net: hns3: add query basic info support for VF
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME    "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT      5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18                                   unsigned long delay);
19
20 static struct hnae3_ae_algo ae_algovf;
21
22 static struct workqueue_struct *hclgevf_wq;
23
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28         /* required last entry */
29         {0, }
30 };
31
32 static const u8 hclgevf_hash_key[] = {
33         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43                                          HCLGEVF_CMDQ_TX_ADDR_H_REG,
44                                          HCLGEVF_CMDQ_TX_DEPTH_REG,
45                                          HCLGEVF_CMDQ_TX_TAIL_REG,
46                                          HCLGEVF_CMDQ_TX_HEAD_REG,
47                                          HCLGEVF_CMDQ_RX_ADDR_L_REG,
48                                          HCLGEVF_CMDQ_RX_ADDR_H_REG,
49                                          HCLGEVF_CMDQ_RX_DEPTH_REG,
50                                          HCLGEVF_CMDQ_RX_TAIL_REG,
51                                          HCLGEVF_CMDQ_RX_HEAD_REG,
52                                          HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54                                          HCLGEVF_CMDQ_INTR_EN_REG,
55                                          HCLGEVF_CMDQ_INTR_GEN_REG};
56
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58                                            HCLGEVF_RST_ING,
59                                            HCLGEVF_GRO_EN_REG};
60
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62                                          HCLGEVF_RING_RX_ADDR_H_REG,
63                                          HCLGEVF_RING_RX_BD_NUM_REG,
64                                          HCLGEVF_RING_RX_BD_LENGTH_REG,
65                                          HCLGEVF_RING_RX_MERGE_EN_REG,
66                                          HCLGEVF_RING_RX_TAIL_REG,
67                                          HCLGEVF_RING_RX_HEAD_REG,
68                                          HCLGEVF_RING_RX_FBD_NUM_REG,
69                                          HCLGEVF_RING_RX_OFFSET_REG,
70                                          HCLGEVF_RING_RX_FBD_OFFSET_REG,
71                                          HCLGEVF_RING_RX_STASH_REG,
72                                          HCLGEVF_RING_RX_BD_ERR_REG,
73                                          HCLGEVF_RING_TX_ADDR_L_REG,
74                                          HCLGEVF_RING_TX_ADDR_H_REG,
75                                          HCLGEVF_RING_TX_BD_NUM_REG,
76                                          HCLGEVF_RING_TX_PRIORITY_REG,
77                                          HCLGEVF_RING_TX_TC_REG,
78                                          HCLGEVF_RING_TX_MERGE_EN_REG,
79                                          HCLGEVF_RING_TX_TAIL_REG,
80                                          HCLGEVF_RING_TX_HEAD_REG,
81                                          HCLGEVF_RING_TX_FBD_NUM_REG,
82                                          HCLGEVF_RING_TX_OFFSET_REG,
83                                          HCLGEVF_RING_TX_EBD_NUM_REG,
84                                          HCLGEVF_RING_TX_EBD_OFFSET_REG,
85                                          HCLGEVF_RING_TX_BD_ERR_REG,
86                                          HCLGEVF_RING_EN_REG};
87
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89                                              HCLGEVF_TQP_INTR_GL0_REG,
90                                              HCLGEVF_TQP_INTR_GL1_REG,
91                                              HCLGEVF_TQP_INTR_GL2_REG,
92                                              HCLGEVF_TQP_INTR_RL_REG};
93
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96         if (!handle->client)
97                 return container_of(handle, struct hclgevf_dev, nic);
98         else if (handle->client->type == HNAE3_CLIENT_ROCE)
99                 return container_of(handle, struct hclgevf_dev, roce);
100         else
101                 return container_of(handle, struct hclgevf_dev, nic);
102 }
103
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108         struct hclgevf_desc desc;
109         struct hclgevf_tqp *tqp;
110         int status;
111         int i;
112
113         for (i = 0; i < kinfo->num_tqps; i++) {
114                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115                 hclgevf_cmd_setup_basic_desc(&desc,
116                                              HCLGEVF_OPC_QUERY_RX_STATUS,
117                                              true);
118
119                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121                 if (status) {
122                         dev_err(&hdev->pdev->dev,
123                                 "Query tqp stat fail, status = %d,queue = %d\n",
124                                 status, i);
125                         return status;
126                 }
127                 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128                         le32_to_cpu(desc.data[1]);
129
130                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131                                              true);
132
133                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135                 if (status) {
136                         dev_err(&hdev->pdev->dev,
137                                 "Query tqp stat fail, status = %d,queue = %d\n",
138                                 status, i);
139                         return status;
140                 }
141                 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142                         le32_to_cpu(desc.data[1]);
143         }
144
145         return 0;
146 }
147
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151         struct hclgevf_tqp *tqp;
152         u64 *buff = data;
153         int i;
154
155         for (i = 0; i < kinfo->num_tqps; i++) {
156                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157                 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158         }
159         for (i = 0; i < kinfo->num_tqps; i++) {
160                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161                 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162         }
163
164         return buff;
165 }
166
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170
171         return kinfo->num_tqps * 2;
172 }
173
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177         u8 *buff = data;
178         int i;
179
180         for (i = 0; i < kinfo->num_tqps; i++) {
181                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182                                                        struct hclgevf_tqp, q);
183                 snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184                          tqp->index);
185                 buff += ETH_GSTRING_LEN;
186         }
187
188         for (i = 0; i < kinfo->num_tqps; i++) {
189                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190                                                        struct hclgevf_tqp, q);
191                 snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192                          tqp->index);
193                 buff += ETH_GSTRING_LEN;
194         }
195
196         return buff;
197 }
198
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200                                  struct net_device_stats *net_stats)
201 {
202         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203         int status;
204
205         status = hclgevf_tqps_update_stats(handle);
206         if (status)
207                 dev_err(&hdev->pdev->dev,
208                         "VF update of TQPS stats fail, status = %d.\n",
209                         status);
210 }
211
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214         if (strset == ETH_SS_TEST)
215                 return -EOPNOTSUPP;
216         else if (strset == ETH_SS_STATS)
217                 return hclgevf_tqps_get_sset_count(handle, strset);
218
219         return 0;
220 }
221
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223                                 u8 *data)
224 {
225         u8 *p = (char *)data;
226
227         if (strset == ETH_SS_STATS)
228                 p = hclgevf_tqps_get_strings(handle, p);
229 }
230
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233         hclgevf_tqps_get_stats(handle, data);
234 }
235
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237                                    u8 subcode)
238 {
239         if (msg) {
240                 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241                 msg->code = code;
242                 msg->subcode = subcode;
243         }
244 }
245
246 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
247 {
248         struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
249         u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
250         struct hclge_basic_info *basic_info;
251         struct hclge_vf_to_pf_msg send_msg;
252         unsigned long caps;
253         int status;
254
255         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
256         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
257                                       sizeof(resp_msg));
258         if (status) {
259                 dev_err(&hdev->pdev->dev,
260                         "failed to get basic info from pf, ret = %d", status);
261                 return status;
262         }
263
264         basic_info = (struct hclge_basic_info *)resp_msg;
265
266         hdev->hw_tc_map = basic_info->hw_tc_map;
267         hdev->mbx_api_version = basic_info->mbx_api_version;
268         caps = basic_info->pf_caps;
269         if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
270                 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
271
272         return 0;
273 }
274
275 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
276 {
277         struct hnae3_handle *nic = &hdev->nic;
278         struct hclge_vf_to_pf_msg send_msg;
279         u8 resp_msg;
280         int ret;
281
282         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
283                                HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
284         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
285                                    sizeof(u8));
286         if (ret) {
287                 dev_err(&hdev->pdev->dev,
288                         "VF request to get port based vlan state failed %d",
289                         ret);
290                 return ret;
291         }
292
293         nic->port_base_vlan_state = resp_msg;
294
295         return 0;
296 }
297
298 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
299 {
300 #define HCLGEVF_TQPS_RSS_INFO_LEN       6
301 #define HCLGEVF_TQPS_ALLOC_OFFSET       0
302 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET    2
303 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET       4
304
305         u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
306         struct hclge_vf_to_pf_msg send_msg;
307         int status;
308
309         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
310         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
311                                       HCLGEVF_TQPS_RSS_INFO_LEN);
312         if (status) {
313                 dev_err(&hdev->pdev->dev,
314                         "VF request to get tqp info from PF failed %d",
315                         status);
316                 return status;
317         }
318
319         memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
320                sizeof(u16));
321         memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
322                sizeof(u16));
323         memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
324                sizeof(u16));
325
326         return 0;
327 }
328
329 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
330 {
331 #define HCLGEVF_TQPS_DEPTH_INFO_LEN     4
332 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
333 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
334
335         u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
336         struct hclge_vf_to_pf_msg send_msg;
337         int ret;
338
339         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
340         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
341                                    HCLGEVF_TQPS_DEPTH_INFO_LEN);
342         if (ret) {
343                 dev_err(&hdev->pdev->dev,
344                         "VF request to get tqp depth info from PF failed %d",
345                         ret);
346                 return ret;
347         }
348
349         memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
350                sizeof(u16));
351         memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
352                sizeof(u16));
353
354         return 0;
355 }
356
357 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
358 {
359         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
360         struct hclge_vf_to_pf_msg send_msg;
361         u16 qid_in_pf = 0;
362         u8 resp_data[2];
363         int ret;
364
365         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
366         memcpy(send_msg.data, &queue_id, sizeof(queue_id));
367         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
368                                    sizeof(resp_data));
369         if (!ret)
370                 qid_in_pf = *(u16 *)resp_data;
371
372         return qid_in_pf;
373 }
374
375 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
376 {
377         struct hclge_vf_to_pf_msg send_msg;
378         u8 resp_msg[2];
379         int ret;
380
381         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
382         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
383                                    sizeof(resp_msg));
384         if (ret) {
385                 dev_err(&hdev->pdev->dev,
386                         "VF request to get the pf port media type failed %d",
387                         ret);
388                 return ret;
389         }
390
391         hdev->hw.mac.media_type = resp_msg[0];
392         hdev->hw.mac.module_type = resp_msg[1];
393
394         return 0;
395 }
396
397 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
398 {
399         struct hclgevf_tqp *tqp;
400         int i;
401
402         hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
403                                   sizeof(struct hclgevf_tqp), GFP_KERNEL);
404         if (!hdev->htqp)
405                 return -ENOMEM;
406
407         tqp = hdev->htqp;
408
409         for (i = 0; i < hdev->num_tqps; i++) {
410                 tqp->dev = &hdev->pdev->dev;
411                 tqp->index = i;
412
413                 tqp->q.ae_algo = &ae_algovf;
414                 tqp->q.buf_size = hdev->rx_buf_len;
415                 tqp->q.tx_desc_num = hdev->num_tx_desc;
416                 tqp->q.rx_desc_num = hdev->num_rx_desc;
417
418                 /* need an extended offset to configure queues >=
419                  * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
420                  */
421                 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
422                         tqp->q.io_base = hdev->hw.io_base +
423                                          HCLGEVF_TQP_REG_OFFSET +
424                                          i * HCLGEVF_TQP_REG_SIZE;
425                 else
426                         tqp->q.io_base = hdev->hw.io_base +
427                                          HCLGEVF_TQP_REG_OFFSET +
428                                          HCLGEVF_TQP_EXT_REG_OFFSET +
429                                          (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
430                                          HCLGEVF_TQP_REG_SIZE;
431
432                 tqp++;
433         }
434
435         return 0;
436 }
437
438 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
439 {
440         struct hnae3_handle *nic = &hdev->nic;
441         struct hnae3_knic_private_info *kinfo;
442         u16 new_tqps = hdev->num_tqps;
443         unsigned int i;
444         u8 num_tc = 0;
445
446         kinfo = &nic->kinfo;
447         kinfo->num_tx_desc = hdev->num_tx_desc;
448         kinfo->num_rx_desc = hdev->num_rx_desc;
449         kinfo->rx_buf_len = hdev->rx_buf_len;
450         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
451                 if (hdev->hw_tc_map & BIT(i))
452                         num_tc++;
453
454         num_tc = num_tc ? num_tc : 1;
455         kinfo->tc_info.num_tc = num_tc;
456         kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
457         new_tqps = kinfo->rss_size * num_tc;
458         kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
459
460         kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
461                                   sizeof(struct hnae3_queue *), GFP_KERNEL);
462         if (!kinfo->tqp)
463                 return -ENOMEM;
464
465         for (i = 0; i < kinfo->num_tqps; i++) {
466                 hdev->htqp[i].q.handle = &hdev->nic;
467                 hdev->htqp[i].q.tqp_index = i;
468                 kinfo->tqp[i] = &hdev->htqp[i].q;
469         }
470
471         /* after init the max rss_size and tqps, adjust the default tqp numbers
472          * and rss size with the actual vector numbers
473          */
474         kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
475         kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
476                                 kinfo->rss_size);
477
478         return 0;
479 }
480
481 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
482 {
483         struct hclge_vf_to_pf_msg send_msg;
484         int status;
485
486         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
487         status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
488         if (status)
489                 dev_err(&hdev->pdev->dev,
490                         "VF failed to fetch link status(%d) from PF", status);
491 }
492
493 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
494 {
495         struct hnae3_handle *rhandle = &hdev->roce;
496         struct hnae3_handle *handle = &hdev->nic;
497         struct hnae3_client *rclient;
498         struct hnae3_client *client;
499
500         if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
501                 return;
502
503         client = handle->client;
504         rclient = hdev->roce_client;
505
506         link_state =
507                 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
508         if (link_state != hdev->hw.mac.link) {
509                 client->ops->link_status_change(handle, !!link_state);
510                 if (rclient && rclient->ops->link_status_change)
511                         rclient->ops->link_status_change(rhandle, !!link_state);
512                 hdev->hw.mac.link = link_state;
513         }
514
515         clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
516 }
517
518 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
519 {
520 #define HCLGEVF_ADVERTISING     0
521 #define HCLGEVF_SUPPORTED       1
522
523         struct hclge_vf_to_pf_msg send_msg;
524
525         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
526         send_msg.data[0] = HCLGEVF_ADVERTISING;
527         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
528         send_msg.data[0] = HCLGEVF_SUPPORTED;
529         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
530 }
531
532 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
533 {
534         struct hnae3_handle *nic = &hdev->nic;
535         int ret;
536
537         nic->ae_algo = &ae_algovf;
538         nic->pdev = hdev->pdev;
539         nic->numa_node_mask = hdev->numa_node_mask;
540         nic->flags |= HNAE3_SUPPORT_VF;
541
542         ret = hclgevf_knic_setup(hdev);
543         if (ret)
544                 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
545                         ret);
546         return ret;
547 }
548
549 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
550 {
551         if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
552                 dev_warn(&hdev->pdev->dev,
553                          "vector(vector_id %d) has been freed.\n", vector_id);
554                 return;
555         }
556
557         hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
558         hdev->num_msi_left += 1;
559         hdev->num_msi_used -= 1;
560 }
561
562 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
563                               struct hnae3_vector_info *vector_info)
564 {
565         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
566         struct hnae3_vector_info *vector = vector_info;
567         int alloc = 0;
568         int i, j;
569
570         vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
571         vector_num = min(hdev->num_msi_left, vector_num);
572
573         for (j = 0; j < vector_num; j++) {
574                 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
575                         if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
576                                 vector->vector = pci_irq_vector(hdev->pdev, i);
577                                 vector->io_addr = hdev->hw.io_base +
578                                         HCLGEVF_VECTOR_REG_BASE +
579                                         (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
580                                 hdev->vector_status[i] = 0;
581                                 hdev->vector_irq[i] = vector->vector;
582
583                                 vector++;
584                                 alloc++;
585
586                                 break;
587                         }
588                 }
589         }
590         hdev->num_msi_left -= alloc;
591         hdev->num_msi_used += alloc;
592
593         return alloc;
594 }
595
596 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
597 {
598         int i;
599
600         for (i = 0; i < hdev->num_msi; i++)
601                 if (vector == hdev->vector_irq[i])
602                         return i;
603
604         return -EINVAL;
605 }
606
607 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
608                                     const u8 hfunc, const u8 *key)
609 {
610         struct hclgevf_rss_config_cmd *req;
611         unsigned int key_offset = 0;
612         struct hclgevf_desc desc;
613         int key_counts;
614         int key_size;
615         int ret;
616
617         key_counts = HCLGEVF_RSS_KEY_SIZE;
618         req = (struct hclgevf_rss_config_cmd *)desc.data;
619
620         while (key_counts) {
621                 hclgevf_cmd_setup_basic_desc(&desc,
622                                              HCLGEVF_OPC_RSS_GENERIC_CONFIG,
623                                              false);
624
625                 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
626                 req->hash_config |=
627                         (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
628
629                 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
630                 memcpy(req->hash_key,
631                        key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
632
633                 key_counts -= key_size;
634                 key_offset++;
635                 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
636                 if (ret) {
637                         dev_err(&hdev->pdev->dev,
638                                 "Configure RSS config fail, status = %d\n",
639                                 ret);
640                         return ret;
641                 }
642         }
643
644         return 0;
645 }
646
647 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
648 {
649         return HCLGEVF_RSS_KEY_SIZE;
650 }
651
652 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
653 {
654         const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
655         struct hclgevf_rss_indirection_table_cmd *req;
656         struct hclgevf_desc desc;
657         int rss_cfg_tbl_num;
658         int status;
659         int i, j;
660
661         req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
662         rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
663                           HCLGEVF_RSS_CFG_TBL_SIZE;
664
665         for (i = 0; i < rss_cfg_tbl_num; i++) {
666                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
667                                              false);
668                 req->start_table_index =
669                         cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
670                 req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
671                 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
672                         req->rss_result[j] =
673                                 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
674
675                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
676                 if (status) {
677                         dev_err(&hdev->pdev->dev,
678                                 "VF failed(=%d) to set RSS indirection table\n",
679                                 status);
680                         return status;
681                 }
682         }
683
684         return 0;
685 }
686
687 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
688 {
689         struct hclgevf_rss_tc_mode_cmd *req;
690         u16 tc_offset[HCLGEVF_MAX_TC_NUM];
691         u16 tc_valid[HCLGEVF_MAX_TC_NUM];
692         u16 tc_size[HCLGEVF_MAX_TC_NUM];
693         struct hclgevf_desc desc;
694         u16 roundup_size;
695         unsigned int i;
696         int status;
697
698         req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
699
700         roundup_size = roundup_pow_of_two(rss_size);
701         roundup_size = ilog2(roundup_size);
702
703         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
704                 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
705                 tc_size[i] = roundup_size;
706                 tc_offset[i] = rss_size * i;
707         }
708
709         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
710         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
711                 u16 mode = 0;
712
713                 hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
714                               (tc_valid[i] & 0x1));
715                 hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
716                                 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
717                 hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
718                               tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
719                               0x1);
720                 hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
721                                 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
722
723                 req->rss_tc_mode[i] = cpu_to_le16(mode);
724         }
725         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
726         if (status)
727                 dev_err(&hdev->pdev->dev,
728                         "VF failed(=%d) to set rss tc mode\n", status);
729
730         return status;
731 }
732
733 /* for revision 0x20, vf shared the same rss config with pf */
734 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
735 {
736 #define HCLGEVF_RSS_MBX_RESP_LEN        8
737         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
738         u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
739         struct hclge_vf_to_pf_msg send_msg;
740         u16 msg_num, hash_key_index;
741         u8 index;
742         int ret;
743
744         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
745         msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
746                         HCLGEVF_RSS_MBX_RESP_LEN;
747         for (index = 0; index < msg_num; index++) {
748                 send_msg.data[0] = index;
749                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
750                                            HCLGEVF_RSS_MBX_RESP_LEN);
751                 if (ret) {
752                         dev_err(&hdev->pdev->dev,
753                                 "VF get rss hash key from PF failed, ret=%d",
754                                 ret);
755                         return ret;
756                 }
757
758                 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
759                 if (index == msg_num - 1)
760                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
761                                &resp_msg[0],
762                                HCLGEVF_RSS_KEY_SIZE - hash_key_index);
763                 else
764                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
765                                &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
766         }
767
768         return 0;
769 }
770
771 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
772                            u8 *hfunc)
773 {
774         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
775         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
776         int i, ret;
777
778         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
779                 /* Get hash algorithm */
780                 if (hfunc) {
781                         switch (rss_cfg->hash_algo) {
782                         case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
783                                 *hfunc = ETH_RSS_HASH_TOP;
784                                 break;
785                         case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
786                                 *hfunc = ETH_RSS_HASH_XOR;
787                                 break;
788                         default:
789                                 *hfunc = ETH_RSS_HASH_UNKNOWN;
790                                 break;
791                         }
792                 }
793
794                 /* Get the RSS Key required by the user */
795                 if (key)
796                         memcpy(key, rss_cfg->rss_hash_key,
797                                HCLGEVF_RSS_KEY_SIZE);
798         } else {
799                 if (hfunc)
800                         *hfunc = ETH_RSS_HASH_TOP;
801                 if (key) {
802                         ret = hclgevf_get_rss_hash_key(hdev);
803                         if (ret)
804                                 return ret;
805                         memcpy(key, rss_cfg->rss_hash_key,
806                                HCLGEVF_RSS_KEY_SIZE);
807                 }
808         }
809
810         if (indir)
811                 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
812                         indir[i] = rss_cfg->rss_indirection_tbl[i];
813
814         return 0;
815 }
816
817 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
818                            const u8 *key, const u8 hfunc)
819 {
820         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
821         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
822         int ret, i;
823
824         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
825                 /* Set the RSS Hash Key if specififed by the user */
826                 if (key) {
827                         switch (hfunc) {
828                         case ETH_RSS_HASH_TOP:
829                                 rss_cfg->hash_algo =
830                                         HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
831                                 break;
832                         case ETH_RSS_HASH_XOR:
833                                 rss_cfg->hash_algo =
834                                         HCLGEVF_RSS_HASH_ALGO_SIMPLE;
835                                 break;
836                         case ETH_RSS_HASH_NO_CHANGE:
837                                 break;
838                         default:
839                                 return -EINVAL;
840                         }
841
842                         ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
843                                                        key);
844                         if (ret)
845                                 return ret;
846
847                         /* Update the shadow RSS key with user specified qids */
848                         memcpy(rss_cfg->rss_hash_key, key,
849                                HCLGEVF_RSS_KEY_SIZE);
850                 }
851         }
852
853         /* update the shadow RSS table with user specified qids */
854         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
855                 rss_cfg->rss_indirection_tbl[i] = indir[i];
856
857         /* update the hardware */
858         return hclgevf_set_rss_indir_table(hdev);
859 }
860
861 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
862 {
863         u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
864
865         if (nfc->data & RXH_L4_B_2_3)
866                 hash_sets |= HCLGEVF_D_PORT_BIT;
867         else
868                 hash_sets &= ~HCLGEVF_D_PORT_BIT;
869
870         if (nfc->data & RXH_IP_SRC)
871                 hash_sets |= HCLGEVF_S_IP_BIT;
872         else
873                 hash_sets &= ~HCLGEVF_S_IP_BIT;
874
875         if (nfc->data & RXH_IP_DST)
876                 hash_sets |= HCLGEVF_D_IP_BIT;
877         else
878                 hash_sets &= ~HCLGEVF_D_IP_BIT;
879
880         if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
881                 hash_sets |= HCLGEVF_V_TAG_BIT;
882
883         return hash_sets;
884 }
885
886 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
887                                       struct ethtool_rxnfc *nfc,
888                                       struct hclgevf_rss_input_tuple_cmd *req)
889 {
890         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
892         u8 tuple_sets;
893
894         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
895         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
896         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
897         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
898         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
899         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
900         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
901         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
902
903         tuple_sets = hclgevf_get_rss_hash_bits(nfc);
904         switch (nfc->flow_type) {
905         case TCP_V4_FLOW:
906                 req->ipv4_tcp_en = tuple_sets;
907                 break;
908         case TCP_V6_FLOW:
909                 req->ipv6_tcp_en = tuple_sets;
910                 break;
911         case UDP_V4_FLOW:
912                 req->ipv4_udp_en = tuple_sets;
913                 break;
914         case UDP_V6_FLOW:
915                 req->ipv6_udp_en = tuple_sets;
916                 break;
917         case SCTP_V4_FLOW:
918                 req->ipv4_sctp_en = tuple_sets;
919                 break;
920         case SCTP_V6_FLOW:
921                 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
922                     (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
923                         return -EINVAL;
924
925                 req->ipv6_sctp_en = tuple_sets;
926                 break;
927         case IPV4_FLOW:
928                 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
929                 break;
930         case IPV6_FLOW:
931                 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
932                 break;
933         default:
934                 return -EINVAL;
935         }
936
937         return 0;
938 }
939
940 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
941                                  struct ethtool_rxnfc *nfc)
942 {
943         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
944         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
945         struct hclgevf_rss_input_tuple_cmd *req;
946         struct hclgevf_desc desc;
947         int ret;
948
949         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
950                 return -EOPNOTSUPP;
951
952         if (nfc->data &
953             ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
954                 return -EINVAL;
955
956         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
957         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
958
959         ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
960         if (ret) {
961                 dev_err(&hdev->pdev->dev,
962                         "failed to init rss tuple cmd, ret = %d\n", ret);
963                 return ret;
964         }
965
966         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
967         if (ret) {
968                 dev_err(&hdev->pdev->dev,
969                         "Set rss tuple fail, status = %d\n", ret);
970                 return ret;
971         }
972
973         rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
974         rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
975         rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
976         rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
977         rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
978         rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
979         rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
980         rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
981         return 0;
982 }
983
984 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
985                                               int flow_type, u8 *tuple_sets)
986 {
987         switch (flow_type) {
988         case TCP_V4_FLOW:
989                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
990                 break;
991         case UDP_V4_FLOW:
992                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
993                 break;
994         case TCP_V6_FLOW:
995                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
996                 break;
997         case UDP_V6_FLOW:
998                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
999                 break;
1000         case SCTP_V4_FLOW:
1001                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
1002                 break;
1003         case SCTP_V6_FLOW:
1004                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
1005                 break;
1006         case IPV4_FLOW:
1007         case IPV6_FLOW:
1008                 *tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1009                 break;
1010         default:
1011                 return -EINVAL;
1012         }
1013
1014         return 0;
1015 }
1016
1017 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1018 {
1019         u64 tuple_data = 0;
1020
1021         if (tuple_sets & HCLGEVF_D_PORT_BIT)
1022                 tuple_data |= RXH_L4_B_2_3;
1023         if (tuple_sets & HCLGEVF_S_PORT_BIT)
1024                 tuple_data |= RXH_L4_B_0_1;
1025         if (tuple_sets & HCLGEVF_D_IP_BIT)
1026                 tuple_data |= RXH_IP_DST;
1027         if (tuple_sets & HCLGEVF_S_IP_BIT)
1028                 tuple_data |= RXH_IP_SRC;
1029
1030         return tuple_data;
1031 }
1032
1033 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1034                                  struct ethtool_rxnfc *nfc)
1035 {
1036         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1037         u8 tuple_sets;
1038         int ret;
1039
1040         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1041                 return -EOPNOTSUPP;
1042
1043         nfc->data = 0;
1044
1045         ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1046                                                  &tuple_sets);
1047         if (ret || !tuple_sets)
1048                 return ret;
1049
1050         nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1051
1052         return 0;
1053 }
1054
1055 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1056                                        struct hclgevf_rss_cfg *rss_cfg)
1057 {
1058         struct hclgevf_rss_input_tuple_cmd *req;
1059         struct hclgevf_desc desc;
1060         int ret;
1061
1062         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1063
1064         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1065
1066         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1067         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1068         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1069         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1070         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1071         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1072         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1073         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1074
1075         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1076         if (ret)
1077                 dev_err(&hdev->pdev->dev,
1078                         "Configure rss input fail, status = %d\n", ret);
1079         return ret;
1080 }
1081
1082 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1083 {
1084         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1085         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1086
1087         return rss_cfg->rss_size;
1088 }
1089
1090 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1091                                        int vector_id,
1092                                        struct hnae3_ring_chain_node *ring_chain)
1093 {
1094         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1095         struct hclge_vf_to_pf_msg send_msg;
1096         struct hnae3_ring_chain_node *node;
1097         int status;
1098         int i = 0;
1099
1100         memset(&send_msg, 0, sizeof(send_msg));
1101         send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1102                 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1103         send_msg.vector_id = vector_id;
1104
1105         for (node = ring_chain; node; node = node->next) {
1106                 send_msg.param[i].ring_type =
1107                                 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1108
1109                 send_msg.param[i].tqp_index = node->tqp_index;
1110                 send_msg.param[i].int_gl_index =
1111                                         hnae3_get_field(node->int_gl_idx,
1112                                                         HNAE3_RING_GL_IDX_M,
1113                                                         HNAE3_RING_GL_IDX_S);
1114
1115                 i++;
1116                 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1117                         send_msg.ring_num = i;
1118
1119                         status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1120                                                       NULL, 0);
1121                         if (status) {
1122                                 dev_err(&hdev->pdev->dev,
1123                                         "Map TQP fail, status is %d.\n",
1124                                         status);
1125                                 return status;
1126                         }
1127                         i = 0;
1128                 }
1129         }
1130
1131         return 0;
1132 }
1133
1134 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1135                                       struct hnae3_ring_chain_node *ring_chain)
1136 {
1137         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1138         int vector_id;
1139
1140         vector_id = hclgevf_get_vector_index(hdev, vector);
1141         if (vector_id < 0) {
1142                 dev_err(&handle->pdev->dev,
1143                         "Get vector index fail. ret =%d\n", vector_id);
1144                 return vector_id;
1145         }
1146
1147         return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1148 }
1149
1150 static int hclgevf_unmap_ring_from_vector(
1151                                 struct hnae3_handle *handle,
1152                                 int vector,
1153                                 struct hnae3_ring_chain_node *ring_chain)
1154 {
1155         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1156         int ret, vector_id;
1157
1158         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1159                 return 0;
1160
1161         vector_id = hclgevf_get_vector_index(hdev, vector);
1162         if (vector_id < 0) {
1163                 dev_err(&handle->pdev->dev,
1164                         "Get vector index fail. ret =%d\n", vector_id);
1165                 return vector_id;
1166         }
1167
1168         ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1169         if (ret)
1170                 dev_err(&handle->pdev->dev,
1171                         "Unmap ring from vector fail. vector=%d, ret =%d\n",
1172                         vector_id,
1173                         ret);
1174
1175         return ret;
1176 }
1177
1178 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1179 {
1180         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1181         int vector_id;
1182
1183         vector_id = hclgevf_get_vector_index(hdev, vector);
1184         if (vector_id < 0) {
1185                 dev_err(&handle->pdev->dev,
1186                         "hclgevf_put_vector get vector index fail. ret =%d\n",
1187                         vector_id);
1188                 return vector_id;
1189         }
1190
1191         hclgevf_free_vector(hdev, vector_id);
1192
1193         return 0;
1194 }
1195
1196 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1197                                         bool en_uc_pmc, bool en_mc_pmc,
1198                                         bool en_bc_pmc)
1199 {
1200         struct hnae3_handle *handle = &hdev->nic;
1201         struct hclge_vf_to_pf_msg send_msg;
1202         int ret;
1203
1204         memset(&send_msg, 0, sizeof(send_msg));
1205         send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1206         send_msg.en_bc = en_bc_pmc ? 1 : 0;
1207         send_msg.en_uc = en_uc_pmc ? 1 : 0;
1208         send_msg.en_mc = en_mc_pmc ? 1 : 0;
1209         send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1210                                              &handle->priv_flags) ? 1 : 0;
1211
1212         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1213         if (ret)
1214                 dev_err(&hdev->pdev->dev,
1215                         "Set promisc mode fail, status is %d.\n", ret);
1216
1217         return ret;
1218 }
1219
1220 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1221                                     bool en_mc_pmc)
1222 {
1223         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224         bool en_bc_pmc;
1225
1226         en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1227
1228         return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1229                                             en_bc_pmc);
1230 }
1231
1232 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1233 {
1234         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1235
1236         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1237         hclgevf_task_schedule(hdev, 0);
1238 }
1239
1240 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1241 {
1242         struct hnae3_handle *handle = &hdev->nic;
1243         bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1244         bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1245         int ret;
1246
1247         if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1248                 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1249                 if (!ret)
1250                         clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1251         }
1252 }
1253
1254 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1255                                        u16 stream_id, bool enable)
1256 {
1257         struct hclgevf_cfg_com_tqp_queue_cmd *req;
1258         struct hclgevf_desc desc;
1259
1260         req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1261
1262         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1263                                      false);
1264         req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1265         req->stream_id = cpu_to_le16(stream_id);
1266         if (enable)
1267                 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1268
1269         return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1270 }
1271
1272 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1273 {
1274         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1275         int ret;
1276         u16 i;
1277
1278         for (i = 0; i < handle->kinfo.num_tqps; i++) {
1279                 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1280                 if (ret)
1281                         return ret;
1282         }
1283
1284         return 0;
1285 }
1286
1287 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1288 {
1289         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1290         struct hclgevf_tqp *tqp;
1291         int i;
1292
1293         for (i = 0; i < kinfo->num_tqps; i++) {
1294                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1295                 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1296         }
1297 }
1298
1299 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1300 {
1301         struct hclge_vf_to_pf_msg send_msg;
1302         u8 host_mac[ETH_ALEN];
1303         int status;
1304
1305         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1306         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1307                                       ETH_ALEN);
1308         if (status) {
1309                 dev_err(&hdev->pdev->dev,
1310                         "fail to get VF MAC from host %d", status);
1311                 return status;
1312         }
1313
1314         ether_addr_copy(p, host_mac);
1315
1316         return 0;
1317 }
1318
1319 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1320 {
1321         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1322         u8 host_mac_addr[ETH_ALEN];
1323
1324         if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1325                 return;
1326
1327         hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1328         if (hdev->has_pf_mac)
1329                 ether_addr_copy(p, host_mac_addr);
1330         else
1331                 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1332 }
1333
1334 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1335                                 bool is_first)
1336 {
1337         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1338         u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1339         struct hclge_vf_to_pf_msg send_msg;
1340         u8 *new_mac_addr = (u8 *)p;
1341         int status;
1342
1343         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1344         send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1345         ether_addr_copy(send_msg.data, new_mac_addr);
1346         if (is_first && !hdev->has_pf_mac)
1347                 eth_zero_addr(&send_msg.data[ETH_ALEN]);
1348         else
1349                 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1350         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1351         if (!status)
1352                 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1353
1354         return status;
1355 }
1356
1357 static struct hclgevf_mac_addr_node *
1358 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1359 {
1360         struct hclgevf_mac_addr_node *mac_node, *tmp;
1361
1362         list_for_each_entry_safe(mac_node, tmp, list, node)
1363                 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1364                         return mac_node;
1365
1366         return NULL;
1367 }
1368
1369 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1370                                     enum HCLGEVF_MAC_NODE_STATE state)
1371 {
1372         switch (state) {
1373         /* from set_rx_mode or tmp_add_list */
1374         case HCLGEVF_MAC_TO_ADD:
1375                 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1376                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1377                 break;
1378         /* only from set_rx_mode */
1379         case HCLGEVF_MAC_TO_DEL:
1380                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1381                         list_del(&mac_node->node);
1382                         kfree(mac_node);
1383                 } else {
1384                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1385                 }
1386                 break;
1387         /* only from tmp_add_list, the mac_node->state won't be
1388          * HCLGEVF_MAC_ACTIVE
1389          */
1390         case HCLGEVF_MAC_ACTIVE:
1391                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1392                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1393                 break;
1394         }
1395 }
1396
1397 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1398                                    enum HCLGEVF_MAC_NODE_STATE state,
1399                                    enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1400                                    const unsigned char *addr)
1401 {
1402         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1403         struct hclgevf_mac_addr_node *mac_node;
1404         struct list_head *list;
1405
1406         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1407                &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1408
1409         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1410
1411         /* if the mac addr is already in the mac list, no need to add a new
1412          * one into it, just check the mac addr state, convert it to a new
1413          * new state, or just remove it, or do nothing.
1414          */
1415         mac_node = hclgevf_find_mac_node(list, addr);
1416         if (mac_node) {
1417                 hclgevf_update_mac_node(mac_node, state);
1418                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1419                 return 0;
1420         }
1421         /* if this address is never added, unnecessary to delete */
1422         if (state == HCLGEVF_MAC_TO_DEL) {
1423                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1424                 return -ENOENT;
1425         }
1426
1427         mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1428         if (!mac_node) {
1429                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1430                 return -ENOMEM;
1431         }
1432
1433         mac_node->state = state;
1434         ether_addr_copy(mac_node->mac_addr, addr);
1435         list_add_tail(&mac_node->node, list);
1436
1437         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1438         return 0;
1439 }
1440
1441 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1442                                const unsigned char *addr)
1443 {
1444         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1445                                        HCLGEVF_MAC_ADDR_UC, addr);
1446 }
1447
1448 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1449                               const unsigned char *addr)
1450 {
1451         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1452                                        HCLGEVF_MAC_ADDR_UC, addr);
1453 }
1454
1455 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1456                                const unsigned char *addr)
1457 {
1458         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1459                                        HCLGEVF_MAC_ADDR_MC, addr);
1460 }
1461
1462 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1463                               const unsigned char *addr)
1464 {
1465         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1466                                        HCLGEVF_MAC_ADDR_MC, addr);
1467 }
1468
1469 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1470                                     struct hclgevf_mac_addr_node *mac_node,
1471                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1472 {
1473         struct hclge_vf_to_pf_msg send_msg;
1474         u8 code, subcode;
1475
1476         if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1477                 code = HCLGE_MBX_SET_UNICAST;
1478                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1479                         subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1480                 else
1481                         subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1482         } else {
1483                 code = HCLGE_MBX_SET_MULTICAST;
1484                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1485                         subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1486                 else
1487                         subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1488         }
1489
1490         hclgevf_build_send_msg(&send_msg, code, subcode);
1491         ether_addr_copy(send_msg.data, mac_node->mac_addr);
1492         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1493 }
1494
1495 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1496                                     struct list_head *list,
1497                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1498 {
1499         struct hclgevf_mac_addr_node *mac_node, *tmp;
1500         int ret;
1501
1502         list_for_each_entry_safe(mac_node, tmp, list, node) {
1503                 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1504                 if  (ret) {
1505                         dev_err(&hdev->pdev->dev,
1506                                 "failed to configure mac %pM, state = %d, ret = %d\n",
1507                                 mac_node->mac_addr, mac_node->state, ret);
1508                         return;
1509                 }
1510                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1511                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1512                 } else {
1513                         list_del(&mac_node->node);
1514                         kfree(mac_node);
1515                 }
1516         }
1517 }
1518
1519 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1520                                        struct list_head *mac_list)
1521 {
1522         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1523
1524         list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1525                 /* if the mac address from tmp_add_list is not in the
1526                  * uc/mc_mac_list, it means have received a TO_DEL request
1527                  * during the time window of sending mac config request to PF
1528                  * If mac_node state is ACTIVE, then change its state to TO_DEL,
1529                  * then it will be removed at next time. If is TO_ADD, it means
1530                  * send TO_ADD request failed, so just remove the mac node.
1531                  */
1532                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1533                 if (new_node) {
1534                         hclgevf_update_mac_node(new_node, mac_node->state);
1535                         list_del(&mac_node->node);
1536                         kfree(mac_node);
1537                 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1538                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1539                         list_del(&mac_node->node);
1540                         list_add_tail(&mac_node->node, mac_list);
1541                 } else {
1542                         list_del(&mac_node->node);
1543                         kfree(mac_node);
1544                 }
1545         }
1546 }
1547
1548 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1549                                        struct list_head *mac_list)
1550 {
1551         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1552
1553         list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1554                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1555                 if (new_node) {
1556                         /* If the mac addr is exist in the mac list, it means
1557                          * received a new request TO_ADD during the time window
1558                          * of sending mac addr configurrequest to PF, so just
1559                          * change the mac state to ACTIVE.
1560                          */
1561                         new_node->state = HCLGEVF_MAC_ACTIVE;
1562                         list_del(&mac_node->node);
1563                         kfree(mac_node);
1564                 } else {
1565                         list_del(&mac_node->node);
1566                         list_add_tail(&mac_node->node, mac_list);
1567                 }
1568         }
1569 }
1570
1571 static void hclgevf_clear_list(struct list_head *list)
1572 {
1573         struct hclgevf_mac_addr_node *mac_node, *tmp;
1574
1575         list_for_each_entry_safe(mac_node, tmp, list, node) {
1576                 list_del(&mac_node->node);
1577                 kfree(mac_node);
1578         }
1579 }
1580
1581 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1582                                   enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1583 {
1584         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1585         struct list_head tmp_add_list, tmp_del_list;
1586         struct list_head *list;
1587
1588         INIT_LIST_HEAD(&tmp_add_list);
1589         INIT_LIST_HEAD(&tmp_del_list);
1590
1591         /* move the mac addr to the tmp_add_list and tmp_del_list, then
1592          * we can add/delete these mac addr outside the spin lock
1593          */
1594         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1595                 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1596
1597         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1598
1599         list_for_each_entry_safe(mac_node, tmp, list, node) {
1600                 switch (mac_node->state) {
1601                 case HCLGEVF_MAC_TO_DEL:
1602                         list_del(&mac_node->node);
1603                         list_add_tail(&mac_node->node, &tmp_del_list);
1604                         break;
1605                 case HCLGEVF_MAC_TO_ADD:
1606                         new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1607                         if (!new_node)
1608                                 goto stop_traverse;
1609
1610                         ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1611                         new_node->state = mac_node->state;
1612                         list_add_tail(&new_node->node, &tmp_add_list);
1613                         break;
1614                 default:
1615                         break;
1616                 }
1617         }
1618
1619 stop_traverse:
1620         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1621
1622         /* delete first, in order to get max mac table space for adding */
1623         hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1624         hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1625
1626         /* if some mac addresses were added/deleted fail, move back to the
1627          * mac_list, and retry at next time.
1628          */
1629         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1630
1631         hclgevf_sync_from_del_list(&tmp_del_list, list);
1632         hclgevf_sync_from_add_list(&tmp_add_list, list);
1633
1634         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1635 }
1636
1637 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1638 {
1639         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1640         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1641 }
1642
1643 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1644 {
1645         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1646
1647         hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1648         hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1649
1650         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1651 }
1652
1653 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1654                                    __be16 proto, u16 vlan_id,
1655                                    bool is_kill)
1656 {
1657 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1658 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1659 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET   3
1660
1661         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1662         struct hclge_vf_to_pf_msg send_msg;
1663         int ret;
1664
1665         if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1666                 return -EINVAL;
1667
1668         if (proto != htons(ETH_P_8021Q))
1669                 return -EPROTONOSUPPORT;
1670
1671         /* When device is resetting or reset failed, firmware is unable to
1672          * handle mailbox. Just record the vlan id, and remove it after
1673          * reset finished.
1674          */
1675         if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1676              test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1677                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1678                 return -EBUSY;
1679         }
1680
1681         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1682                                HCLGE_MBX_VLAN_FILTER);
1683         send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1684         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1685                sizeof(vlan_id));
1686         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1687                sizeof(proto));
1688         /* when remove hw vlan filter failed, record the vlan id,
1689          * and try to remove it from hw later, to be consistence
1690          * with stack.
1691          */
1692         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1693         if (is_kill && ret)
1694                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1695
1696         return ret;
1697 }
1698
1699 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1700 {
1701 #define HCLGEVF_MAX_SYNC_COUNT  60
1702         struct hnae3_handle *handle = &hdev->nic;
1703         int ret, sync_cnt = 0;
1704         u16 vlan_id;
1705
1706         vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1707         while (vlan_id != VLAN_N_VID) {
1708                 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1709                                               vlan_id, true);
1710                 if (ret)
1711                         return;
1712
1713                 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1714                 sync_cnt++;
1715                 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1716                         return;
1717
1718                 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1719         }
1720 }
1721
1722 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1723 {
1724         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1725         struct hclge_vf_to_pf_msg send_msg;
1726
1727         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1728                                HCLGE_MBX_VLAN_RX_OFF_CFG);
1729         send_msg.data[0] = enable ? 1 : 0;
1730         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1731 }
1732
1733 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1734 {
1735 #define HCLGEVF_RESET_ALL_QUEUE_DONE    1U
1736         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1737         struct hclge_vf_to_pf_msg send_msg;
1738         u8 return_status = 0;
1739         int ret;
1740         u16 i;
1741
1742         /* disable vf queue before send queue reset msg to PF */
1743         ret = hclgevf_tqp_enable(handle, false);
1744         if (ret) {
1745                 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1746                         ret);
1747                 return ret;
1748         }
1749
1750         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1751
1752         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1753                                    sizeof(return_status));
1754         if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1755                 return ret;
1756
1757         for (i = 1; i < handle->kinfo.num_tqps; i++) {
1758                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1759                 memcpy(send_msg.data, &i, sizeof(i));
1760                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1761                 if (ret)
1762                         return ret;
1763         }
1764
1765         return 0;
1766 }
1767
1768 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1769 {
1770         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1771         struct hclge_vf_to_pf_msg send_msg;
1772
1773         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1774         memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1775         return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1776 }
1777
1778 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1779                                  enum hnae3_reset_notify_type type)
1780 {
1781         struct hnae3_client *client = hdev->nic_client;
1782         struct hnae3_handle *handle = &hdev->nic;
1783         int ret;
1784
1785         if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1786             !client)
1787                 return 0;
1788
1789         if (!client->ops->reset_notify)
1790                 return -EOPNOTSUPP;
1791
1792         ret = client->ops->reset_notify(handle, type);
1793         if (ret)
1794                 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1795                         type, ret);
1796
1797         return ret;
1798 }
1799
1800 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1801                                       enum hnae3_reset_notify_type type)
1802 {
1803         struct hnae3_client *client = hdev->roce_client;
1804         struct hnae3_handle *handle = &hdev->roce;
1805         int ret;
1806
1807         if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1808                 return 0;
1809
1810         if (!client->ops->reset_notify)
1811                 return -EOPNOTSUPP;
1812
1813         ret = client->ops->reset_notify(handle, type);
1814         if (ret)
1815                 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1816                         type, ret);
1817         return ret;
1818 }
1819
1820 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1821 {
1822 #define HCLGEVF_RESET_WAIT_US   20000
1823 #define HCLGEVF_RESET_WAIT_CNT  2000
1824 #define HCLGEVF_RESET_WAIT_TIMEOUT_US   \
1825         (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1826
1827         u32 val;
1828         int ret;
1829
1830         if (hdev->reset_type == HNAE3_VF_RESET)
1831                 ret = readl_poll_timeout(hdev->hw.io_base +
1832                                          HCLGEVF_VF_RST_ING, val,
1833                                          !(val & HCLGEVF_VF_RST_ING_BIT),
1834                                          HCLGEVF_RESET_WAIT_US,
1835                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1836         else
1837                 ret = readl_poll_timeout(hdev->hw.io_base +
1838                                          HCLGEVF_RST_ING, val,
1839                                          !(val & HCLGEVF_RST_ING_BITS),
1840                                          HCLGEVF_RESET_WAIT_US,
1841                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1842
1843         /* hardware completion status should be available by this time */
1844         if (ret) {
1845                 dev_err(&hdev->pdev->dev,
1846                         "couldn't get reset done status from h/w, timeout!\n");
1847                 return ret;
1848         }
1849
1850         /* we will wait a bit more to let reset of the stack to complete. This
1851          * might happen in case reset assertion was made by PF. Yes, this also
1852          * means we might end up waiting bit more even for VF reset.
1853          */
1854         msleep(5000);
1855
1856         return 0;
1857 }
1858
1859 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1860 {
1861         u32 reg_val;
1862
1863         reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1864         if (enable)
1865                 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1866         else
1867                 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1868
1869         hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1870                           reg_val);
1871 }
1872
1873 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1874 {
1875         int ret;
1876
1877         /* uninitialize the nic client */
1878         ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1879         if (ret)
1880                 return ret;
1881
1882         /* re-initialize the hclge device */
1883         ret = hclgevf_reset_hdev(hdev);
1884         if (ret) {
1885                 dev_err(&hdev->pdev->dev,
1886                         "hclge device re-init failed, VF is disabled!\n");
1887                 return ret;
1888         }
1889
1890         /* bring up the nic client again */
1891         ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1892         if (ret)
1893                 return ret;
1894
1895         /* clear handshake status with IMP */
1896         hclgevf_reset_handshake(hdev, false);
1897
1898         /* bring up the nic to enable TX/RX again */
1899         return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1900 }
1901
1902 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1903 {
1904 #define HCLGEVF_RESET_SYNC_TIME 100
1905
1906         if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1907                 struct hclge_vf_to_pf_msg send_msg;
1908                 int ret;
1909
1910                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1911                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1912                 if (ret) {
1913                         dev_err(&hdev->pdev->dev,
1914                                 "failed to assert VF reset, ret = %d\n", ret);
1915                         return ret;
1916                 }
1917                 hdev->rst_stats.vf_func_rst_cnt++;
1918         }
1919
1920         set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1921         /* inform hardware that preparatory work is done */
1922         msleep(HCLGEVF_RESET_SYNC_TIME);
1923         hclgevf_reset_handshake(hdev, true);
1924         dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1925                  hdev->reset_type);
1926
1927         return 0;
1928 }
1929
1930 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1931 {
1932         dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1933                  hdev->rst_stats.vf_func_rst_cnt);
1934         dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1935                  hdev->rst_stats.flr_rst_cnt);
1936         dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1937                  hdev->rst_stats.vf_rst_cnt);
1938         dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1939                  hdev->rst_stats.rst_done_cnt);
1940         dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1941                  hdev->rst_stats.hw_rst_done_cnt);
1942         dev_info(&hdev->pdev->dev, "reset count: %u\n",
1943                  hdev->rst_stats.rst_cnt);
1944         dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1945                  hdev->rst_stats.rst_fail_cnt);
1946         dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1947                  hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1948         dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1949                  hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1950         dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1951                  hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1952         dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1953                  hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1954         dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1955 }
1956
1957 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1958 {
1959         /* recover handshake status with IMP when reset fail */
1960         hclgevf_reset_handshake(hdev, true);
1961         hdev->rst_stats.rst_fail_cnt++;
1962         dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1963                 hdev->rst_stats.rst_fail_cnt);
1964
1965         if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1966                 set_bit(hdev->reset_type, &hdev->reset_pending);
1967
1968         if (hclgevf_is_reset_pending(hdev)) {
1969                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1970                 hclgevf_reset_task_schedule(hdev);
1971         } else {
1972                 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1973                 hclgevf_dump_rst_info(hdev);
1974         }
1975 }
1976
1977 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1978 {
1979         int ret;
1980
1981         hdev->rst_stats.rst_cnt++;
1982
1983         /* perform reset of the stack & ae device for a client */
1984         ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1985         if (ret)
1986                 return ret;
1987
1988         rtnl_lock();
1989         /* bring down the nic to stop any ongoing TX/RX */
1990         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1991         rtnl_unlock();
1992         if (ret)
1993                 return ret;
1994
1995         return hclgevf_reset_prepare_wait(hdev);
1996 }
1997
1998 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1999 {
2000         int ret;
2001
2002         hdev->rst_stats.hw_rst_done_cnt++;
2003         ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
2004         if (ret)
2005                 return ret;
2006
2007         rtnl_lock();
2008         /* now, re-initialize the nic client and ae device */
2009         ret = hclgevf_reset_stack(hdev);
2010         rtnl_unlock();
2011         if (ret) {
2012                 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2013                 return ret;
2014         }
2015
2016         ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2017         /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2018          * times
2019          */
2020         if (ret &&
2021             hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2022                 return ret;
2023
2024         ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2025         if (ret)
2026                 return ret;
2027
2028         hdev->last_reset_time = jiffies;
2029         hdev->rst_stats.rst_done_cnt++;
2030         hdev->rst_stats.rst_fail_cnt = 0;
2031         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2032
2033         return 0;
2034 }
2035
2036 static void hclgevf_reset(struct hclgevf_dev *hdev)
2037 {
2038         if (hclgevf_reset_prepare(hdev))
2039                 goto err_reset;
2040
2041         /* check if VF could successfully fetch the hardware reset completion
2042          * status from the hardware
2043          */
2044         if (hclgevf_reset_wait(hdev)) {
2045                 /* can't do much in this situation, will disable VF */
2046                 dev_err(&hdev->pdev->dev,
2047                         "failed to fetch H/W reset completion status\n");
2048                 goto err_reset;
2049         }
2050
2051         if (hclgevf_reset_rebuild(hdev))
2052                 goto err_reset;
2053
2054         return;
2055
2056 err_reset:
2057         hclgevf_reset_err_handle(hdev);
2058 }
2059
2060 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2061                                                      unsigned long *addr)
2062 {
2063         enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2064
2065         /* return the highest priority reset level amongst all */
2066         if (test_bit(HNAE3_VF_RESET, addr)) {
2067                 rst_level = HNAE3_VF_RESET;
2068                 clear_bit(HNAE3_VF_RESET, addr);
2069                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2070                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2071         } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2072                 rst_level = HNAE3_VF_FULL_RESET;
2073                 clear_bit(HNAE3_VF_FULL_RESET, addr);
2074                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2075         } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2076                 rst_level = HNAE3_VF_PF_FUNC_RESET;
2077                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2078                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2079         } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2080                 rst_level = HNAE3_VF_FUNC_RESET;
2081                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2082         } else if (test_bit(HNAE3_FLR_RESET, addr)) {
2083                 rst_level = HNAE3_FLR_RESET;
2084                 clear_bit(HNAE3_FLR_RESET, addr);
2085         }
2086
2087         return rst_level;
2088 }
2089
2090 static void hclgevf_reset_event(struct pci_dev *pdev,
2091                                 struct hnae3_handle *handle)
2092 {
2093         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2094         struct hclgevf_dev *hdev = ae_dev->priv;
2095
2096         dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2097
2098         if (hdev->default_reset_request)
2099                 hdev->reset_level =
2100                         hclgevf_get_reset_level(hdev,
2101                                                 &hdev->default_reset_request);
2102         else
2103                 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2104
2105         /* reset of this VF requested */
2106         set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2107         hclgevf_reset_task_schedule(hdev);
2108
2109         hdev->last_reset_time = jiffies;
2110 }
2111
2112 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2113                                           enum hnae3_reset_type rst_type)
2114 {
2115         struct hclgevf_dev *hdev = ae_dev->priv;
2116
2117         set_bit(rst_type, &hdev->default_reset_request);
2118 }
2119
2120 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2121 {
2122         writel(en ? 1 : 0, vector->addr);
2123 }
2124
2125 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
2126                                           enum hnae3_reset_type rst_type)
2127 {
2128 #define HCLGEVF_RESET_RETRY_WAIT_MS     500
2129 #define HCLGEVF_RESET_RETRY_CNT         5
2130
2131         struct hclgevf_dev *hdev = ae_dev->priv;
2132         int retry_cnt = 0;
2133         int ret;
2134
2135 retry:
2136         down(&hdev->reset_sem);
2137         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2138         hdev->reset_type = rst_type;
2139         ret = hclgevf_reset_prepare(hdev);
2140         if (ret) {
2141                 dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n",
2142                         ret);
2143                 if (hdev->reset_pending ||
2144                     retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2145                         dev_err(&hdev->pdev->dev,
2146                                 "reset_pending:0x%lx, retry_cnt:%d\n",
2147                                 hdev->reset_pending, retry_cnt);
2148                         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2149                         up(&hdev->reset_sem);
2150                         msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2151                         goto retry;
2152                 }
2153         }
2154
2155         /* disable misc vector before reset done */
2156         hclgevf_enable_vector(&hdev->misc_vector, false);
2157
2158         if (hdev->reset_type == HNAE3_FLR_RESET)
2159                 hdev->rst_stats.flr_rst_cnt++;
2160 }
2161
2162 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2163 {
2164         struct hclgevf_dev *hdev = ae_dev->priv;
2165         int ret;
2166
2167         hclgevf_enable_vector(&hdev->misc_vector, true);
2168
2169         ret = hclgevf_reset_rebuild(hdev);
2170         if (ret)
2171                 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2172                          ret);
2173
2174         hdev->reset_type = HNAE3_NONE_RESET;
2175         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2176         up(&hdev->reset_sem);
2177 }
2178
2179 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2180 {
2181         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2182
2183         return hdev->fw_version;
2184 }
2185
2186 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2187 {
2188         struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2189
2190         vector->vector_irq = pci_irq_vector(hdev->pdev,
2191                                             HCLGEVF_MISC_VECTOR_NUM);
2192         vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2193         /* vector status always valid for Vector 0 */
2194         hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2195         hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2196
2197         hdev->num_msi_left -= 1;
2198         hdev->num_msi_used += 1;
2199 }
2200
2201 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2202 {
2203         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2204             !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2205                               &hdev->state))
2206                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2207 }
2208
2209 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2210 {
2211         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2212             !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2213                               &hdev->state))
2214                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2215 }
2216
2217 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2218                                   unsigned long delay)
2219 {
2220         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2221             !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2222                 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2223 }
2224
2225 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2226 {
2227 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT  3
2228
2229         if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2230                 return;
2231
2232         down(&hdev->reset_sem);
2233         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2234
2235         if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2236                                &hdev->reset_state)) {
2237                 /* PF has intimated that it is about to reset the hardware.
2238                  * We now have to poll & check if hardware has actually
2239                  * completed the reset sequence. On hardware reset completion,
2240                  * VF needs to reset the client and ae device.
2241                  */
2242                 hdev->reset_attempts = 0;
2243
2244                 hdev->last_reset_time = jiffies;
2245                 while ((hdev->reset_type =
2246                         hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2247                        != HNAE3_NONE_RESET)
2248                         hclgevf_reset(hdev);
2249         } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2250                                       &hdev->reset_state)) {
2251                 /* we could be here when either of below happens:
2252                  * 1. reset was initiated due to watchdog timeout caused by
2253                  *    a. IMP was earlier reset and our TX got choked down and
2254                  *       which resulted in watchdog reacting and inducing VF
2255                  *       reset. This also means our cmdq would be unreliable.
2256                  *    b. problem in TX due to other lower layer(example link
2257                  *       layer not functioning properly etc.)
2258                  * 2. VF reset might have been initiated due to some config
2259                  *    change.
2260                  *
2261                  * NOTE: Theres no clear way to detect above cases than to react
2262                  * to the response of PF for this reset request. PF will ack the
2263                  * 1b and 2. cases but we will not get any intimation about 1a
2264                  * from PF as cmdq would be in unreliable state i.e. mailbox
2265                  * communication between PF and VF would be broken.
2266                  *
2267                  * if we are never geting into pending state it means either:
2268                  * 1. PF is not receiving our request which could be due to IMP
2269                  *    reset
2270                  * 2. PF is screwed
2271                  * We cannot do much for 2. but to check first we can try reset
2272                  * our PCIe + stack and see if it alleviates the problem.
2273                  */
2274                 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2275                         /* prepare for full reset of stack + pcie interface */
2276                         set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2277
2278                         /* "defer" schedule the reset task again */
2279                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2280                 } else {
2281                         hdev->reset_attempts++;
2282
2283                         set_bit(hdev->reset_level, &hdev->reset_pending);
2284                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2285                 }
2286                 hclgevf_reset_task_schedule(hdev);
2287         }
2288
2289         hdev->reset_type = HNAE3_NONE_RESET;
2290         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2291         up(&hdev->reset_sem);
2292 }
2293
2294 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2295 {
2296         if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2297                 return;
2298
2299         if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2300                 return;
2301
2302         hclgevf_mbx_async_handler(hdev);
2303
2304         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2305 }
2306
2307 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2308 {
2309         struct hclge_vf_to_pf_msg send_msg;
2310         int ret;
2311
2312         if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2313                 return;
2314
2315         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2316         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2317         if (ret)
2318                 dev_err(&hdev->pdev->dev,
2319                         "VF sends keep alive cmd failed(=%d)\n", ret);
2320 }
2321
2322 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2323 {
2324         unsigned long delta = round_jiffies_relative(HZ);
2325         struct hnae3_handle *handle = &hdev->nic;
2326
2327         if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2328                 return;
2329
2330         if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2331                 delta = jiffies - hdev->last_serv_processed;
2332
2333                 if (delta < round_jiffies_relative(HZ)) {
2334                         delta = round_jiffies_relative(HZ) - delta;
2335                         goto out;
2336                 }
2337         }
2338
2339         hdev->serv_processed_cnt++;
2340         if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2341                 hclgevf_keep_alive(hdev);
2342
2343         if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2344                 hdev->last_serv_processed = jiffies;
2345                 goto out;
2346         }
2347
2348         if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2349                 hclgevf_tqps_update_stats(handle);
2350
2351         /* VF does not need to request link status when this bit is set, because
2352          * PF will push its link status to VFs when link status changed.
2353          */
2354         if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2355                 hclgevf_request_link_info(hdev);
2356
2357         hclgevf_update_link_mode(hdev);
2358
2359         hclgevf_sync_vlan_filter(hdev);
2360
2361         hclgevf_sync_mac_table(hdev);
2362
2363         hclgevf_sync_promisc_mode(hdev);
2364
2365         hdev->last_serv_processed = jiffies;
2366
2367 out:
2368         hclgevf_task_schedule(hdev, delta);
2369 }
2370
2371 static void hclgevf_service_task(struct work_struct *work)
2372 {
2373         struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2374                                                 service_task.work);
2375
2376         hclgevf_reset_service_task(hdev);
2377         hclgevf_mailbox_service_task(hdev);
2378         hclgevf_periodic_service_task(hdev);
2379
2380         /* Handle reset and mbx again in case periodical task delays the
2381          * handling by calling hclgevf_task_schedule() in
2382          * hclgevf_periodic_service_task()
2383          */
2384         hclgevf_reset_service_task(hdev);
2385         hclgevf_mailbox_service_task(hdev);
2386 }
2387
2388 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2389 {
2390         hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2391 }
2392
2393 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2394                                                       u32 *clearval)
2395 {
2396         u32 val, cmdq_stat_reg, rst_ing_reg;
2397
2398         /* fetch the events from their corresponding regs */
2399         cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2400                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2401         if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2402                 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2403                 dev_info(&hdev->pdev->dev,
2404                          "receive reset interrupt 0x%x!\n", rst_ing_reg);
2405                 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2406                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2407                 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2408                 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2409                 hdev->rst_stats.vf_rst_cnt++;
2410                 /* set up VF hardware reset status, its PF will clear
2411                  * this status when PF has initialized done.
2412                  */
2413                 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2414                 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2415                                   val | HCLGEVF_VF_RST_ING_BIT);
2416                 return HCLGEVF_VECTOR0_EVENT_RST;
2417         }
2418
2419         /* check for vector0 mailbox(=CMDQ RX) event source */
2420         if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2421                 /* for revision 0x21, clearing interrupt is writing bit 0
2422                  * to the clear register, writing bit 1 means to keep the
2423                  * old value.
2424                  * for revision 0x20, the clear register is a read & write
2425                  * register, so we should just write 0 to the bit we are
2426                  * handling, and keep other bits as cmdq_stat_reg.
2427                  */
2428                 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2429                         *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2430                 else
2431                         *clearval = cmdq_stat_reg &
2432                                     ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2433
2434                 return HCLGEVF_VECTOR0_EVENT_MBX;
2435         }
2436
2437         /* print other vector0 event source */
2438         dev_info(&hdev->pdev->dev,
2439                  "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2440                  cmdq_stat_reg);
2441
2442         return HCLGEVF_VECTOR0_EVENT_OTHER;
2443 }
2444
2445 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2446 {
2447         enum hclgevf_evt_cause event_cause;
2448         struct hclgevf_dev *hdev = data;
2449         u32 clearval;
2450
2451         hclgevf_enable_vector(&hdev->misc_vector, false);
2452         event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2453
2454         switch (event_cause) {
2455         case HCLGEVF_VECTOR0_EVENT_RST:
2456                 hclgevf_reset_task_schedule(hdev);
2457                 break;
2458         case HCLGEVF_VECTOR0_EVENT_MBX:
2459                 hclgevf_mbx_handler(hdev);
2460                 break;
2461         default:
2462                 break;
2463         }
2464
2465         if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2466                 hclgevf_clear_event_cause(hdev, clearval);
2467                 hclgevf_enable_vector(&hdev->misc_vector, true);
2468         }
2469
2470         return IRQ_HANDLED;
2471 }
2472
2473 static int hclgevf_configure(struct hclgevf_dev *hdev)
2474 {
2475         int ret;
2476
2477         ret = hclgevf_get_basic_info(hdev);
2478         if (ret)
2479                 return ret;
2480
2481         /* get current port based vlan state from PF */
2482         ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2483         if (ret)
2484                 return ret;
2485
2486         /* get queue configuration from PF */
2487         ret = hclgevf_get_queue_info(hdev);
2488         if (ret)
2489                 return ret;
2490
2491         /* get queue depth info from PF */
2492         ret = hclgevf_get_queue_depth(hdev);
2493         if (ret)
2494                 return ret;
2495
2496         return hclgevf_get_pf_media_type(hdev);
2497 }
2498
2499 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2500 {
2501         struct pci_dev *pdev = ae_dev->pdev;
2502         struct hclgevf_dev *hdev;
2503
2504         hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2505         if (!hdev)
2506                 return -ENOMEM;
2507
2508         hdev->pdev = pdev;
2509         hdev->ae_dev = ae_dev;
2510         ae_dev->priv = hdev;
2511
2512         return 0;
2513 }
2514
2515 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2516 {
2517         struct hnae3_handle *roce = &hdev->roce;
2518         struct hnae3_handle *nic = &hdev->nic;
2519
2520         roce->rinfo.num_vectors = hdev->num_roce_msix;
2521
2522         if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2523             hdev->num_msi_left == 0)
2524                 return -EINVAL;
2525
2526         roce->rinfo.base_vector = hdev->roce_base_vector;
2527
2528         roce->rinfo.netdev = nic->kinfo.netdev;
2529         roce->rinfo.roce_io_base = hdev->hw.io_base;
2530         roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2531
2532         roce->pdev = nic->pdev;
2533         roce->ae_algo = nic->ae_algo;
2534         roce->numa_node_mask = nic->numa_node_mask;
2535
2536         return 0;
2537 }
2538
2539 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2540 {
2541         struct hclgevf_cfg_gro_status_cmd *req;
2542         struct hclgevf_desc desc;
2543         int ret;
2544
2545         if (!hnae3_dev_gro_supported(hdev))
2546                 return 0;
2547
2548         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2549                                      false);
2550         req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2551
2552         req->gro_en = en ? 1 : 0;
2553
2554         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2555         if (ret)
2556                 dev_err(&hdev->pdev->dev,
2557                         "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2558
2559         return ret;
2560 }
2561
2562 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2563 {
2564         u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2565         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2566         struct hclgevf_rss_tuple_cfg *tuple_sets;
2567         u32 i;
2568
2569         rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2570         rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2571         tuple_sets = &rss_cfg->rss_tuple_sets;
2572         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2573                 u8 *rss_ind_tbl;
2574
2575                 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2576
2577                 rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2578                                            sizeof(*rss_ind_tbl), GFP_KERNEL);
2579                 if (!rss_ind_tbl)
2580                         return -ENOMEM;
2581
2582                 rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2583                 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2584                        HCLGEVF_RSS_KEY_SIZE);
2585
2586                 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2587                 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2588                 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2589                 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2590                 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2591                 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2592                 tuple_sets->ipv6_sctp_en =
2593                         hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2594                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2595                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2596                 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2597         }
2598
2599         /* Initialize RSS indirect table */
2600         for (i = 0; i < rss_ind_tbl_size; i++)
2601                 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2602
2603         return 0;
2604 }
2605
2606 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2607 {
2608         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2609         int ret;
2610
2611         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2612                 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2613                                                rss_cfg->rss_hash_key);
2614                 if (ret)
2615                         return ret;
2616
2617                 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2618                 if (ret)
2619                         return ret;
2620         }
2621
2622         ret = hclgevf_set_rss_indir_table(hdev);
2623         if (ret)
2624                 return ret;
2625
2626         return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2627 }
2628
2629 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2630 {
2631         return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2632                                        false);
2633 }
2634
2635 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2636 {
2637 #define HCLGEVF_FLUSH_LINK_TIMEOUT      100000
2638
2639         unsigned long last = hdev->serv_processed_cnt;
2640         int i = 0;
2641
2642         while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2643                i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2644                last == hdev->serv_processed_cnt)
2645                 usleep_range(1, 1);
2646 }
2647
2648 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2649 {
2650         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2651
2652         if (enable) {
2653                 hclgevf_task_schedule(hdev, 0);
2654         } else {
2655                 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2656
2657                 /* flush memory to make sure DOWN is seen by service task */
2658                 smp_mb__before_atomic();
2659                 hclgevf_flush_link_update(hdev);
2660         }
2661 }
2662
2663 static int hclgevf_ae_start(struct hnae3_handle *handle)
2664 {
2665         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2666
2667         clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2668         clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2669
2670         hclgevf_reset_tqp_stats(handle);
2671
2672         hclgevf_request_link_info(hdev);
2673
2674         hclgevf_update_link_mode(hdev);
2675
2676         return 0;
2677 }
2678
2679 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2680 {
2681         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2682
2683         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2684
2685         if (hdev->reset_type != HNAE3_VF_RESET)
2686                 hclgevf_reset_tqp(handle);
2687
2688         hclgevf_reset_tqp_stats(handle);
2689         hclgevf_update_link_status(hdev, 0);
2690 }
2691
2692 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2693 {
2694 #define HCLGEVF_STATE_ALIVE     1
2695 #define HCLGEVF_STATE_NOT_ALIVE 0
2696
2697         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2698         struct hclge_vf_to_pf_msg send_msg;
2699
2700         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2701         send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2702                                 HCLGEVF_STATE_NOT_ALIVE;
2703         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2704 }
2705
2706 static int hclgevf_client_start(struct hnae3_handle *handle)
2707 {
2708         return hclgevf_set_alive(handle, true);
2709 }
2710
2711 static void hclgevf_client_stop(struct hnae3_handle *handle)
2712 {
2713         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2714         int ret;
2715
2716         ret = hclgevf_set_alive(handle, false);
2717         if (ret)
2718                 dev_warn(&hdev->pdev->dev,
2719                          "%s failed %d\n", __func__, ret);
2720 }
2721
2722 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2723 {
2724         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2725         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2726         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2727
2728         INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2729
2730         mutex_init(&hdev->mbx_resp.mbx_mutex);
2731         sema_init(&hdev->reset_sem, 1);
2732
2733         spin_lock_init(&hdev->mac_table.mac_list_lock);
2734         INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2735         INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2736
2737         /* bring the device down */
2738         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2739 }
2740
2741 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2742 {
2743         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2744         set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2745
2746         if (hdev->service_task.work.func)
2747                 cancel_delayed_work_sync(&hdev->service_task);
2748
2749         mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2750 }
2751
2752 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2753 {
2754         struct pci_dev *pdev = hdev->pdev;
2755         int vectors;
2756         int i;
2757
2758         if (hnae3_dev_roce_supported(hdev))
2759                 vectors = pci_alloc_irq_vectors(pdev,
2760                                                 hdev->roce_base_msix_offset + 1,
2761                                                 hdev->num_msi,
2762                                                 PCI_IRQ_MSIX);
2763         else
2764                 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2765                                                 hdev->num_msi,
2766                                                 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2767
2768         if (vectors < 0) {
2769                 dev_err(&pdev->dev,
2770                         "failed(%d) to allocate MSI/MSI-X vectors\n",
2771                         vectors);
2772                 return vectors;
2773         }
2774         if (vectors < hdev->num_msi)
2775                 dev_warn(&hdev->pdev->dev,
2776                          "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2777                          hdev->num_msi, vectors);
2778
2779         hdev->num_msi = vectors;
2780         hdev->num_msi_left = vectors;
2781
2782         hdev->base_msi_vector = pdev->irq;
2783         hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2784
2785         hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2786                                            sizeof(u16), GFP_KERNEL);
2787         if (!hdev->vector_status) {
2788                 pci_free_irq_vectors(pdev);
2789                 return -ENOMEM;
2790         }
2791
2792         for (i = 0; i < hdev->num_msi; i++)
2793                 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2794
2795         hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2796                                         sizeof(int), GFP_KERNEL);
2797         if (!hdev->vector_irq) {
2798                 devm_kfree(&pdev->dev, hdev->vector_status);
2799                 pci_free_irq_vectors(pdev);
2800                 return -ENOMEM;
2801         }
2802
2803         return 0;
2804 }
2805
2806 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2807 {
2808         struct pci_dev *pdev = hdev->pdev;
2809
2810         devm_kfree(&pdev->dev, hdev->vector_status);
2811         devm_kfree(&pdev->dev, hdev->vector_irq);
2812         pci_free_irq_vectors(pdev);
2813 }
2814
2815 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2816 {
2817         int ret;
2818
2819         hclgevf_get_misc_vector(hdev);
2820
2821         snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2822                  HCLGEVF_NAME, pci_name(hdev->pdev));
2823         ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2824                           0, hdev->misc_vector.name, hdev);
2825         if (ret) {
2826                 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2827                         hdev->misc_vector.vector_irq);
2828                 return ret;
2829         }
2830
2831         hclgevf_clear_event_cause(hdev, 0);
2832
2833         /* enable misc. vector(vector 0) */
2834         hclgevf_enable_vector(&hdev->misc_vector, true);
2835
2836         return ret;
2837 }
2838
2839 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2840 {
2841         /* disable misc vector(vector 0) */
2842         hclgevf_enable_vector(&hdev->misc_vector, false);
2843         synchronize_irq(hdev->misc_vector.vector_irq);
2844         free_irq(hdev->misc_vector.vector_irq, hdev);
2845         hclgevf_free_vector(hdev, 0);
2846 }
2847
2848 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2849 {
2850         struct device *dev = &hdev->pdev->dev;
2851
2852         dev_info(dev, "VF info begin:\n");
2853
2854         dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2855         dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2856         dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2857         dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2858         dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2859         dev_info(dev, "PF media type of this VF: %u\n",
2860                  hdev->hw.mac.media_type);
2861
2862         dev_info(dev, "VF info end.\n");
2863 }
2864
2865 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2866                                             struct hnae3_client *client)
2867 {
2868         struct hclgevf_dev *hdev = ae_dev->priv;
2869         int rst_cnt = hdev->rst_stats.rst_cnt;
2870         int ret;
2871
2872         ret = client->ops->init_instance(&hdev->nic);
2873         if (ret)
2874                 return ret;
2875
2876         set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2877         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2878             rst_cnt != hdev->rst_stats.rst_cnt) {
2879                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2880
2881                 client->ops->uninit_instance(&hdev->nic, 0);
2882                 return -EBUSY;
2883         }
2884
2885         hnae3_set_client_init_flag(client, ae_dev, 1);
2886
2887         if (netif_msg_drv(&hdev->nic))
2888                 hclgevf_info_show(hdev);
2889
2890         return 0;
2891 }
2892
2893 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2894                                              struct hnae3_client *client)
2895 {
2896         struct hclgevf_dev *hdev = ae_dev->priv;
2897         int ret;
2898
2899         if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2900             !hdev->nic_client)
2901                 return 0;
2902
2903         ret = hclgevf_init_roce_base_info(hdev);
2904         if (ret)
2905                 return ret;
2906
2907         ret = client->ops->init_instance(&hdev->roce);
2908         if (ret)
2909                 return ret;
2910
2911         set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2912         hnae3_set_client_init_flag(client, ae_dev, 1);
2913
2914         return 0;
2915 }
2916
2917 static int hclgevf_init_client_instance(struct hnae3_client *client,
2918                                         struct hnae3_ae_dev *ae_dev)
2919 {
2920         struct hclgevf_dev *hdev = ae_dev->priv;
2921         int ret;
2922
2923         switch (client->type) {
2924         case HNAE3_CLIENT_KNIC:
2925                 hdev->nic_client = client;
2926                 hdev->nic.client = client;
2927
2928                 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2929                 if (ret)
2930                         goto clear_nic;
2931
2932                 ret = hclgevf_init_roce_client_instance(ae_dev,
2933                                                         hdev->roce_client);
2934                 if (ret)
2935                         goto clear_roce;
2936
2937                 break;
2938         case HNAE3_CLIENT_ROCE:
2939                 if (hnae3_dev_roce_supported(hdev)) {
2940                         hdev->roce_client = client;
2941                         hdev->roce.client = client;
2942                 }
2943
2944                 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2945                 if (ret)
2946                         goto clear_roce;
2947
2948                 break;
2949         default:
2950                 return -EINVAL;
2951         }
2952
2953         return 0;
2954
2955 clear_nic:
2956         hdev->nic_client = NULL;
2957         hdev->nic.client = NULL;
2958         return ret;
2959 clear_roce:
2960         hdev->roce_client = NULL;
2961         hdev->roce.client = NULL;
2962         return ret;
2963 }
2964
2965 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2966                                            struct hnae3_ae_dev *ae_dev)
2967 {
2968         struct hclgevf_dev *hdev = ae_dev->priv;
2969
2970         /* un-init roce, if it exists */
2971         if (hdev->roce_client) {
2972                 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2973                 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2974                 hdev->roce_client = NULL;
2975                 hdev->roce.client = NULL;
2976         }
2977
2978         /* un-init nic/unic, if this was not called by roce client */
2979         if (client->ops->uninit_instance && hdev->nic_client &&
2980             client->type != HNAE3_CLIENT_ROCE) {
2981                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2982
2983                 client->ops->uninit_instance(&hdev->nic, 0);
2984                 hdev->nic_client = NULL;
2985                 hdev->nic.client = NULL;
2986         }
2987 }
2988
2989 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2990 {
2991 #define HCLGEVF_MEM_BAR         4
2992
2993         struct pci_dev *pdev = hdev->pdev;
2994         struct hclgevf_hw *hw = &hdev->hw;
2995
2996         /* for device does not have device memory, return directly */
2997         if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2998                 return 0;
2999
3000         hw->mem_base = devm_ioremap_wc(&pdev->dev,
3001                                        pci_resource_start(pdev,
3002                                                           HCLGEVF_MEM_BAR),
3003                                        pci_resource_len(pdev, HCLGEVF_MEM_BAR));
3004         if (!hw->mem_base) {
3005                 dev_err(&pdev->dev, "failed to map device memory\n");
3006                 return -EFAULT;
3007         }
3008
3009         return 0;
3010 }
3011
3012 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3013 {
3014         struct pci_dev *pdev = hdev->pdev;
3015         struct hclgevf_hw *hw;
3016         int ret;
3017
3018         ret = pci_enable_device(pdev);
3019         if (ret) {
3020                 dev_err(&pdev->dev, "failed to enable PCI device\n");
3021                 return ret;
3022         }
3023
3024         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3025         if (ret) {
3026                 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3027                 goto err_disable_device;
3028         }
3029
3030         ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3031         if (ret) {
3032                 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3033                 goto err_disable_device;
3034         }
3035
3036         pci_set_master(pdev);
3037         hw = &hdev->hw;
3038         hw->hdev = hdev;
3039         hw->io_base = pci_iomap(pdev, 2, 0);
3040         if (!hw->io_base) {
3041                 dev_err(&pdev->dev, "can't map configuration register space\n");
3042                 ret = -ENOMEM;
3043                 goto err_clr_master;
3044         }
3045
3046         ret = hclgevf_dev_mem_map(hdev);
3047         if (ret)
3048                 goto err_unmap_io_base;
3049
3050         return 0;
3051
3052 err_unmap_io_base:
3053         pci_iounmap(pdev, hdev->hw.io_base);
3054 err_clr_master:
3055         pci_clear_master(pdev);
3056         pci_release_regions(pdev);
3057 err_disable_device:
3058         pci_disable_device(pdev);
3059
3060         return ret;
3061 }
3062
3063 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3064 {
3065         struct pci_dev *pdev = hdev->pdev;
3066
3067         if (hdev->hw.mem_base)
3068                 devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3069
3070         pci_iounmap(pdev, hdev->hw.io_base);
3071         pci_clear_master(pdev);
3072         pci_release_regions(pdev);
3073         pci_disable_device(pdev);
3074 }
3075
3076 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3077 {
3078         struct hclgevf_query_res_cmd *req;
3079         struct hclgevf_desc desc;
3080         int ret;
3081
3082         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3083         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3084         if (ret) {
3085                 dev_err(&hdev->pdev->dev,
3086                         "query vf resource failed, ret = %d.\n", ret);
3087                 return ret;
3088         }
3089
3090         req = (struct hclgevf_query_res_cmd *)desc.data;
3091
3092         if (hnae3_dev_roce_supported(hdev)) {
3093                 hdev->roce_base_msix_offset =
3094                 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3095                                 HCLGEVF_MSIX_OFT_ROCEE_M,
3096                                 HCLGEVF_MSIX_OFT_ROCEE_S);
3097                 hdev->num_roce_msix =
3098                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3099                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3100
3101                 /* nic's msix numbers is always equals to the roce's. */
3102                 hdev->num_nic_msix = hdev->num_roce_msix;
3103
3104                 /* VF should have NIC vectors and Roce vectors, NIC vectors
3105                  * are queued before Roce vectors. The offset is fixed to 64.
3106                  */
3107                 hdev->num_msi = hdev->num_roce_msix +
3108                                 hdev->roce_base_msix_offset;
3109         } else {
3110                 hdev->num_msi =
3111                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3112                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3113
3114                 hdev->num_nic_msix = hdev->num_msi;
3115         }
3116
3117         if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3118                 dev_err(&hdev->pdev->dev,
3119                         "Just %u msi resources, not enough for vf(min:2).\n",
3120                         hdev->num_nic_msix);
3121                 return -EINVAL;
3122         }
3123
3124         return 0;
3125 }
3126
3127 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3128 {
3129 #define HCLGEVF_MAX_NON_TSO_BD_NUM                      8U
3130
3131         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3132
3133         ae_dev->dev_specs.max_non_tso_bd_num =
3134                                         HCLGEVF_MAX_NON_TSO_BD_NUM;
3135         ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3136         ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3137         ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3138         ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3139 }
3140
3141 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3142                                     struct hclgevf_desc *desc)
3143 {
3144         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3145         struct hclgevf_dev_specs_0_cmd *req0;
3146         struct hclgevf_dev_specs_1_cmd *req1;
3147
3148         req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3149         req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3150
3151         ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3152         ae_dev->dev_specs.rss_ind_tbl_size =
3153                                         le16_to_cpu(req0->rss_ind_tbl_size);
3154         ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3155         ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3156         ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3157         ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3158 }
3159
3160 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3161 {
3162         struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3163
3164         if (!dev_specs->max_non_tso_bd_num)
3165                 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3166         if (!dev_specs->rss_ind_tbl_size)
3167                 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3168         if (!dev_specs->rss_key_size)
3169                 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3170         if (!dev_specs->max_int_gl)
3171                 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3172         if (!dev_specs->max_frm_size)
3173                 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3174 }
3175
3176 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3177 {
3178         struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3179         int ret;
3180         int i;
3181
3182         /* set default specifications as devices lower than version V3 do not
3183          * support querying specifications from firmware.
3184          */
3185         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3186                 hclgevf_set_default_dev_specs(hdev);
3187                 return 0;
3188         }
3189
3190         for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3191                 hclgevf_cmd_setup_basic_desc(&desc[i],
3192                                              HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3193                 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3194         }
3195         hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3196                                      true);
3197
3198         ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3199         if (ret)
3200                 return ret;
3201
3202         hclgevf_parse_dev_specs(hdev, desc);
3203         hclgevf_check_dev_specs(hdev);
3204
3205         return 0;
3206 }
3207
3208 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3209 {
3210         struct pci_dev *pdev = hdev->pdev;
3211         int ret = 0;
3212
3213         if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3214             test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3215                 hclgevf_misc_irq_uninit(hdev);
3216                 hclgevf_uninit_msi(hdev);
3217                 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3218         }
3219
3220         if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3221                 pci_set_master(pdev);
3222                 ret = hclgevf_init_msi(hdev);
3223                 if (ret) {
3224                         dev_err(&pdev->dev,
3225                                 "failed(%d) to init MSI/MSI-X\n", ret);
3226                         return ret;
3227                 }
3228
3229                 ret = hclgevf_misc_irq_init(hdev);
3230                 if (ret) {
3231                         hclgevf_uninit_msi(hdev);
3232                         dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3233                                 ret);
3234                         return ret;
3235                 }
3236
3237                 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3238         }
3239
3240         return ret;
3241 }
3242
3243 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3244 {
3245         struct hclge_vf_to_pf_msg send_msg;
3246
3247         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3248                                HCLGE_MBX_VPORT_LIST_CLEAR);
3249         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3250 }
3251
3252 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
3253 {
3254         if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3255                 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
3256 }
3257
3258 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
3259 {
3260         if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3261                 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
3262 }
3263
3264 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3265 {
3266         struct pci_dev *pdev = hdev->pdev;
3267         int ret;
3268
3269         ret = hclgevf_pci_reset(hdev);
3270         if (ret) {
3271                 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3272                 return ret;
3273         }
3274
3275         ret = hclgevf_cmd_init(hdev);
3276         if (ret) {
3277                 dev_err(&pdev->dev, "cmd failed %d\n", ret);
3278                 return ret;
3279         }
3280
3281         ret = hclgevf_rss_init_hw(hdev);
3282         if (ret) {
3283                 dev_err(&hdev->pdev->dev,
3284                         "failed(%d) to initialize RSS\n", ret);
3285                 return ret;
3286         }
3287
3288         ret = hclgevf_config_gro(hdev, true);
3289         if (ret)
3290                 return ret;
3291
3292         ret = hclgevf_init_vlan_config(hdev);
3293         if (ret) {
3294                 dev_err(&hdev->pdev->dev,
3295                         "failed(%d) to initialize VLAN config\n", ret);
3296                 return ret;
3297         }
3298
3299         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3300
3301         hclgevf_init_rxd_adv_layout(hdev);
3302
3303         dev_info(&hdev->pdev->dev, "Reset done\n");
3304
3305         return 0;
3306 }
3307
3308 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3309 {
3310         struct pci_dev *pdev = hdev->pdev;
3311         int ret;
3312
3313         ret = hclgevf_pci_init(hdev);
3314         if (ret)
3315                 return ret;
3316
3317         ret = hclgevf_cmd_queue_init(hdev);
3318         if (ret)
3319                 goto err_cmd_queue_init;
3320
3321         ret = hclgevf_cmd_init(hdev);
3322         if (ret)
3323                 goto err_cmd_init;
3324
3325         /* Get vf resource */
3326         ret = hclgevf_query_vf_resource(hdev);
3327         if (ret)
3328                 goto err_cmd_init;
3329
3330         ret = hclgevf_query_dev_specs(hdev);
3331         if (ret) {
3332                 dev_err(&pdev->dev,
3333                         "failed to query dev specifications, ret = %d\n", ret);
3334                 goto err_cmd_init;
3335         }
3336
3337         ret = hclgevf_init_msi(hdev);
3338         if (ret) {
3339                 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3340                 goto err_cmd_init;
3341         }
3342
3343         hclgevf_state_init(hdev);
3344         hdev->reset_level = HNAE3_VF_FUNC_RESET;
3345         hdev->reset_type = HNAE3_NONE_RESET;
3346
3347         ret = hclgevf_misc_irq_init(hdev);
3348         if (ret)
3349                 goto err_misc_irq_init;
3350
3351         set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3352
3353         ret = hclgevf_configure(hdev);
3354         if (ret) {
3355                 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3356                 goto err_config;
3357         }
3358
3359         ret = hclgevf_alloc_tqps(hdev);
3360         if (ret) {
3361                 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3362                 goto err_config;
3363         }
3364
3365         ret = hclgevf_set_handle_info(hdev);
3366         if (ret)
3367                 goto err_config;
3368
3369         ret = hclgevf_config_gro(hdev, true);
3370         if (ret)
3371                 goto err_config;
3372
3373         /* Initialize RSS for this VF */
3374         ret = hclgevf_rss_init_cfg(hdev);
3375         if (ret) {
3376                 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3377                 goto err_config;
3378         }
3379
3380         ret = hclgevf_rss_init_hw(hdev);
3381         if (ret) {
3382                 dev_err(&hdev->pdev->dev,
3383                         "failed(%d) to initialize RSS\n", ret);
3384                 goto err_config;
3385         }
3386
3387         /* ensure vf tbl list as empty before init*/
3388         ret = hclgevf_clear_vport_list(hdev);
3389         if (ret) {
3390                 dev_err(&pdev->dev,
3391                         "failed to clear tbl list configuration, ret = %d.\n",
3392                         ret);
3393                 goto err_config;
3394         }
3395
3396         ret = hclgevf_init_vlan_config(hdev);
3397         if (ret) {
3398                 dev_err(&hdev->pdev->dev,
3399                         "failed(%d) to initialize VLAN config\n", ret);
3400                 goto err_config;
3401         }
3402
3403         hclgevf_init_rxd_adv_layout(hdev);
3404
3405         hdev->last_reset_time = jiffies;
3406         dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3407                  HCLGEVF_DRIVER_NAME);
3408
3409         hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3410
3411         return 0;
3412
3413 err_config:
3414         hclgevf_misc_irq_uninit(hdev);
3415 err_misc_irq_init:
3416         hclgevf_state_uninit(hdev);
3417         hclgevf_uninit_msi(hdev);
3418 err_cmd_init:
3419         hclgevf_cmd_uninit(hdev);
3420 err_cmd_queue_init:
3421         hclgevf_pci_uninit(hdev);
3422         clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3423         return ret;
3424 }
3425
3426 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3427 {
3428         struct hclge_vf_to_pf_msg send_msg;
3429
3430         hclgevf_state_uninit(hdev);
3431         hclgevf_uninit_rxd_adv_layout(hdev);
3432
3433         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3434         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3435
3436         if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3437                 hclgevf_misc_irq_uninit(hdev);
3438                 hclgevf_uninit_msi(hdev);
3439         }
3440
3441         hclgevf_cmd_uninit(hdev);
3442         hclgevf_pci_uninit(hdev);
3443         hclgevf_uninit_mac_list(hdev);
3444 }
3445
3446 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3447 {
3448         struct pci_dev *pdev = ae_dev->pdev;
3449         int ret;
3450
3451         ret = hclgevf_alloc_hdev(ae_dev);
3452         if (ret) {
3453                 dev_err(&pdev->dev, "hclge device allocation failed\n");
3454                 return ret;
3455         }
3456
3457         ret = hclgevf_init_hdev(ae_dev->priv);
3458         if (ret) {
3459                 dev_err(&pdev->dev, "hclge device initialization failed\n");
3460                 return ret;
3461         }
3462
3463         return 0;
3464 }
3465
3466 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3467 {
3468         struct hclgevf_dev *hdev = ae_dev->priv;
3469
3470         hclgevf_uninit_hdev(hdev);
3471         ae_dev->priv = NULL;
3472 }
3473
3474 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3475 {
3476         struct hnae3_handle *nic = &hdev->nic;
3477         struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3478
3479         return min_t(u32, hdev->rss_size_max,
3480                      hdev->num_tqps / kinfo->tc_info.num_tc);
3481 }
3482
3483 /**
3484  * hclgevf_get_channels - Get the current channels enabled and max supported.
3485  * @handle: hardware information for network interface
3486  * @ch: ethtool channels structure
3487  *
3488  * We don't support separate tx and rx queues as channels. The other count
3489  * represents how many queues are being used for control. max_combined counts
3490  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3491  * q_vectors since we support a lot more queue pairs than q_vectors.
3492  **/
3493 static void hclgevf_get_channels(struct hnae3_handle *handle,
3494                                  struct ethtool_channels *ch)
3495 {
3496         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3497
3498         ch->max_combined = hclgevf_get_max_channels(hdev);
3499         ch->other_count = 0;
3500         ch->max_other = 0;
3501         ch->combined_count = handle->kinfo.rss_size;
3502 }
3503
3504 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3505                                           u16 *alloc_tqps, u16 *max_rss_size)
3506 {
3507         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3508
3509         *alloc_tqps = hdev->num_tqps;
3510         *max_rss_size = hdev->rss_size_max;
3511 }
3512
3513 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3514                                     u32 new_tqps_num)
3515 {
3516         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3517         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3518         u16 max_rss_size;
3519
3520         kinfo->req_rss_size = new_tqps_num;
3521
3522         max_rss_size = min_t(u16, hdev->rss_size_max,
3523                              hdev->num_tqps / kinfo->tc_info.num_tc);
3524
3525         /* Use the user's configuration when it is not larger than
3526          * max_rss_size, otherwise, use the maximum specification value.
3527          */
3528         if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3529             kinfo->req_rss_size <= max_rss_size)
3530                 kinfo->rss_size = kinfo->req_rss_size;
3531         else if (kinfo->rss_size > max_rss_size ||
3532                  (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3533                 kinfo->rss_size = max_rss_size;
3534
3535         kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3536 }
3537
3538 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3539                                 bool rxfh_configured)
3540 {
3541         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3542         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3543         u16 cur_rss_size = kinfo->rss_size;
3544         u16 cur_tqps = kinfo->num_tqps;
3545         u32 *rss_indir;
3546         unsigned int i;
3547         int ret;
3548
3549         hclgevf_update_rss_size(handle, new_tqps_num);
3550
3551         ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3552         if (ret)
3553                 return ret;
3554
3555         /* RSS indirection table has been configured by user */
3556         if (rxfh_configured)
3557                 goto out;
3558
3559         /* Reinitializes the rss indirect table according to the new RSS size */
3560         rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3561                             sizeof(u32), GFP_KERNEL);
3562         if (!rss_indir)
3563                 return -ENOMEM;
3564
3565         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3566                 rss_indir[i] = i % kinfo->rss_size;
3567
3568         hdev->rss_cfg.rss_size = kinfo->rss_size;
3569
3570         ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3571         if (ret)
3572                 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3573                         ret);
3574
3575         kfree(rss_indir);
3576
3577 out:
3578         if (!ret)
3579                 dev_info(&hdev->pdev->dev,
3580                          "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3581                          cur_rss_size, kinfo->rss_size,
3582                          cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3583
3584         return ret;
3585 }
3586
3587 static int hclgevf_get_status(struct hnae3_handle *handle)
3588 {
3589         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3590
3591         return hdev->hw.mac.link;
3592 }
3593
3594 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3595                                             u8 *auto_neg, u32 *speed,
3596                                             u8 *duplex)
3597 {
3598         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3599
3600         if (speed)
3601                 *speed = hdev->hw.mac.speed;
3602         if (duplex)
3603                 *duplex = hdev->hw.mac.duplex;
3604         if (auto_neg)
3605                 *auto_neg = AUTONEG_DISABLE;
3606 }
3607
3608 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3609                                  u8 duplex)
3610 {
3611         hdev->hw.mac.speed = speed;
3612         hdev->hw.mac.duplex = duplex;
3613 }
3614
3615 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3616 {
3617         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3618
3619         return hclgevf_config_gro(hdev, enable);
3620 }
3621
3622 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3623                                    u8 *module_type)
3624 {
3625         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3626
3627         if (media_type)
3628                 *media_type = hdev->hw.mac.media_type;
3629
3630         if (module_type)
3631                 *module_type = hdev->hw.mac.module_type;
3632 }
3633
3634 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3635 {
3636         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3637
3638         return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3639 }
3640
3641 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3642 {
3643         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3644
3645         return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3646 }
3647
3648 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3649 {
3650         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3651
3652         return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3653 }
3654
3655 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3656 {
3657         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3658
3659         return hdev->rst_stats.hw_rst_done_cnt;
3660 }
3661
3662 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3663                                   unsigned long *supported,
3664                                   unsigned long *advertising)
3665 {
3666         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3667
3668         *supported = hdev->hw.mac.supported;
3669         *advertising = hdev->hw.mac.advertising;
3670 }
3671
3672 #define MAX_SEPARATE_NUM        4
3673 #define SEPARATOR_VALUE         0xFDFCFBFA
3674 #define REG_NUM_PER_LINE        4
3675 #define REG_LEN_PER_LINE        (REG_NUM_PER_LINE * sizeof(u32))
3676
3677 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3678 {
3679         int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3680         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3681
3682         cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3683         common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3684         ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3685         tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3686
3687         return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3688                 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3689 }
3690
3691 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3692                              void *data)
3693 {
3694         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3695         int i, j, reg_um, separator_num;
3696         u32 *reg = data;
3697
3698         *version = hdev->fw_version;
3699
3700         /* fetching per-VF registers values from VF PCIe register space */
3701         reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3702         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3703         for (i = 0; i < reg_um; i++)
3704                 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3705         for (i = 0; i < separator_num; i++)
3706                 *reg++ = SEPARATOR_VALUE;
3707
3708         reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3709         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3710         for (i = 0; i < reg_um; i++)
3711                 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3712         for (i = 0; i < separator_num; i++)
3713                 *reg++ = SEPARATOR_VALUE;
3714
3715         reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3716         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3717         for (j = 0; j < hdev->num_tqps; j++) {
3718                 for (i = 0; i < reg_um; i++)
3719                         *reg++ = hclgevf_read_dev(&hdev->hw,
3720                                                   ring_reg_addr_list[i] +
3721                                                   0x200 * j);
3722                 for (i = 0; i < separator_num; i++)
3723                         *reg++ = SEPARATOR_VALUE;
3724         }
3725
3726         reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3727         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3728         for (j = 0; j < hdev->num_msi_used - 1; j++) {
3729                 for (i = 0; i < reg_um; i++)
3730                         *reg++ = hclgevf_read_dev(&hdev->hw,
3731                                                   tqp_intr_reg_addr_list[i] +
3732                                                   4 * j);
3733                 for (i = 0; i < separator_num; i++)
3734                         *reg++ = SEPARATOR_VALUE;
3735         }
3736 }
3737
3738 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3739                                         u8 *port_base_vlan_info, u8 data_size)
3740 {
3741         struct hnae3_handle *nic = &hdev->nic;
3742         struct hclge_vf_to_pf_msg send_msg;
3743         int ret;
3744
3745         rtnl_lock();
3746
3747         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3748             test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3749                 dev_warn(&hdev->pdev->dev,
3750                          "is resetting when updating port based vlan info\n");
3751                 rtnl_unlock();
3752                 return;
3753         }
3754
3755         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3756         if (ret) {
3757                 rtnl_unlock();
3758                 return;
3759         }
3760
3761         /* send msg to PF and wait update port based vlan info */
3762         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3763                                HCLGE_MBX_PORT_BASE_VLAN_CFG);
3764         memcpy(send_msg.data, port_base_vlan_info, data_size);
3765         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3766         if (!ret) {
3767                 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3768                         nic->port_base_vlan_state = state;
3769                 else
3770                         nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3771         }
3772
3773         hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3774         rtnl_unlock();
3775 }
3776
3777 static const struct hnae3_ae_ops hclgevf_ops = {
3778         .init_ae_dev = hclgevf_init_ae_dev,
3779         .uninit_ae_dev = hclgevf_uninit_ae_dev,
3780         .reset_prepare = hclgevf_reset_prepare_general,
3781         .reset_done = hclgevf_reset_done,
3782         .init_client_instance = hclgevf_init_client_instance,
3783         .uninit_client_instance = hclgevf_uninit_client_instance,
3784         .start = hclgevf_ae_start,
3785         .stop = hclgevf_ae_stop,
3786         .client_start = hclgevf_client_start,
3787         .client_stop = hclgevf_client_stop,
3788         .map_ring_to_vector = hclgevf_map_ring_to_vector,
3789         .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3790         .get_vector = hclgevf_get_vector,
3791         .put_vector = hclgevf_put_vector,
3792         .reset_queue = hclgevf_reset_tqp,
3793         .get_mac_addr = hclgevf_get_mac_addr,
3794         .set_mac_addr = hclgevf_set_mac_addr,
3795         .add_uc_addr = hclgevf_add_uc_addr,
3796         .rm_uc_addr = hclgevf_rm_uc_addr,
3797         .add_mc_addr = hclgevf_add_mc_addr,
3798         .rm_mc_addr = hclgevf_rm_mc_addr,
3799         .get_stats = hclgevf_get_stats,
3800         .update_stats = hclgevf_update_stats,
3801         .get_strings = hclgevf_get_strings,
3802         .get_sset_count = hclgevf_get_sset_count,
3803         .get_rss_key_size = hclgevf_get_rss_key_size,
3804         .get_rss = hclgevf_get_rss,
3805         .set_rss = hclgevf_set_rss,
3806         .get_rss_tuple = hclgevf_get_rss_tuple,
3807         .set_rss_tuple = hclgevf_set_rss_tuple,
3808         .get_tc_size = hclgevf_get_tc_size,
3809         .get_fw_version = hclgevf_get_fw_version,
3810         .set_vlan_filter = hclgevf_set_vlan_filter,
3811         .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3812         .reset_event = hclgevf_reset_event,
3813         .set_default_reset_request = hclgevf_set_def_reset_request,
3814         .set_channels = hclgevf_set_channels,
3815         .get_channels = hclgevf_get_channels,
3816         .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3817         .get_regs_len = hclgevf_get_regs_len,
3818         .get_regs = hclgevf_get_regs,
3819         .get_status = hclgevf_get_status,
3820         .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3821         .get_media_type = hclgevf_get_media_type,
3822         .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3823         .ae_dev_resetting = hclgevf_ae_dev_resetting,
3824         .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3825         .set_gro_en = hclgevf_gro_en,
3826         .set_mtu = hclgevf_set_mtu,
3827         .get_global_queue_id = hclgevf_get_qid_global,
3828         .set_timer_task = hclgevf_set_timer_task,
3829         .get_link_mode = hclgevf_get_link_mode,
3830         .set_promisc_mode = hclgevf_set_promisc_mode,
3831         .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3832         .get_cmdq_stat = hclgevf_get_cmdq_stat,
3833 };
3834
3835 static struct hnae3_ae_algo ae_algovf = {
3836         .ops = &hclgevf_ops,
3837         .pdev_id_table = ae_algovf_pci_tbl,
3838 };
3839
3840 static int hclgevf_init(void)
3841 {
3842         pr_info("%s is initializing\n", HCLGEVF_NAME);
3843
3844         hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3845         if (!hclgevf_wq) {
3846                 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3847                 return -ENOMEM;
3848         }
3849
3850         hnae3_register_ae_algo(&ae_algovf);
3851
3852         return 0;
3853 }
3854
3855 static void hclgevf_exit(void)
3856 {
3857         hnae3_unregister_ae_algo(&ae_algovf);
3858         destroy_workqueue(hclgevf_wq);
3859 }
3860 module_init(hclgevf_init);
3861 module_exit(hclgevf_exit);
3862
3863 MODULE_LICENSE("GPL");
3864 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3865 MODULE_DESCRIPTION("HCLGEVF Driver");
3866 MODULE_VERSION(HCLGEVF_MOD_VERSION);