ARM: multi_v7_defconfig: Enable support for the ADC thermal sensor
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40
41 #include "e1000.h"
42
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46         struct ich8_hsfsts {
47                 u16 flcdone:1;  /* bit 0 Flash Cycle Done */
48                 u16 flcerr:1;   /* bit 1 Flash Cycle Error */
49                 u16 dael:1;     /* bit 2 Direct Access error Log */
50                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51                 u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
52                 u16 reserved1:2;        /* bit 13:6 Reserved */
53                 u16 reserved2:6;        /* bit 13:6 Reserved */
54                 u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
55                 u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
56         } hsf_status;
57         u16 regval;
58 };
59
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63         struct ich8_hsflctl {
64                 u16 flcgo:1;    /* 0 Flash Cycle Go */
65                 u16 flcycle:2;  /* 2:1 Flash Cycle */
66                 u16 reserved:5; /* 7:3 Reserved  */
67                 u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
68                 u16 flockdn:6;  /* 15:10 Reserved */
69         } hsf_ctrl;
70         u16 regval;
71 };
72
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75         struct ich8_flracc {
76                 u32 grra:8;     /* 0:7 GbE region Read Access */
77                 u32 grwa:8;     /* 8:15 GbE region Write Access */
78                 u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
79                 u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
80         } hsf_flregacc;
81         u16 regval;
82 };
83
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86         struct ich8_pr {
87                 u32 base:13;    /* 0:12 Protected Range Base */
88                 u32 reserved1:2;        /* 13:14 Reserved */
89                 u32 rpe:1;      /* 15 Read Protection Enable */
90                 u32 limit:13;   /* 16:28 Protected Range Limit */
91                 u32 reserved2:2;        /* 29:30 Reserved */
92                 u32 wpe:1;      /* 31 Write Protection Enable */
93         } range;
94         u32 regval;
95 };
96
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101                                                 u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103                                          u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105                                          u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107                                          u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109                                            u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111                                           u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113                                             u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115                                                  u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143         return readw(hw->flash_address + reg);
144 }
145
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148         return readl(hw->flash_address + reg);
149 }
150
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153         writew(val, hw->flash_address + reg);
154 }
155
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158         writel(val, hw->flash_address + reg);
159 }
160
161 #define er16flash(reg)          __er16flash(hw, (reg))
162 #define er32flash(reg)          __er32flash(hw, (reg))
163 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
165
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178         u16 phy_reg = 0;
179         u32 phy_id = 0;
180         s32 ret_val = 0;
181         u16 retry_count;
182         u32 mac_reg = 0;
183
184         for (retry_count = 0; retry_count < 2; retry_count++) {
185                 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186                 if (ret_val || (phy_reg == 0xFFFF))
187                         continue;
188                 phy_id = (u32)(phy_reg << 16);
189
190                 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191                 if (ret_val || (phy_reg == 0xFFFF)) {
192                         phy_id = 0;
193                         continue;
194                 }
195                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196                 break;
197         }
198
199         if (hw->phy.id) {
200                 if (hw->phy.id == phy_id)
201                         goto out;
202         } else if (phy_id) {
203                 hw->phy.id = phy_id;
204                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205                 goto out;
206         }
207
208         /* In case the PHY needs to be in mdio slow mode,
209          * set slow mode and try to get the PHY id again.
210          */
211         if (hw->mac.type < e1000_pch_lpt) {
212                 hw->phy.ops.release(hw);
213                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214                 if (!ret_val)
215                         ret_val = e1000e_get_phy_id(hw);
216                 hw->phy.ops.acquire(hw);
217         }
218
219         if (ret_val)
220                 return false;
221 out:
222         if (hw->mac.type >= e1000_pch_lpt) {
223                 /* Only unforce SMBus if ME is not active */
224                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225                         /* Unforce SMBus mode in PHY */
226                         e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228                         e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230                         /* Unforce SMBus mode in MAC */
231                         mac_reg = er32(CTRL_EXT);
232                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233                         ew32(CTRL_EXT, mac_reg);
234                 }
235         }
236
237         return true;
238 }
239
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249         u32 mac_reg;
250
251         /* Set Phy Config Counter to 50msec */
252         mac_reg = er32(FEXTNVM3);
253         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255         ew32(FEXTNVM3, mac_reg);
256
257         /* Toggle LANPHYPC Value bit */
258         mac_reg = er32(CTRL);
259         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261         ew32(CTRL, mac_reg);
262         e1e_flush();
263         usleep_range(10, 20);
264         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265         ew32(CTRL, mac_reg);
266         e1e_flush();
267
268         if (hw->mac.type < e1000_pch_lpt) {
269                 msleep(50);
270         } else {
271                 u16 count = 20;
272
273                 do {
274                         usleep_range(5000, 6000);
275                 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277                 msleep(30);
278         }
279 }
280
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290         struct e1000_adapter *adapter = hw->adapter;
291         u32 mac_reg, fwsm = er32(FWSM);
292         s32 ret_val;
293
294         /* Gate automatic PHY configuration by hardware on managed and
295          * non-managed 82579 and newer adapters.
296          */
297         e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299         /* It is not possible to be certain of the current state of ULP
300          * so forcibly disable it.
301          */
302         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303         ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304         if (ret_val)
305                 e_warn("Failed to disable ULP\n");
306
307         ret_val = hw->phy.ops.acquire(hw);
308         if (ret_val) {
309                 e_dbg("Failed to initialize PHY flow\n");
310                 goto out;
311         }
312
313         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314          * inaccessible and resetting the PHY is not blocked, toggle the
315          * LANPHYPC Value bit to force the interconnect to PCIe mode.
316          */
317         switch (hw->mac.type) {
318         case e1000_pch_lpt:
319         case e1000_pch_spt:
320         case e1000_pch_cnp:
321         case e1000_pch_tgp:
322         case e1000_pch_adp:
323         case e1000_pch_mtp:
324                 if (e1000_phy_is_accessible_pchlan(hw))
325                         break;
326
327                 /* Before toggling LANPHYPC, see if PHY is accessible by
328                  * forcing MAC to SMBus mode first.
329                  */
330                 mac_reg = er32(CTRL_EXT);
331                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332                 ew32(CTRL_EXT, mac_reg);
333
334                 /* Wait 50 milliseconds for MAC to finish any retries
335                  * that it might be trying to perform from previous
336                  * attempts to acknowledge any phy read requests.
337                  */
338                 msleep(50);
339
340                 fallthrough;
341         case e1000_pch2lan:
342                 if (e1000_phy_is_accessible_pchlan(hw))
343                         break;
344
345                 fallthrough;
346         case e1000_pchlan:
347                 if ((hw->mac.type == e1000_pchlan) &&
348                     (fwsm & E1000_ICH_FWSM_FW_VALID))
349                         break;
350
351                 if (hw->phy.ops.check_reset_block(hw)) {
352                         e_dbg("Required LANPHYPC toggle blocked by ME\n");
353                         ret_val = -E1000_ERR_PHY;
354                         break;
355                 }
356
357                 /* Toggle LANPHYPC Value bit */
358                 e1000_toggle_lanphypc_pch_lpt(hw);
359                 if (hw->mac.type >= e1000_pch_lpt) {
360                         if (e1000_phy_is_accessible_pchlan(hw))
361                                 break;
362
363                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
364                          * so ensure that the MAC is also out of SMBus mode
365                          */
366                         mac_reg = er32(CTRL_EXT);
367                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368                         ew32(CTRL_EXT, mac_reg);
369
370                         if (e1000_phy_is_accessible_pchlan(hw))
371                                 break;
372
373                         ret_val = -E1000_ERR_PHY;
374                 }
375                 break;
376         default:
377                 break;
378         }
379
380         hw->phy.ops.release(hw);
381         if (!ret_val) {
382
383                 /* Check to see if able to reset PHY.  Print error if not */
384                 if (hw->phy.ops.check_reset_block(hw)) {
385                         e_err("Reset blocked by ME\n");
386                         goto out;
387                 }
388
389                 /* Reset the PHY before any access to it.  Doing so, ensures
390                  * that the PHY is in a known good state before we read/write
391                  * PHY registers.  The generic reset is sufficient here,
392                  * because we haven't determined the PHY type yet.
393                  */
394                 ret_val = e1000e_phy_hw_reset_generic(hw);
395                 if (ret_val)
396                         goto out;
397
398                 /* On a successful reset, possibly need to wait for the PHY
399                  * to quiesce to an accessible state before returning control
400                  * to the calling function.  If the PHY does not quiesce, then
401                  * return E1000E_BLK_PHY_RESET, as this is the condition that
402                  *  the PHY is in.
403                  */
404                 ret_val = hw->phy.ops.check_reset_block(hw);
405                 if (ret_val)
406                         e_err("ME blocked access to PHY after reset\n");
407         }
408
409 out:
410         /* Ungate automatic PHY configuration on non-managed 82579 */
411         if ((hw->mac.type == e1000_pch2lan) &&
412             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413                 usleep_range(10000, 11000);
414                 e1000_gate_hw_phy_config_ich8lan(hw, false);
415         }
416
417         return ret_val;
418 }
419
420 /**
421  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422  *  @hw: pointer to the HW structure
423  *
424  *  Initialize family-specific PHY parameters and function pointers.
425  **/
426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428         struct e1000_phy_info *phy = &hw->phy;
429         s32 ret_val;
430
431         phy->addr = 1;
432         phy->reset_delay_us = 100;
433
434         phy->ops.set_page = e1000_set_page_igp;
435         phy->ops.read_reg = e1000_read_phy_reg_hv;
436         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437         phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440         phy->ops.write_reg = e1000_write_phy_reg_hv;
441         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443         phy->ops.power_up = e1000_power_up_phy_copper;
444         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446
447         phy->id = e1000_phy_unknown;
448
449         ret_val = e1000_init_phy_workarounds_pchlan(hw);
450         if (ret_val)
451                 return ret_val;
452
453         if (phy->id == e1000_phy_unknown)
454                 switch (hw->mac.type) {
455                 default:
456                         ret_val = e1000e_get_phy_id(hw);
457                         if (ret_val)
458                                 return ret_val;
459                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460                                 break;
461                         fallthrough;
462                 case e1000_pch2lan:
463                 case e1000_pch_lpt:
464                 case e1000_pch_spt:
465                 case e1000_pch_cnp:
466                 case e1000_pch_tgp:
467                 case e1000_pch_adp:
468                 case e1000_pch_mtp:
469                         /* In case the PHY needs to be in mdio slow mode,
470                          * set slow mode and try to get the PHY id again.
471                          */
472                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
473                         if (ret_val)
474                                 return ret_val;
475                         ret_val = e1000e_get_phy_id(hw);
476                         if (ret_val)
477                                 return ret_val;
478                         break;
479                 }
480         phy->type = e1000e_get_phy_type_from_id(phy->id);
481
482         switch (phy->type) {
483         case e1000_phy_82577:
484         case e1000_phy_82579:
485         case e1000_phy_i217:
486                 phy->ops.check_polarity = e1000_check_polarity_82577;
487                 phy->ops.force_speed_duplex =
488                     e1000_phy_force_speed_duplex_82577;
489                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
490                 phy->ops.get_info = e1000_get_phy_info_82577;
491                 phy->ops.commit = e1000e_phy_sw_reset;
492                 break;
493         case e1000_phy_82578:
494                 phy->ops.check_polarity = e1000_check_polarity_m88;
495                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
496                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
497                 phy->ops.get_info = e1000e_get_phy_info_m88;
498                 break;
499         default:
500                 ret_val = -E1000_ERR_PHY;
501                 break;
502         }
503
504         return ret_val;
505 }
506
507 /**
508  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
509  *  @hw: pointer to the HW structure
510  *
511  *  Initialize family-specific PHY parameters and function pointers.
512  **/
513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
514 {
515         struct e1000_phy_info *phy = &hw->phy;
516         s32 ret_val;
517         u16 i = 0;
518
519         phy->addr = 1;
520         phy->reset_delay_us = 100;
521
522         phy->ops.power_up = e1000_power_up_phy_copper;
523         phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
524
525         /* We may need to do this twice - once for IGP and if that fails,
526          * we'll set BM func pointers and try again
527          */
528         ret_val = e1000e_determine_phy_address(hw);
529         if (ret_val) {
530                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
531                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
532                 ret_val = e1000e_determine_phy_address(hw);
533                 if (ret_val) {
534                         e_dbg("Cannot determine PHY addr. Erroring out\n");
535                         return ret_val;
536                 }
537         }
538
539         phy->id = 0;
540         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
541                (i++ < 100)) {
542                 usleep_range(1000, 1100);
543                 ret_val = e1000e_get_phy_id(hw);
544                 if (ret_val)
545                         return ret_val;
546         }
547
548         /* Verify phy id */
549         switch (phy->id) {
550         case IGP03E1000_E_PHY_ID:
551                 phy->type = e1000_phy_igp_3;
552                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
553                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
554                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
555                 phy->ops.get_info = e1000e_get_phy_info_igp;
556                 phy->ops.check_polarity = e1000_check_polarity_igp;
557                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
558                 break;
559         case IFE_E_PHY_ID:
560         case IFE_PLUS_E_PHY_ID:
561         case IFE_C_E_PHY_ID:
562                 phy->type = e1000_phy_ife;
563                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
564                 phy->ops.get_info = e1000_get_phy_info_ife;
565                 phy->ops.check_polarity = e1000_check_polarity_ife;
566                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
567                 break;
568         case BME1000_E_PHY_ID:
569                 phy->type = e1000_phy_bm;
570                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
571                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
572                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
573                 phy->ops.commit = e1000e_phy_sw_reset;
574                 phy->ops.get_info = e1000e_get_phy_info_m88;
575                 phy->ops.check_polarity = e1000_check_polarity_m88;
576                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
577                 break;
578         default:
579                 return -E1000_ERR_PHY;
580         }
581
582         return 0;
583 }
584
585 /**
586  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
587  *  @hw: pointer to the HW structure
588  *
589  *  Initialize family-specific NVM parameters and function
590  *  pointers.
591  **/
592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
593 {
594         struct e1000_nvm_info *nvm = &hw->nvm;
595         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
596         u32 gfpreg, sector_base_addr, sector_end_addr;
597         u16 i;
598         u32 nvm_size;
599
600         nvm->type = e1000_nvm_flash_sw;
601
602         if (hw->mac.type >= e1000_pch_spt) {
603                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
604                  * STRAP register. This is because in SPT the GbE Flash region
605                  * is no longer accessed through the flash registers. Instead,
606                  * the mechanism has changed, and the Flash region access
607                  * registers are now implemented in GbE memory space.
608                  */
609                 nvm->flash_base_addr = 0;
610                 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
611                     * NVM_SIZE_MULTIPLIER;
612                 nvm->flash_bank_size = nvm_size / 2;
613                 /* Adjust to word count */
614                 nvm->flash_bank_size /= sizeof(u16);
615                 /* Set the base address for flash register access */
616                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
617         } else {
618                 /* Can't read flash registers if register set isn't mapped. */
619                 if (!hw->flash_address) {
620                         e_dbg("ERROR: Flash registers not mapped\n");
621                         return -E1000_ERR_CONFIG;
622                 }
623
624                 gfpreg = er32flash(ICH_FLASH_GFPREG);
625
626                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
627                  * Add 1 to sector_end_addr since this sector is included in
628                  * the overall size.
629                  */
630                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
631                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
632
633                 /* flash_base_addr is byte-aligned */
634                 nvm->flash_base_addr = sector_base_addr
635                     << FLASH_SECTOR_ADDR_SHIFT;
636
637                 /* find total size of the NVM, then cut in half since the total
638                  * size represents two separate NVM banks.
639                  */
640                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
641                                         << FLASH_SECTOR_ADDR_SHIFT);
642                 nvm->flash_bank_size /= 2;
643                 /* Adjust to word count */
644                 nvm->flash_bank_size /= sizeof(u16);
645         }
646
647         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
648
649         /* Clear shadow ram */
650         for (i = 0; i < nvm->word_size; i++) {
651                 dev_spec->shadow_ram[i].modified = false;
652                 dev_spec->shadow_ram[i].value = 0xFFFF;
653         }
654
655         return 0;
656 }
657
658 /**
659  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize family-specific MAC parameters and function
663  *  pointers.
664  **/
665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
666 {
667         struct e1000_mac_info *mac = &hw->mac;
668
669         /* Set media type function pointer */
670         hw->phy.media_type = e1000_media_type_copper;
671
672         /* Set mta register count */
673         mac->mta_reg_count = 32;
674         /* Set rar entry count */
675         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
676         if (mac->type == e1000_ich8lan)
677                 mac->rar_entry_count--;
678         /* FWSM register */
679         mac->has_fwsm = true;
680         /* ARC subsystem not supported */
681         mac->arc_subsystem_valid = false;
682         /* Adaptive IFS supported */
683         mac->adaptive_ifs = true;
684
685         /* LED and other operations */
686         switch (mac->type) {
687         case e1000_ich8lan:
688         case e1000_ich9lan:
689         case e1000_ich10lan:
690                 /* check management mode */
691                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
692                 /* ID LED init */
693                 mac->ops.id_led_init = e1000e_id_led_init_generic;
694                 /* blink LED */
695                 mac->ops.blink_led = e1000e_blink_led_generic;
696                 /* setup LED */
697                 mac->ops.setup_led = e1000e_setup_led_generic;
698                 /* cleanup LED */
699                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
700                 /* turn on/off LED */
701                 mac->ops.led_on = e1000_led_on_ich8lan;
702                 mac->ops.led_off = e1000_led_off_ich8lan;
703                 break;
704         case e1000_pch2lan:
705                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
706                 mac->ops.rar_set = e1000_rar_set_pch2lan;
707                 fallthrough;
708         case e1000_pch_lpt:
709         case e1000_pch_spt:
710         case e1000_pch_cnp:
711         case e1000_pch_tgp:
712         case e1000_pch_adp:
713         case e1000_pch_mtp:
714         case e1000_pchlan:
715                 /* check management mode */
716                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
717                 /* ID LED init */
718                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
719                 /* setup LED */
720                 mac->ops.setup_led = e1000_setup_led_pchlan;
721                 /* cleanup LED */
722                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
723                 /* turn on/off LED */
724                 mac->ops.led_on = e1000_led_on_pchlan;
725                 mac->ops.led_off = e1000_led_off_pchlan;
726                 break;
727         default:
728                 break;
729         }
730
731         if (mac->type >= e1000_pch_lpt) {
732                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
733                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
734                 mac->ops.setup_physical_interface =
735                     e1000_setup_copper_link_pch_lpt;
736                 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
737         }
738
739         /* Enable PCS Lock-loss workaround for ICH8 */
740         if (mac->type == e1000_ich8lan)
741                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
742
743         return 0;
744 }
745
746 /**
747  *  __e1000_access_emi_reg_locked - Read/write EMI register
748  *  @hw: pointer to the HW structure
749  *  @address: EMI address to program
750  *  @data: pointer to value to read/write from/to the EMI address
751  *  @read: boolean flag to indicate read or write
752  *
753  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
754  **/
755 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
756                                          u16 *data, bool read)
757 {
758         s32 ret_val;
759
760         ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
761         if (ret_val)
762                 return ret_val;
763
764         if (read)
765                 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
766         else
767                 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
768
769         return ret_val;
770 }
771
772 /**
773  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
774  *  @hw: pointer to the HW structure
775  *  @addr: EMI address to program
776  *  @data: value to be read from the EMI address
777  *
778  *  Assumes the SW/FW/HW Semaphore is already acquired.
779  **/
780 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
781 {
782         return __e1000_access_emi_reg_locked(hw, addr, data, true);
783 }
784
785 /**
786  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
787  *  @hw: pointer to the HW structure
788  *  @addr: EMI address to program
789  *  @data: value to be written to the EMI address
790  *
791  *  Assumes the SW/FW/HW Semaphore is already acquired.
792  **/
793 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
794 {
795         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
796 }
797
798 /**
799  *  e1000_set_eee_pchlan - Enable/disable EEE support
800  *  @hw: pointer to the HW structure
801  *
802  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
803  *  the link and the EEE capabilities of the link partner.  The LPI Control
804  *  register bits will remain set only if/when link is up.
805  *
806  *  EEE LPI must not be asserted earlier than one second after link is up.
807  *  On 82579, EEE LPI should not be enabled until such time otherwise there
808  *  can be link issues with some switches.  Other devices can have EEE LPI
809  *  enabled immediately upon link up since they have a timer in hardware which
810  *  prevents LPI from being asserted too early.
811  **/
812 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
813 {
814         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
815         s32 ret_val;
816         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
817
818         switch (hw->phy.type) {
819         case e1000_phy_82579:
820                 lpa = I82579_EEE_LP_ABILITY;
821                 pcs_status = I82579_EEE_PCS_STATUS;
822                 adv_addr = I82579_EEE_ADVERTISEMENT;
823                 break;
824         case e1000_phy_i217:
825                 lpa = I217_EEE_LP_ABILITY;
826                 pcs_status = I217_EEE_PCS_STATUS;
827                 adv_addr = I217_EEE_ADVERTISEMENT;
828                 break;
829         default:
830                 return 0;
831         }
832
833         ret_val = hw->phy.ops.acquire(hw);
834         if (ret_val)
835                 return ret_val;
836
837         ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
838         if (ret_val)
839                 goto release;
840
841         /* Clear bits that enable EEE in various speeds */
842         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
843
844         /* Enable EEE if not disabled by user */
845         if (!dev_spec->eee_disable) {
846                 /* Save off link partner's EEE ability */
847                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
848                                                     &dev_spec->eee_lp_ability);
849                 if (ret_val)
850                         goto release;
851
852                 /* Read EEE advertisement */
853                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
854                 if (ret_val)
855                         goto release;
856
857                 /* Enable EEE only for speeds in which the link partner is
858                  * EEE capable and for which we advertise EEE.
859                  */
860                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
861                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
862
863                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
864                         e1e_rphy_locked(hw, MII_LPA, &data);
865                         if (data & LPA_100FULL)
866                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
867                         else
868                                 /* EEE is not supported in 100Half, so ignore
869                                  * partner's EEE in 100 ability if full-duplex
870                                  * is not advertised.
871                                  */
872                                 dev_spec->eee_lp_ability &=
873                                     ~I82579_EEE_100_SUPPORTED;
874                 }
875         }
876
877         if (hw->phy.type == e1000_phy_82579) {
878                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
879                                                     &data);
880                 if (ret_val)
881                         goto release;
882
883                 data &= ~I82579_LPI_100_PLL_SHUT;
884                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885                                                      data);
886         }
887
888         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
889         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
890         if (ret_val)
891                 goto release;
892
893         ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
894 release:
895         hw->phy.ops.release(hw);
896
897         return ret_val;
898 }
899
900 /**
901  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
902  *  @hw:   pointer to the HW structure
903  *  @link: link up bool flag
904  *
905  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
906  *  preventing further DMA write requests.  Workaround the issue by disabling
907  *  the de-assertion of the clock request when in 1Gpbs mode.
908  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
909  *  speeds in order to avoid Tx hangs.
910  **/
911 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
912 {
913         u32 fextnvm6 = er32(FEXTNVM6);
914         u32 status = er32(STATUS);
915         s32 ret_val = 0;
916         u16 reg;
917
918         if (link && (status & E1000_STATUS_SPEED_1000)) {
919                 ret_val = hw->phy.ops.acquire(hw);
920                 if (ret_val)
921                         return ret_val;
922
923                 ret_val =
924                     e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
925                                                 &reg);
926                 if (ret_val)
927                         goto release;
928
929                 ret_val =
930                     e1000e_write_kmrn_reg_locked(hw,
931                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
932                                                  reg &
933                                                  ~E1000_KMRNCTRLSTA_K1_ENABLE);
934                 if (ret_val)
935                         goto release;
936
937                 usleep_range(10, 20);
938
939                 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
940
941                 ret_val =
942                     e1000e_write_kmrn_reg_locked(hw,
943                                                  E1000_KMRNCTRLSTA_K1_CONFIG,
944                                                  reg);
945 release:
946                 hw->phy.ops.release(hw);
947         } else {
948                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
949                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
950
951                 if ((hw->phy.revision > 5) || !link ||
952                     ((status & E1000_STATUS_SPEED_100) &&
953                      (status & E1000_STATUS_FD)))
954                         goto update_fextnvm6;
955
956                 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
957                 if (ret_val)
958                         return ret_val;
959
960                 /* Clear link status transmit timeout */
961                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
962
963                 if (status & E1000_STATUS_SPEED_100) {
964                         /* Set inband Tx timeout to 5x10us for 100Half */
965                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
966
967                         /* Do not extend the K1 entry latency for 100Half */
968                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
969                 } else {
970                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
971                         reg |= 50 <<
972                             I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973
974                         /* Extend the K1 entry latency for 10 Mbps */
975                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976                 }
977
978                 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
979                 if (ret_val)
980                         return ret_val;
981
982 update_fextnvm6:
983                 ew32(FEXTNVM6, fextnvm6);
984         }
985
986         return ret_val;
987 }
988
989 /**
990  *  e1000_platform_pm_pch_lpt - Set platform power management values
991  *  @hw: pointer to the HW structure
992  *  @link: bool indicating link status
993  *
994  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
995  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
996  *  when link is up (which must not exceed the maximum latency supported
997  *  by the platform), otherwise specify there is no LTR requirement.
998  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
999  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1000  *  Capability register set, on this device LTR is set by writing the
1001  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1002  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1003  *  message to the PMC.
1004  **/
1005 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1006 {
1007         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1008             link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1009         u16 lat_enc = 0;        /* latency encoded */
1010
1011         if (link) {
1012                 u16 speed, duplex, scale = 0;
1013                 u16 max_snoop, max_nosnoop;
1014                 u16 max_ltr_enc;        /* max LTR latency encoded */
1015                 u64 value;
1016                 u32 rxa;
1017
1018                 if (!hw->adapter->max_frame_size) {
1019                         e_dbg("max_frame_size not set.\n");
1020                         return -E1000_ERR_CONFIG;
1021                 }
1022
1023                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1024                 if (!speed) {
1025                         e_dbg("Speed not set.\n");
1026                         return -E1000_ERR_CONFIG;
1027                 }
1028
1029                 /* Rx Packet Buffer Allocation size (KB) */
1030                 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1031
1032                 /* Determine the maximum latency tolerated by the device.
1033                  *
1034                  * Per the PCIe spec, the tolerated latencies are encoded as
1035                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1036                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1037                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1038                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1039                  */
1040                 rxa *= 512;
1041                 value = (rxa > hw->adapter->max_frame_size) ?
1042                         (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1043                         0;
1044
1045                 while (value > PCI_LTR_VALUE_MASK) {
1046                         scale++;
1047                         value = DIV_ROUND_UP(value, BIT(5));
1048                 }
1049                 if (scale > E1000_LTRV_SCALE_MAX) {
1050                         e_dbg("Invalid LTR latency scale %d\n", scale);
1051                         return -E1000_ERR_CONFIG;
1052                 }
1053                 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1054
1055                 /* Determine the maximum latency tolerated by the platform */
1056                 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1057                                      &max_snoop);
1058                 pci_read_config_word(hw->adapter->pdev,
1059                                      E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1060                 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1061
1062                 if (lat_enc > max_ltr_enc)
1063                         lat_enc = max_ltr_enc;
1064         }
1065
1066         /* Set Snoop and No-Snoop latencies the same */
1067         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1068         ew32(LTRV, reg);
1069
1070         return 0;
1071 }
1072
1073 /**
1074  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1075  *  @hw: pointer to the HW structure
1076  *  @to_sx: boolean indicating a system power state transition to Sx
1077  *
1078  *  When link is down, configure ULP mode to significantly reduce the power
1079  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1080  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1081  *  system, configure the ULP mode by software.
1082  */
1083 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1084 {
1085         u32 mac_reg;
1086         s32 ret_val = 0;
1087         u16 phy_reg;
1088         u16 oem_reg = 0;
1089
1090         if ((hw->mac.type < e1000_pch_lpt) ||
1091             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1092             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1093             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1094             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1095             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1096                 return 0;
1097
1098         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1099                 /* Request ME configure ULP mode in the PHY */
1100                 mac_reg = er32(H2ME);
1101                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1102                 ew32(H2ME, mac_reg);
1103
1104                 goto out;
1105         }
1106
1107         if (!to_sx) {
1108                 int i = 0;
1109
1110                 /* Poll up to 5 seconds for Cable Disconnected indication */
1111                 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1112                         /* Bail if link is re-acquired */
1113                         if (er32(STATUS) & E1000_STATUS_LU)
1114                                 return -E1000_ERR_PHY;
1115
1116                         if (i++ == 100)
1117                                 break;
1118
1119                         msleep(50);
1120                 }
1121                 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1122                       (er32(FEXT) &
1123                        E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1124         }
1125
1126         ret_val = hw->phy.ops.acquire(hw);
1127         if (ret_val)
1128                 goto out;
1129
1130         /* Force SMBus mode in PHY */
1131         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1132         if (ret_val)
1133                 goto release;
1134         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1135         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1136
1137         /* Force SMBus mode in MAC */
1138         mac_reg = er32(CTRL_EXT);
1139         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1140         ew32(CTRL_EXT, mac_reg);
1141
1142         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1143          * LPLU and disable Gig speed when entering ULP
1144          */
1145         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1146                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1147                                                        &oem_reg);
1148                 if (ret_val)
1149                         goto release;
1150
1151                 phy_reg = oem_reg;
1152                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1153
1154                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155                                                         phy_reg);
1156
1157                 if (ret_val)
1158                         goto release;
1159         }
1160
1161         /* Set Inband ULP Exit, Reset to SMBus mode and
1162          * Disable SMBus Release on PERST# in PHY
1163          */
1164         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1165         if (ret_val)
1166                 goto release;
1167         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1168                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1169         if (to_sx) {
1170                 if (er32(WUFC) & E1000_WUFC_LNKC)
1171                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1172                 else
1173                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1174
1175                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1176                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1177         } else {
1178                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1179                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1180                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181         }
1182         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1183
1184         /* Set Disable SMBus Release on PERST# in MAC */
1185         mac_reg = er32(FEXTNVM7);
1186         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1187         ew32(FEXTNVM7, mac_reg);
1188
1189         /* Commit ULP changes in PHY by starting auto ULP configuration */
1190         phy_reg |= I218_ULP_CONFIG1_START;
1191         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1192
1193         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1194             to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1195                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1196                                                         oem_reg);
1197                 if (ret_val)
1198                         goto release;
1199         }
1200
1201 release:
1202         hw->phy.ops.release(hw);
1203 out:
1204         if (ret_val)
1205                 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1206         else
1207                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1208
1209         return ret_val;
1210 }
1211
1212 /**
1213  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1214  *  @hw: pointer to the HW structure
1215  *  @force: boolean indicating whether or not to force disabling ULP
1216  *
1217  *  Un-configure ULP mode when link is up, the system is transitioned from
1218  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1219  *  system, poll for an indication from ME that ULP has been un-configured.
1220  *  If not on an ME enabled system, un-configure the ULP mode by software.
1221  *
1222  *  During nominal operation, this function is called when link is acquired
1223  *  to disable ULP mode (force=false); otherwise, for example when unloading
1224  *  the driver or during Sx->S0 transitions, this is called with force=true
1225  *  to forcibly disable ULP.
1226  */
1227 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1228 {
1229         s32 ret_val = 0;
1230         u32 mac_reg;
1231         u16 phy_reg;
1232         int i = 0;
1233
1234         if ((hw->mac.type < e1000_pch_lpt) ||
1235             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1236             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1237             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1238             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1239             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1240                 return 0;
1241
1242         if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1243                 if (force) {
1244                         /* Request ME un-configure ULP mode in the PHY */
1245                         mac_reg = er32(H2ME);
1246                         mac_reg &= ~E1000_H2ME_ULP;
1247                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1248                         ew32(H2ME, mac_reg);
1249                 }
1250
1251                 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1252                 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1253                         if (i++ == 30) {
1254                                 ret_val = -E1000_ERR_PHY;
1255                                 goto out;
1256                         }
1257
1258                         usleep_range(10000, 11000);
1259                 }
1260                 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1261
1262                 if (force) {
1263                         mac_reg = er32(H2ME);
1264                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1265                         ew32(H2ME, mac_reg);
1266                 } else {
1267                         /* Clear H2ME.ULP after ME ULP configuration */
1268                         mac_reg = er32(H2ME);
1269                         mac_reg &= ~E1000_H2ME_ULP;
1270                         ew32(H2ME, mac_reg);
1271                 }
1272
1273                 goto out;
1274         }
1275
1276         ret_val = hw->phy.ops.acquire(hw);
1277         if (ret_val)
1278                 goto out;
1279
1280         if (force)
1281                 /* Toggle LANPHYPC Value bit */
1282                 e1000_toggle_lanphypc_pch_lpt(hw);
1283
1284         /* Unforce SMBus mode in PHY */
1285         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1286         if (ret_val) {
1287                 /* The MAC might be in PCIe mode, so temporarily force to
1288                  * SMBus mode in order to access the PHY.
1289                  */
1290                 mac_reg = er32(CTRL_EXT);
1291                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1292                 ew32(CTRL_EXT, mac_reg);
1293
1294                 msleep(50);
1295
1296                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1297                                                        &phy_reg);
1298                 if (ret_val)
1299                         goto release;
1300         }
1301         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1302         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1303
1304         /* Unforce SMBus mode in MAC */
1305         mac_reg = er32(CTRL_EXT);
1306         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1307         ew32(CTRL_EXT, mac_reg);
1308
1309         /* When ULP mode was previously entered, K1 was disabled by the
1310          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1311          */
1312         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1313         if (ret_val)
1314                 goto release;
1315         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1316         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1317
1318         /* Clear ULP enabled configuration */
1319         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1320         if (ret_val)
1321                 goto release;
1322         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1323                      I218_ULP_CONFIG1_STICKY_ULP |
1324                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1325                      I218_ULP_CONFIG1_WOL_HOST |
1326                      I218_ULP_CONFIG1_INBAND_EXIT |
1327                      I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1328                      I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1329                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1330         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1331
1332         /* Commit ULP changes by starting auto ULP configuration */
1333         phy_reg |= I218_ULP_CONFIG1_START;
1334         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1335
1336         /* Clear Disable SMBus Release on PERST# in MAC */
1337         mac_reg = er32(FEXTNVM7);
1338         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1339         ew32(FEXTNVM7, mac_reg);
1340
1341 release:
1342         hw->phy.ops.release(hw);
1343         if (force) {
1344                 e1000_phy_hw_reset(hw);
1345                 msleep(50);
1346         }
1347 out:
1348         if (ret_val)
1349                 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1350         else
1351                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1352
1353         return ret_val;
1354 }
1355
1356 /**
1357  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1358  *  @hw: pointer to the HW structure
1359  *
1360  *  Checks to see of the link status of the hardware has changed.  If a
1361  *  change in link status has been detected, then we read the PHY registers
1362  *  to get the current speed/duplex if link exists.
1363  **/
1364 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1365 {
1366         struct e1000_mac_info *mac = &hw->mac;
1367         s32 ret_val, tipg_reg = 0;
1368         u16 emi_addr, emi_val = 0;
1369         bool link;
1370         u16 phy_reg;
1371
1372         /* We only want to go out to the PHY registers to see if Auto-Neg
1373          * has completed and/or if our link status has changed.  The
1374          * get_link_status flag is set upon receiving a Link Status
1375          * Change or Rx Sequence Error interrupt.
1376          */
1377         if (!mac->get_link_status)
1378                 return 0;
1379         mac->get_link_status = false;
1380
1381         /* First we want to see if the MII Status Register reports
1382          * link.  If so, then we want to get the current speed/duplex
1383          * of the PHY.
1384          */
1385         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1386         if (ret_val)
1387                 goto out;
1388
1389         if (hw->mac.type == e1000_pchlan) {
1390                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1391                 if (ret_val)
1392                         goto out;
1393         }
1394
1395         /* When connected at 10Mbps half-duplex, some parts are excessively
1396          * aggressive resulting in many collisions. To avoid this, increase
1397          * the IPG and reduce Rx latency in the PHY.
1398          */
1399         if ((hw->mac.type >= e1000_pch2lan) && link) {
1400                 u16 speed, duplex;
1401
1402                 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1403                 tipg_reg = er32(TIPG);
1404                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1405
1406                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1407                         tipg_reg |= 0xFF;
1408                         /* Reduce Rx latency in analog PHY */
1409                         emi_val = 0;
1410                 } else if (hw->mac.type >= e1000_pch_spt &&
1411                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1412                         tipg_reg |= 0xC;
1413                         emi_val = 1;
1414                 } else {
1415
1416                         /* Roll back the default values */
1417                         tipg_reg |= 0x08;
1418                         emi_val = 1;
1419                 }
1420
1421                 ew32(TIPG, tipg_reg);
1422
1423                 ret_val = hw->phy.ops.acquire(hw);
1424                 if (ret_val)
1425                         goto out;
1426
1427                 if (hw->mac.type == e1000_pch2lan)
1428                         emi_addr = I82579_RX_CONFIG;
1429                 else
1430                         emi_addr = I217_RX_CONFIG;
1431                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1432
1433                 if (hw->mac.type >= e1000_pch_lpt) {
1434                         u16 phy_reg;
1435
1436                         e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1437                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1438                         if (speed == SPEED_100 || speed == SPEED_10)
1439                                 phy_reg |= 0x3E8;
1440                         else
1441                                 phy_reg |= 0xFA;
1442                         e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1443
1444                         if (speed == SPEED_1000) {
1445                                 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1446                                                             &phy_reg);
1447
1448                                 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1449
1450                                 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1451                                                              phy_reg);
1452                         }
1453                 }
1454                 hw->phy.ops.release(hw);
1455
1456                 if (ret_val)
1457                         goto out;
1458
1459                 if (hw->mac.type >= e1000_pch_spt) {
1460                         u16 data;
1461                         u16 ptr_gap;
1462
1463                         if (speed == SPEED_1000) {
1464                                 ret_val = hw->phy.ops.acquire(hw);
1465                                 if (ret_val)
1466                                         goto out;
1467
1468                                 ret_val = e1e_rphy_locked(hw,
1469                                                           PHY_REG(776, 20),
1470                                                           &data);
1471                                 if (ret_val) {
1472                                         hw->phy.ops.release(hw);
1473                                         goto out;
1474                                 }
1475
1476                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1477                                 if (ptr_gap < 0x18) {
1478                                         data &= ~(0x3FF << 2);
1479                                         data |= (0x18 << 2);
1480                                         ret_val =
1481                                             e1e_wphy_locked(hw,
1482                                                             PHY_REG(776, 20),
1483                                                             data);
1484                                 }
1485                                 hw->phy.ops.release(hw);
1486                                 if (ret_val)
1487                                         goto out;
1488                         } else {
1489                                 ret_val = hw->phy.ops.acquire(hw);
1490                                 if (ret_val)
1491                                         goto out;
1492
1493                                 ret_val = e1e_wphy_locked(hw,
1494                                                           PHY_REG(776, 20),
1495                                                           0xC023);
1496                                 hw->phy.ops.release(hw);
1497                                 if (ret_val)
1498                                         goto out;
1499
1500                         }
1501                 }
1502         }
1503
1504         /* I217 Packet Loss issue:
1505          * ensure that FEXTNVM4 Beacon Duration is set correctly
1506          * on power up.
1507          * Set the Beacon Duration for I217 to 8 usec
1508          */
1509         if (hw->mac.type >= e1000_pch_lpt) {
1510                 u32 mac_reg;
1511
1512                 mac_reg = er32(FEXTNVM4);
1513                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1514                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1515                 ew32(FEXTNVM4, mac_reg);
1516         }
1517
1518         /* Work-around I218 hang issue */
1519         if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1520             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1521             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1522             (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1523                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1524                 if (ret_val)
1525                         goto out;
1526         }
1527         if (hw->mac.type >= e1000_pch_lpt) {
1528                 /* Set platform power management values for
1529                  * Latency Tolerance Reporting (LTR)
1530                  */
1531                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1532                 if (ret_val)
1533                         goto out;
1534         }
1535
1536         /* Clear link partner's EEE ability */
1537         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1538
1539         if (hw->mac.type >= e1000_pch_lpt) {
1540                 u32 fextnvm6 = er32(FEXTNVM6);
1541
1542                 if (hw->mac.type == e1000_pch_spt) {
1543                         /* FEXTNVM6 K1-off workaround - for SPT only */
1544                         u32 pcieanacfg = er32(PCIEANACFG);
1545
1546                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1547                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1548                         else
1549                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1550                 }
1551
1552                 ew32(FEXTNVM6, fextnvm6);
1553         }
1554
1555         if (!link)
1556                 goto out;
1557
1558         switch (hw->mac.type) {
1559         case e1000_pch2lan:
1560                 ret_val = e1000_k1_workaround_lv(hw);
1561                 if (ret_val)
1562                         return ret_val;
1563                 fallthrough;
1564         case e1000_pchlan:
1565                 if (hw->phy.type == e1000_phy_82578) {
1566                         ret_val = e1000_link_stall_workaround_hv(hw);
1567                         if (ret_val)
1568                                 return ret_val;
1569                 }
1570
1571                 /* Workaround for PCHx parts in half-duplex:
1572                  * Set the number of preambles removed from the packet
1573                  * when it is passed from the PHY to the MAC to prevent
1574                  * the MAC from misinterpreting the packet type.
1575                  */
1576                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1577                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1578
1579                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1580                         phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1581
1582                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1583                 break;
1584         default:
1585                 break;
1586         }
1587
1588         /* Check if there was DownShift, must be checked
1589          * immediately after link-up
1590          */
1591         e1000e_check_downshift(hw);
1592
1593         /* Enable/Disable EEE after link up */
1594         if (hw->phy.type > e1000_phy_82579) {
1595                 ret_val = e1000_set_eee_pchlan(hw);
1596                 if (ret_val)
1597                         return ret_val;
1598         }
1599
1600         /* If we are forcing speed/duplex, then we simply return since
1601          * we have already determined whether we have link or not.
1602          */
1603         if (!mac->autoneg)
1604                 return -E1000_ERR_CONFIG;
1605
1606         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1607          * of MAC speed/duplex configuration.  So we only need to
1608          * configure Collision Distance in the MAC.
1609          */
1610         mac->ops.config_collision_dist(hw);
1611
1612         /* Configure Flow Control now that Auto-Neg has completed.
1613          * First, we need to restore the desired flow control
1614          * settings because we may have had to re-autoneg with a
1615          * different link partner.
1616          */
1617         ret_val = e1000e_config_fc_after_link_up(hw);
1618         if (ret_val)
1619                 e_dbg("Error configuring flow control\n");
1620
1621         return ret_val;
1622
1623 out:
1624         mac->get_link_status = true;
1625         return ret_val;
1626 }
1627
1628 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1629 {
1630         struct e1000_hw *hw = &adapter->hw;
1631         s32 rc;
1632
1633         rc = e1000_init_mac_params_ich8lan(hw);
1634         if (rc)
1635                 return rc;
1636
1637         rc = e1000_init_nvm_params_ich8lan(hw);
1638         if (rc)
1639                 return rc;
1640
1641         switch (hw->mac.type) {
1642         case e1000_ich8lan:
1643         case e1000_ich9lan:
1644         case e1000_ich10lan:
1645                 rc = e1000_init_phy_params_ich8lan(hw);
1646                 break;
1647         case e1000_pchlan:
1648         case e1000_pch2lan:
1649         case e1000_pch_lpt:
1650         case e1000_pch_spt:
1651         case e1000_pch_cnp:
1652         case e1000_pch_tgp:
1653         case e1000_pch_adp:
1654         case e1000_pch_mtp:
1655                 rc = e1000_init_phy_params_pchlan(hw);
1656                 break;
1657         default:
1658                 break;
1659         }
1660         if (rc)
1661                 return rc;
1662
1663         /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1664          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1665          */
1666         if ((adapter->hw.phy.type == e1000_phy_ife) ||
1667             ((adapter->hw.mac.type >= e1000_pch2lan) &&
1668              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1669                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1670                 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1671
1672                 hw->mac.ops.blink_led = NULL;
1673         }
1674
1675         if ((adapter->hw.mac.type == e1000_ich8lan) &&
1676             (adapter->hw.phy.type != e1000_phy_ife))
1677                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1678
1679         /* Enable workaround for 82579 w/ ME enabled */
1680         if ((adapter->hw.mac.type == e1000_pch2lan) &&
1681             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1682                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1683
1684         return 0;
1685 }
1686
1687 static DEFINE_MUTEX(nvm_mutex);
1688
1689 /**
1690  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1691  *  @hw: pointer to the HW structure
1692  *
1693  *  Acquires the mutex for performing NVM operations.
1694  **/
1695 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1696 {
1697         mutex_lock(&nvm_mutex);
1698
1699         return 0;
1700 }
1701
1702 /**
1703  *  e1000_release_nvm_ich8lan - Release NVM mutex
1704  *  @hw: pointer to the HW structure
1705  *
1706  *  Releases the mutex used while performing NVM operations.
1707  **/
1708 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1709 {
1710         mutex_unlock(&nvm_mutex);
1711 }
1712
1713 /**
1714  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1715  *  @hw: pointer to the HW structure
1716  *
1717  *  Acquires the software control flag for performing PHY and select
1718  *  MAC CSR accesses.
1719  **/
1720 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1721 {
1722         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1723         s32 ret_val = 0;
1724
1725         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1726                              &hw->adapter->state)) {
1727                 e_dbg("contention for Phy access\n");
1728                 return -E1000_ERR_PHY;
1729         }
1730
1731         while (timeout) {
1732                 extcnf_ctrl = er32(EXTCNF_CTRL);
1733                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1734                         break;
1735
1736                 mdelay(1);
1737                 timeout--;
1738         }
1739
1740         if (!timeout) {
1741                 e_dbg("SW has already locked the resource.\n");
1742                 ret_val = -E1000_ERR_CONFIG;
1743                 goto out;
1744         }
1745
1746         timeout = SW_FLAG_TIMEOUT;
1747
1748         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1749         ew32(EXTCNF_CTRL, extcnf_ctrl);
1750
1751         while (timeout) {
1752                 extcnf_ctrl = er32(EXTCNF_CTRL);
1753                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1754                         break;
1755
1756                 mdelay(1);
1757                 timeout--;
1758         }
1759
1760         if (!timeout) {
1761                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1762                       er32(FWSM), extcnf_ctrl);
1763                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1764                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1765                 ret_val = -E1000_ERR_CONFIG;
1766                 goto out;
1767         }
1768
1769 out:
1770         if (ret_val)
1771                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1772
1773         return ret_val;
1774 }
1775
1776 /**
1777  *  e1000_release_swflag_ich8lan - Release software control flag
1778  *  @hw: pointer to the HW structure
1779  *
1780  *  Releases the software control flag for performing PHY and select
1781  *  MAC CSR accesses.
1782  **/
1783 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1784 {
1785         u32 extcnf_ctrl;
1786
1787         extcnf_ctrl = er32(EXTCNF_CTRL);
1788
1789         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1790                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1791                 ew32(EXTCNF_CTRL, extcnf_ctrl);
1792         } else {
1793                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1794         }
1795
1796         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1797 }
1798
1799 /**
1800  *  e1000_check_mng_mode_ich8lan - Checks management mode
1801  *  @hw: pointer to the HW structure
1802  *
1803  *  This checks if the adapter has any manageability enabled.
1804  *  This is a function pointer entry point only called by read/write
1805  *  routines for the PHY and NVM parts.
1806  **/
1807 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1808 {
1809         u32 fwsm;
1810
1811         fwsm = er32(FWSM);
1812         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1813                 ((fwsm & E1000_FWSM_MODE_MASK) ==
1814                  (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1815 }
1816
1817 /**
1818  *  e1000_check_mng_mode_pchlan - Checks management mode
1819  *  @hw: pointer to the HW structure
1820  *
1821  *  This checks if the adapter has iAMT enabled.
1822  *  This is a function pointer entry point only called by read/write
1823  *  routines for the PHY and NVM parts.
1824  **/
1825 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1826 {
1827         u32 fwsm;
1828
1829         fwsm = er32(FWSM);
1830         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1831             (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1832 }
1833
1834 /**
1835  *  e1000_rar_set_pch2lan - Set receive address register
1836  *  @hw: pointer to the HW structure
1837  *  @addr: pointer to the receive address
1838  *  @index: receive address array register
1839  *
1840  *  Sets the receive address array register at index to the address passed
1841  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1842  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1843  *  Use SHRA[0-3] in place of those reserved for ME.
1844  **/
1845 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1846 {
1847         u32 rar_low, rar_high;
1848
1849         /* HW expects these in little endian so we reverse the byte order
1850          * from network order (big endian) to little endian
1851          */
1852         rar_low = ((u32)addr[0] |
1853                    ((u32)addr[1] << 8) |
1854                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1855
1856         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1857
1858         /* If MAC address zero, no need to set the AV bit */
1859         if (rar_low || rar_high)
1860                 rar_high |= E1000_RAH_AV;
1861
1862         if (index == 0) {
1863                 ew32(RAL(index), rar_low);
1864                 e1e_flush();
1865                 ew32(RAH(index), rar_high);
1866                 e1e_flush();
1867                 return 0;
1868         }
1869
1870         /* RAR[1-6] are owned by manageability.  Skip those and program the
1871          * next address into the SHRA register array.
1872          */
1873         if (index < (u32)(hw->mac.rar_entry_count)) {
1874                 s32 ret_val;
1875
1876                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1877                 if (ret_val)
1878                         goto out;
1879
1880                 ew32(SHRAL(index - 1), rar_low);
1881                 e1e_flush();
1882                 ew32(SHRAH(index - 1), rar_high);
1883                 e1e_flush();
1884
1885                 e1000_release_swflag_ich8lan(hw);
1886
1887                 /* verify the register updates */
1888                 if ((er32(SHRAL(index - 1)) == rar_low) &&
1889                     (er32(SHRAH(index - 1)) == rar_high))
1890                         return 0;
1891
1892                 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1893                       (index - 1), er32(FWSM));
1894         }
1895
1896 out:
1897         e_dbg("Failed to write receive address at index %d\n", index);
1898         return -E1000_ERR_CONFIG;
1899 }
1900
1901 /**
1902  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1903  *  @hw: pointer to the HW structure
1904  *
1905  *  Get the number of available receive registers that the Host can
1906  *  program. SHRA[0-10] are the shared receive address registers
1907  *  that are shared between the Host and manageability engine (ME).
1908  *  ME can reserve any number of addresses and the host needs to be
1909  *  able to tell how many available registers it has access to.
1910  **/
1911 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1912 {
1913         u32 wlock_mac;
1914         u32 num_entries;
1915
1916         wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1917         wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1918
1919         switch (wlock_mac) {
1920         case 0:
1921                 /* All SHRA[0..10] and RAR[0] available */
1922                 num_entries = hw->mac.rar_entry_count;
1923                 break;
1924         case 1:
1925                 /* Only RAR[0] available */
1926                 num_entries = 1;
1927                 break;
1928         default:
1929                 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1930                 num_entries = wlock_mac + 1;
1931                 break;
1932         }
1933
1934         return num_entries;
1935 }
1936
1937 /**
1938  *  e1000_rar_set_pch_lpt - Set receive address registers
1939  *  @hw: pointer to the HW structure
1940  *  @addr: pointer to the receive address
1941  *  @index: receive address array register
1942  *
1943  *  Sets the receive address register array at index to the address passed
1944  *  in by addr. For LPT, RAR[0] is the base address register that is to
1945  *  contain the MAC address. SHRA[0-10] are the shared receive address
1946  *  registers that are shared between the Host and manageability engine (ME).
1947  **/
1948 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1949 {
1950         u32 rar_low, rar_high;
1951         u32 wlock_mac;
1952
1953         /* HW expects these in little endian so we reverse the byte order
1954          * from network order (big endian) to little endian
1955          */
1956         rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1957                    ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1958
1959         rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1960
1961         /* If MAC address zero, no need to set the AV bit */
1962         if (rar_low || rar_high)
1963                 rar_high |= E1000_RAH_AV;
1964
1965         if (index == 0) {
1966                 ew32(RAL(index), rar_low);
1967                 e1e_flush();
1968                 ew32(RAH(index), rar_high);
1969                 e1e_flush();
1970                 return 0;
1971         }
1972
1973         /* The manageability engine (ME) can lock certain SHRAR registers that
1974          * it is using - those registers are unavailable for use.
1975          */
1976         if (index < hw->mac.rar_entry_count) {
1977                 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1978                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1979
1980                 /* Check if all SHRAR registers are locked */
1981                 if (wlock_mac == 1)
1982                         goto out;
1983
1984                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1985                         s32 ret_val;
1986
1987                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1988
1989                         if (ret_val)
1990                                 goto out;
1991
1992                         ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1993                         e1e_flush();
1994                         ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1995                         e1e_flush();
1996
1997                         e1000_release_swflag_ich8lan(hw);
1998
1999                         /* verify the register updates */
2000                         if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2001                             (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2002                                 return 0;
2003                 }
2004         }
2005
2006 out:
2007         e_dbg("Failed to write receive address at index %d\n", index);
2008         return -E1000_ERR_CONFIG;
2009 }
2010
2011 /**
2012  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2013  *  @hw: pointer to the HW structure
2014  *
2015  *  Checks if firmware is blocking the reset of the PHY.
2016  *  This is a function pointer entry point only called by
2017  *  reset routines.
2018  **/
2019 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2020 {
2021         bool blocked = false;
2022         int i = 0;
2023
2024         while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2025                (i++ < 30))
2026                 usleep_range(10000, 11000);
2027         return blocked ? E1000_BLK_PHY_RESET : 0;
2028 }
2029
2030 /**
2031  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2032  *  @hw: pointer to the HW structure
2033  *
2034  *  Assumes semaphore already acquired.
2035  *
2036  **/
2037 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2038 {
2039         u16 phy_data;
2040         u32 strap = er32(STRAP);
2041         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2042             E1000_STRAP_SMT_FREQ_SHIFT;
2043         s32 ret_val;
2044
2045         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2046
2047         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2048         if (ret_val)
2049                 return ret_val;
2050
2051         phy_data &= ~HV_SMB_ADDR_MASK;
2052         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2053         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2054
2055         if (hw->phy.type == e1000_phy_i217) {
2056                 /* Restore SMBus frequency */
2057                 if (freq--) {
2058                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2059                         phy_data |= (freq & BIT(0)) <<
2060                             HV_SMB_ADDR_FREQ_LOW_SHIFT;
2061                         phy_data |= (freq & BIT(1)) <<
2062                             (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2063                 } else {
2064                         e_dbg("Unsupported SMB frequency in PHY\n");
2065                 }
2066         }
2067
2068         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2069 }
2070
2071 /**
2072  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2073  *  @hw:   pointer to the HW structure
2074  *
2075  *  SW should configure the LCD from the NVM extended configuration region
2076  *  as a workaround for certain parts.
2077  **/
2078 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2079 {
2080         struct e1000_phy_info *phy = &hw->phy;
2081         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2082         s32 ret_val = 0;
2083         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2084
2085         /* Initialize the PHY from the NVM on ICH platforms.  This
2086          * is needed due to an issue where the NVM configuration is
2087          * not properly autoloaded after power transitions.
2088          * Therefore, after each PHY reset, we will load the
2089          * configuration data out of the NVM manually.
2090          */
2091         switch (hw->mac.type) {
2092         case e1000_ich8lan:
2093                 if (phy->type != e1000_phy_igp_3)
2094                         return ret_val;
2095
2096                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2097                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2098                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2099                         break;
2100                 }
2101                 fallthrough;
2102         case e1000_pchlan:
2103         case e1000_pch2lan:
2104         case e1000_pch_lpt:
2105         case e1000_pch_spt:
2106         case e1000_pch_cnp:
2107         case e1000_pch_tgp:
2108         case e1000_pch_adp:
2109         case e1000_pch_mtp:
2110                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2111                 break;
2112         default:
2113                 return ret_val;
2114         }
2115
2116         ret_val = hw->phy.ops.acquire(hw);
2117         if (ret_val)
2118                 return ret_val;
2119
2120         data = er32(FEXTNVM);
2121         if (!(data & sw_cfg_mask))
2122                 goto release;
2123
2124         /* Make sure HW does not configure LCD from PHY
2125          * extended configuration before SW configuration
2126          */
2127         data = er32(EXTCNF_CTRL);
2128         if ((hw->mac.type < e1000_pch2lan) &&
2129             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2130                 goto release;
2131
2132         cnf_size = er32(EXTCNF_SIZE);
2133         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2134         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2135         if (!cnf_size)
2136                 goto release;
2137
2138         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2139         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2140
2141         if (((hw->mac.type == e1000_pchlan) &&
2142              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2143             (hw->mac.type > e1000_pchlan)) {
2144                 /* HW configures the SMBus address and LEDs when the
2145                  * OEM and LCD Write Enable bits are set in the NVM.
2146                  * When both NVM bits are cleared, SW will configure
2147                  * them instead.
2148                  */
2149                 ret_val = e1000_write_smbus_addr(hw);
2150                 if (ret_val)
2151                         goto release;
2152
2153                 data = er32(LEDCTL);
2154                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2155                                                         (u16)data);
2156                 if (ret_val)
2157                         goto release;
2158         }
2159
2160         /* Configure LCD from extended configuration region. */
2161
2162         /* cnf_base_addr is in DWORD */
2163         word_addr = (u16)(cnf_base_addr << 1);
2164
2165         for (i = 0; i < cnf_size; i++) {
2166                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2167                 if (ret_val)
2168                         goto release;
2169
2170                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2171                                          1, &reg_addr);
2172                 if (ret_val)
2173                         goto release;
2174
2175                 /* Save off the PHY page for future writes. */
2176                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2177                         phy_page = reg_data;
2178                         continue;
2179                 }
2180
2181                 reg_addr &= PHY_REG_MASK;
2182                 reg_addr |= phy_page;
2183
2184                 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2185                 if (ret_val)
2186                         goto release;
2187         }
2188
2189 release:
2190         hw->phy.ops.release(hw);
2191         return ret_val;
2192 }
2193
2194 /**
2195  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2196  *  @hw:   pointer to the HW structure
2197  *  @link: link up bool flag
2198  *
2199  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2200  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2201  *  If link is down, the function will restore the default K1 setting located
2202  *  in the NVM.
2203  **/
2204 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2205 {
2206         s32 ret_val = 0;
2207         u16 status_reg = 0;
2208         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2209
2210         if (hw->mac.type != e1000_pchlan)
2211                 return 0;
2212
2213         /* Wrap the whole flow with the sw flag */
2214         ret_val = hw->phy.ops.acquire(hw);
2215         if (ret_val)
2216                 return ret_val;
2217
2218         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2219         if (link) {
2220                 if (hw->phy.type == e1000_phy_82578) {
2221                         ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2222                                                   &status_reg);
2223                         if (ret_val)
2224                                 goto release;
2225
2226                         status_reg &= (BM_CS_STATUS_LINK_UP |
2227                                        BM_CS_STATUS_RESOLVED |
2228                                        BM_CS_STATUS_SPEED_MASK);
2229
2230                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2231                                            BM_CS_STATUS_RESOLVED |
2232                                            BM_CS_STATUS_SPEED_1000))
2233                                 k1_enable = false;
2234                 }
2235
2236                 if (hw->phy.type == e1000_phy_82577) {
2237                         ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2238                         if (ret_val)
2239                                 goto release;
2240
2241                         status_reg &= (HV_M_STATUS_LINK_UP |
2242                                        HV_M_STATUS_AUTONEG_COMPLETE |
2243                                        HV_M_STATUS_SPEED_MASK);
2244
2245                         if (status_reg == (HV_M_STATUS_LINK_UP |
2246                                            HV_M_STATUS_AUTONEG_COMPLETE |
2247                                            HV_M_STATUS_SPEED_1000))
2248                                 k1_enable = false;
2249                 }
2250
2251                 /* Link stall fix for link up */
2252                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2253                 if (ret_val)
2254                         goto release;
2255
2256         } else {
2257                 /* Link stall fix for link down */
2258                 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2259                 if (ret_val)
2260                         goto release;
2261         }
2262
2263         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2264
2265 release:
2266         hw->phy.ops.release(hw);
2267
2268         return ret_val;
2269 }
2270
2271 /**
2272  *  e1000_configure_k1_ich8lan - Configure K1 power state
2273  *  @hw: pointer to the HW structure
2274  *  @k1_enable: K1 state to configure
2275  *
2276  *  Configure the K1 power state based on the provided parameter.
2277  *  Assumes semaphore already acquired.
2278  *
2279  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2280  **/
2281 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2282 {
2283         s32 ret_val;
2284         u32 ctrl_reg = 0;
2285         u32 ctrl_ext = 0;
2286         u32 reg = 0;
2287         u16 kmrn_reg = 0;
2288
2289         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2290                                               &kmrn_reg);
2291         if (ret_val)
2292                 return ret_val;
2293
2294         if (k1_enable)
2295                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2296         else
2297                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2298
2299         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2300                                                kmrn_reg);
2301         if (ret_val)
2302                 return ret_val;
2303
2304         usleep_range(20, 40);
2305         ctrl_ext = er32(CTRL_EXT);
2306         ctrl_reg = er32(CTRL);
2307
2308         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2309         reg |= E1000_CTRL_FRCSPD;
2310         ew32(CTRL, reg);
2311
2312         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2313         e1e_flush();
2314         usleep_range(20, 40);
2315         ew32(CTRL, ctrl_reg);
2316         ew32(CTRL_EXT, ctrl_ext);
2317         e1e_flush();
2318         usleep_range(20, 40);
2319
2320         return 0;
2321 }
2322
2323 /**
2324  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2325  *  @hw:       pointer to the HW structure
2326  *  @d0_state: boolean if entering d0 or d3 device state
2327  *
2328  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2329  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2330  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2331  **/
2332 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2333 {
2334         s32 ret_val = 0;
2335         u32 mac_reg;
2336         u16 oem_reg;
2337
2338         if (hw->mac.type < e1000_pchlan)
2339                 return ret_val;
2340
2341         ret_val = hw->phy.ops.acquire(hw);
2342         if (ret_val)
2343                 return ret_val;
2344
2345         if (hw->mac.type == e1000_pchlan) {
2346                 mac_reg = er32(EXTCNF_CTRL);
2347                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2348                         goto release;
2349         }
2350
2351         mac_reg = er32(FEXTNVM);
2352         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2353                 goto release;
2354
2355         mac_reg = er32(PHY_CTRL);
2356
2357         ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2358         if (ret_val)
2359                 goto release;
2360
2361         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2362
2363         if (d0_state) {
2364                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2365                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2366
2367                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2368                         oem_reg |= HV_OEM_BITS_LPLU;
2369         } else {
2370                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2371                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2372                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2373
2374                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2375                                E1000_PHY_CTRL_NOND0A_LPLU))
2376                         oem_reg |= HV_OEM_BITS_LPLU;
2377         }
2378
2379         /* Set Restart auto-neg to activate the bits */
2380         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2381             !hw->phy.ops.check_reset_block(hw))
2382                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2383
2384         ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2385
2386 release:
2387         hw->phy.ops.release(hw);
2388
2389         return ret_val;
2390 }
2391
2392 /**
2393  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2394  *  @hw:   pointer to the HW structure
2395  **/
2396 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2397 {
2398         s32 ret_val;
2399         u16 data;
2400
2401         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2402         if (ret_val)
2403                 return ret_val;
2404
2405         data |= HV_KMRN_MDIO_SLOW;
2406
2407         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2408
2409         return ret_val;
2410 }
2411
2412 /**
2413  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2414  *  @hw: pointer to the HW structure
2415  *
2416  *  A series of PHY workarounds to be done after every PHY reset.
2417  **/
2418 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2419 {
2420         s32 ret_val = 0;
2421         u16 phy_data;
2422
2423         if (hw->mac.type != e1000_pchlan)
2424                 return 0;
2425
2426         /* Set MDIO slow mode before any other MDIO access */
2427         if (hw->phy.type == e1000_phy_82577) {
2428                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2429                 if (ret_val)
2430                         return ret_val;
2431         }
2432
2433         if (((hw->phy.type == e1000_phy_82577) &&
2434              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2435             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2436                 /* Disable generation of early preamble */
2437                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2438                 if (ret_val)
2439                         return ret_val;
2440
2441                 /* Preamble tuning for SSC */
2442                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2443                 if (ret_val)
2444                         return ret_val;
2445         }
2446
2447         if (hw->phy.type == e1000_phy_82578) {
2448                 /* Return registers to default by doing a soft reset then
2449                  * writing 0x3140 to the control register.
2450                  */
2451                 if (hw->phy.revision < 2) {
2452                         e1000e_phy_sw_reset(hw);
2453                         ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2454                         if (ret_val)
2455                                 return ret_val;
2456                 }
2457         }
2458
2459         /* Select page 0 */
2460         ret_val = hw->phy.ops.acquire(hw);
2461         if (ret_val)
2462                 return ret_val;
2463
2464         hw->phy.addr = 1;
2465         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2466         hw->phy.ops.release(hw);
2467         if (ret_val)
2468                 return ret_val;
2469
2470         /* Configure the K1 Si workaround during phy reset assuming there is
2471          * link so that it disables K1 if link is in 1Gbps.
2472          */
2473         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2474         if (ret_val)
2475                 return ret_val;
2476
2477         /* Workaround for link disconnects on a busy hub in half duplex */
2478         ret_val = hw->phy.ops.acquire(hw);
2479         if (ret_val)
2480                 return ret_val;
2481         ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2482         if (ret_val)
2483                 goto release;
2484         ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2485         if (ret_val)
2486                 goto release;
2487
2488         /* set MSE higher to enable link to stay up when noise is high */
2489         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2490 release:
2491         hw->phy.ops.release(hw);
2492
2493         return ret_val;
2494 }
2495
2496 /**
2497  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2498  *  @hw:   pointer to the HW structure
2499  **/
2500 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2501 {
2502         u32 mac_reg;
2503         u16 i, phy_reg = 0;
2504         s32 ret_val;
2505
2506         ret_val = hw->phy.ops.acquire(hw);
2507         if (ret_val)
2508                 return;
2509         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2510         if (ret_val)
2511                 goto release;
2512
2513         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2514         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2515                 mac_reg = er32(RAL(i));
2516                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2517                                            (u16)(mac_reg & 0xFFFF));
2518                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2519                                            (u16)((mac_reg >> 16) & 0xFFFF));
2520
2521                 mac_reg = er32(RAH(i));
2522                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2523                                            (u16)(mac_reg & 0xFFFF));
2524                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2525                                            (u16)((mac_reg & E1000_RAH_AV)
2526                                                  >> 16));
2527         }
2528
2529         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2530
2531 release:
2532         hw->phy.ops.release(hw);
2533 }
2534
2535 /**
2536  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2537  *  with 82579 PHY
2538  *  @hw: pointer to the HW structure
2539  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2540  **/
2541 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2542 {
2543         s32 ret_val = 0;
2544         u16 phy_reg, data;
2545         u32 mac_reg;
2546         u16 i;
2547
2548         if (hw->mac.type < e1000_pch2lan)
2549                 return 0;
2550
2551         /* disable Rx path while enabling/disabling workaround */
2552         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2553         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2554         if (ret_val)
2555                 return ret_val;
2556
2557         if (enable) {
2558                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2559                  * SHRAL/H) and initial CRC values to the MAC
2560                  */
2561                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2562                         u8 mac_addr[ETH_ALEN] = { 0 };
2563                         u32 addr_high, addr_low;
2564
2565                         addr_high = er32(RAH(i));
2566                         if (!(addr_high & E1000_RAH_AV))
2567                                 continue;
2568                         addr_low = er32(RAL(i));
2569                         mac_addr[0] = (addr_low & 0xFF);
2570                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2571                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2572                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2573                         mac_addr[4] = (addr_high & 0xFF);
2574                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2575
2576                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2577                 }
2578
2579                 /* Write Rx addresses to the PHY */
2580                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2581
2582                 /* Enable jumbo frame workaround in the MAC */
2583                 mac_reg = er32(FFLT_DBG);
2584                 mac_reg &= ~BIT(14);
2585                 mac_reg |= (7 << 15);
2586                 ew32(FFLT_DBG, mac_reg);
2587
2588                 mac_reg = er32(RCTL);
2589                 mac_reg |= E1000_RCTL_SECRC;
2590                 ew32(RCTL, mac_reg);
2591
2592                 ret_val = e1000e_read_kmrn_reg(hw,
2593                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2594                                                &data);
2595                 if (ret_val)
2596                         return ret_val;
2597                 ret_val = e1000e_write_kmrn_reg(hw,
2598                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2599                                                 data | BIT(0));
2600                 if (ret_val)
2601                         return ret_val;
2602                 ret_val = e1000e_read_kmrn_reg(hw,
2603                                                E1000_KMRNCTRLSTA_HD_CTRL,
2604                                                &data);
2605                 if (ret_val)
2606                         return ret_val;
2607                 data &= ~(0xF << 8);
2608                 data |= (0xB << 8);
2609                 ret_val = e1000e_write_kmrn_reg(hw,
2610                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2611                                                 data);
2612                 if (ret_val)
2613                         return ret_val;
2614
2615                 /* Enable jumbo frame workaround in the PHY */
2616                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2617                 data &= ~(0x7F << 5);
2618                 data |= (0x37 << 5);
2619                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2620                 if (ret_val)
2621                         return ret_val;
2622                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2623                 data &= ~BIT(13);
2624                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2625                 if (ret_val)
2626                         return ret_val;
2627                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2628                 data &= ~(0x3FF << 2);
2629                 data |= (E1000_TX_PTR_GAP << 2);
2630                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2631                 if (ret_val)
2632                         return ret_val;
2633                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2634                 if (ret_val)
2635                         return ret_val;
2636                 e1e_rphy(hw, HV_PM_CTRL, &data);
2637                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2638                 if (ret_val)
2639                         return ret_val;
2640         } else {
2641                 /* Write MAC register values back to h/w defaults */
2642                 mac_reg = er32(FFLT_DBG);
2643                 mac_reg &= ~(0xF << 14);
2644                 ew32(FFLT_DBG, mac_reg);
2645
2646                 mac_reg = er32(RCTL);
2647                 mac_reg &= ~E1000_RCTL_SECRC;
2648                 ew32(RCTL, mac_reg);
2649
2650                 ret_val = e1000e_read_kmrn_reg(hw,
2651                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2652                                                &data);
2653                 if (ret_val)
2654                         return ret_val;
2655                 ret_val = e1000e_write_kmrn_reg(hw,
2656                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2657                                                 data & ~BIT(0));
2658                 if (ret_val)
2659                         return ret_val;
2660                 ret_val = e1000e_read_kmrn_reg(hw,
2661                                                E1000_KMRNCTRLSTA_HD_CTRL,
2662                                                &data);
2663                 if (ret_val)
2664                         return ret_val;
2665                 data &= ~(0xF << 8);
2666                 data |= (0xB << 8);
2667                 ret_val = e1000e_write_kmrn_reg(hw,
2668                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2669                                                 data);
2670                 if (ret_val)
2671                         return ret_val;
2672
2673                 /* Write PHY register values back to h/w defaults */
2674                 e1e_rphy(hw, PHY_REG(769, 23), &data);
2675                 data &= ~(0x7F << 5);
2676                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2677                 if (ret_val)
2678                         return ret_val;
2679                 e1e_rphy(hw, PHY_REG(769, 16), &data);
2680                 data |= BIT(13);
2681                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2682                 if (ret_val)
2683                         return ret_val;
2684                 e1e_rphy(hw, PHY_REG(776, 20), &data);
2685                 data &= ~(0x3FF << 2);
2686                 data |= (0x8 << 2);
2687                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2688                 if (ret_val)
2689                         return ret_val;
2690                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2691                 if (ret_val)
2692                         return ret_val;
2693                 e1e_rphy(hw, HV_PM_CTRL, &data);
2694                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2695                 if (ret_val)
2696                         return ret_val;
2697         }
2698
2699         /* re-enable Rx path after enabling/disabling workaround */
2700         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2701 }
2702
2703 /**
2704  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2705  *  @hw: pointer to the HW structure
2706  *
2707  *  A series of PHY workarounds to be done after every PHY reset.
2708  **/
2709 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2710 {
2711         s32 ret_val = 0;
2712
2713         if (hw->mac.type != e1000_pch2lan)
2714                 return 0;
2715
2716         /* Set MDIO slow mode before any other MDIO access */
2717         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2718         if (ret_val)
2719                 return ret_val;
2720
2721         ret_val = hw->phy.ops.acquire(hw);
2722         if (ret_val)
2723                 return ret_val;
2724         /* set MSE higher to enable link to stay up when noise is high */
2725         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2726         if (ret_val)
2727                 goto release;
2728         /* drop link after 5 times MSE threshold was reached */
2729         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2730 release:
2731         hw->phy.ops.release(hw);
2732
2733         return ret_val;
2734 }
2735
2736 /**
2737  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2738  *  @hw:   pointer to the HW structure
2739  *
2740  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2741  *  Disable K1 in 1000Mbps and 100Mbps
2742  **/
2743 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2744 {
2745         s32 ret_val = 0;
2746         u16 status_reg = 0;
2747
2748         if (hw->mac.type != e1000_pch2lan)
2749                 return 0;
2750
2751         /* Set K1 beacon duration based on 10Mbs speed */
2752         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2753         if (ret_val)
2754                 return ret_val;
2755
2756         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2757             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2758                 if (status_reg &
2759                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2760                         u16 pm_phy_reg;
2761
2762                         /* LV 1G/100 Packet drop issue wa  */
2763                         ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2764                         if (ret_val)
2765                                 return ret_val;
2766                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2767                         ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2768                         if (ret_val)
2769                                 return ret_val;
2770                 } else {
2771                         u32 mac_reg;
2772
2773                         mac_reg = er32(FEXTNVM4);
2774                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2775                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2776                         ew32(FEXTNVM4, mac_reg);
2777                 }
2778         }
2779
2780         return ret_val;
2781 }
2782
2783 /**
2784  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2785  *  @hw:   pointer to the HW structure
2786  *  @gate: boolean set to true to gate, false to ungate
2787  *
2788  *  Gate/ungate the automatic PHY configuration via hardware; perform
2789  *  the configuration via software instead.
2790  **/
2791 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2792 {
2793         u32 extcnf_ctrl;
2794
2795         if (hw->mac.type < e1000_pch2lan)
2796                 return;
2797
2798         extcnf_ctrl = er32(EXTCNF_CTRL);
2799
2800         if (gate)
2801                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2802         else
2803                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2804
2805         ew32(EXTCNF_CTRL, extcnf_ctrl);
2806 }
2807
2808 /**
2809  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2810  *  @hw: pointer to the HW structure
2811  *
2812  *  Check the appropriate indication the MAC has finished configuring the
2813  *  PHY after a software reset.
2814  **/
2815 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2816 {
2817         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2818
2819         /* Wait for basic configuration completes before proceeding */
2820         do {
2821                 data = er32(STATUS);
2822                 data &= E1000_STATUS_LAN_INIT_DONE;
2823                 usleep_range(100, 200);
2824         } while ((!data) && --loop);
2825
2826         /* If basic configuration is incomplete before the above loop
2827          * count reaches 0, loading the configuration from NVM will
2828          * leave the PHY in a bad state possibly resulting in no link.
2829          */
2830         if (loop == 0)
2831                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2832
2833         /* Clear the Init Done bit for the next init event */
2834         data = er32(STATUS);
2835         data &= ~E1000_STATUS_LAN_INIT_DONE;
2836         ew32(STATUS, data);
2837 }
2838
2839 /**
2840  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2841  *  @hw: pointer to the HW structure
2842  **/
2843 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2844 {
2845         s32 ret_val = 0;
2846         u16 reg;
2847
2848         if (hw->phy.ops.check_reset_block(hw))
2849                 return 0;
2850
2851         /* Allow time for h/w to get to quiescent state after reset */
2852         usleep_range(10000, 11000);
2853
2854         /* Perform any necessary post-reset workarounds */
2855         switch (hw->mac.type) {
2856         case e1000_pchlan:
2857                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2858                 if (ret_val)
2859                         return ret_val;
2860                 break;
2861         case e1000_pch2lan:
2862                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2863                 if (ret_val)
2864                         return ret_val;
2865                 break;
2866         default:
2867                 break;
2868         }
2869
2870         /* Clear the host wakeup bit after lcd reset */
2871         if (hw->mac.type >= e1000_pchlan) {
2872                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2873                 reg &= ~BM_WUC_HOST_WU_BIT;
2874                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2875         }
2876
2877         /* Configure the LCD with the extended configuration region in NVM */
2878         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2879         if (ret_val)
2880                 return ret_val;
2881
2882         /* Configure the LCD with the OEM bits in NVM */
2883         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2884
2885         if (hw->mac.type == e1000_pch2lan) {
2886                 /* Ungate automatic PHY configuration on non-managed 82579 */
2887                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2888                         usleep_range(10000, 11000);
2889                         e1000_gate_hw_phy_config_ich8lan(hw, false);
2890                 }
2891
2892                 /* Set EEE LPI Update Timer to 200usec */
2893                 ret_val = hw->phy.ops.acquire(hw);
2894                 if (ret_val)
2895                         return ret_val;
2896                 ret_val = e1000_write_emi_reg_locked(hw,
2897                                                      I82579_LPI_UPDATE_TIMER,
2898                                                      0x1387);
2899                 hw->phy.ops.release(hw);
2900         }
2901
2902         return ret_val;
2903 }
2904
2905 /**
2906  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2907  *  @hw: pointer to the HW structure
2908  *
2909  *  Resets the PHY
2910  *  This is a function pointer entry point called by drivers
2911  *  or other shared routines.
2912  **/
2913 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2914 {
2915         s32 ret_val = 0;
2916
2917         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2918         if ((hw->mac.type == e1000_pch2lan) &&
2919             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2920                 e1000_gate_hw_phy_config_ich8lan(hw, true);
2921
2922         ret_val = e1000e_phy_hw_reset_generic(hw);
2923         if (ret_val)
2924                 return ret_val;
2925
2926         return e1000_post_phy_reset_ich8lan(hw);
2927 }
2928
2929 /**
2930  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2931  *  @hw: pointer to the HW structure
2932  *  @active: true to enable LPLU, false to disable
2933  *
2934  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2935  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2936  *  the phy speed. This function will manually set the LPLU bit and restart
2937  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2938  *  since it configures the same bit.
2939  **/
2940 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2941 {
2942         s32 ret_val;
2943         u16 oem_reg;
2944
2945         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2946         if (ret_val)
2947                 return ret_val;
2948
2949         if (active)
2950                 oem_reg |= HV_OEM_BITS_LPLU;
2951         else
2952                 oem_reg &= ~HV_OEM_BITS_LPLU;
2953
2954         if (!hw->phy.ops.check_reset_block(hw))
2955                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2956
2957         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2958 }
2959
2960 /**
2961  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2962  *  @hw: pointer to the HW structure
2963  *  @active: true to enable LPLU, false to disable
2964  *
2965  *  Sets the LPLU D0 state according to the active flag.  When
2966  *  activating LPLU this function also disables smart speed
2967  *  and vice versa.  LPLU will not be activated unless the
2968  *  device autonegotiation advertisement meets standards of
2969  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2970  *  This is a function pointer entry point only called by
2971  *  PHY setup routines.
2972  **/
2973 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2974 {
2975         struct e1000_phy_info *phy = &hw->phy;
2976         u32 phy_ctrl;
2977         s32 ret_val = 0;
2978         u16 data;
2979
2980         if (phy->type == e1000_phy_ife)
2981                 return 0;
2982
2983         phy_ctrl = er32(PHY_CTRL);
2984
2985         if (active) {
2986                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2987                 ew32(PHY_CTRL, phy_ctrl);
2988
2989                 if (phy->type != e1000_phy_igp_3)
2990                         return 0;
2991
2992                 /* Call gig speed drop workaround on LPLU before accessing
2993                  * any PHY registers
2994                  */
2995                 if (hw->mac.type == e1000_ich8lan)
2996                         e1000e_gig_downshift_workaround_ich8lan(hw);
2997
2998                 /* When LPLU is enabled, we should disable SmartSpeed */
2999                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3000                 if (ret_val)
3001                         return ret_val;
3002                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3003                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3004                 if (ret_val)
3005                         return ret_val;
3006         } else {
3007                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3008                 ew32(PHY_CTRL, phy_ctrl);
3009
3010                 if (phy->type != e1000_phy_igp_3)
3011                         return 0;
3012
3013                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3014                  * during Dx states where the power conservation is most
3015                  * important.  During driver activity we should enable
3016                  * SmartSpeed, so performance is maintained.
3017                  */
3018                 if (phy->smart_speed == e1000_smart_speed_on) {
3019                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3020                                            &data);
3021                         if (ret_val)
3022                                 return ret_val;
3023
3024                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3025                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3026                                            data);
3027                         if (ret_val)
3028                                 return ret_val;
3029                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3030                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3031                                            &data);
3032                         if (ret_val)
3033                                 return ret_val;
3034
3035                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3036                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3037                                            data);
3038                         if (ret_val)
3039                                 return ret_val;
3040                 }
3041         }
3042
3043         return 0;
3044 }
3045
3046 /**
3047  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3048  *  @hw: pointer to the HW structure
3049  *  @active: true to enable LPLU, false to disable
3050  *
3051  *  Sets the LPLU D3 state according to the active flag.  When
3052  *  activating LPLU this function also disables smart speed
3053  *  and vice versa.  LPLU will not be activated unless the
3054  *  device autonegotiation advertisement meets standards of
3055  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3056  *  This is a function pointer entry point only called by
3057  *  PHY setup routines.
3058  **/
3059 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3060 {
3061         struct e1000_phy_info *phy = &hw->phy;
3062         u32 phy_ctrl;
3063         s32 ret_val = 0;
3064         u16 data;
3065
3066         phy_ctrl = er32(PHY_CTRL);
3067
3068         if (!active) {
3069                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3070                 ew32(PHY_CTRL, phy_ctrl);
3071
3072                 if (phy->type != e1000_phy_igp_3)
3073                         return 0;
3074
3075                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3076                  * during Dx states where the power conservation is most
3077                  * important.  During driver activity we should enable
3078                  * SmartSpeed, so performance is maintained.
3079                  */
3080                 if (phy->smart_speed == e1000_smart_speed_on) {
3081                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3082                                            &data);
3083                         if (ret_val)
3084                                 return ret_val;
3085
3086                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3087                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3088                                            data);
3089                         if (ret_val)
3090                                 return ret_val;
3091                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3092                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3093                                            &data);
3094                         if (ret_val)
3095                                 return ret_val;
3096
3097                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3098                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3099                                            data);
3100                         if (ret_val)
3101                                 return ret_val;
3102                 }
3103         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3104                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3105                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3106                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3107                 ew32(PHY_CTRL, phy_ctrl);
3108
3109                 if (phy->type != e1000_phy_igp_3)
3110                         return 0;
3111
3112                 /* Call gig speed drop workaround on LPLU before accessing
3113                  * any PHY registers
3114                  */
3115                 if (hw->mac.type == e1000_ich8lan)
3116                         e1000e_gig_downshift_workaround_ich8lan(hw);
3117
3118                 /* When LPLU is enabled, we should disable SmartSpeed */
3119                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3120                 if (ret_val)
3121                         return ret_val;
3122
3123                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3124                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3125         }
3126
3127         return ret_val;
3128 }
3129
3130 /**
3131  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3132  *  @hw: pointer to the HW structure
3133  *  @bank:  pointer to the variable that returns the active bank
3134  *
3135  *  Reads signature byte from the NVM using the flash access registers.
3136  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3137  **/
3138 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3139 {
3140         u32 eecd;
3141         struct e1000_nvm_info *nvm = &hw->nvm;
3142         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3143         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3144         u32 nvm_dword = 0;
3145         u8 sig_byte = 0;
3146         s32 ret_val;
3147
3148         switch (hw->mac.type) {
3149         case e1000_pch_spt:
3150         case e1000_pch_cnp:
3151         case e1000_pch_tgp:
3152         case e1000_pch_adp:
3153         case e1000_pch_mtp:
3154                 bank1_offset = nvm->flash_bank_size;
3155                 act_offset = E1000_ICH_NVM_SIG_WORD;
3156
3157                 /* set bank to 0 in case flash read fails */
3158                 *bank = 0;
3159
3160                 /* Check bank 0 */
3161                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3162                                                          &nvm_dword);
3163                 if (ret_val)
3164                         return ret_val;
3165                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3166                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3167                     E1000_ICH_NVM_SIG_VALUE) {
3168                         *bank = 0;
3169                         return 0;
3170                 }
3171
3172                 /* Check bank 1 */
3173                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3174                                                          bank1_offset,
3175                                                          &nvm_dword);
3176                 if (ret_val)
3177                         return ret_val;
3178                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3179                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3180                     E1000_ICH_NVM_SIG_VALUE) {
3181                         *bank = 1;
3182                         return 0;
3183                 }
3184
3185                 e_dbg("ERROR: No valid NVM bank present\n");
3186                 return -E1000_ERR_NVM;
3187         case e1000_ich8lan:
3188         case e1000_ich9lan:
3189                 eecd = er32(EECD);
3190                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3191                     E1000_EECD_SEC1VAL_VALID_MASK) {
3192                         if (eecd & E1000_EECD_SEC1VAL)
3193                                 *bank = 1;
3194                         else
3195                                 *bank = 0;
3196
3197                         return 0;
3198                 }
3199                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3200                 fallthrough;
3201         default:
3202                 /* set bank to 0 in case flash read fails */
3203                 *bank = 0;
3204
3205                 /* Check bank 0 */
3206                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3207                                                         &sig_byte);
3208                 if (ret_val)
3209                         return ret_val;
3210                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3211                     E1000_ICH_NVM_SIG_VALUE) {
3212                         *bank = 0;
3213                         return 0;
3214                 }
3215
3216                 /* Check bank 1 */
3217                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3218                                                         bank1_offset,
3219                                                         &sig_byte);
3220                 if (ret_val)
3221                         return ret_val;
3222                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3223                     E1000_ICH_NVM_SIG_VALUE) {
3224                         *bank = 1;
3225                         return 0;
3226                 }
3227
3228                 e_dbg("ERROR: No valid NVM bank present\n");
3229                 return -E1000_ERR_NVM;
3230         }
3231 }
3232
3233 /**
3234  *  e1000_read_nvm_spt - NVM access for SPT
3235  *  @hw: pointer to the HW structure
3236  *  @offset: The offset (in bytes) of the word(s) to read.
3237  *  @words: Size of data to read in words.
3238  *  @data: pointer to the word(s) to read at offset.
3239  *
3240  *  Reads a word(s) from the NVM
3241  **/
3242 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3243                               u16 *data)
3244 {
3245         struct e1000_nvm_info *nvm = &hw->nvm;
3246         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3247         u32 act_offset;
3248         s32 ret_val = 0;
3249         u32 bank = 0;
3250         u32 dword = 0;
3251         u16 offset_to_read;
3252         u16 i;
3253
3254         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3255             (words == 0)) {
3256                 e_dbg("nvm parameter(s) out of bounds\n");
3257                 ret_val = -E1000_ERR_NVM;
3258                 goto out;
3259         }
3260
3261         nvm->ops.acquire(hw);
3262
3263         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3264         if (ret_val) {
3265                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3266                 bank = 0;
3267         }
3268
3269         act_offset = (bank) ? nvm->flash_bank_size : 0;
3270         act_offset += offset;
3271
3272         ret_val = 0;
3273
3274         for (i = 0; i < words; i += 2) {
3275                 if (words - i == 1) {
3276                         if (dev_spec->shadow_ram[offset + i].modified) {
3277                                 data[i] =
3278                                     dev_spec->shadow_ram[offset + i].value;
3279                         } else {
3280                                 offset_to_read = act_offset + i -
3281                                     ((act_offset + i) % 2);
3282                                 ret_val =
3283                                   e1000_read_flash_dword_ich8lan(hw,
3284                                                                  offset_to_read,
3285                                                                  &dword);
3286                                 if (ret_val)
3287                                         break;
3288                                 if ((act_offset + i) % 2 == 0)
3289                                         data[i] = (u16)(dword & 0xFFFF);
3290                                 else
3291                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3292                         }
3293                 } else {
3294                         offset_to_read = act_offset + i;
3295                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3296                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3297                                 ret_val =
3298                                   e1000_read_flash_dword_ich8lan(hw,
3299                                                                  offset_to_read,
3300                                                                  &dword);
3301                                 if (ret_val)
3302                                         break;
3303                         }
3304                         if (dev_spec->shadow_ram[offset + i].modified)
3305                                 data[i] =
3306                                     dev_spec->shadow_ram[offset + i].value;
3307                         else
3308                                 data[i] = (u16)(dword & 0xFFFF);
3309                         if (dev_spec->shadow_ram[offset + i].modified)
3310                                 data[i + 1] =
3311                                     dev_spec->shadow_ram[offset + i + 1].value;
3312                         else
3313                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3314                 }
3315         }
3316
3317         nvm->ops.release(hw);
3318
3319 out:
3320         if (ret_val)
3321                 e_dbg("NVM read error: %d\n", ret_val);
3322
3323         return ret_val;
3324 }
3325
3326 /**
3327  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3328  *  @hw: pointer to the HW structure
3329  *  @offset: The offset (in bytes) of the word(s) to read.
3330  *  @words: Size of data to read in words
3331  *  @data: Pointer to the word(s) to read at offset.
3332  *
3333  *  Reads a word(s) from the NVM using the flash access registers.
3334  **/
3335 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3336                                   u16 *data)
3337 {
3338         struct e1000_nvm_info *nvm = &hw->nvm;
3339         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3340         u32 act_offset;
3341         s32 ret_val = 0;
3342         u32 bank = 0;
3343         u16 i, word;
3344
3345         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3346             (words == 0)) {
3347                 e_dbg("nvm parameter(s) out of bounds\n");
3348                 ret_val = -E1000_ERR_NVM;
3349                 goto out;
3350         }
3351
3352         nvm->ops.acquire(hw);
3353
3354         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3355         if (ret_val) {
3356                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3357                 bank = 0;
3358         }
3359
3360         act_offset = (bank) ? nvm->flash_bank_size : 0;
3361         act_offset += offset;
3362
3363         ret_val = 0;
3364         for (i = 0; i < words; i++) {
3365                 if (dev_spec->shadow_ram[offset + i].modified) {
3366                         data[i] = dev_spec->shadow_ram[offset + i].value;
3367                 } else {
3368                         ret_val = e1000_read_flash_word_ich8lan(hw,
3369                                                                 act_offset + i,
3370                                                                 &word);
3371                         if (ret_val)
3372                                 break;
3373                         data[i] = word;
3374                 }
3375         }
3376
3377         nvm->ops.release(hw);
3378
3379 out:
3380         if (ret_val)
3381                 e_dbg("NVM read error: %d\n", ret_val);
3382
3383         return ret_val;
3384 }
3385
3386 /**
3387  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3388  *  @hw: pointer to the HW structure
3389  *
3390  *  This function does initial flash setup so that a new read/write/erase cycle
3391  *  can be started.
3392  **/
3393 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3394 {
3395         union ich8_hws_flash_status hsfsts;
3396         s32 ret_val = -E1000_ERR_NVM;
3397
3398         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3399
3400         /* Check if the flash descriptor is valid */
3401         if (!hsfsts.hsf_status.fldesvalid) {
3402                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3403                 return -E1000_ERR_NVM;
3404         }
3405
3406         /* Clear FCERR and DAEL in hw status by writing 1 */
3407         hsfsts.hsf_status.flcerr = 1;
3408         hsfsts.hsf_status.dael = 1;
3409         if (hw->mac.type >= e1000_pch_spt)
3410                 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3411         else
3412                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3413
3414         /* Either we should have a hardware SPI cycle in progress
3415          * bit to check against, in order to start a new cycle or
3416          * FDONE bit should be changed in the hardware so that it
3417          * is 1 after hardware reset, which can then be used as an
3418          * indication whether a cycle is in progress or has been
3419          * completed.
3420          */
3421
3422         if (!hsfsts.hsf_status.flcinprog) {
3423                 /* There is no cycle running at present,
3424                  * so we can start a cycle.
3425                  * Begin by setting Flash Cycle Done.
3426                  */
3427                 hsfsts.hsf_status.flcdone = 1;
3428                 if (hw->mac.type >= e1000_pch_spt)
3429                         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3430                 else
3431                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3432                 ret_val = 0;
3433         } else {
3434                 s32 i;
3435
3436                 /* Otherwise poll for sometime so the current
3437                  * cycle has a chance to end before giving up.
3438                  */
3439                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3440                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3441                         if (!hsfsts.hsf_status.flcinprog) {
3442                                 ret_val = 0;
3443                                 break;
3444                         }
3445                         udelay(1);
3446                 }
3447                 if (!ret_val) {
3448                         /* Successful in waiting for previous cycle to timeout,
3449                          * now set the Flash Cycle Done.
3450                          */
3451                         hsfsts.hsf_status.flcdone = 1;
3452                         if (hw->mac.type >= e1000_pch_spt)
3453                                 ew32flash(ICH_FLASH_HSFSTS,
3454                                           hsfsts.regval & 0xFFFF);
3455                         else
3456                                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3457                 } else {
3458                         e_dbg("Flash controller busy, cannot get access\n");
3459                 }
3460         }
3461
3462         return ret_val;
3463 }
3464
3465 /**
3466  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3467  *  @hw: pointer to the HW structure
3468  *  @timeout: maximum time to wait for completion
3469  *
3470  *  This function starts a flash cycle and waits for its completion.
3471  **/
3472 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3473 {
3474         union ich8_hws_flash_ctrl hsflctl;
3475         union ich8_hws_flash_status hsfsts;
3476         u32 i = 0;
3477
3478         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3479         if (hw->mac.type >= e1000_pch_spt)
3480                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3481         else
3482                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3483         hsflctl.hsf_ctrl.flcgo = 1;
3484
3485         if (hw->mac.type >= e1000_pch_spt)
3486                 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3487         else
3488                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3489
3490         /* wait till FDONE bit is set to 1 */
3491         do {
3492                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3493                 if (hsfsts.hsf_status.flcdone)
3494                         break;
3495                 udelay(1);
3496         } while (i++ < timeout);
3497
3498         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3499                 return 0;
3500
3501         return -E1000_ERR_NVM;
3502 }
3503
3504 /**
3505  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3506  *  @hw: pointer to the HW structure
3507  *  @offset: offset to data location
3508  *  @data: pointer to the location for storing the data
3509  *
3510  *  Reads the flash dword at offset into data.  Offset is converted
3511  *  to bytes before read.
3512  **/
3513 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3514                                           u32 *data)
3515 {
3516         /* Must convert word offset into bytes. */
3517         offset <<= 1;
3518         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3519 }
3520
3521 /**
3522  *  e1000_read_flash_word_ich8lan - Read word from flash
3523  *  @hw: pointer to the HW structure
3524  *  @offset: offset to data location
3525  *  @data: pointer to the location for storing the data
3526  *
3527  *  Reads the flash word at offset into data.  Offset is converted
3528  *  to bytes before read.
3529  **/
3530 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3531                                          u16 *data)
3532 {
3533         /* Must convert offset into bytes. */
3534         offset <<= 1;
3535
3536         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3537 }
3538
3539 /**
3540  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3541  *  @hw: pointer to the HW structure
3542  *  @offset: The offset of the byte to read.
3543  *  @data: Pointer to a byte to store the value read.
3544  *
3545  *  Reads a single byte from the NVM using the flash access registers.
3546  **/
3547 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3548                                          u8 *data)
3549 {
3550         s32 ret_val;
3551         u16 word = 0;
3552
3553         /* In SPT, only 32 bits access is supported,
3554          * so this function should not be called.
3555          */
3556         if (hw->mac.type >= e1000_pch_spt)
3557                 return -E1000_ERR_NVM;
3558         else
3559                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3560
3561         if (ret_val)
3562                 return ret_val;
3563
3564         *data = (u8)word;
3565
3566         return 0;
3567 }
3568
3569 /**
3570  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3571  *  @hw: pointer to the HW structure
3572  *  @offset: The offset (in bytes) of the byte or word to read.
3573  *  @size: Size of data to read, 1=byte 2=word
3574  *  @data: Pointer to the word to store the value read.
3575  *
3576  *  Reads a byte or word from the NVM using the flash access registers.
3577  **/
3578 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3579                                          u8 size, u16 *data)
3580 {
3581         union ich8_hws_flash_status hsfsts;
3582         union ich8_hws_flash_ctrl hsflctl;
3583         u32 flash_linear_addr;
3584         u32 flash_data = 0;
3585         s32 ret_val = -E1000_ERR_NVM;
3586         u8 count = 0;
3587
3588         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3589                 return -E1000_ERR_NVM;
3590
3591         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3592                              hw->nvm.flash_base_addr);
3593
3594         do {
3595                 udelay(1);
3596                 /* Steps */
3597                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3598                 if (ret_val)
3599                         break;
3600
3601                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3602                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3603                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3604                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3605                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3606
3607                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3608
3609                 ret_val =
3610                     e1000_flash_cycle_ich8lan(hw,
3611                                               ICH_FLASH_READ_COMMAND_TIMEOUT);
3612
3613                 /* Check if FCERR is set to 1, if set to 1, clear it
3614                  * and try the whole sequence a few more times, else
3615                  * read in (shift in) the Flash Data0, the order is
3616                  * least significant byte first msb to lsb
3617                  */
3618                 if (!ret_val) {
3619                         flash_data = er32flash(ICH_FLASH_FDATA0);
3620                         if (size == 1)
3621                                 *data = (u8)(flash_data & 0x000000FF);
3622                         else if (size == 2)
3623                                 *data = (u16)(flash_data & 0x0000FFFF);
3624                         break;
3625                 } else {
3626                         /* If we've gotten here, then things are probably
3627                          * completely hosed, but if the error condition is
3628                          * detected, it won't hurt to give it another try...
3629                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3630                          */
3631                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3632                         if (hsfsts.hsf_status.flcerr) {
3633                                 /* Repeat for some time before giving up. */
3634                                 continue;
3635                         } else if (!hsfsts.hsf_status.flcdone) {
3636                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3637                                 break;
3638                         }
3639                 }
3640         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3641
3642         return ret_val;
3643 }
3644
3645 /**
3646  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3647  *  @hw: pointer to the HW structure
3648  *  @offset: The offset (in bytes) of the dword to read.
3649  *  @data: Pointer to the dword to store the value read.
3650  *
3651  *  Reads a byte or word from the NVM using the flash access registers.
3652  **/
3653
3654 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3655                                            u32 *data)
3656 {
3657         union ich8_hws_flash_status hsfsts;
3658         union ich8_hws_flash_ctrl hsflctl;
3659         u32 flash_linear_addr;
3660         s32 ret_val = -E1000_ERR_NVM;
3661         u8 count = 0;
3662
3663         if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3664                 return -E1000_ERR_NVM;
3665         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3666                              hw->nvm.flash_base_addr);
3667
3668         do {
3669                 udelay(1);
3670                 /* Steps */
3671                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3672                 if (ret_val)
3673                         break;
3674                 /* In SPT, This register is in Lan memory space, not flash.
3675                  * Therefore, only 32 bit access is supported
3676                  */
3677                 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3678
3679                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3680                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3681                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3682                 /* In SPT, This register is in Lan memory space, not flash.
3683                  * Therefore, only 32 bit access is supported
3684                  */
3685                 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3686                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3687
3688                 ret_val =
3689                    e1000_flash_cycle_ich8lan(hw,
3690                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3691
3692                 /* Check if FCERR is set to 1, if set to 1, clear it
3693                  * and try the whole sequence a few more times, else
3694                  * read in (shift in) the Flash Data0, the order is
3695                  * least significant byte first msb to lsb
3696                  */
3697                 if (!ret_val) {
3698                         *data = er32flash(ICH_FLASH_FDATA0);
3699                         break;
3700                 } else {
3701                         /* If we've gotten here, then things are probably
3702                          * completely hosed, but if the error condition is
3703                          * detected, it won't hurt to give it another try...
3704                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3705                          */
3706                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3707                         if (hsfsts.hsf_status.flcerr) {
3708                                 /* Repeat for some time before giving up. */
3709                                 continue;
3710                         } else if (!hsfsts.hsf_status.flcdone) {
3711                                 e_dbg("Timeout error - flash cycle did not complete.\n");
3712                                 break;
3713                         }
3714                 }
3715         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3716
3717         return ret_val;
3718 }
3719
3720 /**
3721  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3722  *  @hw: pointer to the HW structure
3723  *  @offset: The offset (in bytes) of the word(s) to write.
3724  *  @words: Size of data to write in words
3725  *  @data: Pointer to the word(s) to write at offset.
3726  *
3727  *  Writes a byte or word to the NVM using the flash access registers.
3728  **/
3729 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3730                                    u16 *data)
3731 {
3732         struct e1000_nvm_info *nvm = &hw->nvm;
3733         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3734         u16 i;
3735
3736         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3737             (words == 0)) {
3738                 e_dbg("nvm parameter(s) out of bounds\n");
3739                 return -E1000_ERR_NVM;
3740         }
3741
3742         nvm->ops.acquire(hw);
3743
3744         for (i = 0; i < words; i++) {
3745                 dev_spec->shadow_ram[offset + i].modified = true;
3746                 dev_spec->shadow_ram[offset + i].value = data[i];
3747         }
3748
3749         nvm->ops.release(hw);
3750
3751         return 0;
3752 }
3753
3754 /**
3755  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3756  *  @hw: pointer to the HW structure
3757  *
3758  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3759  *  which writes the checksum to the shadow ram.  The changes in the shadow
3760  *  ram are then committed to the EEPROM by processing each bank at a time
3761  *  checking for the modified bit and writing only the pending changes.
3762  *  After a successful commit, the shadow ram is cleared and is ready for
3763  *  future writes.
3764  **/
3765 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3766 {
3767         struct e1000_nvm_info *nvm = &hw->nvm;
3768         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3769         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3770         s32 ret_val;
3771         u32 dword = 0;
3772
3773         ret_val = e1000e_update_nvm_checksum_generic(hw);
3774         if (ret_val)
3775                 goto out;
3776
3777         if (nvm->type != e1000_nvm_flash_sw)
3778                 goto out;
3779
3780         nvm->ops.acquire(hw);
3781
3782         /* We're writing to the opposite bank so if we're on bank 1,
3783          * write to bank 0 etc.  We also need to erase the segment that
3784          * is going to be written
3785          */
3786         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3787         if (ret_val) {
3788                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3789                 bank = 0;
3790         }
3791
3792         if (bank == 0) {
3793                 new_bank_offset = nvm->flash_bank_size;
3794                 old_bank_offset = 0;
3795                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3796                 if (ret_val)
3797                         goto release;
3798         } else {
3799                 old_bank_offset = nvm->flash_bank_size;
3800                 new_bank_offset = 0;
3801                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3802                 if (ret_val)
3803                         goto release;
3804         }
3805         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3806                 /* Determine whether to write the value stored
3807                  * in the other NVM bank or a modified value stored
3808                  * in the shadow RAM
3809                  */
3810                 ret_val = e1000_read_flash_dword_ich8lan(hw,
3811                                                          i + old_bank_offset,
3812                                                          &dword);
3813
3814                 if (dev_spec->shadow_ram[i].modified) {
3815                         dword &= 0xffff0000;
3816                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3817                 }
3818                 if (dev_spec->shadow_ram[i + 1].modified) {
3819                         dword &= 0x0000ffff;
3820                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3821                                   << 16);
3822                 }
3823                 if (ret_val)
3824                         break;
3825
3826                 /* If the word is 0x13, then make sure the signature bits
3827                  * (15:14) are 11b until the commit has completed.
3828                  * This will allow us to write 10b which indicates the
3829                  * signature is valid.  We want to do this after the write
3830                  * has completed so that we don't mark the segment valid
3831                  * while the write is still in progress
3832                  */
3833                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3834                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
3835
3836                 /* Convert offset to bytes. */
3837                 act_offset = (i + new_bank_offset) << 1;
3838
3839                 usleep_range(100, 200);
3840
3841                 /* Write the data to the new bank. Offset in words */
3842                 act_offset = i + new_bank_offset;
3843                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3844                                                                 dword);
3845                 if (ret_val)
3846                         break;
3847         }
3848
3849         /* Don't bother writing the segment valid bits if sector
3850          * programming failed.
3851          */
3852         if (ret_val) {
3853                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3854                 e_dbg("Flash commit failed.\n");
3855                 goto release;
3856         }
3857
3858         /* Finally validate the new segment by setting bit 15:14
3859          * to 10b in word 0x13 , this can be done without an
3860          * erase as well since these bits are 11 to start with
3861          * and we need to change bit 14 to 0b
3862          */
3863         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3864
3865         /*offset in words but we read dword */
3866         --act_offset;
3867         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3868
3869         if (ret_val)
3870                 goto release;
3871
3872         dword &= 0xBFFFFFFF;
3873         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3874
3875         if (ret_val)
3876                 goto release;
3877
3878         /* And invalidate the previously valid segment by setting
3879          * its signature word (0x13) high_byte to 0b. This can be
3880          * done without an erase because flash erase sets all bits
3881          * to 1's. We can write 1's to 0's without an erase
3882          */
3883         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3884
3885         /* offset in words but we read dword */
3886         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3887         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3888
3889         if (ret_val)
3890                 goto release;
3891
3892         dword &= 0x00FFFFFF;
3893         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3894
3895         if (ret_val)
3896                 goto release;
3897
3898         /* Great!  Everything worked, we can now clear the cached entries. */
3899         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3900                 dev_spec->shadow_ram[i].modified = false;
3901                 dev_spec->shadow_ram[i].value = 0xFFFF;
3902         }
3903
3904 release:
3905         nvm->ops.release(hw);
3906
3907         /* Reload the EEPROM, or else modifications will not appear
3908          * until after the next adapter reset.
3909          */
3910         if (!ret_val) {
3911                 nvm->ops.reload(hw);
3912                 usleep_range(10000, 11000);
3913         }
3914
3915 out:
3916         if (ret_val)
3917                 e_dbg("NVM update error: %d\n", ret_val);
3918
3919         return ret_val;
3920 }
3921
3922 /**
3923  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3924  *  @hw: pointer to the HW structure
3925  *
3926  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3927  *  which writes the checksum to the shadow ram.  The changes in the shadow
3928  *  ram are then committed to the EEPROM by processing each bank at a time
3929  *  checking for the modified bit and writing only the pending changes.
3930  *  After a successful commit, the shadow ram is cleared and is ready for
3931  *  future writes.
3932  **/
3933 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3934 {
3935         struct e1000_nvm_info *nvm = &hw->nvm;
3936         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3937         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3938         s32 ret_val;
3939         u16 data = 0;
3940
3941         ret_val = e1000e_update_nvm_checksum_generic(hw);
3942         if (ret_val)
3943                 goto out;
3944
3945         if (nvm->type != e1000_nvm_flash_sw)
3946                 goto out;
3947
3948         nvm->ops.acquire(hw);
3949
3950         /* We're writing to the opposite bank so if we're on bank 1,
3951          * write to bank 0 etc.  We also need to erase the segment that
3952          * is going to be written
3953          */
3954         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3955         if (ret_val) {
3956                 e_dbg("Could not detect valid bank, assuming bank 0\n");
3957                 bank = 0;
3958         }
3959
3960         if (bank == 0) {
3961                 new_bank_offset = nvm->flash_bank_size;
3962                 old_bank_offset = 0;
3963                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3964                 if (ret_val)
3965                         goto release;
3966         } else {
3967                 old_bank_offset = nvm->flash_bank_size;
3968                 new_bank_offset = 0;
3969                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3970                 if (ret_val)
3971                         goto release;
3972         }
3973         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3974                 if (dev_spec->shadow_ram[i].modified) {
3975                         data = dev_spec->shadow_ram[i].value;
3976                 } else {
3977                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3978                                                                 old_bank_offset,
3979                                                                 &data);
3980                         if (ret_val)
3981                                 break;
3982                 }
3983
3984                 /* If the word is 0x13, then make sure the signature bits
3985                  * (15:14) are 11b until the commit has completed.
3986                  * This will allow us to write 10b which indicates the
3987                  * signature is valid.  We want to do this after the write
3988                  * has completed so that we don't mark the segment valid
3989                  * while the write is still in progress
3990                  */
3991                 if (i == E1000_ICH_NVM_SIG_WORD)
3992                         data |= E1000_ICH_NVM_SIG_MASK;
3993
3994                 /* Convert offset to bytes. */
3995                 act_offset = (i + new_bank_offset) << 1;
3996
3997                 usleep_range(100, 200);
3998                 /* Write the bytes to the new bank. */
3999                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4000                                                                act_offset,
4001                                                                (u8)data);
4002                 if (ret_val)
4003                         break;
4004
4005                 usleep_range(100, 200);
4006                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4007                                                                act_offset + 1,
4008                                                                (u8)(data >> 8));
4009                 if (ret_val)
4010                         break;
4011         }
4012
4013         /* Don't bother writing the segment valid bits if sector
4014          * programming failed.
4015          */
4016         if (ret_val) {
4017                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4018                 e_dbg("Flash commit failed.\n");
4019                 goto release;
4020         }
4021
4022         /* Finally validate the new segment by setting bit 15:14
4023          * to 10b in word 0x13 , this can be done without an
4024          * erase as well since these bits are 11 to start with
4025          * and we need to change bit 14 to 0b
4026          */
4027         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4028         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4029         if (ret_val)
4030                 goto release;
4031
4032         data &= 0xBFFF;
4033         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4034                                                        act_offset * 2 + 1,
4035                                                        (u8)(data >> 8));
4036         if (ret_val)
4037                 goto release;
4038
4039         /* And invalidate the previously valid segment by setting
4040          * its signature word (0x13) high_byte to 0b. This can be
4041          * done without an erase because flash erase sets all bits
4042          * to 1's. We can write 1's to 0's without an erase
4043          */
4044         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4045         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4046         if (ret_val)
4047                 goto release;
4048
4049         /* Great!  Everything worked, we can now clear the cached entries. */
4050         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4051                 dev_spec->shadow_ram[i].modified = false;
4052                 dev_spec->shadow_ram[i].value = 0xFFFF;
4053         }
4054
4055 release:
4056         nvm->ops.release(hw);
4057
4058         /* Reload the EEPROM, or else modifications will not appear
4059          * until after the next adapter reset.
4060          */
4061         if (!ret_val) {
4062                 nvm->ops.reload(hw);
4063                 usleep_range(10000, 11000);
4064         }
4065
4066 out:
4067         if (ret_val)
4068                 e_dbg("NVM update error: %d\n", ret_val);
4069
4070         return ret_val;
4071 }
4072
4073 /**
4074  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4075  *  @hw: pointer to the HW structure
4076  *
4077  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4078  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4079  *  calculated, in which case we need to calculate the checksum and set bit 6.
4080  **/
4081 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4082 {
4083         s32 ret_val;
4084         u16 data;
4085         u16 word;
4086         u16 valid_csum_mask;
4087
4088         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4089          * the checksum needs to be fixed.  This bit is an indication that
4090          * the NVM was prepared by OEM software and did not calculate
4091          * the checksum...a likely scenario.
4092          */
4093         switch (hw->mac.type) {
4094         case e1000_pch_lpt:
4095         case e1000_pch_spt:
4096         case e1000_pch_cnp:
4097         case e1000_pch_tgp:
4098         case e1000_pch_adp:
4099         case e1000_pch_mtp:
4100                 word = NVM_COMPAT;
4101                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4102                 break;
4103         default:
4104                 word = NVM_FUTURE_INIT_WORD1;
4105                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4106                 break;
4107         }
4108
4109         ret_val = e1000_read_nvm(hw, word, 1, &data);
4110         if (ret_val)
4111                 return ret_val;
4112
4113         if (!(data & valid_csum_mask)) {
4114                 data |= valid_csum_mask;
4115                 ret_val = e1000_write_nvm(hw, word, 1, &data);
4116                 if (ret_val)
4117                         return ret_val;
4118                 ret_val = e1000e_update_nvm_checksum(hw);
4119                 if (ret_val)
4120                         return ret_val;
4121         }
4122
4123         return e1000e_validate_nvm_checksum_generic(hw);
4124 }
4125
4126 /**
4127  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4128  *  @hw: pointer to the HW structure
4129  *
4130  *  To prevent malicious write/erase of the NVM, set it to be read-only
4131  *  so that the hardware ignores all write/erase cycles of the NVM via
4132  *  the flash control registers.  The shadow-ram copy of the NVM will
4133  *  still be updated, however any updates to this copy will not stick
4134  *  across driver reloads.
4135  **/
4136 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4137 {
4138         struct e1000_nvm_info *nvm = &hw->nvm;
4139         union ich8_flash_protected_range pr0;
4140         union ich8_hws_flash_status hsfsts;
4141         u32 gfpreg;
4142
4143         nvm->ops.acquire(hw);
4144
4145         gfpreg = er32flash(ICH_FLASH_GFPREG);
4146
4147         /* Write-protect GbE Sector of NVM */
4148         pr0.regval = er32flash(ICH_FLASH_PR0);
4149         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4150         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4151         pr0.range.wpe = true;
4152         ew32flash(ICH_FLASH_PR0, pr0.regval);
4153
4154         /* Lock down a subset of GbE Flash Control Registers, e.g.
4155          * PR0 to prevent the write-protection from being lifted.
4156          * Once FLOCKDN is set, the registers protected by it cannot
4157          * be written until FLOCKDN is cleared by a hardware reset.
4158          */
4159         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4160         hsfsts.hsf_status.flockdn = true;
4161         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4162
4163         nvm->ops.release(hw);
4164 }
4165
4166 /**
4167  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4168  *  @hw: pointer to the HW structure
4169  *  @offset: The offset (in bytes) of the byte/word to read.
4170  *  @size: Size of data to read, 1=byte 2=word
4171  *  @data: The byte(s) to write to the NVM.
4172  *
4173  *  Writes one/two bytes to the NVM using the flash access registers.
4174  **/
4175 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4176                                           u8 size, u16 data)
4177 {
4178         union ich8_hws_flash_status hsfsts;
4179         union ich8_hws_flash_ctrl hsflctl;
4180         u32 flash_linear_addr;
4181         u32 flash_data = 0;
4182         s32 ret_val;
4183         u8 count = 0;
4184
4185         if (hw->mac.type >= e1000_pch_spt) {
4186                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4187                         return -E1000_ERR_NVM;
4188         } else {
4189                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4190                         return -E1000_ERR_NVM;
4191         }
4192
4193         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4194                              hw->nvm.flash_base_addr);
4195
4196         do {
4197                 udelay(1);
4198                 /* Steps */
4199                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4200                 if (ret_val)
4201                         break;
4202                 /* In SPT, This register is in Lan memory space, not
4203                  * flash.  Therefore, only 32 bit access is supported
4204                  */
4205                 if (hw->mac.type >= e1000_pch_spt)
4206                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4207                 else
4208                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4209
4210                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4211                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4212                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4213                 /* In SPT, This register is in Lan memory space,
4214                  * not flash.  Therefore, only 32 bit access is
4215                  * supported
4216                  */
4217                 if (hw->mac.type >= e1000_pch_spt)
4218                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4219                 else
4220                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4221
4222                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4223
4224                 if (size == 1)
4225                         flash_data = (u32)data & 0x00FF;
4226                 else
4227                         flash_data = (u32)data;
4228
4229                 ew32flash(ICH_FLASH_FDATA0, flash_data);
4230
4231                 /* check if FCERR is set to 1 , if set to 1, clear it
4232                  * and try the whole sequence a few more times else done
4233                  */
4234                 ret_val =
4235                     e1000_flash_cycle_ich8lan(hw,
4236                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4237                 if (!ret_val)
4238                         break;
4239
4240                 /* If we're here, then things are most likely
4241                  * completely hosed, but if the error condition
4242                  * is detected, it won't hurt to give it another
4243                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4244                  */
4245                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4246                 if (hsfsts.hsf_status.flcerr)
4247                         /* Repeat for some time before giving up. */
4248                         continue;
4249                 if (!hsfsts.hsf_status.flcdone) {
4250                         e_dbg("Timeout error - flash cycle did not complete.\n");
4251                         break;
4252                 }
4253         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4254
4255         return ret_val;
4256 }
4257
4258 /**
4259 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4260 *  @hw: pointer to the HW structure
4261 *  @offset: The offset (in bytes) of the dwords to read.
4262 *  @data: The 4 bytes to write to the NVM.
4263 *
4264 *  Writes one/two/four bytes to the NVM using the flash access registers.
4265 **/
4266 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4267                                             u32 data)
4268 {
4269         union ich8_hws_flash_status hsfsts;
4270         union ich8_hws_flash_ctrl hsflctl;
4271         u32 flash_linear_addr;
4272         s32 ret_val;
4273         u8 count = 0;
4274
4275         if (hw->mac.type >= e1000_pch_spt) {
4276                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4277                         return -E1000_ERR_NVM;
4278         }
4279         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4280                              hw->nvm.flash_base_addr);
4281         do {
4282                 udelay(1);
4283                 /* Steps */
4284                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4285                 if (ret_val)
4286                         break;
4287
4288                 /* In SPT, This register is in Lan memory space, not
4289                  * flash.  Therefore, only 32 bit access is supported
4290                  */
4291                 if (hw->mac.type >= e1000_pch_spt)
4292                         hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4293                             >> 16;
4294                 else
4295                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4296
4297                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4298                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4299
4300                 /* In SPT, This register is in Lan memory space,
4301                  * not flash.  Therefore, only 32 bit access is
4302                  * supported
4303                  */
4304                 if (hw->mac.type >= e1000_pch_spt)
4305                         ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4306                 else
4307                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4308
4309                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4310
4311                 ew32flash(ICH_FLASH_FDATA0, data);
4312
4313                 /* check if FCERR is set to 1 , if set to 1, clear it
4314                  * and try the whole sequence a few more times else done
4315                  */
4316                 ret_val =
4317                    e1000_flash_cycle_ich8lan(hw,
4318                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4319
4320                 if (!ret_val)
4321                         break;
4322
4323                 /* If we're here, then things are most likely
4324                  * completely hosed, but if the error condition
4325                  * is detected, it won't hurt to give it another
4326                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4327                  */
4328                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4329
4330                 if (hsfsts.hsf_status.flcerr)
4331                         /* Repeat for some time before giving up. */
4332                         continue;
4333                 if (!hsfsts.hsf_status.flcdone) {
4334                         e_dbg("Timeout error - flash cycle did not complete.\n");
4335                         break;
4336                 }
4337         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4338
4339         return ret_val;
4340 }
4341
4342 /**
4343  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4344  *  @hw: pointer to the HW structure
4345  *  @offset: The index of the byte to read.
4346  *  @data: The byte to write to the NVM.
4347  *
4348  *  Writes a single byte to the NVM using the flash access registers.
4349  **/
4350 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4351                                           u8 data)
4352 {
4353         u16 word = (u16)data;
4354
4355         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4356 }
4357
4358 /**
4359 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4360 *  @hw: pointer to the HW structure
4361 *  @offset: The offset of the word to write.
4362 *  @dword: The dword to write to the NVM.
4363 *
4364 *  Writes a single dword to the NVM using the flash access registers.
4365 *  Goes through a retry algorithm before giving up.
4366 **/
4367 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4368                                                  u32 offset, u32 dword)
4369 {
4370         s32 ret_val;
4371         u16 program_retries;
4372
4373         /* Must convert word offset into bytes. */
4374         offset <<= 1;
4375         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4376
4377         if (!ret_val)
4378                 return ret_val;
4379         for (program_retries = 0; program_retries < 100; program_retries++) {
4380                 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4381                 usleep_range(100, 200);
4382                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4383                 if (!ret_val)
4384                         break;
4385         }
4386         if (program_retries == 100)
4387                 return -E1000_ERR_NVM;
4388
4389         return 0;
4390 }
4391
4392 /**
4393  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4394  *  @hw: pointer to the HW structure
4395  *  @offset: The offset of the byte to write.
4396  *  @byte: The byte to write to the NVM.
4397  *
4398  *  Writes a single byte to the NVM using the flash access registers.
4399  *  Goes through a retry algorithm before giving up.
4400  **/
4401 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4402                                                 u32 offset, u8 byte)
4403 {
4404         s32 ret_val;
4405         u16 program_retries;
4406
4407         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4408         if (!ret_val)
4409                 return ret_val;
4410
4411         for (program_retries = 0; program_retries < 100; program_retries++) {
4412                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4413                 usleep_range(100, 200);
4414                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4415                 if (!ret_val)
4416                         break;
4417         }
4418         if (program_retries == 100)
4419                 return -E1000_ERR_NVM;
4420
4421         return 0;
4422 }
4423
4424 /**
4425  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4426  *  @hw: pointer to the HW structure
4427  *  @bank: 0 for first bank, 1 for second bank, etc.
4428  *
4429  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4430  *  bank N is 4096 * N + flash_reg_addr.
4431  **/
4432 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4433 {
4434         struct e1000_nvm_info *nvm = &hw->nvm;
4435         union ich8_hws_flash_status hsfsts;
4436         union ich8_hws_flash_ctrl hsflctl;
4437         u32 flash_linear_addr;
4438         /* bank size is in 16bit words - adjust to bytes */
4439         u32 flash_bank_size = nvm->flash_bank_size * 2;
4440         s32 ret_val;
4441         s32 count = 0;
4442         s32 j, iteration, sector_size;
4443
4444         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4445
4446         /* Determine HW Sector size: Read BERASE bits of hw flash status
4447          * register
4448          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4449          *     consecutive sectors.  The start index for the nth Hw sector
4450          *     can be calculated as = bank * 4096 + n * 256
4451          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4452          *     The start index for the nth Hw sector can be calculated
4453          *     as = bank * 4096
4454          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4455          *     (ich9 only, otherwise error condition)
4456          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4457          */
4458         switch (hsfsts.hsf_status.berasesz) {
4459         case 0:
4460                 /* Hw sector size 256 */
4461                 sector_size = ICH_FLASH_SEG_SIZE_256;
4462                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4463                 break;
4464         case 1:
4465                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4466                 iteration = 1;
4467                 break;
4468         case 2:
4469                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4470                 iteration = 1;
4471                 break;
4472         case 3:
4473                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4474                 iteration = 1;
4475                 break;
4476         default:
4477                 return -E1000_ERR_NVM;
4478         }
4479
4480         /* Start with the base address, then add the sector offset. */
4481         flash_linear_addr = hw->nvm.flash_base_addr;
4482         flash_linear_addr += (bank) ? flash_bank_size : 0;
4483
4484         for (j = 0; j < iteration; j++) {
4485                 do {
4486                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4487
4488                         /* Steps */
4489                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4490                         if (ret_val)
4491                                 return ret_val;
4492
4493                         /* Write a value 11 (block Erase) in Flash
4494                          * Cycle field in hw flash control
4495                          */
4496                         if (hw->mac.type >= e1000_pch_spt)
4497                                 hsflctl.regval =
4498                                     er32flash(ICH_FLASH_HSFSTS) >> 16;
4499                         else
4500                                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4501
4502                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4503                         if (hw->mac.type >= e1000_pch_spt)
4504                                 ew32flash(ICH_FLASH_HSFSTS,
4505                                           hsflctl.regval << 16);
4506                         else
4507                                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4508
4509                         /* Write the last 24 bits of an index within the
4510                          * block into Flash Linear address field in Flash
4511                          * Address.
4512                          */
4513                         flash_linear_addr += (j * sector_size);
4514                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4515
4516                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4517                         if (!ret_val)
4518                                 break;
4519
4520                         /* Check if FCERR is set to 1.  If 1,
4521                          * clear it and try the whole sequence
4522                          * a few more times else Done
4523                          */
4524                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4525                         if (hsfsts.hsf_status.flcerr)
4526                                 /* repeat for some time before giving up */
4527                                 continue;
4528                         else if (!hsfsts.hsf_status.flcdone)
4529                                 return ret_val;
4530                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4531         }
4532
4533         return 0;
4534 }
4535
4536 /**
4537  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4538  *  @hw: pointer to the HW structure
4539  *  @data: Pointer to the LED settings
4540  *
4541  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4542  *  settings is all 0's or F's, set the LED default to a valid LED default
4543  *  setting.
4544  **/
4545 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4546 {
4547         s32 ret_val;
4548
4549         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4550         if (ret_val) {
4551                 e_dbg("NVM Read Error\n");
4552                 return ret_val;
4553         }
4554
4555         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4556                 *data = ID_LED_DEFAULT_ICH8LAN;
4557
4558         return 0;
4559 }
4560
4561 /**
4562  *  e1000_id_led_init_pchlan - store LED configurations
4563  *  @hw: pointer to the HW structure
4564  *
4565  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4566  *  the PHY LED configuration register.
4567  *
4568  *  PCH also does not have an "always on" or "always off" mode which
4569  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4570  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4571  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4572  *  link based on logic in e1000_led_[on|off]_pchlan().
4573  **/
4574 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4575 {
4576         struct e1000_mac_info *mac = &hw->mac;
4577         s32 ret_val;
4578         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4579         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4580         u16 data, i, temp, shift;
4581
4582         /* Get default ID LED modes */
4583         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4584         if (ret_val)
4585                 return ret_val;
4586
4587         mac->ledctl_default = er32(LEDCTL);
4588         mac->ledctl_mode1 = mac->ledctl_default;
4589         mac->ledctl_mode2 = mac->ledctl_default;
4590
4591         for (i = 0; i < 4; i++) {
4592                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4593                 shift = (i * 5);
4594                 switch (temp) {
4595                 case ID_LED_ON1_DEF2:
4596                 case ID_LED_ON1_ON2:
4597                 case ID_LED_ON1_OFF2:
4598                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4599                         mac->ledctl_mode1 |= (ledctl_on << shift);
4600                         break;
4601                 case ID_LED_OFF1_DEF2:
4602                 case ID_LED_OFF1_ON2:
4603                 case ID_LED_OFF1_OFF2:
4604                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4605                         mac->ledctl_mode1 |= (ledctl_off << shift);
4606                         break;
4607                 default:
4608                         /* Do nothing */
4609                         break;
4610                 }
4611                 switch (temp) {
4612                 case ID_LED_DEF1_ON2:
4613                 case ID_LED_ON1_ON2:
4614                 case ID_LED_OFF1_ON2:
4615                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4616                         mac->ledctl_mode2 |= (ledctl_on << shift);
4617                         break;
4618                 case ID_LED_DEF1_OFF2:
4619                 case ID_LED_ON1_OFF2:
4620                 case ID_LED_OFF1_OFF2:
4621                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4622                         mac->ledctl_mode2 |= (ledctl_off << shift);
4623                         break;
4624                 default:
4625                         /* Do nothing */
4626                         break;
4627                 }
4628         }
4629
4630         return 0;
4631 }
4632
4633 /**
4634  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4635  *  @hw: pointer to the HW structure
4636  *
4637  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4638  *  register, so the the bus width is hard coded.
4639  **/
4640 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4641 {
4642         struct e1000_bus_info *bus = &hw->bus;
4643         s32 ret_val;
4644
4645         ret_val = e1000e_get_bus_info_pcie(hw);
4646
4647         /* ICH devices are "PCI Express"-ish.  They have
4648          * a configuration space, but do not contain
4649          * PCI Express Capability registers, so bus width
4650          * must be hardcoded.
4651          */
4652         if (bus->width == e1000_bus_width_unknown)
4653                 bus->width = e1000_bus_width_pcie_x1;
4654
4655         return ret_val;
4656 }
4657
4658 /**
4659  *  e1000_reset_hw_ich8lan - Reset the hardware
4660  *  @hw: pointer to the HW structure
4661  *
4662  *  Does a full reset of the hardware which includes a reset of the PHY and
4663  *  MAC.
4664  **/
4665 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4666 {
4667         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4668         u16 kum_cfg;
4669         u32 ctrl, reg;
4670         s32 ret_val;
4671
4672         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4673          * on the last TLP read/write transaction when MAC is reset.
4674          */
4675         ret_val = e1000e_disable_pcie_master(hw);
4676         if (ret_val)
4677                 e_dbg("PCI-E Master disable polling has failed.\n");
4678
4679         e_dbg("Masking off all interrupts\n");
4680         ew32(IMC, 0xffffffff);
4681
4682         /* Disable the Transmit and Receive units.  Then delay to allow
4683          * any pending transactions to complete before we hit the MAC
4684          * with the global reset.
4685          */
4686         ew32(RCTL, 0);
4687         ew32(TCTL, E1000_TCTL_PSP);
4688         e1e_flush();
4689
4690         usleep_range(10000, 11000);
4691
4692         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4693         if (hw->mac.type == e1000_ich8lan) {
4694                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4695                 ew32(PBA, E1000_PBA_8K);
4696                 /* Set Packet Buffer Size to 16k. */
4697                 ew32(PBS, E1000_PBS_16K);
4698         }
4699
4700         if (hw->mac.type == e1000_pchlan) {
4701                 /* Save the NVM K1 bit setting */
4702                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4703                 if (ret_val)
4704                         return ret_val;
4705
4706                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4707                         dev_spec->nvm_k1_enabled = true;
4708                 else
4709                         dev_spec->nvm_k1_enabled = false;
4710         }
4711
4712         ctrl = er32(CTRL);
4713
4714         if (!hw->phy.ops.check_reset_block(hw)) {
4715                 /* Full-chip reset requires MAC and PHY reset at the same
4716                  * time to make sure the interface between MAC and the
4717                  * external PHY is reset.
4718                  */
4719                 ctrl |= E1000_CTRL_PHY_RST;
4720
4721                 /* Gate automatic PHY configuration by hardware on
4722                  * non-managed 82579
4723                  */
4724                 if ((hw->mac.type == e1000_pch2lan) &&
4725                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4726                         e1000_gate_hw_phy_config_ich8lan(hw, true);
4727         }
4728         ret_val = e1000_acquire_swflag_ich8lan(hw);
4729         e_dbg("Issuing a global reset to ich8lan\n");
4730         ew32(CTRL, (ctrl | E1000_CTRL_RST));
4731         /* cannot issue a flush here because it hangs the hardware */
4732         msleep(20);
4733
4734         /* Set Phy Config Counter to 50msec */
4735         if (hw->mac.type == e1000_pch2lan) {
4736                 reg = er32(FEXTNVM3);
4737                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4738                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4739                 ew32(FEXTNVM3, reg);
4740         }
4741
4742         if (!ret_val)
4743                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4744
4745         if (ctrl & E1000_CTRL_PHY_RST) {
4746                 ret_val = hw->phy.ops.get_cfg_done(hw);
4747                 if (ret_val)
4748                         return ret_val;
4749
4750                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4751                 if (ret_val)
4752                         return ret_val;
4753         }
4754
4755         /* For PCH, this write will make sure that any noise
4756          * will be detected as a CRC error and be dropped rather than show up
4757          * as a bad packet to the DMA engine.
4758          */
4759         if (hw->mac.type == e1000_pchlan)
4760                 ew32(CRC_OFFSET, 0x65656565);
4761
4762         ew32(IMC, 0xffffffff);
4763         er32(ICR);
4764
4765         reg = er32(KABGTXD);
4766         reg |= E1000_KABGTXD_BGSQLBIAS;
4767         ew32(KABGTXD, reg);
4768
4769         return 0;
4770 }
4771
4772 /**
4773  *  e1000_init_hw_ich8lan - Initialize the hardware
4774  *  @hw: pointer to the HW structure
4775  *
4776  *  Prepares the hardware for transmit and receive by doing the following:
4777  *   - initialize hardware bits
4778  *   - initialize LED identification
4779  *   - setup receive address registers
4780  *   - setup flow control
4781  *   - setup transmit descriptors
4782  *   - clear statistics
4783  **/
4784 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4785 {
4786         struct e1000_mac_info *mac = &hw->mac;
4787         u32 ctrl_ext, txdctl, snoop;
4788         s32 ret_val;
4789         u16 i;
4790
4791         e1000_initialize_hw_bits_ich8lan(hw);
4792
4793         /* Initialize identification LED */
4794         ret_val = mac->ops.id_led_init(hw);
4795         /* An error is not fatal and we should not stop init due to this */
4796         if (ret_val)
4797                 e_dbg("Error initializing identification LED\n");
4798
4799         /* Setup the receive address. */
4800         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4801
4802         /* Zero out the Multicast HASH table */
4803         e_dbg("Zeroing the MTA\n");
4804         for (i = 0; i < mac->mta_reg_count; i++)
4805                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4806
4807         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4808          * the ME.  Disable wakeup by clearing the host wakeup bit.
4809          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4810          */
4811         if (hw->phy.type == e1000_phy_82578) {
4812                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4813                 i &= ~BM_WUC_HOST_WU_BIT;
4814                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4815                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4816                 if (ret_val)
4817                         return ret_val;
4818         }
4819
4820         /* Setup link and flow control */
4821         ret_val = mac->ops.setup_link(hw);
4822
4823         /* Set the transmit descriptor write-back policy for both queues */
4824         txdctl = er32(TXDCTL(0));
4825         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4826                   E1000_TXDCTL_FULL_TX_DESC_WB);
4827         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4828                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4829         ew32(TXDCTL(0), txdctl);
4830         txdctl = er32(TXDCTL(1));
4831         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4832                   E1000_TXDCTL_FULL_TX_DESC_WB);
4833         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4834                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4835         ew32(TXDCTL(1), txdctl);
4836
4837         /* ICH8 has opposite polarity of no_snoop bits.
4838          * By default, we should use snoop behavior.
4839          */
4840         if (mac->type == e1000_ich8lan)
4841                 snoop = PCIE_ICH8_SNOOP_ALL;
4842         else
4843                 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4844         e1000e_set_pcie_no_snoop(hw, snoop);
4845
4846         ctrl_ext = er32(CTRL_EXT);
4847         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4848         ew32(CTRL_EXT, ctrl_ext);
4849
4850         /* Clear all of the statistics registers (clear on read).  It is
4851          * important that we do this after we have tried to establish link
4852          * because the symbol error count will increment wildly if there
4853          * is no link.
4854          */
4855         e1000_clear_hw_cntrs_ich8lan(hw);
4856
4857         return ret_val;
4858 }
4859
4860 /**
4861  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4862  *  @hw: pointer to the HW structure
4863  *
4864  *  Sets/Clears required hardware bits necessary for correctly setting up the
4865  *  hardware for transmit and receive.
4866  **/
4867 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4868 {
4869         u32 reg;
4870
4871         /* Extended Device Control */
4872         reg = er32(CTRL_EXT);
4873         reg |= BIT(22);
4874         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4875         if (hw->mac.type >= e1000_pchlan)
4876                 reg |= E1000_CTRL_EXT_PHYPDEN;
4877         ew32(CTRL_EXT, reg);
4878
4879         /* Transmit Descriptor Control 0 */
4880         reg = er32(TXDCTL(0));
4881         reg |= BIT(22);
4882         ew32(TXDCTL(0), reg);
4883
4884         /* Transmit Descriptor Control 1 */
4885         reg = er32(TXDCTL(1));
4886         reg |= BIT(22);
4887         ew32(TXDCTL(1), reg);
4888
4889         /* Transmit Arbitration Control 0 */
4890         reg = er32(TARC(0));
4891         if (hw->mac.type == e1000_ich8lan)
4892                 reg |= BIT(28) | BIT(29);
4893         reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4894         ew32(TARC(0), reg);
4895
4896         /* Transmit Arbitration Control 1 */
4897         reg = er32(TARC(1));
4898         if (er32(TCTL) & E1000_TCTL_MULR)
4899                 reg &= ~BIT(28);
4900         else
4901                 reg |= BIT(28);
4902         reg |= BIT(24) | BIT(26) | BIT(30);
4903         ew32(TARC(1), reg);
4904
4905         /* Device Status */
4906         if (hw->mac.type == e1000_ich8lan) {
4907                 reg = er32(STATUS);
4908                 reg &= ~BIT(31);
4909                 ew32(STATUS, reg);
4910         }
4911
4912         /* work-around descriptor data corruption issue during nfs v2 udp
4913          * traffic, just disable the nfs filtering capability
4914          */
4915         reg = er32(RFCTL);
4916         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4917
4918         /* Disable IPv6 extension header parsing because some malformed
4919          * IPv6 headers can hang the Rx.
4920          */
4921         if (hw->mac.type == e1000_ich8lan)
4922                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4923         ew32(RFCTL, reg);
4924
4925         /* Enable ECC on Lynxpoint */
4926         if (hw->mac.type >= e1000_pch_lpt) {
4927                 reg = er32(PBECCSTS);
4928                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4929                 ew32(PBECCSTS, reg);
4930
4931                 reg = er32(CTRL);
4932                 reg |= E1000_CTRL_MEHE;
4933                 ew32(CTRL, reg);
4934         }
4935 }
4936
4937 /**
4938  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4939  *  @hw: pointer to the HW structure
4940  *
4941  *  Determines which flow control settings to use, then configures flow
4942  *  control.  Calls the appropriate media-specific link configuration
4943  *  function.  Assuming the adapter has a valid link partner, a valid link
4944  *  should be established.  Assumes the hardware has previously been reset
4945  *  and the transmitter and receiver are not enabled.
4946  **/
4947 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4948 {
4949         s32 ret_val;
4950
4951         if (hw->phy.ops.check_reset_block(hw))
4952                 return 0;
4953
4954         /* ICH parts do not have a word in the NVM to determine
4955          * the default flow control setting, so we explicitly
4956          * set it to full.
4957          */
4958         if (hw->fc.requested_mode == e1000_fc_default) {
4959                 /* Workaround h/w hang when Tx flow control enabled */
4960                 if (hw->mac.type == e1000_pchlan)
4961                         hw->fc.requested_mode = e1000_fc_rx_pause;
4962                 else
4963                         hw->fc.requested_mode = e1000_fc_full;
4964         }
4965
4966         /* Save off the requested flow control mode for use later.  Depending
4967          * on the link partner's capabilities, we may or may not use this mode.
4968          */
4969         hw->fc.current_mode = hw->fc.requested_mode;
4970
4971         e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4972
4973         /* Continue to configure the copper link. */
4974         ret_val = hw->mac.ops.setup_physical_interface(hw);
4975         if (ret_val)
4976                 return ret_val;
4977
4978         ew32(FCTTV, hw->fc.pause_time);
4979         if ((hw->phy.type == e1000_phy_82578) ||
4980             (hw->phy.type == e1000_phy_82579) ||
4981             (hw->phy.type == e1000_phy_i217) ||
4982             (hw->phy.type == e1000_phy_82577)) {
4983                 ew32(FCRTV_PCH, hw->fc.refresh_time);
4984
4985                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4986                                    hw->fc.pause_time);
4987                 if (ret_val)
4988                         return ret_val;
4989         }
4990
4991         return e1000e_set_fc_watermarks(hw);
4992 }
4993
4994 /**
4995  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4996  *  @hw: pointer to the HW structure
4997  *
4998  *  Configures the kumeran interface to the PHY to wait the appropriate time
4999  *  when polling the PHY, then call the generic setup_copper_link to finish
5000  *  configuring the copper link.
5001  **/
5002 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5003 {
5004         u32 ctrl;
5005         s32 ret_val;
5006         u16 reg_data;
5007
5008         ctrl = er32(CTRL);
5009         ctrl |= E1000_CTRL_SLU;
5010         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5011         ew32(CTRL, ctrl);
5012
5013         /* Set the mac to wait the maximum time between each iteration
5014          * and increase the max iterations when polling the phy;
5015          * this fixes erroneous timeouts at 10Mbps.
5016          */
5017         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5018         if (ret_val)
5019                 return ret_val;
5020         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5021                                        &reg_data);
5022         if (ret_val)
5023                 return ret_val;
5024         reg_data |= 0x3F;
5025         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5026                                         reg_data);
5027         if (ret_val)
5028                 return ret_val;
5029
5030         switch (hw->phy.type) {
5031         case e1000_phy_igp_3:
5032                 ret_val = e1000e_copper_link_setup_igp(hw);
5033                 if (ret_val)
5034                         return ret_val;
5035                 break;
5036         case e1000_phy_bm:
5037         case e1000_phy_82578:
5038                 ret_val = e1000e_copper_link_setup_m88(hw);
5039                 if (ret_val)
5040                         return ret_val;
5041                 break;
5042         case e1000_phy_82577:
5043         case e1000_phy_82579:
5044                 ret_val = e1000_copper_link_setup_82577(hw);
5045                 if (ret_val)
5046                         return ret_val;
5047                 break;
5048         case e1000_phy_ife:
5049                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5050                 if (ret_val)
5051                         return ret_val;
5052
5053                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5054
5055                 switch (hw->phy.mdix) {
5056                 case 1:
5057                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5058                         break;
5059                 case 2:
5060                         reg_data |= IFE_PMC_FORCE_MDIX;
5061                         break;
5062                 case 0:
5063                 default:
5064                         reg_data |= IFE_PMC_AUTO_MDIX;
5065                         break;
5066                 }
5067                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5068                 if (ret_val)
5069                         return ret_val;
5070                 break;
5071         default:
5072                 break;
5073         }
5074
5075         return e1000e_setup_copper_link(hw);
5076 }
5077
5078 /**
5079  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5080  *  @hw: pointer to the HW structure
5081  *
5082  *  Calls the PHY specific link setup function and then calls the
5083  *  generic setup_copper_link to finish configuring the link for
5084  *  Lynxpoint PCH devices
5085  **/
5086 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5087 {
5088         u32 ctrl;
5089         s32 ret_val;
5090
5091         ctrl = er32(CTRL);
5092         ctrl |= E1000_CTRL_SLU;
5093         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5094         ew32(CTRL, ctrl);
5095
5096         ret_val = e1000_copper_link_setup_82577(hw);
5097         if (ret_val)
5098                 return ret_val;
5099
5100         return e1000e_setup_copper_link(hw);
5101 }
5102
5103 /**
5104  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5105  *  @hw: pointer to the HW structure
5106  *  @speed: pointer to store current link speed
5107  *  @duplex: pointer to store the current link duplex
5108  *
5109  *  Calls the generic get_speed_and_duplex to retrieve the current link
5110  *  information and then calls the Kumeran lock loss workaround for links at
5111  *  gigabit speeds.
5112  **/
5113 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5114                                           u16 *duplex)
5115 {
5116         s32 ret_val;
5117
5118         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5119         if (ret_val)
5120                 return ret_val;
5121
5122         if ((hw->mac.type == e1000_ich8lan) &&
5123             (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5124                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5125         }
5126
5127         return ret_val;
5128 }
5129
5130 /**
5131  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5132  *  @hw: pointer to the HW structure
5133  *
5134  *  Work-around for 82566 Kumeran PCS lock loss:
5135  *  On link status change (i.e. PCI reset, speed change) and link is up and
5136  *  speed is gigabit-
5137  *    0) if workaround is optionally disabled do nothing
5138  *    1) wait 1ms for Kumeran link to come up
5139  *    2) check Kumeran Diagnostic register PCS lock loss bit
5140  *    3) if not set the link is locked (all is good), otherwise...
5141  *    4) reset the PHY
5142  *    5) repeat up to 10 times
5143  *  Note: this is only called for IGP3 copper when speed is 1gb.
5144  **/
5145 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5146 {
5147         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5148         u32 phy_ctrl;
5149         s32 ret_val;
5150         u16 i, data;
5151         bool link;
5152
5153         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5154                 return 0;
5155
5156         /* Make sure link is up before proceeding.  If not just return.
5157          * Attempting this while link is negotiating fouled up link
5158          * stability
5159          */
5160         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5161         if (!link)
5162                 return 0;
5163
5164         for (i = 0; i < 10; i++) {
5165                 /* read once to clear */
5166                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5167                 if (ret_val)
5168                         return ret_val;
5169                 /* and again to get new status */
5170                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5171                 if (ret_val)
5172                         return ret_val;
5173
5174                 /* check for PCS lock */
5175                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5176                         return 0;
5177
5178                 /* Issue PHY reset */
5179                 e1000_phy_hw_reset(hw);
5180                 mdelay(5);
5181         }
5182         /* Disable GigE link negotiation */
5183         phy_ctrl = er32(PHY_CTRL);
5184         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5185                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5186         ew32(PHY_CTRL, phy_ctrl);
5187
5188         /* Call gig speed drop workaround on Gig disable before accessing
5189          * any PHY registers
5190          */
5191         e1000e_gig_downshift_workaround_ich8lan(hw);
5192
5193         /* unable to acquire PCS lock */
5194         return -E1000_ERR_PHY;
5195 }
5196
5197 /**
5198  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5199  *  @hw: pointer to the HW structure
5200  *  @state: boolean value used to set the current Kumeran workaround state
5201  *
5202  *  If ICH8, set the current Kumeran workaround state (enabled - true
5203  *  /disabled - false).
5204  **/
5205 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5206                                                   bool state)
5207 {
5208         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5209
5210         if (hw->mac.type != e1000_ich8lan) {
5211                 e_dbg("Workaround applies to ICH8 only.\n");
5212                 return;
5213         }
5214
5215         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5216 }
5217
5218 /**
5219  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5220  *  @hw: pointer to the HW structure
5221  *
5222  *  Workaround for 82566 power-down on D3 entry:
5223  *    1) disable gigabit link
5224  *    2) write VR power-down enable
5225  *    3) read it back
5226  *  Continue if successful, else issue LCD reset and repeat
5227  **/
5228 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5229 {
5230         u32 reg;
5231         u16 data;
5232         u8 retry = 0;
5233
5234         if (hw->phy.type != e1000_phy_igp_3)
5235                 return;
5236
5237         /* Try the workaround twice (if needed) */
5238         do {
5239                 /* Disable link */
5240                 reg = er32(PHY_CTRL);
5241                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5242                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5243                 ew32(PHY_CTRL, reg);
5244
5245                 /* Call gig speed drop workaround on Gig disable before
5246                  * accessing any PHY registers
5247                  */
5248                 if (hw->mac.type == e1000_ich8lan)
5249                         e1000e_gig_downshift_workaround_ich8lan(hw);
5250
5251                 /* Write VR power-down enable */
5252                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5253                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5254                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5255
5256                 /* Read it back and test */
5257                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5258                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5259                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5260                         break;
5261
5262                 /* Issue PHY reset and repeat at most one more time */
5263                 reg = er32(CTRL);
5264                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5265                 retry++;
5266         } while (retry);
5267 }
5268
5269 /**
5270  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5271  *  @hw: pointer to the HW structure
5272  *
5273  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5274  *  LPLU, Gig disable, MDIC PHY reset):
5275  *    1) Set Kumeran Near-end loopback
5276  *    2) Clear Kumeran Near-end loopback
5277  *  Should only be called for ICH8[m] devices with any 1G Phy.
5278  **/
5279 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5280 {
5281         s32 ret_val;
5282         u16 reg_data;
5283
5284         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5285                 return;
5286
5287         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5288                                        &reg_data);
5289         if (ret_val)
5290                 return;
5291         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5292         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5293                                         reg_data);
5294         if (ret_val)
5295                 return;
5296         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5297         e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5298 }
5299
5300 /**
5301  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5302  *  @hw: pointer to the HW structure
5303  *
5304  *  During S0 to Sx transition, it is possible the link remains at gig
5305  *  instead of negotiating to a lower speed.  Before going to Sx, set
5306  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5307  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5308  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5309  *  needs to be written.
5310  *  Parts that support (and are linked to a partner which support) EEE in
5311  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5312  *  than 10Mbps w/o EEE.
5313  **/
5314 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5315 {
5316         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317         u32 phy_ctrl;
5318         s32 ret_val;
5319
5320         phy_ctrl = er32(PHY_CTRL);
5321         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5322
5323         if (hw->phy.type == e1000_phy_i217) {
5324                 u16 phy_reg, device_id = hw->adapter->pdev->device;
5325
5326                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5327                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5328                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5329                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5330                     (hw->mac.type >= e1000_pch_spt)) {
5331                         u32 fextnvm6 = er32(FEXTNVM6);
5332
5333                         ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5334                 }
5335
5336                 ret_val = hw->phy.ops.acquire(hw);
5337                 if (ret_val)
5338                         goto out;
5339
5340                 if (!dev_spec->eee_disable) {
5341                         u16 eee_advert;
5342
5343                         ret_val =
5344                             e1000_read_emi_reg_locked(hw,
5345                                                       I217_EEE_ADVERTISEMENT,
5346                                                       &eee_advert);
5347                         if (ret_val)
5348                                 goto release;
5349
5350                         /* Disable LPLU if both link partners support 100BaseT
5351                          * EEE and 100Full is advertised on both ends of the
5352                          * link, and enable Auto Enable LPI since there will
5353                          * be no driver to enable LPI while in Sx.
5354                          */
5355                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5356                             (dev_spec->eee_lp_ability &
5357                              I82579_EEE_100_SUPPORTED) &&
5358                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5359                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5360                                               E1000_PHY_CTRL_NOND0A_LPLU);
5361
5362                                 /* Set Auto Enable LPI after link up */
5363                                 e1e_rphy_locked(hw,
5364                                                 I217_LPI_GPIO_CTRL, &phy_reg);
5365                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5366                                 e1e_wphy_locked(hw,
5367                                                 I217_LPI_GPIO_CTRL, phy_reg);
5368                         }
5369                 }
5370
5371                 /* For i217 Intel Rapid Start Technology support,
5372                  * when the system is going into Sx and no manageability engine
5373                  * is present, the driver must configure proxy to reset only on
5374                  * power good.  LPI (Low Power Idle) state must also reset only
5375                  * on power good, as well as the MTA (Multicast table array).
5376                  * The SMBus release must also be disabled on LCD reset.
5377                  */
5378                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5379                         /* Enable proxy to reset only on power good. */
5380                         e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5381                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5382                         e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5383
5384                         /* Set bit enable LPI (EEE) to reset only on
5385                          * power good.
5386                          */
5387                         e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5388                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5389                         e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5390
5391                         /* Disable the SMB release on LCD reset. */
5392                         e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5393                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5394                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5395                 }
5396
5397                 /* Enable MTA to reset for Intel Rapid Start Technology
5398                  * Support
5399                  */
5400                 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5401                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5402                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5403
5404 release:
5405                 hw->phy.ops.release(hw);
5406         }
5407 out:
5408         ew32(PHY_CTRL, phy_ctrl);
5409
5410         if (hw->mac.type == e1000_ich8lan)
5411                 e1000e_gig_downshift_workaround_ich8lan(hw);
5412
5413         if (hw->mac.type >= e1000_pchlan) {
5414                 e1000_oem_bits_config_ich8lan(hw, false);
5415
5416                 /* Reset PHY to activate OEM bits on 82577/8 */
5417                 if (hw->mac.type == e1000_pchlan)
5418                         e1000e_phy_hw_reset_generic(hw);
5419
5420                 ret_val = hw->phy.ops.acquire(hw);
5421                 if (ret_val)
5422                         return;
5423                 e1000_write_smbus_addr(hw);
5424                 hw->phy.ops.release(hw);
5425         }
5426 }
5427
5428 /**
5429  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5430  *  @hw: pointer to the HW structure
5431  *
5432  *  During Sx to S0 transitions on non-managed devices or managed devices
5433  *  on which PHY resets are not blocked, if the PHY registers cannot be
5434  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5435  *  the PHY.
5436  *  On i217, setup Intel Rapid Start Technology.
5437  **/
5438 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5439 {
5440         s32 ret_val;
5441
5442         if (hw->mac.type < e1000_pch2lan)
5443                 return;
5444
5445         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5446         if (ret_val) {
5447                 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5448                 return;
5449         }
5450
5451         /* For i217 Intel Rapid Start Technology support when the system
5452          * is transitioning from Sx and no manageability engine is present
5453          * configure SMBus to restore on reset, disable proxy, and enable
5454          * the reset on MTA (Multicast table array).
5455          */
5456         if (hw->phy.type == e1000_phy_i217) {
5457                 u16 phy_reg;
5458
5459                 ret_val = hw->phy.ops.acquire(hw);
5460                 if (ret_val) {
5461                         e_dbg("Failed to setup iRST\n");
5462                         return;
5463                 }
5464
5465                 /* Clear Auto Enable LPI after link up */
5466                 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5467                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5468                 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5469
5470                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5471                         /* Restore clear on SMB if no manageability engine
5472                          * is present
5473                          */
5474                         ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5475                         if (ret_val)
5476                                 goto release;
5477                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5478                         e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5479
5480                         /* Disable Proxy */
5481                         e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5482                 }
5483                 /* Enable reset on MTA */
5484                 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5485                 if (ret_val)
5486                         goto release;
5487                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5488                 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5489 release:
5490                 if (ret_val)
5491                         e_dbg("Error %d in resume workarounds\n", ret_val);
5492                 hw->phy.ops.release(hw);
5493         }
5494 }
5495
5496 /**
5497  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5498  *  @hw: pointer to the HW structure
5499  *
5500  *  Return the LED back to the default configuration.
5501  **/
5502 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5503 {
5504         if (hw->phy.type == e1000_phy_ife)
5505                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5506
5507         ew32(LEDCTL, hw->mac.ledctl_default);
5508         return 0;
5509 }
5510
5511 /**
5512  *  e1000_led_on_ich8lan - Turn LEDs on
5513  *  @hw: pointer to the HW structure
5514  *
5515  *  Turn on the LEDs.
5516  **/
5517 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5518 {
5519         if (hw->phy.type == e1000_phy_ife)
5520                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5521                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5522
5523         ew32(LEDCTL, hw->mac.ledctl_mode2);
5524         return 0;
5525 }
5526
5527 /**
5528  *  e1000_led_off_ich8lan - Turn LEDs off
5529  *  @hw: pointer to the HW structure
5530  *
5531  *  Turn off the LEDs.
5532  **/
5533 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5534 {
5535         if (hw->phy.type == e1000_phy_ife)
5536                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5537                                 (IFE_PSCL_PROBE_MODE |
5538                                  IFE_PSCL_PROBE_LEDS_OFF));
5539
5540         ew32(LEDCTL, hw->mac.ledctl_mode1);
5541         return 0;
5542 }
5543
5544 /**
5545  *  e1000_setup_led_pchlan - Configures SW controllable LED
5546  *  @hw: pointer to the HW structure
5547  *
5548  *  This prepares the SW controllable LED for use.
5549  **/
5550 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5551 {
5552         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5553 }
5554
5555 /**
5556  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5557  *  @hw: pointer to the HW structure
5558  *
5559  *  Return the LED back to the default configuration.
5560  **/
5561 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5562 {
5563         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5564 }
5565
5566 /**
5567  *  e1000_led_on_pchlan - Turn LEDs on
5568  *  @hw: pointer to the HW structure
5569  *
5570  *  Turn on the LEDs.
5571  **/
5572 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5573 {
5574         u16 data = (u16)hw->mac.ledctl_mode2;
5575         u32 i, led;
5576
5577         /* If no link, then turn LED on by setting the invert bit
5578          * for each LED that's mode is "link_up" in ledctl_mode2.
5579          */
5580         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5581                 for (i = 0; i < 3; i++) {
5582                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5583                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5584                             E1000_LEDCTL_MODE_LINK_UP)
5585                                 continue;
5586                         if (led & E1000_PHY_LED0_IVRT)
5587                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5588                         else
5589                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5590                 }
5591         }
5592
5593         return e1e_wphy(hw, HV_LED_CONFIG, data);
5594 }
5595
5596 /**
5597  *  e1000_led_off_pchlan - Turn LEDs off
5598  *  @hw: pointer to the HW structure
5599  *
5600  *  Turn off the LEDs.
5601  **/
5602 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5603 {
5604         u16 data = (u16)hw->mac.ledctl_mode1;
5605         u32 i, led;
5606
5607         /* If no link, then turn LED off by clearing the invert bit
5608          * for each LED that's mode is "link_up" in ledctl_mode1.
5609          */
5610         if (!(er32(STATUS) & E1000_STATUS_LU)) {
5611                 for (i = 0; i < 3; i++) {
5612                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5613                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5614                             E1000_LEDCTL_MODE_LINK_UP)
5615                                 continue;
5616                         if (led & E1000_PHY_LED0_IVRT)
5617                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5618                         else
5619                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5620                 }
5621         }
5622
5623         return e1e_wphy(hw, HV_LED_CONFIG, data);
5624 }
5625
5626 /**
5627  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5628  *  @hw: pointer to the HW structure
5629  *
5630  *  Read appropriate register for the config done bit for completion status
5631  *  and configure the PHY through s/w for EEPROM-less parts.
5632  *
5633  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5634  *  config done bit, so only an error is logged and continues.  If we were
5635  *  to return with error, EEPROM-less silicon would not be able to be reset
5636  *  or change link.
5637  **/
5638 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5639 {
5640         s32 ret_val = 0;
5641         u32 bank = 0;
5642         u32 status;
5643
5644         e1000e_get_cfg_done_generic(hw);
5645
5646         /* Wait for indication from h/w that it has completed basic config */
5647         if (hw->mac.type >= e1000_ich10lan) {
5648                 e1000_lan_init_done_ich8lan(hw);
5649         } else {
5650                 ret_val = e1000e_get_auto_rd_done(hw);
5651                 if (ret_val) {
5652                         /* When auto config read does not complete, do not
5653                          * return with an error. This can happen in situations
5654                          * where there is no eeprom and prevents getting link.
5655                          */
5656                         e_dbg("Auto Read Done did not complete\n");
5657                         ret_val = 0;
5658                 }
5659         }
5660
5661         /* Clear PHY Reset Asserted bit */
5662         status = er32(STATUS);
5663         if (status & E1000_STATUS_PHYRA)
5664                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5665         else
5666                 e_dbg("PHY Reset Asserted not set - needs delay\n");
5667
5668         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5669         if (hw->mac.type <= e1000_ich9lan) {
5670                 if (!(er32(EECD) & E1000_EECD_PRES) &&
5671                     (hw->phy.type == e1000_phy_igp_3)) {
5672                         e1000e_phy_init_script_igp3(hw);
5673                 }
5674         } else {
5675                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5676                         /* Maybe we should do a basic PHY config */
5677                         e_dbg("EEPROM not present\n");
5678                         ret_val = -E1000_ERR_CONFIG;
5679                 }
5680         }
5681
5682         return ret_val;
5683 }
5684
5685 /**
5686  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5687  * @hw: pointer to the HW structure
5688  *
5689  * In the case of a PHY power down to save power, or to turn off link during a
5690  * driver unload, or wake on lan is not enabled, remove the link.
5691  **/
5692 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5693 {
5694         /* If the management interface is not enabled, then power down */
5695         if (!(hw->mac.ops.check_mng_mode(hw) ||
5696               hw->phy.ops.check_reset_block(hw)))
5697                 e1000_power_down_phy_copper(hw);
5698 }
5699
5700 /**
5701  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5702  *  @hw: pointer to the HW structure
5703  *
5704  *  Clears hardware counters specific to the silicon family and calls
5705  *  clear_hw_cntrs_generic to clear all general purpose counters.
5706  **/
5707 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5708 {
5709         u16 phy_data;
5710         s32 ret_val;
5711
5712         e1000e_clear_hw_cntrs_base(hw);
5713
5714         er32(ALGNERRC);
5715         er32(RXERRC);
5716         er32(TNCRS);
5717         er32(CEXTERR);
5718         er32(TSCTC);
5719         er32(TSCTFC);
5720
5721         er32(MGTPRC);
5722         er32(MGTPDC);
5723         er32(MGTPTC);
5724
5725         er32(IAC);
5726         er32(ICRXOC);
5727
5728         /* Clear PHY statistics registers */
5729         if ((hw->phy.type == e1000_phy_82578) ||
5730             (hw->phy.type == e1000_phy_82579) ||
5731             (hw->phy.type == e1000_phy_i217) ||
5732             (hw->phy.type == e1000_phy_82577)) {
5733                 ret_val = hw->phy.ops.acquire(hw);
5734                 if (ret_val)
5735                         return;
5736                 ret_val = hw->phy.ops.set_page(hw,
5737                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5738                 if (ret_val)
5739                         goto release;
5740                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5741                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5742                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5743                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5744                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5745                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5746                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5747                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5748                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5749                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5750                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5751                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5752                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5753                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5754 release:
5755                 hw->phy.ops.release(hw);
5756         }
5757 }
5758
5759 static const struct e1000_mac_operations ich8_mac_ops = {
5760         /* check_mng_mode dependent on mac type */
5761         .check_for_link         = e1000_check_for_copper_link_ich8lan,
5762         /* cleanup_led dependent on mac type */
5763         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5764         .get_bus_info           = e1000_get_bus_info_ich8lan,
5765         .set_lan_id             = e1000_set_lan_id_single_port,
5766         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5767         /* led_on dependent on mac type */
5768         /* led_off dependent on mac type */
5769         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5770         .reset_hw               = e1000_reset_hw_ich8lan,
5771         .init_hw                = e1000_init_hw_ich8lan,
5772         .setup_link             = e1000_setup_link_ich8lan,
5773         .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5774         /* id_led_init dependent on mac type */
5775         .config_collision_dist  = e1000e_config_collision_dist_generic,
5776         .rar_set                = e1000e_rar_set_generic,
5777         .rar_get_count          = e1000e_rar_get_count_generic,
5778 };
5779
5780 static const struct e1000_phy_operations ich8_phy_ops = {
5781         .acquire                = e1000_acquire_swflag_ich8lan,
5782         .check_reset_block      = e1000_check_reset_block_ich8lan,
5783         .commit                 = NULL,
5784         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5785         .get_cable_length       = e1000e_get_cable_length_igp_2,
5786         .read_reg               = e1000e_read_phy_reg_igp,
5787         .release                = e1000_release_swflag_ich8lan,
5788         .reset                  = e1000_phy_hw_reset_ich8lan,
5789         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5790         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5791         .write_reg              = e1000e_write_phy_reg_igp,
5792 };
5793
5794 static const struct e1000_nvm_operations ich8_nvm_ops = {
5795         .acquire                = e1000_acquire_nvm_ich8lan,
5796         .read                   = e1000_read_nvm_ich8lan,
5797         .release                = e1000_release_nvm_ich8lan,
5798         .reload                 = e1000e_reload_nvm_generic,
5799         .update                 = e1000_update_nvm_checksum_ich8lan,
5800         .valid_led_default      = e1000_valid_led_default_ich8lan,
5801         .validate               = e1000_validate_nvm_checksum_ich8lan,
5802         .write                  = e1000_write_nvm_ich8lan,
5803 };
5804
5805 static const struct e1000_nvm_operations spt_nvm_ops = {
5806         .acquire                = e1000_acquire_nvm_ich8lan,
5807         .release                = e1000_release_nvm_ich8lan,
5808         .read                   = e1000_read_nvm_spt,
5809         .update                 = e1000_update_nvm_checksum_spt,
5810         .reload                 = e1000e_reload_nvm_generic,
5811         .valid_led_default      = e1000_valid_led_default_ich8lan,
5812         .validate               = e1000_validate_nvm_checksum_ich8lan,
5813         .write                  = e1000_write_nvm_ich8lan,
5814 };
5815
5816 const struct e1000_info e1000_ich8_info = {
5817         .mac                    = e1000_ich8lan,
5818         .flags                  = FLAG_HAS_WOL
5819                                   | FLAG_IS_ICH
5820                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5821                                   | FLAG_HAS_AMT
5822                                   | FLAG_HAS_FLASH
5823                                   | FLAG_APME_IN_WUC,
5824         .pba                    = 8,
5825         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5826         .get_variants           = e1000_get_variants_ich8lan,
5827         .mac_ops                = &ich8_mac_ops,
5828         .phy_ops                = &ich8_phy_ops,
5829         .nvm_ops                = &ich8_nvm_ops,
5830 };
5831
5832 const struct e1000_info e1000_ich9_info = {
5833         .mac                    = e1000_ich9lan,
5834         .flags                  = FLAG_HAS_JUMBO_FRAMES
5835                                   | FLAG_IS_ICH
5836                                   | FLAG_HAS_WOL
5837                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5838                                   | FLAG_HAS_AMT
5839                                   | FLAG_HAS_FLASH
5840                                   | FLAG_APME_IN_WUC,
5841         .pba                    = 18,
5842         .max_hw_frame_size      = DEFAULT_JUMBO,
5843         .get_variants           = e1000_get_variants_ich8lan,
5844         .mac_ops                = &ich8_mac_ops,
5845         .phy_ops                = &ich8_phy_ops,
5846         .nvm_ops                = &ich8_nvm_ops,
5847 };
5848
5849 const struct e1000_info e1000_ich10_info = {
5850         .mac                    = e1000_ich10lan,
5851         .flags                  = FLAG_HAS_JUMBO_FRAMES
5852                                   | FLAG_IS_ICH
5853                                   | FLAG_HAS_WOL
5854                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5855                                   | FLAG_HAS_AMT
5856                                   | FLAG_HAS_FLASH
5857                                   | FLAG_APME_IN_WUC,
5858         .pba                    = 18,
5859         .max_hw_frame_size      = DEFAULT_JUMBO,
5860         .get_variants           = e1000_get_variants_ich8lan,
5861         .mac_ops                = &ich8_mac_ops,
5862         .phy_ops                = &ich8_phy_ops,
5863         .nvm_ops                = &ich8_nvm_ops,
5864 };
5865
5866 const struct e1000_info e1000_pch_info = {
5867         .mac                    = e1000_pchlan,
5868         .flags                  = FLAG_IS_ICH
5869                                   | FLAG_HAS_WOL
5870                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5871                                   | FLAG_HAS_AMT
5872                                   | FLAG_HAS_FLASH
5873                                   | FLAG_HAS_JUMBO_FRAMES
5874                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5875                                   | FLAG_APME_IN_WUC,
5876         .flags2                 = FLAG2_HAS_PHY_STATS,
5877         .pba                    = 26,
5878         .max_hw_frame_size      = 4096,
5879         .get_variants           = e1000_get_variants_ich8lan,
5880         .mac_ops                = &ich8_mac_ops,
5881         .phy_ops                = &ich8_phy_ops,
5882         .nvm_ops                = &ich8_nvm_ops,
5883 };
5884
5885 const struct e1000_info e1000_pch2_info = {
5886         .mac                    = e1000_pch2lan,
5887         .flags                  = FLAG_IS_ICH
5888                                   | FLAG_HAS_WOL
5889                                   | FLAG_HAS_HW_TIMESTAMP
5890                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5891                                   | FLAG_HAS_AMT
5892                                   | FLAG_HAS_FLASH
5893                                   | FLAG_HAS_JUMBO_FRAMES
5894                                   | FLAG_APME_IN_WUC,
5895         .flags2                 = FLAG2_HAS_PHY_STATS
5896                                   | FLAG2_HAS_EEE
5897                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5898         .pba                    = 26,
5899         .max_hw_frame_size      = 9022,
5900         .get_variants           = e1000_get_variants_ich8lan,
5901         .mac_ops                = &ich8_mac_ops,
5902         .phy_ops                = &ich8_phy_ops,
5903         .nvm_ops                = &ich8_nvm_ops,
5904 };
5905
5906 const struct e1000_info e1000_pch_lpt_info = {
5907         .mac                    = e1000_pch_lpt,
5908         .flags                  = FLAG_IS_ICH
5909                                   | FLAG_HAS_WOL
5910                                   | FLAG_HAS_HW_TIMESTAMP
5911                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5912                                   | FLAG_HAS_AMT
5913                                   | FLAG_HAS_FLASH
5914                                   | FLAG_HAS_JUMBO_FRAMES
5915                                   | FLAG_APME_IN_WUC,
5916         .flags2                 = FLAG2_HAS_PHY_STATS
5917                                   | FLAG2_HAS_EEE
5918                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
5919         .pba                    = 26,
5920         .max_hw_frame_size      = 9022,
5921         .get_variants           = e1000_get_variants_ich8lan,
5922         .mac_ops                = &ich8_mac_ops,
5923         .phy_ops                = &ich8_phy_ops,
5924         .nvm_ops                = &ich8_nvm_ops,
5925 };
5926
5927 const struct e1000_info e1000_pch_spt_info = {
5928         .mac                    = e1000_pch_spt,
5929         .flags                  = FLAG_IS_ICH
5930                                   | FLAG_HAS_WOL
5931                                   | FLAG_HAS_HW_TIMESTAMP
5932                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5933                                   | FLAG_HAS_AMT
5934                                   | FLAG_HAS_FLASH
5935                                   | FLAG_HAS_JUMBO_FRAMES
5936                                   | FLAG_APME_IN_WUC,
5937         .flags2                 = FLAG2_HAS_PHY_STATS
5938                                   | FLAG2_HAS_EEE,
5939         .pba                    = 26,
5940         .max_hw_frame_size      = 9022,
5941         .get_variants           = e1000_get_variants_ich8lan,
5942         .mac_ops                = &ich8_mac_ops,
5943         .phy_ops                = &ich8_phy_ops,
5944         .nvm_ops                = &spt_nvm_ops,
5945 };
5946
5947 const struct e1000_info e1000_pch_cnp_info = {
5948         .mac                    = e1000_pch_cnp,
5949         .flags                  = FLAG_IS_ICH
5950                                   | FLAG_HAS_WOL
5951                                   | FLAG_HAS_HW_TIMESTAMP
5952                                   | FLAG_HAS_CTRLEXT_ON_LOAD
5953                                   | FLAG_HAS_AMT
5954                                   | FLAG_HAS_FLASH
5955                                   | FLAG_HAS_JUMBO_FRAMES
5956                                   | FLAG_APME_IN_WUC,
5957         .flags2                 = FLAG2_HAS_PHY_STATS
5958                                   | FLAG2_HAS_EEE,
5959         .pba                    = 26,
5960         .max_hw_frame_size      = 9022,
5961         .get_variants           = e1000_get_variants_ich8lan,
5962         .mac_ops                = &ich8_mac_ops,
5963         .phy_ops                = &ich8_phy_ops,
5964         .nvm_ops                = &spt_nvm_ops,
5965 };