a13a0e101c3bfc96d2d2175edf26defa0ea173e6
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME    "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT      5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18
19 static const struct pci_device_id ae_algovf_pci_tbl[] = {
20         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
21         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
22         /* required last entry */
23         {0, }
24 };
25
26 static const u8 hclgevf_hash_key[] = {
27         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
28         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
29         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
30         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
31         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
32 };
33
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35
36 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
37                                          HCLGEVF_CMDQ_TX_ADDR_H_REG,
38                                          HCLGEVF_CMDQ_TX_DEPTH_REG,
39                                          HCLGEVF_CMDQ_TX_TAIL_REG,
40                                          HCLGEVF_CMDQ_TX_HEAD_REG,
41                                          HCLGEVF_CMDQ_RX_ADDR_L_REG,
42                                          HCLGEVF_CMDQ_RX_ADDR_H_REG,
43                                          HCLGEVF_CMDQ_RX_DEPTH_REG,
44                                          HCLGEVF_CMDQ_RX_TAIL_REG,
45                                          HCLGEVF_CMDQ_RX_HEAD_REG,
46                                          HCLGEVF_VECTOR0_CMDQ_SRC_REG,
47                                          HCLGEVF_CMDQ_INTR_STS_REG,
48                                          HCLGEVF_CMDQ_INTR_EN_REG,
49                                          HCLGEVF_CMDQ_INTR_GEN_REG};
50
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52                                            HCLGEVF_RST_ING,
53                                            HCLGEVF_GRO_EN_REG};
54
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56                                          HCLGEVF_RING_RX_ADDR_H_REG,
57                                          HCLGEVF_RING_RX_BD_NUM_REG,
58                                          HCLGEVF_RING_RX_BD_LENGTH_REG,
59                                          HCLGEVF_RING_RX_MERGE_EN_REG,
60                                          HCLGEVF_RING_RX_TAIL_REG,
61                                          HCLGEVF_RING_RX_HEAD_REG,
62                                          HCLGEVF_RING_RX_FBD_NUM_REG,
63                                          HCLGEVF_RING_RX_OFFSET_REG,
64                                          HCLGEVF_RING_RX_FBD_OFFSET_REG,
65                                          HCLGEVF_RING_RX_STASH_REG,
66                                          HCLGEVF_RING_RX_BD_ERR_REG,
67                                          HCLGEVF_RING_TX_ADDR_L_REG,
68                                          HCLGEVF_RING_TX_ADDR_H_REG,
69                                          HCLGEVF_RING_TX_BD_NUM_REG,
70                                          HCLGEVF_RING_TX_PRIORITY_REG,
71                                          HCLGEVF_RING_TX_TC_REG,
72                                          HCLGEVF_RING_TX_MERGE_EN_REG,
73                                          HCLGEVF_RING_TX_TAIL_REG,
74                                          HCLGEVF_RING_TX_HEAD_REG,
75                                          HCLGEVF_RING_TX_FBD_NUM_REG,
76                                          HCLGEVF_RING_TX_OFFSET_REG,
77                                          HCLGEVF_RING_TX_EBD_NUM_REG,
78                                          HCLGEVF_RING_TX_EBD_OFFSET_REG,
79                                          HCLGEVF_RING_TX_BD_ERR_REG,
80                                          HCLGEVF_RING_EN_REG};
81
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83                                              HCLGEVF_TQP_INTR_GL0_REG,
84                                              HCLGEVF_TQP_INTR_GL1_REG,
85                                              HCLGEVF_TQP_INTR_GL2_REG,
86                                              HCLGEVF_TQP_INTR_RL_REG};
87
88 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
89 {
90         if (!handle->client)
91                 return container_of(handle, struct hclgevf_dev, nic);
92         else if (handle->client->type == HNAE3_CLIENT_ROCE)
93                 return container_of(handle, struct hclgevf_dev, roce);
94         else
95                 return container_of(handle, struct hclgevf_dev, nic);
96 }
97
98 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
99 {
100         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
101         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
102         struct hclgevf_desc desc;
103         struct hclgevf_tqp *tqp;
104         int status;
105         int i;
106
107         for (i = 0; i < kinfo->num_tqps; i++) {
108                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
109                 hclgevf_cmd_setup_basic_desc(&desc,
110                                              HCLGEVF_OPC_QUERY_RX_STATUS,
111                                              true);
112
113                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115                 if (status) {
116                         dev_err(&hdev->pdev->dev,
117                                 "Query tqp stat fail, status = %d,queue = %d\n",
118                                 status, i);
119                         return status;
120                 }
121                 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
122                         le32_to_cpu(desc.data[1]);
123
124                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
125                                              true);
126
127                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
128                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
129                 if (status) {
130                         dev_err(&hdev->pdev->dev,
131                                 "Query tqp stat fail, status = %d,queue = %d\n",
132                                 status, i);
133                         return status;
134                 }
135                 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
136                         le32_to_cpu(desc.data[1]);
137         }
138
139         return 0;
140 }
141
142 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
143 {
144         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
145         struct hclgevf_tqp *tqp;
146         u64 *buff = data;
147         int i;
148
149         for (i = 0; i < kinfo->num_tqps; i++) {
150                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
151                 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
152         }
153         for (i = 0; i < kinfo->num_tqps; i++) {
154                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
155                 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
156         }
157
158         return buff;
159 }
160
161 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
162 {
163         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
164
165         return kinfo->num_tqps * 2;
166 }
167
168 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
169 {
170         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171         u8 *buff = data;
172         int i = 0;
173
174         for (i = 0; i < kinfo->num_tqps; i++) {
175                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
176                                                        struct hclgevf_tqp, q);
177                 snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
178                          tqp->index);
179                 buff += ETH_GSTRING_LEN;
180         }
181
182         for (i = 0; i < kinfo->num_tqps; i++) {
183                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
184                                                        struct hclgevf_tqp, q);
185                 snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
186                          tqp->index);
187                 buff += ETH_GSTRING_LEN;
188         }
189
190         return buff;
191 }
192
193 static void hclgevf_update_stats(struct hnae3_handle *handle,
194                                  struct net_device_stats *net_stats)
195 {
196         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
197         int status;
198
199         status = hclgevf_tqps_update_stats(handle);
200         if (status)
201                 dev_err(&hdev->pdev->dev,
202                         "VF update of TQPS stats fail, status = %d.\n",
203                         status);
204 }
205
206 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
207 {
208         if (strset == ETH_SS_TEST)
209                 return -EOPNOTSUPP;
210         else if (strset == ETH_SS_STATS)
211                 return hclgevf_tqps_get_sset_count(handle, strset);
212
213         return 0;
214 }
215
216 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
217                                 u8 *data)
218 {
219         u8 *p = (char *)data;
220
221         if (strset == ETH_SS_STATS)
222                 p = hclgevf_tqps_get_strings(handle, p);
223 }
224
225 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
226 {
227         hclgevf_tqps_get_stats(handle, data);
228 }
229
230 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
231 {
232         u8 resp_msg;
233         int status;
234
235         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
236                                       true, &resp_msg, sizeof(resp_msg));
237         if (status) {
238                 dev_err(&hdev->pdev->dev,
239                         "VF request to get TC info from PF failed %d",
240                         status);
241                 return status;
242         }
243
244         hdev->hw_tc_map = resp_msg;
245
246         return 0;
247 }
248
249 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
250 {
251         struct hnae3_handle *nic = &hdev->nic;
252         u8 resp_msg;
253         int ret;
254
255         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
256                                    HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
257                                    NULL, 0, true, &resp_msg, sizeof(u8));
258         if (ret) {
259                 dev_err(&hdev->pdev->dev,
260                         "VF request to get port based vlan state failed %d",
261                         ret);
262                 return ret;
263         }
264
265         nic->port_base_vlan_state = resp_msg;
266
267         return 0;
268 }
269
270 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
271 {
272 #define HCLGEVF_TQPS_RSS_INFO_LEN       6
273         u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
274         int status;
275
276         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
277                                       true, resp_msg,
278                                       HCLGEVF_TQPS_RSS_INFO_LEN);
279         if (status) {
280                 dev_err(&hdev->pdev->dev,
281                         "VF request to get tqp info from PF failed %d",
282                         status);
283                 return status;
284         }
285
286         memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
287         memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
288         memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
289
290         return 0;
291 }
292
293 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
294 {
295 #define HCLGEVF_TQPS_DEPTH_INFO_LEN     4
296         u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
297         int ret;
298
299         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
300                                    true, resp_msg,
301                                    HCLGEVF_TQPS_DEPTH_INFO_LEN);
302         if (ret) {
303                 dev_err(&hdev->pdev->dev,
304                         "VF request to get tqp depth info from PF failed %d",
305                         ret);
306                 return ret;
307         }
308
309         memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
310         memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
311
312         return 0;
313 }
314
315 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
316 {
317         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
318         u8 msg_data[2], resp_data[2];
319         u16 qid_in_pf = 0;
320         int ret;
321
322         memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
323
324         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
325                                    sizeof(msg_data), true, resp_data,
326                                    sizeof(resp_data));
327         if (!ret)
328                 qid_in_pf = *(u16 *)resp_data;
329
330         return qid_in_pf;
331 }
332
333 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
334 {
335         u8 resp_msg[2];
336         int ret;
337
338         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
339                                    true, resp_msg, sizeof(resp_msg));
340         if (ret) {
341                 dev_err(&hdev->pdev->dev,
342                         "VF request to get the pf port media type failed %d",
343                         ret);
344                 return ret;
345         }
346
347         hdev->hw.mac.media_type = resp_msg[0];
348         hdev->hw.mac.module_type = resp_msg[1];
349
350         return 0;
351 }
352
353 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
354 {
355         struct hclgevf_tqp *tqp;
356         int i;
357
358         hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
359                                   sizeof(struct hclgevf_tqp), GFP_KERNEL);
360         if (!hdev->htqp)
361                 return -ENOMEM;
362
363         tqp = hdev->htqp;
364
365         for (i = 0; i < hdev->num_tqps; i++) {
366                 tqp->dev = &hdev->pdev->dev;
367                 tqp->index = i;
368
369                 tqp->q.ae_algo = &ae_algovf;
370                 tqp->q.buf_size = hdev->rx_buf_len;
371                 tqp->q.tx_desc_num = hdev->num_tx_desc;
372                 tqp->q.rx_desc_num = hdev->num_rx_desc;
373                 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
374                         i * HCLGEVF_TQP_REG_SIZE;
375
376                 tqp++;
377         }
378
379         return 0;
380 }
381
382 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
383 {
384         struct hnae3_handle *nic = &hdev->nic;
385         struct hnae3_knic_private_info *kinfo;
386         u16 new_tqps = hdev->num_tqps;
387         unsigned int i;
388
389         kinfo = &nic->kinfo;
390         kinfo->num_tc = 0;
391         kinfo->num_tx_desc = hdev->num_tx_desc;
392         kinfo->num_rx_desc = hdev->num_rx_desc;
393         kinfo->rx_buf_len = hdev->rx_buf_len;
394         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
395                 if (hdev->hw_tc_map & BIT(i))
396                         kinfo->num_tc++;
397
398         kinfo->rss_size
399                 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
400         new_tqps = kinfo->rss_size * kinfo->num_tc;
401         kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
402
403         kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
404                                   sizeof(struct hnae3_queue *), GFP_KERNEL);
405         if (!kinfo->tqp)
406                 return -ENOMEM;
407
408         for (i = 0; i < kinfo->num_tqps; i++) {
409                 hdev->htqp[i].q.handle = &hdev->nic;
410                 hdev->htqp[i].q.tqp_index = i;
411                 kinfo->tqp[i] = &hdev->htqp[i].q;
412         }
413
414         return 0;
415 }
416
417 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
418 {
419         int status;
420         u8 resp_msg;
421
422         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
423                                       0, false, &resp_msg, sizeof(resp_msg));
424         if (status)
425                 dev_err(&hdev->pdev->dev,
426                         "VF failed to fetch link status(%d) from PF", status);
427 }
428
429 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
430 {
431         struct hnae3_handle *rhandle = &hdev->roce;
432         struct hnae3_handle *handle = &hdev->nic;
433         struct hnae3_client *rclient;
434         struct hnae3_client *client;
435
436         client = handle->client;
437         rclient = hdev->roce_client;
438
439         link_state =
440                 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
441
442         if (link_state != hdev->hw.mac.link) {
443                 client->ops->link_status_change(handle, !!link_state);
444                 if (rclient && rclient->ops->link_status_change)
445                         rclient->ops->link_status_change(rhandle, !!link_state);
446                 hdev->hw.mac.link = link_state;
447         }
448 }
449
450 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
451 {
452 #define HCLGEVF_ADVERTISING 0
453 #define HCLGEVF_SUPPORTED   1
454         u8 send_msg;
455         u8 resp_msg;
456
457         send_msg = HCLGEVF_ADVERTISING;
458         hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
459                              &send_msg, sizeof(send_msg), false,
460                              &resp_msg, sizeof(resp_msg));
461         send_msg = HCLGEVF_SUPPORTED;
462         hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
463                              &send_msg, sizeof(send_msg), false,
464                              &resp_msg, sizeof(resp_msg));
465 }
466
467 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
468 {
469         struct hnae3_handle *nic = &hdev->nic;
470         int ret;
471
472         nic->ae_algo = &ae_algovf;
473         nic->pdev = hdev->pdev;
474         nic->numa_node_mask = hdev->numa_node_mask;
475         nic->flags |= HNAE3_SUPPORT_VF;
476
477         ret = hclgevf_knic_setup(hdev);
478         if (ret)
479                 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
480                         ret);
481         return ret;
482 }
483
484 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
485 {
486         if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
487                 dev_warn(&hdev->pdev->dev,
488                          "vector(vector_id %d) has been freed.\n", vector_id);
489                 return;
490         }
491
492         hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
493         hdev->num_msi_left += 1;
494         hdev->num_msi_used -= 1;
495 }
496
497 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
498                               struct hnae3_vector_info *vector_info)
499 {
500         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
501         struct hnae3_vector_info *vector = vector_info;
502         int alloc = 0;
503         int i, j;
504
505         vector_num = min(hdev->num_msi_left, vector_num);
506
507         for (j = 0; j < vector_num; j++) {
508                 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
509                         if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
510                                 vector->vector = pci_irq_vector(hdev->pdev, i);
511                                 vector->io_addr = hdev->hw.io_base +
512                                         HCLGEVF_VECTOR_REG_BASE +
513                                         (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
514                                 hdev->vector_status[i] = 0;
515                                 hdev->vector_irq[i] = vector->vector;
516
517                                 vector++;
518                                 alloc++;
519
520                                 break;
521                         }
522                 }
523         }
524         hdev->num_msi_left -= alloc;
525         hdev->num_msi_used += alloc;
526
527         return alloc;
528 }
529
530 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
531 {
532         int i;
533
534         for (i = 0; i < hdev->num_msi; i++)
535                 if (vector == hdev->vector_irq[i])
536                         return i;
537
538         return -EINVAL;
539 }
540
541 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
542                                     const u8 hfunc, const u8 *key)
543 {
544         struct hclgevf_rss_config_cmd *req;
545         unsigned int key_offset = 0;
546         struct hclgevf_desc desc;
547         int key_counts;
548         int key_size;
549         int ret;
550
551         key_counts = HCLGEVF_RSS_KEY_SIZE;
552         req = (struct hclgevf_rss_config_cmd *)desc.data;
553
554         while (key_counts) {
555                 hclgevf_cmd_setup_basic_desc(&desc,
556                                              HCLGEVF_OPC_RSS_GENERIC_CONFIG,
557                                              false);
558
559                 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
560                 req->hash_config |=
561                         (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
562
563                 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
564                 memcpy(req->hash_key,
565                        key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
566
567                 key_counts -= key_size;
568                 key_offset++;
569                 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
570                 if (ret) {
571                         dev_err(&hdev->pdev->dev,
572                                 "Configure RSS config fail, status = %d\n",
573                                 ret);
574                         return ret;
575                 }
576         }
577
578         return 0;
579 }
580
581 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
582 {
583         return HCLGEVF_RSS_KEY_SIZE;
584 }
585
586 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
587 {
588         return HCLGEVF_RSS_IND_TBL_SIZE;
589 }
590
591 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
592 {
593         const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
594         struct hclgevf_rss_indirection_table_cmd *req;
595         struct hclgevf_desc desc;
596         int status;
597         int i, j;
598
599         req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
600
601         for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
602                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
603                                              false);
604                 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
605                 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
606                 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
607                         req->rss_result[j] =
608                                 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
609
610                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
611                 if (status) {
612                         dev_err(&hdev->pdev->dev,
613                                 "VF failed(=%d) to set RSS indirection table\n",
614                                 status);
615                         return status;
616                 }
617         }
618
619         return 0;
620 }
621
622 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
623 {
624         struct hclgevf_rss_tc_mode_cmd *req;
625         u16 tc_offset[HCLGEVF_MAX_TC_NUM];
626         u16 tc_valid[HCLGEVF_MAX_TC_NUM];
627         u16 tc_size[HCLGEVF_MAX_TC_NUM];
628         struct hclgevf_desc desc;
629         u16 roundup_size;
630         int status;
631         unsigned int i;
632
633         req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
634
635         roundup_size = roundup_pow_of_two(rss_size);
636         roundup_size = ilog2(roundup_size);
637
638         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
639                 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
640                 tc_size[i] = roundup_size;
641                 tc_offset[i] = rss_size * i;
642         }
643
644         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
645         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
646                 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
647                               (tc_valid[i] & 0x1));
648                 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
649                                 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
650                 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
651                                 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
652         }
653         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
654         if (status)
655                 dev_err(&hdev->pdev->dev,
656                         "VF failed(=%d) to set rss tc mode\n", status);
657
658         return status;
659 }
660
661 /* for revision 0x20, vf shared the same rss config with pf */
662 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
663 {
664 #define HCLGEVF_RSS_MBX_RESP_LEN        8
665
666         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
667         u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
668         u16 msg_num, hash_key_index;
669         u8 index;
670         int ret;
671
672         msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
673                         HCLGEVF_RSS_MBX_RESP_LEN;
674         for (index = 0; index < msg_num; index++) {
675                 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
676                                            &index, sizeof(index),
677                                            true, resp_msg,
678                                            HCLGEVF_RSS_MBX_RESP_LEN);
679                 if (ret) {
680                         dev_err(&hdev->pdev->dev,
681                                 "VF get rss hash key from PF failed, ret=%d",
682                                 ret);
683                         return ret;
684                 }
685
686                 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
687                 if (index == msg_num - 1)
688                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
689                                &resp_msg[0],
690                                HCLGEVF_RSS_KEY_SIZE - hash_key_index);
691                 else
692                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
693                                &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
694         }
695
696         return 0;
697 }
698
699 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
700                            u8 *hfunc)
701 {
702         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
703         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
704         int i, ret;
705
706         if (handle->pdev->revision >= 0x21) {
707                 /* Get hash algorithm */
708                 if (hfunc) {
709                         switch (rss_cfg->hash_algo) {
710                         case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
711                                 *hfunc = ETH_RSS_HASH_TOP;
712                                 break;
713                         case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
714                                 *hfunc = ETH_RSS_HASH_XOR;
715                                 break;
716                         default:
717                                 *hfunc = ETH_RSS_HASH_UNKNOWN;
718                                 break;
719                         }
720                 }
721
722                 /* Get the RSS Key required by the user */
723                 if (key)
724                         memcpy(key, rss_cfg->rss_hash_key,
725                                HCLGEVF_RSS_KEY_SIZE);
726         } else {
727                 if (hfunc)
728                         *hfunc = ETH_RSS_HASH_TOP;
729                 if (key) {
730                         ret = hclgevf_get_rss_hash_key(hdev);
731                         if (ret)
732                                 return ret;
733                         memcpy(key, rss_cfg->rss_hash_key,
734                                HCLGEVF_RSS_KEY_SIZE);
735                 }
736         }
737
738         if (indir)
739                 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
740                         indir[i] = rss_cfg->rss_indirection_tbl[i];
741
742         return 0;
743 }
744
745 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
746                            const  u8 *key, const  u8 hfunc)
747 {
748         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
749         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
750         int ret, i;
751
752         if (handle->pdev->revision >= 0x21) {
753                 /* Set the RSS Hash Key if specififed by the user */
754                 if (key) {
755                         switch (hfunc) {
756                         case ETH_RSS_HASH_TOP:
757                                 rss_cfg->hash_algo =
758                                         HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
759                                 break;
760                         case ETH_RSS_HASH_XOR:
761                                 rss_cfg->hash_algo =
762                                         HCLGEVF_RSS_HASH_ALGO_SIMPLE;
763                                 break;
764                         case ETH_RSS_HASH_NO_CHANGE:
765                                 break;
766                         default:
767                                 return -EINVAL;
768                         }
769
770                         ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
771                                                        key);
772                         if (ret)
773                                 return ret;
774
775                         /* Update the shadow RSS key with user specified qids */
776                         memcpy(rss_cfg->rss_hash_key, key,
777                                HCLGEVF_RSS_KEY_SIZE);
778                 }
779         }
780
781         /* update the shadow RSS table with user specified qids */
782         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
783                 rss_cfg->rss_indirection_tbl[i] = indir[i];
784
785         /* update the hardware */
786         return hclgevf_set_rss_indir_table(hdev);
787 }
788
789 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
790 {
791         u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
792
793         if (nfc->data & RXH_L4_B_2_3)
794                 hash_sets |= HCLGEVF_D_PORT_BIT;
795         else
796                 hash_sets &= ~HCLGEVF_D_PORT_BIT;
797
798         if (nfc->data & RXH_IP_SRC)
799                 hash_sets |= HCLGEVF_S_IP_BIT;
800         else
801                 hash_sets &= ~HCLGEVF_S_IP_BIT;
802
803         if (nfc->data & RXH_IP_DST)
804                 hash_sets |= HCLGEVF_D_IP_BIT;
805         else
806                 hash_sets &= ~HCLGEVF_D_IP_BIT;
807
808         if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
809                 hash_sets |= HCLGEVF_V_TAG_BIT;
810
811         return hash_sets;
812 }
813
814 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
815                                  struct ethtool_rxnfc *nfc)
816 {
817         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
818         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
819         struct hclgevf_rss_input_tuple_cmd *req;
820         struct hclgevf_desc desc;
821         u8 tuple_sets;
822         int ret;
823
824         if (handle->pdev->revision == 0x20)
825                 return -EOPNOTSUPP;
826
827         if (nfc->data &
828             ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
829                 return -EINVAL;
830
831         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
832         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
833
834         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
835         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
836         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
837         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
838         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
839         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
840         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
841         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
842
843         tuple_sets = hclgevf_get_rss_hash_bits(nfc);
844         switch (nfc->flow_type) {
845         case TCP_V4_FLOW:
846                 req->ipv4_tcp_en = tuple_sets;
847                 break;
848         case TCP_V6_FLOW:
849                 req->ipv6_tcp_en = tuple_sets;
850                 break;
851         case UDP_V4_FLOW:
852                 req->ipv4_udp_en = tuple_sets;
853                 break;
854         case UDP_V6_FLOW:
855                 req->ipv6_udp_en = tuple_sets;
856                 break;
857         case SCTP_V4_FLOW:
858                 req->ipv4_sctp_en = tuple_sets;
859                 break;
860         case SCTP_V6_FLOW:
861                 if ((nfc->data & RXH_L4_B_0_1) ||
862                     (nfc->data & RXH_L4_B_2_3))
863                         return -EINVAL;
864
865                 req->ipv6_sctp_en = tuple_sets;
866                 break;
867         case IPV4_FLOW:
868                 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
869                 break;
870         case IPV6_FLOW:
871                 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
872                 break;
873         default:
874                 return -EINVAL;
875         }
876
877         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
878         if (ret) {
879                 dev_err(&hdev->pdev->dev,
880                         "Set rss tuple fail, status = %d\n", ret);
881                 return ret;
882         }
883
884         rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
885         rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
886         rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
887         rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
888         rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
889         rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
890         rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
891         rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
892         return 0;
893 }
894
895 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
896                                  struct ethtool_rxnfc *nfc)
897 {
898         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
899         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
900         u8 tuple_sets;
901
902         if (handle->pdev->revision == 0x20)
903                 return -EOPNOTSUPP;
904
905         nfc->data = 0;
906
907         switch (nfc->flow_type) {
908         case TCP_V4_FLOW:
909                 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
910                 break;
911         case UDP_V4_FLOW:
912                 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
913                 break;
914         case TCP_V6_FLOW:
915                 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
916                 break;
917         case UDP_V6_FLOW:
918                 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
919                 break;
920         case SCTP_V4_FLOW:
921                 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
922                 break;
923         case SCTP_V6_FLOW:
924                 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
925                 break;
926         case IPV4_FLOW:
927         case IPV6_FLOW:
928                 tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
929                 break;
930         default:
931                 return -EINVAL;
932         }
933
934         if (!tuple_sets)
935                 return 0;
936
937         if (tuple_sets & HCLGEVF_D_PORT_BIT)
938                 nfc->data |= RXH_L4_B_2_3;
939         if (tuple_sets & HCLGEVF_S_PORT_BIT)
940                 nfc->data |= RXH_L4_B_0_1;
941         if (tuple_sets & HCLGEVF_D_IP_BIT)
942                 nfc->data |= RXH_IP_DST;
943         if (tuple_sets & HCLGEVF_S_IP_BIT)
944                 nfc->data |= RXH_IP_SRC;
945
946         return 0;
947 }
948
949 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
950                                        struct hclgevf_rss_cfg *rss_cfg)
951 {
952         struct hclgevf_rss_input_tuple_cmd *req;
953         struct hclgevf_desc desc;
954         int ret;
955
956         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
957
958         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
959
960         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
961         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
962         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
963         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
964         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
965         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
966         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
967         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
968
969         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
970         if (ret)
971                 dev_err(&hdev->pdev->dev,
972                         "Configure rss input fail, status = %d\n", ret);
973         return ret;
974 }
975
976 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
977 {
978         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
979         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
980
981         return rss_cfg->rss_size;
982 }
983
984 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
985                                        int vector_id,
986                                        struct hnae3_ring_chain_node *ring_chain)
987 {
988         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
989         struct hnae3_ring_chain_node *node;
990         struct hclge_mbx_vf_to_pf_cmd *req;
991         struct hclgevf_desc desc;
992         int i = 0;
993         int status;
994         u8 type;
995
996         req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
997         type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
998                 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
999
1000         for (node = ring_chain; node; node = node->next) {
1001                 int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1002                                         HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1003
1004                 if (i == 0) {
1005                         hclgevf_cmd_setup_basic_desc(&desc,
1006                                                      HCLGEVF_OPC_MBX_VF_TO_PF,
1007                                                      false);
1008                         req->msg[0] = type;
1009                         req->msg[1] = vector_id;
1010                 }
1011
1012                 req->msg[idx_offset] =
1013                                 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1014                 req->msg[idx_offset + 1] = node->tqp_index;
1015                 req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1016                                                            HNAE3_RING_GL_IDX_M,
1017                                                            HNAE3_RING_GL_IDX_S);
1018
1019                 i++;
1020                 if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1021                      HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1022                      HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1023                     !node->next) {
1024                         req->msg[2] = i;
1025
1026                         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1027                         if (status) {
1028                                 dev_err(&hdev->pdev->dev,
1029                                         "Map TQP fail, status is %d.\n",
1030                                         status);
1031                                 return status;
1032                         }
1033                         i = 0;
1034                         hclgevf_cmd_setup_basic_desc(&desc,
1035                                                      HCLGEVF_OPC_MBX_VF_TO_PF,
1036                                                      false);
1037                         req->msg[0] = type;
1038                         req->msg[1] = vector_id;
1039                 }
1040         }
1041
1042         return 0;
1043 }
1044
1045 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1046                                       struct hnae3_ring_chain_node *ring_chain)
1047 {
1048         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1049         int vector_id;
1050
1051         vector_id = hclgevf_get_vector_index(hdev, vector);
1052         if (vector_id < 0) {
1053                 dev_err(&handle->pdev->dev,
1054                         "Get vector index fail. ret =%d\n", vector_id);
1055                 return vector_id;
1056         }
1057
1058         return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1059 }
1060
1061 static int hclgevf_unmap_ring_from_vector(
1062                                 struct hnae3_handle *handle,
1063                                 int vector,
1064                                 struct hnae3_ring_chain_node *ring_chain)
1065 {
1066         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1067         int ret, vector_id;
1068
1069         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1070                 return 0;
1071
1072         vector_id = hclgevf_get_vector_index(hdev, vector);
1073         if (vector_id < 0) {
1074                 dev_err(&handle->pdev->dev,
1075                         "Get vector index fail. ret =%d\n", vector_id);
1076                 return vector_id;
1077         }
1078
1079         ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1080         if (ret)
1081                 dev_err(&handle->pdev->dev,
1082                         "Unmap ring from vector fail. vector=%d, ret =%d\n",
1083                         vector_id,
1084                         ret);
1085
1086         return ret;
1087 }
1088
1089 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1090 {
1091         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092         int vector_id;
1093
1094         vector_id = hclgevf_get_vector_index(hdev, vector);
1095         if (vector_id < 0) {
1096                 dev_err(&handle->pdev->dev,
1097                         "hclgevf_put_vector get vector index fail. ret =%d\n",
1098                         vector_id);
1099                 return vector_id;
1100         }
1101
1102         hclgevf_free_vector(hdev, vector_id);
1103
1104         return 0;
1105 }
1106
1107 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1108                                         bool en_bc_pmc)
1109 {
1110         struct hclge_mbx_vf_to_pf_cmd *req;
1111         struct hclgevf_desc desc;
1112         int ret;
1113
1114         req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1115
1116         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1117         req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1118         req->msg[1] = en_bc_pmc ? 1 : 0;
1119
1120         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1121         if (ret)
1122                 dev_err(&hdev->pdev->dev,
1123                         "Set promisc mode fail, status is %d.\n", ret);
1124
1125         return ret;
1126 }
1127
1128 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1129 {
1130         return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1131 }
1132
1133 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1134                               int stream_id, bool enable)
1135 {
1136         struct hclgevf_cfg_com_tqp_queue_cmd *req;
1137         struct hclgevf_desc desc;
1138         int status;
1139
1140         req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1141
1142         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1143                                      false);
1144         req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1145         req->stream_id = cpu_to_le16(stream_id);
1146         if (enable)
1147                 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1148
1149         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1150         if (status)
1151                 dev_err(&hdev->pdev->dev,
1152                         "TQP enable fail, status =%d.\n", status);
1153
1154         return status;
1155 }
1156
1157 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1158 {
1159         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1160         struct hclgevf_tqp *tqp;
1161         int i;
1162
1163         for (i = 0; i < kinfo->num_tqps; i++) {
1164                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1165                 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1166         }
1167 }
1168
1169 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1170 {
1171         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1172
1173         ether_addr_copy(p, hdev->hw.mac.mac_addr);
1174 }
1175
1176 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1177                                 bool is_first)
1178 {
1179         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1180         u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1181         u8 *new_mac_addr = (u8 *)p;
1182         u8 msg_data[ETH_ALEN * 2];
1183         u16 subcode;
1184         int status;
1185
1186         ether_addr_copy(msg_data, new_mac_addr);
1187         ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1188
1189         subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1190                         HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1191
1192         status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1193                                       subcode, msg_data, sizeof(msg_data),
1194                                       true, NULL, 0);
1195         if (!status)
1196                 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1197
1198         return status;
1199 }
1200
1201 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1202                                const unsigned char *addr)
1203 {
1204         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1205
1206         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1207                                     HCLGE_MBX_MAC_VLAN_UC_ADD,
1208                                     addr, ETH_ALEN, false, NULL, 0);
1209 }
1210
1211 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1212                               const unsigned char *addr)
1213 {
1214         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1215
1216         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1217                                     HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1218                                     addr, ETH_ALEN, false, NULL, 0);
1219 }
1220
1221 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1222                                const unsigned char *addr)
1223 {
1224         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225
1226         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1227                                     HCLGE_MBX_MAC_VLAN_MC_ADD,
1228                                     addr, ETH_ALEN, false, NULL, 0);
1229 }
1230
1231 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1232                               const unsigned char *addr)
1233 {
1234         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1235
1236         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1237                                     HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1238                                     addr, ETH_ALEN, false, NULL, 0);
1239 }
1240
1241 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1242                                    __be16 proto, u16 vlan_id,
1243                                    bool is_kill)
1244 {
1245 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1246         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1247         u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1248         int ret;
1249
1250         if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1251                 return -EINVAL;
1252
1253         if (proto != htons(ETH_P_8021Q))
1254                 return -EPROTONOSUPPORT;
1255
1256         /* When device is resetting, firmware is unable to handle
1257          * mailbox. Just record the vlan id, and remove it after
1258          * reset finished.
1259          */
1260         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1261                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1262                 return -EBUSY;
1263         }
1264
1265         msg_data[0] = is_kill;
1266         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1267         memcpy(&msg_data[3], &proto, sizeof(proto));
1268         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1269                                    HCLGE_MBX_VLAN_FILTER, msg_data,
1270                                    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1271
1272         /* When remove hw vlan filter failed, record the vlan id,
1273          * and try to remove it from hw later, to be consistence
1274          * with stack.
1275          */
1276         if (is_kill && ret)
1277                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1278
1279         return ret;
1280 }
1281
1282 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1283 {
1284 #define HCLGEVF_MAX_SYNC_COUNT  60
1285         struct hnae3_handle *handle = &hdev->nic;
1286         int ret, sync_cnt = 0;
1287         u16 vlan_id;
1288
1289         vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1290         while (vlan_id != VLAN_N_VID) {
1291                 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1292                                               vlan_id, true);
1293                 if (ret)
1294                         return;
1295
1296                 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1297                 sync_cnt++;
1298                 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1299                         return;
1300
1301                 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1302         }
1303 }
1304
1305 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1306 {
1307         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1308         u8 msg_data;
1309
1310         msg_data = enable ? 1 : 0;
1311         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1312                                     HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1313                                     1, false, NULL, 0);
1314 }
1315
1316 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1317 {
1318         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319         u8 msg_data[2];
1320         int ret;
1321
1322         memcpy(msg_data, &queue_id, sizeof(queue_id));
1323
1324         /* disable vf queue before send queue reset msg to PF */
1325         ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1326         if (ret)
1327                 return ret;
1328
1329         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1330                                     sizeof(msg_data), true, NULL, 0);
1331 }
1332
1333 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1334 {
1335         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1336
1337         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1338                                     sizeof(new_mtu), true, NULL, 0);
1339 }
1340
1341 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1342                                  enum hnae3_reset_notify_type type)
1343 {
1344         struct hnae3_client *client = hdev->nic_client;
1345         struct hnae3_handle *handle = &hdev->nic;
1346         int ret;
1347
1348         if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1349             !client)
1350                 return 0;
1351
1352         if (!client->ops->reset_notify)
1353                 return -EOPNOTSUPP;
1354
1355         ret = client->ops->reset_notify(handle, type);
1356         if (ret)
1357                 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1358                         type, ret);
1359
1360         return ret;
1361 }
1362
1363 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1364 {
1365         struct hclgevf_dev *hdev = ae_dev->priv;
1366
1367         set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1368 }
1369
1370 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1371                                     unsigned long delay_us,
1372                                     unsigned long wait_cnt)
1373 {
1374         unsigned long cnt = 0;
1375
1376         while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1377                cnt++ < wait_cnt)
1378                 usleep_range(delay_us, delay_us * 2);
1379
1380         if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1381                 dev_err(&hdev->pdev->dev,
1382                         "flr wait timeout\n");
1383                 return -ETIMEDOUT;
1384         }
1385
1386         return 0;
1387 }
1388
1389 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1390 {
1391 #define HCLGEVF_RESET_WAIT_US   20000
1392 #define HCLGEVF_RESET_WAIT_CNT  2000
1393 #define HCLGEVF_RESET_WAIT_TIMEOUT_US   \
1394         (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1395
1396         u32 val;
1397         int ret;
1398
1399         /* wait to check the hardware reset completion status */
1400         val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1401         dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1402
1403         if (hdev->reset_type == HNAE3_FLR_RESET)
1404                 return hclgevf_flr_poll_timeout(hdev,
1405                                                 HCLGEVF_RESET_WAIT_US,
1406                                                 HCLGEVF_RESET_WAIT_CNT);
1407
1408         ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1409                                  !(val & HCLGEVF_RST_ING_BITS),
1410                                  HCLGEVF_RESET_WAIT_US,
1411                                  HCLGEVF_RESET_WAIT_TIMEOUT_US);
1412
1413         /* hardware completion status should be available by this time */
1414         if (ret) {
1415                 dev_err(&hdev->pdev->dev,
1416                         "could'nt get reset done status from h/w, timeout!\n");
1417                 return ret;
1418         }
1419
1420         /* we will wait a bit more to let reset of the stack to complete. This
1421          * might happen in case reset assertion was made by PF. Yes, this also
1422          * means we might end up waiting bit more even for VF reset.
1423          */
1424         msleep(5000);
1425
1426         return 0;
1427 }
1428
1429 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1430 {
1431         int ret;
1432
1433         /* uninitialize the nic client */
1434         ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1435         if (ret)
1436                 return ret;
1437
1438         /* re-initialize the hclge device */
1439         ret = hclgevf_reset_hdev(hdev);
1440         if (ret) {
1441                 dev_err(&hdev->pdev->dev,
1442                         "hclge device re-init failed, VF is disabled!\n");
1443                 return ret;
1444         }
1445
1446         /* bring up the nic client again */
1447         ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1448         if (ret)
1449                 return ret;
1450
1451         return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1452 }
1453
1454 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1455 {
1456 #define HCLGEVF_RESET_SYNC_TIME 100
1457
1458         int ret = 0;
1459
1460         switch (hdev->reset_type) {
1461         case HNAE3_VF_FUNC_RESET:
1462                 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1463                                            0, true, NULL, sizeof(u8));
1464                 hdev->rst_stats.vf_func_rst_cnt++;
1465                 break;
1466         case HNAE3_FLR_RESET:
1467                 set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1468                 hdev->rst_stats.flr_rst_cnt++;
1469                 break;
1470         default:
1471                 break;
1472         }
1473
1474         set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1475         /* inform hardware that preparatory work is done */
1476         msleep(HCLGEVF_RESET_SYNC_TIME);
1477         hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1478                           HCLGEVF_NIC_CMQ_ENABLE);
1479         dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1480                  hdev->reset_type, ret);
1481
1482         return ret;
1483 }
1484
1485 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1486 {
1487         hdev->rst_stats.rst_fail_cnt++;
1488         dev_err(&hdev->pdev->dev, "failed to reset VF(%d)\n",
1489                 hdev->rst_stats.rst_fail_cnt);
1490
1491         if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1492                 set_bit(hdev->reset_type, &hdev->reset_pending);
1493
1494         if (hclgevf_is_reset_pending(hdev)) {
1495                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1496                 hclgevf_reset_task_schedule(hdev);
1497         } else {
1498                 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1499                                   HCLGEVF_NIC_CMQ_ENABLE);
1500         }
1501 }
1502
1503 static int hclgevf_reset(struct hclgevf_dev *hdev)
1504 {
1505         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1506         int ret;
1507
1508         /* Initialize ae_dev reset status as well, in case enet layer wants to
1509          * know if device is undergoing reset
1510          */
1511         ae_dev->reset_type = hdev->reset_type;
1512         hdev->rst_stats.rst_cnt++;
1513         rtnl_lock();
1514
1515         /* bring down the nic to stop any ongoing TX/RX */
1516         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1517         if (ret)
1518                 goto err_reset_lock;
1519
1520         rtnl_unlock();
1521
1522         ret = hclgevf_reset_prepare_wait(hdev);
1523         if (ret)
1524                 goto err_reset;
1525
1526         /* check if VF could successfully fetch the hardware reset completion
1527          * status from the hardware
1528          */
1529         ret = hclgevf_reset_wait(hdev);
1530         if (ret) {
1531                 /* can't do much in this situation, will disable VF */
1532                 dev_err(&hdev->pdev->dev,
1533                         "VF failed(=%d) to fetch H/W reset completion status\n",
1534                         ret);
1535                 goto err_reset;
1536         }
1537
1538         hdev->rst_stats.hw_rst_done_cnt++;
1539
1540         rtnl_lock();
1541
1542         /* now, re-initialize the nic client and ae device*/
1543         ret = hclgevf_reset_stack(hdev);
1544         if (ret) {
1545                 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1546                 goto err_reset_lock;
1547         }
1548
1549         /* bring up the nic to enable TX/RX again */
1550         ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1551         if (ret)
1552                 goto err_reset_lock;
1553
1554         rtnl_unlock();
1555
1556         hdev->last_reset_time = jiffies;
1557         ae_dev->reset_type = HNAE3_NONE_RESET;
1558         hdev->rst_stats.rst_done_cnt++;
1559         hdev->rst_stats.rst_fail_cnt = 0;
1560
1561         return ret;
1562 err_reset_lock:
1563         rtnl_unlock();
1564 err_reset:
1565         hclgevf_reset_err_handle(hdev);
1566
1567         return ret;
1568 }
1569
1570 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1571                                                      unsigned long *addr)
1572 {
1573         enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1574
1575         /* return the highest priority reset level amongst all */
1576         if (test_bit(HNAE3_VF_RESET, addr)) {
1577                 rst_level = HNAE3_VF_RESET;
1578                 clear_bit(HNAE3_VF_RESET, addr);
1579                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1580                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1581         } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1582                 rst_level = HNAE3_VF_FULL_RESET;
1583                 clear_bit(HNAE3_VF_FULL_RESET, addr);
1584                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1585         } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1586                 rst_level = HNAE3_VF_PF_FUNC_RESET;
1587                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1588                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1589         } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1590                 rst_level = HNAE3_VF_FUNC_RESET;
1591                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1592         } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1593                 rst_level = HNAE3_FLR_RESET;
1594                 clear_bit(HNAE3_FLR_RESET, addr);
1595         }
1596
1597         return rst_level;
1598 }
1599
1600 static void hclgevf_reset_event(struct pci_dev *pdev,
1601                                 struct hnae3_handle *handle)
1602 {
1603         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1604         struct hclgevf_dev *hdev = ae_dev->priv;
1605
1606         dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1607
1608         if (hdev->default_reset_request)
1609                 hdev->reset_level =
1610                         hclgevf_get_reset_level(hdev,
1611                                                 &hdev->default_reset_request);
1612         else
1613                 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1614
1615         /* reset of this VF requested */
1616         set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1617         hclgevf_reset_task_schedule(hdev);
1618
1619         hdev->last_reset_time = jiffies;
1620 }
1621
1622 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1623                                           enum hnae3_reset_type rst_type)
1624 {
1625         struct hclgevf_dev *hdev = ae_dev->priv;
1626
1627         set_bit(rst_type, &hdev->default_reset_request);
1628 }
1629
1630 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1631 {
1632 #define HCLGEVF_FLR_WAIT_MS     100
1633 #define HCLGEVF_FLR_WAIT_CNT    50
1634         struct hclgevf_dev *hdev = ae_dev->priv;
1635         int cnt = 0;
1636
1637         clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1638         clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1639         set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1640         hclgevf_reset_event(hdev->pdev, NULL);
1641
1642         while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1643                cnt++ < HCLGEVF_FLR_WAIT_CNT)
1644                 msleep(HCLGEVF_FLR_WAIT_MS);
1645
1646         if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1647                 dev_err(&hdev->pdev->dev,
1648                         "flr wait down timeout: %d\n", cnt);
1649 }
1650
1651 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1652 {
1653         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1654
1655         return hdev->fw_version;
1656 }
1657
1658 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1659 {
1660         struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1661
1662         vector->vector_irq = pci_irq_vector(hdev->pdev,
1663                                             HCLGEVF_MISC_VECTOR_NUM);
1664         vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1665         /* vector status always valid for Vector 0 */
1666         hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1667         hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1668
1669         hdev->num_msi_left -= 1;
1670         hdev->num_msi_used += 1;
1671 }
1672
1673 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1674 {
1675         if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1676             !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1677                 set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1678                 schedule_work(&hdev->rst_service_task);
1679         }
1680 }
1681
1682 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1683 {
1684         if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1685             !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1686                 set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1687                 schedule_work(&hdev->mbx_service_task);
1688         }
1689 }
1690
1691 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1692 {
1693         if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1694             !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1695                 schedule_work(&hdev->service_task);
1696 }
1697
1698 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1699 {
1700         /* if we have any pending mailbox event then schedule the mbx task */
1701         if (hdev->mbx_event_pending)
1702                 hclgevf_mbx_task_schedule(hdev);
1703
1704         if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1705                 hclgevf_reset_task_schedule(hdev);
1706 }
1707
1708 static void hclgevf_service_timer(struct timer_list *t)
1709 {
1710         struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1711
1712         mod_timer(&hdev->service_timer, jiffies +
1713                   HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1714
1715         hdev->stats_timer++;
1716         hclgevf_task_schedule(hdev);
1717 }
1718
1719 static void hclgevf_reset_service_task(struct work_struct *work)
1720 {
1721         struct hclgevf_dev *hdev =
1722                 container_of(work, struct hclgevf_dev, rst_service_task);
1723         int ret;
1724
1725         if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1726                 return;
1727
1728         clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1729
1730         if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1731                                &hdev->reset_state)) {
1732                 /* PF has initmated that it is about to reset the hardware.
1733                  * We now have to poll & check if hardware has actually
1734                  * completed the reset sequence. On hardware reset completion,
1735                  * VF needs to reset the client and ae device.
1736                  */
1737                 hdev->reset_attempts = 0;
1738
1739                 hdev->last_reset_time = jiffies;
1740                 while ((hdev->reset_type =
1741                         hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1742                        != HNAE3_NONE_RESET) {
1743                         ret = hclgevf_reset(hdev);
1744                         if (ret)
1745                                 dev_err(&hdev->pdev->dev,
1746                                         "VF stack reset failed %d.\n", ret);
1747                 }
1748         } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1749                                       &hdev->reset_state)) {
1750                 /* we could be here when either of below happens:
1751                  * 1. reset was initiated due to watchdog timeout caused by
1752                  *    a. IMP was earlier reset and our TX got choked down and
1753                  *       which resulted in watchdog reacting and inducing VF
1754                  *       reset. This also means our cmdq would be unreliable.
1755                  *    b. problem in TX due to other lower layer(example link
1756                  *       layer not functioning properly etc.)
1757                  * 2. VF reset might have been initiated due to some config
1758                  *    change.
1759                  *
1760                  * NOTE: Theres no clear way to detect above cases than to react
1761                  * to the response of PF for this reset request. PF will ack the
1762                  * 1b and 2. cases but we will not get any intimation about 1a
1763                  * from PF as cmdq would be in unreliable state i.e. mailbox
1764                  * communication between PF and VF would be broken.
1765                  */
1766
1767                 /* if we are never geting into pending state it means either:
1768                  * 1. PF is not receiving our request which could be due to IMP
1769                  *    reset
1770                  * 2. PF is screwed
1771                  * We cannot do much for 2. but to check first we can try reset
1772                  * our PCIe + stack and see if it alleviates the problem.
1773                  */
1774                 if (hdev->reset_attempts > 3) {
1775                         /* prepare for full reset of stack + pcie interface */
1776                         set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1777
1778                         /* "defer" schedule the reset task again */
1779                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1780                 } else {
1781                         hdev->reset_attempts++;
1782
1783                         set_bit(hdev->reset_level, &hdev->reset_pending);
1784                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1785                 }
1786                 hclgevf_reset_task_schedule(hdev);
1787         }
1788
1789         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1790 }
1791
1792 static void hclgevf_mailbox_service_task(struct work_struct *work)
1793 {
1794         struct hclgevf_dev *hdev;
1795
1796         hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1797
1798         if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1799                 return;
1800
1801         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1802
1803         hclgevf_mbx_async_handler(hdev);
1804
1805         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1806 }
1807
1808 static void hclgevf_keep_alive_timer(struct timer_list *t)
1809 {
1810         struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1811
1812         schedule_work(&hdev->keep_alive_task);
1813         mod_timer(&hdev->keep_alive_timer, jiffies +
1814                   HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1815 }
1816
1817 static void hclgevf_keep_alive_task(struct work_struct *work)
1818 {
1819         struct hclgevf_dev *hdev;
1820         u8 respmsg;
1821         int ret;
1822
1823         hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1824
1825         if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1826                 return;
1827
1828         ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1829                                    0, false, &respmsg, sizeof(respmsg));
1830         if (ret)
1831                 dev_err(&hdev->pdev->dev,
1832                         "VF sends keep alive cmd failed(=%d)\n", ret);
1833 }
1834
1835 static void hclgevf_service_task(struct work_struct *work)
1836 {
1837         struct hnae3_handle *handle;
1838         struct hclgevf_dev *hdev;
1839
1840         hdev = container_of(work, struct hclgevf_dev, service_task);
1841         handle = &hdev->nic;
1842
1843         if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1844                 hclgevf_tqps_update_stats(handle);
1845                 hdev->stats_timer = 0;
1846         }
1847
1848         /* request the link status from the PF. PF would be able to tell VF
1849          * about such updates in future so we might remove this later
1850          */
1851         hclgevf_request_link_info(hdev);
1852
1853         hclgevf_update_link_mode(hdev);
1854
1855         hclgevf_sync_vlan_filter(hdev);
1856
1857         hclgevf_deferred_task_schedule(hdev);
1858
1859         clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1860 }
1861
1862 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1863 {
1864         hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1865 }
1866
1867 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1868                                                       u32 *clearval)
1869 {
1870         u32 cmdq_src_reg, rst_ing_reg;
1871
1872         /* fetch the events from their corresponding regs */
1873         cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1874                                         HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1875
1876         if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1877                 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1878                 dev_info(&hdev->pdev->dev,
1879                          "receive reset interrupt 0x%x!\n", rst_ing_reg);
1880                 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1881                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1882                 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1883                 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1884                 *clearval = cmdq_src_reg;
1885                 hdev->rst_stats.vf_rst_cnt++;
1886                 return HCLGEVF_VECTOR0_EVENT_RST;
1887         }
1888
1889         /* check for vector0 mailbox(=CMDQ RX) event source */
1890         if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1891                 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1892                 *clearval = cmdq_src_reg;
1893                 return HCLGEVF_VECTOR0_EVENT_MBX;
1894         }
1895
1896         dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1897
1898         return HCLGEVF_VECTOR0_EVENT_OTHER;
1899 }
1900
1901 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1902 {
1903         writel(en ? 1 : 0, vector->addr);
1904 }
1905
1906 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1907 {
1908         enum hclgevf_evt_cause event_cause;
1909         struct hclgevf_dev *hdev = data;
1910         u32 clearval;
1911
1912         hclgevf_enable_vector(&hdev->misc_vector, false);
1913         event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1914
1915         switch (event_cause) {
1916         case HCLGEVF_VECTOR0_EVENT_RST:
1917                 hclgevf_reset_task_schedule(hdev);
1918                 break;
1919         case HCLGEVF_VECTOR0_EVENT_MBX:
1920                 hclgevf_mbx_handler(hdev);
1921                 break;
1922         default:
1923                 break;
1924         }
1925
1926         if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1927                 hclgevf_clear_event_cause(hdev, clearval);
1928                 hclgevf_enable_vector(&hdev->misc_vector, true);
1929         }
1930
1931         return IRQ_HANDLED;
1932 }
1933
1934 static int hclgevf_configure(struct hclgevf_dev *hdev)
1935 {
1936         int ret;
1937
1938         /* get current port based vlan state from PF */
1939         ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1940         if (ret)
1941                 return ret;
1942
1943         /* get queue configuration from PF */
1944         ret = hclgevf_get_queue_info(hdev);
1945         if (ret)
1946                 return ret;
1947
1948         /* get queue depth info from PF */
1949         ret = hclgevf_get_queue_depth(hdev);
1950         if (ret)
1951                 return ret;
1952
1953         ret = hclgevf_get_pf_media_type(hdev);
1954         if (ret)
1955                 return ret;
1956
1957         /* get tc configuration from PF */
1958         return hclgevf_get_tc_info(hdev);
1959 }
1960
1961 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1962 {
1963         struct pci_dev *pdev = ae_dev->pdev;
1964         struct hclgevf_dev *hdev;
1965
1966         hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1967         if (!hdev)
1968                 return -ENOMEM;
1969
1970         hdev->pdev = pdev;
1971         hdev->ae_dev = ae_dev;
1972         ae_dev->priv = hdev;
1973
1974         return 0;
1975 }
1976
1977 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1978 {
1979         struct hnae3_handle *roce = &hdev->roce;
1980         struct hnae3_handle *nic = &hdev->nic;
1981
1982         roce->rinfo.num_vectors = hdev->num_roce_msix;
1983
1984         if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1985             hdev->num_msi_left == 0)
1986                 return -EINVAL;
1987
1988         roce->rinfo.base_vector = hdev->roce_base_vector;
1989
1990         roce->rinfo.netdev = nic->kinfo.netdev;
1991         roce->rinfo.roce_io_base = hdev->hw.io_base;
1992
1993         roce->pdev = nic->pdev;
1994         roce->ae_algo = nic->ae_algo;
1995         roce->numa_node_mask = nic->numa_node_mask;
1996
1997         return 0;
1998 }
1999
2000 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2001 {
2002         struct hclgevf_cfg_gro_status_cmd *req;
2003         struct hclgevf_desc desc;
2004         int ret;
2005
2006         if (!hnae3_dev_gro_supported(hdev))
2007                 return 0;
2008
2009         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2010                                      false);
2011         req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2012
2013         req->gro_en = cpu_to_le16(en ? 1 : 0);
2014
2015         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2016         if (ret)
2017                 dev_err(&hdev->pdev->dev,
2018                         "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2019
2020         return ret;
2021 }
2022
2023 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2024 {
2025         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2026         int i, ret;
2027
2028         rss_cfg->rss_size = hdev->rss_size_max;
2029
2030         if (hdev->pdev->revision >= 0x21) {
2031                 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2032                 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2033                        HCLGEVF_RSS_KEY_SIZE);
2034
2035                 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2036                                                rss_cfg->rss_hash_key);
2037                 if (ret)
2038                         return ret;
2039
2040                 rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2041                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2042                 rss_cfg->rss_tuple_sets.ipv4_udp_en =
2043                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2044                 rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2045                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2046                 rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2047                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2048                 rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2049                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2050                 rss_cfg->rss_tuple_sets.ipv6_udp_en =
2051                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2052                 rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2053                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2054                 rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2055                                         HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2056
2057                 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2058                 if (ret)
2059                         return ret;
2060
2061         }
2062
2063         /* Initialize RSS indirect table */
2064         for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2065                 rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2066
2067         ret = hclgevf_set_rss_indir_table(hdev);
2068         if (ret)
2069                 return ret;
2070
2071         return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2072 }
2073
2074 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2075 {
2076         return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2077                                        false);
2078 }
2079
2080 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2081 {
2082         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2083
2084         if (enable) {
2085                 mod_timer(&hdev->service_timer, jiffies + HZ);
2086         } else {
2087                 del_timer_sync(&hdev->service_timer);
2088                 cancel_work_sync(&hdev->service_task);
2089                 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2090         }
2091 }
2092
2093 static int hclgevf_ae_start(struct hnae3_handle *handle)
2094 {
2095         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2096
2097         hclgevf_reset_tqp_stats(handle);
2098
2099         hclgevf_request_link_info(hdev);
2100
2101         hclgevf_update_link_mode(hdev);
2102
2103         clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2104
2105         return 0;
2106 }
2107
2108 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2109 {
2110         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2111         int i;
2112
2113         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2114
2115         if (hdev->reset_type != HNAE3_VF_RESET)
2116                 for (i = 0; i < handle->kinfo.num_tqps; i++)
2117                         if (hclgevf_reset_tqp(handle, i))
2118                                 break;
2119
2120         hclgevf_reset_tqp_stats(handle);
2121         hclgevf_update_link_status(hdev, 0);
2122 }
2123
2124 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2125 {
2126         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2127         u8 msg_data;
2128
2129         msg_data = alive ? 1 : 0;
2130         return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2131                                     0, &msg_data, 1, false, NULL, 0);
2132 }
2133
2134 static int hclgevf_client_start(struct hnae3_handle *handle)
2135 {
2136         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2137         int ret;
2138
2139         ret = hclgevf_set_alive(handle, true);
2140         if (ret)
2141                 return ret;
2142
2143         mod_timer(&hdev->keep_alive_timer, jiffies +
2144                   HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2145
2146         return 0;
2147 }
2148
2149 static void hclgevf_client_stop(struct hnae3_handle *handle)
2150 {
2151         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2152         int ret;
2153
2154         ret = hclgevf_set_alive(handle, false);
2155         if (ret)
2156                 dev_warn(&hdev->pdev->dev,
2157                          "%s failed %d\n", __func__, ret);
2158
2159         del_timer_sync(&hdev->keep_alive_timer);
2160         cancel_work_sync(&hdev->keep_alive_task);
2161 }
2162
2163 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2164 {
2165         /* setup tasks for the MBX */
2166         INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2167         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2168         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2169
2170         /* setup tasks for service timer */
2171         timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2172
2173         INIT_WORK(&hdev->service_task, hclgevf_service_task);
2174         clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2175
2176         INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2177
2178         mutex_init(&hdev->mbx_resp.mbx_mutex);
2179
2180         /* bring the device down */
2181         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2182 }
2183
2184 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2185 {
2186         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2187         set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2188
2189         if (hdev->keep_alive_timer.function)
2190                 del_timer_sync(&hdev->keep_alive_timer);
2191         if (hdev->keep_alive_task.func)
2192                 cancel_work_sync(&hdev->keep_alive_task);
2193         if (hdev->service_timer.function)
2194                 del_timer_sync(&hdev->service_timer);
2195         if (hdev->service_task.func)
2196                 cancel_work_sync(&hdev->service_task);
2197         if (hdev->mbx_service_task.func)
2198                 cancel_work_sync(&hdev->mbx_service_task);
2199         if (hdev->rst_service_task.func)
2200                 cancel_work_sync(&hdev->rst_service_task);
2201
2202         mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2203 }
2204
2205 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2206 {
2207         struct pci_dev *pdev = hdev->pdev;
2208         int vectors;
2209         int i;
2210
2211         if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2212                 vectors = pci_alloc_irq_vectors(pdev,
2213                                                 hdev->roce_base_msix_offset + 1,
2214                                                 hdev->num_msi,
2215                                                 PCI_IRQ_MSIX);
2216         else
2217                 vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2218                                                 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2219
2220         if (vectors < 0) {
2221                 dev_err(&pdev->dev,
2222                         "failed(%d) to allocate MSI/MSI-X vectors\n",
2223                         vectors);
2224                 return vectors;
2225         }
2226         if (vectors < hdev->num_msi)
2227                 dev_warn(&hdev->pdev->dev,
2228                          "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2229                          hdev->num_msi, vectors);
2230
2231         hdev->num_msi = vectors;
2232         hdev->num_msi_left = vectors;
2233         hdev->base_msi_vector = pdev->irq;
2234         hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2235
2236         hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2237                                            sizeof(u16), GFP_KERNEL);
2238         if (!hdev->vector_status) {
2239                 pci_free_irq_vectors(pdev);
2240                 return -ENOMEM;
2241         }
2242
2243         for (i = 0; i < hdev->num_msi; i++)
2244                 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2245
2246         hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2247                                         sizeof(int), GFP_KERNEL);
2248         if (!hdev->vector_irq) {
2249                 devm_kfree(&pdev->dev, hdev->vector_status);
2250                 pci_free_irq_vectors(pdev);
2251                 return -ENOMEM;
2252         }
2253
2254         return 0;
2255 }
2256
2257 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2258 {
2259         struct pci_dev *pdev = hdev->pdev;
2260
2261         devm_kfree(&pdev->dev, hdev->vector_status);
2262         devm_kfree(&pdev->dev, hdev->vector_irq);
2263         pci_free_irq_vectors(pdev);
2264 }
2265
2266 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2267 {
2268         int ret = 0;
2269
2270         hclgevf_get_misc_vector(hdev);
2271
2272         ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2273                           0, "hclgevf_cmd", hdev);
2274         if (ret) {
2275                 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2276                         hdev->misc_vector.vector_irq);
2277                 return ret;
2278         }
2279
2280         hclgevf_clear_event_cause(hdev, 0);
2281
2282         /* enable misc. vector(vector 0) */
2283         hclgevf_enable_vector(&hdev->misc_vector, true);
2284
2285         return ret;
2286 }
2287
2288 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2289 {
2290         /* disable misc vector(vector 0) */
2291         hclgevf_enable_vector(&hdev->misc_vector, false);
2292         synchronize_irq(hdev->misc_vector.vector_irq);
2293         free_irq(hdev->misc_vector.vector_irq, hdev);
2294         hclgevf_free_vector(hdev, 0);
2295 }
2296
2297 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2298 {
2299         struct device *dev = &hdev->pdev->dev;
2300
2301         dev_info(dev, "VF info begin:\n");
2302
2303         dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2304         dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2305         dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2306         dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2307         dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2308         dev_info(dev, "PF media type of this VF: %d\n",
2309                  hdev->hw.mac.media_type);
2310
2311         dev_info(dev, "VF info end.\n");
2312 }
2313
2314 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2315                                             struct hnae3_client *client)
2316 {
2317         struct hclgevf_dev *hdev = ae_dev->priv;
2318         int ret;
2319
2320         ret = client->ops->init_instance(&hdev->nic);
2321         if (ret)
2322                 return ret;
2323
2324         set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2325         hnae3_set_client_init_flag(client, ae_dev, 1);
2326
2327         if (netif_msg_drv(&hdev->nic))
2328                 hclgevf_info_show(hdev);
2329
2330         return 0;
2331 }
2332
2333 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2334                                              struct hnae3_client *client)
2335 {
2336         struct hclgevf_dev *hdev = ae_dev->priv;
2337         int ret;
2338
2339         if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2340             !hdev->nic_client)
2341                 return 0;
2342
2343         ret = hclgevf_init_roce_base_info(hdev);
2344         if (ret)
2345                 return ret;
2346
2347         ret = client->ops->init_instance(&hdev->roce);
2348         if (ret)
2349                 return ret;
2350
2351         hnae3_set_client_init_flag(client, ae_dev, 1);
2352
2353         return 0;
2354 }
2355
2356 static int hclgevf_init_client_instance(struct hnae3_client *client,
2357                                         struct hnae3_ae_dev *ae_dev)
2358 {
2359         struct hclgevf_dev *hdev = ae_dev->priv;
2360         int ret;
2361
2362         switch (client->type) {
2363         case HNAE3_CLIENT_KNIC:
2364                 hdev->nic_client = client;
2365                 hdev->nic.client = client;
2366
2367                 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2368                 if (ret)
2369                         goto clear_nic;
2370
2371                 ret = hclgevf_init_roce_client_instance(ae_dev,
2372                                                         hdev->roce_client);
2373                 if (ret)
2374                         goto clear_roce;
2375
2376                 break;
2377         case HNAE3_CLIENT_ROCE:
2378                 if (hnae3_dev_roce_supported(hdev)) {
2379                         hdev->roce_client = client;
2380                         hdev->roce.client = client;
2381                 }
2382
2383                 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2384                 if (ret)
2385                         goto clear_roce;
2386
2387                 break;
2388         default:
2389                 return -EINVAL;
2390         }
2391
2392         return 0;
2393
2394 clear_nic:
2395         hdev->nic_client = NULL;
2396         hdev->nic.client = NULL;
2397         return ret;
2398 clear_roce:
2399         hdev->roce_client = NULL;
2400         hdev->roce.client = NULL;
2401         return ret;
2402 }
2403
2404 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2405                                            struct hnae3_ae_dev *ae_dev)
2406 {
2407         struct hclgevf_dev *hdev = ae_dev->priv;
2408
2409         /* un-init roce, if it exists */
2410         if (hdev->roce_client) {
2411                 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2412                 hdev->roce_client = NULL;
2413                 hdev->roce.client = NULL;
2414         }
2415
2416         /* un-init nic/unic, if this was not called by roce client */
2417         if (client->ops->uninit_instance && hdev->nic_client &&
2418             client->type != HNAE3_CLIENT_ROCE) {
2419                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2420
2421                 client->ops->uninit_instance(&hdev->nic, 0);
2422                 hdev->nic_client = NULL;
2423                 hdev->nic.client = NULL;
2424         }
2425 }
2426
2427 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2428 {
2429         struct pci_dev *pdev = hdev->pdev;
2430         struct hclgevf_hw *hw;
2431         int ret;
2432
2433         ret = pci_enable_device(pdev);
2434         if (ret) {
2435                 dev_err(&pdev->dev, "failed to enable PCI device\n");
2436                 return ret;
2437         }
2438
2439         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2440         if (ret) {
2441                 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2442                 goto err_disable_device;
2443         }
2444
2445         ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2446         if (ret) {
2447                 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2448                 goto err_disable_device;
2449         }
2450
2451         pci_set_master(pdev);
2452         hw = &hdev->hw;
2453         hw->hdev = hdev;
2454         hw->io_base = pci_iomap(pdev, 2, 0);
2455         if (!hw->io_base) {
2456                 dev_err(&pdev->dev, "can't map configuration register space\n");
2457                 ret = -ENOMEM;
2458                 goto err_clr_master;
2459         }
2460
2461         return 0;
2462
2463 err_clr_master:
2464         pci_clear_master(pdev);
2465         pci_release_regions(pdev);
2466 err_disable_device:
2467         pci_disable_device(pdev);
2468
2469         return ret;
2470 }
2471
2472 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2473 {
2474         struct pci_dev *pdev = hdev->pdev;
2475
2476         pci_iounmap(pdev, hdev->hw.io_base);
2477         pci_clear_master(pdev);
2478         pci_release_regions(pdev);
2479         pci_disable_device(pdev);
2480 }
2481
2482 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2483 {
2484         struct hclgevf_query_res_cmd *req;
2485         struct hclgevf_desc desc;
2486         int ret;
2487
2488         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2489         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2490         if (ret) {
2491                 dev_err(&hdev->pdev->dev,
2492                         "query vf resource failed, ret = %d.\n", ret);
2493                 return ret;
2494         }
2495
2496         req = (struct hclgevf_query_res_cmd *)desc.data;
2497
2498         if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2499                 hdev->roce_base_msix_offset =
2500                 hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2501                                 HCLGEVF_MSIX_OFT_ROCEE_M,
2502                                 HCLGEVF_MSIX_OFT_ROCEE_S);
2503                 hdev->num_roce_msix =
2504                 hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2505                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2506
2507                 /* VF should have NIC vectors and Roce vectors, NIC vectors
2508                  * are queued before Roce vectors. The offset is fixed to 64.
2509                  */
2510                 hdev->num_msi = hdev->num_roce_msix +
2511                                 hdev->roce_base_msix_offset;
2512         } else {
2513                 hdev->num_msi =
2514                 hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2515                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2516         }
2517
2518         return 0;
2519 }
2520
2521 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2522 {
2523         struct pci_dev *pdev = hdev->pdev;
2524         int ret = 0;
2525
2526         if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2527             test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2528                 hclgevf_misc_irq_uninit(hdev);
2529                 hclgevf_uninit_msi(hdev);
2530                 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2531         }
2532
2533         if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2534                 pci_set_master(pdev);
2535                 ret = hclgevf_init_msi(hdev);
2536                 if (ret) {
2537                         dev_err(&pdev->dev,
2538                                 "failed(%d) to init MSI/MSI-X\n", ret);
2539                         return ret;
2540                 }
2541
2542                 ret = hclgevf_misc_irq_init(hdev);
2543                 if (ret) {
2544                         hclgevf_uninit_msi(hdev);
2545                         dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2546                                 ret);
2547                         return ret;
2548                 }
2549
2550                 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2551         }
2552
2553         return ret;
2554 }
2555
2556 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2557 {
2558         struct pci_dev *pdev = hdev->pdev;
2559         int ret;
2560
2561         ret = hclgevf_pci_reset(hdev);
2562         if (ret) {
2563                 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2564                 return ret;
2565         }
2566
2567         ret = hclgevf_cmd_init(hdev);
2568         if (ret) {
2569                 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2570                 return ret;
2571         }
2572
2573         ret = hclgevf_rss_init_hw(hdev);
2574         if (ret) {
2575                 dev_err(&hdev->pdev->dev,
2576                         "failed(%d) to initialize RSS\n", ret);
2577                 return ret;
2578         }
2579
2580         ret = hclgevf_config_gro(hdev, true);
2581         if (ret)
2582                 return ret;
2583
2584         ret = hclgevf_init_vlan_config(hdev);
2585         if (ret) {
2586                 dev_err(&hdev->pdev->dev,
2587                         "failed(%d) to initialize VLAN config\n", ret);
2588                 return ret;
2589         }
2590
2591         if (pdev->revision >= 0x21) {
2592                 ret = hclgevf_set_promisc_mode(hdev, true);
2593                 if (ret)
2594                         return ret;
2595         }
2596
2597         dev_info(&hdev->pdev->dev, "Reset done\n");
2598
2599         return 0;
2600 }
2601
2602 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2603 {
2604         struct pci_dev *pdev = hdev->pdev;
2605         int ret;
2606
2607         ret = hclgevf_pci_init(hdev);
2608         if (ret) {
2609                 dev_err(&pdev->dev, "PCI initialization failed\n");
2610                 return ret;
2611         }
2612
2613         ret = hclgevf_cmd_queue_init(hdev);
2614         if (ret) {
2615                 dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2616                 goto err_cmd_queue_init;
2617         }
2618
2619         ret = hclgevf_cmd_init(hdev);
2620         if (ret)
2621                 goto err_cmd_init;
2622
2623         /* Get vf resource */
2624         ret = hclgevf_query_vf_resource(hdev);
2625         if (ret) {
2626                 dev_err(&hdev->pdev->dev,
2627                         "Query vf status error, ret = %d.\n", ret);
2628                 goto err_cmd_init;
2629         }
2630
2631         ret = hclgevf_init_msi(hdev);
2632         if (ret) {
2633                 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2634                 goto err_cmd_init;
2635         }
2636
2637         hclgevf_state_init(hdev);
2638         hdev->reset_level = HNAE3_VF_FUNC_RESET;
2639
2640         ret = hclgevf_misc_irq_init(hdev);
2641         if (ret) {
2642                 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2643                         ret);
2644                 goto err_misc_irq_init;
2645         }
2646
2647         set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2648
2649         ret = hclgevf_configure(hdev);
2650         if (ret) {
2651                 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2652                 goto err_config;
2653         }
2654
2655         ret = hclgevf_alloc_tqps(hdev);
2656         if (ret) {
2657                 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2658                 goto err_config;
2659         }
2660
2661         ret = hclgevf_set_handle_info(hdev);
2662         if (ret) {
2663                 dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2664                 goto err_config;
2665         }
2666
2667         ret = hclgevf_config_gro(hdev, true);
2668         if (ret)
2669                 goto err_config;
2670
2671         /* vf is not allowed to enable unicast/multicast promisc mode.
2672          * For revision 0x20, default to disable broadcast promisc mode,
2673          * firmware makes sure broadcast packets can be accepted.
2674          * For revision 0x21, default to enable broadcast promisc mode.
2675          */
2676         if (pdev->revision >= 0x21) {
2677                 ret = hclgevf_set_promisc_mode(hdev, true);
2678                 if (ret)
2679                         goto err_config;
2680         }
2681
2682         /* Initialize RSS for this VF */
2683         ret = hclgevf_rss_init_hw(hdev);
2684         if (ret) {
2685                 dev_err(&hdev->pdev->dev,
2686                         "failed(%d) to initialize RSS\n", ret);
2687                 goto err_config;
2688         }
2689
2690         ret = hclgevf_init_vlan_config(hdev);
2691         if (ret) {
2692                 dev_err(&hdev->pdev->dev,
2693                         "failed(%d) to initialize VLAN config\n", ret);
2694                 goto err_config;
2695         }
2696
2697         hdev->last_reset_time = jiffies;
2698         pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2699
2700         return 0;
2701
2702 err_config:
2703         hclgevf_misc_irq_uninit(hdev);
2704 err_misc_irq_init:
2705         hclgevf_state_uninit(hdev);
2706         hclgevf_uninit_msi(hdev);
2707 err_cmd_init:
2708         hclgevf_cmd_uninit(hdev);
2709 err_cmd_queue_init:
2710         hclgevf_pci_uninit(hdev);
2711         clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2712         return ret;
2713 }
2714
2715 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2716 {
2717         hclgevf_state_uninit(hdev);
2718
2719         if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2720                 hclgevf_misc_irq_uninit(hdev);
2721                 hclgevf_uninit_msi(hdev);
2722         }
2723
2724         hclgevf_pci_uninit(hdev);
2725         hclgevf_cmd_uninit(hdev);
2726 }
2727
2728 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2729 {
2730         struct pci_dev *pdev = ae_dev->pdev;
2731         struct hclgevf_dev *hdev;
2732         int ret;
2733
2734         ret = hclgevf_alloc_hdev(ae_dev);
2735         if (ret) {
2736                 dev_err(&pdev->dev, "hclge device allocation failed\n");
2737                 return ret;
2738         }
2739
2740         ret = hclgevf_init_hdev(ae_dev->priv);
2741         if (ret) {
2742                 dev_err(&pdev->dev, "hclge device initialization failed\n");
2743                 return ret;
2744         }
2745
2746         hdev = ae_dev->priv;
2747         timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2748         INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2749
2750         return 0;
2751 }
2752
2753 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2754 {
2755         struct hclgevf_dev *hdev = ae_dev->priv;
2756
2757         hclgevf_uninit_hdev(hdev);
2758         ae_dev->priv = NULL;
2759 }
2760
2761 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2762 {
2763         struct hnae3_handle *nic = &hdev->nic;
2764         struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2765
2766         return min_t(u32, hdev->rss_size_max,
2767                      hdev->num_tqps / kinfo->num_tc);
2768 }
2769
2770 /**
2771  * hclgevf_get_channels - Get the current channels enabled and max supported.
2772  * @handle: hardware information for network interface
2773  * @ch: ethtool channels structure
2774  *
2775  * We don't support separate tx and rx queues as channels. The other count
2776  * represents how many queues are being used for control. max_combined counts
2777  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2778  * q_vectors since we support a lot more queue pairs than q_vectors.
2779  **/
2780 static void hclgevf_get_channels(struct hnae3_handle *handle,
2781                                  struct ethtool_channels *ch)
2782 {
2783         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2784
2785         ch->max_combined = hclgevf_get_max_channels(hdev);
2786         ch->other_count = 0;
2787         ch->max_other = 0;
2788         ch->combined_count = handle->kinfo.rss_size;
2789 }
2790
2791 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2792                                           u16 *alloc_tqps, u16 *max_rss_size)
2793 {
2794         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2795
2796         *alloc_tqps = hdev->num_tqps;
2797         *max_rss_size = hdev->rss_size_max;
2798 }
2799
2800 static int hclgevf_get_status(struct hnae3_handle *handle)
2801 {
2802         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2803
2804         return hdev->hw.mac.link;
2805 }
2806
2807 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2808                                             u8 *auto_neg, u32 *speed,
2809                                             u8 *duplex)
2810 {
2811         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2812
2813         if (speed)
2814                 *speed = hdev->hw.mac.speed;
2815         if (duplex)
2816                 *duplex = hdev->hw.mac.duplex;
2817         if (auto_neg)
2818                 *auto_neg = AUTONEG_DISABLE;
2819 }
2820
2821 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2822                                  u8 duplex)
2823 {
2824         hdev->hw.mac.speed = speed;
2825         hdev->hw.mac.duplex = duplex;
2826 }
2827
2828 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2829 {
2830         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2831
2832         return hclgevf_config_gro(hdev, enable);
2833 }
2834
2835 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2836                                    u8 *module_type)
2837 {
2838         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2839
2840         if (media_type)
2841                 *media_type = hdev->hw.mac.media_type;
2842
2843         if (module_type)
2844                 *module_type = hdev->hw.mac.module_type;
2845 }
2846
2847 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2848 {
2849         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2850
2851         return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2852 }
2853
2854 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2855 {
2856         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2857
2858         return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2859 }
2860
2861 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2862 {
2863         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2864
2865         return hdev->rst_stats.hw_rst_done_cnt;
2866 }
2867
2868 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2869                                   unsigned long *supported,
2870                                   unsigned long *advertising)
2871 {
2872         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2873
2874         *supported = hdev->hw.mac.supported;
2875         *advertising = hdev->hw.mac.advertising;
2876 }
2877
2878 #define MAX_SEPARATE_NUM        4
2879 #define SEPARATOR_VALUE         0xFFFFFFFF
2880 #define REG_NUM_PER_LINE        4
2881 #define REG_LEN_PER_LINE        (REG_NUM_PER_LINE * sizeof(u32))
2882
2883 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2884 {
2885         int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2886         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2887
2888         cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2889         common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2890         ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2891         tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2892
2893         return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2894                 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2895 }
2896
2897 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2898                              void *data)
2899 {
2900         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2901         int i, j, reg_um, separator_num;
2902         u32 *reg = data;
2903
2904         *version = hdev->fw_version;
2905
2906         /* fetching per-VF registers values from VF PCIe register space */
2907         reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2908         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2909         for (i = 0; i < reg_um; i++)
2910                 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2911         for (i = 0; i < separator_num; i++)
2912                 *reg++ = SEPARATOR_VALUE;
2913
2914         reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2915         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2916         for (i = 0; i < reg_um; i++)
2917                 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2918         for (i = 0; i < separator_num; i++)
2919                 *reg++ = SEPARATOR_VALUE;
2920
2921         reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2922         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2923         for (j = 0; j < hdev->num_tqps; j++) {
2924                 for (i = 0; i < reg_um; i++)
2925                         *reg++ = hclgevf_read_dev(&hdev->hw,
2926                                                   ring_reg_addr_list[i] +
2927                                                   0x200 * j);
2928                 for (i = 0; i < separator_num; i++)
2929                         *reg++ = SEPARATOR_VALUE;
2930         }
2931
2932         reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2933         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2934         for (j = 0; j < hdev->num_msi_used - 1; j++) {
2935                 for (i = 0; i < reg_um; i++)
2936                         *reg++ = hclgevf_read_dev(&hdev->hw,
2937                                                   tqp_intr_reg_addr_list[i] +
2938                                                   4 * j);
2939                 for (i = 0; i < separator_num; i++)
2940                         *reg++ = SEPARATOR_VALUE;
2941         }
2942 }
2943
2944 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2945                                         u8 *port_base_vlan_info, u8 data_size)
2946 {
2947         struct hnae3_handle *nic = &hdev->nic;
2948
2949         rtnl_lock();
2950         hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2951         rtnl_unlock();
2952
2953         /* send msg to PF and wait update port based vlan info */
2954         hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2955                              HCLGE_MBX_PORT_BASE_VLAN_CFG,
2956                              port_base_vlan_info, data_size,
2957                              false, NULL, 0);
2958
2959         if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2960                 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2961         else
2962                 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2963
2964         rtnl_lock();
2965         hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2966         rtnl_unlock();
2967 }
2968
2969 static const struct hnae3_ae_ops hclgevf_ops = {
2970         .init_ae_dev = hclgevf_init_ae_dev,
2971         .uninit_ae_dev = hclgevf_uninit_ae_dev,
2972         .flr_prepare = hclgevf_flr_prepare,
2973         .flr_done = hclgevf_flr_done,
2974         .init_client_instance = hclgevf_init_client_instance,
2975         .uninit_client_instance = hclgevf_uninit_client_instance,
2976         .start = hclgevf_ae_start,
2977         .stop = hclgevf_ae_stop,
2978         .client_start = hclgevf_client_start,
2979         .client_stop = hclgevf_client_stop,
2980         .map_ring_to_vector = hclgevf_map_ring_to_vector,
2981         .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2982         .get_vector = hclgevf_get_vector,
2983         .put_vector = hclgevf_put_vector,
2984         .reset_queue = hclgevf_reset_tqp,
2985         .get_mac_addr = hclgevf_get_mac_addr,
2986         .set_mac_addr = hclgevf_set_mac_addr,
2987         .add_uc_addr = hclgevf_add_uc_addr,
2988         .rm_uc_addr = hclgevf_rm_uc_addr,
2989         .add_mc_addr = hclgevf_add_mc_addr,
2990         .rm_mc_addr = hclgevf_rm_mc_addr,
2991         .get_stats = hclgevf_get_stats,
2992         .update_stats = hclgevf_update_stats,
2993         .get_strings = hclgevf_get_strings,
2994         .get_sset_count = hclgevf_get_sset_count,
2995         .get_rss_key_size = hclgevf_get_rss_key_size,
2996         .get_rss_indir_size = hclgevf_get_rss_indir_size,
2997         .get_rss = hclgevf_get_rss,
2998         .set_rss = hclgevf_set_rss,
2999         .get_rss_tuple = hclgevf_get_rss_tuple,
3000         .set_rss_tuple = hclgevf_set_rss_tuple,
3001         .get_tc_size = hclgevf_get_tc_size,
3002         .get_fw_version = hclgevf_get_fw_version,
3003         .set_vlan_filter = hclgevf_set_vlan_filter,
3004         .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3005         .reset_event = hclgevf_reset_event,
3006         .set_default_reset_request = hclgevf_set_def_reset_request,
3007         .get_channels = hclgevf_get_channels,
3008         .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3009         .get_regs_len = hclgevf_get_regs_len,
3010         .get_regs = hclgevf_get_regs,
3011         .get_status = hclgevf_get_status,
3012         .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3013         .get_media_type = hclgevf_get_media_type,
3014         .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3015         .ae_dev_resetting = hclgevf_ae_dev_resetting,
3016         .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3017         .set_gro_en = hclgevf_gro_en,
3018         .set_mtu = hclgevf_set_mtu,
3019         .get_global_queue_id = hclgevf_get_qid_global,
3020         .set_timer_task = hclgevf_set_timer_task,
3021         .get_link_mode = hclgevf_get_link_mode,
3022 };
3023
3024 static struct hnae3_ae_algo ae_algovf = {
3025         .ops = &hclgevf_ops,
3026         .pdev_id_table = ae_algovf_pci_tbl,
3027 };
3028
3029 static int hclgevf_init(void)
3030 {
3031         pr_info("%s is initializing\n", HCLGEVF_NAME);
3032
3033         hnae3_register_ae_algo(&ae_algovf);
3034
3035         return 0;
3036 }
3037
3038 static void hclgevf_exit(void)
3039 {
3040         hnae3_unregister_ae_algo(&ae_algovf);
3041 }
3042 module_init(hclgevf_init);
3043 module_exit(hclgevf_exit);
3044
3045 MODULE_LICENSE("GPL");
3046 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3047 MODULE_DESCRIPTION("HCLGEVF Driver");
3048 MODULE_VERSION(HCLGEVF_MOD_VERSION);