e1000e: Reduce boot time by tightening sleep ranges
[linux-2.6-microblaze.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82571EB Gigabit Ethernet Controller
5  * 82571EB Gigabit Ethernet Controller (Copper)
6  * 82571EB Gigabit Ethernet Controller (Fiber)
7  * 82571EB Dual Port Gigabit Mezzanine Adapter
8  * 82571EB Quad Port Gigabit Mezzanine Adapter
9  * 82571PT Gigabit PT Quad Port Server ExpressModule
10  * 82572EI Gigabit Ethernet Controller (Copper)
11  * 82572EI Gigabit Ethernet Controller (Fiber)
12  * 82572EI Gigabit Ethernet Controller
13  * 82573V Gigabit Ethernet Controller (Copper)
14  * 82573E Gigabit Ethernet Controller (Copper)
15  * 82573L Gigabit Ethernet Controller
16  * 82574L Gigabit Network Connection
17  * 82583V Gigabit Network Connection
18  */
19
20 #include "e1000.h"
21
22 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
23 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
24 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
25 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
26 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
27                                       u16 words, u16 *data);
28 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
29 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
30 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
31 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
32 static s32 e1000_led_on_82574(struct e1000_hw *hw);
33 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
34 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
35 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
36 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
37 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
38 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
39 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
40
41 /**
42  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
43  *  @hw: pointer to the HW structure
44  **/
45 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
46 {
47         struct e1000_phy_info *phy = &hw->phy;
48         s32 ret_val;
49
50         if (hw->phy.media_type != e1000_media_type_copper) {
51                 phy->type = e1000_phy_none;
52                 return 0;
53         }
54
55         phy->addr = 1;
56         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
57         phy->reset_delay_us = 100;
58
59         phy->ops.power_up = e1000_power_up_phy_copper;
60         phy->ops.power_down = e1000_power_down_phy_copper_82571;
61
62         switch (hw->mac.type) {
63         case e1000_82571:
64         case e1000_82572:
65                 phy->type = e1000_phy_igp_2;
66                 break;
67         case e1000_82573:
68                 phy->type = e1000_phy_m88;
69                 break;
70         case e1000_82574:
71         case e1000_82583:
72                 phy->type = e1000_phy_bm;
73                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
74                 phy->ops.release = e1000_put_hw_semaphore_82574;
75                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
76                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
77                 break;
78         default:
79                 return -E1000_ERR_PHY;
80         }
81
82         /* This can only be done after all function pointers are setup. */
83         ret_val = e1000_get_phy_id_82571(hw);
84         if (ret_val) {
85                 e_dbg("Error getting PHY ID\n");
86                 return ret_val;
87         }
88
89         /* Verify phy id */
90         switch (hw->mac.type) {
91         case e1000_82571:
92         case e1000_82572:
93                 if (phy->id != IGP01E1000_I_PHY_ID)
94                         ret_val = -E1000_ERR_PHY;
95                 break;
96         case e1000_82573:
97                 if (phy->id != M88E1111_I_PHY_ID)
98                         ret_val = -E1000_ERR_PHY;
99                 break;
100         case e1000_82574:
101         case e1000_82583:
102                 if (phy->id != BME1000_E_PHY_ID_R2)
103                         ret_val = -E1000_ERR_PHY;
104                 break;
105         default:
106                 ret_val = -E1000_ERR_PHY;
107                 break;
108         }
109
110         if (ret_val)
111                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
112
113         return ret_val;
114 }
115
116 /**
117  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
118  *  @hw: pointer to the HW structure
119  **/
120 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
121 {
122         struct e1000_nvm_info *nvm = &hw->nvm;
123         u32 eecd = er32(EECD);
124         u16 size;
125
126         nvm->opcode_bits = 8;
127         nvm->delay_usec = 1;
128         switch (nvm->override) {
129         case e1000_nvm_override_spi_large:
130                 nvm->page_size = 32;
131                 nvm->address_bits = 16;
132                 break;
133         case e1000_nvm_override_spi_small:
134                 nvm->page_size = 8;
135                 nvm->address_bits = 8;
136                 break;
137         default:
138                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
139                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
140                 break;
141         }
142
143         switch (hw->mac.type) {
144         case e1000_82573:
145         case e1000_82574:
146         case e1000_82583:
147                 if (((eecd >> 15) & 0x3) == 0x3) {
148                         nvm->type = e1000_nvm_flash_hw;
149                         nvm->word_size = 2048;
150                         /* Autonomous Flash update bit must be cleared due
151                          * to Flash update issue.
152                          */
153                         eecd &= ~E1000_EECD_AUPDEN;
154                         ew32(EECD, eecd);
155                         break;
156                 }
157                 /* Fall Through */
158         default:
159                 nvm->type = e1000_nvm_eeprom_spi;
160                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
161                              E1000_EECD_SIZE_EX_SHIFT);
162                 /* Added to a constant, "size" becomes the left-shift value
163                  * for setting word_size.
164                  */
165                 size += NVM_WORD_SIZE_BASE_SHIFT;
166
167                 /* EEPROM access above 16k is unsupported */
168                 if (size > 14)
169                         size = 14;
170                 nvm->word_size = BIT(size);
171                 break;
172         }
173
174         /* Function Pointers */
175         switch (hw->mac.type) {
176         case e1000_82574:
177         case e1000_82583:
178                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
179                 nvm->ops.release = e1000_put_hw_semaphore_82574;
180                 break;
181         default:
182                 break;
183         }
184
185         return 0;
186 }
187
188 /**
189  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
190  *  @hw: pointer to the HW structure
191  **/
192 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
193 {
194         struct e1000_mac_info *mac = &hw->mac;
195         u32 swsm = 0;
196         u32 swsm2 = 0;
197         bool force_clear_smbi = false;
198
199         /* Set media type and media-dependent function pointers */
200         switch (hw->adapter->pdev->device) {
201         case E1000_DEV_ID_82571EB_FIBER:
202         case E1000_DEV_ID_82572EI_FIBER:
203         case E1000_DEV_ID_82571EB_QUAD_FIBER:
204                 hw->phy.media_type = e1000_media_type_fiber;
205                 mac->ops.setup_physical_interface =
206                     e1000_setup_fiber_serdes_link_82571;
207                 mac->ops.check_for_link = e1000e_check_for_fiber_link;
208                 mac->ops.get_link_up_info =
209                     e1000e_get_speed_and_duplex_fiber_serdes;
210                 break;
211         case E1000_DEV_ID_82571EB_SERDES:
212         case E1000_DEV_ID_82571EB_SERDES_DUAL:
213         case E1000_DEV_ID_82571EB_SERDES_QUAD:
214         case E1000_DEV_ID_82572EI_SERDES:
215                 hw->phy.media_type = e1000_media_type_internal_serdes;
216                 mac->ops.setup_physical_interface =
217                     e1000_setup_fiber_serdes_link_82571;
218                 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
219                 mac->ops.get_link_up_info =
220                     e1000e_get_speed_and_duplex_fiber_serdes;
221                 break;
222         default:
223                 hw->phy.media_type = e1000_media_type_copper;
224                 mac->ops.setup_physical_interface =
225                     e1000_setup_copper_link_82571;
226                 mac->ops.check_for_link = e1000e_check_for_copper_link;
227                 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
228                 break;
229         }
230
231         /* Set mta register count */
232         mac->mta_reg_count = 128;
233         /* Set rar entry count */
234         mac->rar_entry_count = E1000_RAR_ENTRIES;
235         /* Adaptive IFS supported */
236         mac->adaptive_ifs = true;
237
238         /* MAC-specific function pointers */
239         switch (hw->mac.type) {
240         case e1000_82573:
241                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
242                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
243                 mac->ops.led_on = e1000e_led_on_generic;
244                 mac->ops.blink_led = e1000e_blink_led_generic;
245
246                 /* FWSM register */
247                 mac->has_fwsm = true;
248                 /* ARC supported; valid only if manageability features are
249                  * enabled.
250                  */
251                 mac->arc_subsystem_valid = !!(er32(FWSM) &
252                                               E1000_FWSM_MODE_MASK);
253                 break;
254         case e1000_82574:
255         case e1000_82583:
256                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
257                 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
258                 mac->ops.led_on = e1000_led_on_82574;
259                 break;
260         default:
261                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
262                 mac->ops.led_on = e1000e_led_on_generic;
263                 mac->ops.blink_led = e1000e_blink_led_generic;
264
265                 /* FWSM register */
266                 mac->has_fwsm = true;
267                 break;
268         }
269
270         /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
271          * first NVM or PHY access. This should be done for single-port
272          * devices, and for one port only on dual-port devices so that
273          * for those devices we can still use the SMBI lock to synchronize
274          * inter-port accesses to the PHY & NVM.
275          */
276         switch (hw->mac.type) {
277         case e1000_82571:
278         case e1000_82572:
279                 swsm2 = er32(SWSM2);
280
281                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
282                         /* Only do this for the first interface on this card */
283                         ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
284                         force_clear_smbi = true;
285                 } else {
286                         force_clear_smbi = false;
287                 }
288                 break;
289         default:
290                 force_clear_smbi = true;
291                 break;
292         }
293
294         if (force_clear_smbi) {
295                 /* Make sure SWSM.SMBI is clear */
296                 swsm = er32(SWSM);
297                 if (swsm & E1000_SWSM_SMBI) {
298                         /* This bit should not be set on a first interface, and
299                          * indicates that the bootagent or EFI code has
300                          * improperly left this bit enabled
301                          */
302                         e_dbg("Please update your 82571 Bootagent\n");
303                 }
304                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
305         }
306
307         /* Initialize device specific counter of SMBI acquisition timeouts. */
308         hw->dev_spec.e82571.smb_counter = 0;
309
310         return 0;
311 }
312
313 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
314 {
315         struct e1000_hw *hw = &adapter->hw;
316         static int global_quad_port_a;  /* global port a indication */
317         struct pci_dev *pdev = adapter->pdev;
318         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
319         s32 rc;
320
321         rc = e1000_init_mac_params_82571(hw);
322         if (rc)
323                 return rc;
324
325         rc = e1000_init_nvm_params_82571(hw);
326         if (rc)
327                 return rc;
328
329         rc = e1000_init_phy_params_82571(hw);
330         if (rc)
331                 return rc;
332
333         /* tag quad port adapters first, it's used below */
334         switch (pdev->device) {
335         case E1000_DEV_ID_82571EB_QUAD_COPPER:
336         case E1000_DEV_ID_82571EB_QUAD_FIBER:
337         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
338         case E1000_DEV_ID_82571PT_QUAD_COPPER:
339                 adapter->flags |= FLAG_IS_QUAD_PORT;
340                 /* mark the first port */
341                 if (global_quad_port_a == 0)
342                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
343                 /* Reset for multiple quad port adapters */
344                 global_quad_port_a++;
345                 if (global_quad_port_a == 4)
346                         global_quad_port_a = 0;
347                 break;
348         default:
349                 break;
350         }
351
352         switch (adapter->hw.mac.type) {
353         case e1000_82571:
354                 /* these dual ports don't have WoL on port B at all */
355                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
356                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
357                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
358                     (is_port_b))
359                         adapter->flags &= ~FLAG_HAS_WOL;
360                 /* quad ports only support WoL on port A */
361                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
362                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
363                         adapter->flags &= ~FLAG_HAS_WOL;
364                 /* Does not support WoL on any port */
365                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
366                         adapter->flags &= ~FLAG_HAS_WOL;
367                 break;
368         case e1000_82573:
369                 if (pdev->device == E1000_DEV_ID_82573L) {
370                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
371                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
372                 }
373                 break;
374         default:
375                 break;
376         }
377
378         return 0;
379 }
380
381 /**
382  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
383  *  @hw: pointer to the HW structure
384  *
385  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
386  *  revision in the hardware structure.
387  **/
388 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
389 {
390         struct e1000_phy_info *phy = &hw->phy;
391         s32 ret_val;
392         u16 phy_id = 0;
393
394         switch (hw->mac.type) {
395         case e1000_82571:
396         case e1000_82572:
397                 /* The 82571 firmware may still be configuring the PHY.
398                  * In this case, we cannot access the PHY until the
399                  * configuration is done.  So we explicitly set the
400                  * PHY ID.
401                  */
402                 phy->id = IGP01E1000_I_PHY_ID;
403                 break;
404         case e1000_82573:
405                 return e1000e_get_phy_id(hw);
406         case e1000_82574:
407         case e1000_82583:
408                 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
409                 if (ret_val)
410                         return ret_val;
411
412                 phy->id = (u32)(phy_id << 16);
413                 usleep_range(20, 40);
414                 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
415                 if (ret_val)
416                         return ret_val;
417
418                 phy->id |= (u32)(phy_id);
419                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
420                 break;
421         default:
422                 return -E1000_ERR_PHY;
423         }
424
425         return 0;
426 }
427
428 /**
429  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
430  *  @hw: pointer to the HW structure
431  *
432  *  Acquire the HW semaphore to access the PHY or NVM
433  **/
434 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
435 {
436         u32 swsm;
437         s32 sw_timeout = hw->nvm.word_size + 1;
438         s32 fw_timeout = hw->nvm.word_size + 1;
439         s32 i = 0;
440
441         /* If we have timedout 3 times on trying to acquire
442          * the inter-port SMBI semaphore, there is old code
443          * operating on the other port, and it is not
444          * releasing SMBI. Modify the number of times that
445          * we try for the semaphore to interwork with this
446          * older code.
447          */
448         if (hw->dev_spec.e82571.smb_counter > 2)
449                 sw_timeout = 1;
450
451         /* Get the SW semaphore */
452         while (i < sw_timeout) {
453                 swsm = er32(SWSM);
454                 if (!(swsm & E1000_SWSM_SMBI))
455                         break;
456
457                 usleep_range(50, 100);
458                 i++;
459         }
460
461         if (i == sw_timeout) {
462                 e_dbg("Driver can't access device - SMBI bit is set.\n");
463                 hw->dev_spec.e82571.smb_counter++;
464         }
465         /* Get the FW semaphore. */
466         for (i = 0; i < fw_timeout; i++) {
467                 swsm = er32(SWSM);
468                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
469
470                 /* Semaphore acquired if bit latched */
471                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
472                         break;
473
474                 usleep_range(50, 100);
475         }
476
477         if (i == fw_timeout) {
478                 /* Release semaphores */
479                 e1000_put_hw_semaphore_82571(hw);
480                 e_dbg("Driver can't access the NVM\n");
481                 return -E1000_ERR_NVM;
482         }
483
484         return 0;
485 }
486
487 /**
488  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
489  *  @hw: pointer to the HW structure
490  *
491  *  Release hardware semaphore used to access the PHY or NVM
492  **/
493 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
494 {
495         u32 swsm;
496
497         swsm = er32(SWSM);
498         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
499         ew32(SWSM, swsm);
500 }
501
502 /**
503  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
504  *  @hw: pointer to the HW structure
505  *
506  *  Acquire the HW semaphore during reset.
507  *
508  **/
509 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
510 {
511         u32 extcnf_ctrl;
512         s32 i = 0;
513
514         extcnf_ctrl = er32(EXTCNF_CTRL);
515         do {
516                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
517                 ew32(EXTCNF_CTRL, extcnf_ctrl);
518                 extcnf_ctrl = er32(EXTCNF_CTRL);
519
520                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
521                         break;
522
523                 usleep_range(2000, 4000);
524                 i++;
525         } while (i < MDIO_OWNERSHIP_TIMEOUT);
526
527         if (i == MDIO_OWNERSHIP_TIMEOUT) {
528                 /* Release semaphores */
529                 e1000_put_hw_semaphore_82573(hw);
530                 e_dbg("Driver can't access the PHY\n");
531                 return -E1000_ERR_PHY;
532         }
533
534         return 0;
535 }
536
537 /**
538  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
539  *  @hw: pointer to the HW structure
540  *
541  *  Release hardware semaphore used during reset.
542  *
543  **/
544 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
545 {
546         u32 extcnf_ctrl;
547
548         extcnf_ctrl = er32(EXTCNF_CTRL);
549         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
550         ew32(EXTCNF_CTRL, extcnf_ctrl);
551 }
552
553 static DEFINE_MUTEX(swflag_mutex);
554
555 /**
556  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
557  *  @hw: pointer to the HW structure
558  *
559  *  Acquire the HW semaphore to access the PHY or NVM.
560  *
561  **/
562 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
563 {
564         s32 ret_val;
565
566         mutex_lock(&swflag_mutex);
567         ret_val = e1000_get_hw_semaphore_82573(hw);
568         if (ret_val)
569                 mutex_unlock(&swflag_mutex);
570         return ret_val;
571 }
572
573 /**
574  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
575  *  @hw: pointer to the HW structure
576  *
577  *  Release hardware semaphore used to access the PHY or NVM
578  *
579  **/
580 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
581 {
582         e1000_put_hw_semaphore_82573(hw);
583         mutex_unlock(&swflag_mutex);
584 }
585
586 /**
587  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
588  *  @hw: pointer to the HW structure
589  *  @active: true to enable LPLU, false to disable
590  *
591  *  Sets the LPLU D0 state according to the active flag.
592  *  LPLU will not be activated unless the
593  *  device autonegotiation advertisement meets standards of
594  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
595  *  This is a function pointer entry point only called by
596  *  PHY setup routines.
597  **/
598 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
599 {
600         u32 data = er32(POEMB);
601
602         if (active)
603                 data |= E1000_PHY_CTRL_D0A_LPLU;
604         else
605                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
606
607         ew32(POEMB, data);
608         return 0;
609 }
610
611 /**
612  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
613  *  @hw: pointer to the HW structure
614  *  @active: boolean used to enable/disable lplu
615  *
616  *  The low power link up (lplu) state is set to the power management level D3
617  *  when active is true, else clear lplu for D3. LPLU
618  *  is used during Dx states where the power conservation is most important.
619  *  During driver activity, SmartSpeed should be enabled so performance is
620  *  maintained.
621  **/
622 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
623 {
624         u32 data = er32(POEMB);
625
626         if (!active) {
627                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
628         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
629                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
630                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
631                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
632         }
633
634         ew32(POEMB, data);
635         return 0;
636 }
637
638 /**
639  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
640  *  @hw: pointer to the HW structure
641  *
642  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
643  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
644  *  for EEPROM access grant bit.  If the access grant bit is not set, release
645  *  hardware semaphore.
646  **/
647 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
648 {
649         s32 ret_val;
650
651         ret_val = e1000_get_hw_semaphore_82571(hw);
652         if (ret_val)
653                 return ret_val;
654
655         switch (hw->mac.type) {
656         case e1000_82573:
657                 break;
658         default:
659                 ret_val = e1000e_acquire_nvm(hw);
660                 break;
661         }
662
663         if (ret_val)
664                 e1000_put_hw_semaphore_82571(hw);
665
666         return ret_val;
667 }
668
669 /**
670  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
671  *  @hw: pointer to the HW structure
672  *
673  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
674  **/
675 static void e1000_release_nvm_82571(struct e1000_hw *hw)
676 {
677         e1000e_release_nvm(hw);
678         e1000_put_hw_semaphore_82571(hw);
679 }
680
681 /**
682  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
683  *  @hw: pointer to the HW structure
684  *  @offset: offset within the EEPROM to be written to
685  *  @words: number of words to write
686  *  @data: 16 bit word(s) to be written to the EEPROM
687  *
688  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
689  *
690  *  If e1000e_update_nvm_checksum is not called after this function, the
691  *  EEPROM will most likely contain an invalid checksum.
692  **/
693 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
694                                  u16 *data)
695 {
696         s32 ret_val;
697
698         switch (hw->mac.type) {
699         case e1000_82573:
700         case e1000_82574:
701         case e1000_82583:
702                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
703                 break;
704         case e1000_82571:
705         case e1000_82572:
706                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
707                 break;
708         default:
709                 ret_val = -E1000_ERR_NVM;
710                 break;
711         }
712
713         return ret_val;
714 }
715
716 /**
717  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
718  *  @hw: pointer to the HW structure
719  *
720  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
721  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
722  *  value to the EEPROM.
723  **/
724 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
725 {
726         u32 eecd;
727         s32 ret_val;
728         u16 i;
729
730         ret_val = e1000e_update_nvm_checksum_generic(hw);
731         if (ret_val)
732                 return ret_val;
733
734         /* If our nvm is an EEPROM, then we're done
735          * otherwise, commit the checksum to the flash NVM.
736          */
737         if (hw->nvm.type != e1000_nvm_flash_hw)
738                 return 0;
739
740         /* Check for pending operations. */
741         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
742                 usleep_range(1000, 2000);
743                 if (!(er32(EECD) & E1000_EECD_FLUPD))
744                         break;
745         }
746
747         if (i == E1000_FLASH_UPDATES)
748                 return -E1000_ERR_NVM;
749
750         /* Reset the firmware if using STM opcode. */
751         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
752                 /* The enabling of and the actual reset must be done
753                  * in two write cycles.
754                  */
755                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
756                 e1e_flush();
757                 ew32(HICR, E1000_HICR_FW_RESET);
758         }
759
760         /* Commit the write to flash */
761         eecd = er32(EECD) | E1000_EECD_FLUPD;
762         ew32(EECD, eecd);
763
764         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
765                 usleep_range(1000, 2000);
766                 if (!(er32(EECD) & E1000_EECD_FLUPD))
767                         break;
768         }
769
770         if (i == E1000_FLASH_UPDATES)
771                 return -E1000_ERR_NVM;
772
773         return 0;
774 }
775
776 /**
777  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
778  *  @hw: pointer to the HW structure
779  *
780  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
781  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
782  **/
783 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
784 {
785         if (hw->nvm.type == e1000_nvm_flash_hw)
786                 e1000_fix_nvm_checksum_82571(hw);
787
788         return e1000e_validate_nvm_checksum_generic(hw);
789 }
790
791 /**
792  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
793  *  @hw: pointer to the HW structure
794  *  @offset: offset within the EEPROM to be written to
795  *  @words: number of words to write
796  *  @data: 16 bit word(s) to be written to the EEPROM
797  *
798  *  After checking for invalid values, poll the EEPROM to ensure the previous
799  *  command has completed before trying to write the next word.  After write
800  *  poll for completion.
801  *
802  *  If e1000e_update_nvm_checksum is not called after this function, the
803  *  EEPROM will most likely contain an invalid checksum.
804  **/
805 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
806                                       u16 words, u16 *data)
807 {
808         struct e1000_nvm_info *nvm = &hw->nvm;
809         u32 i, eewr = 0;
810         s32 ret_val = 0;
811
812         /* A check for invalid values:  offset too large, too many words,
813          * and not enough words.
814          */
815         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
816             (words == 0)) {
817                 e_dbg("nvm parameter(s) out of bounds\n");
818                 return -E1000_ERR_NVM;
819         }
820
821         for (i = 0; i < words; i++) {
822                 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
823                         ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
824                         E1000_NVM_RW_REG_START);
825
826                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
827                 if (ret_val)
828                         break;
829
830                 ew32(EEWR, eewr);
831
832                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
833                 if (ret_val)
834                         break;
835         }
836
837         return ret_val;
838 }
839
840 /**
841  *  e1000_get_cfg_done_82571 - Poll for configuration done
842  *  @hw: pointer to the HW structure
843  *
844  *  Reads the management control register for the config done bit to be set.
845  **/
846 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
847 {
848         s32 timeout = PHY_CFG_TIMEOUT;
849
850         while (timeout) {
851                 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
852                         break;
853                 usleep_range(1000, 2000);
854                 timeout--;
855         }
856         if (!timeout) {
857                 e_dbg("MNG configuration cycle has not completed.\n");
858                 return -E1000_ERR_RESET;
859         }
860
861         return 0;
862 }
863
864 /**
865  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
866  *  @hw: pointer to the HW structure
867  *  @active: true to enable LPLU, false to disable
868  *
869  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
870  *  this function also disables smart speed and vice versa.  LPLU will not be
871  *  activated unless the device autonegotiation advertisement meets standards
872  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
873  *  pointer entry point only called by PHY setup routines.
874  **/
875 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
876 {
877         struct e1000_phy_info *phy = &hw->phy;
878         s32 ret_val;
879         u16 data;
880
881         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
882         if (ret_val)
883                 return ret_val;
884
885         if (active) {
886                 data |= IGP02E1000_PM_D0_LPLU;
887                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
888                 if (ret_val)
889                         return ret_val;
890
891                 /* When LPLU is enabled, we should disable SmartSpeed */
892                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
893                 if (ret_val)
894                         return ret_val;
895                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
896                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
897                 if (ret_val)
898                         return ret_val;
899         } else {
900                 data &= ~IGP02E1000_PM_D0_LPLU;
901                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
902                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
903                  * during Dx states where the power conservation is most
904                  * important.  During driver activity we should enable
905                  * SmartSpeed, so performance is maintained.
906                  */
907                 if (phy->smart_speed == e1000_smart_speed_on) {
908                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
909                                            &data);
910                         if (ret_val)
911                                 return ret_val;
912
913                         data |= IGP01E1000_PSCFR_SMART_SPEED;
914                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
915                                            data);
916                         if (ret_val)
917                                 return ret_val;
918                 } else if (phy->smart_speed == e1000_smart_speed_off) {
919                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
920                                            &data);
921                         if (ret_val)
922                                 return ret_val;
923
924                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
925                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
926                                            data);
927                         if (ret_val)
928                                 return ret_val;
929                 }
930         }
931
932         return 0;
933 }
934
935 /**
936  *  e1000_reset_hw_82571 - Reset hardware
937  *  @hw: pointer to the HW structure
938  *
939  *  This resets the hardware into a known state.
940  **/
941 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
942 {
943         u32 ctrl, ctrl_ext, eecd, tctl;
944         s32 ret_val;
945
946         /* Prevent the PCI-E bus from sticking if there is no TLP connection
947          * on the last TLP read/write transaction when MAC is reset.
948          */
949         ret_val = e1000e_disable_pcie_master(hw);
950         if (ret_val)
951                 e_dbg("PCI-E Master disable polling has failed.\n");
952
953         e_dbg("Masking off all interrupts\n");
954         ew32(IMC, 0xffffffff);
955
956         ew32(RCTL, 0);
957         tctl = er32(TCTL);
958         tctl &= ~E1000_TCTL_EN;
959         ew32(TCTL, tctl);
960         e1e_flush();
961
962         usleep_range(10000, 11000);
963
964         /* Must acquire the MDIO ownership before MAC reset.
965          * Ownership defaults to firmware after a reset.
966          */
967         switch (hw->mac.type) {
968         case e1000_82573:
969                 ret_val = e1000_get_hw_semaphore_82573(hw);
970                 break;
971         case e1000_82574:
972         case e1000_82583:
973                 ret_val = e1000_get_hw_semaphore_82574(hw);
974                 break;
975         default:
976                 break;
977         }
978
979         ctrl = er32(CTRL);
980
981         e_dbg("Issuing a global reset to MAC\n");
982         ew32(CTRL, ctrl | E1000_CTRL_RST);
983
984         /* Must release MDIO ownership and mutex after MAC reset. */
985         switch (hw->mac.type) {
986         case e1000_82573:
987                 /* Release mutex only if the hw semaphore is acquired */
988                 if (!ret_val)
989                         e1000_put_hw_semaphore_82573(hw);
990                 break;
991         case e1000_82574:
992         case e1000_82583:
993                 /* Release mutex only if the hw semaphore is acquired */
994                 if (!ret_val)
995                         e1000_put_hw_semaphore_82574(hw);
996                 break;
997         default:
998                 break;
999         }
1000
1001         if (hw->nvm.type == e1000_nvm_flash_hw) {
1002                 usleep_range(10, 20);
1003                 ctrl_ext = er32(CTRL_EXT);
1004                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1005                 ew32(CTRL_EXT, ctrl_ext);
1006                 e1e_flush();
1007         }
1008
1009         ret_val = e1000e_get_auto_rd_done(hw);
1010         if (ret_val)
1011                 /* We don't want to continue accessing MAC registers. */
1012                 return ret_val;
1013
1014         /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1015          * Need to wait for Phy configuration completion before accessing
1016          * NVM and Phy.
1017          */
1018
1019         switch (hw->mac.type) {
1020         case e1000_82571:
1021         case e1000_82572:
1022                 /* REQ and GNT bits need to be cleared when using AUTO_RD
1023                  * to access the EEPROM.
1024                  */
1025                 eecd = er32(EECD);
1026                 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1027                 ew32(EECD, eecd);
1028                 break;
1029         case e1000_82573:
1030         case e1000_82574:
1031         case e1000_82583:
1032                 msleep(25);
1033                 break;
1034         default:
1035                 break;
1036         }
1037
1038         /* Clear any pending interrupt events. */
1039         ew32(IMC, 0xffffffff);
1040         er32(ICR);
1041
1042         if (hw->mac.type == e1000_82571) {
1043                 /* Install any alternate MAC address into RAR0 */
1044                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1045                 if (ret_val)
1046                         return ret_val;
1047
1048                 e1000e_set_laa_state_82571(hw, true);
1049         }
1050
1051         /* Reinitialize the 82571 serdes link state machine */
1052         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1053                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1054
1055         return 0;
1056 }
1057
1058 /**
1059  *  e1000_init_hw_82571 - Initialize hardware
1060  *  @hw: pointer to the HW structure
1061  *
1062  *  This inits the hardware readying it for operation.
1063  **/
1064 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1065 {
1066         struct e1000_mac_info *mac = &hw->mac;
1067         u32 reg_data;
1068         s32 ret_val;
1069         u16 i, rar_count = mac->rar_entry_count;
1070
1071         e1000_initialize_hw_bits_82571(hw);
1072
1073         /* Initialize identification LED */
1074         ret_val = mac->ops.id_led_init(hw);
1075         /* An error is not fatal and we should not stop init due to this */
1076         if (ret_val)
1077                 e_dbg("Error initializing identification LED\n");
1078
1079         /* Disabling VLAN filtering */
1080         e_dbg("Initializing the IEEE VLAN\n");
1081         mac->ops.clear_vfta(hw);
1082
1083         /* Setup the receive address.
1084          * If, however, a locally administered address was assigned to the
1085          * 82571, we must reserve a RAR for it to work around an issue where
1086          * resetting one port will reload the MAC on the other port.
1087          */
1088         if (e1000e_get_laa_state_82571(hw))
1089                 rar_count--;
1090         e1000e_init_rx_addrs(hw, rar_count);
1091
1092         /* Zero out the Multicast HASH table */
1093         e_dbg("Zeroing the MTA\n");
1094         for (i = 0; i < mac->mta_reg_count; i++)
1095                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1096
1097         /* Setup link and flow control */
1098         ret_val = mac->ops.setup_link(hw);
1099
1100         /* Set the transmit descriptor write-back policy */
1101         reg_data = er32(TXDCTL(0));
1102         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1103                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1104         ew32(TXDCTL(0), reg_data);
1105
1106         /* ...for both queues. */
1107         switch (mac->type) {
1108         case e1000_82573:
1109                 e1000e_enable_tx_pkt_filtering(hw);
1110                 /* fall through */
1111         case e1000_82574:
1112         case e1000_82583:
1113                 reg_data = er32(GCR);
1114                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1115                 ew32(GCR, reg_data);
1116                 break;
1117         default:
1118                 reg_data = er32(TXDCTL(1));
1119                 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1120                             E1000_TXDCTL_FULL_TX_DESC_WB |
1121                             E1000_TXDCTL_COUNT_DESC);
1122                 ew32(TXDCTL(1), reg_data);
1123                 break;
1124         }
1125
1126         /* Clear all of the statistics registers (clear on read).  It is
1127          * important that we do this after we have tried to establish link
1128          * because the symbol error count will increment wildly if there
1129          * is no link.
1130          */
1131         e1000_clear_hw_cntrs_82571(hw);
1132
1133         return ret_val;
1134 }
1135
1136 /**
1137  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1138  *  @hw: pointer to the HW structure
1139  *
1140  *  Initializes required hardware-dependent bits needed for normal operation.
1141  **/
1142 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1143 {
1144         u32 reg;
1145
1146         /* Transmit Descriptor Control 0 */
1147         reg = er32(TXDCTL(0));
1148         reg |= BIT(22);
1149         ew32(TXDCTL(0), reg);
1150
1151         /* Transmit Descriptor Control 1 */
1152         reg = er32(TXDCTL(1));
1153         reg |= BIT(22);
1154         ew32(TXDCTL(1), reg);
1155
1156         /* Transmit Arbitration Control 0 */
1157         reg = er32(TARC(0));
1158         reg &= ~(0xF << 27);    /* 30:27 */
1159         switch (hw->mac.type) {
1160         case e1000_82571:
1161         case e1000_82572:
1162                 reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1163                 break;
1164         case e1000_82574:
1165         case e1000_82583:
1166                 reg |= BIT(26);
1167                 break;
1168         default:
1169                 break;
1170         }
1171         ew32(TARC(0), reg);
1172
1173         /* Transmit Arbitration Control 1 */
1174         reg = er32(TARC(1));
1175         switch (hw->mac.type) {
1176         case e1000_82571:
1177         case e1000_82572:
1178                 reg &= ~(BIT(29) | BIT(30));
1179                 reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1180                 if (er32(TCTL) & E1000_TCTL_MULR)
1181                         reg &= ~BIT(28);
1182                 else
1183                         reg |= BIT(28);
1184                 ew32(TARC(1), reg);
1185                 break;
1186         default:
1187                 break;
1188         }
1189
1190         /* Device Control */
1191         switch (hw->mac.type) {
1192         case e1000_82573:
1193         case e1000_82574:
1194         case e1000_82583:
1195                 reg = er32(CTRL);
1196                 reg &= ~BIT(29);
1197                 ew32(CTRL, reg);
1198                 break;
1199         default:
1200                 break;
1201         }
1202
1203         /* Extended Device Control */
1204         switch (hw->mac.type) {
1205         case e1000_82573:
1206         case e1000_82574:
1207         case e1000_82583:
1208                 reg = er32(CTRL_EXT);
1209                 reg &= ~BIT(23);
1210                 reg |= BIT(22);
1211                 ew32(CTRL_EXT, reg);
1212                 break;
1213         default:
1214                 break;
1215         }
1216
1217         if (hw->mac.type == e1000_82571) {
1218                 reg = er32(PBA_ECC);
1219                 reg |= E1000_PBA_ECC_CORR_EN;
1220                 ew32(PBA_ECC, reg);
1221         }
1222
1223         /* Workaround for hardware errata.
1224          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1225          */
1226         if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1227                 reg = er32(CTRL_EXT);
1228                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1229                 ew32(CTRL_EXT, reg);
1230         }
1231
1232         /* Disable IPv6 extension header parsing because some malformed
1233          * IPv6 headers can hang the Rx.
1234          */
1235         if (hw->mac.type <= e1000_82573) {
1236                 reg = er32(RFCTL);
1237                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1238                 ew32(RFCTL, reg);
1239         }
1240
1241         /* PCI-Ex Control Registers */
1242         switch (hw->mac.type) {
1243         case e1000_82574:
1244         case e1000_82583:
1245                 reg = er32(GCR);
1246                 reg |= BIT(22);
1247                 ew32(GCR, reg);
1248
1249                 /* Workaround for hardware errata.
1250                  * apply workaround for hardware errata documented in errata
1251                  * docs Fixes issue where some error prone or unreliable PCIe
1252                  * completions are occurring, particularly with ASPM enabled.
1253                  * Without fix, issue can cause Tx timeouts.
1254                  */
1255                 reg = er32(GCR2);
1256                 reg |= 1;
1257                 ew32(GCR2, reg);
1258                 break;
1259         default:
1260                 break;
1261         }
1262 }
1263
1264 /**
1265  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1266  *  @hw: pointer to the HW structure
1267  *
1268  *  Clears the register array which contains the VLAN filter table by
1269  *  setting all the values to 0.
1270  **/
1271 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1272 {
1273         u32 offset;
1274         u32 vfta_value = 0;
1275         u32 vfta_offset = 0;
1276         u32 vfta_bit_in_reg = 0;
1277
1278         switch (hw->mac.type) {
1279         case e1000_82573:
1280         case e1000_82574:
1281         case e1000_82583:
1282                 if (hw->mng_cookie.vlan_id != 0) {
1283                         /* The VFTA is a 4096b bit-field, each identifying
1284                          * a single VLAN ID.  The following operations
1285                          * determine which 32b entry (i.e. offset) into the
1286                          * array we want to set the VLAN ID (i.e. bit) of
1287                          * the manageability unit.
1288                          */
1289                         vfta_offset = (hw->mng_cookie.vlan_id >>
1290                                        E1000_VFTA_ENTRY_SHIFT) &
1291                             E1000_VFTA_ENTRY_MASK;
1292                         vfta_bit_in_reg =
1293                             BIT(hw->mng_cookie.vlan_id &
1294                                 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1295                 }
1296                 break;
1297         default:
1298                 break;
1299         }
1300         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1301                 /* If the offset we want to clear is the same offset of the
1302                  * manageability VLAN ID, then clear all bits except that of
1303                  * the manageability unit.
1304                  */
1305                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1306                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1307                 e1e_flush();
1308         }
1309 }
1310
1311 /**
1312  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1313  *  @hw: pointer to the HW structure
1314  *
1315  *  Reads the NVM Initialization Control Word 2 and returns true
1316  *  (>0) if any manageability is enabled, else false (0).
1317  **/
1318 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1319 {
1320         u16 data;
1321
1322         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1323         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1324 }
1325
1326 /**
1327  *  e1000_led_on_82574 - Turn LED on
1328  *  @hw: pointer to the HW structure
1329  *
1330  *  Turn LED on.
1331  **/
1332 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1333 {
1334         u32 ctrl;
1335         u32 i;
1336
1337         ctrl = hw->mac.ledctl_mode2;
1338         if (!(E1000_STATUS_LU & er32(STATUS))) {
1339                 /* If no link, then turn LED on by setting the invert bit
1340                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1341                  */
1342                 for (i = 0; i < 4; i++)
1343                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1344                             E1000_LEDCTL_MODE_LED_ON)
1345                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1346         }
1347         ew32(LEDCTL, ctrl);
1348
1349         return 0;
1350 }
1351
1352 /**
1353  *  e1000_check_phy_82574 - check 82574 phy hung state
1354  *  @hw: pointer to the HW structure
1355  *
1356  *  Returns whether phy is hung or not
1357  **/
1358 bool e1000_check_phy_82574(struct e1000_hw *hw)
1359 {
1360         u16 status_1kbt = 0;
1361         u16 receive_errors = 0;
1362         s32 ret_val;
1363
1364         /* Read PHY Receive Error counter first, if its is max - all F's then
1365          * read the Base1000T status register If both are max then PHY is hung.
1366          */
1367         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1368         if (ret_val)
1369                 return false;
1370         if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1371                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1372                 if (ret_val)
1373                         return false;
1374                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1375                     E1000_IDLE_ERROR_COUNT_MASK)
1376                         return true;
1377         }
1378
1379         return false;
1380 }
1381
1382 /**
1383  *  e1000_setup_link_82571 - Setup flow control and link settings
1384  *  @hw: pointer to the HW structure
1385  *
1386  *  Determines which flow control settings to use, then configures flow
1387  *  control.  Calls the appropriate media-specific link configuration
1388  *  function.  Assuming the adapter has a valid link partner, a valid link
1389  *  should be established.  Assumes the hardware has previously been reset
1390  *  and the transmitter and receiver are not enabled.
1391  **/
1392 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1393 {
1394         /* 82573 does not have a word in the NVM to determine
1395          * the default flow control setting, so we explicitly
1396          * set it to full.
1397          */
1398         switch (hw->mac.type) {
1399         case e1000_82573:
1400         case e1000_82574:
1401         case e1000_82583:
1402                 if (hw->fc.requested_mode == e1000_fc_default)
1403                         hw->fc.requested_mode = e1000_fc_full;
1404                 break;
1405         default:
1406                 break;
1407         }
1408
1409         return e1000e_setup_link_generic(hw);
1410 }
1411
1412 /**
1413  *  e1000_setup_copper_link_82571 - Configure copper link settings
1414  *  @hw: pointer to the HW structure
1415  *
1416  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1417  *  for link, once link is established calls to configure collision distance
1418  *  and flow control are called.
1419  **/
1420 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1421 {
1422         u32 ctrl;
1423         s32 ret_val;
1424
1425         ctrl = er32(CTRL);
1426         ctrl |= E1000_CTRL_SLU;
1427         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1428         ew32(CTRL, ctrl);
1429
1430         switch (hw->phy.type) {
1431         case e1000_phy_m88:
1432         case e1000_phy_bm:
1433                 ret_val = e1000e_copper_link_setup_m88(hw);
1434                 break;
1435         case e1000_phy_igp_2:
1436                 ret_val = e1000e_copper_link_setup_igp(hw);
1437                 break;
1438         default:
1439                 return -E1000_ERR_PHY;
1440         }
1441
1442         if (ret_val)
1443                 return ret_val;
1444
1445         return e1000e_setup_copper_link(hw);
1446 }
1447
1448 /**
1449  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1450  *  @hw: pointer to the HW structure
1451  *
1452  *  Configures collision distance and flow control for fiber and serdes links.
1453  *  Upon successful setup, poll for link.
1454  **/
1455 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1456 {
1457         switch (hw->mac.type) {
1458         case e1000_82571:
1459         case e1000_82572:
1460                 /* If SerDes loopback mode is entered, there is no form
1461                  * of reset to take the adapter out of that mode.  So we
1462                  * have to explicitly take the adapter out of loopback
1463                  * mode.  This prevents drivers from twiddling their thumbs
1464                  * if another tool failed to take it out of loopback mode.
1465                  */
1466                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1467                 break;
1468         default:
1469                 break;
1470         }
1471
1472         return e1000e_setup_fiber_serdes_link(hw);
1473 }
1474
1475 /**
1476  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1477  *  @hw: pointer to the HW structure
1478  *
1479  *  Reports the link state as up or down.
1480  *
1481  *  If autonegotiation is supported by the link partner, the link state is
1482  *  determined by the result of autonegotiation. This is the most likely case.
1483  *  If autonegotiation is not supported by the link partner, and the link
1484  *  has a valid signal, force the link up.
1485  *
1486  *  The link state is represented internally here by 4 states:
1487  *
1488  *  1) down
1489  *  2) autoneg_progress
1490  *  3) autoneg_complete (the link successfully autonegotiated)
1491  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1492  *
1493  **/
1494 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1495 {
1496         struct e1000_mac_info *mac = &hw->mac;
1497         u32 rxcw;
1498         u32 ctrl;
1499         u32 status;
1500         u32 txcw;
1501         u32 i;
1502         s32 ret_val = 0;
1503
1504         ctrl = er32(CTRL);
1505         status = er32(STATUS);
1506         er32(RXCW);
1507         /* SYNCH bit and IV bit are sticky */
1508         usleep_range(10, 20);
1509         rxcw = er32(RXCW);
1510
1511         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1512                 /* Receiver is synchronized with no invalid bits.  */
1513                 switch (mac->serdes_link_state) {
1514                 case e1000_serdes_link_autoneg_complete:
1515                         if (!(status & E1000_STATUS_LU)) {
1516                                 /* We have lost link, retry autoneg before
1517                                  * reporting link failure
1518                                  */
1519                                 mac->serdes_link_state =
1520                                     e1000_serdes_link_autoneg_progress;
1521                                 mac->serdes_has_link = false;
1522                                 e_dbg("AN_UP     -> AN_PROG\n");
1523                         } else {
1524                                 mac->serdes_has_link = true;
1525                         }
1526                         break;
1527
1528                 case e1000_serdes_link_forced_up:
1529                         /* If we are receiving /C/ ordered sets, re-enable
1530                          * auto-negotiation in the TXCW register and disable
1531                          * forced link in the Device Control register in an
1532                          * attempt to auto-negotiate with our link partner.
1533                          */
1534                         if (rxcw & E1000_RXCW_C) {
1535                                 /* Enable autoneg, and unforce link up */
1536                                 ew32(TXCW, mac->txcw);
1537                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1538                                 mac->serdes_link_state =
1539                                     e1000_serdes_link_autoneg_progress;
1540                                 mac->serdes_has_link = false;
1541                                 e_dbg("FORCED_UP -> AN_PROG\n");
1542                         } else {
1543                                 mac->serdes_has_link = true;
1544                         }
1545                         break;
1546
1547                 case e1000_serdes_link_autoneg_progress:
1548                         if (rxcw & E1000_RXCW_C) {
1549                                 /* We received /C/ ordered sets, meaning the
1550                                  * link partner has autonegotiated, and we can
1551                                  * trust the Link Up (LU) status bit.
1552                                  */
1553                                 if (status & E1000_STATUS_LU) {
1554                                         mac->serdes_link_state =
1555                                             e1000_serdes_link_autoneg_complete;
1556                                         e_dbg("AN_PROG   -> AN_UP\n");
1557                                         mac->serdes_has_link = true;
1558                                 } else {
1559                                         /* Autoneg completed, but failed. */
1560                                         mac->serdes_link_state =
1561                                             e1000_serdes_link_down;
1562                                         e_dbg("AN_PROG   -> DOWN\n");
1563                                 }
1564                         } else {
1565                                 /* The link partner did not autoneg.
1566                                  * Force link up and full duplex, and change
1567                                  * state to forced.
1568                                  */
1569                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1570                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1571                                 ew32(CTRL, ctrl);
1572
1573                                 /* Configure Flow Control after link up. */
1574                                 ret_val = e1000e_config_fc_after_link_up(hw);
1575                                 if (ret_val) {
1576                                         e_dbg("Error config flow control\n");
1577                                         break;
1578                                 }
1579                                 mac->serdes_link_state =
1580                                     e1000_serdes_link_forced_up;
1581                                 mac->serdes_has_link = true;
1582                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1583                         }
1584                         break;
1585
1586                 case e1000_serdes_link_down:
1587                 default:
1588                         /* The link was down but the receiver has now gained
1589                          * valid sync, so lets see if we can bring the link
1590                          * up.
1591                          */
1592                         ew32(TXCW, mac->txcw);
1593                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1594                         mac->serdes_link_state =
1595                             e1000_serdes_link_autoneg_progress;
1596                         mac->serdes_has_link = false;
1597                         e_dbg("DOWN      -> AN_PROG\n");
1598                         break;
1599                 }
1600         } else {
1601                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1602                         mac->serdes_has_link = false;
1603                         mac->serdes_link_state = e1000_serdes_link_down;
1604                         e_dbg("ANYSTATE  -> DOWN\n");
1605                 } else {
1606                         /* Check several times, if SYNCH bit and CONFIG
1607                          * bit both are consistently 1 then simply ignore
1608                          * the IV bit and restart Autoneg
1609                          */
1610                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1611                                 usleep_range(10, 20);
1612                                 rxcw = er32(RXCW);
1613                                 if ((rxcw & E1000_RXCW_SYNCH) &&
1614                                     (rxcw & E1000_RXCW_C))
1615                                         continue;
1616
1617                                 if (rxcw & E1000_RXCW_IV) {
1618                                         mac->serdes_has_link = false;
1619                                         mac->serdes_link_state =
1620                                             e1000_serdes_link_down;
1621                                         e_dbg("ANYSTATE  -> DOWN\n");
1622                                         break;
1623                                 }
1624                         }
1625
1626                         if (i == AN_RETRY_COUNT) {
1627                                 txcw = er32(TXCW);
1628                                 txcw |= E1000_TXCW_ANE;
1629                                 ew32(TXCW, txcw);
1630                                 mac->serdes_link_state =
1631                                     e1000_serdes_link_autoneg_progress;
1632                                 mac->serdes_has_link = false;
1633                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1634                         }
1635                 }
1636         }
1637
1638         return ret_val;
1639 }
1640
1641 /**
1642  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1643  *  @hw: pointer to the HW structure
1644  *  @data: pointer to the NVM (EEPROM)
1645  *
1646  *  Read the EEPROM for the current default LED configuration.  If the
1647  *  LED configuration is not valid, set to a valid LED configuration.
1648  **/
1649 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1650 {
1651         s32 ret_val;
1652
1653         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1654         if (ret_val) {
1655                 e_dbg("NVM Read Error\n");
1656                 return ret_val;
1657         }
1658
1659         switch (hw->mac.type) {
1660         case e1000_82573:
1661         case e1000_82574:
1662         case e1000_82583:
1663                 if (*data == ID_LED_RESERVED_F746)
1664                         *data = ID_LED_DEFAULT_82573;
1665                 break;
1666         default:
1667                 if (*data == ID_LED_RESERVED_0000 ||
1668                     *data == ID_LED_RESERVED_FFFF)
1669                         *data = ID_LED_DEFAULT;
1670                 break;
1671         }
1672
1673         return 0;
1674 }
1675
1676 /**
1677  *  e1000e_get_laa_state_82571 - Get locally administered address state
1678  *  @hw: pointer to the HW structure
1679  *
1680  *  Retrieve and return the current locally administered address state.
1681  **/
1682 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1683 {
1684         if (hw->mac.type != e1000_82571)
1685                 return false;
1686
1687         return hw->dev_spec.e82571.laa_is_present;
1688 }
1689
1690 /**
1691  *  e1000e_set_laa_state_82571 - Set locally administered address state
1692  *  @hw: pointer to the HW structure
1693  *  @state: enable/disable locally administered address
1694  *
1695  *  Enable/Disable the current locally administered address state.
1696  **/
1697 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1698 {
1699         if (hw->mac.type != e1000_82571)
1700                 return;
1701
1702         hw->dev_spec.e82571.laa_is_present = state;
1703
1704         /* If workaround is activated... */
1705         if (state)
1706                 /* Hold a copy of the LAA in RAR[14] This is done so that
1707                  * between the time RAR[0] gets clobbered and the time it
1708                  * gets fixed, the actual LAA is in one of the RARs and no
1709                  * incoming packets directed to this port are dropped.
1710                  * Eventually the LAA will be in RAR[0] and RAR[14].
1711                  */
1712                 hw->mac.ops.rar_set(hw, hw->mac.addr,
1713                                     hw->mac.rar_entry_count - 1);
1714 }
1715
1716 /**
1717  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1718  *  @hw: pointer to the HW structure
1719  *
1720  *  Verifies that the EEPROM has completed the update.  After updating the
1721  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1722  *  the checksum fix is not implemented, we need to set the bit and update
1723  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1724  *  we need to return bad checksum.
1725  **/
1726 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1727 {
1728         struct e1000_nvm_info *nvm = &hw->nvm;
1729         s32 ret_val;
1730         u16 data;
1731
1732         if (nvm->type != e1000_nvm_flash_hw)
1733                 return 0;
1734
1735         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1736          * 10h-12h.  Checksum may need to be fixed.
1737          */
1738         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1739         if (ret_val)
1740                 return ret_val;
1741
1742         if (!(data & 0x10)) {
1743                 /* Read 0x23 and check bit 15.  This bit is a 1
1744                  * when the checksum has already been fixed.  If
1745                  * the checksum is still wrong and this bit is a
1746                  * 1, we need to return bad checksum.  Otherwise,
1747                  * we need to set this bit to a 1 and update the
1748                  * checksum.
1749                  */
1750                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1751                 if (ret_val)
1752                         return ret_val;
1753
1754                 if (!(data & 0x8000)) {
1755                         data |= 0x8000;
1756                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1757                         if (ret_val)
1758                                 return ret_val;
1759                         ret_val = e1000e_update_nvm_checksum(hw);
1760                         if (ret_val)
1761                                 return ret_val;
1762                 }
1763         }
1764
1765         return 0;
1766 }
1767
1768 /**
1769  *  e1000_read_mac_addr_82571 - Read device MAC address
1770  *  @hw: pointer to the HW structure
1771  **/
1772 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1773 {
1774         if (hw->mac.type == e1000_82571) {
1775                 s32 ret_val;
1776
1777                 /* If there's an alternate MAC address place it in RAR0
1778                  * so that it will override the Si installed default perm
1779                  * address.
1780                  */
1781                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1782                 if (ret_val)
1783                         return ret_val;
1784         }
1785
1786         return e1000_read_mac_addr_generic(hw);
1787 }
1788
1789 /**
1790  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1791  * @hw: pointer to the HW structure
1792  *
1793  * In the case of a PHY power down to save power, or to turn off link during a
1794  * driver unload, or wake on lan is not enabled, remove the link.
1795  **/
1796 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1797 {
1798         struct e1000_phy_info *phy = &hw->phy;
1799         struct e1000_mac_info *mac = &hw->mac;
1800
1801         if (!phy->ops.check_reset_block)
1802                 return;
1803
1804         /* If the management interface is not enabled, then power down */
1805         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1806                 e1000_power_down_phy_copper(hw);
1807 }
1808
1809 /**
1810  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1811  *  @hw: pointer to the HW structure
1812  *
1813  *  Clears the hardware counters by reading the counter registers.
1814  **/
1815 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1816 {
1817         e1000e_clear_hw_cntrs_base(hw);
1818
1819         er32(PRC64);
1820         er32(PRC127);
1821         er32(PRC255);
1822         er32(PRC511);
1823         er32(PRC1023);
1824         er32(PRC1522);
1825         er32(PTC64);
1826         er32(PTC127);
1827         er32(PTC255);
1828         er32(PTC511);
1829         er32(PTC1023);
1830         er32(PTC1522);
1831
1832         er32(ALGNERRC);
1833         er32(RXERRC);
1834         er32(TNCRS);
1835         er32(CEXTERR);
1836         er32(TSCTC);
1837         er32(TSCTFC);
1838
1839         er32(MGTPRC);
1840         er32(MGTPDC);
1841         er32(MGTPTC);
1842
1843         er32(IAC);
1844         er32(ICRXOC);
1845
1846         er32(ICRXPTC);
1847         er32(ICRXATC);
1848         er32(ICTXPTC);
1849         er32(ICTXATC);
1850         er32(ICTXQEC);
1851         er32(ICTXQMTC);
1852         er32(ICRXDMTC);
1853 }
1854
1855 static const struct e1000_mac_operations e82571_mac_ops = {
1856         /* .check_mng_mode: mac type dependent */
1857         /* .check_for_link: media type dependent */
1858         .id_led_init            = e1000e_id_led_init_generic,
1859         .cleanup_led            = e1000e_cleanup_led_generic,
1860         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1861         .get_bus_info           = e1000e_get_bus_info_pcie,
1862         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1863         /* .get_link_up_info: media type dependent */
1864         /* .led_on: mac type dependent */
1865         .led_off                = e1000e_led_off_generic,
1866         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1867         .write_vfta             = e1000_write_vfta_generic,
1868         .clear_vfta             = e1000_clear_vfta_82571,
1869         .reset_hw               = e1000_reset_hw_82571,
1870         .init_hw                = e1000_init_hw_82571,
1871         .setup_link             = e1000_setup_link_82571,
1872         /* .setup_physical_interface: media type dependent */
1873         .setup_led              = e1000e_setup_led_generic,
1874         .config_collision_dist  = e1000e_config_collision_dist_generic,
1875         .read_mac_addr          = e1000_read_mac_addr_82571,
1876         .rar_set                = e1000e_rar_set_generic,
1877         .rar_get_count          = e1000e_rar_get_count_generic,
1878 };
1879
1880 static const struct e1000_phy_operations e82_phy_ops_igp = {
1881         .acquire                = e1000_get_hw_semaphore_82571,
1882         .check_polarity         = e1000_check_polarity_igp,
1883         .check_reset_block      = e1000e_check_reset_block_generic,
1884         .commit                 = NULL,
1885         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1886         .get_cfg_done           = e1000_get_cfg_done_82571,
1887         .get_cable_length       = e1000e_get_cable_length_igp_2,
1888         .get_info               = e1000e_get_phy_info_igp,
1889         .read_reg               = e1000e_read_phy_reg_igp,
1890         .release                = e1000_put_hw_semaphore_82571,
1891         .reset                  = e1000e_phy_hw_reset_generic,
1892         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1893         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1894         .write_reg              = e1000e_write_phy_reg_igp,
1895         .cfg_on_link_up         = NULL,
1896 };
1897
1898 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1899         .acquire                = e1000_get_hw_semaphore_82571,
1900         .check_polarity         = e1000_check_polarity_m88,
1901         .check_reset_block      = e1000e_check_reset_block_generic,
1902         .commit                 = e1000e_phy_sw_reset,
1903         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1904         .get_cfg_done           = e1000e_get_cfg_done_generic,
1905         .get_cable_length       = e1000e_get_cable_length_m88,
1906         .get_info               = e1000e_get_phy_info_m88,
1907         .read_reg               = e1000e_read_phy_reg_m88,
1908         .release                = e1000_put_hw_semaphore_82571,
1909         .reset                  = e1000e_phy_hw_reset_generic,
1910         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1911         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1912         .write_reg              = e1000e_write_phy_reg_m88,
1913         .cfg_on_link_up         = NULL,
1914 };
1915
1916 static const struct e1000_phy_operations e82_phy_ops_bm = {
1917         .acquire                = e1000_get_hw_semaphore_82571,
1918         .check_polarity         = e1000_check_polarity_m88,
1919         .check_reset_block      = e1000e_check_reset_block_generic,
1920         .commit                 = e1000e_phy_sw_reset,
1921         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1922         .get_cfg_done           = e1000e_get_cfg_done_generic,
1923         .get_cable_length       = e1000e_get_cable_length_m88,
1924         .get_info               = e1000e_get_phy_info_m88,
1925         .read_reg               = e1000e_read_phy_reg_bm2,
1926         .release                = e1000_put_hw_semaphore_82571,
1927         .reset                  = e1000e_phy_hw_reset_generic,
1928         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1929         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1930         .write_reg              = e1000e_write_phy_reg_bm2,
1931         .cfg_on_link_up         = NULL,
1932 };
1933
1934 static const struct e1000_nvm_operations e82571_nvm_ops = {
1935         .acquire                = e1000_acquire_nvm_82571,
1936         .read                   = e1000e_read_nvm_eerd,
1937         .release                = e1000_release_nvm_82571,
1938         .reload                 = e1000e_reload_nvm_generic,
1939         .update                 = e1000_update_nvm_checksum_82571,
1940         .valid_led_default      = e1000_valid_led_default_82571,
1941         .validate               = e1000_validate_nvm_checksum_82571,
1942         .write                  = e1000_write_nvm_82571,
1943 };
1944
1945 const struct e1000_info e1000_82571_info = {
1946         .mac                    = e1000_82571,
1947         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1948                                   | FLAG_HAS_JUMBO_FRAMES
1949                                   | FLAG_HAS_WOL
1950                                   | FLAG_APME_IN_CTRL3
1951                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1952                                   | FLAG_HAS_SMART_POWER_DOWN
1953                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1954                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1955                                   | FLAG_APME_CHECK_PORT_B,
1956         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1957                                   | FLAG2_DMA_BURST,
1958         .pba                    = 38,
1959         .max_hw_frame_size      = DEFAULT_JUMBO,
1960         .get_variants           = e1000_get_variants_82571,
1961         .mac_ops                = &e82571_mac_ops,
1962         .phy_ops                = &e82_phy_ops_igp,
1963         .nvm_ops                = &e82571_nvm_ops,
1964 };
1965
1966 const struct e1000_info e1000_82572_info = {
1967         .mac                    = e1000_82572,
1968         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1969                                   | FLAG_HAS_JUMBO_FRAMES
1970                                   | FLAG_HAS_WOL
1971                                   | FLAG_APME_IN_CTRL3
1972                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1973                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1974         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1975                                   | FLAG2_DMA_BURST,
1976         .pba                    = 38,
1977         .max_hw_frame_size      = DEFAULT_JUMBO,
1978         .get_variants           = e1000_get_variants_82571,
1979         .mac_ops                = &e82571_mac_ops,
1980         .phy_ops                = &e82_phy_ops_igp,
1981         .nvm_ops                = &e82571_nvm_ops,
1982 };
1983
1984 const struct e1000_info e1000_82573_info = {
1985         .mac                    = e1000_82573,
1986         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1987                                   | FLAG_HAS_WOL
1988                                   | FLAG_APME_IN_CTRL3
1989                                   | FLAG_HAS_SMART_POWER_DOWN
1990                                   | FLAG_HAS_AMT
1991                                   | FLAG_HAS_SWSM_ON_LOAD,
1992         .flags2                 = FLAG2_DISABLE_ASPM_L1
1993                                   | FLAG2_DISABLE_ASPM_L0S,
1994         .pba                    = 20,
1995         .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1996         .get_variants           = e1000_get_variants_82571,
1997         .mac_ops                = &e82571_mac_ops,
1998         .phy_ops                = &e82_phy_ops_m88,
1999         .nvm_ops                = &e82571_nvm_ops,
2000 };
2001
2002 const struct e1000_info e1000_82574_info = {
2003         .mac                    = e1000_82574,
2004         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2005                                   | FLAG_HAS_MSIX
2006                                   | FLAG_HAS_JUMBO_FRAMES
2007                                   | FLAG_HAS_WOL
2008                                   | FLAG_HAS_HW_TIMESTAMP
2009                                   | FLAG_APME_IN_CTRL3
2010                                   | FLAG_HAS_SMART_POWER_DOWN
2011                                   | FLAG_HAS_AMT
2012                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2013         .flags2                  = FLAG2_CHECK_PHY_HANG
2014                                   | FLAG2_DISABLE_ASPM_L0S
2015                                   | FLAG2_DISABLE_ASPM_L1
2016                                   | FLAG2_NO_DISABLE_RX
2017                                   | FLAG2_DMA_BURST
2018                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
2019         .pba                    = 32,
2020         .max_hw_frame_size      = DEFAULT_JUMBO,
2021         .get_variants           = e1000_get_variants_82571,
2022         .mac_ops                = &e82571_mac_ops,
2023         .phy_ops                = &e82_phy_ops_bm,
2024         .nvm_ops                = &e82571_nvm_ops,
2025 };
2026
2027 const struct e1000_info e1000_82583_info = {
2028         .mac                    = e1000_82583,
2029         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2030                                   | FLAG_HAS_WOL
2031                                   | FLAG_HAS_HW_TIMESTAMP
2032                                   | FLAG_APME_IN_CTRL3
2033                                   | FLAG_HAS_SMART_POWER_DOWN
2034                                   | FLAG_HAS_AMT
2035                                   | FLAG_HAS_JUMBO_FRAMES
2036                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2037         .flags2                 = FLAG2_DISABLE_ASPM_L0S
2038                                   | FLAG2_DISABLE_ASPM_L1
2039                                   | FLAG2_NO_DISABLE_RX
2040                                   | FLAG2_CHECK_SYSTIM_OVERFLOW,
2041         .pba                    = 32,
2042         .max_hw_frame_size      = DEFAULT_JUMBO,
2043         .get_variants           = e1000_get_variants_82571,
2044         .mac_ops                = &e82571_mac_ops,
2045         .phy_ops                = &e82_phy_ops_bm,
2046         .nvm_ops                = &e82571_nvm_ops,
2047 };