1682769112d01060f0c78a3d1270d0a4a16983fb
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME    "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT      5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18                                   unsigned long delay);
19
20 static struct hnae3_ae_algo ae_algovf;
21
22 static struct workqueue_struct *hclgevf_wq;
23
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28         /* required last entry */
29         {0, }
30 };
31
32 static const u8 hclgevf_hash_key[] = {
33         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43                                          HCLGEVF_CMDQ_TX_ADDR_H_REG,
44                                          HCLGEVF_CMDQ_TX_DEPTH_REG,
45                                          HCLGEVF_CMDQ_TX_TAIL_REG,
46                                          HCLGEVF_CMDQ_TX_HEAD_REG,
47                                          HCLGEVF_CMDQ_RX_ADDR_L_REG,
48                                          HCLGEVF_CMDQ_RX_ADDR_H_REG,
49                                          HCLGEVF_CMDQ_RX_DEPTH_REG,
50                                          HCLGEVF_CMDQ_RX_TAIL_REG,
51                                          HCLGEVF_CMDQ_RX_HEAD_REG,
52                                          HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54                                          HCLGEVF_CMDQ_INTR_EN_REG,
55                                          HCLGEVF_CMDQ_INTR_GEN_REG};
56
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58                                            HCLGEVF_RST_ING,
59                                            HCLGEVF_GRO_EN_REG};
60
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62                                          HCLGEVF_RING_RX_ADDR_H_REG,
63                                          HCLGEVF_RING_RX_BD_NUM_REG,
64                                          HCLGEVF_RING_RX_BD_LENGTH_REG,
65                                          HCLGEVF_RING_RX_MERGE_EN_REG,
66                                          HCLGEVF_RING_RX_TAIL_REG,
67                                          HCLGEVF_RING_RX_HEAD_REG,
68                                          HCLGEVF_RING_RX_FBD_NUM_REG,
69                                          HCLGEVF_RING_RX_OFFSET_REG,
70                                          HCLGEVF_RING_RX_FBD_OFFSET_REG,
71                                          HCLGEVF_RING_RX_STASH_REG,
72                                          HCLGEVF_RING_RX_BD_ERR_REG,
73                                          HCLGEVF_RING_TX_ADDR_L_REG,
74                                          HCLGEVF_RING_TX_ADDR_H_REG,
75                                          HCLGEVF_RING_TX_BD_NUM_REG,
76                                          HCLGEVF_RING_TX_PRIORITY_REG,
77                                          HCLGEVF_RING_TX_TC_REG,
78                                          HCLGEVF_RING_TX_MERGE_EN_REG,
79                                          HCLGEVF_RING_TX_TAIL_REG,
80                                          HCLGEVF_RING_TX_HEAD_REG,
81                                          HCLGEVF_RING_TX_FBD_NUM_REG,
82                                          HCLGEVF_RING_TX_OFFSET_REG,
83                                          HCLGEVF_RING_TX_EBD_NUM_REG,
84                                          HCLGEVF_RING_TX_EBD_OFFSET_REG,
85                                          HCLGEVF_RING_TX_BD_ERR_REG,
86                                          HCLGEVF_RING_EN_REG};
87
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89                                              HCLGEVF_TQP_INTR_GL0_REG,
90                                              HCLGEVF_TQP_INTR_GL1_REG,
91                                              HCLGEVF_TQP_INTR_GL2_REG,
92                                              HCLGEVF_TQP_INTR_RL_REG};
93
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96         if (!handle->client)
97                 return container_of(handle, struct hclgevf_dev, nic);
98         else if (handle->client->type == HNAE3_CLIENT_ROCE)
99                 return container_of(handle, struct hclgevf_dev, roce);
100         else
101                 return container_of(handle, struct hclgevf_dev, nic);
102 }
103
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108         struct hclgevf_desc desc;
109         struct hclgevf_tqp *tqp;
110         int status;
111         int i;
112
113         for (i = 0; i < kinfo->num_tqps; i++) {
114                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115                 hclgevf_cmd_setup_basic_desc(&desc,
116                                              HCLGEVF_OPC_QUERY_RX_STATUS,
117                                              true);
118
119                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121                 if (status) {
122                         dev_err(&hdev->pdev->dev,
123                                 "Query tqp stat fail, status = %d,queue = %d\n",
124                                 status, i);
125                         return status;
126                 }
127                 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128                         le32_to_cpu(desc.data[1]);
129
130                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131                                              true);
132
133                 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135                 if (status) {
136                         dev_err(&hdev->pdev->dev,
137                                 "Query tqp stat fail, status = %d,queue = %d\n",
138                                 status, i);
139                         return status;
140                 }
141                 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142                         le32_to_cpu(desc.data[1]);
143         }
144
145         return 0;
146 }
147
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151         struct hclgevf_tqp *tqp;
152         u64 *buff = data;
153         int i;
154
155         for (i = 0; i < kinfo->num_tqps; i++) {
156                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157                 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158         }
159         for (i = 0; i < kinfo->num_tqps; i++) {
160                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161                 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162         }
163
164         return buff;
165 }
166
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170
171         return kinfo->num_tqps * 2;
172 }
173
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177         u8 *buff = data;
178         int i;
179
180         for (i = 0; i < kinfo->num_tqps; i++) {
181                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182                                                        struct hclgevf_tqp, q);
183                 snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184                          tqp->index);
185                 buff += ETH_GSTRING_LEN;
186         }
187
188         for (i = 0; i < kinfo->num_tqps; i++) {
189                 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190                                                        struct hclgevf_tqp, q);
191                 snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192                          tqp->index);
193                 buff += ETH_GSTRING_LEN;
194         }
195
196         return buff;
197 }
198
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200                                  struct net_device_stats *net_stats)
201 {
202         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203         int status;
204
205         status = hclgevf_tqps_update_stats(handle);
206         if (status)
207                 dev_err(&hdev->pdev->dev,
208                         "VF update of TQPS stats fail, status = %d.\n",
209                         status);
210 }
211
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214         if (strset == ETH_SS_TEST)
215                 return -EOPNOTSUPP;
216         else if (strset == ETH_SS_STATS)
217                 return hclgevf_tqps_get_sset_count(handle, strset);
218
219         return 0;
220 }
221
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223                                 u8 *data)
224 {
225         u8 *p = (char *)data;
226
227         if (strset == ETH_SS_STATS)
228                 p = hclgevf_tqps_get_strings(handle, p);
229 }
230
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233         hclgevf_tqps_get_stats(handle, data);
234 }
235
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237                                    u8 subcode)
238 {
239         if (msg) {
240                 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241                 msg->code = code;
242                 msg->subcode = subcode;
243         }
244 }
245
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248         struct hclge_vf_to_pf_msg send_msg;
249         u8 resp_msg;
250         int status;
251
252         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254                                       sizeof(resp_msg));
255         if (status) {
256                 dev_err(&hdev->pdev->dev,
257                         "VF request to get TC info from PF failed %d",
258                         status);
259                 return status;
260         }
261
262         hdev->hw_tc_map = resp_msg;
263
264         return 0;
265 }
266
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269         struct hnae3_handle *nic = &hdev->nic;
270         struct hclge_vf_to_pf_msg send_msg;
271         u8 resp_msg;
272         int ret;
273
274         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275                                HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277                                    sizeof(u8));
278         if (ret) {
279                 dev_err(&hdev->pdev->dev,
280                         "VF request to get port based vlan state failed %d",
281                         ret);
282                 return ret;
283         }
284
285         nic->port_base_vlan_state = resp_msg;
286
287         return 0;
288 }
289
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN       6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET       0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET    2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET       4
296
297         u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298         struct hclge_vf_to_pf_msg send_msg;
299         int status;
300
301         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303                                       HCLGEVF_TQPS_RSS_INFO_LEN);
304         if (status) {
305                 dev_err(&hdev->pdev->dev,
306                         "VF request to get tqp info from PF failed %d",
307                         status);
308                 return status;
309         }
310
311         memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312                sizeof(u16));
313         memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314                sizeof(u16));
315         memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316                sizeof(u16));
317
318         return 0;
319 }
320
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN     4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
326
327         u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328         struct hclge_vf_to_pf_msg send_msg;
329         int ret;
330
331         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333                                    HCLGEVF_TQPS_DEPTH_INFO_LEN);
334         if (ret) {
335                 dev_err(&hdev->pdev->dev,
336                         "VF request to get tqp depth info from PF failed %d",
337                         ret);
338                 return ret;
339         }
340
341         memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342                sizeof(u16));
343         memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344                sizeof(u16));
345
346         return 0;
347 }
348
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352         struct hclge_vf_to_pf_msg send_msg;
353         u16 qid_in_pf = 0;
354         u8 resp_data[2];
355         int ret;
356
357         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358         memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360                                    sizeof(resp_data));
361         if (!ret)
362                 qid_in_pf = *(u16 *)resp_data;
363
364         return qid_in_pf;
365 }
366
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369         struct hclge_vf_to_pf_msg send_msg;
370         u8 resp_msg[2];
371         int ret;
372
373         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375                                    sizeof(resp_msg));
376         if (ret) {
377                 dev_err(&hdev->pdev->dev,
378                         "VF request to get the pf port media type failed %d",
379                         ret);
380                 return ret;
381         }
382
383         hdev->hw.mac.media_type = resp_msg[0];
384         hdev->hw.mac.module_type = resp_msg[1];
385
386         return 0;
387 }
388
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391         struct hclgevf_tqp *tqp;
392         int i;
393
394         hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395                                   sizeof(struct hclgevf_tqp), GFP_KERNEL);
396         if (!hdev->htqp)
397                 return -ENOMEM;
398
399         tqp = hdev->htqp;
400
401         for (i = 0; i < hdev->num_tqps; i++) {
402                 tqp->dev = &hdev->pdev->dev;
403                 tqp->index = i;
404
405                 tqp->q.ae_algo = &ae_algovf;
406                 tqp->q.buf_size = hdev->rx_buf_len;
407                 tqp->q.tx_desc_num = hdev->num_tx_desc;
408                 tqp->q.rx_desc_num = hdev->num_rx_desc;
409
410                 /* need an extended offset to configure queues >=
411                  * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412                  */
413                 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414                         tqp->q.io_base = hdev->hw.io_base +
415                                          HCLGEVF_TQP_REG_OFFSET +
416                                          i * HCLGEVF_TQP_REG_SIZE;
417                 else
418                         tqp->q.io_base = hdev->hw.io_base +
419                                          HCLGEVF_TQP_REG_OFFSET +
420                                          HCLGEVF_TQP_EXT_REG_OFFSET +
421                                          (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422                                          HCLGEVF_TQP_REG_SIZE;
423
424                 tqp++;
425         }
426
427         return 0;
428 }
429
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432         struct hnae3_handle *nic = &hdev->nic;
433         struct hnae3_knic_private_info *kinfo;
434         u16 new_tqps = hdev->num_tqps;
435         unsigned int i;
436         u8 num_tc = 0;
437
438         kinfo = &nic->kinfo;
439         kinfo->num_tx_desc = hdev->num_tx_desc;
440         kinfo->num_rx_desc = hdev->num_rx_desc;
441         kinfo->rx_buf_len = hdev->rx_buf_len;
442         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443                 if (hdev->hw_tc_map & BIT(i))
444                         num_tc++;
445
446         num_tc = num_tc ? num_tc : 1;
447         kinfo->tc_info.num_tc = num_tc;
448         kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449         new_tqps = kinfo->rss_size * num_tc;
450         kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451
452         kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453                                   sizeof(struct hnae3_queue *), GFP_KERNEL);
454         if (!kinfo->tqp)
455                 return -ENOMEM;
456
457         for (i = 0; i < kinfo->num_tqps; i++) {
458                 hdev->htqp[i].q.handle = &hdev->nic;
459                 hdev->htqp[i].q.tqp_index = i;
460                 kinfo->tqp[i] = &hdev->htqp[i].q;
461         }
462
463         /* after init the max rss_size and tqps, adjust the default tqp numbers
464          * and rss size with the actual vector numbers
465          */
466         kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467         kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468                                 kinfo->rss_size);
469
470         return 0;
471 }
472
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475         struct hclge_vf_to_pf_msg send_msg;
476         int status;
477
478         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479         status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480         if (status)
481                 dev_err(&hdev->pdev->dev,
482                         "VF failed to fetch link status(%d) from PF", status);
483 }
484
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487         struct hnae3_handle *rhandle = &hdev->roce;
488         struct hnae3_handle *handle = &hdev->nic;
489         struct hnae3_client *rclient;
490         struct hnae3_client *client;
491
492         if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493                 return;
494
495         client = handle->client;
496         rclient = hdev->roce_client;
497
498         link_state =
499                 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500         if (link_state != hdev->hw.mac.link) {
501                 client->ops->link_status_change(handle, !!link_state);
502                 if (rclient && rclient->ops->link_status_change)
503                         rclient->ops->link_status_change(rhandle, !!link_state);
504                 hdev->hw.mac.link = link_state;
505         }
506
507         clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
508 }
509
510 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
511 {
512 #define HCLGEVF_ADVERTISING     0
513 #define HCLGEVF_SUPPORTED       1
514
515         struct hclge_vf_to_pf_msg send_msg;
516
517         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
518         send_msg.data[0] = HCLGEVF_ADVERTISING;
519         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
520         send_msg.data[0] = HCLGEVF_SUPPORTED;
521         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
522 }
523
524 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
525 {
526         struct hnae3_handle *nic = &hdev->nic;
527         int ret;
528
529         nic->ae_algo = &ae_algovf;
530         nic->pdev = hdev->pdev;
531         nic->numa_node_mask = hdev->numa_node_mask;
532         nic->flags |= HNAE3_SUPPORT_VF;
533
534         ret = hclgevf_knic_setup(hdev);
535         if (ret)
536                 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
537                         ret);
538         return ret;
539 }
540
541 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
542 {
543         if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
544                 dev_warn(&hdev->pdev->dev,
545                          "vector(vector_id %d) has been freed.\n", vector_id);
546                 return;
547         }
548
549         hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
550         hdev->num_msi_left += 1;
551         hdev->num_msi_used -= 1;
552 }
553
554 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
555                               struct hnae3_vector_info *vector_info)
556 {
557         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
558         struct hnae3_vector_info *vector = vector_info;
559         int alloc = 0;
560         int i, j;
561
562         vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
563         vector_num = min(hdev->num_msi_left, vector_num);
564
565         for (j = 0; j < vector_num; j++) {
566                 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
567                         if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
568                                 vector->vector = pci_irq_vector(hdev->pdev, i);
569                                 vector->io_addr = hdev->hw.io_base +
570                                         HCLGEVF_VECTOR_REG_BASE +
571                                         (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
572                                 hdev->vector_status[i] = 0;
573                                 hdev->vector_irq[i] = vector->vector;
574
575                                 vector++;
576                                 alloc++;
577
578                                 break;
579                         }
580                 }
581         }
582         hdev->num_msi_left -= alloc;
583         hdev->num_msi_used += alloc;
584
585         return alloc;
586 }
587
588 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
589 {
590         int i;
591
592         for (i = 0; i < hdev->num_msi; i++)
593                 if (vector == hdev->vector_irq[i])
594                         return i;
595
596         return -EINVAL;
597 }
598
599 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
600                                     const u8 hfunc, const u8 *key)
601 {
602         struct hclgevf_rss_config_cmd *req;
603         unsigned int key_offset = 0;
604         struct hclgevf_desc desc;
605         int key_counts;
606         int key_size;
607         int ret;
608
609         key_counts = HCLGEVF_RSS_KEY_SIZE;
610         req = (struct hclgevf_rss_config_cmd *)desc.data;
611
612         while (key_counts) {
613                 hclgevf_cmd_setup_basic_desc(&desc,
614                                              HCLGEVF_OPC_RSS_GENERIC_CONFIG,
615                                              false);
616
617                 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
618                 req->hash_config |=
619                         (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
620
621                 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
622                 memcpy(req->hash_key,
623                        key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
624
625                 key_counts -= key_size;
626                 key_offset++;
627                 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
628                 if (ret) {
629                         dev_err(&hdev->pdev->dev,
630                                 "Configure RSS config fail, status = %d\n",
631                                 ret);
632                         return ret;
633                 }
634         }
635
636         return 0;
637 }
638
639 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
640 {
641         return HCLGEVF_RSS_KEY_SIZE;
642 }
643
644 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
645 {
646         const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
647         struct hclgevf_rss_indirection_table_cmd *req;
648         struct hclgevf_desc desc;
649         int rss_cfg_tbl_num;
650         int status;
651         int i, j;
652
653         req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
654         rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
655                           HCLGEVF_RSS_CFG_TBL_SIZE;
656
657         for (i = 0; i < rss_cfg_tbl_num; i++) {
658                 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
659                                              false);
660                 req->start_table_index =
661                         cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
662                 req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
663                 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
664                         req->rss_result[j] =
665                                 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
666
667                 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
668                 if (status) {
669                         dev_err(&hdev->pdev->dev,
670                                 "VF failed(=%d) to set RSS indirection table\n",
671                                 status);
672                         return status;
673                 }
674         }
675
676         return 0;
677 }
678
679 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
680 {
681         struct hclgevf_rss_tc_mode_cmd *req;
682         u16 tc_offset[HCLGEVF_MAX_TC_NUM];
683         u16 tc_valid[HCLGEVF_MAX_TC_NUM];
684         u16 tc_size[HCLGEVF_MAX_TC_NUM];
685         struct hclgevf_desc desc;
686         u16 roundup_size;
687         unsigned int i;
688         int status;
689
690         req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
691
692         roundup_size = roundup_pow_of_two(rss_size);
693         roundup_size = ilog2(roundup_size);
694
695         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
696                 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
697                 tc_size[i] = roundup_size;
698                 tc_offset[i] = rss_size * i;
699         }
700
701         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
702         for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
703                 u16 mode = 0;
704
705                 hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
706                               (tc_valid[i] & 0x1));
707                 hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
708                                 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
709                 hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
710                               tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
711                               0x1);
712                 hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
713                                 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
714
715                 req->rss_tc_mode[i] = cpu_to_le16(mode);
716         }
717         status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
718         if (status)
719                 dev_err(&hdev->pdev->dev,
720                         "VF failed(=%d) to set rss tc mode\n", status);
721
722         return status;
723 }
724
725 /* for revision 0x20, vf shared the same rss config with pf */
726 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
727 {
728 #define HCLGEVF_RSS_MBX_RESP_LEN        8
729         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
730         u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
731         struct hclge_vf_to_pf_msg send_msg;
732         u16 msg_num, hash_key_index;
733         u8 index;
734         int ret;
735
736         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
737         msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
738                         HCLGEVF_RSS_MBX_RESP_LEN;
739         for (index = 0; index < msg_num; index++) {
740                 send_msg.data[0] = index;
741                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
742                                            HCLGEVF_RSS_MBX_RESP_LEN);
743                 if (ret) {
744                         dev_err(&hdev->pdev->dev,
745                                 "VF get rss hash key from PF failed, ret=%d",
746                                 ret);
747                         return ret;
748                 }
749
750                 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
751                 if (index == msg_num - 1)
752                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
753                                &resp_msg[0],
754                                HCLGEVF_RSS_KEY_SIZE - hash_key_index);
755                 else
756                         memcpy(&rss_cfg->rss_hash_key[hash_key_index],
757                                &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
758         }
759
760         return 0;
761 }
762
763 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
764                            u8 *hfunc)
765 {
766         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
767         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
768         int i, ret;
769
770         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
771                 /* Get hash algorithm */
772                 if (hfunc) {
773                         switch (rss_cfg->hash_algo) {
774                         case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
775                                 *hfunc = ETH_RSS_HASH_TOP;
776                                 break;
777                         case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
778                                 *hfunc = ETH_RSS_HASH_XOR;
779                                 break;
780                         default:
781                                 *hfunc = ETH_RSS_HASH_UNKNOWN;
782                                 break;
783                         }
784                 }
785
786                 /* Get the RSS Key required by the user */
787                 if (key)
788                         memcpy(key, rss_cfg->rss_hash_key,
789                                HCLGEVF_RSS_KEY_SIZE);
790         } else {
791                 if (hfunc)
792                         *hfunc = ETH_RSS_HASH_TOP;
793                 if (key) {
794                         ret = hclgevf_get_rss_hash_key(hdev);
795                         if (ret)
796                                 return ret;
797                         memcpy(key, rss_cfg->rss_hash_key,
798                                HCLGEVF_RSS_KEY_SIZE);
799                 }
800         }
801
802         if (indir)
803                 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
804                         indir[i] = rss_cfg->rss_indirection_tbl[i];
805
806         return 0;
807 }
808
809 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
810                            const u8 *key, const u8 hfunc)
811 {
812         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
813         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
814         int ret, i;
815
816         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
817                 /* Set the RSS Hash Key if specififed by the user */
818                 if (key) {
819                         switch (hfunc) {
820                         case ETH_RSS_HASH_TOP:
821                                 rss_cfg->hash_algo =
822                                         HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
823                                 break;
824                         case ETH_RSS_HASH_XOR:
825                                 rss_cfg->hash_algo =
826                                         HCLGEVF_RSS_HASH_ALGO_SIMPLE;
827                                 break;
828                         case ETH_RSS_HASH_NO_CHANGE:
829                                 break;
830                         default:
831                                 return -EINVAL;
832                         }
833
834                         ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
835                                                        key);
836                         if (ret)
837                                 return ret;
838
839                         /* Update the shadow RSS key with user specified qids */
840                         memcpy(rss_cfg->rss_hash_key, key,
841                                HCLGEVF_RSS_KEY_SIZE);
842                 }
843         }
844
845         /* update the shadow RSS table with user specified qids */
846         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
847                 rss_cfg->rss_indirection_tbl[i] = indir[i];
848
849         /* update the hardware */
850         return hclgevf_set_rss_indir_table(hdev);
851 }
852
853 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
854 {
855         u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
856
857         if (nfc->data & RXH_L4_B_2_3)
858                 hash_sets |= HCLGEVF_D_PORT_BIT;
859         else
860                 hash_sets &= ~HCLGEVF_D_PORT_BIT;
861
862         if (nfc->data & RXH_IP_SRC)
863                 hash_sets |= HCLGEVF_S_IP_BIT;
864         else
865                 hash_sets &= ~HCLGEVF_S_IP_BIT;
866
867         if (nfc->data & RXH_IP_DST)
868                 hash_sets |= HCLGEVF_D_IP_BIT;
869         else
870                 hash_sets &= ~HCLGEVF_D_IP_BIT;
871
872         if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
873                 hash_sets |= HCLGEVF_V_TAG_BIT;
874
875         return hash_sets;
876 }
877
878 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
879                                       struct ethtool_rxnfc *nfc,
880                                       struct hclgevf_rss_input_tuple_cmd *req)
881 {
882         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
883         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
884         u8 tuple_sets;
885
886         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
887         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
888         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
889         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
890         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
891         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
892         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
893         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
894
895         tuple_sets = hclgevf_get_rss_hash_bits(nfc);
896         switch (nfc->flow_type) {
897         case TCP_V4_FLOW:
898                 req->ipv4_tcp_en = tuple_sets;
899                 break;
900         case TCP_V6_FLOW:
901                 req->ipv6_tcp_en = tuple_sets;
902                 break;
903         case UDP_V4_FLOW:
904                 req->ipv4_udp_en = tuple_sets;
905                 break;
906         case UDP_V6_FLOW:
907                 req->ipv6_udp_en = tuple_sets;
908                 break;
909         case SCTP_V4_FLOW:
910                 req->ipv4_sctp_en = tuple_sets;
911                 break;
912         case SCTP_V6_FLOW:
913                 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
914                     (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
915                         return -EINVAL;
916
917                 req->ipv6_sctp_en = tuple_sets;
918                 break;
919         case IPV4_FLOW:
920                 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
921                 break;
922         case IPV6_FLOW:
923                 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
924                 break;
925         default:
926                 return -EINVAL;
927         }
928
929         return 0;
930 }
931
932 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
933                                  struct ethtool_rxnfc *nfc)
934 {
935         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
936         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
937         struct hclgevf_rss_input_tuple_cmd *req;
938         struct hclgevf_desc desc;
939         int ret;
940
941         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
942                 return -EOPNOTSUPP;
943
944         if (nfc->data &
945             ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
946                 return -EINVAL;
947
948         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
949         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
950
951         ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
952         if (ret) {
953                 dev_err(&hdev->pdev->dev,
954                         "failed to init rss tuple cmd, ret = %d\n", ret);
955                 return ret;
956         }
957
958         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
959         if (ret) {
960                 dev_err(&hdev->pdev->dev,
961                         "Set rss tuple fail, status = %d\n", ret);
962                 return ret;
963         }
964
965         rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
966         rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
967         rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
968         rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
969         rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
970         rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
971         rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
972         rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
973         return 0;
974 }
975
976 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
977                                               int flow_type, u8 *tuple_sets)
978 {
979         switch (flow_type) {
980         case TCP_V4_FLOW:
981                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
982                 break;
983         case UDP_V4_FLOW:
984                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
985                 break;
986         case TCP_V6_FLOW:
987                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
988                 break;
989         case UDP_V6_FLOW:
990                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
991                 break;
992         case SCTP_V4_FLOW:
993                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
994                 break;
995         case SCTP_V6_FLOW:
996                 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
997                 break;
998         case IPV4_FLOW:
999         case IPV6_FLOW:
1000                 *tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1001                 break;
1002         default:
1003                 return -EINVAL;
1004         }
1005
1006         return 0;
1007 }
1008
1009 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1010 {
1011         u64 tuple_data = 0;
1012
1013         if (tuple_sets & HCLGEVF_D_PORT_BIT)
1014                 tuple_data |= RXH_L4_B_2_3;
1015         if (tuple_sets & HCLGEVF_S_PORT_BIT)
1016                 tuple_data |= RXH_L4_B_0_1;
1017         if (tuple_sets & HCLGEVF_D_IP_BIT)
1018                 tuple_data |= RXH_IP_DST;
1019         if (tuple_sets & HCLGEVF_S_IP_BIT)
1020                 tuple_data |= RXH_IP_SRC;
1021
1022         return tuple_data;
1023 }
1024
1025 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1026                                  struct ethtool_rxnfc *nfc)
1027 {
1028         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1029         u8 tuple_sets;
1030         int ret;
1031
1032         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1033                 return -EOPNOTSUPP;
1034
1035         nfc->data = 0;
1036
1037         ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1038                                                  &tuple_sets);
1039         if (ret || !tuple_sets)
1040                 return ret;
1041
1042         nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1043
1044         return 0;
1045 }
1046
1047 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1048                                        struct hclgevf_rss_cfg *rss_cfg)
1049 {
1050         struct hclgevf_rss_input_tuple_cmd *req;
1051         struct hclgevf_desc desc;
1052         int ret;
1053
1054         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1055
1056         req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1057
1058         req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1059         req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1060         req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1061         req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1062         req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1063         req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1064         req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1065         req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1066
1067         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1068         if (ret)
1069                 dev_err(&hdev->pdev->dev,
1070                         "Configure rss input fail, status = %d\n", ret);
1071         return ret;
1072 }
1073
1074 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1075 {
1076         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1077         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1078
1079         return rss_cfg->rss_size;
1080 }
1081
1082 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1083                                        int vector_id,
1084                                        struct hnae3_ring_chain_node *ring_chain)
1085 {
1086         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1087         struct hclge_vf_to_pf_msg send_msg;
1088         struct hnae3_ring_chain_node *node;
1089         int status;
1090         int i = 0;
1091
1092         memset(&send_msg, 0, sizeof(send_msg));
1093         send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1094                 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1095         send_msg.vector_id = vector_id;
1096
1097         for (node = ring_chain; node; node = node->next) {
1098                 send_msg.param[i].ring_type =
1099                                 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1100
1101                 send_msg.param[i].tqp_index = node->tqp_index;
1102                 send_msg.param[i].int_gl_index =
1103                                         hnae3_get_field(node->int_gl_idx,
1104                                                         HNAE3_RING_GL_IDX_M,
1105                                                         HNAE3_RING_GL_IDX_S);
1106
1107                 i++;
1108                 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1109                         send_msg.ring_num = i;
1110
1111                         status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1112                                                       NULL, 0);
1113                         if (status) {
1114                                 dev_err(&hdev->pdev->dev,
1115                                         "Map TQP fail, status is %d.\n",
1116                                         status);
1117                                 return status;
1118                         }
1119                         i = 0;
1120                 }
1121         }
1122
1123         return 0;
1124 }
1125
1126 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1127                                       struct hnae3_ring_chain_node *ring_chain)
1128 {
1129         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1130         int vector_id;
1131
1132         vector_id = hclgevf_get_vector_index(hdev, vector);
1133         if (vector_id < 0) {
1134                 dev_err(&handle->pdev->dev,
1135                         "Get vector index fail. ret =%d\n", vector_id);
1136                 return vector_id;
1137         }
1138
1139         return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1140 }
1141
1142 static int hclgevf_unmap_ring_from_vector(
1143                                 struct hnae3_handle *handle,
1144                                 int vector,
1145                                 struct hnae3_ring_chain_node *ring_chain)
1146 {
1147         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1148         int ret, vector_id;
1149
1150         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1151                 return 0;
1152
1153         vector_id = hclgevf_get_vector_index(hdev, vector);
1154         if (vector_id < 0) {
1155                 dev_err(&handle->pdev->dev,
1156                         "Get vector index fail. ret =%d\n", vector_id);
1157                 return vector_id;
1158         }
1159
1160         ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1161         if (ret)
1162                 dev_err(&handle->pdev->dev,
1163                         "Unmap ring from vector fail. vector=%d, ret =%d\n",
1164                         vector_id,
1165                         ret);
1166
1167         return ret;
1168 }
1169
1170 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1171 {
1172         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1173         int vector_id;
1174
1175         vector_id = hclgevf_get_vector_index(hdev, vector);
1176         if (vector_id < 0) {
1177                 dev_err(&handle->pdev->dev,
1178                         "hclgevf_put_vector get vector index fail. ret =%d\n",
1179                         vector_id);
1180                 return vector_id;
1181         }
1182
1183         hclgevf_free_vector(hdev, vector_id);
1184
1185         return 0;
1186 }
1187
1188 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1189                                         bool en_uc_pmc, bool en_mc_pmc,
1190                                         bool en_bc_pmc)
1191 {
1192         struct hnae3_handle *handle = &hdev->nic;
1193         struct hclge_vf_to_pf_msg send_msg;
1194         int ret;
1195
1196         memset(&send_msg, 0, sizeof(send_msg));
1197         send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1198         send_msg.en_bc = en_bc_pmc ? 1 : 0;
1199         send_msg.en_uc = en_uc_pmc ? 1 : 0;
1200         send_msg.en_mc = en_mc_pmc ? 1 : 0;
1201         send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1202                                              &handle->priv_flags) ? 1 : 0;
1203
1204         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1205         if (ret)
1206                 dev_err(&hdev->pdev->dev,
1207                         "Set promisc mode fail, status is %d.\n", ret);
1208
1209         return ret;
1210 }
1211
1212 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1213                                     bool en_mc_pmc)
1214 {
1215         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1216         bool en_bc_pmc;
1217
1218         en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1219
1220         return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1221                                             en_bc_pmc);
1222 }
1223
1224 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1225 {
1226         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1227
1228         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1229         hclgevf_task_schedule(hdev, 0);
1230 }
1231
1232 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1233 {
1234         struct hnae3_handle *handle = &hdev->nic;
1235         bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1236         bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1237         int ret;
1238
1239         if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1240                 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1241                 if (!ret)
1242                         clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1243         }
1244 }
1245
1246 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1247                                        u16 stream_id, bool enable)
1248 {
1249         struct hclgevf_cfg_com_tqp_queue_cmd *req;
1250         struct hclgevf_desc desc;
1251
1252         req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1253
1254         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1255                                      false);
1256         req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1257         req->stream_id = cpu_to_le16(stream_id);
1258         if (enable)
1259                 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1260
1261         return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1262 }
1263
1264 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1265 {
1266         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1267         int ret;
1268         u16 i;
1269
1270         for (i = 0; i < handle->kinfo.num_tqps; i++) {
1271                 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1272                 if (ret)
1273                         return ret;
1274         }
1275
1276         return 0;
1277 }
1278
1279 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1280 {
1281         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1282         struct hclgevf_tqp *tqp;
1283         int i;
1284
1285         for (i = 0; i < kinfo->num_tqps; i++) {
1286                 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1287                 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1288         }
1289 }
1290
1291 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1292 {
1293         struct hclge_vf_to_pf_msg send_msg;
1294         u8 host_mac[ETH_ALEN];
1295         int status;
1296
1297         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1298         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1299                                       ETH_ALEN);
1300         if (status) {
1301                 dev_err(&hdev->pdev->dev,
1302                         "fail to get VF MAC from host %d", status);
1303                 return status;
1304         }
1305
1306         ether_addr_copy(p, host_mac);
1307
1308         return 0;
1309 }
1310
1311 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1312 {
1313         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1314         u8 host_mac_addr[ETH_ALEN];
1315
1316         if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1317                 return;
1318
1319         hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1320         if (hdev->has_pf_mac)
1321                 ether_addr_copy(p, host_mac_addr);
1322         else
1323                 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1324 }
1325
1326 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1327                                 bool is_first)
1328 {
1329         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1330         u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1331         struct hclge_vf_to_pf_msg send_msg;
1332         u8 *new_mac_addr = (u8 *)p;
1333         int status;
1334
1335         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1336         send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1337         ether_addr_copy(send_msg.data, new_mac_addr);
1338         if (is_first && !hdev->has_pf_mac)
1339                 eth_zero_addr(&send_msg.data[ETH_ALEN]);
1340         else
1341                 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1342         status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1343         if (!status)
1344                 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1345
1346         return status;
1347 }
1348
1349 static struct hclgevf_mac_addr_node *
1350 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1351 {
1352         struct hclgevf_mac_addr_node *mac_node, *tmp;
1353
1354         list_for_each_entry_safe(mac_node, tmp, list, node)
1355                 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1356                         return mac_node;
1357
1358         return NULL;
1359 }
1360
1361 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1362                                     enum HCLGEVF_MAC_NODE_STATE state)
1363 {
1364         switch (state) {
1365         /* from set_rx_mode or tmp_add_list */
1366         case HCLGEVF_MAC_TO_ADD:
1367                 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1368                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1369                 break;
1370         /* only from set_rx_mode */
1371         case HCLGEVF_MAC_TO_DEL:
1372                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1373                         list_del(&mac_node->node);
1374                         kfree(mac_node);
1375                 } else {
1376                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1377                 }
1378                 break;
1379         /* only from tmp_add_list, the mac_node->state won't be
1380          * HCLGEVF_MAC_ACTIVE
1381          */
1382         case HCLGEVF_MAC_ACTIVE:
1383                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1384                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1385                 break;
1386         }
1387 }
1388
1389 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1390                                    enum HCLGEVF_MAC_NODE_STATE state,
1391                                    enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1392                                    const unsigned char *addr)
1393 {
1394         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1395         struct hclgevf_mac_addr_node *mac_node;
1396         struct list_head *list;
1397
1398         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1399                &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1400
1401         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1402
1403         /* if the mac addr is already in the mac list, no need to add a new
1404          * one into it, just check the mac addr state, convert it to a new
1405          * new state, or just remove it, or do nothing.
1406          */
1407         mac_node = hclgevf_find_mac_node(list, addr);
1408         if (mac_node) {
1409                 hclgevf_update_mac_node(mac_node, state);
1410                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1411                 return 0;
1412         }
1413         /* if this address is never added, unnecessary to delete */
1414         if (state == HCLGEVF_MAC_TO_DEL) {
1415                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1416                 return -ENOENT;
1417         }
1418
1419         mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1420         if (!mac_node) {
1421                 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1422                 return -ENOMEM;
1423         }
1424
1425         mac_node->state = state;
1426         ether_addr_copy(mac_node->mac_addr, addr);
1427         list_add_tail(&mac_node->node, list);
1428
1429         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1430         return 0;
1431 }
1432
1433 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1434                                const unsigned char *addr)
1435 {
1436         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1437                                        HCLGEVF_MAC_ADDR_UC, addr);
1438 }
1439
1440 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1441                               const unsigned char *addr)
1442 {
1443         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1444                                        HCLGEVF_MAC_ADDR_UC, addr);
1445 }
1446
1447 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1448                                const unsigned char *addr)
1449 {
1450         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1451                                        HCLGEVF_MAC_ADDR_MC, addr);
1452 }
1453
1454 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1455                               const unsigned char *addr)
1456 {
1457         return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1458                                        HCLGEVF_MAC_ADDR_MC, addr);
1459 }
1460
1461 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1462                                     struct hclgevf_mac_addr_node *mac_node,
1463                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1464 {
1465         struct hclge_vf_to_pf_msg send_msg;
1466         u8 code, subcode;
1467
1468         if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1469                 code = HCLGE_MBX_SET_UNICAST;
1470                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1471                         subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1472                 else
1473                         subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1474         } else {
1475                 code = HCLGE_MBX_SET_MULTICAST;
1476                 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1477                         subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1478                 else
1479                         subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1480         }
1481
1482         hclgevf_build_send_msg(&send_msg, code, subcode);
1483         ether_addr_copy(send_msg.data, mac_node->mac_addr);
1484         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1485 }
1486
1487 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1488                                     struct list_head *list,
1489                                     enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1490 {
1491         struct hclgevf_mac_addr_node *mac_node, *tmp;
1492         int ret;
1493
1494         list_for_each_entry_safe(mac_node, tmp, list, node) {
1495                 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1496                 if  (ret) {
1497                         dev_err(&hdev->pdev->dev,
1498                                 "failed to configure mac %pM, state = %d, ret = %d\n",
1499                                 mac_node->mac_addr, mac_node->state, ret);
1500                         return;
1501                 }
1502                 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1503                         mac_node->state = HCLGEVF_MAC_ACTIVE;
1504                 } else {
1505                         list_del(&mac_node->node);
1506                         kfree(mac_node);
1507                 }
1508         }
1509 }
1510
1511 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1512                                        struct list_head *mac_list)
1513 {
1514         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1515
1516         list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1517                 /* if the mac address from tmp_add_list is not in the
1518                  * uc/mc_mac_list, it means have received a TO_DEL request
1519                  * during the time window of sending mac config request to PF
1520                  * If mac_node state is ACTIVE, then change its state to TO_DEL,
1521                  * then it will be removed at next time. If is TO_ADD, it means
1522                  * send TO_ADD request failed, so just remove the mac node.
1523                  */
1524                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1525                 if (new_node) {
1526                         hclgevf_update_mac_node(new_node, mac_node->state);
1527                         list_del(&mac_node->node);
1528                         kfree(mac_node);
1529                 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1530                         mac_node->state = HCLGEVF_MAC_TO_DEL;
1531                         list_del(&mac_node->node);
1532                         list_add_tail(&mac_node->node, mac_list);
1533                 } else {
1534                         list_del(&mac_node->node);
1535                         kfree(mac_node);
1536                 }
1537         }
1538 }
1539
1540 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1541                                        struct list_head *mac_list)
1542 {
1543         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1544
1545         list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1546                 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1547                 if (new_node) {
1548                         /* If the mac addr is exist in the mac list, it means
1549                          * received a new request TO_ADD during the time window
1550                          * of sending mac addr configurrequest to PF, so just
1551                          * change the mac state to ACTIVE.
1552                          */
1553                         new_node->state = HCLGEVF_MAC_ACTIVE;
1554                         list_del(&mac_node->node);
1555                         kfree(mac_node);
1556                 } else {
1557                         list_del(&mac_node->node);
1558                         list_add_tail(&mac_node->node, mac_list);
1559                 }
1560         }
1561 }
1562
1563 static void hclgevf_clear_list(struct list_head *list)
1564 {
1565         struct hclgevf_mac_addr_node *mac_node, *tmp;
1566
1567         list_for_each_entry_safe(mac_node, tmp, list, node) {
1568                 list_del(&mac_node->node);
1569                 kfree(mac_node);
1570         }
1571 }
1572
1573 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1574                                   enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1575 {
1576         struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1577         struct list_head tmp_add_list, tmp_del_list;
1578         struct list_head *list;
1579
1580         INIT_LIST_HEAD(&tmp_add_list);
1581         INIT_LIST_HEAD(&tmp_del_list);
1582
1583         /* move the mac addr to the tmp_add_list and tmp_del_list, then
1584          * we can add/delete these mac addr outside the spin lock
1585          */
1586         list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1587                 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1588
1589         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1590
1591         list_for_each_entry_safe(mac_node, tmp, list, node) {
1592                 switch (mac_node->state) {
1593                 case HCLGEVF_MAC_TO_DEL:
1594                         list_del(&mac_node->node);
1595                         list_add_tail(&mac_node->node, &tmp_del_list);
1596                         break;
1597                 case HCLGEVF_MAC_TO_ADD:
1598                         new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1599                         if (!new_node)
1600                                 goto stop_traverse;
1601
1602                         ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1603                         new_node->state = mac_node->state;
1604                         list_add_tail(&new_node->node, &tmp_add_list);
1605                         break;
1606                 default:
1607                         break;
1608                 }
1609         }
1610
1611 stop_traverse:
1612         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1613
1614         /* delete first, in order to get max mac table space for adding */
1615         hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1616         hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1617
1618         /* if some mac addresses were added/deleted fail, move back to the
1619          * mac_list, and retry at next time.
1620          */
1621         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1622
1623         hclgevf_sync_from_del_list(&tmp_del_list, list);
1624         hclgevf_sync_from_add_list(&tmp_add_list, list);
1625
1626         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1627 }
1628
1629 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1630 {
1631         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1632         hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1633 }
1634
1635 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1636 {
1637         spin_lock_bh(&hdev->mac_table.mac_list_lock);
1638
1639         hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1640         hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1641
1642         spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1643 }
1644
1645 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1646                                    __be16 proto, u16 vlan_id,
1647                                    bool is_kill)
1648 {
1649 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1650 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1651 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET   3
1652
1653         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1654         struct hclge_vf_to_pf_msg send_msg;
1655         int ret;
1656
1657         if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1658                 return -EINVAL;
1659
1660         if (proto != htons(ETH_P_8021Q))
1661                 return -EPROTONOSUPPORT;
1662
1663         /* When device is resetting or reset failed, firmware is unable to
1664          * handle mailbox. Just record the vlan id, and remove it after
1665          * reset finished.
1666          */
1667         if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1668              test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1669                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1670                 return -EBUSY;
1671         }
1672
1673         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1674                                HCLGE_MBX_VLAN_FILTER);
1675         send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1676         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1677                sizeof(vlan_id));
1678         memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1679                sizeof(proto));
1680         /* when remove hw vlan filter failed, record the vlan id,
1681          * and try to remove it from hw later, to be consistence
1682          * with stack.
1683          */
1684         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1685         if (is_kill && ret)
1686                 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1687
1688         return ret;
1689 }
1690
1691 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1692 {
1693 #define HCLGEVF_MAX_SYNC_COUNT  60
1694         struct hnae3_handle *handle = &hdev->nic;
1695         int ret, sync_cnt = 0;
1696         u16 vlan_id;
1697
1698         vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1699         while (vlan_id != VLAN_N_VID) {
1700                 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1701                                               vlan_id, true);
1702                 if (ret)
1703                         return;
1704
1705                 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1706                 sync_cnt++;
1707                 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1708                         return;
1709
1710                 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1711         }
1712 }
1713
1714 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1715 {
1716         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1717         struct hclge_vf_to_pf_msg send_msg;
1718
1719         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1720                                HCLGE_MBX_VLAN_RX_OFF_CFG);
1721         send_msg.data[0] = enable ? 1 : 0;
1722         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1723 }
1724
1725 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1726 {
1727 #define HCLGEVF_RESET_ALL_QUEUE_DONE    1U
1728         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1729         struct hclge_vf_to_pf_msg send_msg;
1730         u8 return_status = 0;
1731         int ret;
1732         u16 i;
1733
1734         /* disable vf queue before send queue reset msg to PF */
1735         ret = hclgevf_tqp_enable(handle, false);
1736         if (ret) {
1737                 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1738                         ret);
1739                 return ret;
1740         }
1741
1742         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1743
1744         ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1745                                    sizeof(return_status));
1746         if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1747                 return ret;
1748
1749         for (i = 1; i < handle->kinfo.num_tqps; i++) {
1750                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1751                 memcpy(send_msg.data, &i, sizeof(i));
1752                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1753                 if (ret)
1754                         return ret;
1755         }
1756
1757         return 0;
1758 }
1759
1760 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1761 {
1762         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1763         struct hclge_vf_to_pf_msg send_msg;
1764
1765         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1766         memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1767         return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1768 }
1769
1770 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1771                                  enum hnae3_reset_notify_type type)
1772 {
1773         struct hnae3_client *client = hdev->nic_client;
1774         struct hnae3_handle *handle = &hdev->nic;
1775         int ret;
1776
1777         if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1778             !client)
1779                 return 0;
1780
1781         if (!client->ops->reset_notify)
1782                 return -EOPNOTSUPP;
1783
1784         ret = client->ops->reset_notify(handle, type);
1785         if (ret)
1786                 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1787                         type, ret);
1788
1789         return ret;
1790 }
1791
1792 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1793                                       enum hnae3_reset_notify_type type)
1794 {
1795         struct hnae3_client *client = hdev->roce_client;
1796         struct hnae3_handle *handle = &hdev->roce;
1797         int ret;
1798
1799         if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1800                 return 0;
1801
1802         if (!client->ops->reset_notify)
1803                 return -EOPNOTSUPP;
1804
1805         ret = client->ops->reset_notify(handle, type);
1806         if (ret)
1807                 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1808                         type, ret);
1809         return ret;
1810 }
1811
1812 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1813 {
1814 #define HCLGEVF_RESET_WAIT_US   20000
1815 #define HCLGEVF_RESET_WAIT_CNT  2000
1816 #define HCLGEVF_RESET_WAIT_TIMEOUT_US   \
1817         (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1818
1819         u32 val;
1820         int ret;
1821
1822         if (hdev->reset_type == HNAE3_VF_RESET)
1823                 ret = readl_poll_timeout(hdev->hw.io_base +
1824                                          HCLGEVF_VF_RST_ING, val,
1825                                          !(val & HCLGEVF_VF_RST_ING_BIT),
1826                                          HCLGEVF_RESET_WAIT_US,
1827                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1828         else
1829                 ret = readl_poll_timeout(hdev->hw.io_base +
1830                                          HCLGEVF_RST_ING, val,
1831                                          !(val & HCLGEVF_RST_ING_BITS),
1832                                          HCLGEVF_RESET_WAIT_US,
1833                                          HCLGEVF_RESET_WAIT_TIMEOUT_US);
1834
1835         /* hardware completion status should be available by this time */
1836         if (ret) {
1837                 dev_err(&hdev->pdev->dev,
1838                         "couldn't get reset done status from h/w, timeout!\n");
1839                 return ret;
1840         }
1841
1842         /* we will wait a bit more to let reset of the stack to complete. This
1843          * might happen in case reset assertion was made by PF. Yes, this also
1844          * means we might end up waiting bit more even for VF reset.
1845          */
1846         msleep(5000);
1847
1848         return 0;
1849 }
1850
1851 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1852 {
1853         u32 reg_val;
1854
1855         reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1856         if (enable)
1857                 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1858         else
1859                 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1860
1861         hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1862                           reg_val);
1863 }
1864
1865 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1866 {
1867         int ret;
1868
1869         /* uninitialize the nic client */
1870         ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1871         if (ret)
1872                 return ret;
1873
1874         /* re-initialize the hclge device */
1875         ret = hclgevf_reset_hdev(hdev);
1876         if (ret) {
1877                 dev_err(&hdev->pdev->dev,
1878                         "hclge device re-init failed, VF is disabled!\n");
1879                 return ret;
1880         }
1881
1882         /* bring up the nic client again */
1883         ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1884         if (ret)
1885                 return ret;
1886
1887         /* clear handshake status with IMP */
1888         hclgevf_reset_handshake(hdev, false);
1889
1890         /* bring up the nic to enable TX/RX again */
1891         return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1892 }
1893
1894 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1895 {
1896 #define HCLGEVF_RESET_SYNC_TIME 100
1897
1898         if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1899                 struct hclge_vf_to_pf_msg send_msg;
1900                 int ret;
1901
1902                 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1903                 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1904                 if (ret) {
1905                         dev_err(&hdev->pdev->dev,
1906                                 "failed to assert VF reset, ret = %d\n", ret);
1907                         return ret;
1908                 }
1909                 hdev->rst_stats.vf_func_rst_cnt++;
1910         }
1911
1912         set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1913         /* inform hardware that preparatory work is done */
1914         msleep(HCLGEVF_RESET_SYNC_TIME);
1915         hclgevf_reset_handshake(hdev, true);
1916         dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1917                  hdev->reset_type);
1918
1919         return 0;
1920 }
1921
1922 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1923 {
1924         dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1925                  hdev->rst_stats.vf_func_rst_cnt);
1926         dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1927                  hdev->rst_stats.flr_rst_cnt);
1928         dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1929                  hdev->rst_stats.vf_rst_cnt);
1930         dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1931                  hdev->rst_stats.rst_done_cnt);
1932         dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1933                  hdev->rst_stats.hw_rst_done_cnt);
1934         dev_info(&hdev->pdev->dev, "reset count: %u\n",
1935                  hdev->rst_stats.rst_cnt);
1936         dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1937                  hdev->rst_stats.rst_fail_cnt);
1938         dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1939                  hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1940         dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1941                  hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1942         dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1943                  hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1944         dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1945                  hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1946         dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1947 }
1948
1949 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1950 {
1951         /* recover handshake status with IMP when reset fail */
1952         hclgevf_reset_handshake(hdev, true);
1953         hdev->rst_stats.rst_fail_cnt++;
1954         dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1955                 hdev->rst_stats.rst_fail_cnt);
1956
1957         if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1958                 set_bit(hdev->reset_type, &hdev->reset_pending);
1959
1960         if (hclgevf_is_reset_pending(hdev)) {
1961                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1962                 hclgevf_reset_task_schedule(hdev);
1963         } else {
1964                 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1965                 hclgevf_dump_rst_info(hdev);
1966         }
1967 }
1968
1969 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1970 {
1971         int ret;
1972
1973         hdev->rst_stats.rst_cnt++;
1974
1975         /* perform reset of the stack & ae device for a client */
1976         ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1977         if (ret)
1978                 return ret;
1979
1980         rtnl_lock();
1981         /* bring down the nic to stop any ongoing TX/RX */
1982         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1983         rtnl_unlock();
1984         if (ret)
1985                 return ret;
1986
1987         return hclgevf_reset_prepare_wait(hdev);
1988 }
1989
1990 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1991 {
1992         int ret;
1993
1994         hdev->rst_stats.hw_rst_done_cnt++;
1995         ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1996         if (ret)
1997                 return ret;
1998
1999         rtnl_lock();
2000         /* now, re-initialize the nic client and ae device */
2001         ret = hclgevf_reset_stack(hdev);
2002         rtnl_unlock();
2003         if (ret) {
2004                 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2005                 return ret;
2006         }
2007
2008         ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2009         /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2010          * times
2011          */
2012         if (ret &&
2013             hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2014                 return ret;
2015
2016         ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2017         if (ret)
2018                 return ret;
2019
2020         hdev->last_reset_time = jiffies;
2021         hdev->rst_stats.rst_done_cnt++;
2022         hdev->rst_stats.rst_fail_cnt = 0;
2023         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2024
2025         return 0;
2026 }
2027
2028 static void hclgevf_reset(struct hclgevf_dev *hdev)
2029 {
2030         if (hclgevf_reset_prepare(hdev))
2031                 goto err_reset;
2032
2033         /* check if VF could successfully fetch the hardware reset completion
2034          * status from the hardware
2035          */
2036         if (hclgevf_reset_wait(hdev)) {
2037                 /* can't do much in this situation, will disable VF */
2038                 dev_err(&hdev->pdev->dev,
2039                         "failed to fetch H/W reset completion status\n");
2040                 goto err_reset;
2041         }
2042
2043         if (hclgevf_reset_rebuild(hdev))
2044                 goto err_reset;
2045
2046         return;
2047
2048 err_reset:
2049         hclgevf_reset_err_handle(hdev);
2050 }
2051
2052 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2053                                                      unsigned long *addr)
2054 {
2055         enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2056
2057         /* return the highest priority reset level amongst all */
2058         if (test_bit(HNAE3_VF_RESET, addr)) {
2059                 rst_level = HNAE3_VF_RESET;
2060                 clear_bit(HNAE3_VF_RESET, addr);
2061                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2062                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2063         } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2064                 rst_level = HNAE3_VF_FULL_RESET;
2065                 clear_bit(HNAE3_VF_FULL_RESET, addr);
2066                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2067         } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2068                 rst_level = HNAE3_VF_PF_FUNC_RESET;
2069                 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2070                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2071         } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2072                 rst_level = HNAE3_VF_FUNC_RESET;
2073                 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2074         } else if (test_bit(HNAE3_FLR_RESET, addr)) {
2075                 rst_level = HNAE3_FLR_RESET;
2076                 clear_bit(HNAE3_FLR_RESET, addr);
2077         }
2078
2079         return rst_level;
2080 }
2081
2082 static void hclgevf_reset_event(struct pci_dev *pdev,
2083                                 struct hnae3_handle *handle)
2084 {
2085         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2086         struct hclgevf_dev *hdev = ae_dev->priv;
2087
2088         dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2089
2090         if (hdev->default_reset_request)
2091                 hdev->reset_level =
2092                         hclgevf_get_reset_level(hdev,
2093                                                 &hdev->default_reset_request);
2094         else
2095                 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2096
2097         /* reset of this VF requested */
2098         set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2099         hclgevf_reset_task_schedule(hdev);
2100
2101         hdev->last_reset_time = jiffies;
2102 }
2103
2104 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2105                                           enum hnae3_reset_type rst_type)
2106 {
2107         struct hclgevf_dev *hdev = ae_dev->priv;
2108
2109         set_bit(rst_type, &hdev->default_reset_request);
2110 }
2111
2112 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2113 {
2114         writel(en ? 1 : 0, vector->addr);
2115 }
2116
2117 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2118 {
2119 #define HCLGEVF_FLR_RETRY_WAIT_MS       500
2120 #define HCLGEVF_FLR_RETRY_CNT           5
2121
2122         struct hclgevf_dev *hdev = ae_dev->priv;
2123         int retry_cnt = 0;
2124         int ret;
2125
2126 retry:
2127         down(&hdev->reset_sem);
2128         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2129         hdev->reset_type = HNAE3_FLR_RESET;
2130         ret = hclgevf_reset_prepare(hdev);
2131         if (ret) {
2132                 dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2133                         ret);
2134                 if (hdev->reset_pending ||
2135                     retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2136                         dev_err(&hdev->pdev->dev,
2137                                 "reset_pending:0x%lx, retry_cnt:%d\n",
2138                                 hdev->reset_pending, retry_cnt);
2139                         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2140                         up(&hdev->reset_sem);
2141                         msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2142                         goto retry;
2143                 }
2144         }
2145
2146         /* disable misc vector before FLR done */
2147         hclgevf_enable_vector(&hdev->misc_vector, false);
2148         hdev->rst_stats.flr_rst_cnt++;
2149 }
2150
2151 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2152 {
2153         struct hclgevf_dev *hdev = ae_dev->priv;
2154         int ret;
2155
2156         hclgevf_enable_vector(&hdev->misc_vector, true);
2157
2158         ret = hclgevf_reset_rebuild(hdev);
2159         if (ret)
2160                 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2161                          ret);
2162
2163         hdev->reset_type = HNAE3_NONE_RESET;
2164         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2165         up(&hdev->reset_sem);
2166 }
2167
2168 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2169 {
2170         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2171
2172         return hdev->fw_version;
2173 }
2174
2175 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2176 {
2177         struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2178
2179         vector->vector_irq = pci_irq_vector(hdev->pdev,
2180                                             HCLGEVF_MISC_VECTOR_NUM);
2181         vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2182         /* vector status always valid for Vector 0 */
2183         hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2184         hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2185
2186         hdev->num_msi_left -= 1;
2187         hdev->num_msi_used += 1;
2188 }
2189
2190 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2191 {
2192         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2193             !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2194                               &hdev->state))
2195                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2196 }
2197
2198 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2199 {
2200         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2201             !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2202                               &hdev->state))
2203                 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2204 }
2205
2206 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2207                                   unsigned long delay)
2208 {
2209         if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2210             !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2211                 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2212 }
2213
2214 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2215 {
2216 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT  3
2217
2218         if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2219                 return;
2220
2221         down(&hdev->reset_sem);
2222         set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2223
2224         if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2225                                &hdev->reset_state)) {
2226                 /* PF has initmated that it is about to reset the hardware.
2227                  * We now have to poll & check if hardware has actually
2228                  * completed the reset sequence. On hardware reset completion,
2229                  * VF needs to reset the client and ae device.
2230                  */
2231                 hdev->reset_attempts = 0;
2232
2233                 hdev->last_reset_time = jiffies;
2234                 while ((hdev->reset_type =
2235                         hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2236                        != HNAE3_NONE_RESET)
2237                         hclgevf_reset(hdev);
2238         } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2239                                       &hdev->reset_state)) {
2240                 /* we could be here when either of below happens:
2241                  * 1. reset was initiated due to watchdog timeout caused by
2242                  *    a. IMP was earlier reset and our TX got choked down and
2243                  *       which resulted in watchdog reacting and inducing VF
2244                  *       reset. This also means our cmdq would be unreliable.
2245                  *    b. problem in TX due to other lower layer(example link
2246                  *       layer not functioning properly etc.)
2247                  * 2. VF reset might have been initiated due to some config
2248                  *    change.
2249                  *
2250                  * NOTE: Theres no clear way to detect above cases than to react
2251                  * to the response of PF for this reset request. PF will ack the
2252                  * 1b and 2. cases but we will not get any intimation about 1a
2253                  * from PF as cmdq would be in unreliable state i.e. mailbox
2254                  * communication between PF and VF would be broken.
2255                  *
2256                  * if we are never geting into pending state it means either:
2257                  * 1. PF is not receiving our request which could be due to IMP
2258                  *    reset
2259                  * 2. PF is screwed
2260                  * We cannot do much for 2. but to check first we can try reset
2261                  * our PCIe + stack and see if it alleviates the problem.
2262                  */
2263                 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2264                         /* prepare for full reset of stack + pcie interface */
2265                         set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2266
2267                         /* "defer" schedule the reset task again */
2268                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2269                 } else {
2270                         hdev->reset_attempts++;
2271
2272                         set_bit(hdev->reset_level, &hdev->reset_pending);
2273                         set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2274                 }
2275                 hclgevf_reset_task_schedule(hdev);
2276         }
2277
2278         hdev->reset_type = HNAE3_NONE_RESET;
2279         clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2280         up(&hdev->reset_sem);
2281 }
2282
2283 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2284 {
2285         if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2286                 return;
2287
2288         if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2289                 return;
2290
2291         hclgevf_mbx_async_handler(hdev);
2292
2293         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2294 }
2295
2296 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2297 {
2298         struct hclge_vf_to_pf_msg send_msg;
2299         int ret;
2300
2301         if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2302                 return;
2303
2304         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2305         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2306         if (ret)
2307                 dev_err(&hdev->pdev->dev,
2308                         "VF sends keep alive cmd failed(=%d)\n", ret);
2309 }
2310
2311 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2312 {
2313         unsigned long delta = round_jiffies_relative(HZ);
2314         struct hnae3_handle *handle = &hdev->nic;
2315
2316         if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2317                 return;
2318
2319         if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2320                 delta = jiffies - hdev->last_serv_processed;
2321
2322                 if (delta < round_jiffies_relative(HZ)) {
2323                         delta = round_jiffies_relative(HZ) - delta;
2324                         goto out;
2325                 }
2326         }
2327
2328         hdev->serv_processed_cnt++;
2329         if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2330                 hclgevf_keep_alive(hdev);
2331
2332         if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2333                 hdev->last_serv_processed = jiffies;
2334                 goto out;
2335         }
2336
2337         if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2338                 hclgevf_tqps_update_stats(handle);
2339
2340         /* request the link status from the PF. PF would be able to tell VF
2341          * about such updates in future so we might remove this later
2342          */
2343         hclgevf_request_link_info(hdev);
2344
2345         hclgevf_update_link_mode(hdev);
2346
2347         hclgevf_sync_vlan_filter(hdev);
2348
2349         hclgevf_sync_mac_table(hdev);
2350
2351         hclgevf_sync_promisc_mode(hdev);
2352
2353         hdev->last_serv_processed = jiffies;
2354
2355 out:
2356         hclgevf_task_schedule(hdev, delta);
2357 }
2358
2359 static void hclgevf_service_task(struct work_struct *work)
2360 {
2361         struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2362                                                 service_task.work);
2363
2364         hclgevf_reset_service_task(hdev);
2365         hclgevf_mailbox_service_task(hdev);
2366         hclgevf_periodic_service_task(hdev);
2367
2368         /* Handle reset and mbx again in case periodical task delays the
2369          * handling by calling hclgevf_task_schedule() in
2370          * hclgevf_periodic_service_task()
2371          */
2372         hclgevf_reset_service_task(hdev);
2373         hclgevf_mailbox_service_task(hdev);
2374 }
2375
2376 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2377 {
2378         hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2379 }
2380
2381 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2382                                                       u32 *clearval)
2383 {
2384         u32 val, cmdq_stat_reg, rst_ing_reg;
2385
2386         /* fetch the events from their corresponding regs */
2387         cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2388                                          HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2389         if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2390                 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2391                 dev_info(&hdev->pdev->dev,
2392                          "receive reset interrupt 0x%x!\n", rst_ing_reg);
2393                 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2394                 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2395                 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2396                 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2397                 hdev->rst_stats.vf_rst_cnt++;
2398                 /* set up VF hardware reset status, its PF will clear
2399                  * this status when PF has initialized done.
2400                  */
2401                 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2402                 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2403                                   val | HCLGEVF_VF_RST_ING_BIT);
2404                 return HCLGEVF_VECTOR0_EVENT_RST;
2405         }
2406
2407         /* check for vector0 mailbox(=CMDQ RX) event source */
2408         if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2409                 /* for revision 0x21, clearing interrupt is writing bit 0
2410                  * to the clear register, writing bit 1 means to keep the
2411                  * old value.
2412                  * for revision 0x20, the clear register is a read & write
2413                  * register, so we should just write 0 to the bit we are
2414                  * handling, and keep other bits as cmdq_stat_reg.
2415                  */
2416                 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2417                         *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2418                 else
2419                         *clearval = cmdq_stat_reg &
2420                                     ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2421
2422                 return HCLGEVF_VECTOR0_EVENT_MBX;
2423         }
2424
2425         /* print other vector0 event source */
2426         dev_info(&hdev->pdev->dev,
2427                  "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2428                  cmdq_stat_reg);
2429
2430         return HCLGEVF_VECTOR0_EVENT_OTHER;
2431 }
2432
2433 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2434 {
2435         enum hclgevf_evt_cause event_cause;
2436         struct hclgevf_dev *hdev = data;
2437         u32 clearval;
2438
2439         hclgevf_enable_vector(&hdev->misc_vector, false);
2440         event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2441
2442         switch (event_cause) {
2443         case HCLGEVF_VECTOR0_EVENT_RST:
2444                 hclgevf_reset_task_schedule(hdev);
2445                 break;
2446         case HCLGEVF_VECTOR0_EVENT_MBX:
2447                 hclgevf_mbx_handler(hdev);
2448                 break;
2449         default:
2450                 break;
2451         }
2452
2453         if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2454                 hclgevf_clear_event_cause(hdev, clearval);
2455                 hclgevf_enable_vector(&hdev->misc_vector, true);
2456         }
2457
2458         return IRQ_HANDLED;
2459 }
2460
2461 static int hclgevf_configure(struct hclgevf_dev *hdev)
2462 {
2463         int ret;
2464
2465         /* get current port based vlan state from PF */
2466         ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2467         if (ret)
2468                 return ret;
2469
2470         /* get queue configuration from PF */
2471         ret = hclgevf_get_queue_info(hdev);
2472         if (ret)
2473                 return ret;
2474
2475         /* get queue depth info from PF */
2476         ret = hclgevf_get_queue_depth(hdev);
2477         if (ret)
2478                 return ret;
2479
2480         ret = hclgevf_get_pf_media_type(hdev);
2481         if (ret)
2482                 return ret;
2483
2484         /* get tc configuration from PF */
2485         return hclgevf_get_tc_info(hdev);
2486 }
2487
2488 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2489 {
2490         struct pci_dev *pdev = ae_dev->pdev;
2491         struct hclgevf_dev *hdev;
2492
2493         hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2494         if (!hdev)
2495                 return -ENOMEM;
2496
2497         hdev->pdev = pdev;
2498         hdev->ae_dev = ae_dev;
2499         ae_dev->priv = hdev;
2500
2501         return 0;
2502 }
2503
2504 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2505 {
2506         struct hnae3_handle *roce = &hdev->roce;
2507         struct hnae3_handle *nic = &hdev->nic;
2508
2509         roce->rinfo.num_vectors = hdev->num_roce_msix;
2510
2511         if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2512             hdev->num_msi_left == 0)
2513                 return -EINVAL;
2514
2515         roce->rinfo.base_vector = hdev->roce_base_vector;
2516
2517         roce->rinfo.netdev = nic->kinfo.netdev;
2518         roce->rinfo.roce_io_base = hdev->hw.io_base;
2519         roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2520
2521         roce->pdev = nic->pdev;
2522         roce->ae_algo = nic->ae_algo;
2523         roce->numa_node_mask = nic->numa_node_mask;
2524
2525         return 0;
2526 }
2527
2528 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2529 {
2530         struct hclgevf_cfg_gro_status_cmd *req;
2531         struct hclgevf_desc desc;
2532         int ret;
2533
2534         if (!hnae3_dev_gro_supported(hdev))
2535                 return 0;
2536
2537         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2538                                      false);
2539         req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2540
2541         req->gro_en = en ? 1 : 0;
2542
2543         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2544         if (ret)
2545                 dev_err(&hdev->pdev->dev,
2546                         "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2547
2548         return ret;
2549 }
2550
2551 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2552 {
2553         u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2554         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2555         struct hclgevf_rss_tuple_cfg *tuple_sets;
2556         u32 i;
2557
2558         rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2559         rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2560         tuple_sets = &rss_cfg->rss_tuple_sets;
2561         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2562                 u8 *rss_ind_tbl;
2563
2564                 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2565
2566                 rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2567                                            sizeof(*rss_ind_tbl), GFP_KERNEL);
2568                 if (!rss_ind_tbl)
2569                         return -ENOMEM;
2570
2571                 rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2572                 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2573                        HCLGEVF_RSS_KEY_SIZE);
2574
2575                 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2576                 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2577                 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2578                 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2579                 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2580                 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2581                 tuple_sets->ipv6_sctp_en =
2582                         hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2583                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2584                                         HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2585                 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2586         }
2587
2588         /* Initialize RSS indirect table */
2589         for (i = 0; i < rss_ind_tbl_size; i++)
2590                 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2591
2592         return 0;
2593 }
2594
2595 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2596 {
2597         struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2598         int ret;
2599
2600         if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2601                 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2602                                                rss_cfg->rss_hash_key);
2603                 if (ret)
2604                         return ret;
2605
2606                 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2607                 if (ret)
2608                         return ret;
2609         }
2610
2611         ret = hclgevf_set_rss_indir_table(hdev);
2612         if (ret)
2613                 return ret;
2614
2615         return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2616 }
2617
2618 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2619 {
2620         return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2621                                        false);
2622 }
2623
2624 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2625 {
2626 #define HCLGEVF_FLUSH_LINK_TIMEOUT      100000
2627
2628         unsigned long last = hdev->serv_processed_cnt;
2629         int i = 0;
2630
2631         while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2632                i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2633                last == hdev->serv_processed_cnt)
2634                 usleep_range(1, 1);
2635 }
2636
2637 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2638 {
2639         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2640
2641         if (enable) {
2642                 hclgevf_task_schedule(hdev, 0);
2643         } else {
2644                 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2645
2646                 /* flush memory to make sure DOWN is seen by service task */
2647                 smp_mb__before_atomic();
2648                 hclgevf_flush_link_update(hdev);
2649         }
2650 }
2651
2652 static int hclgevf_ae_start(struct hnae3_handle *handle)
2653 {
2654         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2655
2656         hclgevf_reset_tqp_stats(handle);
2657
2658         hclgevf_request_link_info(hdev);
2659
2660         hclgevf_update_link_mode(hdev);
2661
2662         clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2663
2664         return 0;
2665 }
2666
2667 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2668 {
2669         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2670
2671         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2672
2673         if (hdev->reset_type != HNAE3_VF_RESET)
2674                 hclgevf_reset_tqp(handle);
2675
2676         hclgevf_reset_tqp_stats(handle);
2677         hclgevf_update_link_status(hdev, 0);
2678 }
2679
2680 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2681 {
2682 #define HCLGEVF_STATE_ALIVE     1
2683 #define HCLGEVF_STATE_NOT_ALIVE 0
2684
2685         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2686         struct hclge_vf_to_pf_msg send_msg;
2687
2688         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2689         send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2690                                 HCLGEVF_STATE_NOT_ALIVE;
2691         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2692 }
2693
2694 static int hclgevf_client_start(struct hnae3_handle *handle)
2695 {
2696         return hclgevf_set_alive(handle, true);
2697 }
2698
2699 static void hclgevf_client_stop(struct hnae3_handle *handle)
2700 {
2701         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2702         int ret;
2703
2704         ret = hclgevf_set_alive(handle, false);
2705         if (ret)
2706                 dev_warn(&hdev->pdev->dev,
2707                          "%s failed %d\n", __func__, ret);
2708 }
2709
2710 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2711 {
2712         clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2713         clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2714         clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2715
2716         INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2717
2718         mutex_init(&hdev->mbx_resp.mbx_mutex);
2719         sema_init(&hdev->reset_sem, 1);
2720
2721         spin_lock_init(&hdev->mac_table.mac_list_lock);
2722         INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2723         INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2724
2725         /* bring the device down */
2726         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2727 }
2728
2729 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2730 {
2731         set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2732         set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2733
2734         if (hdev->service_task.work.func)
2735                 cancel_delayed_work_sync(&hdev->service_task);
2736
2737         mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2738 }
2739
2740 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2741 {
2742         struct pci_dev *pdev = hdev->pdev;
2743         int vectors;
2744         int i;
2745
2746         if (hnae3_dev_roce_supported(hdev))
2747                 vectors = pci_alloc_irq_vectors(pdev,
2748                                                 hdev->roce_base_msix_offset + 1,
2749                                                 hdev->num_msi,
2750                                                 PCI_IRQ_MSIX);
2751         else
2752                 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2753                                                 hdev->num_msi,
2754                                                 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2755
2756         if (vectors < 0) {
2757                 dev_err(&pdev->dev,
2758                         "failed(%d) to allocate MSI/MSI-X vectors\n",
2759                         vectors);
2760                 return vectors;
2761         }
2762         if (vectors < hdev->num_msi)
2763                 dev_warn(&hdev->pdev->dev,
2764                          "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2765                          hdev->num_msi, vectors);
2766
2767         hdev->num_msi = vectors;
2768         hdev->num_msi_left = vectors;
2769
2770         hdev->base_msi_vector = pdev->irq;
2771         hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2772
2773         hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2774                                            sizeof(u16), GFP_KERNEL);
2775         if (!hdev->vector_status) {
2776                 pci_free_irq_vectors(pdev);
2777                 return -ENOMEM;
2778         }
2779
2780         for (i = 0; i < hdev->num_msi; i++)
2781                 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2782
2783         hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2784                                         sizeof(int), GFP_KERNEL);
2785         if (!hdev->vector_irq) {
2786                 devm_kfree(&pdev->dev, hdev->vector_status);
2787                 pci_free_irq_vectors(pdev);
2788                 return -ENOMEM;
2789         }
2790
2791         return 0;
2792 }
2793
2794 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2795 {
2796         struct pci_dev *pdev = hdev->pdev;
2797
2798         devm_kfree(&pdev->dev, hdev->vector_status);
2799         devm_kfree(&pdev->dev, hdev->vector_irq);
2800         pci_free_irq_vectors(pdev);
2801 }
2802
2803 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2804 {
2805         int ret;
2806
2807         hclgevf_get_misc_vector(hdev);
2808
2809         snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2810                  HCLGEVF_NAME, pci_name(hdev->pdev));
2811         ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2812                           0, hdev->misc_vector.name, hdev);
2813         if (ret) {
2814                 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2815                         hdev->misc_vector.vector_irq);
2816                 return ret;
2817         }
2818
2819         hclgevf_clear_event_cause(hdev, 0);
2820
2821         /* enable misc. vector(vector 0) */
2822         hclgevf_enable_vector(&hdev->misc_vector, true);
2823
2824         return ret;
2825 }
2826
2827 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2828 {
2829         /* disable misc vector(vector 0) */
2830         hclgevf_enable_vector(&hdev->misc_vector, false);
2831         synchronize_irq(hdev->misc_vector.vector_irq);
2832         free_irq(hdev->misc_vector.vector_irq, hdev);
2833         hclgevf_free_vector(hdev, 0);
2834 }
2835
2836 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2837 {
2838         struct device *dev = &hdev->pdev->dev;
2839
2840         dev_info(dev, "VF info begin:\n");
2841
2842         dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2843         dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2844         dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2845         dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2846         dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2847         dev_info(dev, "PF media type of this VF: %u\n",
2848                  hdev->hw.mac.media_type);
2849
2850         dev_info(dev, "VF info end.\n");
2851 }
2852
2853 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2854                                             struct hnae3_client *client)
2855 {
2856         struct hclgevf_dev *hdev = ae_dev->priv;
2857         int rst_cnt = hdev->rst_stats.rst_cnt;
2858         int ret;
2859
2860         ret = client->ops->init_instance(&hdev->nic);
2861         if (ret)
2862                 return ret;
2863
2864         set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2865         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2866             rst_cnt != hdev->rst_stats.rst_cnt) {
2867                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2868
2869                 client->ops->uninit_instance(&hdev->nic, 0);
2870                 return -EBUSY;
2871         }
2872
2873         hnae3_set_client_init_flag(client, ae_dev, 1);
2874
2875         if (netif_msg_drv(&hdev->nic))
2876                 hclgevf_info_show(hdev);
2877
2878         return 0;
2879 }
2880
2881 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2882                                              struct hnae3_client *client)
2883 {
2884         struct hclgevf_dev *hdev = ae_dev->priv;
2885         int ret;
2886
2887         if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2888             !hdev->nic_client)
2889                 return 0;
2890
2891         ret = hclgevf_init_roce_base_info(hdev);
2892         if (ret)
2893                 return ret;
2894
2895         ret = client->ops->init_instance(&hdev->roce);
2896         if (ret)
2897                 return ret;
2898
2899         set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2900         hnae3_set_client_init_flag(client, ae_dev, 1);
2901
2902         return 0;
2903 }
2904
2905 static int hclgevf_init_client_instance(struct hnae3_client *client,
2906                                         struct hnae3_ae_dev *ae_dev)
2907 {
2908         struct hclgevf_dev *hdev = ae_dev->priv;
2909         int ret;
2910
2911         switch (client->type) {
2912         case HNAE3_CLIENT_KNIC:
2913                 hdev->nic_client = client;
2914                 hdev->nic.client = client;
2915
2916                 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2917                 if (ret)
2918                         goto clear_nic;
2919
2920                 ret = hclgevf_init_roce_client_instance(ae_dev,
2921                                                         hdev->roce_client);
2922                 if (ret)
2923                         goto clear_roce;
2924
2925                 break;
2926         case HNAE3_CLIENT_ROCE:
2927                 if (hnae3_dev_roce_supported(hdev)) {
2928                         hdev->roce_client = client;
2929                         hdev->roce.client = client;
2930                 }
2931
2932                 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2933                 if (ret)
2934                         goto clear_roce;
2935
2936                 break;
2937         default:
2938                 return -EINVAL;
2939         }
2940
2941         return 0;
2942
2943 clear_nic:
2944         hdev->nic_client = NULL;
2945         hdev->nic.client = NULL;
2946         return ret;
2947 clear_roce:
2948         hdev->roce_client = NULL;
2949         hdev->roce.client = NULL;
2950         return ret;
2951 }
2952
2953 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2954                                            struct hnae3_ae_dev *ae_dev)
2955 {
2956         struct hclgevf_dev *hdev = ae_dev->priv;
2957
2958         /* un-init roce, if it exists */
2959         if (hdev->roce_client) {
2960                 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2961                 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2962                 hdev->roce_client = NULL;
2963                 hdev->roce.client = NULL;
2964         }
2965
2966         /* un-init nic/unic, if this was not called by roce client */
2967         if (client->ops->uninit_instance && hdev->nic_client &&
2968             client->type != HNAE3_CLIENT_ROCE) {
2969                 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2970
2971                 client->ops->uninit_instance(&hdev->nic, 0);
2972                 hdev->nic_client = NULL;
2973                 hdev->nic.client = NULL;
2974         }
2975 }
2976
2977 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2978 {
2979 #define HCLGEVF_MEM_BAR         4
2980
2981         struct pci_dev *pdev = hdev->pdev;
2982         struct hclgevf_hw *hw = &hdev->hw;
2983
2984         /* for device does not have device memory, return directly */
2985         if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2986                 return 0;
2987
2988         hw->mem_base = devm_ioremap_wc(&pdev->dev,
2989                                        pci_resource_start(pdev,
2990                                                           HCLGEVF_MEM_BAR),
2991                                        pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2992         if (!hw->mem_base) {
2993                 dev_err(&pdev->dev, "failed to map device memory\n");
2994                 return -EFAULT;
2995         }
2996
2997         return 0;
2998 }
2999
3000 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3001 {
3002         struct pci_dev *pdev = hdev->pdev;
3003         struct hclgevf_hw *hw;
3004         int ret;
3005
3006         ret = pci_enable_device(pdev);
3007         if (ret) {
3008                 dev_err(&pdev->dev, "failed to enable PCI device\n");
3009                 return ret;
3010         }
3011
3012         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3013         if (ret) {
3014                 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3015                 goto err_disable_device;
3016         }
3017
3018         ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3019         if (ret) {
3020                 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3021                 goto err_disable_device;
3022         }
3023
3024         pci_set_master(pdev);
3025         hw = &hdev->hw;
3026         hw->hdev = hdev;
3027         hw->io_base = pci_iomap(pdev, 2, 0);
3028         if (!hw->io_base) {
3029                 dev_err(&pdev->dev, "can't map configuration register space\n");
3030                 ret = -ENOMEM;
3031                 goto err_clr_master;
3032         }
3033
3034         ret = hclgevf_dev_mem_map(hdev);
3035         if (ret)
3036                 goto err_unmap_io_base;
3037
3038         return 0;
3039
3040 err_unmap_io_base:
3041         pci_iounmap(pdev, hdev->hw.io_base);
3042 err_clr_master:
3043         pci_clear_master(pdev);
3044         pci_release_regions(pdev);
3045 err_disable_device:
3046         pci_disable_device(pdev);
3047
3048         return ret;
3049 }
3050
3051 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3052 {
3053         struct pci_dev *pdev = hdev->pdev;
3054
3055         if (hdev->hw.mem_base)
3056                 devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3057
3058         pci_iounmap(pdev, hdev->hw.io_base);
3059         pci_clear_master(pdev);
3060         pci_release_regions(pdev);
3061         pci_disable_device(pdev);
3062 }
3063
3064 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3065 {
3066         struct hclgevf_query_res_cmd *req;
3067         struct hclgevf_desc desc;
3068         int ret;
3069
3070         hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3071         ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3072         if (ret) {
3073                 dev_err(&hdev->pdev->dev,
3074                         "query vf resource failed, ret = %d.\n", ret);
3075                 return ret;
3076         }
3077
3078         req = (struct hclgevf_query_res_cmd *)desc.data;
3079
3080         if (hnae3_dev_roce_supported(hdev)) {
3081                 hdev->roce_base_msix_offset =
3082                 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3083                                 HCLGEVF_MSIX_OFT_ROCEE_M,
3084                                 HCLGEVF_MSIX_OFT_ROCEE_S);
3085                 hdev->num_roce_msix =
3086                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3087                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3088
3089                 /* nic's msix numbers is always equals to the roce's. */
3090                 hdev->num_nic_msix = hdev->num_roce_msix;
3091
3092                 /* VF should have NIC vectors and Roce vectors, NIC vectors
3093                  * are queued before Roce vectors. The offset is fixed to 64.
3094                  */
3095                 hdev->num_msi = hdev->num_roce_msix +
3096                                 hdev->roce_base_msix_offset;
3097         } else {
3098                 hdev->num_msi =
3099                 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3100                                 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3101
3102                 hdev->num_nic_msix = hdev->num_msi;
3103         }
3104
3105         if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3106                 dev_err(&hdev->pdev->dev,
3107                         "Just %u msi resources, not enough for vf(min:2).\n",
3108                         hdev->num_nic_msix);
3109                 return -EINVAL;
3110         }
3111
3112         return 0;
3113 }
3114
3115 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3116 {
3117 #define HCLGEVF_MAX_NON_TSO_BD_NUM                      8U
3118
3119         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3120
3121         ae_dev->dev_specs.max_non_tso_bd_num =
3122                                         HCLGEVF_MAX_NON_TSO_BD_NUM;
3123         ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3124         ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3125         ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3126         ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3127 }
3128
3129 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3130                                     struct hclgevf_desc *desc)
3131 {
3132         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3133         struct hclgevf_dev_specs_0_cmd *req0;
3134         struct hclgevf_dev_specs_1_cmd *req1;
3135
3136         req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3137         req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3138
3139         ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3140         ae_dev->dev_specs.rss_ind_tbl_size =
3141                                         le16_to_cpu(req0->rss_ind_tbl_size);
3142         ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3143         ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3144         ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3145         ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3146 }
3147
3148 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3149 {
3150         struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3151
3152         if (!dev_specs->max_non_tso_bd_num)
3153                 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3154         if (!dev_specs->rss_ind_tbl_size)
3155                 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3156         if (!dev_specs->rss_key_size)
3157                 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3158         if (!dev_specs->max_int_gl)
3159                 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3160         if (!dev_specs->max_frm_size)
3161                 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3162 }
3163
3164 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3165 {
3166         struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3167         int ret;
3168         int i;
3169
3170         /* set default specifications as devices lower than version V3 do not
3171          * support querying specifications from firmware.
3172          */
3173         if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3174                 hclgevf_set_default_dev_specs(hdev);
3175                 return 0;
3176         }
3177
3178         for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3179                 hclgevf_cmd_setup_basic_desc(&desc[i],
3180                                              HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3181                 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3182         }
3183         hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3184                                      true);
3185
3186         ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3187         if (ret)
3188                 return ret;
3189
3190         hclgevf_parse_dev_specs(hdev, desc);
3191         hclgevf_check_dev_specs(hdev);
3192
3193         return 0;
3194 }
3195
3196 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3197 {
3198         struct pci_dev *pdev = hdev->pdev;
3199         int ret = 0;
3200
3201         if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3202             test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3203                 hclgevf_misc_irq_uninit(hdev);
3204                 hclgevf_uninit_msi(hdev);
3205                 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3206         }
3207
3208         if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3209                 pci_set_master(pdev);
3210                 ret = hclgevf_init_msi(hdev);
3211                 if (ret) {
3212                         dev_err(&pdev->dev,
3213                                 "failed(%d) to init MSI/MSI-X\n", ret);
3214                         return ret;
3215                 }
3216
3217                 ret = hclgevf_misc_irq_init(hdev);
3218                 if (ret) {
3219                         hclgevf_uninit_msi(hdev);
3220                         dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3221                                 ret);
3222                         return ret;
3223                 }
3224
3225                 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3226         }
3227
3228         return ret;
3229 }
3230
3231 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3232 {
3233         struct hclge_vf_to_pf_msg send_msg;
3234
3235         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3236                                HCLGE_MBX_VPORT_LIST_CLEAR);
3237         return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3238 }
3239
3240 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3241 {
3242         struct pci_dev *pdev = hdev->pdev;
3243         int ret;
3244
3245         ret = hclgevf_pci_reset(hdev);
3246         if (ret) {
3247                 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3248                 return ret;
3249         }
3250
3251         ret = hclgevf_cmd_init(hdev);
3252         if (ret) {
3253                 dev_err(&pdev->dev, "cmd failed %d\n", ret);
3254                 return ret;
3255         }
3256
3257         ret = hclgevf_rss_init_hw(hdev);
3258         if (ret) {
3259                 dev_err(&hdev->pdev->dev,
3260                         "failed(%d) to initialize RSS\n", ret);
3261                 return ret;
3262         }
3263
3264         ret = hclgevf_config_gro(hdev, true);
3265         if (ret)
3266                 return ret;
3267
3268         ret = hclgevf_init_vlan_config(hdev);
3269         if (ret) {
3270                 dev_err(&hdev->pdev->dev,
3271                         "failed(%d) to initialize VLAN config\n", ret);
3272                 return ret;
3273         }
3274
3275         set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3276
3277         dev_info(&hdev->pdev->dev, "Reset done\n");
3278
3279         return 0;
3280 }
3281
3282 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3283 {
3284         struct pci_dev *pdev = hdev->pdev;
3285         int ret;
3286
3287         ret = hclgevf_pci_init(hdev);
3288         if (ret)
3289                 return ret;
3290
3291         ret = hclgevf_cmd_queue_init(hdev);
3292         if (ret)
3293                 goto err_cmd_queue_init;
3294
3295         ret = hclgevf_cmd_init(hdev);
3296         if (ret)
3297                 goto err_cmd_init;
3298
3299         /* Get vf resource */
3300         ret = hclgevf_query_vf_resource(hdev);
3301         if (ret)
3302                 goto err_cmd_init;
3303
3304         ret = hclgevf_query_dev_specs(hdev);
3305         if (ret) {
3306                 dev_err(&pdev->dev,
3307                         "failed to query dev specifications, ret = %d\n", ret);
3308                 goto err_cmd_init;
3309         }
3310
3311         ret = hclgevf_init_msi(hdev);
3312         if (ret) {
3313                 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3314                 goto err_cmd_init;
3315         }
3316
3317         hclgevf_state_init(hdev);
3318         hdev->reset_level = HNAE3_VF_FUNC_RESET;
3319         hdev->reset_type = HNAE3_NONE_RESET;
3320
3321         ret = hclgevf_misc_irq_init(hdev);
3322         if (ret)
3323                 goto err_misc_irq_init;
3324
3325         set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3326
3327         ret = hclgevf_configure(hdev);
3328         if (ret) {
3329                 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3330                 goto err_config;
3331         }
3332
3333         ret = hclgevf_alloc_tqps(hdev);
3334         if (ret) {
3335                 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3336                 goto err_config;
3337         }
3338
3339         ret = hclgevf_set_handle_info(hdev);
3340         if (ret)
3341                 goto err_config;
3342
3343         ret = hclgevf_config_gro(hdev, true);
3344         if (ret)
3345                 goto err_config;
3346
3347         /* Initialize RSS for this VF */
3348         ret = hclgevf_rss_init_cfg(hdev);
3349         if (ret) {
3350                 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3351                 goto err_config;
3352         }
3353
3354         ret = hclgevf_rss_init_hw(hdev);
3355         if (ret) {
3356                 dev_err(&hdev->pdev->dev,
3357                         "failed(%d) to initialize RSS\n", ret);
3358                 goto err_config;
3359         }
3360
3361         /* ensure vf tbl list as empty before init*/
3362         ret = hclgevf_clear_vport_list(hdev);
3363         if (ret) {
3364                 dev_err(&pdev->dev,
3365                         "failed to clear tbl list configuration, ret = %d.\n",
3366                         ret);
3367                 goto err_config;
3368         }
3369
3370         ret = hclgevf_init_vlan_config(hdev);
3371         if (ret) {
3372                 dev_err(&hdev->pdev->dev,
3373                         "failed(%d) to initialize VLAN config\n", ret);
3374                 goto err_config;
3375         }
3376
3377         hdev->last_reset_time = jiffies;
3378         dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3379                  HCLGEVF_DRIVER_NAME);
3380
3381         hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3382
3383         return 0;
3384
3385 err_config:
3386         hclgevf_misc_irq_uninit(hdev);
3387 err_misc_irq_init:
3388         hclgevf_state_uninit(hdev);
3389         hclgevf_uninit_msi(hdev);
3390 err_cmd_init:
3391         hclgevf_cmd_uninit(hdev);
3392 err_cmd_queue_init:
3393         hclgevf_pci_uninit(hdev);
3394         clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3395         return ret;
3396 }
3397
3398 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3399 {
3400         struct hclge_vf_to_pf_msg send_msg;
3401
3402         hclgevf_state_uninit(hdev);
3403
3404         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3405         hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3406
3407         if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3408                 hclgevf_misc_irq_uninit(hdev);
3409                 hclgevf_uninit_msi(hdev);
3410         }
3411
3412         hclgevf_cmd_uninit(hdev);
3413         hclgevf_pci_uninit(hdev);
3414         hclgevf_uninit_mac_list(hdev);
3415 }
3416
3417 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3418 {
3419         struct pci_dev *pdev = ae_dev->pdev;
3420         int ret;
3421
3422         ret = hclgevf_alloc_hdev(ae_dev);
3423         if (ret) {
3424                 dev_err(&pdev->dev, "hclge device allocation failed\n");
3425                 return ret;
3426         }
3427
3428         ret = hclgevf_init_hdev(ae_dev->priv);
3429         if (ret) {
3430                 dev_err(&pdev->dev, "hclge device initialization failed\n");
3431                 return ret;
3432         }
3433
3434         return 0;
3435 }
3436
3437 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3438 {
3439         struct hclgevf_dev *hdev = ae_dev->priv;
3440
3441         hclgevf_uninit_hdev(hdev);
3442         ae_dev->priv = NULL;
3443 }
3444
3445 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3446 {
3447         struct hnae3_handle *nic = &hdev->nic;
3448         struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3449
3450         return min_t(u32, hdev->rss_size_max,
3451                      hdev->num_tqps / kinfo->tc_info.num_tc);
3452 }
3453
3454 /**
3455  * hclgevf_get_channels - Get the current channels enabled and max supported.
3456  * @handle: hardware information for network interface
3457  * @ch: ethtool channels structure
3458  *
3459  * We don't support separate tx and rx queues as channels. The other count
3460  * represents how many queues are being used for control. max_combined counts
3461  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3462  * q_vectors since we support a lot more queue pairs than q_vectors.
3463  **/
3464 static void hclgevf_get_channels(struct hnae3_handle *handle,
3465                                  struct ethtool_channels *ch)
3466 {
3467         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3468
3469         ch->max_combined = hclgevf_get_max_channels(hdev);
3470         ch->other_count = 0;
3471         ch->max_other = 0;
3472         ch->combined_count = handle->kinfo.rss_size;
3473 }
3474
3475 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3476                                           u16 *alloc_tqps, u16 *max_rss_size)
3477 {
3478         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3479
3480         *alloc_tqps = hdev->num_tqps;
3481         *max_rss_size = hdev->rss_size_max;
3482 }
3483
3484 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3485                                     u32 new_tqps_num)
3486 {
3487         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3488         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3489         u16 max_rss_size;
3490
3491         kinfo->req_rss_size = new_tqps_num;
3492
3493         max_rss_size = min_t(u16, hdev->rss_size_max,
3494                              hdev->num_tqps / kinfo->tc_info.num_tc);
3495
3496         /* Use the user's configuration when it is not larger than
3497          * max_rss_size, otherwise, use the maximum specification value.
3498          */
3499         if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3500             kinfo->req_rss_size <= max_rss_size)
3501                 kinfo->rss_size = kinfo->req_rss_size;
3502         else if (kinfo->rss_size > max_rss_size ||
3503                  (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3504                 kinfo->rss_size = max_rss_size;
3505
3506         kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3507 }
3508
3509 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3510                                 bool rxfh_configured)
3511 {
3512         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3513         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3514         u16 cur_rss_size = kinfo->rss_size;
3515         u16 cur_tqps = kinfo->num_tqps;
3516         u32 *rss_indir;
3517         unsigned int i;
3518         int ret;
3519
3520         hclgevf_update_rss_size(handle, new_tqps_num);
3521
3522         ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3523         if (ret)
3524                 return ret;
3525
3526         /* RSS indirection table has been configuared by user */
3527         if (rxfh_configured)
3528                 goto out;
3529
3530         /* Reinitializes the rss indirect table according to the new RSS size */
3531         rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3532                             sizeof(u32), GFP_KERNEL);
3533         if (!rss_indir)
3534                 return -ENOMEM;
3535
3536         for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3537                 rss_indir[i] = i % kinfo->rss_size;
3538
3539         hdev->rss_cfg.rss_size = kinfo->rss_size;
3540
3541         ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3542         if (ret)
3543                 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3544                         ret);
3545
3546         kfree(rss_indir);
3547
3548 out:
3549         if (!ret)
3550                 dev_info(&hdev->pdev->dev,
3551                          "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3552                          cur_rss_size, kinfo->rss_size,
3553                          cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3554
3555         return ret;
3556 }
3557
3558 static int hclgevf_get_status(struct hnae3_handle *handle)
3559 {
3560         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3561
3562         return hdev->hw.mac.link;
3563 }
3564
3565 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3566                                             u8 *auto_neg, u32 *speed,
3567                                             u8 *duplex)
3568 {
3569         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3570
3571         if (speed)
3572                 *speed = hdev->hw.mac.speed;
3573         if (duplex)
3574                 *duplex = hdev->hw.mac.duplex;
3575         if (auto_neg)
3576                 *auto_neg = AUTONEG_DISABLE;
3577 }
3578
3579 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3580                                  u8 duplex)
3581 {
3582         hdev->hw.mac.speed = speed;
3583         hdev->hw.mac.duplex = duplex;
3584 }
3585
3586 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3587 {
3588         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3589
3590         return hclgevf_config_gro(hdev, enable);
3591 }
3592
3593 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3594                                    u8 *module_type)
3595 {
3596         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3597
3598         if (media_type)
3599                 *media_type = hdev->hw.mac.media_type;
3600
3601         if (module_type)
3602                 *module_type = hdev->hw.mac.module_type;
3603 }
3604
3605 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3606 {
3607         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3608
3609         return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3610 }
3611
3612 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3613 {
3614         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3615
3616         return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3617 }
3618
3619 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3620 {
3621         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3622
3623         return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3624 }
3625
3626 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3627 {
3628         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3629
3630         return hdev->rst_stats.hw_rst_done_cnt;
3631 }
3632
3633 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3634                                   unsigned long *supported,
3635                                   unsigned long *advertising)
3636 {
3637         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3638
3639         *supported = hdev->hw.mac.supported;
3640         *advertising = hdev->hw.mac.advertising;
3641 }
3642
3643 #define MAX_SEPARATE_NUM        4
3644 #define SEPARATOR_VALUE         0xFFFFFFFF
3645 #define REG_NUM_PER_LINE        4
3646 #define REG_LEN_PER_LINE        (REG_NUM_PER_LINE * sizeof(u32))
3647
3648 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3649 {
3650         int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3651         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3652
3653         cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3654         common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3655         ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3656         tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3657
3658         return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3659                 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3660 }
3661
3662 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3663                              void *data)
3664 {
3665         struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3666         int i, j, reg_um, separator_num;
3667         u32 *reg = data;
3668
3669         *version = hdev->fw_version;
3670
3671         /* fetching per-VF registers values from VF PCIe register space */
3672         reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3673         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3674         for (i = 0; i < reg_um; i++)
3675                 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3676         for (i = 0; i < separator_num; i++)
3677                 *reg++ = SEPARATOR_VALUE;
3678
3679         reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3680         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3681         for (i = 0; i < reg_um; i++)
3682                 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3683         for (i = 0; i < separator_num; i++)
3684                 *reg++ = SEPARATOR_VALUE;
3685
3686         reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3687         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3688         for (j = 0; j < hdev->num_tqps; j++) {
3689                 for (i = 0; i < reg_um; i++)
3690                         *reg++ = hclgevf_read_dev(&hdev->hw,
3691                                                   ring_reg_addr_list[i] +
3692                                                   0x200 * j);
3693                 for (i = 0; i < separator_num; i++)
3694                         *reg++ = SEPARATOR_VALUE;
3695         }
3696
3697         reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3698         separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3699         for (j = 0; j < hdev->num_msi_used - 1; j++) {
3700                 for (i = 0; i < reg_um; i++)
3701                         *reg++ = hclgevf_read_dev(&hdev->hw,
3702                                                   tqp_intr_reg_addr_list[i] +
3703                                                   4 * j);
3704                 for (i = 0; i < separator_num; i++)
3705                         *reg++ = SEPARATOR_VALUE;
3706         }
3707 }
3708
3709 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3710                                         u8 *port_base_vlan_info, u8 data_size)
3711 {
3712         struct hnae3_handle *nic = &hdev->nic;
3713         struct hclge_vf_to_pf_msg send_msg;
3714         int ret;
3715
3716         rtnl_lock();
3717
3718         if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3719             test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3720                 dev_warn(&hdev->pdev->dev,
3721                          "is resetting when updating port based vlan info\n");
3722                 rtnl_unlock();
3723                 return;
3724         }
3725
3726         ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3727         if (ret) {
3728                 rtnl_unlock();
3729                 return;
3730         }
3731
3732         /* send msg to PF and wait update port based vlan info */
3733         hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3734                                HCLGE_MBX_PORT_BASE_VLAN_CFG);
3735         memcpy(send_msg.data, port_base_vlan_info, data_size);
3736         ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3737         if (!ret) {
3738                 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3739                         nic->port_base_vlan_state = state;
3740                 else
3741                         nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3742         }
3743
3744         hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3745         rtnl_unlock();
3746 }
3747
3748 static const struct hnae3_ae_ops hclgevf_ops = {
3749         .init_ae_dev = hclgevf_init_ae_dev,
3750         .uninit_ae_dev = hclgevf_uninit_ae_dev,
3751         .flr_prepare = hclgevf_flr_prepare,
3752         .flr_done = hclgevf_flr_done,
3753         .init_client_instance = hclgevf_init_client_instance,
3754         .uninit_client_instance = hclgevf_uninit_client_instance,
3755         .start = hclgevf_ae_start,
3756         .stop = hclgevf_ae_stop,
3757         .client_start = hclgevf_client_start,
3758         .client_stop = hclgevf_client_stop,
3759         .map_ring_to_vector = hclgevf_map_ring_to_vector,
3760         .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3761         .get_vector = hclgevf_get_vector,
3762         .put_vector = hclgevf_put_vector,
3763         .reset_queue = hclgevf_reset_tqp,
3764         .get_mac_addr = hclgevf_get_mac_addr,
3765         .set_mac_addr = hclgevf_set_mac_addr,
3766         .add_uc_addr = hclgevf_add_uc_addr,
3767         .rm_uc_addr = hclgevf_rm_uc_addr,
3768         .add_mc_addr = hclgevf_add_mc_addr,
3769         .rm_mc_addr = hclgevf_rm_mc_addr,
3770         .get_stats = hclgevf_get_stats,
3771         .update_stats = hclgevf_update_stats,
3772         .get_strings = hclgevf_get_strings,
3773         .get_sset_count = hclgevf_get_sset_count,
3774         .get_rss_key_size = hclgevf_get_rss_key_size,
3775         .get_rss = hclgevf_get_rss,
3776         .set_rss = hclgevf_set_rss,
3777         .get_rss_tuple = hclgevf_get_rss_tuple,
3778         .set_rss_tuple = hclgevf_set_rss_tuple,
3779         .get_tc_size = hclgevf_get_tc_size,
3780         .get_fw_version = hclgevf_get_fw_version,
3781         .set_vlan_filter = hclgevf_set_vlan_filter,
3782         .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3783         .reset_event = hclgevf_reset_event,
3784         .set_default_reset_request = hclgevf_set_def_reset_request,
3785         .set_channels = hclgevf_set_channels,
3786         .get_channels = hclgevf_get_channels,
3787         .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3788         .get_regs_len = hclgevf_get_regs_len,
3789         .get_regs = hclgevf_get_regs,
3790         .get_status = hclgevf_get_status,
3791         .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3792         .get_media_type = hclgevf_get_media_type,
3793         .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3794         .ae_dev_resetting = hclgevf_ae_dev_resetting,
3795         .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3796         .set_gro_en = hclgevf_gro_en,
3797         .set_mtu = hclgevf_set_mtu,
3798         .get_global_queue_id = hclgevf_get_qid_global,
3799         .set_timer_task = hclgevf_set_timer_task,
3800         .get_link_mode = hclgevf_get_link_mode,
3801         .set_promisc_mode = hclgevf_set_promisc_mode,
3802         .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3803         .get_cmdq_stat = hclgevf_get_cmdq_stat,
3804 };
3805
3806 static struct hnae3_ae_algo ae_algovf = {
3807         .ops = &hclgevf_ops,
3808         .pdev_id_table = ae_algovf_pci_tbl,
3809 };
3810
3811 static int hclgevf_init(void)
3812 {
3813         pr_info("%s is initializing\n", HCLGEVF_NAME);
3814
3815         hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3816         if (!hclgevf_wq) {
3817                 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3818                 return -ENOMEM;
3819         }
3820
3821         hnae3_register_ae_algo(&ae_algovf);
3822
3823         return 0;
3824 }
3825
3826 static void hclgevf_exit(void)
3827 {
3828         hnae3_unregister_ae_algo(&ae_algovf);
3829         destroy_workqueue(hclgevf_wq);
3830 }
3831 module_init(hclgevf_init);
3832 module_exit(hclgevf_exit);
3833
3834 MODULE_LICENSE("GPL");
3835 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3836 MODULE_DESCRIPTION("HCLGEVF Driver");
3837 MODULE_VERSION(HCLGEVF_MOD_VERSION);