * e1000_change_mtu - Change the Maximum Transfer Unit
5649  * @netdev: network interface device structure
5650  * @new_mtu: new value for maximum frame size
5651  *
5652  * Returns 0 on success, negative on failure
5653  **/
5654 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5655 {
5656         struct e1000_adapter *adapter = netdev_priv(netdev);
5657         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5658
5659         /* Jumbo frame support */
5660         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5661             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5662                 e_err("Jumbo Frames not supported.\n");
5663                 return -EINVAL;
5664         }
5665
5666         /* Supported frame sizes */
5667         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5668             (max_frame > adapter->max_hw_frame_size)) {
5669                 e_err("Unsupported MTU setting\n");
5670                 return -EINVAL;
5671         }
5672
5673         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5674         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5675             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5676             (new_mtu > ETH_DATA_LEN)) {
5677                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5678                 return -EINVAL;
5679         }
5680
5681         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5682                 usleep_range(1000, 2000);
5683         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5684         adapter->max_frame_size = max_frame;
5685         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5686         netdev->mtu = new_mtu;
5687         if (netif_running(netdev))
5688                 e1000e_down(adapter);
5689
5690         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5691          * means we reserve 2 more, this pushes us to allocate from the next
5692          * larger slab size.
5693          * i.e. RXBUFFER_2048 --> size-4096 slab
5694          * However with the new *_jumbo_rx* routines, jumbo receives will use
5695          * fragmented skbs
5696          */
5697
5698         if (max_frame <= 2048)
5699                 adapter->rx_buffer_len = 2048;
5700         else
5701                 adapter->rx_buffer_len = 4096;
5702
5703         /* adjust allocation if LPE protects us, and we aren't using SBP */
5704         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5705             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5706                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5707                     + ETH_FCS_LEN;
5708
5709         if (netif_running(netdev))
5710                 e1000e_up(adapter);
5711         else
5712                 e1000e_reset(adapter);
5713
5714         clear_bit(__E1000_RESETTING, &adapter->state);
5715
5716         return 0;
5717 }
5718
5719 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5720                            int cmd)
5721 {
5722         struct e1000_adapter *adapter = netdev_priv(netdev);
5723         struct mii_ioctl_data *data = if_mii(ifr);
5724
5725         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5726                 return -EOPNOTSUPP;
5727
5728         switch (cmd) {
5729         case SIOCGMIIPHY:
5730                 data->phy_id = adapter->hw.phy.addr;
5731                 break;
5732         case SIOCGMIIREG:
5733                 e1000_phy_read_status(adapter);
5734
5735                 switch (data->reg_num & 0x1F) {
5736                 case MII_BMCR:
5737                         data->val_out = adapter->phy_regs.bmcr;
5738                         break;
5739                 case MII_BMSR:
5740                         data->val_out = adapter->phy_regs.bmsr;
5741                         break;
5742                 case MII_PHYSID1:
5743                         data->val_out = (adapter->hw.phy.id >> 16);
5744                         break;
5745                 case MII_PHYSID2:
5746                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5747                         break;
5748                 case MII_ADVERTISE:
5749                         data->val_out = adapter->phy_regs.advertise;
5750                         break;
5751                 case MII_LPA:
5752                         data->val_out = adapter->phy_regs.lpa;
5753                         break;
5754                 case MII_EXPANSION:
5755                         data->val_out = adapter->phy_regs.expansion;
5756                         break;
5757                 case MII_CTRL1000:
5758                         data->val_out = adapter->phy_regs.ctrl1000;
5759                         break;
5760                 case MII_STAT1000:
5761                         data->val_out = adapter->phy_regs.stat1000;
5762                         break;
5763                 case MII_ESTATUS:
5764                         data->val_out = adapter->phy_regs.estatus;
5765                         break;
5766                 default:
5767                         return -EIO;
5768                 }
5769                 break;
5770         case SIOCSMIIREG:
5771         default:
5772                 return -EOPNOTSUPP;
5773         }
5774         return 0;
5775 }
5776
5777 /**
5778  * e1000e_hwtstamp_ioctl - control hardware time stamping
5779  * @netdev: network interface device structure
5780  * @ifreq: interface request
5781  *
5782  * Outgoing time stamping can be enabled and disabled. Play nice and
5783  * disable it when requested, although it shouldn't cause any overhead
5784  * when no packet needs it. At most one packet in the queue may be
5785  * marked for time stamping, otherwise it would be impossible to tell
5786  * for sure to which packet the hardware time stamp belongs.
5787  *
5788  * Incoming time stamping has to be configured via the hardware filters.
5789  * Not all combinations are supported, in particular event type has to be
5790  * specified. Matching the kind of event packet is not supported, with the
5791  * exception of "all V2 events regardless of level 2 or 4".
5792  **/
5793 static int e1000e_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
5794 {
5795         struct e1000_adapter *adapter = netdev_priv(netdev);
5796         struct hwtstamp_config config;
5797         int ret_val;
5798
5799         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5800                 return -EFAULT;
5801
5802         ret_val = e1000e_config_hwtstamp(adapter, &config);
5803         if (ret_val)
5804                 return ret_val;
5805
5806         switch (config.rx_filter) {
5807         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5808         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5809         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5810         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5811         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5812         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5813                 /* With V2 type filters which specify a Sync or Delay Request,
5814                  * Path Delay Request/Response messages are also time stamped
5815                  * by hardware so notify the caller the requested packets plus
5816                  * some others are time stamped.
5817                  */
5818                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5819                 break;
5820         default:
5821                 break;
5822         }
5823
5824         return copy_to_user(ifr->ifr_data, &config,
5825                             sizeof(config)) ? -EFAULT : 0;
5826 }
5827
5828 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5829 {
5830         switch (cmd) {
5831         case SIOCGMIIPHY:
5832         case SIOCGMIIREG:
5833         case SIOCSMIIREG:
5834                 return e1000_mii_ioctl(netdev, ifr, cmd);
5835         case SIOCSHWTSTAMP:
5836                 return e1000e_hwtstamp_ioctl(netdev, ifr);
5837         default:
5838                 return -EOPNOTSUPP;
5839         }
5840 }
5841
5842 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5843 {
5844         struct e1000_hw *hw = &adapter->hw;
5845         u32 i, mac_reg;
5846         u16 phy_reg, wuc_enable;
5847         int retval;
5848
5849         /* copy MAC RARs to PHY RARs */
5850         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5851
5852         retval = hw->phy.ops.acquire(hw);
5853         if (retval) {
5854                 e_err("Could not acquire PHY\n");
5855                 return retval;
5856         }
5857
5858         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5859         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5860         if (retval)
5861                 goto release;
5862
5863         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5864         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5865                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5866                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5867                                            (u16)(mac_reg & 0xFFFF));
5868                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5869                                            (u16)((mac_reg >> 16) & 0xFFFF));
5870         }
5871
5872         /* configure PHY Rx Control register */
5873         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5874         mac_reg = er32(RCTL);
5875         if (mac_reg & E1000_RCTL_UPE)
5876                 phy_reg |= BM_RCTL_UPE;
5877         if (mac_reg & E1000_RCTL_MPE)
5878                 phy_reg |= BM_RCTL_MPE;
5879         phy_reg &= ~(BM_RCTL_MO_MASK);
5880         if (mac_reg & E1000_RCTL_MO_3)
5881                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5882                             << BM_RCTL_MO_SHIFT);
5883         if (mac_reg & E1000_RCTL_BAM)
5884                 phy_reg |= BM_RCTL_BAM;
5885         if (mac_reg & E1000_RCTL_PMCF)
5886                 phy_reg |= BM_RCTL_PMCF;
5887         mac_reg = er32(CTRL);
5888         if (mac_reg & E1000_CTRL_RFCE)
5889                 phy_reg |= BM_RCTL_RFCE;
5890         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5891
5892         /* enable PHY wakeup in MAC register */
5893         ew32(WUFC, wufc);
5894         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5895
5896         /* configure and enable PHY wakeup in PHY registers */
5897         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5898         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5899
5900         /* activate PHY wakeup */
5901         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5902         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5903         if (retval)
5904                 e_err("Could not set PHY Host Wakeup bit\n");
5905 release:
5906         hw->phy.ops.release(hw);
5907
5908         return retval;
5909 }
5910
5911 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5912 {
5913         struct net_device *netdev = pci_get_drvdata(pdev);
5914         struct e1000_adapter *adapter = netdev_priv(netdev);
5915         struct e1000_hw *hw = &adapter->hw;
5916         u32 ctrl, ctrl_ext, rctl, status;
5917         /* Runtime suspend should only enable wakeup for link changes */
5918         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5919         int retval = 0;
5920
5921         netif_device_detach(netdev);
5922
5923         if (netif_running(netdev)) {
5924                 int count = E1000_CHECK_RESET_COUNT;
5925
5926                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5927                         usleep_range(10000, 20000);
5928
5929                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5930                 e1000e_down(adapter);
5931                 e1000_free_irq(adapter);
5932         }
5933         e1000e_reset_interrupt_capability(adapter);
5934
5935         status = er32(STATUS);
5936         if (status & E1000_STATUS_LU)
5937                 wufc &= ~E1000_WUFC_LNKC;
5938
5939         if (wufc) {
5940                 e1000_setup_rctl(adapter);
5941                 e1000e_set_rx_mode(netdev);
5942
5943                 /* turn on all-multi mode if wake on multicast is enabled */
5944                 if (wufc & E1000_WUFC_MC) {
5945                         rctl = er32(RCTL);
5946                         rctl |= E1000_RCTL_MPE;
5947                         ew32(RCTL, rctl);
5948                 }
5949
5950                 ctrl = er32(CTRL);
5951                 ctrl |= E1000_CTRL_ADVD3WUC;
5952                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5953                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5954                 ew32(CTRL, ctrl);
5955
5956                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5957                     adapter->hw.phy.media_type ==
5958                     e1000_media_type_internal_serdes) {
5959                         /* keep the laser running in D3 */
5960                         ctrl_ext = er32(CTRL_EXT);
5961                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5962                         ew32(CTRL_EXT, ctrl_ext);
5963                 }
5964
5965                 if (adapter->flags & FLAG_IS_ICH)
5966                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
5967
5968                 /* Allow time for pending master requests to run */
5969                 e1000e_disable_pcie_master(&adapter->hw);
5970
5971                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5972                         /* enable wakeup by the PHY */
5973                         retval = e1000_init_phy_wakeup(adapter, wufc);
5974                         if (retval)
5975                                 return retval;
5976                 } else {
5977                         /* enable wakeup by the MAC */
5978                         ew32(WUFC, wufc);
5979                         ew32(WUC, E1000_WUC_PME_EN);
5980                 }
5981         } else {
5982                 ew32(WUC, 0);
5983                 ew32(WUFC, 0);
5984         }
5985
5986         if (adapter->hw.phy.type == e1000_phy_igp_3)
5987                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5988
5989         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5990          * would have already happened in close and is redundant.
5991          */
5992         e1000e_release_hw_control(adapter);
5993
5994         pci_clear_master(pdev);
5995
5996         /* The pci-e switch on some quad port adapters will report a
5997          * correctable error when the MAC transitions from D0 to D3.  To
5998          * prevent this we need to mask off the correctable errors on the
5999          * downstream port of the pci-e switch.
6000          *
6001          * We don't have the associated upstream bridge while assigning
6002          * the PCI device into guest. For example, the KVM on power is
6003          * one of the cases.
6004          */
6005         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6006                 struct pci_dev *us_dev = pdev->bus->self;
6007                 u16 devctl;
6008
6009                 if (!us_dev)
6010                         return 0;
6011
6012                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6013                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6014                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6015
6016                 pci_save_state(pdev);
6017                 pci_prepare_to_sleep(pdev);
6018
6019                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6020         }
6021
6022         return 0;
6023 }
6024
6025 /**
6026  * e1000e_disable_aspm - Disable ASPM states
6027  * @pdev: pointer to PCI device struct
6028  * @state: bit-mask of ASPM states to disable
6029  *
6030  * Some devices *must* have certain ASPM states disabled per hardware errata.
6031  **/
6032 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6033 {
6034         struct pci_dev *parent = pdev->bus->self;
6035         u16 aspm_dis_mask = 0;
6036         u16 pdev_aspmc, parent_aspmc;
6037
6038         switch (state) {
6039         case PCIE_LINK_STATE_L0S:
6040         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6041                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6042                 /* fall-through - can't have L1 without L0s */
6043         case PCIE_LINK_STATE_L1:
6044                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6045                 break;
6046         default:
6047                 return;
6048         }
6049
6050         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6051         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6052
6053         if (parent) {
6054                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6055                                           &parent_aspmc);
6056                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6057         }
6058
6059         /* Nothing to do if the ASPM states to be disabled already are */
6060         if (!(pdev_aspmc & aspm_dis_mask) &&
6061             (!parent || !(parent_aspmc & aspm_dis_mask)))
6062                 return;
6063
6064         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6065                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6066                  "L0s" : "",
6067                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6068                  "L1" : "");
6069
6070 #ifdef CONFIG_PCIEASPM
6071         pci_disable_link_state_locked(pdev, state);
6072
6073         /* Double-check ASPM control.  If not disabled by the above, the
6074          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6075          * not enabled); override by writing PCI config space directly.
6076          */
6077         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6078         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6079
6080         if (!(aspm_dis_mask & pdev_aspmc))
6081                 return;
6082 #endif
6083
6084         /* Both device and parent should have the same ASPM setting.
6085          * Disable ASPM in downstream component first and then upstream.
6086          */
6087         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6088
6089         if (parent)
6090                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6091                                            aspm_dis_mask);
6092 }
6093
6094 #ifdef CONFIG_PM
6095 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
6096 {
6097         return !!adapter->tx_ring->buffer_info;
6098 }
6099
6100 static int __e1000_resume(struct pci_dev *pdev)
6101 {
6102         struct net_device *netdev = pci_get_drvdata(pdev);
6103         struct e1000_adapter *adapter = netdev_priv(netdev);
6104         struct e1000_hw *hw = &adapter->hw;
6105         u16 aspm_disable_flag = 0;
6106         u32 err;
6107
6108         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6109                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6110         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6111                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6112         if (aspm_disable_flag)
6113                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6114
6115         pci_set_master(pdev);
6116
6117         e1000e_set_interrupt_capability(adapter);
6118         if (netif_running(netdev)) {
6119                 err = e1000_request_irq(adapter);
6120                 if (err)
6121                         return err;
6122         }
6123
6124         if (hw->mac.type >= e1000_pch2lan)
6125                 e1000_resume_workarounds_pchlan(&adapter->hw);
6126
6127         e1000e_power_up_phy(adapter);
6128
6129         /* report the system wakeup cause from S3/S4 */
6130         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6131                 u16 phy_data;
6132
6133                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6134                 if (phy_data) {
6135                         e_info("PHY Wakeup cause - %s\n",
6136                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6137                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6138                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6139                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6140                                phy_data & E1000_WUS_LNKC ?
6141                                "Link Status Change" : "other");
6142                 }
6143                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6144         } else {
6145                 u32 wus = er32(WUS);
6146                 if (wus) {
6147                         e_info("MAC Wakeup cause - %s\n",
6148                                wus & E1000_WUS_EX ? "Unicast Packet" :
6149                                wus & E1000_WUS_MC ? "Multicast Packet" :
6150                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6151                                wus & E1000_WUS_MAG ? "Magic Packet" :
6152                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6153                                "other");
6154                 }
6155                 ew32(WUS, ~0);
6156         }
6157
6158         e1000e_reset(adapter);
6159
6160         e1000_init_manageability_pt(adapter);
6161
6162         if (netif_running(netdev))
6163                 e1000e_up(adapter);
6164
6165         netif_device_attach(netdev);
6166
6167         /* If the controller has AMT, do not set DRV_LOAD until the interface
6168          * is up.  For all other cases, let the f/w know that the h/w is now
6169          * under the control of the driver.
6170          */
6171         if (!(adapter->flags & FLAG_HAS_AMT))
6172                 e1000e_get_hw_control(adapter);
6173
6174         return 0;
6175 }
6176
6177 #ifdef CONFIG_PM
6178 static int e1000_suspend(struct device *dev)
6179 {
6180         struct pci_dev *pdev = to_pci_dev(dev);
6181
6182         return __e1000_shutdown(pdev, false);
6183 }
6184
6185 static int e1000_resume(struct device *dev)
6186 {
6187         struct pci_dev *pdev = to_pci_dev(dev);
6188         struct net_device *netdev = pci_get_drvdata(pdev);
6189         struct e1000_adapter *adapter = netdev_priv(netdev);
6190
6191         if (e1000e_pm_ready(adapter))
6192                 adapter->idle_check = true;
6193
6194         return __e1000_resume(pdev);
6195 }
6196 #endif /* CONFIG_PM */
6197
6198 #ifdef CONFIG_PM_RUNTIME
6199 static int e1000_runtime_suspend(struct device *dev)
6200 {
6201         struct pci_dev *pdev = to_pci_dev(dev);
6202         struct net_device *netdev = pci_get_drvdata(pdev);
6203         struct e1000_adapter *adapter = netdev_priv(netdev);
6204
6205         if (!e1000e_pm_ready(adapter))
6206                 return 0;
6207
6208         return __e1000_shutdown(pdev, true);
6209 }
6210
6211 static int e1000_idle(struct device *dev)
6212 {
6213         struct pci_dev *pdev = to_pci_dev(dev);
6214         struct net_device *netdev = pci_get_drvdata(pdev);
6215         struct e1000_adapter *adapter = netdev_priv(netdev);
6216
6217         if (!e1000e_pm_ready(adapter))
6218                 return 0;
6219
6220         if (adapter->idle_check) {
6221                 adapter->idle_check = false;
6222                 if (!e1000e_has_link(adapter))
6223                         pm_schedule_suspend(dev, MSEC_PER_SEC);
6224         }
6225
6226         return -EBUSY;
6227 }
6228
6229 static int e1000_runtime_resume(struct device *dev)
6230 {
6231         struct pci_dev *pdev = to_pci_dev(dev);
6232         struct net_device *netdev = pci_get_drvdata(pdev);
6233         struct e1000_adapter *adapter = netdev_priv(netdev);
6234
6235         if (!e1000e_pm_ready(adapter))
6236                 return 0;
6237
6238         adapter->idle_check = !dev->power.runtime_auto;
6239         return __e1000_resume(pdev);
6240 }
6241 #endif /* CONFIG_PM_RUNTIME */
6242 #endif /* CONFIG_PM */
6243
6244 static void e1000_shutdown(struct pci_dev *pdev)
6245 {
6246         __e1000_shutdown(pdev, false);
6247 }
6248
6249 #ifdef CONFIG_NET_POLL_CONTROLLER
6250
6251 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6252 {
6253         struct net_device *netdev = data;
6254         struct e1000_adapter *adapter = netdev_priv(netdev);
6255
6256         if (adapter->msix_entries) {
6257                 int vector, msix_irq;
6258
6259                 vector = 0;
6260                 msix_irq = adapter->msix_entries[vector].vector;
6261                 disable_irq(msix_irq);
6262                 e1000_intr_msix_rx(msix_irq, netdev);
6263                 enable_irq(msix_irq);
6264
6265                 vector++;
6266                 msix_irq = adapter->msix_entries[vector].vector;
6267                 disable_irq(msix_irq);
6268                 e1000_intr_msix_tx(msix_irq, netdev);
6269                 enable_irq(msix_irq);
6270
6271                 vector++;
6272                 msix_irq = adapter->msix_entries[vector].vector;
6273                 disable_irq(msix_irq);
6274                 e1000_msix_other(msix_irq, netdev);
6275                 enable_irq(msix_irq);
6276         }
6277
6278         return IRQ_HANDLED;
6279 }
6280
6281 /**
6282  * e1000_netpoll
6283  * @netdev: network interface device structure
6284  *
6285  * Polling 'interrupt' - used by things like netconsole to send skbs
6286  * without having to re-enable interrupts. It's not called while
6287  * the interrupt routine is executing.
6288  */
6289 static void e1000_netpoll(struct net_device *netdev)
6290 {
6291         struct e1000_adapter *adapter = netdev_priv(netdev);
6292
6293         switch (adapter->int_mode) {
6294         case E1000E_INT_MODE_MSIX:
6295                 e1000_intr_msix(adapter->pdev->irq, netdev);
6296                 break;
6297         case E1000E_INT_MODE_MSI:
6298                 disable_irq(adapter->pdev->irq);
6299                 e1000_intr_msi(adapter->pdev->irq, netdev);
6300                 enable_irq(adapter->pdev->irq);
6301                 break;
6302         default:                /* E1000E_INT_MODE_LEGACY */
6303                 disable_irq(adapter->pdev->irq);
6304                 e1000_intr(adapter->pdev->irq, netdev);
6305                 enable_irq(adapter->pdev->irq);
6306                 break;
6307         }
6308 }
6309 #endif
6310
6311 /**
6312  * e1000_io_error_detected - called when PCI error is detected
6313  * @pdev: Pointer to PCI device
6314  * @state: The current pci connection state
6315  *
6316  * This function is called after a PCI bus error affecting
6317  * this device has been detected.
6318  */
6319 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6320                                                 pci_channel_state_t state)
6321 {
6322         struct net_device *netdev = pci_get_drvdata(pdev);
6323         struct e1000_adapter *adapter = netdev_priv(netdev);
6324
6325         netif_device_detach(netdev);
6326
6327         if (state == pci_channel_io_perm_failure)
6328                 return PCI_ERS_RESULT_DISCONNECT;
6329
6330         if (netif_running(netdev))
6331                 e1000e_down(adapter);
6332         pci_disable_device(pdev);
6333
6334         /* Request a slot slot reset. */
6335         return PCI_ERS_RESULT_NEED_RESET;
6336 }
6337
6338 /**
6339  * e1000_io_slot_reset - called after the pci bus has been reset.
6340  * @pdev: Pointer to PCI device
6341  *
6342  * Restart the card from scratch, as if from a cold-boot. Implementation
6343  * resembles the first-half of the e1000_resume routine.
6344  */
6345 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6346 {
6347         struct net_device *netdev = pci_get_drvdata(pdev);
6348         struct e1000_adapter *adapter = netdev_priv(netdev);
6349         struct e1000_hw *hw = &adapter->hw;
6350         u16 aspm_disable_flag = 0;
6351         int err;
6352         pci_ers_result_t result;
6353
6354         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6355                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6356         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6357                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6358         if (aspm_disable_flag)
6359                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6360
6361         err = pci_enable_device_mem(pdev);
6362         if (err) {
6363                 dev_err(&pdev->dev,
6364                         "Cannot re-enable PCI device after reset.\n");
6365                 result = PCI_ERS_RESULT_DISCONNECT;
6366         } else {
6367                 pdev->state_saved = true;
6368                 pci_restore_state(pdev);
6369                 pci_set_master(pdev);
6370
6371                 pci_enable_wake(pdev, PCI_D3hot, 0);
6372                 pci_enable_wake(pdev, PCI_D3cold, 0);
6373
6374                 e1000e_reset(adapter);
6375                 ew32(WUS, ~0);
6376                 result = PCI_ERS_RESULT_RECOVERED;
6377         }
6378
6379         pci_cleanup_aer_uncorrect_error_status(pdev);
6380
6381         return result;
6382 }
6383
6384 /**
6385  * e1000_io_resume - called when traffic can start flowing again.
6386  * @pdev: Pointer to PCI device
6387  *
6388  * This callback is called when the error recovery driver tells us that
6389  * its OK to resume normal operation. Implementation resembles the
6390  * second-half of the e1000_resume routine.
6391  */
6392 static void e1000_io_resume(struct pci_dev *pdev)
6393 {
6394         struct net_device *netdev = pci_get_drvdata(pdev);
6395         struct e1000_adapter *adapter = netdev_priv(netdev);
6396
6397         e1000_init_manageability_pt(adapter);
6398
6399         if (netif_running(netdev)) {
6400                 if (e1000e_up(adapter)) {
6401                         dev_err(&pdev->dev,
6402                                 "can't bring device back up after reset\n");
6403                         return;
6404                 }
6405         }
6406
6407         netif_device_attach(netdev);
6408
6409         /* If the controller has AMT, do not set DRV_LOAD until the interface
6410          * is up.  For all other cases, let the f/w know that the h/w is now
6411          * under the control of the driver.
6412          */
6413         if (!(adapter->flags & FLAG_HAS_AMT))
6414                 e1000e_get_hw_control(adapter);
6415 }
6416
6417 static void e1000_print_device_info(struct e1000_adapter *adapter)
6418 {
6419         struct e1000_hw *hw = &adapter->hw;
6420         struct net_device *netdev = adapter->netdev;
6421         u32 ret_val;
6422         u8 pba_str[E1000_PBANUM_LENGTH];
6423
6424         /* print bus type/speed/width info */
6425         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6426                /* bus width */
6427                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6428                 "Width x1"),
6429                /* MAC address */
6430                netdev->dev_addr);
6431         e_info("Intel(R) PRO/%s Network Connection\n",
6432                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6433         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6434                                                 E1000_PBANUM_LENGTH);
6435         if (ret_val)
6436                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6437         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6438                hw->mac.type, hw->phy.type, pba_str);
6439 }
6440
6441 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6442 {
6443         struct e1000_hw *hw = &adapter->hw;
6444         int ret_val;
6445         u16 buf = 0;
6446
6447         if (hw->mac.type != e1000_82573)
6448                 return;
6449
6450         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6451         le16_to_cpus(&buf);
6452         if (!ret_val && (!(buf & (1 << 0)))) {
6453                 /* Deep Smart Power Down (DSPD) */
6454                 dev_warn(&adapter->pdev->dev,
6455                          "Warning: detected DSPD enabled in EEPROM\n");
6456         }
6457 }
6458
6459 static int e1000_set_features(struct net_device *netdev,
6460                               netdev_features_t features)
6461 {
6462         struct e1000_adapter *adapter = netdev_priv(netdev);
6463         netdev_features_t changed = features ^ netdev->features;
6464
6465         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6466                 adapter->flags |= FLAG_TSO_FORCE;
6467
6468         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6469                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6470                          NETIF_F_RXALL)))
6471                 return 0;
6472
6473         if (changed & NETIF_F_RXFCS) {
6474                 if (features & NETIF_F_RXFCS) {
6475                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6476                 } else {
6477                         /* We need to take it back to defaults, which might mean
6478                          * stripping is still disabled at the adapter level.
6479                          */
6480                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6481                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6482                         else
6483                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6484                 }
6485         }
6486
6487         netdev->features = features;
6488
6489         if (netif_running(netdev))
6490                 e1000e_reinit_locked(adapter);
6491         else
6492                 e1000e_reset(adapter);
6493
6494         return 0;
6495 }
6496
6497 static const struct net_device_ops e1000e_netdev_ops = {
6498         .ndo_open               = e1000_open,
6499         .ndo_stop               = e1000_close,
6500         .ndo_start_xmit         = e1000_xmit_frame,
6501         .ndo_get_stats64        = e1000e_get_stats64,
6502         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6503         .ndo_set_mac_address    = e1000_set_mac,
6504         .ndo_change_mtu         = e1000_change_mtu,
6505         .ndo_do_ioctl           = e1000_ioctl,
6506         .ndo_tx_timeout         = e1000_tx_timeout,
6507         .ndo_validate_addr      = eth_validate_addr,
6508
6509         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6510         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6511 #ifdef CONFIG_NET_POLL_CONTROLLER
6512         .ndo_poll_controller    = e1000_netpoll,
6513 #endif
6514         .ndo_set_features = e1000_set_features,
6515 };
6516
6517 /**
6518  * e1000_probe - Device Initialization Routine
6519  * @pdev: PCI device information struct
6520  * @ent: entry in e1000_pci_tbl
6521  *
6522  * Returns 0 on success, negative on failure
6523  *
6524  * e1000_probe initializes an adapter identified by a pci_dev structure.
6525  * The OS initialization, configuring of the adapter private structure,
6526  * and a hardware reset occur.
6527  **/
6528 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6529 {
6530         struct net_device *netdev;
6531         struct e1000_adapter *adapter;
6532         struct e1000_hw *hw;
6533         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6534         resource_size_t mmio_start, mmio_len;
6535         resource_size_t flash_start, flash_len;
6536         static int cards_found;
6537         u16 aspm_disable_flag = 0;
6538         int bars, i, err, pci_using_dac;
6539         u16 eeprom_data = 0;
6540         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6541
6542         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6543                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6544         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6545                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6546         if (aspm_disable_flag)
6547                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6548
6549         err = pci_enable_device_mem(pdev);
6550         if (err)
6551                 return err;
6552
6553         pci_using_dac = 0;
6554         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6555         if (!err) {
6556                 pci_using_dac = 1;
6557         } else {
6558                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6559                 if (err) {
6560                         dev_err(&pdev->dev,
6561                                 "No usable DMA configuration, aborting\n");
6562                         goto err_dma;
6563                 }
6564         }
6565
6566         bars = pci_select_bars(pdev, IORESOURCE_MEM);
6567         err = pci_request_selected_regions_exclusive(pdev, bars,
6568                                                      e1000e_driver_name);
6569         if (err)
6570                 goto err_pci_reg;
6571
6572         /* AER (Advanced Error Reporting) hooks */
6573         pci_enable_pcie_error_reporting(pdev);
6574
6575         pci_set_master(pdev);
6576         /* PCI config space info */
6577         err = pci_save_state(pdev);
6578         if (err)
6579                 goto err_alloc_etherdev;
6580
6581         err = -ENOMEM;
6582         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6583         if (!netdev)
6584                 goto err_alloc_etherdev;
6585
6586         SET_NETDEV_DEV(netdev, &pdev->dev);
6587
6588         netdev->irq = pdev->irq;
6589
6590         pci_set_drvdata(pdev, netdev);
6591         adapter = netdev_priv(netdev);
6592         hw = &adapter->hw;
6593         adapter->netdev = netdev;
6594         adapter->pdev = pdev;
6595         adapter->ei = ei;
6596         adapter->pba = ei->pba;
6597         adapter->flags = ei->flags;
6598         adapter->flags2 = ei->flags2;
6599         adapter->hw.adapter = adapter;
6600         adapter->hw.mac.type = ei->mac;
6601         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6602         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6603
6604         mmio_start = pci_resource_start(pdev, 0);
6605         mmio_len = pci_resource_len(pdev, 0);
6606
6607         err = -EIO;
6608         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6609         if (!adapter->hw.hw_addr)
6610                 goto err_ioremap;
6611
6612         if ((adapter->flags & FLAG_HAS_FLASH) &&
6613             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6614                 flash_start = pci_resource_start(pdev, 1);
6615                 flash_len = pci_resource_len(pdev, 1);
6616                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6617                 if (!adapter->hw.flash_address)
6618                         goto err_flashmap;
6619         }
6620
6621         /* Set default EEE advertisement */
6622         if (adapter->flags2 & FLAG2_HAS_EEE)
6623                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6624
6625         /* construct the net_device struct */
6626         netdev->netdev_ops = &e1000e_netdev_ops;
6627         e1000e_set_ethtool_ops(netdev);
6628         netdev->watchdog_timeo = 5 * HZ;
6629         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6630         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6631
6632         netdev->mem_start = mmio_start;
6633         netdev->mem_end = mmio_start + mmio_len;
6634
6635         adapter->bd_number = cards_found++;
6636
6637         e1000e_check_options(adapter);
6638
6639         /* setup adapter struct */
6640         err = e1000_sw_init(adapter);
6641         if (err)
6642                 goto err_sw_init;
6643
6644         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6645         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6646         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6647
6648         err = ei->get_variants(adapter);
6649         if (err)
6650                 goto err_hw_init;
6651
6652         if ((adapter->flags & FLAG_IS_ICH) &&
6653             (adapter->flags & FLAG_READ_ONLY_NVM))
6654                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6655
6656         hw->mac.ops.get_bus_info(&adapter->hw);
6657
6658         adapter->hw.phy.autoneg_wait_to_complete = 0;
6659
6660         /* Copper options */
6661         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6662                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6663                 adapter->hw.phy.disable_polarity_correction = 0;
6664                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6665         }
6666
6667         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6668                 dev_info(&pdev->dev,
6669                          "PHY reset is blocked due to SOL/IDER session.\n");
6670
6671         /* Set initial default active device features */
6672         netdev->features = (NETIF_F_SG |
6673                             NETIF_F_HW_VLAN_CTAG_RX |
6674                             NETIF_F_HW_VLAN_CTAG_TX |
6675                             NETIF_F_TSO |
6676                             NETIF_F_TSO6 |
6677                             NETIF_F_RXHASH |
6678                             NETIF_F_RXCSUM |
6679                             NETIF_F_HW_CSUM);
6680
6681         /* Set user-changeable features (subset of all device features) */
6682         netdev->hw_features = netdev->features;
6683         netdev->hw_features |= NETIF_F_RXFCS;
6684         netdev->priv_flags |= IFF_SUPP_NOFCS;
6685         netdev->hw_features |= NETIF_F_RXALL;
6686
6687         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6688                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6689
6690         netdev->vlan_features |= (NETIF_F_SG |
6691                                   NETIF_F_TSO |
6692                                   NETIF_F_TSO6 |
6693                                   NETIF_F_HW_CSUM);
6694
6695         netdev->priv_flags |= IFF_UNICAST_FLT;
6696
6697         if (pci_using_dac) {
6698                 netdev->features |= NETIF_F_HIGHDMA;
6699                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6700         }
6701
6702         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6703                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6704
6705         /* before reading the NVM, reset the controller to
6706          * put the device in a known good starting state
6707          */
6708         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6709
6710         /* systems with ASPM and others may see the checksum fail on the first
6711          * attempt. Let's give it a few tries
6712          */
6713         for (i = 0;; i++) {
6714                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6715                         break;
6716                 if (i == 2) {
6717                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6718                         err = -EIO;
6719                         goto err_eeprom;
6720                 }
6721         }
6722
6723         e1000_eeprom_checks(adapter);
6724
6725         /* copy the MAC address */
6726         if (e1000e_read_mac_addr(&adapter->hw))
6727                 dev_err(&pdev->dev,
6728                         "NVM Read Error while reading MAC address\n");
6729
6730         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6731
6732         if (!is_valid_ether_addr(netdev->dev_addr)) {
6733                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6734                         netdev->dev_addr);
6735                 err = -EIO;
6736                 goto err_eeprom;
6737         }
6738
6739         init_timer(&adapter->watchdog_timer);
6740         adapter->watchdog_timer.function = e1000_watchdog;
6741         adapter->watchdog_timer.data = (unsigned long)adapter;
6742
6743         init_timer(&adapter->phy_info_timer);
6744         adapter->phy_info_timer.function = e1000_update_phy_info;
6745         adapter->phy_info_timer.data = (unsigned long)adapter;
6746
6747         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6748         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6749         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6750         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6751         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6752
6753         /* Initialize link parameters. User can change them with ethtool */
6754         adapter->hw.mac.autoneg = 1;
6755         adapter->fc_autoneg = true;
6756         adapter->hw.fc.requested_mode = e1000_fc_default;
6757         adapter->hw.fc.current_mode = e1000_fc_default;
6758         adapter->hw.phy.autoneg_advertised = 0x2f;
6759
6760         /* Initial Wake on LAN setting - If APM wake is enabled in
6761          * the EEPROM, enable the ACPI Magic Packet filter
6762          */
6763         if (adapter->flags & FLAG_APME_IN_WUC) {
6764                 /* APME bit in EEPROM is mapped to WUC.APME */
6765                 eeprom_data = er32(WUC);
6766                 eeprom_apme_mask = E1000_WUC_APME;
6767                 if ((hw->mac.type > e1000_ich10lan) &&
6768                     (eeprom_data & E1000_WUC_PHY_WAKE))
6769                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6770         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6771                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6772                     (adapter->hw.bus.func == 1))
6773                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6774                                        1, &eeprom_data);
6775                 else
6776                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6777                                        1, &eeprom_data);
6778         }
6779
6780         /* fetch WoL from EEPROM */
6781         if (eeprom_data & eeprom_apme_mask)
6782                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6783
6784         /* now that we have the eeprom settings, apply the special cases
6785          * where the eeprom may be wrong or the board simply won't support
6786          * wake on lan on a particular port
6787          */
6788         if (!(adapter->flags & FLAG_HAS_WOL))
6789                 adapter->eeprom_wol = 0;
6790
6791         /* initialize the wol settings based on the eeprom settings */
6792         adapter->wol = adapter->eeprom_wol;
6793
6794         /* make sure adapter isn't asleep if manageability is enabled */
6795         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6796             (hw->mac.ops.check_mng_mode(hw)))
6797                 device_wakeup_enable(&pdev->dev);
6798
6799         /* save off EEPROM version number */
6800         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6801
6802         /* reset the hardware with the new settings */
6803         e1000e_reset(adapter);
6804
6805         /* If the controller has AMT, do not set DRV_LOAD until the interface
6806          * is up.  For all other cases, let the f/w know that the h/w is now
6807          * under the control of the driver.
6808          */
6809         if (!(adapter->flags & FLAG_HAS_AMT))
6810                 e1000e_get_hw_control(adapter);
6811
6812         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6813         err = register_netdev(netdev);
6814         if (err)
6815                 goto err_register;
6816
6817         /* carrier off reporting is important to ethtool even BEFORE open */
6818         netif_carrier_off(netdev);
6819
6820         /* init PTP hardware clock */
6821         e1000e_ptp_init(adapter);
6822
6823         e1000_print_device_info(adapter);
6824
6825         if (pci_dev_run_wake(pdev))
6826                 pm_runtime_put_noidle(&pdev->dev);
6827
6828         return 0;
6829
6830 err_register:
6831         if (!(adapter->flags & FLAG_HAS_AMT))
6832                 e1000e_release_hw_control(adapter);
6833 err_eeprom:
6834         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6835                 e1000_phy_hw_reset(&adapter->hw);
6836 err_hw_init:
6837         kfree(adapter->tx_ring);
6838         kfree(adapter->rx_ring);
6839 err_sw_init:
6840         if (adapter->hw.flash_address)
6841                 iounmap(adapter->hw.flash_address);
6842         e1000e_reset_interrupt_capability(adapter);
6843 err_flashmap:
6844         iounmap(adapter->hw.hw_addr);
6845 err_ioremap:
6846         free_netdev(netdev);
6847 err_alloc_etherdev:
6848         pci_release_selected_regions(pdev,
6849                                      pci_select_bars(pdev, IORESOURCE_MEM));
6850 err_pci_reg:
6851 err_dma:
6852         pci_disable_device(pdev);
6853         return err;
6854 }
6855
6856 /**
6857  * e1000_remove - Device Removal Routine
6858  * @pdev: PCI device information struct
6859  *
6860  * e1000_remove is called by the PCI subsystem to alert the driver
6861  * that it should release a PCI device.  The could be caused by a
6862  * Hot-Plug event, or because the driver is going to be removed from
6863  * memory.
6864  **/
6865 static void e1000_remove(struct pci_dev *pdev)
6866 {
6867         struct net_device *netdev = pci_get_drvdata(pdev);
6868         struct e1000_adapter *adapter = netdev_priv(netdev);
6869         bool down = test_bit(__E1000_DOWN, &adapter->state);
6870
6871         e1000e_ptp_remove(adapter);
6872
6873         /* The timers may be rescheduled, so explicitly disable them
6874          * from being rescheduled.
6875          */
6876         if (!down)
6877                 set_bit(__E1000_DOWN, &adapter->state);
6878         del_timer_sync(&adapter->watchdog_timer);
6879         del_timer_sync(&adapter->phy_info_timer);
6880
6881         cancel_work_sync(&adapter->reset_task);
6882         cancel_work_sync(&adapter->watchdog_task);
6883         cancel_work_sync(&adapter->downshift_task);
6884         cancel_work_sync(&adapter->update_phy_task);
6885         cancel_work_sync(&adapter->print_hang_task);
6886
6887         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6888                 cancel_work_sync(&adapter->tx_hwtstamp_work);
6889                 if (adapter->tx_hwtstamp_skb) {
6890                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6891                         adapter->tx_hwtstamp_skb = NULL;
6892                 }
6893         }
6894
6895         if (!(netdev->flags & IFF_UP))
6896                 e1000_power_down_phy(adapter);
6897
6898         /* Don't lie to e1000_close() down the road. */
6899         if (!down)
6900                 clear_bit(__E1000_DOWN, &adapter->state);
6901         unregister_netdev(netdev);
6902
6903         if (pci_dev_run_wake(pdev))
6904                 pm_runtime_get_noresume(&pdev->dev);
6905
6906         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6907          * would have already happened in close and is redundant.
6908          */
6909         e1000e_release_hw_control(adapter);
6910
6911         e1000e_reset_interrupt_capability(adapter);
6912         kfree(adapter->tx_ring);
6913         kfree(adapter->rx_ring);
6914
6915         iounmap(adapter->hw.hw_addr);
6916         if (adapter->hw.flash_address)
6917                 iounmap(adapter->hw.flash_address);
6918         pci_release_selected_regions(pdev,
6919                                      pci_select_bars(pdev, IORESOURCE_MEM));
6920
6921         free_netdev(netdev);
6922
6923         /* AER disable */
6924         pci_disable_pcie_error_reporting(pdev);
6925
6926         pci_disable_device(pdev);
6927 }
6928
6929 /* PCI Error Recovery (ERS) */
6930 static const struct pci_error_handlers e1000_err_handler = {
6931         .error_detected = e1000_io_error_detected,
6932         .slot_reset = e1000_io_slot_reset,
6933         .resume = e1000_io_resume,
6934 };
6935
6936 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6937         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6938         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6939         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6940         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
6941           board_82571 },
6942         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6943         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6944         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6945         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6946         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6947
6948         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6949         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6950         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6951         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6952
6953         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6954         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6955         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6956
6957         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6958         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6959         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6960
6961         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6962           board_80003es2lan },
6963         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6964           board_80003es2lan },
6965         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6966           board_80003es2lan },
6967         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6968           board_80003es2lan },
6969
6970         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6971         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6972         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6973         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6974         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6975         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6976         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6977         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6978
6979         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6980         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6981         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6982         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6983         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6984         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6985         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6986         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6987         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6988
6989         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6990         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6991         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6992
6993         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6994         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6995         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6996
6997         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6998         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6999         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7000         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7001
7002         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7003         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7004
7005         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7006         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7007         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7008         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7009         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7010         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7011         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7012         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7013
7014         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7015 };
7016 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7017
7018 #ifdef CONFIG_PM
7019 static const struct dev_pm_ops e1000_pm_ops = {
7020         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
7021         SET_RUNTIME_PM_OPS(e1000_runtime_suspend, e1000_runtime_resume,
7022                            e1000_idle)
7023 };
7024 #endif
7025
7026 /* PCI Device API Driver */
7027 static struct pci_driver e1000_driver = {
7028         .name     = e1000e_driver_name,
7029         .id_table = e1000_pci_tbl,
7030         .probe    = e1000_probe,
7031         .remove   = e1000_remove,
7032 #ifdef CONFIG_PM
7033         .driver   = {
7034                 .pm = &e1000_pm_ops,
7035         },
7036 #endif
7037         .shutdown = e1000_shutdown,
7038         .err_handler = &e1000_err_handler
7039 };
7040
7041 /**
7042  * e1000_init_module - Driver Registration Routine
7043  *
7044  * e1000_init_module is the first routine called when the driver is
7045  * loaded. All it does is register with the PCI subsystem.
7046  **/
7047 static int __init e1000_init_module(void)
7048 {
7049         int ret;
7050         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7051                 e1000e_driver_version);
7052         pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7053         ret = pci_register_driver(&e1000_driver);
7054
7055         return ret;
7056 }
7057 module_init(e1000_init_module);
7058
7059 /**
7060  * e1000_exit_module - Driver Exit Cleanup Routine
7061  *
7062  * e1000_exit_module is called just before the driver is removed
7063  * from memory.
7064  **/
7065 static void __exit e1000_exit_module(void)
7066 {
7067         pci_unregister_driver(&e1000_driver);
7068 }
7069 module_exit(e1000_exit_module);
7070
7071 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7072 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7073 MODULE_LICENSE("GPL");
7074 MODULE_VERSION(DRV_VERSION);
7075
7076 /* netdev.c */