Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13
14 #define HCLGEVF_NAME    "hclgevf"
15
16 #define HCLGEVF_RESET_MAX_FAIL_CNT      5
17
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20                                   unsigned long delay);
21
22 static struct hnae3_ae_algo ae_algovf;
23
24 static struct workqueue_struct *hclgevf_wq;
25
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30         /* required last entry */
31         {0, }
32 };
33
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35
36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
37                                          HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
38                                          HCLGE_COMM_NIC_CSQ_DEPTH_REG,
39                                          HCLGE_COMM_NIC_CSQ_TAIL_REG,
40                                          HCLGE_COMM_NIC_CSQ_HEAD_REG,
41                                          HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
42                                          HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
43                                          HCLGE_COMM_NIC_CRQ_DEPTH_REG,
44                                          HCLGE_COMM_NIC_CRQ_TAIL_REG,
45                                          HCLGE_COMM_NIC_CRQ_HEAD_REG,
46                                          HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
47                                          HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
48                                          HCLGE_COMM_CMDQ_INTR_EN_REG,
49                                          HCLGE_COMM_CMDQ_INTR_GEN_REG};
50
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52                                            HCLGEVF_RST_ING,
53                                            HCLGEVF_GRO_EN_REG};
54
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56                                          HCLGEVF_RING_RX_ADDR_H_REG,
57                                          HCLGEVF_RING_RX_BD_NUM_REG,
58                                          HCLGEVF_RING_RX_BD_LENGTH_REG,
59                                          HCLGEVF_RING_RX_MERGE_EN_REG,
60                                          HCLGEVF_RING_RX_TAIL_REG,
61                                          HCLGEVF_RING_RX_HEAD_REG,
62                                          HCLGEVF_RING_RX_FBD_NUM_REG,
63                                          HCLGEVF_RING_RX_OFFSET_REG,
64                                          HCLGEVF_RING_RX_FBD_OFFSET_REG,
65                                          HCLGEVF_RING_RX_STASH_REG,
66                                          HCLGEVF_RING_RX_BD_ERR_REG,
67                                          HCLGEVF_RING_TX_ADDR_L_REG,
68                                          HCLGEVF_RING_TX_ADDR_H_REG,
69                                          HCLGEVF_RING_TX_BD_NUM_REG,
70                                          HCLGEVF_RING_TX_PRIORITY_REG,
71                                          HCLGEVF_RING_TX_TC_REG,
72                                          HCLGEVF_RING_TX_MERGE_EN_REG,
73                                          HCLGEVF_RING_TX_TAIL_REG,
74                                          HCLGEVF_RING_TX_HEAD_REG,
75                                          HCLGEVF_RING_TX_FBD_NUM_REG,
76                                          HCLGEVF_RING_TX_OFFSET_REG,
77                                          HCLGEVF_RING_TX_EBD_NUM_REG,
78                                          HCLGEVF_RING_TX_EBD_OFFSET_REG,
79                                          HCLGEVF_RING_TX_BD_ERR_REG,
80                                          HCLGEVF_RING_EN_REG};
81
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83                                              HCLGEVF_TQP_INTR_GL0_REG,
84                                              HCLGEVF_TQP_INTR_GL1_REG,
85                                              HCLGEVF_TQP_INTR_GL2_REG,
86                                              HCLGEVF_TQP_INTR_RL_REG};
87
88 /* hclgevf_cmd_send - send command to command queue
89  * @hw: pointer to the hw struct
90  * @desc: prefilled descriptor for describing the command
91  * @num : the number of descriptors to be sent
92  *
93  * This is the main send command for command queue, it
94  * sends the queue, cleans the queue, etc
95  */
96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
97 {
98         return hclge_comm_cmd_send(&hw->hw, desc, num);
99 }
100
101 void hclgevf_arq_init(struct hclgevf_dev *hdev)
102 {
103         struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
104
105         spin_lock(&cmdq->crq.lock);
106         /* initialize the pointers of async rx queue of mailbox */
107         hdev->arq.hdev = hdev;
108         hdev->arq.head = 0;
109         hdev->arq.tail = 0;
110         atomic_set(&hdev->arq.count, 0);
111         spin_unlock(&cmdq->crq.lock);
112 }
113
114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
115 {
116         if (!handle->client)
117                 return container_of(handle, struct hclgevf_dev, nic);
118         else if (handle->client->type == HNAE3_CLIENT_ROCE)
119                 return container_of(handle, struct hclgevf_dev, roce);
120         else
121                 return container_of(handle, struct hclgevf_dev, nic);
122 }
123
124 static void hclgevf_update_stats(struct hnae3_handle *handle,
125                                  struct net_device_stats *net_stats)
126 {
127         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
128         int status;
129
130         status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
131         if (status)
132                 dev_err(&hdev->pdev->dev,
133                         "VF update of TQPS stats fail, status = %d.\n",
134                         status);
135 }
136
137 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
138 {
139         if (strset == ETH_SS_TEST)
140                 return -EOPNOTSUPP;
141         else if (strset == ETH_SS_STATS)
142                 return hclge_comm_tqps_get_sset_count(handle);
143
144         return 0;
145 }
146
147 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
148                                 u8 *data)
149 {
150         u8 *p = (char *)data;
151
152         if (strset == ETH_SS_STATS)
153                 p = hclge_comm_tqps_get_strings(handle, p);
154 }
155
156 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
157 {
158         hclge_comm_tqps_get_stats(handle, data);
159 }
160
161 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
162                                    u8 subcode)
163 {
164         if (msg) {
165                 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
166                 msg->code = code;
167                 msg->subcode = subcode;
168         }
169 }
170
171 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
172 {
173         struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
174         u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
175         struct hclge_basic_info *basic_info;
176         struct hclge_vf_to_pf_msg send_msg;
177         unsigned long caps;
178         int status;
179
180         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
181         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182                                       sizeof(resp_msg));
183         if (status) {
184                 dev_err(&hdev->pdev->dev,
185                         "failed to get basic info from pf, ret = %d", status);
186                 return status;
187         }
188
189         basic_info = (struct hclge_basic_info *)resp_msg;
190
191         hdev->hw_tc_map = basic_info->hw_tc_map;
192         hdev->mbx_api_version = basic_info->mbx_api_version;
193         caps = basic_info->pf_caps;
194         if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
195                 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
196
197         return 0;
198 }
199
200 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
201 {
202         struct hnae3_handle *nic = &hdev->nic;
203         struct hclge_vf_to_pf_msg send_msg;
204         u8 resp_msg;
205         int ret;
206
207         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
208                                HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
209         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
210                                    sizeof(u8));
211         if (ret) {
212                 dev_err(&hdev->pdev->dev,
213                         "VF request to get port based vlan state failed %d",
214                         ret);
215                 return ret;
216         }
217
218         nic->port_base_vlan_state = resp_msg;
219
220         return 0;
221 }
222
223 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
224 {
225 #define HCLGEVF_TQPS_RSS_INFO_LEN       6
226 #define HCLGEVF_TQPS_ALLOC_OFFSET       0
227 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET    2
228 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET       4
229
230         u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
231         struct hclge_vf_to_pf_msg send_msg;
232         int status;
233
234         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
235         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
236                                       HCLGEVF_TQPS_RSS_INFO_LEN);
237         if (status) {
238                 dev_err(&hdev->pdev->dev,
239                         "VF request to get tqp info from PF failed %d",
240                         status);
241                 return status;
242         }
243
244         memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
245                sizeof(u16));
246         memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
247                sizeof(u16));
248         memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
249                sizeof(u16));
250
251         return 0;
252 }
253
254 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
255 {
256 #define HCLGEVF_TQPS_DEPTH_INFO_LEN     4
257 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
258 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
259
260         u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
261         struct hclge_vf_to_pf_msg send_msg;
262         int ret;
263
264         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
265         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
266                                    HCLGEVF_TQPS_DEPTH_INFO_LEN);
267         if (ret) {
268                 dev_err(&hdev->pdev->dev,
269                         "VF request to get tqp depth info from PF failed %d",
270                         ret);
271                 return ret;
272         }
273
274         memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
275                sizeof(u16));
276         memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
277                sizeof(u16));
278
279         return 0;
280 }
281
282 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
283 {
284         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
285         struct hclge_vf_to_pf_msg send_msg;
286         u16 qid_in_pf = 0;
287         u8 resp_data[2];
288         int ret;
289
290         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
291         memcpy(send_msg.data, &queue_id, sizeof(queue_id));
292         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
293                                    sizeof(resp_data));
294         if (!ret)
295                 qid_in_pf = *(u16 *)resp_data;
296
297         return qid_in_pf;
298 }
299
300 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
301 {
302         struct hclge_vf_to_pf_msg send_msg;
303         u8 resp_msg[2];
304         int ret;
305
306         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
307         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
308                                    sizeof(resp_msg));
309         if (ret) {
310                 dev_err(&hdev->pdev->dev,
311                         "VF request to get the pf port media type failed %d",
312                         ret);
313                 return ret;
314         }
315
316         hdev->hw.mac.media_type = resp_msg[0];
317         hdev->hw.mac.module_type = resp_msg[1];
318
319         return 0;
320 }
321
322 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
323 {
324         struct hclge_comm_tqp *tqp;
325         int i;
326
327         hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
328                                   sizeof(struct hclge_comm_tqp), GFP_KERNEL);
329         if (!hdev->htqp)
330                 return -ENOMEM;
331
332         tqp = hdev->htqp;
333
334         for (i = 0; i < hdev->num_tqps; i++) {
335                 tqp->dev = &hdev->pdev->dev;
336                 tqp->index = i;
337
338                 tqp->q.ae_algo = &ae_algovf;
339                 tqp->q.buf_size = hdev->rx_buf_len;
340                 tqp->q.tx_desc_num = hdev->num_tx_desc;
341                 tqp->q.rx_desc_num = hdev->num_rx_desc;
342
343                 /* need an extended offset to configure queues >=
344                  * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
345                  */
346                 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
347                         tqp->q.io_base = hdev->hw.hw.io_base +
348                                          HCLGEVF_TQP_REG_OFFSET +
349                                          i * HCLGEVF_TQP_REG_SIZE;
350                 else
351                         tqp->q.io_base = hdev->hw.hw.io_base +
352                                          HCLGEVF_TQP_REG_OFFSET +
353                                          HCLGEVF_TQP_EXT_REG_OFFSET +
354                                          (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
355                                          HCLGEVF_TQP_REG_SIZE;
356
357                 tqp++;
358         }
359
360         return 0;
361 }
362
363 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
364 {
365         struct hnae3_handle *nic = &hdev->nic;
366         struct hnae3_knic_private_info *kinfo;
367         u16 new_tqps = hdev->num_tqps;
368         unsigned int i;
369         u8 num_tc = 0;
370
371         kinfo = &nic->kinfo;
372         kinfo->num_tx_desc = hdev->num_tx_desc;
373         kinfo->num_rx_desc = hdev->num_rx_desc;
374         kinfo->rx_buf_len = hdev->rx_buf_len;
375         for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
376                 if (hdev->hw_tc_map & BIT(i))
377                         num_tc++;
378
379         num_tc = num_tc ? num_tc : 1;
380         kinfo->tc_info.num_tc = num_tc;
381         kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
382         new_tqps = kinfo->rss_size * num_tc;
383         kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
384
385         kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
386                                   sizeof(struct hnae3_queue *), GFP_KERNEL);
387         if (!kinfo->tqp)
388                 return -ENOMEM;
389
390         for (i = 0; i < kinfo->num_tqps; i++) {
391                 hdev->htqp[i].q.handle = &hdev->nic;
392                 hdev->htqp[i].q.tqp_index = i;
393                 kinfo->tqp[i] = &hdev->htqp[i].q;
394         }
395
396         /* after init the max rss_size and tqps, adjust the default tqp numbers
397          * and rss size with the actual vector numbers
398          */
399         kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
400         kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
401                                 kinfo->rss_size);
402
403         return 0;
404 }
405
406 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
407 {
408         struct hclge_vf_to_pf_msg send_msg;
409         int status;
410
411         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
412         status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
413         if (status)
414                 dev_err(&hdev->pdev->dev,
415                         "VF failed to fetch link status(%d) from PF", status);
416 }
417
418 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
419 {
420         struct hnae3_handle *rhandle = &hdev->roce;
421         struct hnae3_handle *handle = &hdev->nic;
422         struct hnae3_client *rclient;
423         struct hnae3_client *client;
424
425         if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
426                 return;
427
428         client = handle->client;
429         rclient = hdev->roce_client;
430
431         link_state =
432                 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
433         if (link_state != hdev->hw.mac.link) {
434                 hdev->hw.mac.link = link_state;
435                 client->ops->link_status_change(handle, !!link_state);
436                 if (rclient && rclient->ops->link_status_change)
437                         rclient->ops->link_status_change(rhandle, !!link_state);
438         }
439
440         clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
441 }
442
443 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
444 {
445 #define HCLGEVF_ADVERTISING     0
446 #define HCLGEVF_SUPPORTED       1
447
448         struct hclge_vf_to_pf_msg send_msg;
449
450         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
451         send_msg.data[0] = HCLGEVF_ADVERTISING;
452         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
453         send_msg.data[0] = HCLGEVF_SUPPORTED;
454         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
455 }
456
457 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
458 {
459         struct hnae3_handle *nic = &hdev->nic;
460         int ret;
461
462         nic->ae_algo = &ae_algovf;
463         nic->pdev = hdev->pdev;
464         nic->numa_node_mask = hdev->numa_node_mask;
465         nic->flags |= HNAE3_SUPPORT_VF;
466         nic->kinfo.io_base = hdev->hw.hw.io_base;
467
468         ret = hclgevf_knic_setup(hdev);
469         if (ret)
470                 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
471                         ret);
472         return ret;
473 }
474
475 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
476 {
477         if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
478                 dev_warn(&hdev->pdev->dev,
479                          "vector(vector_id %d) has been freed.\n", vector_id);
480                 return;
481         }
482
483         hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
484         hdev->num_msi_left += 1;
485         hdev->num_msi_used -= 1;
486 }
487
488 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
489                               struct hnae3_vector_info *vector_info)
490 {
491         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
492         struct hnae3_vector_info *vector = vector_info;
493         int alloc = 0;
494         int i, j;
495
496         vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
497         vector_num = min(hdev->num_msi_left, vector_num);
498
499         for (j = 0; j < vector_num; j++) {
500                 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
501                         if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
502                                 vector->vector = pci_irq_vector(hdev->pdev, i);
503                                 vector->io_addr = hdev->hw.hw.io_base +
504                                         HCLGEVF_VECTOR_REG_BASE +
505                                         (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
506                                 hdev->vector_status[i] = 0;
507                                 hdev->vector_irq[i] = vector->vector;
508
509                                 vector++;
510                                 alloc++;
511
512                                 break;
513                         }
514                 }
515         }
516         hdev->num_msi_left -= alloc;
517         hdev->num_msi_used += alloc;
518
519         return alloc;
520 }
521
522 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
523 {
524         int i;
525
526         for (i = 0; i < hdev->num_msi; i++)
527                 if (vector == hdev->vector_irq[i])
528                         return i;
529
530         return -EINVAL;
531 }
532
533 /* for revision 0x20, vf shared the same rss config with pf */
534 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
535 {
536 #define HCLGEVF_RSS_MBX_RESP_LEN        8
537         struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
538         u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
539         struct hclge_vf_to_pf_msg send_msg;
540         u16 msg_num, hash_key_index;
541         u8 index;
542         int ret;
543
544         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
545         msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
546                         HCLGEVF_RSS_MBX_RESP_LEN;
547         for (index = 0; index < msg_num; index++) {
548                 send_msg.data[0] = index;
549                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
550                                            HCLGEVF_RSS_MBX_RESP_LEN);
551                 if (ret) {
552                         dev_err(&hdev->pdev->dev,
553                                 "VF get rss hash key from PF failed, ret=%d",
554                                 ret);
555                         return ret;
556                 }
557
558                 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
559                 if (index == msg_num - 1)
560                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
561                                &resp_msg[0],
562                                HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
563                 else
564                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
565                                &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
566         }
567
568         return 0;
569 }
570
571 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
572                            u8 *hfunc)
573 {
574         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
575         struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
576         int ret;
577
578         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
579                 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
580         } else {
581                 if (hfunc)
582                         *hfunc = ETH_RSS_HASH_TOP;
583                 if (key) {
584                         ret = hclgevf_get_rss_hash_key(hdev);
585                         if (ret)
586                                 return ret;
587                         memcpy(key, rss_cfg->rss_hash_key,
588                                HCLGE_COMM_RSS_KEY_SIZE);
589                 }
590         }
591
592         hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
593                                      hdev->ae_dev->dev_specs.rss_ind_tbl_size);
594
595         return 0;
596 }
597
598 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
599                            const u8 *key, const u8 hfunc)
600 {
601         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
602         struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
603         int ret, i;
604
605         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
606                 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
607                                                   hfunc);
608                 if (ret)
609                         return ret;
610         }
611
612         /* update the shadow RSS table with user specified qids */
613         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
614                 rss_cfg->rss_indirection_tbl[i] = indir[i];
615
616         /* update the hardware */
617         return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
618                                               rss_cfg->rss_indirection_tbl);
619 }
620
621 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
622                                  struct ethtool_rxnfc *nfc)
623 {
624         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
625         int ret;
626
627         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
628                 return -EOPNOTSUPP;
629
630         ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
631                                        &hdev->rss_cfg, nfc);
632         if (ret)
633                 dev_err(&hdev->pdev->dev,
634                 "failed to set rss tuple, ret = %d.\n", ret);
635
636         return ret;
637 }
638
639 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
640                                  struct ethtool_rxnfc *nfc)
641 {
642         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
643         u8 tuple_sets;
644         int ret;
645
646         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
647                 return -EOPNOTSUPP;
648
649         nfc->data = 0;
650
651         ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
652                                        &tuple_sets);
653         if (ret || !tuple_sets)
654                 return ret;
655
656         nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
657
658         return 0;
659 }
660
661 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
662 {
663         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
664         struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
665
666         return rss_cfg->rss_size;
667 }
668
669 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
670                                        int vector_id,
671                                        struct hnae3_ring_chain_node *ring_chain)
672 {
673         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
674         struct hclge_vf_to_pf_msg send_msg;
675         struct hnae3_ring_chain_node *node;
676         int status;
677         int i = 0;
678
679         memset(&send_msg, 0, sizeof(send_msg));
680         send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
681                 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
682         send_msg.vector_id = vector_id;
683
684         for (node = ring_chain; node; node = node->next) {
685                 send_msg.param[i].ring_type =
686                                 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
687
688                 send_msg.param[i].tqp_index = node->tqp_index;
689                 send_msg.param[i].int_gl_index =
690                                         hnae3_get_field(node->int_gl_idx,
691                                                         HNAE3_RING_GL_IDX_M,
692                                                         HNAE3_RING_GL_IDX_S);
693
694                 i++;
695                 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
696                         send_msg.ring_num = i;
697
698                         status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
699                                                       NULL, 0);
700                         if (status) {
701                                 dev_err(&hdev->pdev->dev,
702                                         "Map TQP fail, status is %d.\n",
703                                         status);
704                                 return status;
705                         }
706                         i = 0;
707                 }
708         }
709
710         return 0;
711 }
712
713 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
714                                       struct hnae3_ring_chain_node *ring_chain)
715 {
716         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
717         int vector_id;
718
719         vector_id = hclgevf_get_vector_index(hdev, vector);
720         if (vector_id < 0) {
721                 dev_err(&handle->pdev->dev,
722                         "Get vector index fail. ret =%d\n", vector_id);
723                 return vector_id;
724         }
725
726         return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
727 }
728
729 static int hclgevf_unmap_ring_from_vector(
730                                 struct hnae3_handle *handle,
731                                 int vector,
732                                 struct hnae3_ring_chain_node *ring_chain)
733 {
734         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
735         int ret, vector_id;
736
737         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
738                 return 0;
739
740         vector_id = hclgevf_get_vector_index(hdev, vector);
741         if (vector_id < 0) {
742                 dev_err(&handle->pdev->dev,
743                         "Get vector index fail. ret =%d\n", vector_id);
744                 return vector_id;
745         }
746
747         ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
748         if (ret)
749                 dev_err(&handle->pdev->dev,
750                         "Unmap ring from vector fail. vector=%d, ret =%d\n",
751                         vector_id,
752                         ret);
753
754         return ret;
755 }
756
757 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
758 {
759         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
760         int vector_id;
761
762         vector_id = hclgevf_get_vector_index(hdev, vector);
763         if (vector_id < 0) {
764                 dev_err(&handle->pdev->dev,
765                         "hclgevf_put_vector get vector index fail. ret =%d\n",
766                         vector_id);
767                 return vector_id;
768         }
769
770         hclgevf_free_vector(hdev, vector_id);
771
772         return 0;
773 }
774
775 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
776                                         bool en_uc_pmc, bool en_mc_pmc,
777                                         bool en_bc_pmc)
778 {
779         struct hnae3_handle *handle = &hdev->nic;
780         struct hclge_vf_to_pf_msg send_msg;
781         int ret;
782
783         memset(&send_msg, 0, sizeof(send_msg));
784         send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
785         send_msg.en_bc = en_bc_pmc ? 1 : 0;
786         send_msg.en_uc = en_uc_pmc ? 1 : 0;
787         send_msg.en_mc = en_mc_pmc ? 1 : 0;
788         send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
789                                              &handle->priv_flags) ? 1 : 0;
790
791         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
792         if (ret)
793                 dev_err(&hdev->pdev->dev,
794                         "Set promisc mode fail, status is %d.\n", ret);
795
796         return ret;
797 }
798
799 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
800                                     bool en_mc_pmc)
801 {
802         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
803         bool en_bc_pmc;
804
805         en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
806
807         return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
808                                             en_bc_pmc);
809 }
810
811 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
812 {
813         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
814
815         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
816         hclgevf_task_schedule(hdev, 0);
817 }
818
819 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
820 {
821         struct hnae3_handle *handle = &hdev->nic;
822         bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
823         bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
824         int ret;
825
826         if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
827                 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
828                 if (!ret)
829                         clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
830         }
831 }
832
833 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
834                                        u16 stream_id, bool enable)
835 {
836         struct hclgevf_cfg_com_tqp_queue_cmd *req;
837         struct hclge_desc desc;
838
839         req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
840
841         hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
842         req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
843         req->stream_id = cpu_to_le16(stream_id);
844         if (enable)
845                 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
846
847         return hclgevf_cmd_send(&hdev->hw, &desc, 1);
848 }
849
850 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
851 {
852         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
853         int ret;
854         u16 i;
855
856         for (i = 0; i < handle->kinfo.num_tqps; i++) {
857                 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
858                 if (ret)
859                         return ret;
860         }
861
862         return 0;
863 }
864
865 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
866 {
867         struct hclge_vf_to_pf_msg send_msg;
868         u8 host_mac[ETH_ALEN];
869         int status;
870
871         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
872         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
873                                       ETH_ALEN);
874         if (status) {
875                 dev_err(&hdev->pdev->dev,
876                         "fail to get VF MAC from host %d", status);
877                 return status;
878         }
879
880         ether_addr_copy(p, host_mac);
881
882         return 0;
883 }
884
885 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
886 {
887         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
888         u8 host_mac_addr[ETH_ALEN];
889
890         if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
891                 return;
892
893         hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
894         if (hdev->has_pf_mac)
895                 ether_addr_copy(p, host_mac_addr);
896         else
897                 ether_addr_copy(p, hdev->hw.mac.mac_addr);
898 }
899
900 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
901                                 bool is_first)
902 {
903         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
904         u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
905         struct hclge_vf_to_pf_msg send_msg;
906         u8 *new_mac_addr = (u8 *)p;
907         int status;
908
909         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
910         send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
911         ether_addr_copy(send_msg.data, new_mac_addr);
912         if (is_first && !hdev->has_pf_mac)
913                 eth_zero_addr(&send_msg.data[ETH_ALEN]);
914         else
915                 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
916         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
917         if (!status)
918                 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
919
920         return status;
921 }
922
923 static struct hclgevf_mac_addr_node *
924 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
925 {
926         struct hclgevf_mac_addr_node *mac_node, *tmp;
927
928         list_for_each_entry_safe(mac_node, tmp, list, node)
929                 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
930                         return mac_node;
931
932         return NULL;
933 }
934
935 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
936                                     enum HCLGEVF_MAC_NODE_STATE state)
937 {
938         switch (state) {
939         /* from set_rx_mode or tmp_add_list */
940         case HCLGEVF_MAC_TO_ADD:
941                 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
942                         mac_node->state = HCLGEVF_MAC_ACTIVE;
943                 break;
944         /* only from set_rx_mode */
945         case HCLGEVF_MAC_TO_DEL:
946                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
947                         list_del(&mac_node->node);
948                         kfree(mac_node);
949                 } else {
950                         mac_node->state = HCLGEVF_MAC_TO_DEL;
951                 }
952                 break;
953         /* only from tmp_add_list, the mac_node->state won't be
954          * HCLGEVF_MAC_ACTIVE
955          */
956         case HCLGEVF_MAC_ACTIVE:
957                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
958                         mac_node->state = HCLGEVF_MAC_ACTIVE;
959                 break;
960         }
961 }
962
963 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
964                                    enum HCLGEVF_MAC_NODE_STATE state,
965                                    enum HCLGEVF_MAC_ADDR_TYPE mac_type,
966                                    const unsigned char *addr)
967 {
968         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
969         struct hclgevf_mac_addr_node *mac_node;
970         struct list_head *list;
971
972         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
973                &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
974
975         spin_lock_bh(&hdev->mac_table.mac_list_lock);
976
977         /* if the mac addr is already in the mac list, no need to add a new
978          * one into it, just check the mac addr state, convert it to a new
979          * new state, or just remove it, or do nothing.
980          */
981         mac_node = hclgevf_find_mac_node(list, addr);
982         if (mac_node) {
983                 hclgevf_update_mac_node(mac_node, state);
984                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
985                 return 0;
986         }
987         /* if this address is never added, unnecessary to delete */
988         if (state == HCLGEVF_MAC_TO_DEL) {
989                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
990                 return -ENOENT;
991         }
992
993         mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
994         if (!mac_node) {
995                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
996                 return -ENOMEM;
997         }
998
999         mac_node->state = state;
1000         ether_addr_copy(mac_node->mac_addr, addr);
1001         list_add_tail(&mac_node->node, list);
1002
1003         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1004         return 0;
1005 }
1006
1007 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1008                                const unsigned char *addr)
1009 {
1010         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1011                                        HCLGEVF_MAC_ADDR_UC, addr);
1012 }
1013
1014 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1015                               const unsigned char *addr)
1016 {
1017         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1018                                        HCLGEVF_MAC_ADDR_UC, addr);
1019 }
1020
1021 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1022                                const unsigned char *addr)
1023 {
1024         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1025                                        HCLGEVF_MAC_ADDR_MC, addr);
1026 }
1027
1028 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1029                               const unsigned char *addr)
1030 {
1031         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1032                                        HCLGEVF_MAC_ADDR_MC, addr);
1033 }
1034
1035 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1036                                     struct hclgevf_mac_addr_node *mac_node,
1037                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1038 {
1039         struct hclge_vf_to_pf_msg send_msg;
1040         u8 code, subcode;
1041
1042         if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1043                 code = HCLGE_MBX_SET_UNICAST;
1044                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1045                         subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1046                 else
1047                         subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1048         } else {
1049                 code = HCLGE_MBX_SET_MULTICAST;
1050                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1051                         subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1052                 else
1053                         subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1054         }
1055
1056         hclgevf_build_send_msg(&send_msg, code, subcode);
1057         ether_addr_copy(send_msg.data, mac_node->mac_addr);
1058         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1059 }
1060
1061 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1062                                     struct list_head *list,
1063                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1064 {
1065         char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1066         struct hclgevf_mac_addr_node *mac_node, *tmp;
1067         int ret;
1068
1069         list_for_each_entry_safe(mac_node, tmp, list, node) {
1070                 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1071                 if  (ret) {
1072                         hnae3_format_mac_addr(format_mac_addr,
1073                                               mac_node->mac_addr);
1074                         dev_err(&hdev->pdev->dev,
1075                                 "failed to configure mac %s, state = %d, ret = %d\n",
1076                                 format_mac_addr, mac_node->state, ret);
1077                         return;
1078                 }
1079                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1080                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1081                 } else {
1082                         list_del(&mac_node->node);
1083                         kfree(mac_node);
1084                 }
1085         }
1086 }
1087
1088 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1089                                        struct list_head *mac_list)
1090 {
1091         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1092
1093         list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1094                 /* if the mac address from tmp_add_list is not in the
1095                  * uc/mc_mac_list, it means have received a TO_DEL request
1096                  * during the time window of sending mac config request to PF
1097                  * If mac_node state is ACTIVE, then change its state to TO_DEL,
1098                  * then it will be removed at next time. If is TO_ADD, it means
1099                  * send TO_ADD request failed, so just remove the mac node.
1100                  */
1101                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1102                 if (new_node) {
1103                         hclgevf_update_mac_node(new_node, mac_node->state);
1104                         list_del(&mac_node->node);
1105                         kfree(mac_node);
1106                 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1107                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1108                         list_move_tail(&mac_node->node, mac_list);
1109                 } else {
1110                         list_del(&mac_node->node);
1111                         kfree(mac_node);
1112                 }
1113         }
1114 }
1115
1116 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1117                                        struct list_head *mac_list)
1118 {
1119         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1120
1121         list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1122                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1123                 if (new_node) {
1124                         /* If the mac addr is exist in the mac list, it means
1125                          * received a new request TO_ADD during the time window
1126                          * of sending mac addr configurrequest to PF, so just
1127                          * change the mac state to ACTIVE.
1128                          */
1129                         new_node->state = HCLGEVF_MAC_ACTIVE;
1130                         list_del(&mac_node->node);
1131                         kfree(mac_node);
1132                 } else {
1133                         list_move_tail(&mac_node->node, mac_list);
1134                 }
1135         }
1136 }
1137
1138 static void hclgevf_clear_list(struct list_head *list)
1139 {
1140         struct hclgevf_mac_addr_node *mac_node, *tmp;
1141
1142         list_for_each_entry_safe(mac_node, tmp, list, node) {
1143                 list_del(&mac_node->node);
1144                 kfree(mac_node);
1145         }
1146 }
1147
1148 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1149                                   enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1150 {
1151         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1152         struct list_head tmp_add_list, tmp_del_list;
1153         struct list_head *list;
1154
1155         INIT_LIST_HEAD(&tmp_add_list);
1156         INIT_LIST_HEAD(&tmp_del_list);
1157
1158         /* move the mac addr to the tmp_add_list and tmp_del_list, then
1159          * we can add/delete these mac addr outside the spin lock
1160          */
1161         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1162                 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1163
1164         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1165
1166         list_for_each_entry_safe(mac_node, tmp, list, node) {
1167                 switch (mac_node->state) {
1168                 case HCLGEVF_MAC_TO_DEL:
1169                         list_move_tail(&mac_node->node, &tmp_del_list);
1170                         break;
1171                 case HCLGEVF_MAC_TO_ADD:
1172                         new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1173                         if (!new_node)
1174                                 goto stop_traverse;
1175
1176                         ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1177                         new_node->state = mac_node->state;
1178                         list_add_tail(&new_node->node, &tmp_add_list);
1179                         break;
1180                 default:
1181                         break;
1182                 }
1183         }
1184
1185 stop_traverse:
1186         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1187
1188         /* delete first, in order to get max mac table space for adding */
1189         hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1190         hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1191
1192         /* if some mac addresses were added/deleted fail, move back to the
1193          * mac_list, and retry at next time.
1194          */
1195         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1196
1197         hclgevf_sync_from_del_list(&tmp_del_list, list);
1198         hclgevf_sync_from_add_list(&tmp_add_list, list);
1199
1200         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1201 }
1202
1203 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1204 {
1205         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1206         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1207 }
1208
1209 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1210 {
1211         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1212
1213         hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1214         hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1215
1216         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1217 }
1218
1219 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1220 {
1221         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1222         struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1223         struct hclge_vf_to_pf_msg send_msg;
1224
1225         if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1226                 return -EOPNOTSUPP;
1227
1228         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1229                                HCLGE_MBX_ENABLE_VLAN_FILTER);
1230         send_msg.data[0] = enable ? 1 : 0;
1231
1232         return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1233 }
1234
1235 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1236                                    __be16 proto, u16 vlan_id,
1237                                    bool is_kill)
1238 {
1239 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1240 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1241 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET   3
1242
1243         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1244         struct hclge_vf_to_pf_msg send_msg;
1245         int ret;
1246
1247         if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1248                 return -EINVAL;
1249
1250         if (proto != htons(ETH_P_8021Q))
1251                 return -EPROTONOSUPPORT;
1252
1253         /* When device is resetting or reset failed, firmware is unable to
1254          * handle mailbox. Just record the vlan id, and remove it after
1255          * reset finished.
1256          */
1257         if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1258              test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1259                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1260                 return -EBUSY;
1261         }
1262
1263         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1264                                HCLGE_MBX_VLAN_FILTER);
1265         send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1266         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1267                sizeof(vlan_id));
1268         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1269                sizeof(proto));
1270         /* when remove hw vlan filter failed, record the vlan id,
1271          * and try to remove it from hw later, to be consistence
1272          * with stack.
1273          */
1274         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1275         if (is_kill && ret)
1276                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1277
1278         return ret;
1279 }
1280
1281 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1282 {
1283 #define HCLGEVF_MAX_SYNC_COUNT  60
1284         struct hnae3_handle *handle = &hdev->nic;
1285         int ret, sync_cnt = 0;
1286         u16 vlan_id;
1287
1288         vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1289         while (vlan_id != VLAN_N_VID) {
1290                 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1291                                               vlan_id, true);
1292                 if (ret)
1293                         return;
1294
1295                 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1296                 sync_cnt++;
1297                 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1298                         return;
1299
1300                 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1301         }
1302 }
1303
1304 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1305 {
1306         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1307         struct hclge_vf_to_pf_msg send_msg;
1308
1309         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1310                                HCLGE_MBX_VLAN_RX_OFF_CFG);
1311         send_msg.data[0] = enable ? 1 : 0;
1312         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1313 }
1314
1315 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1316 {
1317 #define HCLGEVF_RESET_ALL_QUEUE_DONE    1U
1318         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319         struct hclge_vf_to_pf_msg send_msg;
1320         u8 return_status = 0;
1321         int ret;
1322         u16 i;
1323
1324         /* disable vf queue before send queue reset msg to PF */
1325         ret = hclgevf_tqp_enable(handle, false);
1326         if (ret) {
1327                 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1328                         ret);
1329                 return ret;
1330         }
1331
1332         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1333
1334         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1335                                    sizeof(return_status));
1336         if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1337                 return ret;
1338
1339         for (i = 1; i < handle->kinfo.num_tqps; i++) {
1340                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1341                 memcpy(send_msg.data, &i, sizeof(i));
1342                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1343                 if (ret)
1344                         return ret;
1345         }
1346
1347         return 0;
1348 }
1349
1350 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1351 {
1352         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1353         struct hclge_vf_to_pf_msg send_msg;
1354
1355         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1356         memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1357         return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1358 }
1359
1360 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1361                                  enum hnae3_reset_notify_type type)
1362 {
1363         struct hnae3_client *client = hdev->nic_client;
1364         struct hnae3_handle *handle = &hdev->nic;
1365         int ret;
1366
1367         if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1368             !client)
1369                 return 0;
1370
1371         if (!client->ops->reset_notify)
1372                 return -EOPNOTSUPP;
1373
1374         ret = client->ops->reset_notify(handle, type);
1375         if (ret)
1376                 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1377                         type, ret);
1378
1379         return ret;
1380 }
1381
1382 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1383                                       enum hnae3_reset_notify_type type)
1384 {
1385         struct hnae3_client *client = hdev->roce_client;
1386         struct hnae3_handle *handle = &hdev->roce;
1387         int ret;
1388
1389         if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1390                 return 0;
1391
1392         if (!client->ops->reset_notify)
1393                 return -EOPNOTSUPP;
1394
1395         ret = client->ops->reset_notify(handle, type);
1396         if (ret)
1397                 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1398                         type, ret);
1399         return ret;
1400 }
1401
1402 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1403 {
1404 #define HCLGEVF_RESET_WAIT_US   20000
1405 #define HCLGEVF_RESET_WAIT_CNT  2000
1406 #define HCLGEVF_RESET_WAIT_TIMEOUT_US   \
1407         (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1408
1409         u32 val;
1410         int ret;
1411
1412         if (hdev->reset_type == HNAE3_VF_RESET)
1413                 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1414                                          HCLGEVF_VF_RST_ING, val,
1415                                          !(val & HCLGEVF_VF_RST_ING_BIT),
1416                                          HCLGEVF_RESET_WAIT_US,
1417                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1418         else
1419                 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1420                                          HCLGEVF_RST_ING, val,
1421                                          !(val & HCLGEVF_RST_ING_BITS),
1422                                          HCLGEVF_RESET_WAIT_US,
1423                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1424
1425         /* hardware completion status should be available by this time */
1426         if (ret) {
1427                 dev_err(&hdev->pdev->dev,
1428                         "couldn't get reset done status from h/w, timeout!\n");
1429                 return ret;
1430         }
1431
1432         /* we will wait a bit more to let reset of the stack to complete. This
1433          * might happen in case reset assertion was made by PF. Yes, this also
1434          * means we might end up waiting bit more even for VF reset.
1435          */
1436         msleep(5000);
1437
1438         return 0;
1439 }
1440
1441 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1442 {
1443         u32 reg_val;
1444
1445         reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1446         if (enable)
1447                 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1448         else
1449                 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1450
1451         hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1452                           reg_val);
1453 }
1454
1455 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1456 {
1457         int ret;
1458
1459         /* uninitialize the nic client */
1460         ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1461         if (ret)
1462                 return ret;
1463
1464         /* re-initialize the hclge device */
1465         ret = hclgevf_reset_hdev(hdev);
1466         if (ret) {
1467                 dev_err(&hdev->pdev->dev,
1468                         "hclge device re-init failed, VF is disabled!\n");
1469                 return ret;
1470         }
1471
1472         /* bring up the nic client again */
1473         ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1474         if (ret)
1475                 return ret;
1476
1477         /* clear handshake status with IMP */
1478         hclgevf_reset_handshake(hdev, false);
1479
1480         /* bring up the nic to enable TX/RX again */
1481         return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1482 }
1483
1484 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1485 {
1486 #define HCLGEVF_RESET_SYNC_TIME 100
1487
1488         if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1489                 struct hclge_vf_to_pf_msg send_msg;
1490                 int ret;
1491
1492                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1493                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1494                 if (ret) {
1495                         dev_err(&hdev->pdev->dev,
1496                                 "failed to assert VF reset, ret = %d\n", ret);
1497                         return ret;
1498                 }
1499                 hdev->rst_stats.vf_func_rst_cnt++;
1500         }
1501
1502         set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1503         /* inform hardware that preparatory work is done */
1504         msleep(HCLGEVF_RESET_SYNC_TIME);
1505         hclgevf_reset_handshake(hdev, true);
1506         dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1507                  hdev->reset_type);
1508
1509         return 0;
1510 }
1511
1512 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1513 {
1514         dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1515                  hdev->rst_stats.vf_func_rst_cnt);
1516         dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1517                  hdev->rst_stats.flr_rst_cnt);
1518         dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1519                  hdev->rst_stats.vf_rst_cnt);
1520         dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1521                  hdev->rst_stats.rst_done_cnt);
1522         dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1523                  hdev->rst_stats.hw_rst_done_cnt);
1524         dev_info(&hdev->pdev->dev, "reset count: %u\n",
1525                  hdev->rst_stats.rst_cnt);
1526         dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1527                  hdev->rst_stats.rst_fail_cnt);
1528         dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1529                  hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1530         dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1531                  hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1532         dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1533                  hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1534         dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1535                  hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1536         dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1537 }
1538
1539 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1540 {
1541         /* recover handshake status with IMP when reset fail */
1542         hclgevf_reset_handshake(hdev, true);
1543         hdev->rst_stats.rst_fail_cnt++;
1544         dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1545                 hdev->rst_stats.rst_fail_cnt);
1546
1547         if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1548                 set_bit(hdev->reset_type, &hdev->reset_pending);
1549
1550         if (hclgevf_is_reset_pending(hdev)) {
1551                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1552                 hclgevf_reset_task_schedule(hdev);
1553         } else {
1554                 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1555                 hclgevf_dump_rst_info(hdev);
1556         }
1557 }
1558
1559 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1560 {
1561         int ret;
1562
1563         hdev->rst_stats.rst_cnt++;
1564
1565         /* perform reset of the stack & ae device for a client */
1566         ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1567         if (ret)
1568                 return ret;
1569
1570         rtnl_lock();
1571         /* bring down the nic to stop any ongoing TX/RX */
1572         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1573         rtnl_unlock();
1574         if (ret)
1575                 return ret;
1576
1577         return hclgevf_reset_prepare_wait(hdev);
1578 }
1579
1580 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1581 {
1582         int ret;
1583
1584         hdev->rst_stats.hw_rst_done_cnt++;
1585         ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1586         if (ret)
1587                 return ret;
1588
1589         rtnl_lock();
1590         /* now, re-initialize the nic client and ae device */
1591         ret = hclgevf_reset_stack(hdev);
1592         rtnl_unlock();
1593         if (ret) {
1594                 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1595                 return ret;
1596         }
1597
1598         ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1599         /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1600          * times
1601          */
1602         if (ret &&
1603             hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1604                 return ret;
1605
1606         ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1607         if (ret)
1608                 return ret;
1609
1610         hdev->last_reset_time = jiffies;
1611         hdev->rst_stats.rst_done_cnt++;
1612         hdev->rst_stats.rst_fail_cnt = 0;
1613         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1614
1615         return 0;
1616 }
1617
1618 static void hclgevf_reset(struct hclgevf_dev *hdev)
1619 {
1620         if (hclgevf_reset_prepare(hdev))
1621                 goto err_reset;
1622
1623         /* check if VF could successfully fetch the hardware reset completion
1624          * status from the hardware
1625          */
1626         if (hclgevf_reset_wait(hdev)) {
1627                 /* can't do much in this situation, will disable VF */
1628                 dev_err(&hdev->pdev->dev,
1629                         "failed to fetch H/W reset completion status\n");
1630                 goto err_reset;
1631         }
1632
1633         if (hclgevf_reset_rebuild(hdev))
1634                 goto err_reset;
1635
1636         return;
1637
1638 err_reset:
1639         hclgevf_reset_err_handle(hdev);
1640 }
1641
1642 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1643                                                      unsigned long *addr)
1644 {
1645         enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1646
1647         /* return the highest priority reset level amongst all */
1648         if (test_bit(HNAE3_VF_RESET, addr)) {
1649                 rst_level = HNAE3_VF_RESET;
1650                 clear_bit(HNAE3_VF_RESET, addr);
1651                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1652                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1653         } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1654                 rst_level = HNAE3_VF_FULL_RESET;
1655                 clear_bit(HNAE3_VF_FULL_RESET, addr);
1656                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1657         } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1658                 rst_level = HNAE3_VF_PF_FUNC_RESET;
1659                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1660                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1661         } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1662                 rst_level = HNAE3_VF_FUNC_RESET;
1663                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1664         } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1665                 rst_level = HNAE3_FLR_RESET;
1666                 clear_bit(HNAE3_FLR_RESET, addr);
1667         }
1668
1669         return rst_level;
1670 }
1671
1672 static void hclgevf_reset_event(struct pci_dev *pdev,
1673                                 struct hnae3_handle *handle)
1674 {
1675         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1676         struct hclgevf_dev *hdev = ae_dev->priv;
1677
1678         dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1679
1680         if (hdev->default_reset_request)
1681                 hdev->reset_level =
1682                         hclgevf_get_reset_level(hdev,
1683                                                 &hdev->default_reset_request);
1684         else
1685                 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1686
1687         /* reset of this VF requested */
1688         set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1689         hclgevf_reset_task_schedule(hdev);
1690
1691         hdev->last_reset_time = jiffies;
1692 }
1693
1694 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1695                                           enum hnae3_reset_type rst_type)
1696 {
1697         struct hclgevf_dev *hdev = ae_dev->priv;
1698
1699         set_bit(rst_type, &hdev->default_reset_request);
1700 }
1701
1702 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1703 {
1704         writel(en ? 1 : 0, vector->addr);
1705 }
1706
1707 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1708                                           enum hnae3_reset_type rst_type)
1709 {
1710 #define HCLGEVF_RESET_RETRY_WAIT_MS     500
1711 #define HCLGEVF_RESET_RETRY_CNT         5
1712
1713         struct hclgevf_dev *hdev = ae_dev->priv;
1714         int retry_cnt = 0;
1715         int ret;
1716
1717         while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1718                 down(&hdev->reset_sem);
1719                 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1720                 hdev->reset_type = rst_type;
1721                 ret = hclgevf_reset_prepare(hdev);
1722                 if (!ret && !hdev->reset_pending)
1723                         break;
1724
1725                 dev_err(&hdev->pdev->dev,
1726                         "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1727                         ret, hdev->reset_pending, retry_cnt);
1728                 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1729                 up(&hdev->reset_sem);
1730                 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1731         }
1732
1733         /* disable misc vector before reset done */
1734         hclgevf_enable_vector(&hdev->misc_vector, false);
1735
1736         if (hdev->reset_type == HNAE3_FLR_RESET)
1737                 hdev->rst_stats.flr_rst_cnt++;
1738 }
1739
1740 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1741 {
1742         struct hclgevf_dev *hdev = ae_dev->priv;
1743         int ret;
1744
1745         hclgevf_enable_vector(&hdev->misc_vector, true);
1746
1747         ret = hclgevf_reset_rebuild(hdev);
1748         if (ret)
1749                 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1750                          ret);
1751
1752         hdev->reset_type = HNAE3_NONE_RESET;
1753         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1754         up(&hdev->reset_sem);
1755 }
1756
1757 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1758 {
1759         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1760
1761         return hdev->fw_version;
1762 }
1763
1764 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1765 {
1766         struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1767
1768         vector->vector_irq = pci_irq_vector(hdev->pdev,
1769                                             HCLGEVF_MISC_VECTOR_NUM);
1770         vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1771         /* vector status always valid for Vector 0 */
1772         hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1773         hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1774
1775         hdev->num_msi_left -= 1;
1776         hdev->num_msi_used += 1;
1777 }
1778
1779 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1780 {
1781         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1782             test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1783             !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1784                               &hdev->state))
1785                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1786 }
1787
1788 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1789 {
1790         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1791             !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1792                               &hdev->state))
1793                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1794 }
1795
1796 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1797                                   unsigned long delay)
1798 {
1799         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1800             !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1801                 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1802 }
1803
1804 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1805 {
1806 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT  3
1807
1808         if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1809                 return;
1810
1811         down(&hdev->reset_sem);
1812         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1813
1814         if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1815                                &hdev->reset_state)) {
1816                 /* PF has intimated that it is about to reset the hardware.
1817                  * We now have to poll & check if hardware has actually
1818                  * completed the reset sequence. On hardware reset completion,
1819                  * VF needs to reset the client and ae device.
1820                  */
1821                 hdev->reset_attempts = 0;
1822
1823                 hdev->last_reset_time = jiffies;
1824                 hdev->reset_type =
1825                         hclgevf_get_reset_level(hdev, &hdev->reset_pending);
1826                 if (hdev->reset_type != HNAE3_NONE_RESET)
1827                         hclgevf_reset(hdev);
1828         } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1829                                       &hdev->reset_state)) {
1830                 /* we could be here when either of below happens:
1831                  * 1. reset was initiated due to watchdog timeout caused by
1832                  *    a. IMP was earlier reset and our TX got choked down and
1833                  *       which resulted in watchdog reacting and inducing VF
1834                  *       reset. This also means our cmdq would be unreliable.
1835                  *    b. problem in TX due to other lower layer(example link
1836                  *       layer not functioning properly etc.)
1837                  * 2. VF reset might have been initiated due to some config
1838                  *    change.
1839                  *
1840                  * NOTE: Theres no clear way to detect above cases than to react
1841                  * to the response of PF for this reset request. PF will ack the
1842                  * 1b and 2. cases but we will not get any intimation about 1a
1843                  * from PF as cmdq would be in unreliable state i.e. mailbox
1844                  * communication between PF and VF would be broken.
1845                  *
1846                  * if we are never geting into pending state it means either:
1847                  * 1. PF is not receiving our request which could be due to IMP
1848                  *    reset
1849                  * 2. PF is screwed
1850                  * We cannot do much for 2. but to check first we can try reset
1851                  * our PCIe + stack and see if it alleviates the problem.
1852                  */
1853                 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1854                         /* prepare for full reset of stack + pcie interface */
1855                         set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1856
1857                         /* "defer" schedule the reset task again */
1858                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1859                 } else {
1860                         hdev->reset_attempts++;
1861
1862                         set_bit(hdev->reset_level, &hdev->reset_pending);
1863                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1864                 }
1865                 hclgevf_reset_task_schedule(hdev);
1866         }
1867
1868         hdev->reset_type = HNAE3_NONE_RESET;
1869         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1870         up(&hdev->reset_sem);
1871 }
1872
1873 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1874 {
1875         if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1876                 return;
1877
1878         if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1879                 return;
1880
1881         hclgevf_mbx_async_handler(hdev);
1882
1883         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1884 }
1885
1886 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1887 {
1888         struct hclge_vf_to_pf_msg send_msg;
1889         int ret;
1890
1891         if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1892                 return;
1893
1894         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1895         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1896         if (ret)
1897                 dev_err(&hdev->pdev->dev,
1898                         "VF sends keep alive cmd failed(=%d)\n", ret);
1899 }
1900
1901 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1902 {
1903         unsigned long delta = round_jiffies_relative(HZ);
1904         struct hnae3_handle *handle = &hdev->nic;
1905
1906         if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1907                 return;
1908
1909         if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1910                 delta = jiffies - hdev->last_serv_processed;
1911
1912                 if (delta < round_jiffies_relative(HZ)) {
1913                         delta = round_jiffies_relative(HZ) - delta;
1914                         goto out;
1915                 }
1916         }
1917
1918         hdev->serv_processed_cnt++;
1919         if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1920                 hclgevf_keep_alive(hdev);
1921
1922         if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1923                 hdev->last_serv_processed = jiffies;
1924                 goto out;
1925         }
1926
1927         if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1928                 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1929
1930         /* VF does not need to request link status when this bit is set, because
1931          * PF will push its link status to VFs when link status changed.
1932          */
1933         if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1934                 hclgevf_request_link_info(hdev);
1935
1936         hclgevf_update_link_mode(hdev);
1937
1938         hclgevf_sync_vlan_filter(hdev);
1939
1940         hclgevf_sync_mac_table(hdev);
1941
1942         hclgevf_sync_promisc_mode(hdev);
1943
1944         hdev->last_serv_processed = jiffies;
1945
1946 out:
1947         hclgevf_task_schedule(hdev, delta);
1948 }
1949
1950 static void hclgevf_service_task(struct work_struct *work)
1951 {
1952         struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1953                                                 service_task.work);
1954
1955         hclgevf_reset_service_task(hdev);
1956         hclgevf_mailbox_service_task(hdev);
1957         hclgevf_periodic_service_task(hdev);
1958
1959         /* Handle reset and mbx again in case periodical task delays the
1960          * handling by calling hclgevf_task_schedule() in
1961          * hclgevf_periodic_service_task()
1962          */
1963         hclgevf_reset_service_task(hdev);
1964         hclgevf_mailbox_service_task(hdev);
1965 }
1966
1967 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1968 {
1969         hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1970 }
1971
1972 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1973                                                       u32 *clearval)
1974 {
1975         u32 val, cmdq_stat_reg, rst_ing_reg;
1976
1977         /* fetch the events from their corresponding regs */
1978         cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1979                                          HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1980         if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1981                 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1982                 dev_info(&hdev->pdev->dev,
1983                          "receive reset interrupt 0x%x!\n", rst_ing_reg);
1984                 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1985                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1986                 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1987                 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1988                 hdev->rst_stats.vf_rst_cnt++;
1989                 /* set up VF hardware reset status, its PF will clear
1990                  * this status when PF has initialized done.
1991                  */
1992                 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1993                 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1994                                   val | HCLGEVF_VF_RST_ING_BIT);
1995                 return HCLGEVF_VECTOR0_EVENT_RST;
1996         }
1997
1998         /* check for vector0 mailbox(=CMDQ RX) event source */
1999         if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2000                 /* for revision 0x21, clearing interrupt is writing bit 0
2001                  * to the clear register, writing bit 1 means to keep the
2002                  * old value.
2003                  * for revision 0x20, the clear register is a read & write
2004                  * register, so we should just write 0 to the bit we are
2005                  * handling, and keep other bits as cmdq_stat_reg.
2006                  */
2007                 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2008                         *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2009                 else
2010                         *clearval = cmdq_stat_reg &
2011                                     ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2012
2013                 return HCLGEVF_VECTOR0_EVENT_MBX;
2014         }
2015
2016         /* print other vector0 event source */
2017         dev_info(&hdev->pdev->dev,
2018                  "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2019                  cmdq_stat_reg);
2020
2021         return HCLGEVF_VECTOR0_EVENT_OTHER;
2022 }
2023
2024 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2025 {
2026         enum hclgevf_evt_cause event_cause;
2027         struct hclgevf_dev *hdev = data;
2028         u32 clearval;
2029
2030         hclgevf_enable_vector(&hdev->misc_vector, false);
2031         event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2032         if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2033                 hclgevf_clear_event_cause(hdev, clearval);
2034
2035         switch (event_cause) {
2036         case HCLGEVF_VECTOR0_EVENT_RST:
2037                 hclgevf_reset_task_schedule(hdev);
2038                 break;
2039         case HCLGEVF_VECTOR0_EVENT_MBX:
2040                 hclgevf_mbx_handler(hdev);
2041                 break;
2042         default:
2043                 break;
2044         }
2045
2046         hclgevf_enable_vector(&hdev->misc_vector, true);
2047
2048         return IRQ_HANDLED;
2049 }
2050
2051 static int hclgevf_configure(struct hclgevf_dev *hdev)
2052 {
2053         int ret;
2054
2055         hdev->gro_en = true;
2056
2057         ret = hclgevf_get_basic_info(hdev);
2058         if (ret)
2059                 return ret;
2060
2061         /* get current port based vlan state from PF */
2062         ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2063         if (ret)
2064                 return ret;
2065
2066         /* get queue configuration from PF */
2067         ret = hclgevf_get_queue_info(hdev);
2068         if (ret)
2069                 return ret;
2070
2071         /* get queue depth info from PF */
2072         ret = hclgevf_get_queue_depth(hdev);
2073         if (ret)
2074                 return ret;
2075
2076         return hclgevf_get_pf_media_type(hdev);
2077 }
2078
2079 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2080 {
2081         struct pci_dev *pdev = ae_dev->pdev;
2082         struct hclgevf_dev *hdev;
2083
2084         hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2085         if (!hdev)
2086                 return -ENOMEM;
2087
2088         hdev->pdev = pdev;
2089         hdev->ae_dev = ae_dev;
2090         ae_dev->priv = hdev;
2091
2092         return 0;
2093 }
2094
2095 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2096 {
2097         struct hnae3_handle *roce = &hdev->roce;
2098         struct hnae3_handle *nic = &hdev->nic;
2099
2100         roce->rinfo.num_vectors = hdev->num_roce_msix;
2101
2102         if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2103             hdev->num_msi_left == 0)
2104                 return -EINVAL;
2105
2106         roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2107
2108         roce->rinfo.netdev = nic->kinfo.netdev;
2109         roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2110         roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2111
2112         roce->pdev = nic->pdev;
2113         roce->ae_algo = nic->ae_algo;
2114         roce->numa_node_mask = nic->numa_node_mask;
2115
2116         return 0;
2117 }
2118
2119 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2120 {
2121         struct hclgevf_cfg_gro_status_cmd *req;
2122         struct hclge_desc desc;
2123         int ret;
2124
2125         if (!hnae3_dev_gro_supported(hdev))
2126                 return 0;
2127
2128         hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2129                                      false);
2130         req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2131
2132         req->gro_en = hdev->gro_en ? 1 : 0;
2133
2134         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2135         if (ret)
2136                 dev_err(&hdev->pdev->dev,
2137                         "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2138
2139         return ret;
2140 }
2141
2142 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2143 {
2144         struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2145         u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2146         u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2147         u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2148         int ret;
2149
2150         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2151                 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2152                                                   rss_cfg->rss_algo,
2153                                                   rss_cfg->rss_hash_key);
2154                 if (ret)
2155                         return ret;
2156
2157                 ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2158                                                      false, rss_cfg);
2159                 if (ret)
2160                         return ret;
2161         }
2162
2163         ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2164                                              rss_cfg->rss_indirection_tbl);
2165         if (ret)
2166                 return ret;
2167
2168         hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2169                                    tc_offset, tc_valid, tc_size);
2170
2171         return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2172                                           tc_valid, tc_size);
2173 }
2174
2175 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2176 {
2177         struct hnae3_handle *nic = &hdev->nic;
2178         int ret;
2179
2180         ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2181         if (ret) {
2182                 dev_err(&hdev->pdev->dev,
2183                         "failed to enable rx vlan offload, ret = %d\n", ret);
2184                 return ret;
2185         }
2186
2187         return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2188                                        false);
2189 }
2190
2191 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2192 {
2193 #define HCLGEVF_FLUSH_LINK_TIMEOUT      100000
2194
2195         unsigned long last = hdev->serv_processed_cnt;
2196         int i = 0;
2197
2198         while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2199                i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2200                last == hdev->serv_processed_cnt)
2201                 usleep_range(1, 1);
2202 }
2203
2204 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2205 {
2206         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2207
2208         if (enable) {
2209                 hclgevf_task_schedule(hdev, 0);
2210         } else {
2211                 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2212
2213                 /* flush memory to make sure DOWN is seen by service task */
2214                 smp_mb__before_atomic();
2215                 hclgevf_flush_link_update(hdev);
2216         }
2217 }
2218
2219 static int hclgevf_ae_start(struct hnae3_handle *handle)
2220 {
2221         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2222
2223         clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2224         clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2225
2226         hclge_comm_reset_tqp_stats(handle);
2227
2228         hclgevf_request_link_info(hdev);
2229
2230         hclgevf_update_link_mode(hdev);
2231
2232         return 0;
2233 }
2234
2235 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2236 {
2237         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2238
2239         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2240
2241         if (hdev->reset_type != HNAE3_VF_RESET)
2242                 hclgevf_reset_tqp(handle);
2243
2244         hclge_comm_reset_tqp_stats(handle);
2245         hclgevf_update_link_status(hdev, 0);
2246 }
2247
2248 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2249 {
2250 #define HCLGEVF_STATE_ALIVE     1
2251 #define HCLGEVF_STATE_NOT_ALIVE 0
2252
2253         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2254         struct hclge_vf_to_pf_msg send_msg;
2255
2256         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2257         send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2258                                 HCLGEVF_STATE_NOT_ALIVE;
2259         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2260 }
2261
2262 static int hclgevf_client_start(struct hnae3_handle *handle)
2263 {
2264         return hclgevf_set_alive(handle, true);
2265 }
2266
2267 static void hclgevf_client_stop(struct hnae3_handle *handle)
2268 {
2269         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2270         int ret;
2271
2272         ret = hclgevf_set_alive(handle, false);
2273         if (ret)
2274                 dev_warn(&hdev->pdev->dev,
2275                          "%s failed %d\n", __func__, ret);
2276 }
2277
2278 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2279 {
2280         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2281         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2282         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2283
2284         INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2285
2286         mutex_init(&hdev->mbx_resp.mbx_mutex);
2287         sema_init(&hdev->reset_sem, 1);
2288
2289         spin_lock_init(&hdev->mac_table.mac_list_lock);
2290         INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2291         INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2292
2293         /* bring the device down */
2294         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2295 }
2296
2297 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2298 {
2299         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2300         set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2301
2302         if (hdev->service_task.work.func)
2303                 cancel_delayed_work_sync(&hdev->service_task);
2304
2305         mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2306 }
2307
2308 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2309 {
2310         struct pci_dev *pdev = hdev->pdev;
2311         int vectors;
2312         int i;
2313
2314         if (hnae3_dev_roce_supported(hdev))
2315                 vectors = pci_alloc_irq_vectors(pdev,
2316                                                 hdev->roce_base_msix_offset + 1,
2317                                                 hdev->num_msi,
2318                                                 PCI_IRQ_MSIX);
2319         else
2320                 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2321                                                 hdev->num_msi,
2322                                                 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2323
2324         if (vectors < 0) {
2325                 dev_err(&pdev->dev,
2326                         "failed(%d) to allocate MSI/MSI-X vectors\n",
2327                         vectors);
2328                 return vectors;
2329         }
2330         if (vectors < hdev->num_msi)
2331                 dev_warn(&hdev->pdev->dev,
2332                          "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2333                          hdev->num_msi, vectors);
2334
2335         hdev->num_msi = vectors;
2336         hdev->num_msi_left = vectors;
2337
2338         hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2339                                            sizeof(u16), GFP_KERNEL);
2340         if (!hdev->vector_status) {
2341                 pci_free_irq_vectors(pdev);
2342                 return -ENOMEM;
2343         }
2344
2345         for (i = 0; i < hdev->num_msi; i++)
2346                 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2347
2348         hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2349                                         sizeof(int), GFP_KERNEL);
2350         if (!hdev->vector_irq) {
2351                 devm_kfree(&pdev->dev, hdev->vector_status);
2352                 pci_free_irq_vectors(pdev);
2353                 return -ENOMEM;
2354         }
2355
2356         return 0;
2357 }
2358
2359 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2360 {
2361         struct pci_dev *pdev = hdev->pdev;
2362
2363         devm_kfree(&pdev->dev, hdev->vector_status);
2364         devm_kfree(&pdev->dev, hdev->vector_irq);
2365         pci_free_irq_vectors(pdev);
2366 }
2367
2368 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2369 {
2370         int ret;
2371
2372         hclgevf_get_misc_vector(hdev);
2373
2374         snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2375                  HCLGEVF_NAME, pci_name(hdev->pdev));
2376         ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2377                           0, hdev->misc_vector.name, hdev);
2378         if (ret) {
2379                 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2380                         hdev->misc_vector.vector_irq);
2381                 return ret;
2382         }
2383
2384         hclgevf_clear_event_cause(hdev, 0);
2385
2386         /* enable misc. vector(vector 0) */
2387         hclgevf_enable_vector(&hdev->misc_vector, true);
2388
2389         return ret;
2390 }
2391
2392 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2393 {
2394         /* disable misc vector(vector 0) */
2395         hclgevf_enable_vector(&hdev->misc_vector, false);
2396         synchronize_irq(hdev->misc_vector.vector_irq);
2397         free_irq(hdev->misc_vector.vector_irq, hdev);
2398         hclgevf_free_vector(hdev, 0);
2399 }
2400
2401 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2402 {
2403         struct device *dev = &hdev->pdev->dev;
2404
2405         dev_info(dev, "VF info begin:\n");
2406
2407         dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2408         dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2409         dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2410         dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2411         dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2412         dev_info(dev, "PF media type of this VF: %u\n",
2413                  hdev->hw.mac.media_type);
2414
2415         dev_info(dev, "VF info end.\n");
2416 }
2417
2418 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2419                                             struct hnae3_client *client)
2420 {
2421         struct hclgevf_dev *hdev = ae_dev->priv;
2422         int rst_cnt = hdev->rst_stats.rst_cnt;
2423         int ret;
2424
2425         ret = client->ops->init_instance(&hdev->nic);
2426         if (ret)
2427                 return ret;
2428
2429         set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2430         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2431             rst_cnt != hdev->rst_stats.rst_cnt) {
2432                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2433
2434                 client->ops->uninit_instance(&hdev->nic, 0);
2435                 return -EBUSY;
2436         }
2437
2438         hnae3_set_client_init_flag(client, ae_dev, 1);
2439
2440         if (netif_msg_drv(&hdev->nic))
2441                 hclgevf_info_show(hdev);
2442
2443         return 0;
2444 }
2445
2446 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2447                                              struct hnae3_client *client)
2448 {
2449         struct hclgevf_dev *hdev = ae_dev->priv;
2450         int ret;
2451
2452         if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2453             !hdev->nic_client)
2454                 return 0;
2455
2456         ret = hclgevf_init_roce_base_info(hdev);
2457         if (ret)
2458                 return ret;
2459
2460         ret = client->ops->init_instance(&hdev->roce);
2461         if (ret)
2462                 return ret;
2463
2464         set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2465         hnae3_set_client_init_flag(client, ae_dev, 1);
2466
2467         return 0;
2468 }
2469
2470 static int hclgevf_init_client_instance(struct hnae3_client *client,
2471                                         struct hnae3_ae_dev *ae_dev)
2472 {
2473         struct hclgevf_dev *hdev = ae_dev->priv;
2474         int ret;
2475
2476         switch (client->type) {
2477         case HNAE3_CLIENT_KNIC:
2478                 hdev->nic_client = client;
2479                 hdev->nic.client = client;
2480
2481                 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2482                 if (ret)
2483                         goto clear_nic;
2484
2485                 ret = hclgevf_init_roce_client_instance(ae_dev,
2486                                                         hdev->roce_client);
2487                 if (ret)
2488                         goto clear_roce;
2489
2490                 break;
2491         case HNAE3_CLIENT_ROCE:
2492                 if (hnae3_dev_roce_supported(hdev)) {
2493                         hdev->roce_client = client;
2494                         hdev->roce.client = client;
2495                 }
2496
2497                 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2498                 if (ret)
2499                         goto clear_roce;
2500
2501                 break;
2502         default:
2503                 return -EINVAL;
2504         }
2505
2506         return 0;
2507
2508 clear_nic:
2509         hdev->nic_client = NULL;
2510         hdev->nic.client = NULL;
2511         return ret;
2512 clear_roce:
2513         hdev->roce_client = NULL;
2514         hdev->roce.client = NULL;
2515         return ret;
2516 }
2517
2518 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2519                                            struct hnae3_ae_dev *ae_dev)
2520 {
2521         struct hclgevf_dev *hdev = ae_dev->priv;
2522
2523         /* un-init roce, if it exists */
2524         if (hdev->roce_client) {
2525                 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2526                         msleep(HCLGEVF_WAIT_RESET_DONE);
2527                 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2528
2529                 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2530                 hdev->roce_client = NULL;
2531                 hdev->roce.client = NULL;
2532         }
2533
2534         /* un-init nic/unic, if this was not called by roce client */
2535         if (client->ops->uninit_instance && hdev->nic_client &&
2536             client->type != HNAE3_CLIENT_ROCE) {
2537                 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2538                         msleep(HCLGEVF_WAIT_RESET_DONE);
2539                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2540
2541                 client->ops->uninit_instance(&hdev->nic, 0);
2542                 hdev->nic_client = NULL;
2543                 hdev->nic.client = NULL;
2544         }
2545 }
2546
2547 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2548 {
2549 #define HCLGEVF_MEM_BAR         4
2550
2551         struct pci_dev *pdev = hdev->pdev;
2552         struct hclgevf_hw *hw = &hdev->hw;
2553
2554         /* for device does not have device memory, return directly */
2555         if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2556                 return 0;
2557
2558         hw->hw.mem_base =
2559                 devm_ioremap_wc(&pdev->dev,
2560                                 pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2561                                 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2562         if (!hw->hw.mem_base) {
2563                 dev_err(&pdev->dev, "failed to map device memory\n");
2564                 return -EFAULT;
2565         }
2566
2567         return 0;
2568 }
2569
2570 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2571 {
2572         struct pci_dev *pdev = hdev->pdev;
2573         struct hclgevf_hw *hw;
2574         int ret;
2575
2576         ret = pci_enable_device(pdev);
2577         if (ret) {
2578                 dev_err(&pdev->dev, "failed to enable PCI device\n");
2579                 return ret;
2580         }
2581
2582         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2583         if (ret) {
2584                 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2585                 goto err_disable_device;
2586         }
2587
2588         ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2589         if (ret) {
2590                 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2591                 goto err_disable_device;
2592         }
2593
2594         pci_set_master(pdev);
2595         hw = &hdev->hw;
2596         hw->hw.io_base = pci_iomap(pdev, 2, 0);
2597         if (!hw->hw.io_base) {
2598                 dev_err(&pdev->dev, "can't map configuration register space\n");
2599                 ret = -ENOMEM;
2600                 goto err_clr_master;
2601         }
2602
2603         ret = hclgevf_dev_mem_map(hdev);
2604         if (ret)
2605                 goto err_unmap_io_base;
2606
2607         return 0;
2608
2609 err_unmap_io_base:
2610         pci_iounmap(pdev, hdev->hw.hw.io_base);
2611 err_clr_master:
2612         pci_clear_master(pdev);
2613         pci_release_regions(pdev);
2614 err_disable_device:
2615         pci_disable_device(pdev);
2616
2617         return ret;
2618 }
2619
2620 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2621 {
2622         struct pci_dev *pdev = hdev->pdev;
2623
2624         if (hdev->hw.hw.mem_base)
2625                 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2626
2627         pci_iounmap(pdev, hdev->hw.hw.io_base);
2628         pci_clear_master(pdev);
2629         pci_release_regions(pdev);
2630         pci_disable_device(pdev);
2631 }
2632
2633 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2634 {
2635         struct hclgevf_query_res_cmd *req;
2636         struct hclge_desc desc;
2637         int ret;
2638
2639         hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2640         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2641         if (ret) {
2642                 dev_err(&hdev->pdev->dev,
2643                         "query vf resource failed, ret = %d.\n", ret);
2644                 return ret;
2645         }
2646
2647         req = (struct hclgevf_query_res_cmd *)desc.data;
2648
2649         if (hnae3_dev_roce_supported(hdev)) {
2650                 hdev->roce_base_msix_offset =
2651                 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2652                                 HCLGEVF_MSIX_OFT_ROCEE_M,
2653                                 HCLGEVF_MSIX_OFT_ROCEE_S);
2654                 hdev->num_roce_msix =
2655                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2656                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2657
2658                 /* nic's msix numbers is always equals to the roce's. */
2659                 hdev->num_nic_msix = hdev->num_roce_msix;
2660
2661                 /* VF should have NIC vectors and Roce vectors, NIC vectors
2662                  * are queued before Roce vectors. The offset is fixed to 64.
2663                  */
2664                 hdev->num_msi = hdev->num_roce_msix +
2665                                 hdev->roce_base_msix_offset;
2666         } else {
2667                 hdev->num_msi =
2668                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2669                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2670
2671                 hdev->num_nic_msix = hdev->num_msi;
2672         }
2673
2674         if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2675                 dev_err(&hdev->pdev->dev,
2676                         "Just %u msi resources, not enough for vf(min:2).\n",
2677                         hdev->num_nic_msix);
2678                 return -EINVAL;
2679         }
2680
2681         return 0;
2682 }
2683
2684 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2685 {
2686 #define HCLGEVF_MAX_NON_TSO_BD_NUM                      8U
2687
2688         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2689
2690         ae_dev->dev_specs.max_non_tso_bd_num =
2691                                         HCLGEVF_MAX_NON_TSO_BD_NUM;
2692         ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2693         ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2694         ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2695         ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2696 }
2697
2698 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2699                                     struct hclge_desc *desc)
2700 {
2701         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2702         struct hclgevf_dev_specs_0_cmd *req0;
2703         struct hclgevf_dev_specs_1_cmd *req1;
2704
2705         req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2706         req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2707
2708         ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2709         ae_dev->dev_specs.rss_ind_tbl_size =
2710                                         le16_to_cpu(req0->rss_ind_tbl_size);
2711         ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2712         ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2713         ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2714         ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2715 }
2716
2717 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2718 {
2719         struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2720
2721         if (!dev_specs->max_non_tso_bd_num)
2722                 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2723         if (!dev_specs->rss_ind_tbl_size)
2724                 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2725         if (!dev_specs->rss_key_size)
2726                 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2727         if (!dev_specs->max_int_gl)
2728                 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2729         if (!dev_specs->max_frm_size)
2730                 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2731 }
2732
2733 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2734 {
2735         struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2736         int ret;
2737         int i;
2738
2739         /* set default specifications as devices lower than version V3 do not
2740          * support querying specifications from firmware.
2741          */
2742         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2743                 hclgevf_set_default_dev_specs(hdev);
2744                 return 0;
2745         }
2746
2747         for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2748                 hclgevf_cmd_setup_basic_desc(&desc[i],
2749                                              HCLGE_OPC_QUERY_DEV_SPECS, true);
2750                 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2751         }
2752         hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2753
2754         ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2755         if (ret)
2756                 return ret;
2757
2758         hclgevf_parse_dev_specs(hdev, desc);
2759         hclgevf_check_dev_specs(hdev);
2760
2761         return 0;
2762 }
2763
2764 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2765 {
2766         struct pci_dev *pdev = hdev->pdev;
2767         int ret = 0;
2768
2769         if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2770             test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2771                 hclgevf_misc_irq_uninit(hdev);
2772                 hclgevf_uninit_msi(hdev);
2773                 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2774         }
2775
2776         if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2777                 pci_set_master(pdev);
2778                 ret = hclgevf_init_msi(hdev);
2779                 if (ret) {
2780                         dev_err(&pdev->dev,
2781                                 "failed(%d) to init MSI/MSI-X\n", ret);
2782                         return ret;
2783                 }
2784
2785                 ret = hclgevf_misc_irq_init(hdev);
2786                 if (ret) {
2787                         hclgevf_uninit_msi(hdev);
2788                         dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2789                                 ret);
2790                         return ret;
2791                 }
2792
2793                 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2794         }
2795
2796         return ret;
2797 }
2798
2799 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2800 {
2801         struct hclge_vf_to_pf_msg send_msg;
2802
2803         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2804                                HCLGE_MBX_VPORT_LIST_CLEAR);
2805         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2806 }
2807
2808 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2809 {
2810         if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2811                 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2812 }
2813
2814 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2815 {
2816         if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2817                 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2818 }
2819
2820 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2821 {
2822         struct pci_dev *pdev = hdev->pdev;
2823         int ret;
2824
2825         ret = hclgevf_pci_reset(hdev);
2826         if (ret) {
2827                 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2828                 return ret;
2829         }
2830
2831         hclgevf_arq_init(hdev);
2832         ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2833                                   &hdev->fw_version, false,
2834                                   hdev->reset_pending);
2835         if (ret) {
2836                 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2837                 return ret;
2838         }
2839
2840         ret = hclgevf_rss_init_hw(hdev);
2841         if (ret) {
2842                 dev_err(&hdev->pdev->dev,
2843                         "failed(%d) to initialize RSS\n", ret);
2844                 return ret;
2845         }
2846
2847         ret = hclgevf_config_gro(hdev);
2848         if (ret)
2849                 return ret;
2850
2851         ret = hclgevf_init_vlan_config(hdev);
2852         if (ret) {
2853                 dev_err(&hdev->pdev->dev,
2854                         "failed(%d) to initialize VLAN config\n", ret);
2855                 return ret;
2856         }
2857
2858         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2859
2860         hclgevf_init_rxd_adv_layout(hdev);
2861
2862         dev_info(&hdev->pdev->dev, "Reset done\n");
2863
2864         return 0;
2865 }
2866
2867 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2868 {
2869         struct pci_dev *pdev = hdev->pdev;
2870         int ret;
2871
2872         ret = hclgevf_pci_init(hdev);
2873         if (ret)
2874                 return ret;
2875
2876         ret = hclgevf_devlink_init(hdev);
2877         if (ret)
2878                 goto err_devlink_init;
2879
2880         ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2881         if (ret)
2882                 goto err_cmd_queue_init;
2883
2884         hclgevf_arq_init(hdev);
2885         ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2886                                   &hdev->fw_version, false,
2887                                   hdev->reset_pending);
2888         if (ret)
2889                 goto err_cmd_init;
2890
2891         /* Get vf resource */
2892         ret = hclgevf_query_vf_resource(hdev);
2893         if (ret)
2894                 goto err_cmd_init;
2895
2896         ret = hclgevf_query_dev_specs(hdev);
2897         if (ret) {
2898                 dev_err(&pdev->dev,
2899                         "failed to query dev specifications, ret = %d\n", ret);
2900                 goto err_cmd_init;
2901         }
2902
2903         ret = hclgevf_init_msi(hdev);
2904         if (ret) {
2905                 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2906                 goto err_cmd_init;
2907         }
2908
2909         hclgevf_state_init(hdev);
2910         hdev->reset_level = HNAE3_VF_FUNC_RESET;
2911         hdev->reset_type = HNAE3_NONE_RESET;
2912
2913         ret = hclgevf_misc_irq_init(hdev);
2914         if (ret)
2915                 goto err_misc_irq_init;
2916
2917         set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2918
2919         ret = hclgevf_configure(hdev);
2920         if (ret) {
2921                 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2922                 goto err_config;
2923         }
2924
2925         ret = hclgevf_alloc_tqps(hdev);
2926         if (ret) {
2927                 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2928                 goto err_config;
2929         }
2930
2931         ret = hclgevf_set_handle_info(hdev);
2932         if (ret)
2933                 goto err_config;
2934
2935         ret = hclgevf_config_gro(hdev);
2936         if (ret)
2937                 goto err_config;
2938
2939         /* Initialize RSS for this VF */
2940         ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2941                                       &hdev->rss_cfg);
2942         if (ret) {
2943                 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2944                 goto err_config;
2945         }
2946
2947         ret = hclgevf_rss_init_hw(hdev);
2948         if (ret) {
2949                 dev_err(&hdev->pdev->dev,
2950                         "failed(%d) to initialize RSS\n", ret);
2951                 goto err_config;
2952         }
2953
2954         /* ensure vf tbl list as empty before init*/
2955         ret = hclgevf_clear_vport_list(hdev);
2956         if (ret) {
2957                 dev_err(&pdev->dev,
2958                         "failed to clear tbl list configuration, ret = %d.\n",
2959                         ret);
2960                 goto err_config;
2961         }
2962
2963         ret = hclgevf_init_vlan_config(hdev);
2964         if (ret) {
2965                 dev_err(&hdev->pdev->dev,
2966                         "failed(%d) to initialize VLAN config\n", ret);
2967                 goto err_config;
2968         }
2969
2970         hclgevf_init_rxd_adv_layout(hdev);
2971
2972         set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2973
2974         hdev->last_reset_time = jiffies;
2975         dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2976                  HCLGEVF_DRIVER_NAME);
2977
2978         hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2979
2980         return 0;
2981
2982 err_config:
2983         hclgevf_misc_irq_uninit(hdev);
2984 err_misc_irq_init:
2985         hclgevf_state_uninit(hdev);
2986         hclgevf_uninit_msi(hdev);
2987 err_cmd_init:
2988         hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2989 err_cmd_queue_init:
2990         hclgevf_devlink_uninit(hdev);
2991 err_devlink_init:
2992         hclgevf_pci_uninit(hdev);
2993         clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2994         return ret;
2995 }
2996
2997 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2998 {
2999         struct hclge_vf_to_pf_msg send_msg;
3000
3001         hclgevf_state_uninit(hdev);
3002         hclgevf_uninit_rxd_adv_layout(hdev);
3003
3004         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3005         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3006
3007         if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3008                 hclgevf_misc_irq_uninit(hdev);
3009                 hclgevf_uninit_msi(hdev);
3010         }
3011
3012         hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3013         hclgevf_devlink_uninit(hdev);
3014         hclgevf_pci_uninit(hdev);
3015         hclgevf_uninit_mac_list(hdev);
3016 }
3017
3018 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3019 {
3020         struct pci_dev *pdev = ae_dev->pdev;
3021         int ret;
3022
3023         ret = hclgevf_alloc_hdev(ae_dev);
3024         if (ret) {
3025                 dev_err(&pdev->dev, "hclge device allocation failed\n");
3026                 return ret;
3027         }
3028
3029         ret = hclgevf_init_hdev(ae_dev->priv);
3030         if (ret) {
3031                 dev_err(&pdev->dev, "hclge device initialization failed\n");
3032                 return ret;
3033         }
3034
3035         return 0;
3036 }
3037
3038 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3039 {
3040         struct hclgevf_dev *hdev = ae_dev->priv;
3041
3042         hclgevf_uninit_hdev(hdev);
3043         ae_dev->priv = NULL;
3044 }
3045
3046 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3047 {
3048         struct hnae3_handle *nic = &hdev->nic;
3049         struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3050
3051         return min_t(u32, hdev->rss_size_max,
3052                      hdev->num_tqps / kinfo->tc_info.num_tc);
3053 }
3054
3055 /**
3056  * hclgevf_get_channels - Get the current channels enabled and max supported.
3057  * @handle: hardware information for network interface
3058  * @ch: ethtool channels structure
3059  *
3060  * We don't support separate tx and rx queues as channels. The other count
3061  * represents how many queues are being used for control. max_combined counts
3062  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3063  * q_vectors since we support a lot more queue pairs than q_vectors.
3064  **/
3065 static void hclgevf_get_channels(struct hnae3_handle *handle,
3066                                  struct ethtool_channels *ch)
3067 {
3068         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3069
3070         ch->max_combined = hclgevf_get_max_channels(hdev);
3071         ch->other_count = 0;
3072         ch->max_other = 0;
3073         ch->combined_count = handle->kinfo.rss_size;
3074 }
3075
3076 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3077                                           u16 *alloc_tqps, u16 *max_rss_size)
3078 {
3079         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3080
3081         *alloc_tqps = hdev->num_tqps;
3082         *max_rss_size = hdev->rss_size_max;
3083 }
3084
3085 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3086                                     u32 new_tqps_num)
3087 {
3088         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3089         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3090         u16 max_rss_size;
3091
3092         kinfo->req_rss_size = new_tqps_num;
3093
3094         max_rss_size = min_t(u16, hdev->rss_size_max,
3095                              hdev->num_tqps / kinfo->tc_info.num_tc);
3096
3097         /* Use the user's configuration when it is not larger than
3098          * max_rss_size, otherwise, use the maximum specification value.
3099          */
3100         if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3101             kinfo->req_rss_size <= max_rss_size)
3102                 kinfo->rss_size = kinfo->req_rss_size;
3103         else if (kinfo->rss_size > max_rss_size ||
3104                  (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3105                 kinfo->rss_size = max_rss_size;
3106
3107         kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3108 }
3109
3110 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3111                                 bool rxfh_configured)
3112 {
3113         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3114         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3115         u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3116         u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3117         u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3118         u16 cur_rss_size = kinfo->rss_size;
3119         u16 cur_tqps = kinfo->num_tqps;
3120         u32 *rss_indir;
3121         unsigned int i;
3122         int ret;
3123
3124         hclgevf_update_rss_size(handle, new_tqps_num);
3125
3126         hclge_comm_get_rss_tc_info(cur_rss_size, hdev->hw_tc_map,
3127                                    tc_offset, tc_valid, tc_size);
3128         ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3129                                          tc_valid, tc_size);
3130         if (ret)
3131                 return ret;
3132
3133         /* RSS indirection table has been configured by user */
3134         if (rxfh_configured)
3135                 goto out;
3136
3137         /* Reinitializes the rss indirect table according to the new RSS size */
3138         rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3139                             sizeof(u32), GFP_KERNEL);
3140         if (!rss_indir)
3141                 return -ENOMEM;
3142
3143         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3144                 rss_indir[i] = i % kinfo->rss_size;
3145
3146         hdev->rss_cfg.rss_size = kinfo->rss_size;
3147
3148         ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3149         if (ret)
3150                 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3151                         ret);
3152
3153         kfree(rss_indir);
3154
3155 out:
3156         if (!ret)
3157                 dev_info(&hdev->pdev->dev,
3158                          "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3159                          cur_rss_size, kinfo->rss_size,
3160                          cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3161
3162         return ret;
3163 }
3164
3165 static int hclgevf_get_status(struct hnae3_handle *handle)
3166 {
3167         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3168
3169         return hdev->hw.mac.link;
3170 }
3171
3172 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3173                                             u8 *auto_neg, u32 *speed,
3174                                             u8 *duplex)
3175 {
3176         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3177
3178         if (speed)
3179                 *speed = hdev->hw.mac.speed;
3180         if (duplex)
3181                 *duplex = hdev->hw.mac.duplex;
3182         if (auto_neg)
3183                 *auto_neg = AUTONEG_DISABLE;
3184 }
3185
3186 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3187                                  u8 duplex)
3188 {
3189         hdev->hw.mac.speed = speed;
3190         hdev->hw.mac.duplex = duplex;
3191 }
3192
3193 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3194 {
3195         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3196         bool gro_en_old = hdev->gro_en;
3197         int ret;
3198
3199         hdev->gro_en = enable;
3200         ret = hclgevf_config_gro(hdev);
3201         if (ret)
3202                 hdev->gro_en = gro_en_old;
3203
3204         return ret;
3205 }
3206
3207 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3208                                    u8 *module_type)
3209 {
3210         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3211
3212         if (media_type)
3213                 *media_type = hdev->hw.mac.media_type;
3214
3215         if (module_type)
3216                 *module_type = hdev->hw.mac.module_type;
3217 }
3218
3219 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3220 {
3221         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3222
3223         return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3224 }
3225
3226 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3227 {
3228         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3229
3230         return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3231 }
3232
3233 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3234 {
3235         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3236
3237         return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3238 }
3239
3240 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3241 {
3242         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3243
3244         return hdev->rst_stats.hw_rst_done_cnt;
3245 }
3246
3247 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3248                                   unsigned long *supported,
3249                                   unsigned long *advertising)
3250 {
3251         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3252
3253         *supported = hdev->hw.mac.supported;
3254         *advertising = hdev->hw.mac.advertising;
3255 }
3256
3257 #define MAX_SEPARATE_NUM        4
3258 #define SEPARATOR_VALUE         0xFDFCFBFA
3259 #define REG_NUM_PER_LINE        4
3260 #define REG_LEN_PER_LINE        (REG_NUM_PER_LINE * sizeof(u32))
3261
3262 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3263 {
3264         int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3265         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3266
3267         cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3268         common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3269         ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3270         tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3271
3272         return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3273                 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3274 }
3275
3276 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3277                              void *data)
3278 {
3279         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3280         int i, j, reg_um, separator_num;
3281         u32 *reg = data;
3282
3283         *version = hdev->fw_version;
3284
3285         /* fetching per-VF registers values from VF PCIe register space */
3286         reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3287         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3288         for (i = 0; i < reg_um; i++)
3289                 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3290         for (i = 0; i < separator_num; i++)
3291                 *reg++ = SEPARATOR_VALUE;
3292
3293         reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3294         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3295         for (i = 0; i < reg_um; i++)
3296                 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3297         for (i = 0; i < separator_num; i++)
3298                 *reg++ = SEPARATOR_VALUE;
3299
3300         reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3301         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3302         for (j = 0; j < hdev->num_tqps; j++) {
3303                 for (i = 0; i < reg_um; i++)
3304                         *reg++ = hclgevf_read_dev(&hdev->hw,
3305                                                   ring_reg_addr_list[i] +
3306                                                   0x200 * j);
3307                 for (i = 0; i < separator_num; i++)
3308                         *reg++ = SEPARATOR_VALUE;
3309         }
3310
3311         reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3312         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3313         for (j = 0; j < hdev->num_msi_used - 1; j++) {
3314                 for (i = 0; i < reg_um; i++)
3315                         *reg++ = hclgevf_read_dev(&hdev->hw,
3316                                                   tqp_intr_reg_addr_list[i] +
3317                                                   4 * j);
3318                 for (i = 0; i < separator_num; i++)
3319                         *reg++ = SEPARATOR_VALUE;
3320         }
3321 }
3322
3323 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3324                                         u8 *port_base_vlan_info, u8 data_size)
3325 {
3326         struct hnae3_handle *nic = &hdev->nic;
3327         struct hclge_vf_to_pf_msg send_msg;
3328         int ret;
3329
3330         rtnl_lock();
3331
3332         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3333             test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3334                 dev_warn(&hdev->pdev->dev,
3335                          "is resetting when updating port based vlan info\n");
3336                 rtnl_unlock();
3337                 return;
3338         }
3339
3340         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3341         if (ret) {
3342                 rtnl_unlock();
3343                 return;
3344         }
3345
3346         /* send msg to PF and wait update port based vlan info */
3347         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3348                                HCLGE_MBX_PORT_BASE_VLAN_CFG);
3349         memcpy(send_msg.data, port_base_vlan_info, data_size);
3350         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3351         if (!ret) {
3352                 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3353                         nic->port_base_vlan_state = state;
3354                 else
3355                         nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3356         }
3357
3358         hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3359         rtnl_unlock();
3360 }
3361
3362 static const struct hnae3_ae_ops hclgevf_ops = {
3363         .init_ae_dev = hclgevf_init_ae_dev,
3364         .uninit_ae_dev = hclgevf_uninit_ae_dev,
3365         .reset_prepare = hclgevf_reset_prepare_general,
3366         .reset_done = hclgevf_reset_done,
3367         .init_client_instance = hclgevf_init_client_instance,
3368         .uninit_client_instance = hclgevf_uninit_client_instance,
3369         .start = hclgevf_ae_start,
3370         .stop = hclgevf_ae_stop,
3371         .client_start = hclgevf_client_start,
3372         .client_stop = hclgevf_client_stop,
3373         .map_ring_to_vector = hclgevf_map_ring_to_vector,
3374         .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3375         .get_vector = hclgevf_get_vector,
3376         .put_vector = hclgevf_put_vector,
3377         .reset_queue = hclgevf_reset_tqp,
3378         .get_mac_addr = hclgevf_get_mac_addr,
3379         .set_mac_addr = hclgevf_set_mac_addr,
3380         .add_uc_addr = hclgevf_add_uc_addr,
3381         .rm_uc_addr = hclgevf_rm_uc_addr,
3382         .add_mc_addr = hclgevf_add_mc_addr,
3383         .rm_mc_addr = hclgevf_rm_mc_addr,
3384         .get_stats = hclgevf_get_stats,
3385         .update_stats = hclgevf_update_stats,
3386         .get_strings = hclgevf_get_strings,
3387         .get_sset_count = hclgevf_get_sset_count,
3388         .get_rss_key_size = hclge_comm_get_rss_key_size,
3389         .get_rss = hclgevf_get_rss,
3390         .set_rss = hclgevf_set_rss,
3391         .get_rss_tuple = hclgevf_get_rss_tuple,
3392         .set_rss_tuple = hclgevf_set_rss_tuple,
3393         .get_tc_size = hclgevf_get_tc_size,
3394         .get_fw_version = hclgevf_get_fw_version,
3395         .set_vlan_filter = hclgevf_set_vlan_filter,
3396         .enable_vlan_filter = hclgevf_enable_vlan_filter,
3397         .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3398         .reset_event = hclgevf_reset_event,
3399         .set_default_reset_request = hclgevf_set_def_reset_request,
3400         .set_channels = hclgevf_set_channels,
3401         .get_channels = hclgevf_get_channels,
3402         .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3403         .get_regs_len = hclgevf_get_regs_len,
3404         .get_regs = hclgevf_get_regs,
3405         .get_status = hclgevf_get_status,
3406         .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3407         .get_media_type = hclgevf_get_media_type,
3408         .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3409         .ae_dev_resetting = hclgevf_ae_dev_resetting,
3410         .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3411         .set_gro_en = hclgevf_gro_en,
3412         .set_mtu = hclgevf_set_mtu,
3413         .get_global_queue_id = hclgevf_get_qid_global,
3414         .set_timer_task = hclgevf_set_timer_task,
3415         .get_link_mode = hclgevf_get_link_mode,
3416         .set_promisc_mode = hclgevf_set_promisc_mode,
3417         .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3418         .get_cmdq_stat = hclgevf_get_cmdq_stat,
3419 };
3420
3421 static struct hnae3_ae_algo ae_algovf = {
3422         .ops = &hclgevf_ops,
3423         .pdev_id_table = ae_algovf_pci_tbl,
3424 };
3425
3426 static int hclgevf_init(void)
3427 {
3428         pr_info("%s is initializing\n", HCLGEVF_NAME);
3429
3430         hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3431         if (!hclgevf_wq) {
3432                 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3433                 return -ENOMEM;
3434         }
3435
3436         hnae3_register_ae_algo(&ae_algovf);
3437
3438         return 0;
3439 }
3440
3441 static void hclgevf_exit(void)
3442 {
3443         hnae3_unregister_ae_algo(&ae_algovf);
3444         destroy_workqueue(hclgevf_wq);
3445 }
3446 module_init(hclgevf_init);
3447 module_exit(hclgevf_exit);
3448
3449 MODULE_LICENSE("GPL");
3450 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3451 MODULE_DESCRIPTION("HCLGEVF Driver");
3452 MODULE_VERSION(HCLGEVF_MOD_VERSION);