7bef6b24e610ac7eea75d2d0ce323974b6adfae2
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME    "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT      5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18                                   unsigned long delay);
19
20 static struct hnae3_ae_algo ae_algovf;
21
22 static struct workqueue_struct *hclgevf_wq;
23
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28         /* required last entry */
29         {0, }
30 };
31
32 static const u8 hclgevf_hash_key[] = {
33         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43                                          HCLGEVF_CMDQ_TX_ADDR_H_REG,
44                                          HCLGEVF_CMDQ_TX_DEPTH_REG,
45                                          HCLGEVF_CMDQ_TX_TAIL_REG,
46                                          HCLGEVF_CMDQ_TX_HEAD_REG,
47                                          HCLGEVF_CMDQ_RX_ADDR_L_REG,
48                                          HCLGEVF_CMDQ_RX_ADDR_H_REG,
49                                          HCLGEVF_CMDQ_RX_DEPTH_REG,
50                                          HCLGEVF_CMDQ_RX_TAIL_REG,
51                                          HCLGEVF_CMDQ_RX_HEAD_REG,
52                                          HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54                                          HCLGEVF_CMDQ_INTR_EN_REG,
55                                          HCLGEVF_CMDQ_INTR_GEN_REG};
56
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58                                            HCLGEVF_RST_ING,
59                                            HCLGEVF_GRO_EN_REG};
60
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62                                          HCLGEVF_RING_RX_ADDR_H_REG,
63                                          HCLGEVF_RING_RX_BD_NUM_REG,
64                                          HCLGEVF_RING_RX_BD_LENGTH_REG,
65                                          HCLGEVF_RING_RX_MERGE_EN_REG,
66                                          HCLGEVF_RING_RX_TAIL_REG,
67                                          HCLGEVF_RING_RX_HEAD_REG,
68                                          HCLGEVF_RING_RX_FBD_NUM_REG,
69                                          HCLGEVF_RING_RX_OFFSET_REG,
70                                          HCLGEVF_RING_RX_FBD_OFFSET_REG,
71                                          HCLGEVF_RING_RX_STASH_REG,
72                                          HCLGEVF_RING_RX_BD_ERR_REG,
73                                          HCLGEVF_RING_TX_ADDR_L_REG,
74                                          HCLGEVF_RING_TX_ADDR_H_REG,
75                                          HCLGEVF_RING_TX_BD_NUM_REG,
76                                          HCLGEVF_RING_TX_PRIORITY_REG,
77                                          HCLGEVF_RING_TX_TC_REG,
78                                          HCLGEVF_RING_TX_MERGE_EN_REG,
79                                          HCLGEVF_RING_TX_TAIL_REG,
80                                          HCLGEVF_RING_TX_HEAD_REG,
81                                          HCLGEVF_RING_TX_FBD_NUM_REG,
82                                          HCLGEVF_RING_TX_OFFSET_REG,
83                                          HCLGEVF_RING_TX_EBD_NUM_REG,
84                                          HCLGEVF_RING_TX_EBD_OFFSET_REG,
85                                          HCLGEVF_RING_TX_BD_ERR_REG,
86                                          HCLGEVF_RING_EN_REG};
87
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89                                              HCLGEVF_TQP_INTR_GL0_REG,
90                                              HCLGEVF_TQP_INTR_GL1_REG,
91                                              HCLGEVF_TQP_INTR_GL2_REG,
92                                              HCLGEVF_TQP_INTR_RL_REG};
93
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96         if (!handle->client)
97                 return container_of(handle, struct hclgevf_dev, nic);
98         else if (handle->client->type == HNAE3_CLIENT_ROCE)
99                 return container_of(handle, struct hclgevf_dev, roce);
100         else
101                 return container_of(handle, struct hclgevf_dev, nic);
102 }
103
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108         struct hclgevf_desc desc;
109         struct hclgevf_tqp *tqp;
110         int status;
111         int i;
112
113         for (i = 0; i < kinfo->num_tqps; i++) {
114                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115                 hclgevf_cmd_setup_basic_desc(&desc,
116                                              HCLGEVF_OPC_QUERY_RX_STATUS,
117                                              true);
118
119                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121                 if (status) {
122                         dev_err(&hdev->pdev->dev,
123                                 "Query tqp stat fail, status = %d,queue = %d\n",
124                                 status, i);
125                         return status;
126                 }
127                 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128                         le32_to_cpu(desc.data[1]);
129
130                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131                                              true);
132
133                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135                 if (status) {
136                         dev_err(&hdev->pdev->dev,
137                                 "Query tqp stat fail, status = %d,queue = %d\n",
138                                 status, i);
139                         return status;
140                 }
141                 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142                         le32_to_cpu(desc.data[1]);
143         }
144
145         return 0;
146 }
147
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151         struct hclgevf_tqp *tqp;
152         u64 *buff = data;
153         int i;
154
155         for (i = 0; i < kinfo->num_tqps; i++) {
156                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157                 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158         }
159         for (i = 0; i < kinfo->num_tqps; i++) {
160                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161                 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162         }
163
164         return buff;
165 }
166
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170
171         return kinfo->num_tqps * 2;
172 }
173
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177         u8 *buff = data;
178         int i;
179
180         for (i = 0; i < kinfo->num_tqps; i++) {
181                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182                                                        struct hclgevf_tqp, q);
183                 snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184                          tqp->index);
185                 buff += ETH_GSTRING_LEN;
186         }
187
188         for (i = 0; i < kinfo->num_tqps; i++) {
189                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190                                                        struct hclgevf_tqp, q);
191                 snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192                          tqp->index);
193                 buff += ETH_GSTRING_LEN;
194         }
195
196         return buff;
197 }
198
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200                                  struct net_device_stats *net_stats)
201 {
202         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203         int status;
204
205         status = hclgevf_tqps_update_stats(handle);
206         if (status)
207                 dev_err(&hdev->pdev->dev,
208                         "VF update of TQPS stats fail, status = %d.\n",
209                         status);
210 }
211
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214         if (strset == ETH_SS_TEST)
215                 return -EOPNOTSUPP;
216         else if (strset == ETH_SS_STATS)
217                 return hclgevf_tqps_get_sset_count(handle, strset);
218
219         return 0;
220 }
221
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223                                 u8 *data)
224 {
225         u8 *p = (char *)data;
226
227         if (strset == ETH_SS_STATS)
228                 p = hclgevf_tqps_get_strings(handle, p);
229 }
230
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233         hclgevf_tqps_get_stats(handle, data);
234 }
235
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237                                    u8 subcode)
238 {
239         if (msg) {
240                 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241                 msg->code = code;
242                 msg->subcode = subcode;
243         }
244 }
245
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248         struct hclge_vf_to_pf_msg send_msg;
249         u8 resp_msg;
250         int status;
251
252         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254                                       sizeof(resp_msg));
255         if (status) {
256                 dev_err(&hdev->pdev->dev,
257                         "VF request to get TC info from PF failed %d",
258                         status);
259                 return status;
260         }
261
262         hdev->hw_tc_map = resp_msg;
263
264         return 0;
265 }
266
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269         struct hnae3_handle *nic = &hdev->nic;
270         struct hclge_vf_to_pf_msg send_msg;
271         u8 resp_msg;
272         int ret;
273
274         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275                                HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277                                    sizeof(u8));
278         if (ret) {
279                 dev_err(&hdev->pdev->dev,
280                         "VF request to get port based vlan state failed %d",
281                         ret);
282                 return ret;
283         }
284
285         nic->port_base_vlan_state = resp_msg;
286
287         return 0;
288 }
289
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN       6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET       0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET    2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET       4
296
297         u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298         struct hclge_vf_to_pf_msg send_msg;
299         int status;
300
301         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303                                       HCLGEVF_TQPS_RSS_INFO_LEN);
304         if (status) {
305                 dev_err(&hdev->pdev->dev,
306                         "VF request to get tqp info from PF failed %d",
307                         status);
308                 return status;
309         }
310
311         memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312                sizeof(u16));
313         memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314                sizeof(u16));
315         memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316                sizeof(u16));
317
318         return 0;
319 }
320
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN     4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
326
327         u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328         struct hclge_vf_to_pf_msg send_msg;
329         int ret;
330
331         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333                                    HCLGEVF_TQPS_DEPTH_INFO_LEN);
334         if (ret) {
335                 dev_err(&hdev->pdev->dev,
336                         "VF request to get tqp depth info from PF failed %d",
337                         ret);
338                 return ret;
339         }
340
341         memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342                sizeof(u16));
343         memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344                sizeof(u16));
345
346         return 0;
347 }
348
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352         struct hclge_vf_to_pf_msg send_msg;
353         u16 qid_in_pf = 0;
354         u8 resp_data[2];
355         int ret;
356
357         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358         memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360                                    sizeof(resp_data));
361         if (!ret)
362                 qid_in_pf = *(u16 *)resp_data;
363
364         return qid_in_pf;
365 }
366
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369         struct hclge_vf_to_pf_msg send_msg;
370         u8 resp_msg[2];
371         int ret;
372
373         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375                                    sizeof(resp_msg));
376         if (ret) {
377                 dev_err(&hdev->pdev->dev,
378                         "VF request to get the pf port media type failed %d",
379                         ret);
380                 return ret;
381         }
382
383         hdev->hw.mac.media_type = resp_msg[0];
384         hdev->hw.mac.module_type = resp_msg[1];
385
386         return 0;
387 }
388
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391         struct hclgevf_tqp *tqp;
392         int i;
393
394         hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395                                   sizeof(struct hclgevf_tqp), GFP_KERNEL);
396         if (!hdev->htqp)
397                 return -ENOMEM;
398
399         tqp = hdev->htqp;
400
401         for (i = 0; i < hdev->num_tqps; i++) {
402                 tqp->dev = &hdev->pdev->dev;
403                 tqp->index = i;
404
405                 tqp->q.ae_algo = &ae_algovf;
406                 tqp->q.buf_size = hdev->rx_buf_len;
407                 tqp->q.tx_desc_num = hdev->num_tx_desc;
408                 tqp->q.rx_desc_num = hdev->num_rx_desc;
409
410                 /* need an extended offset to configure queues >=
411                  * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412                  */
413                 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414                         tqp->q.io_base = hdev->hw.io_base +
415                                          HCLGEVF_TQP_REG_OFFSET +
416                                          i * HCLGEVF_TQP_REG_SIZE;
417                 else
418                         tqp->q.io_base = hdev->hw.io_base +
419                                          HCLGEVF_TQP_REG_OFFSET +
420                                          HCLGEVF_TQP_EXT_REG_OFFSET +
421                                          (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422                                          HCLGEVF_TQP_REG_SIZE;
423
424                 tqp++;
425         }
426
427         return 0;
428 }
429
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432         struct hnae3_handle *nic = &hdev->nic;
433         struct hnae3_knic_private_info *kinfo;
434         u16 new_tqps = hdev->num_tqps;
435         unsigned int i;
436         u8 num_tc = 0;
437
438         kinfo = &nic->kinfo;
439         kinfo->num_tx_desc = hdev->num_tx_desc;
440         kinfo->num_rx_desc = hdev->num_rx_desc;
441         kinfo->rx_buf_len = hdev->rx_buf_len;
442         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443                 if (hdev->hw_tc_map & BIT(i))
444                         num_tc++;
445
446         num_tc = num_tc ? num_tc : 1;
447         kinfo->tc_info.num_tc = num_tc;
448         kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449         new_tqps = kinfo->rss_size * num_tc;
450         kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451
452         kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453                                   sizeof(struct hnae3_queue *), GFP_KERNEL);
454         if (!kinfo->tqp)
455                 return -ENOMEM;
456
457         for (i = 0; i < kinfo->num_tqps; i++) {
458                 hdev->htqp[i].q.handle = &hdev->nic;
459                 hdev->htqp[i].q.tqp_index = i;
460                 kinfo->tqp[i] = &hdev->htqp[i].q;
461         }
462
463         /* after init the max rss_size and tqps, adjust the default tqp numbers
464          * and rss size with the actual vector numbers
465          */
466         kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467         kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468                                 kinfo->rss_size);
469
470         return 0;
471 }
472
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475         struct hclge_vf_to_pf_msg send_msg;
476         int status;
477
478         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479         status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480         if (status)
481                 dev_err(&hdev->pdev->dev,
482                         "VF failed to fetch link status(%d) from PF", status);
483 }
484
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487         struct hnae3_handle *rhandle = &hdev->roce;
488         struct hnae3_handle *handle = &hdev->nic;
489         struct hnae3_client *rclient;
490         struct hnae3_client *client;
491
492         if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493                 return;
494
495         client = handle->client;
496         rclient = hdev->roce_client;
497
498         link_state =
499                 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500         if (link_state != hdev->hw.mac.link) {
501                 client->ops->link_status_change(handle, !!link_state);
502                 if (rclient && rclient->ops->link_status_change)
503                         rclient->ops->link_status_change(rhandle, !!link_state);
504                 hdev->hw.mac.link = link_state;
505         }
506
507         clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
508 }
509
510 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
511 {
512 #define HCLGEVF_ADVERTISING     0
513 #define HCLGEVF_SUPPORTED       1
514
515         struct hclge_vf_to_pf_msg send_msg;
516
517         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
518         send_msg.data[0] = HCLGEVF_ADVERTISING;
519         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
520         send_msg.data[0] = HCLGEVF_SUPPORTED;
521         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
522 }
523
524 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
525 {
526         struct hnae3_handle *nic = &hdev->nic;
527         int ret;
528
529         nic->ae_algo = &ae_algovf;
530         nic->pdev = hdev->pdev;
531         nic->numa_node_mask = hdev->numa_node_mask;
532         nic->flags |= HNAE3_SUPPORT_VF;
533
534         ret = hclgevf_knic_setup(hdev);
535         if (ret)
536                 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
537                         ret);
538         return ret;
539 }
540
541 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
542 {
543         if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
544                 dev_warn(&hdev->pdev->dev,
545                          "vector(vector_id %d) has been freed.\n", vector_id);
546                 return;
547         }
548
549         hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
550         hdev->num_msi_left += 1;
551         hdev->num_msi_used -= 1;
552 }
553
554 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
555                               struct hnae3_vector_info *vector_info)
556 {
557         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
558         struct hnae3_vector_info *vector = vector_info;
559         int alloc = 0;
560         int i, j;
561
562         vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
563         vector_num = min(hdev->num_msi_left, vector_num);
564
565         for (j = 0; j < vector_num; j++) {
566                 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
567                         if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
568                                 vector->vector = pci_irq_vector(hdev->pdev, i);
569                                 vector->io_addr = hdev->hw.io_base +
570                                         HCLGEVF_VECTOR_REG_BASE +
571                                         (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
572                                 hdev->vector_status[i] = 0;
573                                 hdev->vector_irq[i] = vector->vector;
574
575                                 vector++;
576                                 alloc++;
577
578                                 break;
579                         }
580                 }
581         }
582         hdev->num_msi_left -= alloc;
583         hdev->num_msi_used += alloc;
584
585         return alloc;
586 }
587
588 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
589 {
590         int i;
591
592         for (i = 0; i < hdev->num_msi; i++)
593                 if (vector == hdev->vector_irq[i])
594                         return i;
595
596         return -EINVAL;
597 }
598
599 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
600                                     const u8 hfunc, const u8 *key)
601 {
602         struct hclgevf_rss_config_cmd *req;
603         unsigned int key_offset = 0;
604         struct hclgevf_desc desc;
605         int key_counts;
606         int key_size;
607         int ret;
608
609         key_counts = HCLGEVF_RSS_KEY_SIZE;
610         req = (struct hclgevf_rss_config_cmd *)desc.data;
611
612         while (key_counts) {
613                 hclgevf_cmd_setup_basic_desc(&desc,
614                                              HCLGEVF_OPC_RSS_GENERIC_CONFIG,
615                                              false);
616
617                 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
618                 req->hash_config |=
619                         (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
620
621                 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
622                 memcpy(req->hash_key,
623                        key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
624
625                 key_counts -= key_size;
626                 key_offset++;
627                 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
628                 if (ret) {
629                         dev_err(&hdev->pdev->dev,
630                                 "Configure RSS config fail, status = %d\n",
631                                 ret);
632                         return ret;
633                 }
634         }
635
636         return 0;
637 }
638
639 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
640 {
641         return HCLGEVF_RSS_KEY_SIZE;
642 }
643
644 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
645 {
646         const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
647         struct hclgevf_rss_indirection_table_cmd *req;
648         struct hclgevf_desc desc;
649         int rss_cfg_tbl_num;
650         int status;
651         int i, j;
652
653         req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
654         rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
655                           HCLGEVF_RSS_CFG_TBL_SIZE;
656
657         for (i = 0; i < rss_cfg_tbl_num; i++) {
658                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
659                                              false);
660                 req->start_table_index =
661                         cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
662                 req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
663                 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
664                         req->rss_result[j] =
665                                 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
666
667                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
668                 if (status) {
669                         dev_err(&hdev->pdev->dev,
670                                 "VF failed(=%d) to set RSS indirection table\n",
671                                 status);
672                         return status;
673                 }
674         }
675
676         return 0;
677 }
678
679 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
680 {
681         struct hclgevf_rss_tc_mode_cmd *req;
682         u16 tc_offset[HCLGEVF_MAX_TC_NUM];
683         u16 tc_valid[HCLGEVF_MAX_TC_NUM];
684         u16 tc_size[HCLGEVF_MAX_TC_NUM];
685         struct hclgevf_desc desc;
686         u16 roundup_size;
687         unsigned int i;
688         int status;
689
690         req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
691
692         roundup_size = roundup_pow_of_two(rss_size);
693         roundup_size = ilog2(roundup_size);
694
695         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
696                 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
697                 tc_size[i] = roundup_size;
698                 tc_offset[i] = rss_size * i;
699         }
700
701         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
702         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
703                 u16 mode = 0;
704
705                 hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
706                               (tc_valid[i] & 0x1));
707                 hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
708                                 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
709                 hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
710                               tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
711                               0x1);
712                 hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
713                                 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
714
715                 req->rss_tc_mode[i] = cpu_to_le16(mode);
716         }
717         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
718         if (status)
719                 dev_err(&hdev->pdev->dev,
720                         "VF failed(=%d) to set rss tc mode\n", status);
721
722         return status;
723 }
724
725 /* for revision 0x20, vf shared the same rss config with pf */
726 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
727 {
728 #define HCLGEVF_RSS_MBX_RESP_LEN        8
729         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
730         u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
731         struct hclge_vf_to_pf_msg send_msg;
732         u16 msg_num, hash_key_index;
733         u8 index;
734         int ret;
735
736         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
737         msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
738                         HCLGEVF_RSS_MBX_RESP_LEN;
739         for (index = 0; index < msg_num; index++) {
740                 send_msg.data[0] = index;
741                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
742                                            HCLGEVF_RSS_MBX_RESP_LEN);
743                 if (ret) {
744                         dev_err(&hdev->pdev->dev,
745                                 "VF get rss hash key from PF failed, ret=%d",
746                                 ret);
747                         return ret;
748                 }
749
750                 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
751                 if (index == msg_num - 1)
752                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
753                                &resp_msg[0],
754                                HCLGEVF_RSS_KEY_SIZE - hash_key_index);
755                 else
756                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
757                                &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
758         }
759
760         return 0;
761 }
762
763 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
764                            u8 *hfunc)
765 {
766         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
767         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
768         int i, ret;
769
770         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
771                 /* Get hash algorithm */
772                 if (hfunc) {
773                         switch (rss_cfg->hash_algo) {
774                         case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
775                                 *hfunc = ETH_RSS_HASH_TOP;
776                                 break;
777                         case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
778                                 *hfunc = ETH_RSS_HASH_XOR;
779                                 break;
780                         default:
781                                 *hfunc = ETH_RSS_HASH_UNKNOWN;
782                                 break;
783                         }
784                 }
785
786                 /* Get the RSS Key required by the user */
787                 if (key)
788                         memcpy(key, rss_cfg->rss_hash_key,
789                                HCLGEVF_RSS_KEY_SIZE);
790         } else {
791                 if (hfunc)
792                         *hfunc = ETH_RSS_HASH_TOP;
793                 if (key) {
794                         ret = hclgevf_get_rss_hash_key(hdev);
795                         if (ret)
796                                 return ret;
797                         memcpy(key, rss_cfg->rss_hash_key,
798                                HCLGEVF_RSS_KEY_SIZE);
799                 }
800         }
801
802         if (indir)
803                 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
804                         indir[i] = rss_cfg->rss_indirection_tbl[i];
805
806         return 0;
807 }
808
809 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
810                            const u8 *key, const u8 hfunc)
811 {
812         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
813         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
814         int ret, i;
815
816         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
817                 /* Set the RSS Hash Key if specififed by the user */
818                 if (key) {
819                         switch (hfunc) {
820                         case ETH_RSS_HASH_TOP:
821                                 rss_cfg->hash_algo =
822                                         HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
823                                 break;
824                         case ETH_RSS_HASH_XOR:
825                                 rss_cfg->hash_algo =
826                                         HCLGEVF_RSS_HASH_ALGO_SIMPLE;
827                                 break;
828                         case ETH_RSS_HASH_NO_CHANGE:
829                                 break;
830                         default:
831                                 return -EINVAL;
832                         }
833
834                         ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
835                                                        key);
836                         if (ret)
837                                 return ret;
838
839                         /* Update the shadow RSS key with user specified qids */
840                         memcpy(rss_cfg->rss_hash_key, key,
841                                HCLGEVF_RSS_KEY_SIZE);
842                 }
843         }
844
845         /* update the shadow RSS table with user specified qids */
846         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
847                 rss_cfg->rss_indirection_tbl[i] = indir[i];
848
849         /* update the hardware */
850         return hclgevf_set_rss_indir_table(hdev);
851 }
852
853 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
854 {
855         u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
856
857         if (nfc->data & RXH_L4_B_2_3)
858                 hash_sets |= HCLGEVF_D_PORT_BIT;
859         else
860                 hash_sets &= ~HCLGEVF_D_PORT_BIT;
861
862         if (nfc->data & RXH_IP_SRC)
863                 hash_sets |= HCLGEVF_S_IP_BIT;
864         else
865                 hash_sets &= ~HCLGEVF_S_IP_BIT;
866
867         if (nfc->data & RXH_IP_DST)
868                 hash_sets |= HCLGEVF_D_IP_BIT;
869         else
870                 hash_sets &= ~HCLGEVF_D_IP_BIT;
871
872         if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
873                 hash_sets |= HCLGEVF_V_TAG_BIT;
874
875         return hash_sets;
876 }
877
878 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
879                                       struct ethtool_rxnfc *nfc,
880                                       struct hclgevf_rss_input_tuple_cmd *req)
881 {
882         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
883         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
884         u8 tuple_sets;
885
886         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
887         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
888         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
889         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
890         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
891         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
892         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
893         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
894
895         tuple_sets = hclgevf_get_rss_hash_bits(nfc);
896         switch (nfc->flow_type) {
897         case TCP_V4_FLOW:
898                 req->ipv4_tcp_en = tuple_sets;
899                 break;
900         case TCP_V6_FLOW:
901                 req->ipv6_tcp_en = tuple_sets;
902                 break;
903         case UDP_V4_FLOW:
904                 req->ipv4_udp_en = tuple_sets;
905                 break;
906         case UDP_V6_FLOW:
907                 req->ipv6_udp_en = tuple_sets;
908                 break;
909         case SCTP_V4_FLOW:
910                 req->ipv4_sctp_en = tuple_sets;
911                 break;
912         case SCTP_V6_FLOW:
913                 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
914                     (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
915                         return -EINVAL;
916
917                 req->ipv6_sctp_en = tuple_sets;
918                 break;
919         case IPV4_FLOW:
920                 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
921                 break;
922         case IPV6_FLOW:
923                 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
924                 break;
925         default:
926                 return -EINVAL;
927         }
928
929         return 0;
930 }
931
932 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
933                                  struct ethtool_rxnfc *nfc)
934 {
935         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
936         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
937         struct hclgevf_rss_input_tuple_cmd *req;
938         struct hclgevf_desc desc;
939         int ret;
940
941         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
942                 return -EOPNOTSUPP;
943
944         if (nfc->data &
945             ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
946                 return -EINVAL;
947
948         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
949         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
950
951         ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
952         if (ret) {
953                 dev_err(&hdev->pdev->dev,
954                         "failed to init rss tuple cmd, ret = %d\n", ret);
955                 return ret;
956         }
957
958         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
959         if (ret) {
960                 dev_err(&hdev->pdev->dev,
961                         "Set rss tuple fail, status = %d\n", ret);
962                 return ret;
963         }
964
965         rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
966         rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
967         rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
968         rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
969         rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
970         rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
971         rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
972         rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
973         return 0;
974 }
975
976 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
977                                               int flow_type, u8 *tuple_sets)
978 {
979         switch (flow_type) {
980         case TCP_V4_FLOW:
981                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
982                 break;
983         case UDP_V4_FLOW:
984                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
985                 break;
986         case TCP_V6_FLOW:
987                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
988                 break;
989         case UDP_V6_FLOW:
990                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
991                 break;
992         case SCTP_V4_FLOW:
993                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
994                 break;
995         case SCTP_V6_FLOW:
996                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
997                 break;
998         case IPV4_FLOW:
999         case IPV6_FLOW:
1000                 *tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1001                 break;
1002         default:
1003                 return -EINVAL;
1004         }
1005
1006         return 0;
1007 }
1008
1009 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1010 {
1011         u64 tuple_data = 0;
1012
1013         if (tuple_sets & HCLGEVF_D_PORT_BIT)
1014                 tuple_data |= RXH_L4_B_2_3;
1015         if (tuple_sets & HCLGEVF_S_PORT_BIT)
1016                 tuple_data |= RXH_L4_B_0_1;
1017         if (tuple_sets & HCLGEVF_D_IP_BIT)
1018                 tuple_data |= RXH_IP_DST;
1019         if (tuple_sets & HCLGEVF_S_IP_BIT)
1020                 tuple_data |= RXH_IP_SRC;
1021
1022         return tuple_data;
1023 }
1024
1025 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1026                                  struct ethtool_rxnfc *nfc)
1027 {
1028         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1029         u8 tuple_sets;
1030         int ret;
1031
1032         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1033                 return -EOPNOTSUPP;
1034
1035         nfc->data = 0;
1036
1037         ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1038                                                  &tuple_sets);
1039         if (ret || !tuple_sets)
1040                 return ret;
1041
1042         nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1043
1044         return 0;
1045 }
1046
1047 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1048                                        struct hclgevf_rss_cfg *rss_cfg)
1049 {
1050         struct hclgevf_rss_input_tuple_cmd *req;
1051         struct hclgevf_desc desc;
1052         int ret;
1053
1054         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1055
1056         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1057
1058         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1059         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1060         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1061         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1062         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1063         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1064         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1065         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1066
1067         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1068         if (ret)
1069                 dev_err(&hdev->pdev->dev,
1070                         "Configure rss input fail, status = %d\n", ret);
1071         return ret;
1072 }
1073
1074 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1075 {
1076         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1077         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1078
1079         return rss_cfg->rss_size;
1080 }
1081
1082 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1083                                        int vector_id,
1084                                        struct hnae3_ring_chain_node *ring_chain)
1085 {
1086         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1087         struct hclge_vf_to_pf_msg send_msg;
1088         struct hnae3_ring_chain_node *node;
1089         int status;
1090         int i = 0;
1091
1092         memset(&send_msg, 0, sizeof(send_msg));
1093         send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1094                 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1095         send_msg.vector_id = vector_id;
1096
1097         for (node = ring_chain; node; node = node->next) {
1098                 send_msg.param[i].ring_type =
1099                                 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1100
1101                 send_msg.param[i].tqp_index = node->tqp_index;
1102                 send_msg.param[i].int_gl_index =
1103                                         hnae3_get_field(node->int_gl_idx,
1104                                                         HNAE3_RING_GL_IDX_M,
1105                                                         HNAE3_RING_GL_IDX_S);
1106
1107                 i++;
1108                 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1109                         send_msg.ring_num = i;
1110
1111                         status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1112                                                       NULL, 0);
1113                         if (status) {
1114                                 dev_err(&hdev->pdev->dev,
1115                                         "Map TQP fail, status is %d.\n",
1116                                         status);
1117                                 return status;
1118                         }
1119                         i = 0;
1120                 }
1121         }
1122
1123         return 0;
1124 }
1125
1126 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1127                                       struct hnae3_ring_chain_node *ring_chain)
1128 {
1129         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1130         int vector_id;
1131
1132         vector_id = hclgevf_get_vector_index(hdev, vector);
1133         if (vector_id < 0) {
1134                 dev_err(&handle->pdev->dev,
1135                         "Get vector index fail. ret =%d\n", vector_id);
1136                 return vector_id;
1137         }
1138
1139         return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1140 }
1141
1142 static int hclgevf_unmap_ring_from_vector(
1143                                 struct hnae3_handle *handle,
1144                                 int vector,
1145                                 struct hnae3_ring_chain_node *ring_chain)
1146 {
1147         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1148         int ret, vector_id;
1149
1150         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1151                 return 0;
1152
1153         vector_id = hclgevf_get_vector_index(hdev, vector);
1154         if (vector_id < 0) {
1155                 dev_err(&handle->pdev->dev,
1156                         "Get vector index fail. ret =%d\n", vector_id);
1157                 return vector_id;
1158         }
1159
1160         ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1161         if (ret)
1162                 dev_err(&handle->pdev->dev,
1163                         "Unmap ring from vector fail. vector=%d, ret =%d\n",
1164                         vector_id,
1165                         ret);
1166
1167         return ret;
1168 }
1169
1170 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1171 {
1172         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1173         int vector_id;
1174
1175         vector_id = hclgevf_get_vector_index(hdev, vector);
1176         if (vector_id < 0) {
1177                 dev_err(&handle->pdev->dev,
1178                         "hclgevf_put_vector get vector index fail. ret =%d\n",
1179                         vector_id);
1180                 return vector_id;
1181         }
1182
1183         hclgevf_free_vector(hdev, vector_id);
1184
1185         return 0;
1186 }
1187
1188 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1189                                         bool en_uc_pmc, bool en_mc_pmc,
1190                                         bool en_bc_pmc)
1191 {
1192         struct hnae3_handle *handle = &hdev->nic;
1193         struct hclge_vf_to_pf_msg send_msg;
1194         int ret;
1195
1196         memset(&send_msg, 0, sizeof(send_msg));
1197         send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1198         send_msg.en_bc = en_bc_pmc ? 1 : 0;
1199         send_msg.en_uc = en_uc_pmc ? 1 : 0;
1200         send_msg.en_mc = en_mc_pmc ? 1 : 0;
1201         send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1202                                              &handle->priv_flags) ? 1 : 0;
1203
1204         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1205         if (ret)
1206                 dev_err(&hdev->pdev->dev,
1207                         "Set promisc mode fail, status is %d.\n", ret);
1208
1209         return ret;
1210 }
1211
1212 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1213                                     bool en_mc_pmc)
1214 {
1215         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1216         bool en_bc_pmc;
1217
1218         en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1219
1220         return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1221                                             en_bc_pmc);
1222 }
1223
1224 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1225 {
1226         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1227
1228         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1229         hclgevf_task_schedule(hdev, 0);
1230 }
1231
1232 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1233 {
1234         struct hnae3_handle *handle = &hdev->nic;
1235         bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1236         bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1237         int ret;
1238
1239         if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1240                 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1241                 if (!ret)
1242                         clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1243         }
1244 }
1245
1246 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1247                                        u16 stream_id, bool enable)
1248 {
1249         struct hclgevf_cfg_com_tqp_queue_cmd *req;
1250         struct hclgevf_desc desc;
1251
1252         req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1253
1254         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1255                                      false);
1256         req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1257         req->stream_id = cpu_to_le16(stream_id);
1258         if (enable)
1259                 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1260
1261         return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1262 }
1263
1264 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1265 {
1266         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1267         int ret;
1268         u16 i;
1269
1270         for (i = 0; i < handle->kinfo.num_tqps; i++) {
1271                 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1272                 if (ret)
1273                         return ret;
1274         }
1275
1276         return 0;
1277 }
1278
1279 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1280 {
1281         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1282         struct hclgevf_tqp *tqp;
1283         int i;
1284
1285         for (i = 0; i < kinfo->num_tqps; i++) {
1286                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1287                 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1288         }
1289 }
1290
1291 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1292 {
1293         struct hclge_vf_to_pf_msg send_msg;
1294         u8 host_mac[ETH_ALEN];
1295         int status;
1296
1297         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1298         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1299                                       ETH_ALEN);
1300         if (status) {
1301                 dev_err(&hdev->pdev->dev,
1302                         "fail to get VF MAC from host %d", status);
1303                 return status;
1304         }
1305
1306         ether_addr_copy(p, host_mac);
1307
1308         return 0;
1309 }
1310
1311 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1312 {
1313         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1314         u8 host_mac_addr[ETH_ALEN];
1315
1316         if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1317                 return;
1318
1319         hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1320         if (hdev->has_pf_mac)
1321                 ether_addr_copy(p, host_mac_addr);
1322         else
1323                 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1324 }
1325
1326 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1327                                 bool is_first)
1328 {
1329         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1330         u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1331         struct hclge_vf_to_pf_msg send_msg;
1332         u8 *new_mac_addr = (u8 *)p;
1333         int status;
1334
1335         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1336         send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1337         ether_addr_copy(send_msg.data, new_mac_addr);
1338         if (is_first && !hdev->has_pf_mac)
1339                 eth_zero_addr(&send_msg.data[ETH_ALEN]);
1340         else
1341                 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1342         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1343         if (!status)
1344                 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1345
1346         return status;
1347 }
1348
1349 static struct hclgevf_mac_addr_node *
1350 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1351 {
1352         struct hclgevf_mac_addr_node *mac_node, *tmp;
1353
1354         list_for_each_entry_safe(mac_node, tmp, list, node)
1355                 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1356                         return mac_node;
1357
1358         return NULL;
1359 }
1360
1361 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1362                                     enum HCLGEVF_MAC_NODE_STATE state)
1363 {
1364         switch (state) {
1365         /* from set_rx_mode or tmp_add_list */
1366         case HCLGEVF_MAC_TO_ADD:
1367                 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1368                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1369                 break;
1370         /* only from set_rx_mode */
1371         case HCLGEVF_MAC_TO_DEL:
1372                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1373                         list_del(&mac_node->node);
1374                         kfree(mac_node);
1375                 } else {
1376                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1377                 }
1378                 break;
1379         /* only from tmp_add_list, the mac_node->state won't be
1380          * HCLGEVF_MAC_ACTIVE
1381          */
1382         case HCLGEVF_MAC_ACTIVE:
1383                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1384                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1385                 break;
1386         }
1387 }
1388
1389 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1390                                    enum HCLGEVF_MAC_NODE_STATE state,
1391                                    enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1392                                    const unsigned char *addr)
1393 {
1394         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1395         struct hclgevf_mac_addr_node *mac_node;
1396         struct list_head *list;
1397
1398         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1399                &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1400
1401         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1402
1403         /* if the mac addr is already in the mac list, no need to add a new
1404          * one into it, just check the mac addr state, convert it to a new
1405          * new state, or just remove it, or do nothing.
1406          */
1407         mac_node = hclgevf_find_mac_node(list, addr);
1408         if (mac_node) {
1409                 hclgevf_update_mac_node(mac_node, state);
1410                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1411                 return 0;
1412         }
1413         /* if this address is never added, unnecessary to delete */
1414         if (state == HCLGEVF_MAC_TO_DEL) {
1415                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1416                 return -ENOENT;
1417         }
1418
1419         mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1420         if (!mac_node) {
1421                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1422                 return -ENOMEM;
1423         }
1424
1425         mac_node->state = state;
1426         ether_addr_copy(mac_node->mac_addr, addr);
1427         list_add_tail(&mac_node->node, list);
1428
1429         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1430         return 0;
1431 }
1432
1433 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1434                                const unsigned char *addr)
1435 {
1436         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1437                                        HCLGEVF_MAC_ADDR_UC, addr);
1438 }
1439
1440 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1441                               const unsigned char *addr)
1442 {
1443         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1444                                        HCLGEVF_MAC_ADDR_UC, addr);
1445 }
1446
1447 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1448                                const unsigned char *addr)
1449 {
1450         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1451                                        HCLGEVF_MAC_ADDR_MC, addr);
1452 }
1453
1454 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1455                               const unsigned char *addr)
1456 {
1457         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1458                                        HCLGEVF_MAC_ADDR_MC, addr);
1459 }
1460
1461 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1462                                     struct hclgevf_mac_addr_node *mac_node,
1463                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1464 {
1465         struct hclge_vf_to_pf_msg send_msg;
1466         u8 code, subcode;
1467
1468         if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1469                 code = HCLGE_MBX_SET_UNICAST;
1470                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1471                         subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1472                 else
1473                         subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1474         } else {
1475                 code = HCLGE_MBX_SET_MULTICAST;
1476                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1477                         subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1478                 else
1479                         subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1480         }
1481
1482         hclgevf_build_send_msg(&send_msg, code, subcode);
1483         ether_addr_copy(send_msg.data, mac_node->mac_addr);
1484         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1485 }
1486
1487 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1488                                     struct list_head *list,
1489                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1490 {
1491         struct hclgevf_mac_addr_node *mac_node, *tmp;
1492         int ret;
1493
1494         list_for_each_entry_safe(mac_node, tmp, list, node) {
1495                 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1496                 if  (ret) {
1497                         dev_err(&hdev->pdev->dev,
1498                                 "failed to configure mac %pM, state = %d, ret = %d\n",
1499                                 mac_node->mac_addr, mac_node->state, ret);
1500                         return;
1501                 }
1502                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1503                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1504                 } else {
1505                         list_del(&mac_node->node);
1506                         kfree(mac_node);
1507                 }
1508         }
1509 }
1510
1511 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1512                                        struct list_head *mac_list)
1513 {
1514         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1515
1516         list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1517                 /* if the mac address from tmp_add_list is not in the
1518                  * uc/mc_mac_list, it means have received a TO_DEL request
1519                  * during the time window of sending mac config request to PF
1520                  * If mac_node state is ACTIVE, then change its state to TO_DEL,
1521                  * then it will be removed at next time. If is TO_ADD, it means
1522                  * send TO_ADD request failed, so just remove the mac node.
1523                  */
1524                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1525                 if (new_node) {
1526                         hclgevf_update_mac_node(new_node, mac_node->state);
1527                         list_del(&mac_node->node);
1528                         kfree(mac_node);
1529                 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1530                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1531                         list_del(&mac_node->node);
1532                         list_add_tail(&mac_node->node, mac_list);
1533                 } else {
1534                         list_del(&mac_node->node);
1535                         kfree(mac_node);
1536                 }
1537         }
1538 }
1539
1540 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1541                                        struct list_head *mac_list)
1542 {
1543         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1544
1545         list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1546                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1547                 if (new_node) {
1548                         /* If the mac addr is exist in the mac list, it means
1549                          * received a new request TO_ADD during the time window
1550                          * of sending mac addr configurrequest to PF, so just
1551                          * change the mac state to ACTIVE.
1552                          */
1553                         new_node->state = HCLGEVF_MAC_ACTIVE;
1554                         list_del(&mac_node->node);
1555                         kfree(mac_node);
1556                 } else {
1557                         list_del(&mac_node->node);
1558                         list_add_tail(&mac_node->node, mac_list);
1559                 }
1560         }
1561 }
1562
1563 static void hclgevf_clear_list(struct list_head *list)
1564 {
1565         struct hclgevf_mac_addr_node *mac_node, *tmp;
1566
1567         list_for_each_entry_safe(mac_node, tmp, list, node) {
1568                 list_del(&mac_node->node);
1569                 kfree(mac_node);
1570         }
1571 }
1572
1573 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1574                                   enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1575 {
1576         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1577         struct list_head tmp_add_list, tmp_del_list;
1578         struct list_head *list;
1579
1580         INIT_LIST_HEAD(&tmp_add_list);
1581         INIT_LIST_HEAD(&tmp_del_list);
1582
1583         /* move the mac addr to the tmp_add_list and tmp_del_list, then
1584          * we can add/delete these mac addr outside the spin lock
1585          */
1586         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1587                 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1588
1589         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1590
1591         list_for_each_entry_safe(mac_node, tmp, list, node) {
1592                 switch (mac_node->state) {
1593                 case HCLGEVF_MAC_TO_DEL:
1594                         list_del(&mac_node->node);
1595                         list_add_tail(&mac_node->node, &tmp_del_list);
1596                         break;
1597                 case HCLGEVF_MAC_TO_ADD:
1598                         new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1599                         if (!new_node)
1600                                 goto stop_traverse;
1601
1602                         ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1603                         new_node->state = mac_node->state;
1604                         list_add_tail(&new_node->node, &tmp_add_list);
1605                         break;
1606                 default:
1607                         break;
1608                 }
1609         }
1610
1611 stop_traverse:
1612         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1613
1614         /* delete first, in order to get max mac table space for adding */
1615         hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1616         hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1617
1618         /* if some mac addresses were added/deleted fail, move back to the
1619          * mac_list, and retry at next time.
1620          */
1621         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1622
1623         hclgevf_sync_from_del_list(&tmp_del_list, list);
1624         hclgevf_sync_from_add_list(&tmp_add_list, list);
1625
1626         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1627 }
1628
1629 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1630 {
1631         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1632         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1633 }
1634
1635 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1636 {
1637         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1638
1639         hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1640         hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1641
1642         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1643 }
1644
1645 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1646                                    __be16 proto, u16 vlan_id,
1647                                    bool is_kill)
1648 {
1649 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1650 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1651 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET   3
1652
1653         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1654         struct hclge_vf_to_pf_msg send_msg;
1655         int ret;
1656
1657         if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1658                 return -EINVAL;
1659
1660         if (proto != htons(ETH_P_8021Q))
1661                 return -EPROTONOSUPPORT;
1662
1663         /* When device is resetting or reset failed, firmware is unable to
1664          * handle mailbox. Just record the vlan id, and remove it after
1665          * reset finished.
1666          */
1667         if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1668              test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1669                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1670                 return -EBUSY;
1671         }
1672
1673         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1674                                HCLGE_MBX_VLAN_FILTER);
1675         send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1676         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1677                sizeof(vlan_id));
1678         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1679                sizeof(proto));
1680         /* when remove hw vlan filter failed, record the vlan id,
1681          * and try to remove it from hw later, to be consistence
1682          * with stack.
1683          */
1684         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1685         if (is_kill && ret)
1686                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1687
1688         return ret;
1689 }
1690
1691 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1692 {
1693 #define HCLGEVF_MAX_SYNC_COUNT  60
1694         struct hnae3_handle *handle = &hdev->nic;
1695         int ret, sync_cnt = 0;
1696         u16 vlan_id;
1697
1698         vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1699         while (vlan_id != VLAN_N_VID) {
1700                 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1701                                               vlan_id, true);
1702                 if (ret)
1703                         return;
1704
1705                 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1706                 sync_cnt++;
1707                 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1708                         return;
1709
1710                 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1711         }
1712 }
1713
1714 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1715 {
1716         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1717         struct hclge_vf_to_pf_msg send_msg;
1718
1719         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1720                                HCLGE_MBX_VLAN_RX_OFF_CFG);
1721         send_msg.data[0] = enable ? 1 : 0;
1722         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1723 }
1724
1725 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1726 {
1727 #define HCLGEVF_RESET_ALL_QUEUE_DONE    1U
1728         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1729         struct hclge_vf_to_pf_msg send_msg;
1730         u8 return_status = 0;
1731         int ret;
1732         u16 i;
1733
1734         /* disable vf queue before send queue reset msg to PF */
1735         ret = hclgevf_tqp_enable(handle, false);
1736         if (ret) {
1737                 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1738                         ret);
1739                 return ret;
1740         }
1741
1742         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1743
1744         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1745                                    sizeof(return_status));
1746         if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1747                 return ret;
1748
1749         for (i = 1; i < handle->kinfo.num_tqps; i++) {
1750                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1751                 memcpy(send_msg.data, &i, sizeof(i));
1752                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1753                 if (ret)
1754                         return ret;
1755         }
1756
1757         return 0;
1758 }
1759
1760 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1761 {
1762         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1763         struct hclge_vf_to_pf_msg send_msg;
1764
1765         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1766         memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1767         return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1768 }
1769
1770 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1771                                  enum hnae3_reset_notify_type type)
1772 {
1773         struct hnae3_client *client = hdev->nic_client;
1774         struct hnae3_handle *handle = &hdev->nic;
1775         int ret;
1776
1777         if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1778             !client)
1779                 return 0;
1780
1781         if (!client->ops->reset_notify)
1782                 return -EOPNOTSUPP;
1783
1784         ret = client->ops->reset_notify(handle, type);
1785         if (ret)
1786                 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1787                         type, ret);
1788
1789         return ret;
1790 }
1791
1792 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1793                                       enum hnae3_reset_notify_type type)
1794 {
1795         struct hnae3_client *client = hdev->roce_client;
1796         struct hnae3_handle *handle = &hdev->roce;
1797         int ret;
1798
1799         if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1800                 return 0;
1801
1802         if (!client->ops->reset_notify)
1803                 return -EOPNOTSUPP;
1804
1805         ret = client->ops->reset_notify(handle, type);
1806         if (ret)
1807                 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1808                         type, ret);
1809         return ret;
1810 }
1811
1812 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1813 {
1814 #define HCLGEVF_RESET_WAIT_US   20000
1815 #define HCLGEVF_RESET_WAIT_CNT  2000
1816 #define HCLGEVF_RESET_WAIT_TIMEOUT_US   \
1817         (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1818
1819         u32 val;
1820         int ret;
1821
1822         if (hdev->reset_type == HNAE3_VF_RESET)
1823                 ret = readl_poll_timeout(hdev->hw.io_base +
1824                                          HCLGEVF_VF_RST_ING, val,
1825                                          !(val & HCLGEVF_VF_RST_ING_BIT),
1826                                          HCLGEVF_RESET_WAIT_US,
1827                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1828         else
1829                 ret = readl_poll_timeout(hdev->hw.io_base +
1830                                          HCLGEVF_RST_ING, val,
1831                                          !(val & HCLGEVF_RST_ING_BITS),
1832                                          HCLGEVF_RESET_WAIT_US,
1833                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1834
1835         /* hardware completion status should be available by this time */
1836         if (ret) {
1837                 dev_err(&hdev->pdev->dev,
1838                         "couldn't get reset done status from h/w, timeout!\n");
1839                 return ret;
1840         }
1841
1842         /* we will wait a bit more to let reset of the stack to complete. This
1843          * might happen in case reset assertion was made by PF. Yes, this also
1844          * means we might end up waiting bit more even for VF reset.
1845          */
1846         msleep(5000);
1847
1848         return 0;
1849 }
1850
1851 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1852 {
1853         u32 reg_val;
1854
1855         reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1856         if (enable)
1857                 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1858         else
1859                 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1860
1861         hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1862                           reg_val);
1863 }
1864
1865 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1866 {
1867         int ret;
1868
1869         /* uninitialize the nic client */
1870         ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1871         if (ret)
1872                 return ret;
1873
1874         /* re-initialize the hclge device */
1875         ret = hclgevf_reset_hdev(hdev);
1876         if (ret) {
1877                 dev_err(&hdev->pdev->dev,
1878                         "hclge device re-init failed, VF is disabled!\n");
1879                 return ret;
1880         }
1881
1882         /* bring up the nic client again */
1883         ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1884         if (ret)
1885                 return ret;
1886
1887         /* clear handshake status with IMP */
1888         hclgevf_reset_handshake(hdev, false);
1889
1890         /* bring up the nic to enable TX/RX again */
1891         return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1892 }
1893
1894 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1895 {
1896 #define HCLGEVF_RESET_SYNC_TIME 100
1897
1898         if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1899                 struct hclge_vf_to_pf_msg send_msg;
1900                 int ret;
1901
1902                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1903                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1904                 if (ret) {
1905                         dev_err(&hdev->pdev->dev,
1906                                 "failed to assert VF reset, ret = %d\n", ret);
1907                         return ret;
1908                 }
1909                 hdev->rst_stats.vf_func_rst_cnt++;
1910         }
1911
1912         set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1913         /* inform hardware that preparatory work is done */
1914         msleep(HCLGEVF_RESET_SYNC_TIME);
1915         hclgevf_reset_handshake(hdev, true);
1916         dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1917                  hdev->reset_type);
1918
1919         return 0;
1920 }
1921
1922 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1923 {
1924         dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1925                  hdev->rst_stats.vf_func_rst_cnt);
1926         dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1927                  hdev->rst_stats.flr_rst_cnt);
1928         dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1929                  hdev->rst_stats.vf_rst_cnt);
1930         dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1931                  hdev->rst_stats.rst_done_cnt);
1932         dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1933                  hdev->rst_stats.hw_rst_done_cnt);
1934         dev_info(&hdev->pdev->dev, "reset count: %u\n",
1935                  hdev->rst_stats.rst_cnt);
1936         dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1937                  hdev->rst_stats.rst_fail_cnt);
1938         dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1939                  hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1940         dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1941                  hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1942         dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1943                  hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1944         dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1945                  hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1946         dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1947 }
1948
1949 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1950 {
1951         /* recover handshake status with IMP when reset fail */
1952         hclgevf_reset_handshake(hdev, true);
1953         hdev->rst_stats.rst_fail_cnt++;
1954         dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1955                 hdev->rst_stats.rst_fail_cnt);
1956
1957         if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1958                 set_bit(hdev->reset_type, &hdev->reset_pending);
1959
1960         if (hclgevf_is_reset_pending(hdev)) {
1961                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1962                 hclgevf_reset_task_schedule(hdev);
1963         } else {
1964                 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1965                 hclgevf_dump_rst_info(hdev);
1966         }
1967 }
1968
1969 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1970 {
1971         int ret;
1972
1973         hdev->rst_stats.rst_cnt++;
1974
1975         /* perform reset of the stack & ae device for a client */
1976         ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1977         if (ret)
1978                 return ret;
1979
1980         rtnl_lock();
1981         /* bring down the nic to stop any ongoing TX/RX */
1982         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1983         rtnl_unlock();
1984         if (ret)
1985                 return ret;
1986
1987         return hclgevf_reset_prepare_wait(hdev);
1988 }
1989
1990 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1991 {
1992         int ret;
1993
1994         hdev->rst_stats.hw_rst_done_cnt++;
1995         ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1996         if (ret)
1997                 return ret;
1998
1999         rtnl_lock();
2000         /* now, re-initialize the nic client and ae device */
2001         ret = hclgevf_reset_stack(hdev);
2002         rtnl_unlock();
2003         if (ret) {
2004                 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2005                 return ret;
2006         }
2007
2008         ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2009         /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2010          * times
2011          */
2012         if (ret &&
2013             hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2014                 return ret;
2015
2016         ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2017         if (ret)
2018                 return ret;
2019
2020         hdev->last_reset_time = jiffies;
2021         hdev->rst_stats.rst_done_cnt++;
2022         hdev->rst_stats.rst_fail_cnt = 0;
2023         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2024
2025         return 0;
2026 }
2027
2028 static void hclgevf_reset(struct hclgevf_dev *hdev)
2029 {
2030         if (hclgevf_reset_prepare(hdev))
2031                 goto err_reset;
2032
2033         /* check if VF could successfully fetch the hardware reset completion
2034          * status from the hardware
2035          */
2036         if (hclgevf_reset_wait(hdev)) {
2037                 /* can't do much in this situation, will disable VF */
2038                 dev_err(&hdev->pdev->dev,
2039                         "failed to fetch H/W reset completion status\n");
2040                 goto err_reset;
2041         }
2042
2043         if (hclgevf_reset_rebuild(hdev))
2044                 goto err_reset;
2045
2046         return;
2047
2048 err_reset:
2049         hclgevf_reset_err_handle(hdev);
2050 }
2051
2052 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2053                                                      unsigned long *addr)
2054 {
2055         enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2056
2057         /* return the highest priority reset level amongst all */
2058         if (test_bit(HNAE3_VF_RESET, addr)) {
2059                 rst_level = HNAE3_VF_RESET;
2060                 clear_bit(HNAE3_VF_RESET, addr);
2061                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2062                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2063         } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2064                 rst_level = HNAE3_VF_FULL_RESET;
2065                 clear_bit(HNAE3_VF_FULL_RESET, addr);
2066                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2067         } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2068                 rst_level = HNAE3_VF_PF_FUNC_RESET;
2069                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2070                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2071         } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2072                 rst_level = HNAE3_VF_FUNC_RESET;
2073                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2074         } else if (test_bit(HNAE3_FLR_RESET, addr)) {
2075                 rst_level = HNAE3_FLR_RESET;
2076                 clear_bit(HNAE3_FLR_RESET, addr);
2077         }
2078
2079         return rst_level;
2080 }
2081
2082 static void hclgevf_reset_event(struct pci_dev *pdev,
2083                                 struct hnae3_handle *handle)
2084 {
2085         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2086         struct hclgevf_dev *hdev = ae_dev->priv;
2087
2088         dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2089
2090         if (hdev->default_reset_request)
2091                 hdev->reset_level =
2092                         hclgevf_get_reset_level(hdev,
2093                                                 &hdev->default_reset_request);
2094         else
2095                 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2096
2097         /* reset of this VF requested */
2098         set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2099         hclgevf_reset_task_schedule(hdev);
2100
2101         hdev->last_reset_time = jiffies;
2102 }
2103
2104 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2105                                           enum hnae3_reset_type rst_type)
2106 {
2107         struct hclgevf_dev *hdev = ae_dev->priv;
2108
2109         set_bit(rst_type, &hdev->default_reset_request);
2110 }
2111
2112 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2113 {
2114         writel(en ? 1 : 0, vector->addr);
2115 }
2116
2117 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
2118                                           enum hnae3_reset_type rst_type)
2119 {
2120 #define HCLGEVF_RESET_RETRY_WAIT_MS     500
2121 #define HCLGEVF_RESET_RETRY_CNT         5
2122
2123         struct hclgevf_dev *hdev = ae_dev->priv;
2124         int retry_cnt = 0;
2125         int ret;
2126
2127 retry:
2128         down(&hdev->reset_sem);
2129         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2130         hdev->reset_type = rst_type;
2131         ret = hclgevf_reset_prepare(hdev);
2132         if (ret) {
2133                 dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n",
2134                         ret);
2135                 if (hdev->reset_pending ||
2136                     retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2137                         dev_err(&hdev->pdev->dev,
2138                                 "reset_pending:0x%lx, retry_cnt:%d\n",
2139                                 hdev->reset_pending, retry_cnt);
2140                         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2141                         up(&hdev->reset_sem);
2142                         msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2143                         goto retry;
2144                 }
2145         }
2146
2147         /* disable misc vector before reset done */
2148         hclgevf_enable_vector(&hdev->misc_vector, false);
2149
2150         if (hdev->reset_type == HNAE3_FLR_RESET)
2151                 hdev->rst_stats.flr_rst_cnt++;
2152 }
2153
2154 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2155 {
2156         struct hclgevf_dev *hdev = ae_dev->priv;
2157         int ret;
2158
2159         hclgevf_enable_vector(&hdev->misc_vector, true);
2160
2161         ret = hclgevf_reset_rebuild(hdev);
2162         if (ret)
2163                 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2164                          ret);
2165
2166         hdev->reset_type = HNAE3_NONE_RESET;
2167         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2168         up(&hdev->reset_sem);
2169 }
2170
2171 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2172 {
2173         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2174
2175         return hdev->fw_version;
2176 }
2177
2178 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2179 {
2180         struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2181
2182         vector->vector_irq = pci_irq_vector(hdev->pdev,
2183                                             HCLGEVF_MISC_VECTOR_NUM);
2184         vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2185         /* vector status always valid for Vector 0 */
2186         hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2187         hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2188
2189         hdev->num_msi_left -= 1;
2190         hdev->num_msi_used += 1;
2191 }
2192
2193 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2194 {
2195         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2196             !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2197                               &hdev->state))
2198                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2199 }
2200
2201 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2202 {
2203         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2204             !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2205                               &hdev->state))
2206                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2207 }
2208
2209 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2210                                   unsigned long delay)
2211 {
2212         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2213             !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2214                 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2215 }
2216
2217 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2218 {
2219 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT  3
2220
2221         if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2222                 return;
2223
2224         down(&hdev->reset_sem);
2225         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2226
2227         if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2228                                &hdev->reset_state)) {
2229                 /* PF has intimated that it is about to reset the hardware.
2230                  * We now have to poll & check if hardware has actually
2231                  * completed the reset sequence. On hardware reset completion,
2232                  * VF needs to reset the client and ae device.
2233                  */
2234                 hdev->reset_attempts = 0;
2235
2236                 hdev->last_reset_time = jiffies;
2237                 while ((hdev->reset_type =
2238                         hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2239                        != HNAE3_NONE_RESET)
2240                         hclgevf_reset(hdev);
2241         } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2242                                       &hdev->reset_state)) {
2243                 /* we could be here when either of below happens:
2244                  * 1. reset was initiated due to watchdog timeout caused by
2245                  *    a. IMP was earlier reset and our TX got choked down and
2246                  *       which resulted in watchdog reacting and inducing VF
2247                  *       reset. This also means our cmdq would be unreliable.
2248                  *    b. problem in TX due to other lower layer(example link
2249                  *       layer not functioning properly etc.)
2250                  * 2. VF reset might have been initiated due to some config
2251                  *    change.
2252                  *
2253                  * NOTE: Theres no clear way to detect above cases than to react
2254                  * to the response of PF for this reset request. PF will ack the
2255                  * 1b and 2. cases but we will not get any intimation about 1a
2256                  * from PF as cmdq would be in unreliable state i.e. mailbox
2257                  * communication between PF and VF would be broken.
2258                  *
2259                  * if we are never geting into pending state it means either:
2260                  * 1. PF is not receiving our request which could be due to IMP
2261                  *    reset
2262                  * 2. PF is screwed
2263                  * We cannot do much for 2. but to check first we can try reset
2264                  * our PCIe + stack and see if it alleviates the problem.
2265                  */
2266                 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2267                         /* prepare for full reset of stack + pcie interface */
2268                         set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2269
2270                         /* "defer" schedule the reset task again */
2271                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2272                 } else {
2273                         hdev->reset_attempts++;
2274
2275                         set_bit(hdev->reset_level, &hdev->reset_pending);
2276                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2277                 }
2278                 hclgevf_reset_task_schedule(hdev);
2279         }
2280
2281         hdev->reset_type = HNAE3_NONE_RESET;
2282         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2283         up(&hdev->reset_sem);
2284 }
2285
2286 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2287 {
2288         if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2289                 return;
2290
2291         if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2292                 return;
2293
2294         hclgevf_mbx_async_handler(hdev);
2295
2296         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2297 }
2298
2299 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2300 {
2301         struct hclge_vf_to_pf_msg send_msg;
2302         int ret;
2303
2304         if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2305                 return;
2306
2307         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2308         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2309         if (ret)
2310                 dev_err(&hdev->pdev->dev,
2311                         "VF sends keep alive cmd failed(=%d)\n", ret);
2312 }
2313
2314 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2315 {
2316         unsigned long delta = round_jiffies_relative(HZ);
2317         struct hnae3_handle *handle = &hdev->nic;
2318
2319         if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2320                 return;
2321
2322         if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2323                 delta = jiffies - hdev->last_serv_processed;
2324
2325                 if (delta < round_jiffies_relative(HZ)) {
2326                         delta = round_jiffies_relative(HZ) - delta;
2327                         goto out;
2328                 }
2329         }
2330
2331         hdev->serv_processed_cnt++;
2332         if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2333                 hclgevf_keep_alive(hdev);
2334
2335         if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2336                 hdev->last_serv_processed = jiffies;
2337                 goto out;
2338         }
2339
2340         if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2341                 hclgevf_tqps_update_stats(handle);
2342
2343         /* VF does not need to request link status when this bit is set, because
2344          * PF will push its link status to VFs when link status changed.
2345          */
2346         if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2347                 hclgevf_request_link_info(hdev);
2348
2349         hclgevf_update_link_mode(hdev);
2350
2351         hclgevf_sync_vlan_filter(hdev);
2352
2353         hclgevf_sync_mac_table(hdev);
2354
2355         hclgevf_sync_promisc_mode(hdev);
2356
2357         hdev->last_serv_processed = jiffies;
2358
2359 out:
2360         hclgevf_task_schedule(hdev, delta);
2361 }
2362
2363 static void hclgevf_service_task(struct work_struct *work)
2364 {
2365         struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2366                                                 service_task.work);
2367
2368         hclgevf_reset_service_task(hdev);
2369         hclgevf_mailbox_service_task(hdev);
2370         hclgevf_periodic_service_task(hdev);
2371
2372         /* Handle reset and mbx again in case periodical task delays the
2373          * handling by calling hclgevf_task_schedule() in
2374          * hclgevf_periodic_service_task()
2375          */
2376         hclgevf_reset_service_task(hdev);
2377         hclgevf_mailbox_service_task(hdev);
2378 }
2379
2380 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2381 {
2382         hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2383 }
2384
2385 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2386                                                       u32 *clearval)
2387 {
2388         u32 val, cmdq_stat_reg, rst_ing_reg;
2389
2390         /* fetch the events from their corresponding regs */
2391         cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2392                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2393         if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2394                 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2395                 dev_info(&hdev->pdev->dev,
2396                          "receive reset interrupt 0x%x!\n", rst_ing_reg);
2397                 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2398                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2399                 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2400                 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2401                 hdev->rst_stats.vf_rst_cnt++;
2402                 /* set up VF hardware reset status, its PF will clear
2403                  * this status when PF has initialized done.
2404                  */
2405                 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2406                 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2407                                   val | HCLGEVF_VF_RST_ING_BIT);
2408                 return HCLGEVF_VECTOR0_EVENT_RST;
2409         }
2410
2411         /* check for vector0 mailbox(=CMDQ RX) event source */
2412         if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2413                 /* for revision 0x21, clearing interrupt is writing bit 0
2414                  * to the clear register, writing bit 1 means to keep the
2415                  * old value.
2416                  * for revision 0x20, the clear register is a read & write
2417                  * register, so we should just write 0 to the bit we are
2418                  * handling, and keep other bits as cmdq_stat_reg.
2419                  */
2420                 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2421                         *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2422                 else
2423                         *clearval = cmdq_stat_reg &
2424                                     ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2425
2426                 return HCLGEVF_VECTOR0_EVENT_MBX;
2427         }
2428
2429         /* print other vector0 event source */
2430         dev_info(&hdev->pdev->dev,
2431                  "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2432                  cmdq_stat_reg);
2433
2434         return HCLGEVF_VECTOR0_EVENT_OTHER;
2435 }
2436
2437 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2438 {
2439         enum hclgevf_evt_cause event_cause;
2440         struct hclgevf_dev *hdev = data;
2441         u32 clearval;
2442
2443         hclgevf_enable_vector(&hdev->misc_vector, false);
2444         event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2445
2446         switch (event_cause) {
2447         case HCLGEVF_VECTOR0_EVENT_RST:
2448                 hclgevf_reset_task_schedule(hdev);
2449                 break;
2450         case HCLGEVF_VECTOR0_EVENT_MBX:
2451                 hclgevf_mbx_handler(hdev);
2452                 break;
2453         default:
2454                 break;
2455         }
2456
2457         if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2458                 hclgevf_clear_event_cause(hdev, clearval);
2459                 hclgevf_enable_vector(&hdev->misc_vector, true);
2460         }
2461
2462         return IRQ_HANDLED;
2463 }
2464
2465 static int hclgevf_configure(struct hclgevf_dev *hdev)
2466 {
2467         int ret;
2468
2469         /* get current port based vlan state from PF */
2470         ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2471         if (ret)
2472                 return ret;
2473
2474         /* get queue configuration from PF */
2475         ret = hclgevf_get_queue_info(hdev);
2476         if (ret)
2477                 return ret;
2478
2479         /* get queue depth info from PF */
2480         ret = hclgevf_get_queue_depth(hdev);
2481         if (ret)
2482                 return ret;
2483
2484         ret = hclgevf_get_pf_media_type(hdev);
2485         if (ret)
2486                 return ret;
2487
2488         /* get tc configuration from PF */
2489         return hclgevf_get_tc_info(hdev);
2490 }
2491
2492 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2493 {
2494         struct pci_dev *pdev = ae_dev->pdev;
2495         struct hclgevf_dev *hdev;
2496
2497         hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2498         if (!hdev)
2499                 return -ENOMEM;
2500
2501         hdev->pdev = pdev;
2502         hdev->ae_dev = ae_dev;
2503         ae_dev->priv = hdev;
2504
2505         return 0;
2506 }
2507
2508 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2509 {
2510         struct hnae3_handle *roce = &hdev->roce;
2511         struct hnae3_handle *nic = &hdev->nic;
2512
2513         roce->rinfo.num_vectors = hdev->num_roce_msix;
2514
2515         if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2516             hdev->num_msi_left == 0)
2517                 return -EINVAL;
2518
2519         roce->rinfo.base_vector = hdev->roce_base_vector;
2520
2521         roce->rinfo.netdev = nic->kinfo.netdev;
2522         roce->rinfo.roce_io_base = hdev->hw.io_base;
2523         roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2524
2525         roce->pdev = nic->pdev;
2526         roce->ae_algo = nic->ae_algo;
2527         roce->numa_node_mask = nic->numa_node_mask;
2528
2529         return 0;
2530 }
2531
2532 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2533 {
2534         struct hclgevf_cfg_gro_status_cmd *req;
2535         struct hclgevf_desc desc;
2536         int ret;
2537
2538         if (!hnae3_dev_gro_supported(hdev))
2539                 return 0;
2540
2541         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2542                                      false);
2543         req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2544
2545         req->gro_en = en ? 1 : 0;
2546
2547         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2548         if (ret)
2549                 dev_err(&hdev->pdev->dev,
2550                         "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2551
2552         return ret;
2553 }
2554
2555 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2556 {
2557         u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2558         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2559         struct hclgevf_rss_tuple_cfg *tuple_sets;
2560         u32 i;
2561
2562         rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2563         rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2564         tuple_sets = &rss_cfg->rss_tuple_sets;
2565         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2566                 u8 *rss_ind_tbl;
2567
2568                 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2569
2570                 rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2571                                            sizeof(*rss_ind_tbl), GFP_KERNEL);
2572                 if (!rss_ind_tbl)
2573                         return -ENOMEM;
2574
2575                 rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2576                 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2577                        HCLGEVF_RSS_KEY_SIZE);
2578
2579                 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2580                 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2581                 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2582                 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2583                 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2584                 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2585                 tuple_sets->ipv6_sctp_en =
2586                         hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2587                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2588                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2589                 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2590         }
2591
2592         /* Initialize RSS indirect table */
2593         for (i = 0; i < rss_ind_tbl_size; i++)
2594                 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2595
2596         return 0;
2597 }
2598
2599 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2600 {
2601         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2602         int ret;
2603
2604         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2605                 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2606                                                rss_cfg->rss_hash_key);
2607                 if (ret)
2608                         return ret;
2609
2610                 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2611                 if (ret)
2612                         return ret;
2613         }
2614
2615         ret = hclgevf_set_rss_indir_table(hdev);
2616         if (ret)
2617                 return ret;
2618
2619         return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2620 }
2621
2622 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2623 {
2624         return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2625                                        false);
2626 }
2627
2628 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2629 {
2630 #define HCLGEVF_FLUSH_LINK_TIMEOUT      100000
2631
2632         unsigned long last = hdev->serv_processed_cnt;
2633         int i = 0;
2634
2635         while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2636                i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2637                last == hdev->serv_processed_cnt)
2638                 usleep_range(1, 1);
2639 }
2640
2641 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2642 {
2643         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2644
2645         if (enable) {
2646                 hclgevf_task_schedule(hdev, 0);
2647         } else {
2648                 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2649
2650                 /* flush memory to make sure DOWN is seen by service task */
2651                 smp_mb__before_atomic();
2652                 hclgevf_flush_link_update(hdev);
2653         }
2654 }
2655
2656 static int hclgevf_ae_start(struct hnae3_handle *handle)
2657 {
2658         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2659
2660         clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2661         clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2662
2663         hclgevf_reset_tqp_stats(handle);
2664
2665         hclgevf_request_link_info(hdev);
2666
2667         hclgevf_update_link_mode(hdev);
2668
2669         return 0;
2670 }
2671
2672 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2673 {
2674         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2675
2676         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2677
2678         if (hdev->reset_type != HNAE3_VF_RESET)
2679                 hclgevf_reset_tqp(handle);
2680
2681         hclgevf_reset_tqp_stats(handle);
2682         hclgevf_update_link_status(hdev, 0);
2683 }
2684
2685 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2686 {
2687 #define HCLGEVF_STATE_ALIVE     1
2688 #define HCLGEVF_STATE_NOT_ALIVE 0
2689
2690         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2691         struct hclge_vf_to_pf_msg send_msg;
2692
2693         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2694         send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2695                                 HCLGEVF_STATE_NOT_ALIVE;
2696         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2697 }
2698
2699 static int hclgevf_client_start(struct hnae3_handle *handle)
2700 {
2701         return hclgevf_set_alive(handle, true);
2702 }
2703
2704 static void hclgevf_client_stop(struct hnae3_handle *handle)
2705 {
2706         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2707         int ret;
2708
2709         ret = hclgevf_set_alive(handle, false);
2710         if (ret)
2711                 dev_warn(&hdev->pdev->dev,
2712                          "%s failed %d\n", __func__, ret);
2713 }
2714
2715 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2716 {
2717         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2718         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2719         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2720
2721         INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2722
2723         mutex_init(&hdev->mbx_resp.mbx_mutex);
2724         sema_init(&hdev->reset_sem, 1);
2725
2726         spin_lock_init(&hdev->mac_table.mac_list_lock);
2727         INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2728         INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2729
2730         /* bring the device down */
2731         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2732 }
2733
2734 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2735 {
2736         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2737         set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2738
2739         if (hdev->service_task.work.func)
2740                 cancel_delayed_work_sync(&hdev->service_task);
2741
2742         mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2743 }
2744
2745 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2746 {
2747         struct pci_dev *pdev = hdev->pdev;
2748         int vectors;
2749         int i;
2750
2751         if (hnae3_dev_roce_supported(hdev))
2752                 vectors = pci_alloc_irq_vectors(pdev,
2753                                                 hdev->roce_base_msix_offset + 1,
2754                                                 hdev->num_msi,
2755                                                 PCI_IRQ_MSIX);
2756         else
2757                 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2758                                                 hdev->num_msi,
2759                                                 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2760
2761         if (vectors < 0) {
2762                 dev_err(&pdev->dev,
2763                         "failed(%d) to allocate MSI/MSI-X vectors\n",
2764                         vectors);
2765                 return vectors;
2766         }
2767         if (vectors < hdev->num_msi)
2768                 dev_warn(&hdev->pdev->dev,
2769                          "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2770                          hdev->num_msi, vectors);
2771
2772         hdev->num_msi = vectors;
2773         hdev->num_msi_left = vectors;
2774
2775         hdev->base_msi_vector = pdev->irq;
2776         hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2777
2778         hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2779                                            sizeof(u16), GFP_KERNEL);
2780         if (!hdev->vector_status) {
2781                 pci_free_irq_vectors(pdev);
2782                 return -ENOMEM;
2783         }
2784
2785         for (i = 0; i < hdev->num_msi; i++)
2786                 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2787
2788         hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2789                                         sizeof(int), GFP_KERNEL);
2790         if (!hdev->vector_irq) {
2791                 devm_kfree(&pdev->dev, hdev->vector_status);
2792                 pci_free_irq_vectors(pdev);
2793                 return -ENOMEM;
2794         }
2795
2796         return 0;
2797 }
2798
2799 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2800 {
2801         struct pci_dev *pdev = hdev->pdev;
2802
2803         devm_kfree(&pdev->dev, hdev->vector_status);
2804         devm_kfree(&pdev->dev, hdev->vector_irq);
2805         pci_free_irq_vectors(pdev);
2806 }
2807
2808 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2809 {
2810         int ret;
2811
2812         hclgevf_get_misc_vector(hdev);
2813
2814         snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2815                  HCLGEVF_NAME, pci_name(hdev->pdev));
2816         ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2817                           0, hdev->misc_vector.name, hdev);
2818         if (ret) {
2819                 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2820                         hdev->misc_vector.vector_irq);
2821                 return ret;
2822         }
2823
2824         hclgevf_clear_event_cause(hdev, 0);
2825
2826         /* enable misc. vector(vector 0) */
2827         hclgevf_enable_vector(&hdev->misc_vector, true);
2828
2829         return ret;
2830 }
2831
2832 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2833 {
2834         /* disable misc vector(vector 0) */
2835         hclgevf_enable_vector(&hdev->misc_vector, false);
2836         synchronize_irq(hdev->misc_vector.vector_irq);
2837         free_irq(hdev->misc_vector.vector_irq, hdev);
2838         hclgevf_free_vector(hdev, 0);
2839 }
2840
2841 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2842 {
2843         struct device *dev = &hdev->pdev->dev;
2844
2845         dev_info(dev, "VF info begin:\n");
2846
2847         dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2848         dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2849         dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2850         dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2851         dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2852         dev_info(dev, "PF media type of this VF: %u\n",
2853                  hdev->hw.mac.media_type);
2854
2855         dev_info(dev, "VF info end.\n");
2856 }
2857
2858 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2859                                             struct hnae3_client *client)
2860 {
2861         struct hclgevf_dev *hdev = ae_dev->priv;
2862         int rst_cnt = hdev->rst_stats.rst_cnt;
2863         int ret;
2864
2865         ret = client->ops->init_instance(&hdev->nic);
2866         if (ret)
2867                 return ret;
2868
2869         set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2870         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2871             rst_cnt != hdev->rst_stats.rst_cnt) {
2872                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2873
2874                 client->ops->uninit_instance(&hdev->nic, 0);
2875                 return -EBUSY;
2876         }
2877
2878         hnae3_set_client_init_flag(client, ae_dev, 1);
2879
2880         if (netif_msg_drv(&hdev->nic))
2881                 hclgevf_info_show(hdev);
2882
2883         return 0;
2884 }
2885
2886 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2887                                              struct hnae3_client *client)
2888 {
2889         struct hclgevf_dev *hdev = ae_dev->priv;
2890         int ret;
2891
2892         if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2893             !hdev->nic_client)
2894                 return 0;
2895
2896         ret = hclgevf_init_roce_base_info(hdev);
2897         if (ret)
2898                 return ret;
2899
2900         ret = client->ops->init_instance(&hdev->roce);
2901         if (ret)
2902                 return ret;
2903
2904         set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2905         hnae3_set_client_init_flag(client, ae_dev, 1);
2906
2907         return 0;
2908 }
2909
2910 static int hclgevf_init_client_instance(struct hnae3_client *client,
2911                                         struct hnae3_ae_dev *ae_dev)
2912 {
2913         struct hclgevf_dev *hdev = ae_dev->priv;
2914         int ret;
2915
2916         switch (client->type) {
2917         case HNAE3_CLIENT_KNIC:
2918                 hdev->nic_client = client;
2919                 hdev->nic.client = client;
2920
2921                 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2922                 if (ret)
2923                         goto clear_nic;
2924
2925                 ret = hclgevf_init_roce_client_instance(ae_dev,
2926                                                         hdev->roce_client);
2927                 if (ret)
2928                         goto clear_roce;
2929
2930                 break;
2931         case HNAE3_CLIENT_ROCE:
2932                 if (hnae3_dev_roce_supported(hdev)) {
2933                         hdev->roce_client = client;
2934                         hdev->roce.client = client;
2935                 }
2936
2937                 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2938                 if (ret)
2939                         goto clear_roce;
2940
2941                 break;
2942         default:
2943                 return -EINVAL;
2944         }
2945
2946         return 0;
2947
2948 clear_nic:
2949         hdev->nic_client = NULL;
2950         hdev->nic.client = NULL;
2951         return ret;
2952 clear_roce:
2953         hdev->roce_client = NULL;
2954         hdev->roce.client = NULL;
2955         return ret;
2956 }
2957
2958 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2959                                            struct hnae3_ae_dev *ae_dev)
2960 {
2961         struct hclgevf_dev *hdev = ae_dev->priv;
2962
2963         /* un-init roce, if it exists */
2964         if (hdev->roce_client) {
2965                 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2966                 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2967                 hdev->roce_client = NULL;
2968                 hdev->roce.client = NULL;
2969         }
2970
2971         /* un-init nic/unic, if this was not called by roce client */
2972         if (client->ops->uninit_instance && hdev->nic_client &&
2973             client->type != HNAE3_CLIENT_ROCE) {
2974                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2975
2976                 client->ops->uninit_instance(&hdev->nic, 0);
2977                 hdev->nic_client = NULL;
2978                 hdev->nic.client = NULL;
2979         }
2980 }
2981
2982 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2983 {
2984 #define HCLGEVF_MEM_BAR         4
2985
2986         struct pci_dev *pdev = hdev->pdev;
2987         struct hclgevf_hw *hw = &hdev->hw;
2988
2989         /* for device does not have device memory, return directly */
2990         if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2991                 return 0;
2992
2993         hw->mem_base = devm_ioremap_wc(&pdev->dev,
2994                                        pci_resource_start(pdev,
2995                                                           HCLGEVF_MEM_BAR),
2996                                        pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2997         if (!hw->mem_base) {
2998                 dev_err(&pdev->dev, "failed to map device memory\n");
2999                 return -EFAULT;
3000         }
3001
3002         return 0;
3003 }
3004
3005 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3006 {
3007         struct pci_dev *pdev = hdev->pdev;
3008         struct hclgevf_hw *hw;
3009         int ret;
3010
3011         ret = pci_enable_device(pdev);
3012         if (ret) {
3013                 dev_err(&pdev->dev, "failed to enable PCI device\n");
3014                 return ret;
3015         }
3016
3017         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3018         if (ret) {
3019                 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3020                 goto err_disable_device;
3021         }
3022
3023         ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3024         if (ret) {
3025                 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3026                 goto err_disable_device;
3027         }
3028
3029         pci_set_master(pdev);
3030         hw = &hdev->hw;
3031         hw->hdev = hdev;
3032         hw->io_base = pci_iomap(pdev, 2, 0);
3033         if (!hw->io_base) {
3034                 dev_err(&pdev->dev, "can't map configuration register space\n");
3035                 ret = -ENOMEM;
3036                 goto err_clr_master;
3037         }
3038
3039         ret = hclgevf_dev_mem_map(hdev);
3040         if (ret)
3041                 goto err_unmap_io_base;
3042
3043         return 0;
3044
3045 err_unmap_io_base:
3046         pci_iounmap(pdev, hdev->hw.io_base);
3047 err_clr_master:
3048         pci_clear_master(pdev);
3049         pci_release_regions(pdev);
3050 err_disable_device:
3051         pci_disable_device(pdev);
3052
3053         return ret;
3054 }
3055
3056 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3057 {
3058         struct pci_dev *pdev = hdev->pdev;
3059
3060         if (hdev->hw.mem_base)
3061                 devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3062
3063         pci_iounmap(pdev, hdev->hw.io_base);
3064         pci_clear_master(pdev);
3065         pci_release_regions(pdev);
3066         pci_disable_device(pdev);
3067 }
3068
3069 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3070 {
3071         struct hclgevf_query_res_cmd *req;
3072         struct hclgevf_desc desc;
3073         int ret;
3074
3075         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3076         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3077         if (ret) {
3078                 dev_err(&hdev->pdev->dev,
3079                         "query vf resource failed, ret = %d.\n", ret);
3080                 return ret;
3081         }
3082
3083         req = (struct hclgevf_query_res_cmd *)desc.data;
3084
3085         if (hnae3_dev_roce_supported(hdev)) {
3086                 hdev->roce_base_msix_offset =
3087                 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3088                                 HCLGEVF_MSIX_OFT_ROCEE_M,
3089                                 HCLGEVF_MSIX_OFT_ROCEE_S);
3090                 hdev->num_roce_msix =
3091                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3092                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3093
3094                 /* nic's msix numbers is always equals to the roce's. */
3095                 hdev->num_nic_msix = hdev->num_roce_msix;
3096
3097                 /* VF should have NIC vectors and Roce vectors, NIC vectors
3098                  * are queued before Roce vectors. The offset is fixed to 64.
3099                  */
3100                 hdev->num_msi = hdev->num_roce_msix +
3101                                 hdev->roce_base_msix_offset;
3102         } else {
3103                 hdev->num_msi =
3104                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3105                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3106
3107                 hdev->num_nic_msix = hdev->num_msi;
3108         }
3109
3110         if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3111                 dev_err(&hdev->pdev->dev,
3112                         "Just %u msi resources, not enough for vf(min:2).\n",
3113                         hdev->num_nic_msix);
3114                 return -EINVAL;
3115         }
3116
3117         return 0;
3118 }
3119
3120 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3121 {
3122 #define HCLGEVF_MAX_NON_TSO_BD_NUM                      8U
3123
3124         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3125
3126         ae_dev->dev_specs.max_non_tso_bd_num =
3127                                         HCLGEVF_MAX_NON_TSO_BD_NUM;
3128         ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3129         ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3130         ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3131         ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3132 }
3133
3134 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3135                                     struct hclgevf_desc *desc)
3136 {
3137         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3138         struct hclgevf_dev_specs_0_cmd *req0;
3139         struct hclgevf_dev_specs_1_cmd *req1;
3140
3141         req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3142         req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3143
3144         ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3145         ae_dev->dev_specs.rss_ind_tbl_size =
3146                                         le16_to_cpu(req0->rss_ind_tbl_size);
3147         ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3148         ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3149         ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3150         ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3151 }
3152
3153 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3154 {
3155         struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3156
3157         if (!dev_specs->max_non_tso_bd_num)
3158                 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3159         if (!dev_specs->rss_ind_tbl_size)
3160                 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3161         if (!dev_specs->rss_key_size)
3162                 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3163         if (!dev_specs->max_int_gl)
3164                 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3165         if (!dev_specs->max_frm_size)
3166                 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3167 }
3168
3169 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3170 {
3171         struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3172         int ret;
3173         int i;
3174
3175         /* set default specifications as devices lower than version V3 do not
3176          * support querying specifications from firmware.
3177          */
3178         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3179                 hclgevf_set_default_dev_specs(hdev);
3180                 return 0;
3181         }
3182
3183         for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3184                 hclgevf_cmd_setup_basic_desc(&desc[i],
3185                                              HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3186                 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3187         }
3188         hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3189                                      true);
3190
3191         ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3192         if (ret)
3193                 return ret;
3194
3195         hclgevf_parse_dev_specs(hdev, desc);
3196         hclgevf_check_dev_specs(hdev);
3197
3198         return 0;
3199 }
3200
3201 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3202 {
3203         struct pci_dev *pdev = hdev->pdev;
3204         int ret = 0;
3205
3206         if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3207             test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3208                 hclgevf_misc_irq_uninit(hdev);
3209                 hclgevf_uninit_msi(hdev);
3210                 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3211         }
3212
3213         if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3214                 pci_set_master(pdev);
3215                 ret = hclgevf_init_msi(hdev);
3216                 if (ret) {
3217                         dev_err(&pdev->dev,
3218                                 "failed(%d) to init MSI/MSI-X\n", ret);
3219                         return ret;
3220                 }
3221
3222                 ret = hclgevf_misc_irq_init(hdev);
3223                 if (ret) {
3224                         hclgevf_uninit_msi(hdev);
3225                         dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3226                                 ret);
3227                         return ret;
3228                 }
3229
3230                 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3231         }
3232
3233         return ret;
3234 }
3235
3236 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3237 {
3238         struct hclge_vf_to_pf_msg send_msg;
3239
3240         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3241                                HCLGE_MBX_VPORT_LIST_CLEAR);
3242         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3243 }
3244
3245 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
3246 {
3247         if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3248                 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
3249 }
3250
3251 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
3252 {
3253         if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3254                 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
3255 }
3256
3257 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3258 {
3259         struct pci_dev *pdev = hdev->pdev;
3260         int ret;
3261
3262         ret = hclgevf_pci_reset(hdev);
3263         if (ret) {
3264                 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3265                 return ret;
3266         }
3267
3268         ret = hclgevf_cmd_init(hdev);
3269         if (ret) {
3270                 dev_err(&pdev->dev, "cmd failed %d\n", ret);
3271                 return ret;
3272         }
3273
3274         ret = hclgevf_rss_init_hw(hdev);
3275         if (ret) {
3276                 dev_err(&hdev->pdev->dev,
3277                         "failed(%d) to initialize RSS\n", ret);
3278                 return ret;
3279         }
3280
3281         ret = hclgevf_config_gro(hdev, true);
3282         if (ret)
3283                 return ret;
3284
3285         ret = hclgevf_init_vlan_config(hdev);
3286         if (ret) {
3287                 dev_err(&hdev->pdev->dev,
3288                         "failed(%d) to initialize VLAN config\n", ret);
3289                 return ret;
3290         }
3291
3292         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3293
3294         hclgevf_init_rxd_adv_layout(hdev);
3295
3296         dev_info(&hdev->pdev->dev, "Reset done\n");
3297
3298         return 0;
3299 }
3300
3301 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3302 {
3303         struct pci_dev *pdev = hdev->pdev;
3304         int ret;
3305
3306         ret = hclgevf_pci_init(hdev);
3307         if (ret)
3308                 return ret;
3309
3310         ret = hclgevf_cmd_queue_init(hdev);
3311         if (ret)
3312                 goto err_cmd_queue_init;
3313
3314         ret = hclgevf_cmd_init(hdev);
3315         if (ret)
3316                 goto err_cmd_init;
3317
3318         /* Get vf resource */
3319         ret = hclgevf_query_vf_resource(hdev);
3320         if (ret)
3321                 goto err_cmd_init;
3322
3323         ret = hclgevf_query_dev_specs(hdev);
3324         if (ret) {
3325                 dev_err(&pdev->dev,
3326                         "failed to query dev specifications, ret = %d\n", ret);
3327                 goto err_cmd_init;
3328         }
3329
3330         ret = hclgevf_init_msi(hdev);
3331         if (ret) {
3332                 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3333                 goto err_cmd_init;
3334         }
3335
3336         hclgevf_state_init(hdev);
3337         hdev->reset_level = HNAE3_VF_FUNC_RESET;
3338         hdev->reset_type = HNAE3_NONE_RESET;
3339
3340         ret = hclgevf_misc_irq_init(hdev);
3341         if (ret)
3342                 goto err_misc_irq_init;
3343
3344         set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3345
3346         ret = hclgevf_configure(hdev);
3347         if (ret) {
3348                 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3349                 goto err_config;
3350         }
3351
3352         ret = hclgevf_alloc_tqps(hdev);
3353         if (ret) {
3354                 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3355                 goto err_config;
3356         }
3357
3358         ret = hclgevf_set_handle_info(hdev);
3359         if (ret)
3360                 goto err_config;
3361
3362         ret = hclgevf_config_gro(hdev, true);
3363         if (ret)
3364                 goto err_config;
3365
3366         /* Initialize RSS for this VF */
3367         ret = hclgevf_rss_init_cfg(hdev);
3368         if (ret) {
3369                 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3370                 goto err_config;
3371         }
3372
3373         ret = hclgevf_rss_init_hw(hdev);
3374         if (ret) {
3375                 dev_err(&hdev->pdev->dev,
3376                         "failed(%d) to initialize RSS\n", ret);
3377                 goto err_config;
3378         }
3379
3380         /* ensure vf tbl list as empty before init*/
3381         ret = hclgevf_clear_vport_list(hdev);
3382         if (ret) {
3383                 dev_err(&pdev->dev,
3384                         "failed to clear tbl list configuration, ret = %d.\n",
3385                         ret);
3386                 goto err_config;
3387         }
3388
3389         ret = hclgevf_init_vlan_config(hdev);
3390         if (ret) {
3391                 dev_err(&hdev->pdev->dev,
3392                         "failed(%d) to initialize VLAN config\n", ret);
3393                 goto err_config;
3394         }
3395
3396         hclgevf_init_rxd_adv_layout(hdev);
3397
3398         hdev->last_reset_time = jiffies;
3399         dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3400                  HCLGEVF_DRIVER_NAME);
3401
3402         hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3403
3404         return 0;
3405
3406 err_config:
3407         hclgevf_misc_irq_uninit(hdev);
3408 err_misc_irq_init:
3409         hclgevf_state_uninit(hdev);
3410         hclgevf_uninit_msi(hdev);
3411 err_cmd_init:
3412         hclgevf_cmd_uninit(hdev);
3413 err_cmd_queue_init:
3414         hclgevf_pci_uninit(hdev);
3415         clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3416         return ret;
3417 }
3418
3419 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3420 {
3421         struct hclge_vf_to_pf_msg send_msg;
3422
3423         hclgevf_state_uninit(hdev);
3424         hclgevf_uninit_rxd_adv_layout(hdev);
3425
3426         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3427         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3428
3429         if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3430                 hclgevf_misc_irq_uninit(hdev);
3431                 hclgevf_uninit_msi(hdev);
3432         }
3433
3434         hclgevf_cmd_uninit(hdev);
3435         hclgevf_pci_uninit(hdev);
3436         hclgevf_uninit_mac_list(hdev);
3437 }
3438
3439 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3440 {
3441         struct pci_dev *pdev = ae_dev->pdev;
3442         int ret;
3443
3444         ret = hclgevf_alloc_hdev(ae_dev);
3445         if (ret) {
3446                 dev_err(&pdev->dev, "hclge device allocation failed\n");
3447                 return ret;
3448         }
3449
3450         ret = hclgevf_init_hdev(ae_dev->priv);
3451         if (ret) {
3452                 dev_err(&pdev->dev, "hclge device initialization failed\n");
3453                 return ret;
3454         }
3455
3456         return 0;
3457 }
3458
3459 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3460 {
3461         struct hclgevf_dev *hdev = ae_dev->priv;
3462
3463         hclgevf_uninit_hdev(hdev);
3464         ae_dev->priv = NULL;
3465 }
3466
3467 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3468 {
3469         struct hnae3_handle *nic = &hdev->nic;
3470         struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3471
3472         return min_t(u32, hdev->rss_size_max,
3473                      hdev->num_tqps / kinfo->tc_info.num_tc);
3474 }
3475
3476 /**
3477  * hclgevf_get_channels - Get the current channels enabled and max supported.
3478  * @handle: hardware information for network interface
3479  * @ch: ethtool channels structure
3480  *
3481  * We don't support separate tx and rx queues as channels. The other count
3482  * represents how many queues are being used for control. max_combined counts
3483  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3484  * q_vectors since we support a lot more queue pairs than q_vectors.
3485  **/
3486 static void hclgevf_get_channels(struct hnae3_handle *handle,
3487                                  struct ethtool_channels *ch)
3488 {
3489         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3490
3491         ch->max_combined = hclgevf_get_max_channels(hdev);
3492         ch->other_count = 0;
3493         ch->max_other = 0;
3494         ch->combined_count = handle->kinfo.rss_size;
3495 }
3496
3497 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3498                                           u16 *alloc_tqps, u16 *max_rss_size)
3499 {
3500         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3501
3502         *alloc_tqps = hdev->num_tqps;
3503         *max_rss_size = hdev->rss_size_max;
3504 }
3505
3506 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3507                                     u32 new_tqps_num)
3508 {
3509         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3510         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3511         u16 max_rss_size;
3512
3513         kinfo->req_rss_size = new_tqps_num;
3514
3515         max_rss_size = min_t(u16, hdev->rss_size_max,
3516                              hdev->num_tqps / kinfo->tc_info.num_tc);
3517
3518         /* Use the user's configuration when it is not larger than
3519          * max_rss_size, otherwise, use the maximum specification value.
3520          */
3521         if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3522             kinfo->req_rss_size <= max_rss_size)
3523                 kinfo->rss_size = kinfo->req_rss_size;
3524         else if (kinfo->rss_size > max_rss_size ||
3525                  (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3526                 kinfo->rss_size = max_rss_size;
3527
3528         kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3529 }
3530
3531 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3532                                 bool rxfh_configured)
3533 {
3534         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3535         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3536         u16 cur_rss_size = kinfo->rss_size;
3537         u16 cur_tqps = kinfo->num_tqps;
3538         u32 *rss_indir;
3539         unsigned int i;
3540         int ret;
3541
3542         hclgevf_update_rss_size(handle, new_tqps_num);
3543
3544         ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3545         if (ret)
3546                 return ret;
3547
3548         /* RSS indirection table has been configured by user */
3549         if (rxfh_configured)
3550                 goto out;
3551
3552         /* Reinitializes the rss indirect table according to the new RSS size */
3553         rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3554                             sizeof(u32), GFP_KERNEL);
3555         if (!rss_indir)
3556                 return -ENOMEM;
3557
3558         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3559                 rss_indir[i] = i % kinfo->rss_size;
3560
3561         hdev->rss_cfg.rss_size = kinfo->rss_size;
3562
3563         ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3564         if (ret)
3565                 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3566                         ret);
3567
3568         kfree(rss_indir);
3569
3570 out:
3571         if (!ret)
3572                 dev_info(&hdev->pdev->dev,
3573                          "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3574                          cur_rss_size, kinfo->rss_size,
3575                          cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3576
3577         return ret;
3578 }
3579
3580 static int hclgevf_get_status(struct hnae3_handle *handle)
3581 {
3582         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3583
3584         return hdev->hw.mac.link;
3585 }
3586
3587 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3588                                             u8 *auto_neg, u32 *speed,
3589                                             u8 *duplex)
3590 {
3591         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3592
3593         if (speed)
3594                 *speed = hdev->hw.mac.speed;
3595         if (duplex)
3596                 *duplex = hdev->hw.mac.duplex;
3597         if (auto_neg)
3598                 *auto_neg = AUTONEG_DISABLE;
3599 }
3600
3601 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3602                                  u8 duplex)
3603 {
3604         hdev->hw.mac.speed = speed;
3605         hdev->hw.mac.duplex = duplex;
3606 }
3607
3608 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3609 {
3610         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3611
3612         return hclgevf_config_gro(hdev, enable);
3613 }
3614
3615 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3616                                    u8 *module_type)
3617 {
3618         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3619
3620         if (media_type)
3621                 *media_type = hdev->hw.mac.media_type;
3622
3623         if (module_type)
3624                 *module_type = hdev->hw.mac.module_type;
3625 }
3626
3627 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3628 {
3629         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3630
3631         return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3632 }
3633
3634 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3635 {
3636         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3637
3638         return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3639 }
3640
3641 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3642 {
3643         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3644
3645         return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3646 }
3647
3648 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3649 {
3650         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3651
3652         return hdev->rst_stats.hw_rst_done_cnt;
3653 }
3654
3655 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3656                                   unsigned long *supported,
3657                                   unsigned long *advertising)
3658 {
3659         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3660
3661         *supported = hdev->hw.mac.supported;
3662         *advertising = hdev->hw.mac.advertising;
3663 }
3664
3665 #define MAX_SEPARATE_NUM        4
3666 #define SEPARATOR_VALUE         0xFDFCFBFA
3667 #define REG_NUM_PER_LINE        4
3668 #define REG_LEN_PER_LINE        (REG_NUM_PER_LINE * sizeof(u32))
3669
3670 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3671 {
3672         int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3673         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3674
3675         cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3676         common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3677         ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3678         tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3679
3680         return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3681                 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3682 }
3683
3684 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3685                              void *data)
3686 {
3687         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3688         int i, j, reg_um, separator_num;
3689         u32 *reg = data;
3690
3691         *version = hdev->fw_version;
3692
3693         /* fetching per-VF registers values from VF PCIe register space */
3694         reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3695         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3696         for (i = 0; i < reg_um; i++)
3697                 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3698         for (i = 0; i < separator_num; i++)
3699                 *reg++ = SEPARATOR_VALUE;
3700
3701         reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3702         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3703         for (i = 0; i < reg_um; i++)
3704                 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3705         for (i = 0; i < separator_num; i++)
3706                 *reg++ = SEPARATOR_VALUE;
3707
3708         reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3709         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3710         for (j = 0; j < hdev->num_tqps; j++) {
3711                 for (i = 0; i < reg_um; i++)
3712                         *reg++ = hclgevf_read_dev(&hdev->hw,
3713                                                   ring_reg_addr_list[i] +
3714                                                   0x200 * j);
3715                 for (i = 0; i < separator_num; i++)
3716                         *reg++ = SEPARATOR_VALUE;
3717         }
3718
3719         reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3720         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3721         for (j = 0; j < hdev->num_msi_used - 1; j++) {
3722                 for (i = 0; i < reg_um; i++)
3723                         *reg++ = hclgevf_read_dev(&hdev->hw,
3724                                                   tqp_intr_reg_addr_list[i] +
3725                                                   4 * j);
3726                 for (i = 0; i < separator_num; i++)
3727                         *reg++ = SEPARATOR_VALUE;
3728         }
3729 }
3730
3731 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3732                                         u8 *port_base_vlan_info, u8 data_size)
3733 {
3734         struct hnae3_handle *nic = &hdev->nic;
3735         struct hclge_vf_to_pf_msg send_msg;
3736         int ret;
3737
3738         rtnl_lock();
3739
3740         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3741             test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3742                 dev_warn(&hdev->pdev->dev,
3743                          "is resetting when updating port based vlan info\n");
3744                 rtnl_unlock();
3745                 return;
3746         }
3747
3748         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3749         if (ret) {
3750                 rtnl_unlock();
3751                 return;
3752         }
3753
3754         /* send msg to PF and wait update port based vlan info */
3755         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3756                                HCLGE_MBX_PORT_BASE_VLAN_CFG);
3757         memcpy(send_msg.data, port_base_vlan_info, data_size);
3758         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3759         if (!ret) {
3760                 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3761                         nic->port_base_vlan_state = state;
3762                 else
3763                         nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3764         }
3765
3766         hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3767         rtnl_unlock();
3768 }
3769
3770 static const struct hnae3_ae_ops hclgevf_ops = {
3771         .init_ae_dev = hclgevf_init_ae_dev,
3772         .uninit_ae_dev = hclgevf_uninit_ae_dev,
3773         .reset_prepare = hclgevf_reset_prepare_general,
3774         .reset_done = hclgevf_reset_done,
3775         .init_client_instance = hclgevf_init_client_instance,
3776         .uninit_client_instance = hclgevf_uninit_client_instance,
3777         .start = hclgevf_ae_start,
3778         .stop = hclgevf_ae_stop,
3779         .client_start = hclgevf_client_start,
3780         .client_stop = hclgevf_client_stop,
3781         .map_ring_to_vector = hclgevf_map_ring_to_vector,
3782         .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3783         .get_vector = hclgevf_get_vector,
3784         .put_vector = hclgevf_put_vector,
3785         .reset_queue = hclgevf_reset_tqp,
3786         .get_mac_addr = hclgevf_get_mac_addr,
3787         .set_mac_addr = hclgevf_set_mac_addr,
3788         .add_uc_addr = hclgevf_add_uc_addr,
3789         .rm_uc_addr = hclgevf_rm_uc_addr,
3790         .add_mc_addr = hclgevf_add_mc_addr,
3791         .rm_mc_addr = hclgevf_rm_mc_addr,
3792         .get_stats = hclgevf_get_stats,
3793         .update_stats = hclgevf_update_stats,
3794         .get_strings = hclgevf_get_strings,
3795         .get_sset_count = hclgevf_get_sset_count,
3796         .get_rss_key_size = hclgevf_get_rss_key_size,
3797         .get_rss = hclgevf_get_rss,
3798         .set_rss = hclgevf_set_rss,
3799         .get_rss_tuple = hclgevf_get_rss_tuple,
3800         .set_rss_tuple = hclgevf_set_rss_tuple,
3801         .get_tc_size = hclgevf_get_tc_size,
3802         .get_fw_version = hclgevf_get_fw_version,
3803         .set_vlan_filter = hclgevf_set_vlan_filter,
3804         .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3805         .reset_event = hclgevf_reset_event,
3806         .set_default_reset_request = hclgevf_set_def_reset_request,
3807         .set_channels = hclgevf_set_channels,
3808         .get_channels = hclgevf_get_channels,
3809         .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3810         .get_regs_len = hclgevf_get_regs_len,
3811         .get_regs = hclgevf_get_regs,
3812         .get_status = hclgevf_get_status,
3813         .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3814         .get_media_type = hclgevf_get_media_type,
3815         .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3816         .ae_dev_resetting = hclgevf_ae_dev_resetting,
3817         .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3818         .set_gro_en = hclgevf_gro_en,
3819         .set_mtu = hclgevf_set_mtu,
3820         .get_global_queue_id = hclgevf_get_qid_global,
3821         .set_timer_task = hclgevf_set_timer_task,
3822         .get_link_mode = hclgevf_get_link_mode,
3823         .set_promisc_mode = hclgevf_set_promisc_mode,
3824         .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3825         .get_cmdq_stat = hclgevf_get_cmdq_stat,
3826 };
3827
3828 static struct hnae3_ae_algo ae_algovf = {
3829         .ops = &hclgevf_ops,
3830         .pdev_id_table = ae_algovf_pci_tbl,
3831 };
3832
3833 static int hclgevf_init(void)
3834 {
3835         pr_info("%s is initializing\n", HCLGEVF_NAME);
3836
3837         hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3838         if (!hclgevf_wq) {
3839                 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3840                 return -ENOMEM;
3841         }
3842
3843         hnae3_register_ae_algo(&ae_algovf);
3844
3845         return 0;
3846 }
3847
3848 static void hclgevf_exit(void)
3849 {
3850         hnae3_unregister_ae_algo(&ae_algovf);
3851         destroy_workqueue(hclgevf_wq);
3852 }
3853 module_init(hclgevf_init);
3854 module_exit(hclgevf_exit);
3855
3856 MODULE_LICENSE("GPL");
3857 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3858 MODULE_DESCRIPTION("HCLGEVF Driver");
3859 MODULE_VERSION(HCLGEVF_MOD_VERSION);