Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <net/gre.h>
19 #include <net/gro.h>
20 #include <net/ip6_checksum.h>
21 #include <net/page_pool/helpers.h>
22 #include <net/pkt_cls.h>
23 #include <net/pkt_sched.h>
24 #include <net/tcp.h>
25 #include <net/vxlan.h>
26 #include <net/geneve.h>
27
28 #include "hnae3.h"
29 #include "hns3_enet.h"
30 /* All hns3 tracepoints are defined by the include below, which
31  * must be included exactly once across the whole kernel with
32  * CREATE_TRACE_POINTS defined
33  */
34 #define CREATE_TRACE_POINTS
35 #include "hns3_trace.h"
36
37 #define hns3_set_field(origin, shift, val)      ((origin) |= (val) << (shift))
38 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
39
40 #define hns3_rl_err(fmt, ...)                                           \
41         do {                                                            \
42                 if (net_ratelimit())                                    \
43                         netdev_err(fmt, ##__VA_ARGS__);                 \
44         } while (0)
45
46 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
47
48 static const char hns3_driver_name[] = "hns3";
49 static const char hns3_driver_string[] =
50                         "Hisilicon Ethernet Network Driver for Hip08 Family";
51 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
52 static struct hnae3_client client;
53
54 static int debug = -1;
55 module_param(debug, int, 0);
56 MODULE_PARM_DESC(debug, " Network interface message level setting");
57
58 static unsigned int tx_sgl = 1;
59 module_param(tx_sgl, uint, 0600);
60 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
61
62 static bool page_pool_enabled = true;
63 module_param(page_pool_enabled, bool, 0400);
64
65 #define HNS3_SGL_SIZE(nfrag)    (sizeof(struct scatterlist) * (nfrag) + \
66                                  sizeof(struct sg_table))
67 #define HNS3_MAX_SGL_SIZE       ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
68                                       dma_get_cache_alignment())
69
70 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
71                            NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
72
73 #define HNS3_INNER_VLAN_TAG     1
74 #define HNS3_OUTER_VLAN_TAG     2
75
76 #define HNS3_MIN_TX_LEN         33U
77 #define HNS3_MIN_TUN_PKT_LEN    65U
78
79 /* hns3_pci_tbl - PCI Device ID Table
80  *
81  * Last entry must be all 0s
82  *
83  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
84  *   Class, Class Mask, private data (not used) }
85  */
86 static const struct pci_device_id hns3_pci_tbl[] = {
87         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
88         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
89         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
90          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
91         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
92          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
93         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
94          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
95         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
96          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
97         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
98          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
99         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
100          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
101         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
102         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
103          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
104         /* required last entry */
105         {0,}
106 };
107 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
108
109 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \
110         {       ptype, \
111                 l, \
112                 CHECKSUM_##s, \
113                 HNS3_L3_TYPE_##t, \
114                 1, \
115                 h}
116
117 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
118                 { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \
119                   PKT_HASH_TYPE_NONE }
120
121 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
122         HNS3_RX_PTYPE_UNUSED_ENTRY(0),
123         HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE),
124         HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE),
125         HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE),
126         HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
127         HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
128         HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
129         HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE),
130         HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
131         HNS3_RX_PTYPE_UNUSED_ENTRY(9),
132         HNS3_RX_PTYPE_UNUSED_ENTRY(10),
133         HNS3_RX_PTYPE_UNUSED_ENTRY(11),
134         HNS3_RX_PTYPE_UNUSED_ENTRY(12),
135         HNS3_RX_PTYPE_UNUSED_ENTRY(13),
136         HNS3_RX_PTYPE_UNUSED_ENTRY(14),
137         HNS3_RX_PTYPE_UNUSED_ENTRY(15),
138         HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
139         HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
140         HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
141         HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
142         HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
143         HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE),
144         HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
145         HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
146         HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
147         HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
148         HNS3_RX_PTYPE_UNUSED_ENTRY(26),
149         HNS3_RX_PTYPE_UNUSED_ENTRY(27),
150         HNS3_RX_PTYPE_UNUSED_ENTRY(28),
151         HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
152         HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
153         HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
154         HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
155         HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
156         HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
157         HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
158         HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
159         HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
160         HNS3_RX_PTYPE_UNUSED_ENTRY(38),
161         HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
162         HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
163         HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
164         HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
165         HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
166         HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
167         HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
168         HNS3_RX_PTYPE_UNUSED_ENTRY(46),
169         HNS3_RX_PTYPE_UNUSED_ENTRY(47),
170         HNS3_RX_PTYPE_UNUSED_ENTRY(48),
171         HNS3_RX_PTYPE_UNUSED_ENTRY(49),
172         HNS3_RX_PTYPE_UNUSED_ENTRY(50),
173         HNS3_RX_PTYPE_UNUSED_ENTRY(51),
174         HNS3_RX_PTYPE_UNUSED_ENTRY(52),
175         HNS3_RX_PTYPE_UNUSED_ENTRY(53),
176         HNS3_RX_PTYPE_UNUSED_ENTRY(54),
177         HNS3_RX_PTYPE_UNUSED_ENTRY(55),
178         HNS3_RX_PTYPE_UNUSED_ENTRY(56),
179         HNS3_RX_PTYPE_UNUSED_ENTRY(57),
180         HNS3_RX_PTYPE_UNUSED_ENTRY(58),
181         HNS3_RX_PTYPE_UNUSED_ENTRY(59),
182         HNS3_RX_PTYPE_UNUSED_ENTRY(60),
183         HNS3_RX_PTYPE_UNUSED_ENTRY(61),
184         HNS3_RX_PTYPE_UNUSED_ENTRY(62),
185         HNS3_RX_PTYPE_UNUSED_ENTRY(63),
186         HNS3_RX_PTYPE_UNUSED_ENTRY(64),
187         HNS3_RX_PTYPE_UNUSED_ENTRY(65),
188         HNS3_RX_PTYPE_UNUSED_ENTRY(66),
189         HNS3_RX_PTYPE_UNUSED_ENTRY(67),
190         HNS3_RX_PTYPE_UNUSED_ENTRY(68),
191         HNS3_RX_PTYPE_UNUSED_ENTRY(69),
192         HNS3_RX_PTYPE_UNUSED_ENTRY(70),
193         HNS3_RX_PTYPE_UNUSED_ENTRY(71),
194         HNS3_RX_PTYPE_UNUSED_ENTRY(72),
195         HNS3_RX_PTYPE_UNUSED_ENTRY(73),
196         HNS3_RX_PTYPE_UNUSED_ENTRY(74),
197         HNS3_RX_PTYPE_UNUSED_ENTRY(75),
198         HNS3_RX_PTYPE_UNUSED_ENTRY(76),
199         HNS3_RX_PTYPE_UNUSED_ENTRY(77),
200         HNS3_RX_PTYPE_UNUSED_ENTRY(78),
201         HNS3_RX_PTYPE_UNUSED_ENTRY(79),
202         HNS3_RX_PTYPE_UNUSED_ENTRY(80),
203         HNS3_RX_PTYPE_UNUSED_ENTRY(81),
204         HNS3_RX_PTYPE_UNUSED_ENTRY(82),
205         HNS3_RX_PTYPE_UNUSED_ENTRY(83),
206         HNS3_RX_PTYPE_UNUSED_ENTRY(84),
207         HNS3_RX_PTYPE_UNUSED_ENTRY(85),
208         HNS3_RX_PTYPE_UNUSED_ENTRY(86),
209         HNS3_RX_PTYPE_UNUSED_ENTRY(87),
210         HNS3_RX_PTYPE_UNUSED_ENTRY(88),
211         HNS3_RX_PTYPE_UNUSED_ENTRY(89),
212         HNS3_RX_PTYPE_UNUSED_ENTRY(90),
213         HNS3_RX_PTYPE_UNUSED_ENTRY(91),
214         HNS3_RX_PTYPE_UNUSED_ENTRY(92),
215         HNS3_RX_PTYPE_UNUSED_ENTRY(93),
216         HNS3_RX_PTYPE_UNUSED_ENTRY(94),
217         HNS3_RX_PTYPE_UNUSED_ENTRY(95),
218         HNS3_RX_PTYPE_UNUSED_ENTRY(96),
219         HNS3_RX_PTYPE_UNUSED_ENTRY(97),
220         HNS3_RX_PTYPE_UNUSED_ENTRY(98),
221         HNS3_RX_PTYPE_UNUSED_ENTRY(99),
222         HNS3_RX_PTYPE_UNUSED_ENTRY(100),
223         HNS3_RX_PTYPE_UNUSED_ENTRY(101),
224         HNS3_RX_PTYPE_UNUSED_ENTRY(102),
225         HNS3_RX_PTYPE_UNUSED_ENTRY(103),
226         HNS3_RX_PTYPE_UNUSED_ENTRY(104),
227         HNS3_RX_PTYPE_UNUSED_ENTRY(105),
228         HNS3_RX_PTYPE_UNUSED_ENTRY(106),
229         HNS3_RX_PTYPE_UNUSED_ENTRY(107),
230         HNS3_RX_PTYPE_UNUSED_ENTRY(108),
231         HNS3_RX_PTYPE_UNUSED_ENTRY(109),
232         HNS3_RX_PTYPE_UNUSED_ENTRY(110),
233         HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
234         HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
235         HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
236         HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
237         HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
238         HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
239         HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
240         HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
241         HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
242         HNS3_RX_PTYPE_UNUSED_ENTRY(120),
243         HNS3_RX_PTYPE_UNUSED_ENTRY(121),
244         HNS3_RX_PTYPE_UNUSED_ENTRY(122),
245         HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
246         HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
247         HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
248         HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
249         HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
250         HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
251         HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
252         HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
253         HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
254         HNS3_RX_PTYPE_UNUSED_ENTRY(132),
255         HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
256         HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
257         HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
258         HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
259         HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
260         HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
261         HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
262         HNS3_RX_PTYPE_UNUSED_ENTRY(140),
263         HNS3_RX_PTYPE_UNUSED_ENTRY(141),
264         HNS3_RX_PTYPE_UNUSED_ENTRY(142),
265         HNS3_RX_PTYPE_UNUSED_ENTRY(143),
266         HNS3_RX_PTYPE_UNUSED_ENTRY(144),
267         HNS3_RX_PTYPE_UNUSED_ENTRY(145),
268         HNS3_RX_PTYPE_UNUSED_ENTRY(146),
269         HNS3_RX_PTYPE_UNUSED_ENTRY(147),
270         HNS3_RX_PTYPE_UNUSED_ENTRY(148),
271         HNS3_RX_PTYPE_UNUSED_ENTRY(149),
272         HNS3_RX_PTYPE_UNUSED_ENTRY(150),
273         HNS3_RX_PTYPE_UNUSED_ENTRY(151),
274         HNS3_RX_PTYPE_UNUSED_ENTRY(152),
275         HNS3_RX_PTYPE_UNUSED_ENTRY(153),
276         HNS3_RX_PTYPE_UNUSED_ENTRY(154),
277         HNS3_RX_PTYPE_UNUSED_ENTRY(155),
278         HNS3_RX_PTYPE_UNUSED_ENTRY(156),
279         HNS3_RX_PTYPE_UNUSED_ENTRY(157),
280         HNS3_RX_PTYPE_UNUSED_ENTRY(158),
281         HNS3_RX_PTYPE_UNUSED_ENTRY(159),
282         HNS3_RX_PTYPE_UNUSED_ENTRY(160),
283         HNS3_RX_PTYPE_UNUSED_ENTRY(161),
284         HNS3_RX_PTYPE_UNUSED_ENTRY(162),
285         HNS3_RX_PTYPE_UNUSED_ENTRY(163),
286         HNS3_RX_PTYPE_UNUSED_ENTRY(164),
287         HNS3_RX_PTYPE_UNUSED_ENTRY(165),
288         HNS3_RX_PTYPE_UNUSED_ENTRY(166),
289         HNS3_RX_PTYPE_UNUSED_ENTRY(167),
290         HNS3_RX_PTYPE_UNUSED_ENTRY(168),
291         HNS3_RX_PTYPE_UNUSED_ENTRY(169),
292         HNS3_RX_PTYPE_UNUSED_ENTRY(170),
293         HNS3_RX_PTYPE_UNUSED_ENTRY(171),
294         HNS3_RX_PTYPE_UNUSED_ENTRY(172),
295         HNS3_RX_PTYPE_UNUSED_ENTRY(173),
296         HNS3_RX_PTYPE_UNUSED_ENTRY(174),
297         HNS3_RX_PTYPE_UNUSED_ENTRY(175),
298         HNS3_RX_PTYPE_UNUSED_ENTRY(176),
299         HNS3_RX_PTYPE_UNUSED_ENTRY(177),
300         HNS3_RX_PTYPE_UNUSED_ENTRY(178),
301         HNS3_RX_PTYPE_UNUSED_ENTRY(179),
302         HNS3_RX_PTYPE_UNUSED_ENTRY(180),
303         HNS3_RX_PTYPE_UNUSED_ENTRY(181),
304         HNS3_RX_PTYPE_UNUSED_ENTRY(182),
305         HNS3_RX_PTYPE_UNUSED_ENTRY(183),
306         HNS3_RX_PTYPE_UNUSED_ENTRY(184),
307         HNS3_RX_PTYPE_UNUSED_ENTRY(185),
308         HNS3_RX_PTYPE_UNUSED_ENTRY(186),
309         HNS3_RX_PTYPE_UNUSED_ENTRY(187),
310         HNS3_RX_PTYPE_UNUSED_ENTRY(188),
311         HNS3_RX_PTYPE_UNUSED_ENTRY(189),
312         HNS3_RX_PTYPE_UNUSED_ENTRY(190),
313         HNS3_RX_PTYPE_UNUSED_ENTRY(191),
314         HNS3_RX_PTYPE_UNUSED_ENTRY(192),
315         HNS3_RX_PTYPE_UNUSED_ENTRY(193),
316         HNS3_RX_PTYPE_UNUSED_ENTRY(194),
317         HNS3_RX_PTYPE_UNUSED_ENTRY(195),
318         HNS3_RX_PTYPE_UNUSED_ENTRY(196),
319         HNS3_RX_PTYPE_UNUSED_ENTRY(197),
320         HNS3_RX_PTYPE_UNUSED_ENTRY(198),
321         HNS3_RX_PTYPE_UNUSED_ENTRY(199),
322         HNS3_RX_PTYPE_UNUSED_ENTRY(200),
323         HNS3_RX_PTYPE_UNUSED_ENTRY(201),
324         HNS3_RX_PTYPE_UNUSED_ENTRY(202),
325         HNS3_RX_PTYPE_UNUSED_ENTRY(203),
326         HNS3_RX_PTYPE_UNUSED_ENTRY(204),
327         HNS3_RX_PTYPE_UNUSED_ENTRY(205),
328         HNS3_RX_PTYPE_UNUSED_ENTRY(206),
329         HNS3_RX_PTYPE_UNUSED_ENTRY(207),
330         HNS3_RX_PTYPE_UNUSED_ENTRY(208),
331         HNS3_RX_PTYPE_UNUSED_ENTRY(209),
332         HNS3_RX_PTYPE_UNUSED_ENTRY(210),
333         HNS3_RX_PTYPE_UNUSED_ENTRY(211),
334         HNS3_RX_PTYPE_UNUSED_ENTRY(212),
335         HNS3_RX_PTYPE_UNUSED_ENTRY(213),
336         HNS3_RX_PTYPE_UNUSED_ENTRY(214),
337         HNS3_RX_PTYPE_UNUSED_ENTRY(215),
338         HNS3_RX_PTYPE_UNUSED_ENTRY(216),
339         HNS3_RX_PTYPE_UNUSED_ENTRY(217),
340         HNS3_RX_PTYPE_UNUSED_ENTRY(218),
341         HNS3_RX_PTYPE_UNUSED_ENTRY(219),
342         HNS3_RX_PTYPE_UNUSED_ENTRY(220),
343         HNS3_RX_PTYPE_UNUSED_ENTRY(221),
344         HNS3_RX_PTYPE_UNUSED_ENTRY(222),
345         HNS3_RX_PTYPE_UNUSED_ENTRY(223),
346         HNS3_RX_PTYPE_UNUSED_ENTRY(224),
347         HNS3_RX_PTYPE_UNUSED_ENTRY(225),
348         HNS3_RX_PTYPE_UNUSED_ENTRY(226),
349         HNS3_RX_PTYPE_UNUSED_ENTRY(227),
350         HNS3_RX_PTYPE_UNUSED_ENTRY(228),
351         HNS3_RX_PTYPE_UNUSED_ENTRY(229),
352         HNS3_RX_PTYPE_UNUSED_ENTRY(230),
353         HNS3_RX_PTYPE_UNUSED_ENTRY(231),
354         HNS3_RX_PTYPE_UNUSED_ENTRY(232),
355         HNS3_RX_PTYPE_UNUSED_ENTRY(233),
356         HNS3_RX_PTYPE_UNUSED_ENTRY(234),
357         HNS3_RX_PTYPE_UNUSED_ENTRY(235),
358         HNS3_RX_PTYPE_UNUSED_ENTRY(236),
359         HNS3_RX_PTYPE_UNUSED_ENTRY(237),
360         HNS3_RX_PTYPE_UNUSED_ENTRY(238),
361         HNS3_RX_PTYPE_UNUSED_ENTRY(239),
362         HNS3_RX_PTYPE_UNUSED_ENTRY(240),
363         HNS3_RX_PTYPE_UNUSED_ENTRY(241),
364         HNS3_RX_PTYPE_UNUSED_ENTRY(242),
365         HNS3_RX_PTYPE_UNUSED_ENTRY(243),
366         HNS3_RX_PTYPE_UNUSED_ENTRY(244),
367         HNS3_RX_PTYPE_UNUSED_ENTRY(245),
368         HNS3_RX_PTYPE_UNUSED_ENTRY(246),
369         HNS3_RX_PTYPE_UNUSED_ENTRY(247),
370         HNS3_RX_PTYPE_UNUSED_ENTRY(248),
371         HNS3_RX_PTYPE_UNUSED_ENTRY(249),
372         HNS3_RX_PTYPE_UNUSED_ENTRY(250),
373         HNS3_RX_PTYPE_UNUSED_ENTRY(251),
374         HNS3_RX_PTYPE_UNUSED_ENTRY(252),
375         HNS3_RX_PTYPE_UNUSED_ENTRY(253),
376         HNS3_RX_PTYPE_UNUSED_ENTRY(254),
377         HNS3_RX_PTYPE_UNUSED_ENTRY(255),
378 };
379
380 #define HNS3_INVALID_PTYPE \
381                 ARRAY_SIZE(hns3_rx_ptype_tbl)
382
383 static irqreturn_t hns3_irq_handle(int irq, void *vector)
384 {
385         struct hns3_enet_tqp_vector *tqp_vector = vector;
386
387         napi_schedule_irqoff(&tqp_vector->napi);
388         tqp_vector->event_cnt++;
389
390         return IRQ_HANDLED;
391 }
392
393 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
394 {
395         struct hns3_enet_tqp_vector *tqp_vectors;
396         unsigned int i;
397
398         for (i = 0; i < priv->vector_num; i++) {
399                 tqp_vectors = &priv->tqp_vector[i];
400
401                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
402                         continue;
403
404                 /* clear the affinity mask */
405                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
406
407                 /* release the irq resource */
408                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
409                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
410         }
411 }
412
413 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
414 {
415         struct hns3_enet_tqp_vector *tqp_vectors;
416         int txrx_int_idx = 0;
417         int rx_int_idx = 0;
418         int tx_int_idx = 0;
419         unsigned int i;
420         int ret;
421
422         for (i = 0; i < priv->vector_num; i++) {
423                 tqp_vectors = &priv->tqp_vector[i];
424
425                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
426                         continue;
427
428                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
429                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
430                                  "%s-%s-%s-%d", hns3_driver_name,
431                                  pci_name(priv->ae_handle->pdev),
432                                  "TxRx", txrx_int_idx++);
433                         txrx_int_idx++;
434                 } else if (tqp_vectors->rx_group.ring) {
435                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
436                                  "%s-%s-%s-%d", hns3_driver_name,
437                                  pci_name(priv->ae_handle->pdev),
438                                  "Rx", rx_int_idx++);
439                 } else if (tqp_vectors->tx_group.ring) {
440                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
441                                  "%s-%s-%s-%d", hns3_driver_name,
442                                  pci_name(priv->ae_handle->pdev),
443                                  "Tx", tx_int_idx++);
444                 } else {
445                         /* Skip this unused q_vector */
446                         continue;
447                 }
448
449                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
450
451                 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
452                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
453                                   tqp_vectors->name, tqp_vectors);
454                 if (ret) {
455                         netdev_err(priv->netdev, "request irq(%d) fail\n",
456                                    tqp_vectors->vector_irq);
457                         hns3_nic_uninit_irq(priv);
458                         return ret;
459                 }
460
461                 irq_set_affinity_hint(tqp_vectors->vector_irq,
462                                       &tqp_vectors->affinity_mask);
463
464                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
465         }
466
467         return 0;
468 }
469
470 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
471                                  u32 mask_en)
472 {
473         writel(mask_en, tqp_vector->mask_addr);
474 }
475
476 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
477 {
478         napi_enable(&tqp_vector->napi);
479         enable_irq(tqp_vector->vector_irq);
480
481         /* enable vector */
482         hns3_mask_vector_irq(tqp_vector, 1);
483 }
484
485 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
486 {
487         /* disable vector */
488         hns3_mask_vector_irq(tqp_vector, 0);
489
490         disable_irq(tqp_vector->vector_irq);
491         napi_disable(&tqp_vector->napi);
492         cancel_work_sync(&tqp_vector->rx_group.dim.work);
493         cancel_work_sync(&tqp_vector->tx_group.dim.work);
494 }
495
496 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
497                                  u32 rl_value)
498 {
499         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
500
501         /* this defines the configuration for RL (Interrupt Rate Limiter).
502          * Rl defines rate of interrupts i.e. number of interrupts-per-second
503          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
504          */
505         if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
506             !tqp_vector->rx_group.coal.adapt_enable)
507                 /* According to the hardware, the range of rl_reg is
508                  * 0-59 and the unit is 4.
509                  */
510                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
511
512         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
513 }
514
515 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
516                                     u32 gl_value)
517 {
518         u32 new_val;
519
520         if (tqp_vector->rx_group.coal.unit_1us)
521                 new_val = gl_value | HNS3_INT_GL_1US;
522         else
523                 new_val = hns3_gl_usec_to_reg(gl_value);
524
525         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
526 }
527
528 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
529                                     u32 gl_value)
530 {
531         u32 new_val;
532
533         if (tqp_vector->tx_group.coal.unit_1us)
534                 new_val = gl_value | HNS3_INT_GL_1US;
535         else
536                 new_val = hns3_gl_usec_to_reg(gl_value);
537
538         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
539 }
540
541 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
542                                     u32 ql_value)
543 {
544         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
545 }
546
547 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
548                                     u32 ql_value)
549 {
550         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
551 }
552
553 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
554                                       struct hns3_nic_priv *priv)
555 {
556         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
557         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
558         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
559         struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
560         struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
561
562         tx_coal->adapt_enable = ptx_coal->adapt_enable;
563         rx_coal->adapt_enable = prx_coal->adapt_enable;
564
565         tx_coal->int_gl = ptx_coal->int_gl;
566         rx_coal->int_gl = prx_coal->int_gl;
567
568         rx_coal->flow_level = prx_coal->flow_level;
569         tx_coal->flow_level = ptx_coal->flow_level;
570
571         /* device version above V3(include V3), GL can configure 1us
572          * unit, so uses 1us unit.
573          */
574         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
575                 tx_coal->unit_1us = 1;
576                 rx_coal->unit_1us = 1;
577         }
578
579         if (ae_dev->dev_specs.int_ql_max) {
580                 tx_coal->ql_enable = 1;
581                 rx_coal->ql_enable = 1;
582                 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
583                 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
584                 tx_coal->int_ql = ptx_coal->int_ql;
585                 rx_coal->int_ql = prx_coal->int_ql;
586         }
587 }
588
589 static void
590 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
591                              struct hns3_nic_priv *priv)
592 {
593         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
594         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
595         struct hnae3_handle *h = priv->ae_handle;
596
597         hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
598         hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
599         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
600
601         if (tx_coal->ql_enable)
602                 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
603
604         if (rx_coal->ql_enable)
605                 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
606 }
607
608 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
609 {
610         struct hnae3_handle *h = hns3_get_handle(netdev);
611         struct hnae3_knic_private_info *kinfo = &h->kinfo;
612         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
613         unsigned int queue_size = kinfo->num_tqps;
614         int i, ret;
615
616         if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
617                 netdev_reset_tc(netdev);
618         } else {
619                 ret = netdev_set_num_tc(netdev, tc_info->num_tc);
620                 if (ret) {
621                         netdev_err(netdev,
622                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
623                         return ret;
624                 }
625
626                 for (i = 0; i < tc_info->num_tc; i++)
627                         netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
628                                             tc_info->tqp_offset[i]);
629         }
630
631         ret = netif_set_real_num_tx_queues(netdev, queue_size);
632         if (ret) {
633                 netdev_err(netdev,
634                            "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
635                 return ret;
636         }
637
638         ret = netif_set_real_num_rx_queues(netdev, queue_size);
639         if (ret) {
640                 netdev_err(netdev,
641                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
642                 return ret;
643         }
644
645         return 0;
646 }
647
648 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
649 {
650         u16 alloc_tqps, max_rss_size, rss_size;
651
652         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
653         rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
654
655         return min_t(u16, rss_size, max_rss_size);
656 }
657
658 static void hns3_tqp_enable(struct hnae3_queue *tqp)
659 {
660         u32 rcb_reg;
661
662         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
663         rcb_reg |= BIT(HNS3_RING_EN_B);
664         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
665 }
666
667 static void hns3_tqp_disable(struct hnae3_queue *tqp)
668 {
669         u32 rcb_reg;
670
671         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
672         rcb_reg &= ~BIT(HNS3_RING_EN_B);
673         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
674 }
675
676 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
677 {
678 #ifdef CONFIG_RFS_ACCEL
679         free_irq_cpu_rmap(netdev->rx_cpu_rmap);
680         netdev->rx_cpu_rmap = NULL;
681 #endif
682 }
683
684 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
685 {
686 #ifdef CONFIG_RFS_ACCEL
687         struct hns3_nic_priv *priv = netdev_priv(netdev);
688         struct hns3_enet_tqp_vector *tqp_vector;
689         int i, ret;
690
691         if (!netdev->rx_cpu_rmap) {
692                 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
693                 if (!netdev->rx_cpu_rmap)
694                         return -ENOMEM;
695         }
696
697         for (i = 0; i < priv->vector_num; i++) {
698                 tqp_vector = &priv->tqp_vector[i];
699                 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
700                                        tqp_vector->vector_irq);
701                 if (ret) {
702                         hns3_free_rx_cpu_rmap(netdev);
703                         return ret;
704                 }
705         }
706 #endif
707         return 0;
708 }
709
710 static int hns3_nic_net_up(struct net_device *netdev)
711 {
712         struct hns3_nic_priv *priv = netdev_priv(netdev);
713         struct hnae3_handle *h = priv->ae_handle;
714         int i, j;
715         int ret;
716
717         ret = hns3_nic_reset_all_ring(h);
718         if (ret)
719                 return ret;
720
721         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
722
723         /* enable the vectors */
724         for (i = 0; i < priv->vector_num; i++)
725                 hns3_vector_enable(&priv->tqp_vector[i]);
726
727         /* enable rcb */
728         for (j = 0; j < h->kinfo.num_tqps; j++)
729                 hns3_tqp_enable(h->kinfo.tqp[j]);
730
731         /* start the ae_dev */
732         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
733         if (ret) {
734                 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
735                 while (j--)
736                         hns3_tqp_disable(h->kinfo.tqp[j]);
737
738                 for (j = i - 1; j >= 0; j--)
739                         hns3_vector_disable(&priv->tqp_vector[j]);
740         }
741
742         return ret;
743 }
744
745 static void hns3_config_xps(struct hns3_nic_priv *priv)
746 {
747         int i;
748
749         for (i = 0; i < priv->vector_num; i++) {
750                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
751                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
752
753                 while (ring) {
754                         int ret;
755
756                         ret = netif_set_xps_queue(priv->netdev,
757                                                   &tqp_vector->affinity_mask,
758                                                   ring->tqp->tqp_index);
759                         if (ret)
760                                 netdev_warn(priv->netdev,
761                                             "set xps queue failed: %d", ret);
762
763                         ring = ring->next;
764                 }
765         }
766 }
767
768 static int hns3_nic_net_open(struct net_device *netdev)
769 {
770         struct hns3_nic_priv *priv = netdev_priv(netdev);
771         struct hnae3_handle *h = hns3_get_handle(netdev);
772         struct hnae3_knic_private_info *kinfo;
773         int i, ret;
774
775         if (hns3_nic_resetting(netdev))
776                 return -EBUSY;
777
778         if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
779                 netdev_warn(netdev, "net open repeatedly!\n");
780                 return 0;
781         }
782
783         netif_carrier_off(netdev);
784
785         ret = hns3_nic_set_real_num_queue(netdev);
786         if (ret)
787                 return ret;
788
789         ret = hns3_nic_net_up(netdev);
790         if (ret) {
791                 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
792                 return ret;
793         }
794
795         kinfo = &h->kinfo;
796         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
797                 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
798
799         if (h->ae_algo->ops->set_timer_task)
800                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
801
802         hns3_config_xps(priv);
803
804         netif_dbg(h, drv, netdev, "net open\n");
805
806         return 0;
807 }
808
809 static void hns3_reset_tx_queue(struct hnae3_handle *h)
810 {
811         struct net_device *ndev = h->kinfo.netdev;
812         struct hns3_nic_priv *priv = netdev_priv(ndev);
813         struct netdev_queue *dev_queue;
814         u32 i;
815
816         for (i = 0; i < h->kinfo.num_tqps; i++) {
817                 dev_queue = netdev_get_tx_queue(ndev,
818                                                 priv->ring[i].queue_index);
819                 netdev_tx_reset_queue(dev_queue);
820         }
821 }
822
823 static void hns3_nic_net_down(struct net_device *netdev)
824 {
825         struct hns3_nic_priv *priv = netdev_priv(netdev);
826         struct hnae3_handle *h = hns3_get_handle(netdev);
827         const struct hnae3_ae_ops *ops;
828         int i;
829
830         /* disable vectors */
831         for (i = 0; i < priv->vector_num; i++)
832                 hns3_vector_disable(&priv->tqp_vector[i]);
833
834         /* disable rcb */
835         for (i = 0; i < h->kinfo.num_tqps; i++)
836                 hns3_tqp_disable(h->kinfo.tqp[i]);
837
838         /* stop ae_dev */
839         ops = priv->ae_handle->ae_algo->ops;
840         if (ops->stop)
841                 ops->stop(priv->ae_handle);
842
843         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
844          * during reset process, because driver may not be able
845          * to disable the ring through firmware when downing the netdev.
846          */
847         if (!hns3_nic_resetting(netdev))
848                 hns3_clear_all_ring(priv->ae_handle, false);
849
850         hns3_reset_tx_queue(priv->ae_handle);
851 }
852
853 static int hns3_nic_net_stop(struct net_device *netdev)
854 {
855         struct hns3_nic_priv *priv = netdev_priv(netdev);
856         struct hnae3_handle *h = hns3_get_handle(netdev);
857
858         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
859                 return 0;
860
861         netif_dbg(h, drv, netdev, "net stop\n");
862
863         if (h->ae_algo->ops->set_timer_task)
864                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
865
866         netif_carrier_off(netdev);
867         netif_tx_disable(netdev);
868
869         hns3_nic_net_down(netdev);
870
871         return 0;
872 }
873
874 static int hns3_nic_uc_sync(struct net_device *netdev,
875                             const unsigned char *addr)
876 {
877         struct hnae3_handle *h = hns3_get_handle(netdev);
878
879         if (h->ae_algo->ops->add_uc_addr)
880                 return h->ae_algo->ops->add_uc_addr(h, addr);
881
882         return 0;
883 }
884
885 static int hns3_nic_uc_unsync(struct net_device *netdev,
886                               const unsigned char *addr)
887 {
888         struct hnae3_handle *h = hns3_get_handle(netdev);
889
890         /* need ignore the request of removing device address, because
891          * we store the device address and other addresses of uc list
892          * in the function's mac filter list.
893          */
894         if (ether_addr_equal(addr, netdev->dev_addr))
895                 return 0;
896
897         if (h->ae_algo->ops->rm_uc_addr)
898                 return h->ae_algo->ops->rm_uc_addr(h, addr);
899
900         return 0;
901 }
902
903 static int hns3_nic_mc_sync(struct net_device *netdev,
904                             const unsigned char *addr)
905 {
906         struct hnae3_handle *h = hns3_get_handle(netdev);
907
908         if (h->ae_algo->ops->add_mc_addr)
909                 return h->ae_algo->ops->add_mc_addr(h, addr);
910
911         return 0;
912 }
913
914 static int hns3_nic_mc_unsync(struct net_device *netdev,
915                               const unsigned char *addr)
916 {
917         struct hnae3_handle *h = hns3_get_handle(netdev);
918
919         if (h->ae_algo->ops->rm_mc_addr)
920                 return h->ae_algo->ops->rm_mc_addr(h, addr);
921
922         return 0;
923 }
924
925 static u8 hns3_get_netdev_flags(struct net_device *netdev)
926 {
927         u8 flags = 0;
928
929         if (netdev->flags & IFF_PROMISC)
930                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
931         else if (netdev->flags & IFF_ALLMULTI)
932                 flags = HNAE3_USER_MPE;
933
934         return flags;
935 }
936
937 static void hns3_nic_set_rx_mode(struct net_device *netdev)
938 {
939         struct hnae3_handle *h = hns3_get_handle(netdev);
940         u8 new_flags;
941
942         new_flags = hns3_get_netdev_flags(netdev);
943
944         __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
945         __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
946
947         /* User mode Promisc mode enable and vlan filtering is disabled to
948          * let all packets in.
949          */
950         h->netdev_flags = new_flags;
951         hns3_request_update_promisc_mode(h);
952 }
953
954 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
955 {
956         const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
957
958         if (ops->request_update_promisc_mode)
959                 ops->request_update_promisc_mode(handle);
960 }
961
962 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
963 {
964         struct hns3_tx_spare *tx_spare = ring->tx_spare;
965         u32 ntc, ntu;
966
967         /* This smp_load_acquire() pairs with smp_store_release() in
968          * hns3_tx_spare_update() called in tx desc cleaning process.
969          */
970         ntc = smp_load_acquire(&tx_spare->last_to_clean);
971         ntu = tx_spare->next_to_use;
972
973         if (ntc > ntu)
974                 return ntc - ntu - 1;
975
976         /* The free tx buffer is divided into two part, so pick the
977          * larger one.
978          */
979         return max(ntc, tx_spare->len - ntu) - 1;
980 }
981
982 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
983 {
984         struct hns3_tx_spare *tx_spare = ring->tx_spare;
985
986         if (!tx_spare ||
987             tx_spare->last_to_clean == tx_spare->next_to_clean)
988                 return;
989
990         /* This smp_store_release() pairs with smp_load_acquire() in
991          * hns3_tx_spare_space() called in xmit process.
992          */
993         smp_store_release(&tx_spare->last_to_clean,
994                           tx_spare->next_to_clean);
995 }
996
997 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
998                                    struct sk_buff *skb,
999                                    u32 space)
1000 {
1001         u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1002                                 skb_headlen(skb);
1003
1004         if (len > ring->tx_copybreak)
1005                 return false;
1006
1007         if (ALIGN(len, dma_get_cache_alignment()) > space) {
1008                 hns3_ring_stats_update(ring, tx_spare_full);
1009                 return false;
1010         }
1011
1012         return true;
1013 }
1014
1015 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1016                                 struct sk_buff *skb,
1017                                 u32 space)
1018 {
1019         if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1020             (!skb_has_frag_list(skb) &&
1021              skb_shinfo(skb)->nr_frags < tx_sgl))
1022                 return false;
1023
1024         if (space < HNS3_MAX_SGL_SIZE) {
1025                 hns3_ring_stats_update(ring, tx_spare_full);
1026                 return false;
1027         }
1028
1029         return true;
1030 }
1031
1032 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1033 {
1034         u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
1035         struct hns3_tx_spare *tx_spare;
1036         struct page *page;
1037         dma_addr_t dma;
1038         int order;
1039
1040         if (!alloc_size)
1041                 return;
1042
1043         order = get_order(alloc_size);
1044         if (order > MAX_PAGE_ORDER) {
1045                 if (net_ratelimit())
1046                         dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n");
1047                 return;
1048         }
1049
1050         tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1051                                 GFP_KERNEL);
1052         if (!tx_spare) {
1053                 /* The driver still work without the tx spare buffer */
1054                 dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1055                 goto devm_kzalloc_error;
1056         }
1057
1058         page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1059                                 GFP_KERNEL, order);
1060         if (!page) {
1061                 dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1062                 goto alloc_pages_error;
1063         }
1064
1065         dma = dma_map_page(ring_to_dev(ring), page, 0,
1066                            PAGE_SIZE << order, DMA_TO_DEVICE);
1067         if (dma_mapping_error(ring_to_dev(ring), dma)) {
1068                 dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1069                 goto dma_mapping_error;
1070         }
1071
1072         tx_spare->dma = dma;
1073         tx_spare->buf = page_address(page);
1074         tx_spare->len = PAGE_SIZE << order;
1075         ring->tx_spare = tx_spare;
1076         return;
1077
1078 dma_mapping_error:
1079         put_page(page);
1080 alloc_pages_error:
1081         devm_kfree(ring_to_dev(ring), tx_spare);
1082 devm_kzalloc_error:
1083         ring->tqp->handle->kinfo.tx_spare_buf_size = 0;
1084 }
1085
1086 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1087  * before calling below function to allocate tx buffer.
1088  */
1089 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1090                                  unsigned int size, dma_addr_t *dma,
1091                                  u32 *cb_len)
1092 {
1093         struct hns3_tx_spare *tx_spare = ring->tx_spare;
1094         u32 ntu = tx_spare->next_to_use;
1095
1096         size = ALIGN(size, dma_get_cache_alignment());
1097         *cb_len = size;
1098
1099         /* Tx spare buffer wraps back here because the end of
1100          * freed tx buffer is not enough.
1101          */
1102         if (ntu + size > tx_spare->len) {
1103                 *cb_len += (tx_spare->len - ntu);
1104                 ntu = 0;
1105         }
1106
1107         tx_spare->next_to_use = ntu + size;
1108         if (tx_spare->next_to_use == tx_spare->len)
1109                 tx_spare->next_to_use = 0;
1110
1111         *dma = tx_spare->dma + ntu;
1112
1113         return tx_spare->buf + ntu;
1114 }
1115
1116 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1117 {
1118         struct hns3_tx_spare *tx_spare = ring->tx_spare;
1119
1120         if (len > tx_spare->next_to_use) {
1121                 len -= tx_spare->next_to_use;
1122                 tx_spare->next_to_use = tx_spare->len - len;
1123         } else {
1124                 tx_spare->next_to_use -= len;
1125         }
1126 }
1127
1128 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1129                                      struct hns3_desc_cb *cb)
1130 {
1131         struct hns3_tx_spare *tx_spare = ring->tx_spare;
1132         u32 ntc = tx_spare->next_to_clean;
1133         u32 len = cb->length;
1134
1135         tx_spare->next_to_clean += len;
1136
1137         if (tx_spare->next_to_clean >= tx_spare->len) {
1138                 tx_spare->next_to_clean -= tx_spare->len;
1139
1140                 if (tx_spare->next_to_clean) {
1141                         ntc = 0;
1142                         len = tx_spare->next_to_clean;
1143                 }
1144         }
1145
1146         /* This tx spare buffer is only really reclaimed after calling
1147          * hns3_tx_spare_update(), so it is still safe to use the info in
1148          * the tx buffer to do the dma sync or sg unmapping after
1149          * tx_spare->next_to_clean is moved forword.
1150          */
1151         if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1152                 dma_addr_t dma = tx_spare->dma + ntc;
1153
1154                 dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1155                                         DMA_TO_DEVICE);
1156         } else {
1157                 struct sg_table *sgt = tx_spare->buf + ntc;
1158
1159                 dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1160                              DMA_TO_DEVICE);
1161         }
1162 }
1163
1164 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1165                         u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1166 {
1167         u32 l4_offset, hdr_len;
1168         union l3_hdr_info l3;
1169         union l4_hdr_info l4;
1170         u32 l4_paylen;
1171         int ret;
1172
1173         if (!skb_is_gso(skb))
1174                 return 0;
1175
1176         ret = skb_cow_head(skb, 0);
1177         if (unlikely(ret < 0))
1178                 return ret;
1179
1180         l3.hdr = skb_network_header(skb);
1181         l4.hdr = skb_transport_header(skb);
1182
1183         /* Software should clear the IPv4's checksum field when tso is
1184          * needed.
1185          */
1186         if (l3.v4->version == 4)
1187                 l3.v4->check = 0;
1188
1189         /* tunnel packet */
1190         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1191                                          SKB_GSO_GRE_CSUM |
1192                                          SKB_GSO_UDP_TUNNEL |
1193                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
1194                 /* reset l3&l4 pointers from outer to inner headers */
1195                 l3.hdr = skb_inner_network_header(skb);
1196                 l4.hdr = skb_inner_transport_header(skb);
1197
1198                 /* Software should clear the IPv4's checksum field when
1199                  * tso is needed.
1200                  */
1201                 if (l3.v4->version == 4)
1202                         l3.v4->check = 0;
1203         }
1204
1205         /* normal or tunnel packet */
1206         l4_offset = l4.hdr - skb->data;
1207
1208         /* remove payload length from inner pseudo checksum when tso */
1209         l4_paylen = skb->len - l4_offset;
1210
1211         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1212                 hdr_len = sizeof(*l4.udp) + l4_offset;
1213                 csum_replace_by_diff(&l4.udp->check,
1214                                      (__force __wsum)htonl(l4_paylen));
1215         } else {
1216                 hdr_len = (l4.tcp->doff << 2) + l4_offset;
1217                 csum_replace_by_diff(&l4.tcp->check,
1218                                      (__force __wsum)htonl(l4_paylen));
1219         }
1220
1221         *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1222
1223         /* find the txbd field values */
1224         *paylen_fdop_ol4cs = skb->len - hdr_len;
1225         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1226
1227         /* offload outer UDP header checksum */
1228         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1229                 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1230
1231         /* get MSS for TSO */
1232         *mss = skb_shinfo(skb)->gso_size;
1233
1234         trace_hns3_tso(skb);
1235
1236         return 0;
1237 }
1238
1239 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1240                                 u8 *il4_proto)
1241 {
1242         union l3_hdr_info l3;
1243         unsigned char *l4_hdr;
1244         unsigned char *exthdr;
1245         u8 l4_proto_tmp;
1246         __be16 frag_off;
1247
1248         /* find outer header point */
1249         l3.hdr = skb_network_header(skb);
1250         l4_hdr = skb_transport_header(skb);
1251
1252         if (skb->protocol == htons(ETH_P_IPV6)) {
1253                 exthdr = l3.hdr + sizeof(*l3.v6);
1254                 l4_proto_tmp = l3.v6->nexthdr;
1255                 if (l4_hdr != exthdr)
1256                         ipv6_skip_exthdr(skb, exthdr - skb->data,
1257                                          &l4_proto_tmp, &frag_off);
1258         } else if (skb->protocol == htons(ETH_P_IP)) {
1259                 l4_proto_tmp = l3.v4->protocol;
1260         } else {
1261                 return -EINVAL;
1262         }
1263
1264         *ol4_proto = l4_proto_tmp;
1265
1266         /* tunnel packet */
1267         if (!skb->encapsulation) {
1268                 *il4_proto = 0;
1269                 return 0;
1270         }
1271
1272         /* find inner header point */
1273         l3.hdr = skb_inner_network_header(skb);
1274         l4_hdr = skb_inner_transport_header(skb);
1275
1276         if (l3.v6->version == 6) {
1277                 exthdr = l3.hdr + sizeof(*l3.v6);
1278                 l4_proto_tmp = l3.v6->nexthdr;
1279                 if (l4_hdr != exthdr)
1280                         ipv6_skip_exthdr(skb, exthdr - skb->data,
1281                                          &l4_proto_tmp, &frag_off);
1282         } else if (l3.v4->version == 4) {
1283                 l4_proto_tmp = l3.v4->protocol;
1284         }
1285
1286         *il4_proto = l4_proto_tmp;
1287
1288         return 0;
1289 }
1290
1291 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1292  * and it is udp packet, which has a dest port as the IANA assigned.
1293  * the hardware is expected to do the checksum offload, but the
1294  * hardware will not do the checksum offload when udp dest port is
1295  * 4789, 4790 or 6081.
1296  */
1297 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1298 {
1299         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1300         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1301         union l4_hdr_info l4;
1302
1303         /* device version above V3(include V3), the hardware can
1304          * do this checksum offload.
1305          */
1306         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1307                 return false;
1308
1309         l4.hdr = skb_transport_header(skb);
1310
1311         if (!(!skb->encapsulation &&
1312               (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1313               l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1314               l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
1315                 return false;
1316
1317         return true;
1318 }
1319
1320 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1321                                   u32 *ol_type_vlan_len_msec)
1322 {
1323         u32 l2_len, l3_len, l4_len;
1324         unsigned char *il2_hdr;
1325         union l3_hdr_info l3;
1326         union l4_hdr_info l4;
1327
1328         l3.hdr = skb_network_header(skb);
1329         l4.hdr = skb_transport_header(skb);
1330
1331         /* compute OL2 header size, defined in 2 Bytes */
1332         l2_len = l3.hdr - skb->data;
1333         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1334
1335         /* compute OL3 header size, defined in 4 Bytes */
1336         l3_len = l4.hdr - l3.hdr;
1337         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1338
1339         il2_hdr = skb_inner_mac_header(skb);
1340         /* compute OL4 header size, defined in 4 Bytes */
1341         l4_len = il2_hdr - l4.hdr;
1342         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1343
1344         /* define outer network header type */
1345         if (skb->protocol == htons(ETH_P_IP)) {
1346                 if (skb_is_gso(skb))
1347                         hns3_set_field(*ol_type_vlan_len_msec,
1348                                        HNS3_TXD_OL3T_S,
1349                                        HNS3_OL3T_IPV4_CSUM);
1350                 else
1351                         hns3_set_field(*ol_type_vlan_len_msec,
1352                                        HNS3_TXD_OL3T_S,
1353                                        HNS3_OL3T_IPV4_NO_CSUM);
1354         } else if (skb->protocol == htons(ETH_P_IPV6)) {
1355                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1356                                HNS3_OL3T_IPV6);
1357         }
1358
1359         if (ol4_proto == IPPROTO_UDP)
1360                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1361                                HNS3_TUN_MAC_IN_UDP);
1362         else if (ol4_proto == IPPROTO_GRE)
1363                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1364                                HNS3_TUN_NVGRE);
1365 }
1366
1367 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
1368                              u32 *type_cs_vlan_tso)
1369 {
1370         if (l3.v4->version == 4) {
1371                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1372                                HNS3_L3T_IPV4);
1373
1374                 /* the stack computes the IP header already, the only time we
1375                  * need the hardware to recompute it is in the case of TSO.
1376                  */
1377                 if (skb_is_gso(skb))
1378                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1379         } else if (l3.v6->version == 6) {
1380                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1381                                HNS3_L3T_IPV6);
1382         }
1383 }
1384
1385 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
1386                                    u32 l4_proto, u32 *type_cs_vlan_tso)
1387 {
1388         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
1389         switch (l4_proto) {
1390         case IPPROTO_TCP:
1391                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1392                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1393                                HNS3_L4T_TCP);
1394                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1395                                l4.tcp->doff);
1396                 break;
1397         case IPPROTO_UDP:
1398                 if (hns3_tunnel_csum_bug(skb)) {
1399                         int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1400
1401                         return ret ? ret : skb_checksum_help(skb);
1402                 }
1403
1404                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1405                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1406                                HNS3_L4T_UDP);
1407                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1408                                (sizeof(struct udphdr) >> 2));
1409                 break;
1410         case IPPROTO_SCTP:
1411                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1412                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1413                                HNS3_L4T_SCTP);
1414                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1415                                (sizeof(struct sctphdr) >> 2));
1416                 break;
1417         default:
1418                 /* drop the skb tunnel packet if hardware don't support,
1419                  * because hardware can't calculate csum when TSO.
1420                  */
1421                 if (skb_is_gso(skb))
1422                         return -EDOM;
1423
1424                 /* the stack computes the IP header already,
1425                  * driver calculate l4 checksum when not TSO.
1426                  */
1427                 return skb_checksum_help(skb);
1428         }
1429
1430         return 0;
1431 }
1432
1433 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1434                            u8 il4_proto, u32 *type_cs_vlan_tso,
1435                            u32 *ol_type_vlan_len_msec)
1436 {
1437         unsigned char *l2_hdr = skb->data;
1438         u32 l4_proto = ol4_proto;
1439         union l4_hdr_info l4;
1440         union l3_hdr_info l3;
1441         u32 l2_len, l3_len;
1442
1443         l4.hdr = skb_transport_header(skb);
1444         l3.hdr = skb_network_header(skb);
1445
1446         /* handle encapsulation skb */
1447         if (skb->encapsulation) {
1448                 /* If this is a not UDP/GRE encapsulation skb */
1449                 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1450                         /* drop the skb tunnel packet if hardware don't support,
1451                          * because hardware can't calculate csum when TSO.
1452                          */
1453                         if (skb_is_gso(skb))
1454                                 return -EDOM;
1455
1456                         /* the stack computes the IP header already,
1457                          * driver calculate l4 checksum when not TSO.
1458                          */
1459                         return skb_checksum_help(skb);
1460                 }
1461
1462                 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1463
1464                 /* switch to inner header */
1465                 l2_hdr = skb_inner_mac_header(skb);
1466                 l3.hdr = skb_inner_network_header(skb);
1467                 l4.hdr = skb_inner_transport_header(skb);
1468                 l4_proto = il4_proto;
1469         }
1470
1471         hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
1472
1473         /* compute inner(/normal) L2 header size, defined in 2 Bytes */
1474         l2_len = l3.hdr - l2_hdr;
1475         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1476
1477         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
1478         l3_len = l4.hdr - l3.hdr;
1479         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1480
1481         return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
1482 }
1483
1484 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1485                              struct sk_buff *skb)
1486 {
1487         struct hnae3_handle *handle = tx_ring->tqp->handle;
1488         struct hnae3_ae_dev *ae_dev;
1489         struct vlan_ethhdr *vhdr;
1490         int rc;
1491
1492         if (!(skb->protocol == htons(ETH_P_8021Q) ||
1493               skb_vlan_tag_present(skb)))
1494                 return 0;
1495
1496         /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1497          * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1498          * will cause RAS error.
1499          */
1500         ae_dev = pci_get_drvdata(handle->pdev);
1501         if (unlikely(skb_vlan_tagged_multi(skb) &&
1502                      ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1503                      handle->port_base_vlan_state ==
1504                      HNAE3_PORT_BASE_VLAN_ENABLE))
1505                 return -EINVAL;
1506
1507         if (skb->protocol == htons(ETH_P_8021Q) &&
1508             !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1509                 /* When HW VLAN acceleration is turned off, and the stack
1510                  * sets the protocol to 802.1q, the driver just need to
1511                  * set the protocol to the encapsulated ethertype.
1512                  */
1513                 skb->protocol = vlan_get_protocol(skb);
1514                 return 0;
1515         }
1516
1517         if (skb_vlan_tag_present(skb)) {
1518                 /* Based on hw strategy, use out_vtag in two layer tag case,
1519                  * and use inner_vtag in one tag case.
1520                  */
1521                 if (skb->protocol == htons(ETH_P_8021Q) &&
1522                     handle->port_base_vlan_state ==
1523                     HNAE3_PORT_BASE_VLAN_DISABLE)
1524                         rc = HNS3_OUTER_VLAN_TAG;
1525                 else
1526                         rc = HNS3_INNER_VLAN_TAG;
1527
1528                 skb->protocol = vlan_get_protocol(skb);
1529                 return rc;
1530         }
1531
1532         rc = skb_cow_head(skb, 0);
1533         if (unlikely(rc < 0))
1534                 return rc;
1535
1536         vhdr = skb_vlan_eth_hdr(skb);
1537         vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1538                                          & VLAN_PRIO_MASK);
1539
1540         skb->protocol = vlan_get_protocol(skb);
1541         return 0;
1542 }
1543
1544 /* check if the hardware is capable of checksum offloading */
1545 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1546 {
1547         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1548
1549         /* Kindly note, due to backward compatibility of the TX descriptor,
1550          * HW checksum of the non-IP packets and GSO packets is handled at
1551          * different place in the following code
1552          */
1553         if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1554             !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1555                 return false;
1556
1557         return true;
1558 }
1559
1560 struct hns3_desc_param {
1561         u32 paylen_ol4cs;
1562         u32 ol_type_vlan_len_msec;
1563         u32 type_cs_vlan_tso;
1564         u16 mss_hw_csum;
1565         u16 inner_vtag;
1566         u16 out_vtag;
1567 };
1568
1569 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
1570 {
1571         pa->paylen_ol4cs = skb->len;
1572         pa->ol_type_vlan_len_msec = 0;
1573         pa->type_cs_vlan_tso = 0;
1574         pa->mss_hw_csum = 0;
1575         pa->inner_vtag = 0;
1576         pa->out_vtag = 0;
1577 }
1578
1579 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
1580                                  struct sk_buff *skb,
1581                                  struct hns3_desc_param *param)
1582 {
1583         int ret;
1584
1585         ret = hns3_handle_vtags(ring, skb);
1586         if (unlikely(ret < 0)) {
1587                 hns3_ring_stats_update(ring, tx_vlan_err);
1588                 return ret;
1589         } else if (ret == HNS3_INNER_VLAN_TAG) {
1590                 param->inner_vtag = skb_vlan_tag_get(skb);
1591                 param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1592                                 VLAN_PRIO_MASK;
1593                 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1594         } else if (ret == HNS3_OUTER_VLAN_TAG) {
1595                 param->out_vtag = skb_vlan_tag_get(skb);
1596                 param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1597                                 VLAN_PRIO_MASK;
1598                 hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1599                                1);
1600         }
1601         return 0;
1602 }
1603
1604 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
1605                                     struct sk_buff *skb,
1606                                     struct hns3_desc_cb *desc_cb,
1607                                     struct hns3_desc_param *param)
1608 {
1609         u8 ol4_proto, il4_proto;
1610         int ret;
1611
1612         if (hns3_check_hw_tx_csum(skb)) {
1613                 /* set checksum start and offset, defined in 2 Bytes */
1614                 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1615                                skb_checksum_start_offset(skb) >> 1);
1616                 hns3_set_field(param->ol_type_vlan_len_msec,
1617                                HNS3_TXD_CSUM_OFFSET_S,
1618                                skb->csum_offset >> 1);
1619                 param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1620                 return 0;
1621         }
1622
1623         skb_reset_mac_len(skb);
1624
1625         ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1626         if (unlikely(ret < 0)) {
1627                 hns3_ring_stats_update(ring, tx_l4_proto_err);
1628                 return ret;
1629         }
1630
1631         ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1632                               &param->type_cs_vlan_tso,
1633                               &param->ol_type_vlan_len_msec);
1634         if (unlikely(ret < 0)) {
1635                 hns3_ring_stats_update(ring, tx_l2l3l4_err);
1636                 return ret;
1637         }
1638
1639         ret = hns3_set_tso(skb, &param->paylen_ol4cs, &param->mss_hw_csum,
1640                            &param->type_cs_vlan_tso, &desc_cb->send_bytes);
1641         if (unlikely(ret < 0)) {
1642                 hns3_ring_stats_update(ring, tx_tso_err);
1643                 return ret;
1644         }
1645         return 0;
1646 }
1647
1648 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1649                               struct sk_buff *skb, struct hns3_desc *desc,
1650                               struct hns3_desc_cb *desc_cb)
1651 {
1652         struct hns3_desc_param param;
1653         int ret;
1654
1655         hns3_init_desc_data(skb, &param);
1656         ret = hns3_handle_vlan_info(ring, skb, &param);
1657         if (unlikely(ret < 0))
1658                 return ret;
1659
1660         desc_cb->send_bytes = skb->len;
1661
1662         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1663                 ret = hns3_handle_csum_partial(ring, skb, desc_cb, &param);
1664                 if (ret)
1665                         return ret;
1666         }
1667
1668         /* Set txbd */
1669         desc->tx.ol_type_vlan_len_msec =
1670                 cpu_to_le32(param.ol_type_vlan_len_msec);
1671         desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
1672         desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
1673         desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
1674         desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
1675         desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
1676
1677         return 0;
1678 }
1679
1680 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1681                           unsigned int size)
1682 {
1683 #define HNS3_LIKELY_BD_NUM      1
1684
1685         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1686         unsigned int frag_buf_num;
1687         int k, sizeoflast;
1688
1689         if (likely(size <= HNS3_MAX_BD_SIZE)) {
1690                 desc->addr = cpu_to_le64(dma);
1691                 desc->tx.send_size = cpu_to_le16(size);
1692                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1693                         cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1694
1695                 trace_hns3_tx_desc(ring, ring->next_to_use);
1696                 ring_ptr_move_fw(ring, next_to_use);
1697                 return HNS3_LIKELY_BD_NUM;
1698         }
1699
1700         frag_buf_num = hns3_tx_bd_count(size);
1701         sizeoflast = size % HNS3_MAX_BD_SIZE;
1702         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1703
1704         /* When frag size is bigger than hardware limit, split this frag */
1705         for (k = 0; k < frag_buf_num; k++) {
1706                 /* now, fill the descriptor */
1707                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1708                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1709                                      (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1710                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1711                                 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1712
1713                 trace_hns3_tx_desc(ring, ring->next_to_use);
1714                 /* move ring pointer to next */
1715                 ring_ptr_move_fw(ring, next_to_use);
1716
1717                 desc = &ring->desc[ring->next_to_use];
1718         }
1719
1720         return frag_buf_num;
1721 }
1722
1723 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1724                                   unsigned int type)
1725 {
1726         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1727         struct device *dev = ring_to_dev(ring);
1728         unsigned int size;
1729         dma_addr_t dma;
1730
1731         if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1732                 struct sk_buff *skb = (struct sk_buff *)priv;
1733
1734                 size = skb_headlen(skb);
1735                 if (!size)
1736                         return 0;
1737
1738                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1739         } else if (type & DESC_TYPE_BOUNCE_HEAD) {
1740                 /* Head data has been filled in hns3_handle_tx_bounce(),
1741                  * just return 0 here.
1742                  */
1743                 return 0;
1744         } else {
1745                 skb_frag_t *frag = (skb_frag_t *)priv;
1746
1747                 size = skb_frag_size(frag);
1748                 if (!size)
1749                         return 0;
1750
1751                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1752         }
1753
1754         if (unlikely(dma_mapping_error(dev, dma))) {
1755                 hns3_ring_stats_update(ring, sw_err_cnt);
1756                 return -ENOMEM;
1757         }
1758
1759         desc_cb->priv = priv;
1760         desc_cb->length = size;
1761         desc_cb->dma = dma;
1762         desc_cb->type = type;
1763
1764         return hns3_fill_desc(ring, dma, size);
1765 }
1766
1767 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1768                                     unsigned int bd_num)
1769 {
1770         unsigned int size;
1771         int i;
1772
1773         size = skb_headlen(skb);
1774         while (size > HNS3_MAX_BD_SIZE) {
1775                 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1776                 size -= HNS3_MAX_BD_SIZE;
1777
1778                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1779                         return bd_num;
1780         }
1781
1782         if (size) {
1783                 bd_size[bd_num++] = size;
1784                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1785                         return bd_num;
1786         }
1787
1788         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1789                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1790                 size = skb_frag_size(frag);
1791                 if (!size)
1792                         continue;
1793
1794                 while (size > HNS3_MAX_BD_SIZE) {
1795                         bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1796                         size -= HNS3_MAX_BD_SIZE;
1797
1798                         if (bd_num > HNS3_MAX_TSO_BD_NUM)
1799                                 return bd_num;
1800                 }
1801
1802                 bd_size[bd_num++] = size;
1803                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1804                         return bd_num;
1805         }
1806
1807         return bd_num;
1808 }
1809
1810 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1811                                    u8 max_non_tso_bd_num, unsigned int bd_num,
1812                                    unsigned int recursion_level)
1813 {
1814 #define HNS3_MAX_RECURSION_LEVEL        24
1815
1816         struct sk_buff *frag_skb;
1817
1818         /* If the total len is within the max bd limit */
1819         if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1820                    !skb_has_frag_list(skb) &&
1821                    skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1822                 return skb_shinfo(skb)->nr_frags + 1U;
1823
1824         if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1825                 return UINT_MAX;
1826
1827         bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1828         if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1829                 return bd_num;
1830
1831         skb_walk_frags(skb, frag_skb) {
1832                 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1833                                         bd_num, recursion_level + 1);
1834                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1835                         return bd_num;
1836         }
1837
1838         return bd_num;
1839 }
1840
1841 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1842 {
1843         if (!skb->encapsulation)
1844                 return skb_tcp_all_headers(skb);
1845
1846         return skb_inner_tcp_all_headers(skb);
1847 }
1848
1849 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1850  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1851  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1852  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1853  * than MSS except the last max_non_tso_bd_num - 1 frags.
1854  */
1855 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1856                                      unsigned int bd_num, u8 max_non_tso_bd_num)
1857 {
1858         unsigned int tot_len = 0;
1859         int i;
1860
1861         for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1862                 tot_len += bd_size[i];
1863
1864         /* ensure the first max_non_tso_bd_num frags is greater than
1865          * mss + header
1866          */
1867         if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1868             skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1869                 return true;
1870
1871         /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1872          * than mss except the last one.
1873          */
1874         for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1875                 tot_len -= bd_size[i];
1876                 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1877
1878                 if (tot_len < skb_shinfo(skb)->gso_size)
1879                         return true;
1880         }
1881
1882         return false;
1883 }
1884
1885 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1886 {
1887         int i;
1888
1889         for (i = 0; i < MAX_SKB_FRAGS; i++)
1890                 size[i] = skb_frag_size(&shinfo->frags[i]);
1891 }
1892
1893 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1894                               struct sk_buff *skb,
1895                               unsigned int bd_num)
1896 {
1897         /* 'bd_num == UINT_MAX' means the skb' fraglist has a
1898          * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1899          */
1900         if (bd_num == UINT_MAX) {
1901                 hns3_ring_stats_update(ring, over_max_recursion);
1902                 return -ENOMEM;
1903         }
1904
1905         /* The skb->len has exceeded the hw limitation, linearization
1906          * will not help.
1907          */
1908         if (skb->len > HNS3_MAX_TSO_SIZE ||
1909             (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1910                 hns3_ring_stats_update(ring, hw_limitation);
1911                 return -ENOMEM;
1912         }
1913
1914         if (__skb_linearize(skb)) {
1915                 hns3_ring_stats_update(ring, sw_err_cnt);
1916                 return -ENOMEM;
1917         }
1918
1919         return 0;
1920 }
1921
1922 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1923                                   struct net_device *netdev,
1924                                   struct sk_buff *skb)
1925 {
1926         struct hns3_nic_priv *priv = netdev_priv(netdev);
1927         u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1928         unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1929         unsigned int bd_num;
1930
1931         bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1932         if (unlikely(bd_num > max_non_tso_bd_num)) {
1933                 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1934                     !hns3_skb_need_linearized(skb, bd_size, bd_num,
1935                                               max_non_tso_bd_num)) {
1936                         trace_hns3_over_max_bd(skb);
1937                         goto out;
1938                 }
1939
1940                 if (hns3_skb_linearize(ring, skb, bd_num))
1941                         return -ENOMEM;
1942
1943                 bd_num = hns3_tx_bd_count(skb->len);
1944
1945                 hns3_ring_stats_update(ring, tx_copy);
1946         }
1947
1948 out:
1949         if (likely(ring_space(ring) >= bd_num))
1950                 return bd_num;
1951
1952         netif_stop_subqueue(netdev, ring->queue_index);
1953         smp_mb(); /* Memory barrier before checking ring_space */
1954
1955         /* Start queue in case hns3_clean_tx_ring has just made room
1956          * available and has not seen the queue stopped state performed
1957          * by netif_stop_subqueue above.
1958          */
1959         if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1960             !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1961                 netif_start_subqueue(netdev, ring->queue_index);
1962                 return bd_num;
1963         }
1964
1965         hns3_ring_stats_update(ring, tx_busy);
1966
1967         return -EBUSY;
1968 }
1969
1970 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1971 {
1972         struct device *dev = ring_to_dev(ring);
1973         unsigned int i;
1974
1975         for (i = 0; i < ring->desc_num; i++) {
1976                 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1977                 struct hns3_desc_cb *desc_cb;
1978
1979                 memset(desc, 0, sizeof(*desc));
1980
1981                 /* check if this is where we started */
1982                 if (ring->next_to_use == next_to_use_orig)
1983                         break;
1984
1985                 /* rollback one */
1986                 ring_ptr_move_bw(ring, next_to_use);
1987
1988                 desc_cb = &ring->desc_cb[ring->next_to_use];
1989
1990                 if (!desc_cb->dma)
1991                         continue;
1992
1993                 /* unmap the descriptor dma address */
1994                 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1995                         dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1996                                          DMA_TO_DEVICE);
1997                 else if (desc_cb->type &
1998                          (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1999                         hns3_tx_spare_rollback(ring, desc_cb->length);
2000                 else if (desc_cb->length)
2001                         dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
2002                                        DMA_TO_DEVICE);
2003
2004                 desc_cb->length = 0;
2005                 desc_cb->dma = 0;
2006                 desc_cb->type = DESC_TYPE_UNKNOWN;
2007         }
2008 }
2009
2010 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
2011                                  struct sk_buff *skb, unsigned int type)
2012 {
2013         struct sk_buff *frag_skb;
2014         int i, ret, bd_num = 0;
2015
2016         ret = hns3_map_and_fill_desc(ring, skb, type);
2017         if (unlikely(ret < 0))
2018                 return ret;
2019
2020         bd_num += ret;
2021
2022         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2023                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2024
2025                 ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
2026                 if (unlikely(ret < 0))
2027                         return ret;
2028
2029                 bd_num += ret;
2030         }
2031
2032         skb_walk_frags(skb, frag_skb) {
2033                 ret = hns3_fill_skb_to_desc(ring, frag_skb,
2034                                             DESC_TYPE_FRAGLIST_SKB);
2035                 if (unlikely(ret < 0))
2036                         return ret;
2037
2038                 bd_num += ret;
2039         }
2040
2041         return bd_num;
2042 }
2043
2044 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num)
2045 {
2046 #define HNS3_BYTES_PER_64BIT            8
2047
2048         struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {};
2049         int offset = 0;
2050
2051         /* make sure everything is visible to device before
2052          * excuting tx push or updating doorbell
2053          */
2054         dma_wmb();
2055
2056         do {
2057                 int idx = (ring->next_to_use - num + ring->desc_num) %
2058                           ring->desc_num;
2059
2060                 u64_stats_update_begin(&ring->syncp);
2061                 ring->stats.tx_push++;
2062                 u64_stats_update_end(&ring->syncp);
2063                 memcpy(&desc[offset], &ring->desc[idx],
2064                        sizeof(struct hns3_desc));
2065                 offset++;
2066         } while (--num);
2067
2068         __iowrite64_copy(ring->tqp->mem_base, desc,
2069                          (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) /
2070                          HNS3_BYTES_PER_64BIT);
2071
2072         io_stop_wc();
2073 }
2074
2075 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring)
2076 {
2077 #define HNS3_MEM_DOORBELL_OFFSET        64
2078
2079         __le64 bd_num = cpu_to_le64((u64)ring->pending_buf);
2080
2081         /* make sure everything is visible to device before
2082          * excuting tx push or updating doorbell
2083          */
2084         dma_wmb();
2085
2086         __iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET,
2087                          &bd_num, 1);
2088         u64_stats_update_begin(&ring->syncp);
2089         ring->stats.tx_mem_doorbell += ring->pending_buf;
2090         u64_stats_update_end(&ring->syncp);
2091
2092         io_stop_wc();
2093 }
2094
2095 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2096                              bool doorbell)
2097 {
2098         struct net_device *netdev = ring_to_netdev(ring);
2099         struct hns3_nic_priv *priv = netdev_priv(netdev);
2100
2101         /* when tx push is enabled, the packet whose number of BD below
2102          * HNS3_MAX_PUSH_BD_NUM can be pushed directly.
2103          */
2104         if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num &&
2105             !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) {
2106                 /* This smp_store_release() pairs with smp_load_aquire() in
2107                  * hns3_nic_reclaim_desc(). Ensure that the BD valid bit
2108                  * is updated.
2109                  */
2110                 smp_store_release(&ring->last_to_use, ring->next_to_use);
2111                 hns3_tx_push_bd(ring, num);
2112                 return;
2113         }
2114
2115         ring->pending_buf += num;
2116
2117         if (!doorbell) {
2118                 hns3_ring_stats_update(ring, tx_more);
2119                 return;
2120         }
2121
2122         /* This smp_store_release() pairs with smp_load_aquire() in
2123          * hns3_nic_reclaim_desc(). Ensure that the BD valid bit is updated.
2124          */
2125         smp_store_release(&ring->last_to_use, ring->next_to_use);
2126
2127         if (ring->tqp->mem_base)
2128                 hns3_tx_mem_doorbell(ring);
2129         else
2130                 writel(ring->pending_buf,
2131                        ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2132
2133         ring->pending_buf = 0;
2134 }
2135
2136 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2137                       struct hns3_desc *desc)
2138 {
2139         struct hnae3_handle *h = hns3_get_handle(netdev);
2140
2141         if (!(h->ae_algo->ops->set_tx_hwts_info &&
2142               h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2143                 return;
2144
2145         desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2146 }
2147
2148 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2149                                  struct sk_buff *skb)
2150 {
2151         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2152         unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2153         unsigned int size = skb_headlen(skb);
2154         dma_addr_t dma;
2155         int bd_num = 0;
2156         u32 cb_len;
2157         void *buf;
2158         int ret;
2159
2160         if (skb->len <= ring->tx_copybreak) {
2161                 size = skb->len;
2162                 type = DESC_TYPE_BOUNCE_ALL;
2163         }
2164
2165         /* hns3_can_use_tx_bounce() is called to ensure the below
2166          * function can always return the tx buffer.
2167          */
2168         buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2169
2170         ret = skb_copy_bits(skb, 0, buf, size);
2171         if (unlikely(ret < 0)) {
2172                 hns3_tx_spare_rollback(ring, cb_len);
2173                 hns3_ring_stats_update(ring, copy_bits_err);
2174                 return ret;
2175         }
2176
2177         desc_cb->priv = skb;
2178         desc_cb->length = cb_len;
2179         desc_cb->dma = dma;
2180         desc_cb->type = type;
2181
2182         bd_num += hns3_fill_desc(ring, dma, size);
2183
2184         if (type == DESC_TYPE_BOUNCE_HEAD) {
2185                 ret = hns3_fill_skb_to_desc(ring, skb,
2186                                             DESC_TYPE_BOUNCE_HEAD);
2187                 if (unlikely(ret < 0))
2188                         return ret;
2189
2190                 bd_num += ret;
2191         }
2192
2193         dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2194                                    DMA_TO_DEVICE);
2195
2196         hns3_ring_stats_update(ring, tx_bounce);
2197
2198         return bd_num;
2199 }
2200
2201 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2202                               struct sk_buff *skb)
2203 {
2204         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2205         u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2206         struct sg_table *sgt;
2207         int i, bd_num = 0;
2208         dma_addr_t dma;
2209         u32 cb_len;
2210         int nents;
2211
2212         if (skb_has_frag_list(skb))
2213                 nfrag = HNS3_MAX_TSO_BD_NUM;
2214
2215         /* hns3_can_use_tx_sgl() is called to ensure the below
2216          * function can always return the tx buffer.
2217          */
2218         sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2219                                   &dma, &cb_len);
2220
2221         /* scatterlist follows by the sg table */
2222         sgt->sgl = (struct scatterlist *)(sgt + 1);
2223         sg_init_table(sgt->sgl, nfrag);
2224         nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2225         if (unlikely(nents < 0)) {
2226                 hns3_tx_spare_rollback(ring, cb_len);
2227                 hns3_ring_stats_update(ring, skb2sgl_err);
2228                 return -ENOMEM;
2229         }
2230
2231         sgt->orig_nents = nents;
2232         sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2233                                 DMA_TO_DEVICE);
2234         if (unlikely(!sgt->nents)) {
2235                 hns3_tx_spare_rollback(ring, cb_len);
2236                 hns3_ring_stats_update(ring, map_sg_err);
2237                 return -ENOMEM;
2238         }
2239
2240         desc_cb->priv = skb;
2241         desc_cb->length = cb_len;
2242         desc_cb->dma = dma;
2243         desc_cb->type = DESC_TYPE_SGL_SKB;
2244
2245         for (i = 0; i < sgt->nents; i++)
2246                 bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2247                                          sg_dma_len(sgt->sgl + i));
2248         hns3_ring_stats_update(ring, tx_sgl);
2249
2250         return bd_num;
2251 }
2252
2253 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2254                                     struct sk_buff *skb)
2255 {
2256         u32 space;
2257
2258         if (!ring->tx_spare)
2259                 goto out;
2260
2261         space = hns3_tx_spare_space(ring);
2262
2263         if (hns3_can_use_tx_sgl(ring, skb, space))
2264                 return hns3_handle_tx_sgl(ring, skb);
2265
2266         if (hns3_can_use_tx_bounce(ring, skb, space))
2267                 return hns3_handle_tx_bounce(ring, skb);
2268
2269 out:
2270         return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2271 }
2272
2273 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
2274                                 struct sk_buff *skb,
2275                                 struct hns3_desc_cb *desc_cb,
2276                                 int next_to_use_head)
2277 {
2278         int ret;
2279
2280         ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2281                                  desc_cb);
2282         if (unlikely(ret < 0))
2283                 goto fill_err;
2284
2285         /* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2286          * zero, which is unlikely, and 'ret > 0' means how many tx desc
2287          * need to be notified to the hw.
2288          */
2289         ret = hns3_handle_desc_filling(ring, skb);
2290         if (likely(ret > 0))
2291                 return ret;
2292
2293 fill_err:
2294         hns3_clear_desc(ring, next_to_use_head);
2295         return ret;
2296 }
2297
2298 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2299 {
2300         struct hns3_nic_priv *priv = netdev_priv(netdev);
2301         struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2302         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2303         struct netdev_queue *dev_queue;
2304         int pre_ntu, ret;
2305         bool doorbell;
2306
2307         /* Hardware can only handle short frames above 32 bytes */
2308         if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2309                 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2310
2311                 hns3_ring_stats_update(ring, sw_err_cnt);
2312
2313                 return NETDEV_TX_OK;
2314         }
2315
2316         /* Prefetch the data used later */
2317         prefetch(skb->data);
2318
2319         ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2320         if (unlikely(ret <= 0)) {
2321                 if (ret == -EBUSY) {
2322                         hns3_tx_doorbell(ring, 0, true);
2323                         return NETDEV_TX_BUSY;
2324                 }
2325
2326                 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2327                 goto out_err_tx_ok;
2328         }
2329
2330         ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
2331         if (unlikely(ret <= 0))
2332                 goto out_err_tx_ok;
2333
2334         pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2335                                         (ring->desc_num - 1);
2336
2337         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2338                 hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2339
2340         ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2341                                 cpu_to_le16(BIT(HNS3_TXD_FE_B));
2342         trace_hns3_tx_desc(ring, pre_ntu);
2343
2344         skb_tx_timestamp(skb);
2345
2346         /* Complete translate all packets */
2347         dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2348         doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2349                                           netdev_xmit_more());
2350         hns3_tx_doorbell(ring, ret, doorbell);
2351
2352         return NETDEV_TX_OK;
2353
2354 out_err_tx_ok:
2355         dev_kfree_skb_any(skb);
2356         hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2357         return NETDEV_TX_OK;
2358 }
2359
2360 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2361 {
2362         char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
2363         char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
2364         struct hnae3_handle *h = hns3_get_handle(netdev);
2365         struct sockaddr *mac_addr = p;
2366         int ret;
2367
2368         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2369                 return -EADDRNOTAVAIL;
2370
2371         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2372                 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2373                 netdev_info(netdev, "already using mac address %s\n",
2374                             format_mac_addr_sa);
2375                 return 0;
2376         }
2377
2378         /* For VF device, if there is a perm_addr, then the user will not
2379          * be allowed to change the address.
2380          */
2381         if (!hns3_is_phys_func(h->pdev) &&
2382             !is_zero_ether_addr(netdev->perm_addr)) {
2383                 hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
2384                 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2385                 netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
2386                            format_mac_addr_perm, format_mac_addr_sa);
2387                 return -EPERM;
2388         }
2389
2390         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2391         if (ret) {
2392                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2393                 return ret;
2394         }
2395
2396         eth_hw_addr_set(netdev, mac_addr->sa_data);
2397
2398         return 0;
2399 }
2400
2401 static int hns3_nic_do_ioctl(struct net_device *netdev,
2402                              struct ifreq *ifr, int cmd)
2403 {
2404         struct hnae3_handle *h = hns3_get_handle(netdev);
2405
2406         if (!netif_running(netdev))
2407                 return -EINVAL;
2408
2409         if (!h->ae_algo->ops->do_ioctl)
2410                 return -EOPNOTSUPP;
2411
2412         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2413 }
2414
2415 static int hns3_nic_set_features(struct net_device *netdev,
2416                                  netdev_features_t features)
2417 {
2418         netdev_features_t changed = netdev->features ^ features;
2419         struct hns3_nic_priv *priv = netdev_priv(netdev);
2420         struct hnae3_handle *h = priv->ae_handle;
2421         bool enable;
2422         int ret;
2423
2424         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2425                 enable = !!(features & NETIF_F_GRO_HW);
2426                 ret = h->ae_algo->ops->set_gro_en(h, enable);
2427                 if (ret)
2428                         return ret;
2429         }
2430
2431         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2432             h->ae_algo->ops->enable_hw_strip_rxvtag) {
2433                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2434                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2435                 if (ret)
2436                         return ret;
2437         }
2438
2439         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2440                 enable = !!(features & NETIF_F_NTUPLE);
2441                 h->ae_algo->ops->enable_fd(h, enable);
2442         }
2443
2444         if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2445             h->ae_algo->ops->cls_flower_active(h)) {
2446                 netdev_err(netdev,
2447                            "there are offloaded TC filters active, cannot disable HW TC offload");
2448                 return -EINVAL;
2449         }
2450
2451         if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2452             h->ae_algo->ops->enable_vlan_filter) {
2453                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2454                 ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2455                 if (ret)
2456                         return ret;
2457         }
2458
2459         netdev->features = features;
2460         return 0;
2461 }
2462
2463 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2464                                              struct net_device *dev,
2465                                              netdev_features_t features)
2466 {
2467 #define HNS3_MAX_HDR_LEN        480U
2468 #define HNS3_MAX_L4_HDR_LEN     60U
2469
2470         size_t len;
2471
2472         if (skb->ip_summed != CHECKSUM_PARTIAL)
2473                 return features;
2474
2475         if (skb->encapsulation)
2476                 len = skb_inner_transport_offset(skb);
2477         else
2478                 len = skb_transport_offset(skb);
2479
2480         /* Assume L4 is 60 byte as TCP is the only protocol with a
2481          * a flexible value, and it's max len is 60 bytes.
2482          */
2483         len += HNS3_MAX_L4_HDR_LEN;
2484
2485         /* Hardware only supports checksum on the skb with a max header
2486          * len of 480 bytes.
2487          */
2488         if (len > HNS3_MAX_HDR_LEN)
2489                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2490
2491         return features;
2492 }
2493
2494 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
2495                              struct hns3_enet_ring *ring, bool is_tx)
2496 {
2497         unsigned int start;
2498
2499         do {
2500                 start = u64_stats_fetch_begin(&ring->syncp);
2501                 if (is_tx) {
2502                         stats->tx_bytes += ring->stats.tx_bytes;
2503                         stats->tx_packets += ring->stats.tx_pkts;
2504                         stats->tx_dropped += ring->stats.sw_err_cnt;
2505                         stats->tx_dropped += ring->stats.tx_vlan_err;
2506                         stats->tx_dropped += ring->stats.tx_l4_proto_err;
2507                         stats->tx_dropped += ring->stats.tx_l2l3l4_err;
2508                         stats->tx_dropped += ring->stats.tx_tso_err;
2509                         stats->tx_dropped += ring->stats.over_max_recursion;
2510                         stats->tx_dropped += ring->stats.hw_limitation;
2511                         stats->tx_dropped += ring->stats.copy_bits_err;
2512                         stats->tx_dropped += ring->stats.skb2sgl_err;
2513                         stats->tx_dropped += ring->stats.map_sg_err;
2514                         stats->tx_errors += ring->stats.sw_err_cnt;
2515                         stats->tx_errors += ring->stats.tx_vlan_err;
2516                         stats->tx_errors += ring->stats.tx_l4_proto_err;
2517                         stats->tx_errors += ring->stats.tx_l2l3l4_err;
2518                         stats->tx_errors += ring->stats.tx_tso_err;
2519                         stats->tx_errors += ring->stats.over_max_recursion;
2520                         stats->tx_errors += ring->stats.hw_limitation;
2521                         stats->tx_errors += ring->stats.copy_bits_err;
2522                         stats->tx_errors += ring->stats.skb2sgl_err;
2523                         stats->tx_errors += ring->stats.map_sg_err;
2524                 } else {
2525                         stats->rx_bytes += ring->stats.rx_bytes;
2526                         stats->rx_packets += ring->stats.rx_pkts;
2527                         stats->rx_dropped += ring->stats.l2_err;
2528                         stats->rx_errors += ring->stats.l2_err;
2529                         stats->rx_errors += ring->stats.l3l4_csum_err;
2530                         stats->rx_crc_errors += ring->stats.l2_err;
2531                         stats->multicast += ring->stats.rx_multicast;
2532                         stats->rx_length_errors += ring->stats.err_pkt_len;
2533                 }
2534         } while (u64_stats_fetch_retry(&ring->syncp, start));
2535 }
2536
2537 static void hns3_nic_get_stats64(struct net_device *netdev,
2538                                  struct rtnl_link_stats64 *stats)
2539 {
2540         struct hns3_nic_priv *priv = netdev_priv(netdev);
2541         int queue_num = priv->ae_handle->kinfo.num_tqps;
2542         struct hnae3_handle *handle = priv->ae_handle;
2543         struct rtnl_link_stats64 ring_total_stats;
2544         struct hns3_enet_ring *ring;
2545         unsigned int idx;
2546
2547         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2548                 return;
2549
2550         handle->ae_algo->ops->update_stats(handle);
2551
2552         memset(&ring_total_stats, 0, sizeof(ring_total_stats));
2553         for (idx = 0; idx < queue_num; idx++) {
2554                 /* fetch the tx stats */
2555                 ring = &priv->ring[idx];
2556                 hns3_fetch_stats(&ring_total_stats, ring, true);
2557
2558                 /* fetch the rx stats */
2559                 ring = &priv->ring[idx + queue_num];
2560                 hns3_fetch_stats(&ring_total_stats, ring, false);
2561         }
2562
2563         stats->tx_bytes = ring_total_stats.tx_bytes;
2564         stats->tx_packets = ring_total_stats.tx_packets;
2565         stats->rx_bytes = ring_total_stats.rx_bytes;
2566         stats->rx_packets = ring_total_stats.rx_packets;
2567
2568         stats->rx_errors = ring_total_stats.rx_errors;
2569         stats->multicast = ring_total_stats.multicast;
2570         stats->rx_length_errors = ring_total_stats.rx_length_errors;
2571         stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
2572         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2573
2574         stats->tx_errors = ring_total_stats.tx_errors;
2575         stats->rx_dropped = ring_total_stats.rx_dropped;
2576         stats->tx_dropped = ring_total_stats.tx_dropped;
2577         stats->collisions = netdev->stats.collisions;
2578         stats->rx_over_errors = netdev->stats.rx_over_errors;
2579         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2580         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2581         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2582         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2583         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2584         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2585         stats->tx_window_errors = netdev->stats.tx_window_errors;
2586         stats->rx_compressed = netdev->stats.rx_compressed;
2587         stats->tx_compressed = netdev->stats.tx_compressed;
2588 }
2589
2590 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2591 {
2592         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2593         struct hnae3_knic_private_info *kinfo;
2594         u8 tc = mqprio_qopt->qopt.num_tc;
2595         u16 mode = mqprio_qopt->mode;
2596         u8 hw = mqprio_qopt->qopt.hw;
2597         struct hnae3_handle *h;
2598
2599         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2600                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2601                 return -EOPNOTSUPP;
2602
2603         if (tc > HNAE3_MAX_TC)
2604                 return -EINVAL;
2605
2606         if (!netdev)
2607                 return -EINVAL;
2608
2609         h = hns3_get_handle(netdev);
2610         kinfo = &h->kinfo;
2611
2612         netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2613
2614         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2615                 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2616 }
2617
2618 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2619                                     struct flow_cls_offload *flow)
2620 {
2621         int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2622         struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2623
2624         switch (flow->command) {
2625         case FLOW_CLS_REPLACE:
2626                 if (h->ae_algo->ops->add_cls_flower)
2627                         return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2628                 break;
2629         case FLOW_CLS_DESTROY:
2630                 if (h->ae_algo->ops->del_cls_flower)
2631                         return h->ae_algo->ops->del_cls_flower(h, flow);
2632                 break;
2633         default:
2634                 break;
2635         }
2636
2637         return -EOPNOTSUPP;
2638 }
2639
2640 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2641                                   void *cb_priv)
2642 {
2643         struct hns3_nic_priv *priv = cb_priv;
2644
2645         if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2646                 return -EOPNOTSUPP;
2647
2648         switch (type) {
2649         case TC_SETUP_CLSFLOWER:
2650                 return hns3_setup_tc_cls_flower(priv, type_data);
2651         default:
2652                 return -EOPNOTSUPP;
2653         }
2654 }
2655
2656 static LIST_HEAD(hns3_block_cb_list);
2657
2658 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2659                              void *type_data)
2660 {
2661         struct hns3_nic_priv *priv = netdev_priv(dev);
2662         int ret;
2663
2664         switch (type) {
2665         case TC_SETUP_QDISC_MQPRIO:
2666                 ret = hns3_setup_tc(dev, type_data);
2667                 break;
2668         case TC_SETUP_BLOCK:
2669                 ret = flow_block_cb_setup_simple(type_data,
2670                                                  &hns3_block_cb_list,
2671                                                  hns3_setup_tc_block_cb,
2672                                                  priv, priv, true);
2673                 break;
2674         default:
2675                 return -EOPNOTSUPP;
2676         }
2677
2678         return ret;
2679 }
2680
2681 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2682                                 __be16 proto, u16 vid)
2683 {
2684         struct hnae3_handle *h = hns3_get_handle(netdev);
2685         int ret = -EIO;
2686
2687         if (h->ae_algo->ops->set_vlan_filter)
2688                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2689
2690         return ret;
2691 }
2692
2693 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2694                                  __be16 proto, u16 vid)
2695 {
2696         struct hnae3_handle *h = hns3_get_handle(netdev);
2697         int ret = -EIO;
2698
2699         if (h->ae_algo->ops->set_vlan_filter)
2700                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2701
2702         return ret;
2703 }
2704
2705 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2706                                 u8 qos, __be16 vlan_proto)
2707 {
2708         struct hnae3_handle *h = hns3_get_handle(netdev);
2709         int ret = -EIO;
2710
2711         netif_dbg(h, drv, netdev,
2712                   "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2713                   vf, vlan, qos, ntohs(vlan_proto));
2714
2715         if (h->ae_algo->ops->set_vf_vlan_filter)
2716                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2717                                                           qos, vlan_proto);
2718
2719         return ret;
2720 }
2721
2722 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2723 {
2724         struct hnae3_handle *handle = hns3_get_handle(netdev);
2725
2726         if (hns3_nic_resetting(netdev))
2727                 return -EBUSY;
2728
2729         if (!handle->ae_algo->ops->set_vf_spoofchk)
2730                 return -EOPNOTSUPP;
2731
2732         return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2733 }
2734
2735 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2736 {
2737         struct hnae3_handle *handle = hns3_get_handle(netdev);
2738
2739         if (!handle->ae_algo->ops->set_vf_trust)
2740                 return -EOPNOTSUPP;
2741
2742         return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2743 }
2744
2745 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2746 {
2747         struct hnae3_handle *h = hns3_get_handle(netdev);
2748         int ret;
2749
2750         if (hns3_nic_resetting(netdev))
2751                 return -EBUSY;
2752
2753         if (!h->ae_algo->ops->set_mtu)
2754                 return -EOPNOTSUPP;
2755
2756         netif_dbg(h, drv, netdev,
2757                   "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2758
2759         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2760         if (ret)
2761                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
2762                            ret);
2763         else
2764                 netdev->mtu = new_mtu;
2765
2766         return ret;
2767 }
2768
2769 static int hns3_get_timeout_queue(struct net_device *ndev)
2770 {
2771         int i;
2772
2773         /* Find the stopped queue the same way the stack does */
2774         for (i = 0; i < ndev->num_tx_queues; i++) {
2775                 struct netdev_queue *q;
2776                 unsigned long trans_start;
2777
2778                 q = netdev_get_tx_queue(ndev, i);
2779                 trans_start = READ_ONCE(q->trans_start);
2780                 if (netif_xmit_stopped(q) &&
2781                     time_after(jiffies,
2782                                (trans_start + ndev->watchdog_timeo))) {
2783 #ifdef CONFIG_BQL
2784                         struct dql *dql = &q->dql;
2785
2786                         netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
2787                                     dql->last_obj_cnt, dql->num_queued,
2788                                     dql->adj_limit, dql->num_completed);
2789 #endif
2790                         netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2791                                     q->state,
2792                                     jiffies_to_msecs(jiffies - trans_start));
2793                         break;
2794                 }
2795         }
2796
2797         return i;
2798 }
2799
2800 static void hns3_dump_queue_stats(struct net_device *ndev,
2801                                   struct hns3_enet_ring *tx_ring,
2802                                   int timeout_queue)
2803 {
2804         struct napi_struct *napi = &tx_ring->tqp_vector->napi;
2805         struct hns3_nic_priv *priv = netdev_priv(ndev);
2806
2807         netdev_info(ndev,
2808                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2809                     priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2810                     tx_ring->next_to_clean, napi->state);
2811
2812         netdev_info(ndev,
2813                     "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2814                     tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2815                     tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2816
2817         netdev_info(ndev,
2818                     "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2819                     tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2820                     tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2821
2822         netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n",
2823                     tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell);
2824 }
2825
2826 static void hns3_dump_queue_reg(struct net_device *ndev,
2827                                 struct hns3_enet_ring *tx_ring)
2828 {
2829         netdev_info(ndev,
2830                     "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2831                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
2832                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
2833                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
2834                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
2835                     readl(tx_ring->tqp_vector->mask_addr));
2836         netdev_info(ndev,
2837                     "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2838                     hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
2839                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
2840                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
2841                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
2842                     hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
2843                     hns3_tqp_read_reg(tx_ring,
2844                                       HNS3_RING_TX_RING_EBD_OFFSET_REG));
2845 }
2846
2847 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2848 {
2849         struct hns3_nic_priv *priv = netdev_priv(ndev);
2850         struct hnae3_handle *h = hns3_get_handle(ndev);
2851         struct hns3_enet_ring *tx_ring;
2852         int timeout_queue;
2853
2854         timeout_queue = hns3_get_timeout_queue(ndev);
2855         if (timeout_queue >= ndev->num_tx_queues) {
2856                 netdev_info(ndev,
2857                             "no netdev TX timeout queue found, timeout count: %llu\n",
2858                             priv->tx_timeout_count);
2859                 return false;
2860         }
2861
2862         priv->tx_timeout_count++;
2863
2864         tx_ring = &priv->ring[timeout_queue];
2865         hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
2866
2867         /* When mac received many pause frames continuous, it's unable to send
2868          * packets, which may cause tx timeout
2869          */
2870         if (h->ae_algo->ops->get_mac_stats) {
2871                 struct hns3_mac_stats mac_stats;
2872
2873                 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2874                 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2875                             mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2876         }
2877
2878         hns3_dump_queue_reg(ndev, tx_ring);
2879
2880         return true;
2881 }
2882
2883 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2884 {
2885         struct hns3_nic_priv *priv = netdev_priv(ndev);
2886         struct hnae3_handle *h = priv->ae_handle;
2887
2888         if (!hns3_get_tx_timeo_queue_info(ndev))
2889                 return;
2890
2891         /* request the reset, and let the hclge to determine
2892          * which reset level should be done
2893          */
2894         if (h->ae_algo->ops->reset_event)
2895                 h->ae_algo->ops->reset_event(h->pdev, h);
2896 }
2897
2898 #ifdef CONFIG_RFS_ACCEL
2899 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2900                               u16 rxq_index, u32 flow_id)
2901 {
2902         struct hnae3_handle *h = hns3_get_handle(dev);
2903         struct flow_keys fkeys;
2904
2905         if (!h->ae_algo->ops->add_arfs_entry)
2906                 return -EOPNOTSUPP;
2907
2908         if (skb->encapsulation)
2909                 return -EPROTONOSUPPORT;
2910
2911         if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2912                 return -EPROTONOSUPPORT;
2913
2914         if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2915              fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2916             (fkeys.basic.ip_proto != IPPROTO_TCP &&
2917              fkeys.basic.ip_proto != IPPROTO_UDP))
2918                 return -EPROTONOSUPPORT;
2919
2920         return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2921 }
2922 #endif
2923
2924 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2925                                   struct ifla_vf_info *ivf)
2926 {
2927         struct hnae3_handle *h = hns3_get_handle(ndev);
2928
2929         if (!h->ae_algo->ops->get_vf_config)
2930                 return -EOPNOTSUPP;
2931
2932         return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2933 }
2934
2935 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2936                                       int link_state)
2937 {
2938         struct hnae3_handle *h = hns3_get_handle(ndev);
2939
2940         if (!h->ae_algo->ops->set_vf_link_state)
2941                 return -EOPNOTSUPP;
2942
2943         return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2944 }
2945
2946 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2947                                 int min_tx_rate, int max_tx_rate)
2948 {
2949         struct hnae3_handle *h = hns3_get_handle(ndev);
2950
2951         if (!h->ae_algo->ops->set_vf_rate)
2952                 return -EOPNOTSUPP;
2953
2954         return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2955                                             false);
2956 }
2957
2958 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2959 {
2960         struct hnae3_handle *h = hns3_get_handle(netdev);
2961         char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
2962
2963         if (!h->ae_algo->ops->set_vf_mac)
2964                 return -EOPNOTSUPP;
2965
2966         if (is_multicast_ether_addr(mac)) {
2967                 hnae3_format_mac_addr(format_mac_addr, mac);
2968                 netdev_err(netdev,
2969                            "Invalid MAC:%s specified. Could not set MAC\n",
2970                            format_mac_addr);
2971                 return -EINVAL;
2972         }
2973
2974         return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2975 }
2976
2977 #define HNS3_INVALID_DSCP               0xff
2978 #define HNS3_DSCP_SHIFT                 2
2979
2980 static u8 hns3_get_skb_dscp(struct sk_buff *skb)
2981 {
2982         __be16 protocol = skb->protocol;
2983         u8 dscp = HNS3_INVALID_DSCP;
2984
2985         if (protocol == htons(ETH_P_8021Q))
2986                 protocol = vlan_get_protocol(skb);
2987
2988         if (protocol == htons(ETH_P_IP))
2989                 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT;
2990         else if (protocol == htons(ETH_P_IPV6))
2991                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT;
2992
2993         return dscp;
2994 }
2995
2996 static u16 hns3_nic_select_queue(struct net_device *netdev,
2997                                  struct sk_buff *skb,
2998                                  struct net_device *sb_dev)
2999 {
3000         struct hnae3_handle *h = hns3_get_handle(netdev);
3001         u8 dscp;
3002
3003         if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP ||
3004             !h->ae_algo->ops->get_dscp_prio)
3005                 goto out;
3006
3007         dscp = hns3_get_skb_dscp(skb);
3008         if (unlikely(dscp >= HNAE3_MAX_DSCP))
3009                 goto out;
3010
3011         skb->priority = h->kinfo.dscp_prio[dscp];
3012         if (skb->priority == HNAE3_PRIO_ID_INVALID)
3013                 skb->priority = 0;
3014
3015 out:
3016         return netdev_pick_tx(netdev, skb, sb_dev);
3017 }
3018
3019 static const struct net_device_ops hns3_nic_netdev_ops = {
3020         .ndo_open               = hns3_nic_net_open,
3021         .ndo_stop               = hns3_nic_net_stop,
3022         .ndo_start_xmit         = hns3_nic_net_xmit,
3023         .ndo_tx_timeout         = hns3_nic_net_timeout,
3024         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
3025         .ndo_eth_ioctl          = hns3_nic_do_ioctl,
3026         .ndo_change_mtu         = hns3_nic_change_mtu,
3027         .ndo_set_features       = hns3_nic_set_features,
3028         .ndo_features_check     = hns3_features_check,
3029         .ndo_get_stats64        = hns3_nic_get_stats64,
3030         .ndo_setup_tc           = hns3_nic_setup_tc,
3031         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
3032         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
3033         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
3034         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
3035         .ndo_set_vf_spoofchk    = hns3_set_vf_spoofchk,
3036         .ndo_set_vf_trust       = hns3_set_vf_trust,
3037 #ifdef CONFIG_RFS_ACCEL
3038         .ndo_rx_flow_steer      = hns3_rx_flow_steer,
3039 #endif
3040         .ndo_get_vf_config      = hns3_nic_get_vf_config,
3041         .ndo_set_vf_link_state  = hns3_nic_set_vf_link_state,
3042         .ndo_set_vf_rate        = hns3_nic_set_vf_rate,
3043         .ndo_set_vf_mac         = hns3_nic_set_vf_mac,
3044         .ndo_select_queue       = hns3_nic_select_queue,
3045 };
3046
3047 bool hns3_is_phys_func(struct pci_dev *pdev)
3048 {
3049         u32 dev_id = pdev->device;
3050
3051         switch (dev_id) {
3052         case HNAE3_DEV_ID_GE:
3053         case HNAE3_DEV_ID_25GE:
3054         case HNAE3_DEV_ID_25GE_RDMA:
3055         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
3056         case HNAE3_DEV_ID_50GE_RDMA:
3057         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
3058         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
3059         case HNAE3_DEV_ID_200G_RDMA:
3060                 return true;
3061         case HNAE3_DEV_ID_VF:
3062         case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
3063                 return false;
3064         default:
3065                 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
3066                          dev_id);
3067         }
3068
3069         return false;
3070 }
3071
3072 static void hns3_disable_sriov(struct pci_dev *pdev)
3073 {
3074         /* If our VFs are assigned we cannot shut down SR-IOV
3075          * without causing issues, so just leave the hardware
3076          * available but disabled
3077          */
3078         if (pci_vfs_assigned(pdev)) {
3079                 dev_warn(&pdev->dev,
3080                          "disabling driver while VFs are assigned\n");
3081                 return;
3082         }
3083
3084         pci_disable_sriov(pdev);
3085 }
3086
3087 /* hns3_probe - Device initialization routine
3088  * @pdev: PCI device information struct
3089  * @ent: entry in hns3_pci_tbl
3090  *
3091  * hns3_probe initializes a PF identified by a pci_dev structure.
3092  * The OS initialization, configuring of the PF private structure,
3093  * and a hardware reset occur.
3094  *
3095  * Returns 0 on success, negative on failure
3096  */
3097 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3098 {
3099         struct hnae3_ae_dev *ae_dev;
3100         int ret;
3101
3102         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
3103         if (!ae_dev)
3104                 return -ENOMEM;
3105
3106         ae_dev->pdev = pdev;
3107         ae_dev->flag = ent->driver_data;
3108         pci_set_drvdata(pdev, ae_dev);
3109
3110         ret = hnae3_register_ae_dev(ae_dev);
3111         if (ret)
3112                 pci_set_drvdata(pdev, NULL);
3113
3114         return ret;
3115 }
3116
3117 /**
3118  * hns3_clean_vf_config
3119  * @pdev: pointer to a pci_dev structure
3120  * @num_vfs: number of VFs allocated
3121  *
3122  * Clean residual vf config after disable sriov
3123  **/
3124 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs)
3125 {
3126         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3127
3128         if (ae_dev->ops->clean_vf_config)
3129                 ae_dev->ops->clean_vf_config(ae_dev, num_vfs);
3130 }
3131
3132 /* hns3_remove - Device removal routine
3133  * @pdev: PCI device information struct
3134  */
3135 static void hns3_remove(struct pci_dev *pdev)
3136 {
3137         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3138
3139         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
3140                 hns3_disable_sriov(pdev);
3141
3142         hnae3_unregister_ae_dev(ae_dev);
3143         pci_set_drvdata(pdev, NULL);
3144 }
3145
3146 /**
3147  * hns3_pci_sriov_configure
3148  * @pdev: pointer to a pci_dev structure
3149  * @num_vfs: number of VFs to allocate
3150  *
3151  * Enable or change the number of VFs. Called when the user updates the number
3152  * of VFs in sysfs.
3153  **/
3154 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
3155 {
3156         int ret;
3157
3158         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
3159                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
3160                 return -EINVAL;
3161         }
3162
3163         if (num_vfs) {
3164                 ret = pci_enable_sriov(pdev, num_vfs);
3165                 if (ret)
3166                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
3167                 else
3168                         return num_vfs;
3169         } else if (!pci_vfs_assigned(pdev)) {
3170                 int num_vfs_pre = pci_num_vf(pdev);
3171
3172                 pci_disable_sriov(pdev);
3173                 hns3_clean_vf_config(pdev, num_vfs_pre);
3174         } else {
3175                 dev_warn(&pdev->dev,
3176                          "Unable to free VFs because some are assigned to VMs.\n");
3177         }
3178
3179         return 0;
3180 }
3181
3182 static void hns3_shutdown(struct pci_dev *pdev)
3183 {
3184         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3185
3186         hnae3_unregister_ae_dev(ae_dev);
3187         pci_set_drvdata(pdev, NULL);
3188
3189         if (system_state == SYSTEM_POWER_OFF)
3190                 pci_set_power_state(pdev, PCI_D3hot);
3191 }
3192
3193 static int __maybe_unused hns3_suspend(struct device *dev)
3194 {
3195         struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3196
3197         if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3198                 dev_info(dev, "Begin to suspend.\n");
3199                 if (ae_dev->ops && ae_dev->ops->reset_prepare)
3200                         ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3201         }
3202
3203         return 0;
3204 }
3205
3206 static int __maybe_unused hns3_resume(struct device *dev)
3207 {
3208         struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3209
3210         if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3211                 dev_info(dev, "Begin to resume.\n");
3212                 if (ae_dev->ops && ae_dev->ops->reset_done)
3213                         ae_dev->ops->reset_done(ae_dev);
3214         }
3215
3216         return 0;
3217 }
3218
3219 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3220                                             pci_channel_state_t state)
3221 {
3222         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3223         pci_ers_result_t ret;
3224
3225         dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3226
3227         if (state == pci_channel_io_perm_failure)
3228                 return PCI_ERS_RESULT_DISCONNECT;
3229
3230         if (!ae_dev || !ae_dev->ops) {
3231                 dev_err(&pdev->dev,
3232                         "Can't recover - error happened before device initialized\n");
3233                 return PCI_ERS_RESULT_NONE;
3234         }
3235
3236         if (ae_dev->ops->handle_hw_ras_error)
3237                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3238         else
3239                 return PCI_ERS_RESULT_NONE;
3240
3241         return ret;
3242 }
3243
3244 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3245 {
3246         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3247         const struct hnae3_ae_ops *ops;
3248         enum hnae3_reset_type reset_type;
3249         struct device *dev = &pdev->dev;
3250
3251         if (!ae_dev || !ae_dev->ops)
3252                 return PCI_ERS_RESULT_NONE;
3253
3254         ops = ae_dev->ops;
3255         /* request the reset */
3256         if (ops->reset_event && ops->get_reset_level &&
3257             ops->set_default_reset_request) {
3258                 if (ae_dev->hw_err_reset_req) {
3259                         reset_type = ops->get_reset_level(ae_dev,
3260                                                 &ae_dev->hw_err_reset_req);
3261                         ops->set_default_reset_request(ae_dev, reset_type);
3262                         dev_info(dev, "requesting reset due to PCI error\n");
3263                         ops->reset_event(pdev, NULL);
3264                 }
3265
3266                 return PCI_ERS_RESULT_RECOVERED;
3267         }
3268
3269         return PCI_ERS_RESULT_DISCONNECT;
3270 }
3271
3272 static void hns3_reset_prepare(struct pci_dev *pdev)
3273 {
3274         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3275
3276         dev_info(&pdev->dev, "FLR prepare\n");
3277         if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3278                 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3279 }
3280
3281 static void hns3_reset_done(struct pci_dev *pdev)
3282 {
3283         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3284
3285         dev_info(&pdev->dev, "FLR done\n");
3286         if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3287                 ae_dev->ops->reset_done(ae_dev);
3288 }
3289
3290 static const struct pci_error_handlers hns3_err_handler = {
3291         .error_detected = hns3_error_detected,
3292         .slot_reset     = hns3_slot_reset,
3293         .reset_prepare  = hns3_reset_prepare,
3294         .reset_done     = hns3_reset_done,
3295 };
3296
3297 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3298
3299 static struct pci_driver hns3_driver = {
3300         .name     = hns3_driver_name,
3301         .id_table = hns3_pci_tbl,
3302         .probe    = hns3_probe,
3303         .remove   = hns3_remove,
3304         .shutdown = hns3_shutdown,
3305         .driver.pm  = &hns3_pm_ops,
3306         .sriov_configure = hns3_pci_sriov_configure,
3307         .err_handler    = &hns3_err_handler,
3308 };
3309
3310 /* set default feature to hns3 */
3311 static void hns3_set_default_feature(struct net_device *netdev)
3312 {
3313         struct hnae3_handle *h = hns3_get_handle(netdev);
3314         struct pci_dev *pdev = h->pdev;
3315         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3316
3317         netdev->priv_flags |= IFF_UNICAST_FLT;
3318
3319         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3320                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3321                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3322                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3323                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3324                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3325
3326         if (hnae3_ae_dev_gro_supported(ae_dev))
3327                 netdev->features |= NETIF_F_GRO_HW;
3328
3329         if (hnae3_ae_dev_fd_supported(ae_dev))
3330                 netdev->features |= NETIF_F_NTUPLE;
3331
3332         if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3333                 netdev->features |= NETIF_F_GSO_UDP_L4;
3334
3335         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3336                 netdev->features |= NETIF_F_HW_CSUM;
3337         else
3338                 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3339
3340         if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3341                 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3342
3343         if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3344                 netdev->features |= NETIF_F_HW_TC;
3345
3346         netdev->hw_features |= netdev->features;
3347         if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3348                 netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3349
3350         netdev->vlan_features |= netdev->features &
3351                 ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3352                   NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3353                   NETIF_F_HW_TC);
3354
3355         netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3356
3357         /* The device_version V3 hardware can't offload the checksum for IP in
3358          * GRE packets, but can do it for NvGRE. So default to disable the
3359          * checksum and GSO offload for GRE.
3360          */
3361         if (ae_dev->dev_version > HNAE3_DEVICE_VERSION_V2) {
3362                 netdev->features &= ~NETIF_F_GSO_GRE;
3363                 netdev->features &= ~NETIF_F_GSO_GRE_CSUM;
3364         }
3365 }
3366
3367 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3368                              struct hns3_desc_cb *cb)
3369 {
3370         unsigned int order = hns3_page_order(ring);
3371         struct page *p;
3372
3373         if (ring->page_pool) {
3374                 p = page_pool_dev_alloc_frag(ring->page_pool,
3375                                              &cb->page_offset,
3376                                              hns3_buf_size(ring));
3377                 if (unlikely(!p))
3378                         return -ENOMEM;
3379
3380                 cb->priv = p;
3381                 cb->buf = page_address(p);
3382                 cb->dma = page_pool_get_dma_addr(p);
3383                 cb->type = DESC_TYPE_PP_FRAG;
3384                 cb->reuse_flag = 0;
3385                 return 0;
3386         }
3387
3388         p = dev_alloc_pages(order);
3389         if (!p)
3390                 return -ENOMEM;
3391
3392         cb->priv = p;
3393         cb->page_offset = 0;
3394         cb->reuse_flag = 0;
3395         cb->buf  = page_address(p);
3396         cb->length = hns3_page_size(ring);
3397         cb->type = DESC_TYPE_PAGE;
3398         page_ref_add(p, USHRT_MAX - 1);
3399         cb->pagecnt_bias = USHRT_MAX;
3400
3401         return 0;
3402 }
3403
3404 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3405                              struct hns3_desc_cb *cb, int budget)
3406 {
3407         if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3408                         DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3409                 napi_consume_skb(cb->priv, budget);
3410         else if (!HNAE3_IS_TX_RING(ring)) {
3411                 if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3412                         __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3413                 else if (cb->type & DESC_TYPE_PP_FRAG)
3414                         page_pool_put_full_page(ring->page_pool, cb->priv,
3415                                                 false);
3416         }
3417         memset(cb, 0, sizeof(*cb));
3418 }
3419
3420 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3421 {
3422         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3423                                cb->length, ring_to_dma_dir(ring));
3424
3425         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3426                 return -EIO;
3427
3428         return 0;
3429 }
3430
3431 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3432                               struct hns3_desc_cb *cb)
3433 {
3434         if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3435                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3436                                  ring_to_dma_dir(ring));
3437         else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3438                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3439                                ring_to_dma_dir(ring));
3440         else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3441                              DESC_TYPE_SGL_SKB))
3442                 hns3_tx_spare_reclaim_cb(ring, cb);
3443 }
3444
3445 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3446 {
3447         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3448         ring->desc[i].addr = 0;
3449         ring->desc_cb[i].refill = 0;
3450 }
3451
3452 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3453                                     int budget)
3454 {
3455         struct hns3_desc_cb *cb = &ring->desc_cb[i];
3456
3457         if (!ring->desc_cb[i].dma)
3458                 return;
3459
3460         hns3_buffer_detach(ring, i);
3461         hns3_free_buffer(ring, cb, budget);
3462 }
3463
3464 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3465 {
3466         int i;
3467
3468         for (i = 0; i < ring->desc_num; i++)
3469                 hns3_free_buffer_detach(ring, i, 0);
3470 }
3471
3472 /* free desc along with its attached buffer */
3473 static void hns3_free_desc(struct hns3_enet_ring *ring)
3474 {
3475         int size = ring->desc_num * sizeof(ring->desc[0]);
3476
3477         hns3_free_buffers(ring);
3478
3479         if (ring->desc) {
3480                 dma_free_coherent(ring_to_dev(ring), size,
3481                                   ring->desc, ring->desc_dma_addr);
3482                 ring->desc = NULL;
3483         }
3484 }
3485
3486 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3487 {
3488         int size = ring->desc_num * sizeof(ring->desc[0]);
3489
3490         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3491                                         &ring->desc_dma_addr, GFP_KERNEL);
3492         if (!ring->desc)
3493                 return -ENOMEM;
3494
3495         return 0;
3496 }
3497
3498 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3499                                    struct hns3_desc_cb *cb)
3500 {
3501         int ret;
3502
3503         ret = hns3_alloc_buffer(ring, cb);
3504         if (ret || ring->page_pool)
3505                 goto out;
3506
3507         ret = hns3_map_buffer(ring, cb);
3508         if (ret)
3509                 goto out_with_buf;
3510
3511         return 0;
3512
3513 out_with_buf:
3514         hns3_free_buffer(ring, cb, 0);
3515 out:
3516         return ret;
3517 }
3518
3519 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3520 {
3521         int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3522
3523         if (ret)
3524                 return ret;
3525
3526         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3527                                          ring->desc_cb[i].page_offset);
3528         ring->desc_cb[i].refill = 1;
3529
3530         return 0;
3531 }
3532
3533 /* Allocate memory for raw pkg, and map with dma */
3534 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3535 {
3536         int i, j, ret;
3537
3538         for (i = 0; i < ring->desc_num; i++) {
3539                 ret = hns3_alloc_and_attach_buffer(ring, i);
3540                 if (ret)
3541                         goto out_buffer_fail;
3542         }
3543
3544         return 0;
3545
3546 out_buffer_fail:
3547         for (j = i - 1; j >= 0; j--)
3548                 hns3_free_buffer_detach(ring, j, 0);
3549         return ret;
3550 }
3551
3552 /* detach a in-used buffer and replace with a reserved one */
3553 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3554                                 struct hns3_desc_cb *res_cb)
3555 {
3556         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3557         ring->desc_cb[i] = *res_cb;
3558         ring->desc_cb[i].refill = 1;
3559         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3560                                          ring->desc_cb[i].page_offset);
3561         ring->desc[i].rx.bd_base_info = 0;
3562 }
3563
3564 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3565 {
3566         ring->desc_cb[i].reuse_flag = 0;
3567         ring->desc_cb[i].refill = 1;
3568         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3569                                          ring->desc_cb[i].page_offset);
3570         ring->desc[i].rx.bd_base_info = 0;
3571
3572         dma_sync_single_for_device(ring_to_dev(ring),
3573                         ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3574                         hns3_buf_size(ring),
3575                         DMA_FROM_DEVICE);
3576 }
3577
3578 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3579                                   int *bytes, int *pkts, int budget)
3580 {
3581         /* This smp_load_acquire() pairs with smp_store_release() in
3582          * hns3_tx_doorbell().
3583          */
3584         int ltu = smp_load_acquire(&ring->last_to_use);
3585         int ntc = ring->next_to_clean;
3586         struct hns3_desc_cb *desc_cb;
3587         bool reclaimed = false;
3588         struct hns3_desc *desc;
3589
3590         while (ltu != ntc) {
3591                 desc = &ring->desc[ntc];
3592
3593                 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3594                                 BIT(HNS3_TXD_VLD_B))
3595                         break;
3596
3597                 desc_cb = &ring->desc_cb[ntc];
3598
3599                 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3600                                      DESC_TYPE_BOUNCE_HEAD |
3601                                      DESC_TYPE_SGL_SKB)) {
3602                         (*pkts)++;
3603                         (*bytes) += desc_cb->send_bytes;
3604                 }
3605
3606                 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3607                 hns3_free_buffer_detach(ring, ntc, budget);
3608
3609                 if (++ntc == ring->desc_num)
3610                         ntc = 0;
3611
3612                 /* Issue prefetch for next Tx descriptor */
3613                 prefetch(&ring->desc_cb[ntc]);
3614                 reclaimed = true;
3615         }
3616
3617         if (unlikely(!reclaimed))
3618                 return false;
3619
3620         /* This smp_store_release() pairs with smp_load_acquire() in
3621          * ring_space called by hns3_nic_net_xmit.
3622          */
3623         smp_store_release(&ring->next_to_clean, ntc);
3624
3625         hns3_tx_spare_update(ring);
3626
3627         return true;
3628 }
3629
3630 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3631 {
3632         struct net_device *netdev = ring_to_netdev(ring);
3633         struct hns3_nic_priv *priv = netdev_priv(netdev);
3634         struct netdev_queue *dev_queue;
3635         int bytes, pkts;
3636
3637         bytes = 0;
3638         pkts = 0;
3639
3640         if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3641                 return;
3642
3643         ring->tqp_vector->tx_group.total_bytes += bytes;
3644         ring->tqp_vector->tx_group.total_packets += pkts;
3645
3646         u64_stats_update_begin(&ring->syncp);
3647         ring->stats.tx_bytes += bytes;
3648         ring->stats.tx_pkts += pkts;
3649         u64_stats_update_end(&ring->syncp);
3650
3651         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3652         netdev_tx_completed_queue(dev_queue, pkts, bytes);
3653
3654         if (unlikely(netif_carrier_ok(netdev) &&
3655                      ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3656                 /* Make sure that anybody stopping the queue after this
3657                  * sees the new next_to_clean.
3658                  */
3659                 smp_mb();
3660                 if (netif_tx_queue_stopped(dev_queue) &&
3661                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3662                         netif_tx_wake_queue(dev_queue);
3663                         ring->stats.restart_queue++;
3664                 }
3665         }
3666 }
3667
3668 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3669 {
3670         int ntc = ring->next_to_clean;
3671         int ntu = ring->next_to_use;
3672
3673         if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
3674                 return ring->desc_num;
3675
3676         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3677 }
3678
3679 /* Return true if there is any allocation failure */
3680 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3681                                       int cleand_count)
3682 {
3683         struct hns3_desc_cb *desc_cb;
3684         struct hns3_desc_cb res_cbs;
3685         int i, ret;
3686
3687         for (i = 0; i < cleand_count; i++) {
3688                 desc_cb = &ring->desc_cb[ring->next_to_use];
3689                 if (desc_cb->reuse_flag) {
3690                         hns3_ring_stats_update(ring, reuse_pg_cnt);
3691
3692                         hns3_reuse_buffer(ring, ring->next_to_use);
3693                 } else {
3694                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3695                         if (ret) {
3696                                 hns3_ring_stats_update(ring, sw_err_cnt);
3697
3698                                 hns3_rl_err(ring_to_netdev(ring),
3699                                             "alloc rx buffer failed: %d\n",
3700                                             ret);
3701
3702                                 writel(i, ring->tqp->io_base +
3703                                        HNS3_RING_RX_RING_HEAD_REG);
3704                                 return true;
3705                         }
3706                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3707
3708                         hns3_ring_stats_update(ring, non_reuse_pg);
3709                 }
3710
3711                 ring_ptr_move_fw(ring, next_to_use);
3712         }
3713
3714         writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3715         return false;
3716 }
3717
3718 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3719 {
3720         return page_count(cb->priv) == cb->pagecnt_bias;
3721 }
3722
3723 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
3724                                     struct hns3_enet_ring *ring,
3725                                     int pull_len,
3726                                     struct hns3_desc_cb *desc_cb)
3727 {
3728         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3729         u32 frag_offset = desc_cb->page_offset + pull_len;
3730         int size = le16_to_cpu(desc->rx.size);
3731         u32 frag_size = size - pull_len;
3732         void *frag = napi_alloc_frag(frag_size);
3733
3734         if (unlikely(!frag)) {
3735                 hns3_ring_stats_update(ring, frag_alloc_err);
3736
3737                 hns3_rl_err(ring_to_netdev(ring),
3738                             "failed to allocate rx frag\n");
3739                 return -ENOMEM;
3740         }
3741
3742         desc_cb->reuse_flag = 1;
3743         memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3744         skb_add_rx_frag(skb, i, virt_to_page(frag),
3745                         offset_in_page(frag), frag_size, frag_size);
3746
3747         hns3_ring_stats_update(ring, frag_alloc);
3748         return 0;
3749 }
3750
3751 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3752                                 struct hns3_enet_ring *ring, int pull_len,
3753                                 struct hns3_desc_cb *desc_cb)
3754 {
3755         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3756         u32 frag_offset = desc_cb->page_offset + pull_len;
3757         int size = le16_to_cpu(desc->rx.size);
3758         u32 truesize = hns3_buf_size(ring);
3759         u32 frag_size = size - pull_len;
3760         int ret = 0;
3761         bool reused;
3762
3763         if (ring->page_pool) {
3764                 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3765                                 frag_size, truesize);
3766                 return;
3767         }
3768
3769         /* Avoid re-using remote or pfmem page */
3770         if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3771                 goto out;
3772
3773         reused = hns3_can_reuse_page(desc_cb);
3774
3775         /* Rx page can be reused when:
3776          * 1. Rx page is only owned by the driver when page_offset
3777          *    is zero, which means 0 @ truesize will be used by
3778          *    stack after skb_add_rx_frag() is called, and the rest
3779          *    of rx page can be reused by driver.
3780          * Or
3781          * 2. Rx page is only owned by the driver when page_offset
3782          *    is non-zero, which means page_offset @ truesize will
3783          *    be used by stack after skb_add_rx_frag() is called,
3784          *    and 0 @ truesize can be reused by driver.
3785          */
3786         if ((!desc_cb->page_offset && reused) ||
3787             ((desc_cb->page_offset + truesize + truesize) <=
3788              hns3_page_size(ring) && desc_cb->page_offset)) {
3789                 desc_cb->page_offset += truesize;
3790                 desc_cb->reuse_flag = 1;
3791         } else if (desc_cb->page_offset && reused) {
3792                 desc_cb->page_offset = 0;
3793                 desc_cb->reuse_flag = 1;
3794         } else if (frag_size <= ring->rx_copybreak) {
3795                 ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
3796                 if (!ret)
3797                         return;
3798         }
3799
3800 out:
3801         desc_cb->pagecnt_bias--;
3802
3803         if (unlikely(!desc_cb->pagecnt_bias)) {
3804                 page_ref_add(desc_cb->priv, USHRT_MAX);
3805                 desc_cb->pagecnt_bias = USHRT_MAX;
3806         }
3807
3808         skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3809                         frag_size, truesize);
3810
3811         if (unlikely(!desc_cb->reuse_flag))
3812                 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3813 }
3814
3815 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3816 {
3817         __be16 type = skb->protocol;
3818         struct tcphdr *th;
3819         int depth = 0;
3820
3821         while (eth_type_vlan(type)) {
3822                 struct vlan_hdr *vh;
3823
3824                 if ((depth + VLAN_HLEN) > skb_headlen(skb))
3825                         return -EFAULT;
3826
3827                 vh = (struct vlan_hdr *)(skb->data + depth);
3828                 type = vh->h_vlan_encapsulated_proto;
3829                 depth += VLAN_HLEN;
3830         }
3831
3832         skb_set_network_header(skb, depth);
3833
3834         if (type == htons(ETH_P_IP)) {
3835                 const struct iphdr *iph = ip_hdr(skb);
3836
3837                 depth += sizeof(struct iphdr);
3838                 skb_set_transport_header(skb, depth);
3839                 th = tcp_hdr(skb);
3840                 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3841                                           iph->daddr, 0);
3842         } else if (type == htons(ETH_P_IPV6)) {
3843                 const struct ipv6hdr *iph = ipv6_hdr(skb);
3844
3845                 depth += sizeof(struct ipv6hdr);
3846                 skb_set_transport_header(skb, depth);
3847                 th = tcp_hdr(skb);
3848                 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3849                                           &iph->daddr, 0);
3850         } else {
3851                 hns3_rl_err(skb->dev,
3852                             "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3853                             be16_to_cpu(type), depth);
3854                 return -EFAULT;
3855         }
3856
3857         skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3858         if (th->cwr)
3859                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3860
3861         if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3862                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3863
3864         skb->csum_start = (unsigned char *)th - skb->head;
3865         skb->csum_offset = offsetof(struct tcphdr, check);
3866         skb->ip_summed = CHECKSUM_PARTIAL;
3867
3868         trace_hns3_gro(skb);
3869
3870         return 0;
3871 }
3872
3873 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
3874                                    struct sk_buff *skb, u32 ptype, u16 csum)
3875 {
3876         if (ptype == HNS3_INVALID_PTYPE ||
3877             hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3878                 return;
3879
3880         hns3_ring_stats_update(ring, csum_complete);
3881         skb->ip_summed = CHECKSUM_COMPLETE;
3882         skb->csum = csum_unfold((__force __sum16)csum);
3883 }
3884
3885 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3886                                 u32 ol_info, u32 ptype)
3887 {
3888         int l3_type, l4_type;
3889         int ol4_type;
3890
3891         if (ptype != HNS3_INVALID_PTYPE) {
3892                 skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3893                 skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3894
3895                 return;
3896         }
3897
3898         ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3899                                    HNS3_RXD_OL4ID_S);
3900         switch (ol4_type) {
3901         case HNS3_OL4_TYPE_MAC_IN_UDP:
3902         case HNS3_OL4_TYPE_NVGRE:
3903                 skb->csum_level = 1;
3904                 fallthrough;
3905         case HNS3_OL4_TYPE_NO_TUN:
3906                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3907                                           HNS3_RXD_L3ID_S);
3908                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3909                                           HNS3_RXD_L4ID_S);
3910                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3911                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3912                      l3_type == HNS3_L3_TYPE_IPV6) &&
3913                     (l4_type == HNS3_L4_TYPE_UDP ||
3914                      l4_type == HNS3_L4_TYPE_TCP ||
3915                      l4_type == HNS3_L4_TYPE_SCTP))
3916                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3917                 break;
3918         default:
3919                 break;
3920         }
3921 }
3922
3923 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3924                              u32 l234info, u32 bd_base_info, u32 ol_info,
3925                              u16 csum)
3926 {
3927         struct net_device *netdev = ring_to_netdev(ring);
3928         struct hns3_nic_priv *priv = netdev_priv(netdev);
3929         u32 ptype = HNS3_INVALID_PTYPE;
3930
3931         skb->ip_summed = CHECKSUM_NONE;
3932
3933         skb_checksum_none_assert(skb);
3934
3935         if (!(netdev->features & NETIF_F_RXCSUM))
3936                 return;
3937
3938         if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3939                 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3940                                         HNS3_RXD_PTYPE_S);
3941
3942         hns3_checksum_complete(ring, skb, ptype, csum);
3943
3944         /* check if hardware has done checksum */
3945         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3946                 return;
3947
3948         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3949                                  BIT(HNS3_RXD_OL3E_B) |
3950                                  BIT(HNS3_RXD_OL4E_B)))) {
3951                 skb->ip_summed = CHECKSUM_NONE;
3952                 hns3_ring_stats_update(ring, l3l4_csum_err);
3953
3954                 return;
3955         }
3956
3957         hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3958 }
3959
3960 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3961 {
3962         if (skb_has_frag_list(skb))
3963                 napi_gro_flush(&ring->tqp_vector->napi, false);
3964
3965         napi_gro_receive(&ring->tqp_vector->napi, skb);
3966 }
3967
3968 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3969                                 struct hns3_desc *desc, u32 l234info,
3970                                 u16 *vlan_tag)
3971 {
3972         struct hnae3_handle *handle = ring->tqp->handle;
3973         struct pci_dev *pdev = ring->tqp->handle->pdev;
3974         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3975
3976         if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3977                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3978                 if (!(*vlan_tag & VLAN_VID_MASK))
3979                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3980
3981                 return (*vlan_tag != 0);
3982         }
3983
3984 #define HNS3_STRP_OUTER_VLAN    0x1
3985 #define HNS3_STRP_INNER_VLAN    0x2
3986 #define HNS3_STRP_BOTH          0x3
3987
3988         /* Hardware always insert VLAN tag into RX descriptor when
3989          * remove the tag from packet, driver needs to determine
3990          * reporting which tag to stack.
3991          */
3992         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3993                                 HNS3_RXD_STRP_TAGP_S)) {
3994         case HNS3_STRP_OUTER_VLAN:
3995                 if (handle->port_base_vlan_state !=
3996                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3997                         return false;
3998
3999                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4000                 return true;
4001         case HNS3_STRP_INNER_VLAN:
4002                 if (handle->port_base_vlan_state !=
4003                                 HNAE3_PORT_BASE_VLAN_DISABLE)
4004                         return false;
4005
4006                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4007                 return true;
4008         case HNS3_STRP_BOTH:
4009                 if (handle->port_base_vlan_state ==
4010                                 HNAE3_PORT_BASE_VLAN_DISABLE)
4011                         *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4012                 else
4013                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4014
4015                 return true;
4016         default:
4017                 return false;
4018         }
4019 }
4020
4021 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
4022 {
4023         ring->desc[ring->next_to_clean].rx.bd_base_info &=
4024                 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
4025         ring->desc_cb[ring->next_to_clean].refill = 0;
4026         ring->next_to_clean += 1;
4027
4028         if (unlikely(ring->next_to_clean == ring->desc_num))
4029                 ring->next_to_clean = 0;
4030 }
4031
4032 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
4033                           unsigned char *va)
4034 {
4035         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
4036         struct net_device *netdev = ring_to_netdev(ring);
4037         struct sk_buff *skb;
4038
4039         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
4040         skb = ring->skb;
4041         if (unlikely(!skb)) {
4042                 hns3_rl_err(netdev, "alloc rx skb fail\n");
4043                 hns3_ring_stats_update(ring, sw_err_cnt);
4044
4045                 return -ENOMEM;
4046         }
4047
4048         trace_hns3_rx_desc(ring);
4049         prefetchw(skb->data);
4050
4051         ring->pending_buf = 1;
4052         ring->frag_num = 0;
4053         ring->tail_skb = NULL;
4054         if (length <= HNS3_RX_HEAD_SIZE) {
4055                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
4056
4057                 /* We can reuse buffer as-is, just make sure it is reusable */
4058                 if (dev_page_is_reusable(desc_cb->priv))
4059                         desc_cb->reuse_flag = 1;
4060                 else if (desc_cb->type & DESC_TYPE_PP_FRAG)
4061                         page_pool_put_full_page(ring->page_pool, desc_cb->priv,
4062                                                 false);
4063                 else /* This page cannot be reused so discard it */
4064                         __page_frag_cache_drain(desc_cb->priv,
4065                                                 desc_cb->pagecnt_bias);
4066
4067                 hns3_rx_ring_move_fw(ring);
4068                 return 0;
4069         }
4070
4071         if (ring->page_pool)
4072                 skb_mark_for_recycle(skb);
4073
4074         hns3_ring_stats_update(ring, seg_pkt_cnt);
4075
4076         ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
4077         __skb_put(skb, ring->pull_len);
4078         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
4079                             desc_cb);
4080         hns3_rx_ring_move_fw(ring);
4081
4082         return 0;
4083 }
4084
4085 static int hns3_add_frag(struct hns3_enet_ring *ring)
4086 {
4087         struct sk_buff *skb = ring->skb;
4088         struct sk_buff *head_skb = skb;
4089         struct sk_buff *new_skb;
4090         struct hns3_desc_cb *desc_cb;
4091         struct hns3_desc *desc;
4092         u32 bd_base_info;
4093
4094         do {
4095                 desc = &ring->desc[ring->next_to_clean];
4096                 desc_cb = &ring->desc_cb[ring->next_to_clean];
4097                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4098                 /* make sure HW write desc complete */
4099                 dma_rmb();
4100                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4101                         return -ENXIO;
4102
4103                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
4104                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
4105                         if (unlikely(!new_skb)) {
4106                                 hns3_rl_err(ring_to_netdev(ring),
4107                                             "alloc rx fraglist skb fail\n");
4108                                 return -ENXIO;
4109                         }
4110
4111                         if (ring->page_pool)
4112                                 skb_mark_for_recycle(new_skb);
4113
4114                         ring->frag_num = 0;
4115
4116                         if (ring->tail_skb) {
4117                                 ring->tail_skb->next = new_skb;
4118                                 ring->tail_skb = new_skb;
4119                         } else {
4120                                 skb_shinfo(skb)->frag_list = new_skb;
4121                                 ring->tail_skb = new_skb;
4122                         }
4123                 }
4124
4125                 if (ring->tail_skb) {
4126                         head_skb->truesize += hns3_buf_size(ring);
4127                         head_skb->data_len += le16_to_cpu(desc->rx.size);
4128                         head_skb->len += le16_to_cpu(desc->rx.size);
4129                         skb = ring->tail_skb;
4130                 }
4131
4132                 dma_sync_single_for_cpu(ring_to_dev(ring),
4133                                 desc_cb->dma + desc_cb->page_offset,
4134                                 hns3_buf_size(ring),
4135                                 DMA_FROM_DEVICE);
4136
4137                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
4138                 trace_hns3_rx_desc(ring);
4139                 hns3_rx_ring_move_fw(ring);
4140                 ring->pending_buf++;
4141         } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
4142
4143         return 0;
4144 }
4145
4146 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
4147                                      struct sk_buff *skb, u32 l234info,
4148                                      u32 bd_base_info, u32 ol_info, u16 csum)
4149 {
4150         struct net_device *netdev = ring_to_netdev(ring);
4151         struct hns3_nic_priv *priv = netdev_priv(netdev);
4152         u32 l3_type;
4153
4154         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
4155                                                     HNS3_RXD_GRO_SIZE_M,
4156                                                     HNS3_RXD_GRO_SIZE_S);
4157         /* if there is no HW GRO, do not set gro params */
4158         if (!skb_shinfo(skb)->gso_size) {
4159                 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
4160                                  csum);
4161                 return 0;
4162         }
4163
4164         NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
4165                                                   HNS3_RXD_GRO_COUNT_M,
4166                                                   HNS3_RXD_GRO_COUNT_S);
4167
4168         if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4169                 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4170                                             HNS3_RXD_PTYPE_S);
4171
4172                 l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
4173         } else {
4174                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4175                                           HNS3_RXD_L3ID_S);
4176         }
4177
4178         if (l3_type == HNS3_L3_TYPE_IPV4)
4179                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
4180         else if (l3_type == HNS3_L3_TYPE_IPV6)
4181                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
4182         else
4183                 return -EFAULT;
4184
4185         return  hns3_gro_complete(skb, l234info);
4186 }
4187
4188 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
4189                                      struct sk_buff *skb, u32 rss_hash,
4190                                      u32 l234info, u32 ol_info)
4191 {
4192         enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE;
4193         struct net_device *netdev = ring_to_netdev(ring);
4194         struct hns3_nic_priv *priv = netdev_priv(netdev);
4195
4196         if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4197                 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4198                                             HNS3_RXD_PTYPE_S);
4199
4200                 rss_type = hns3_rx_ptype_tbl[ptype].hash_type;
4201         } else {
4202                 int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4203                                               HNS3_RXD_L3ID_S);
4204                 int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
4205                                               HNS3_RXD_L4ID_S);
4206
4207                 if (l3_type == HNS3_L3_TYPE_IPV4 ||
4208                     l3_type == HNS3_L3_TYPE_IPV6) {
4209                         if (l4_type == HNS3_L4_TYPE_UDP ||
4210                             l4_type == HNS3_L4_TYPE_TCP ||
4211                             l4_type == HNS3_L4_TYPE_SCTP)
4212                                 rss_type = PKT_HASH_TYPE_L4;
4213                         else if (l4_type == HNS3_L4_TYPE_IGMP ||
4214                                  l4_type == HNS3_L4_TYPE_ICMP)
4215                                 rss_type = PKT_HASH_TYPE_L3;
4216                 }
4217         }
4218
4219         skb_set_hash(skb, rss_hash, rss_type);
4220 }
4221
4222 static void hns3_handle_rx_ts_info(struct net_device *netdev,
4223                                    struct hns3_desc *desc, struct sk_buff *skb,
4224                                    u32 bd_base_info)
4225 {
4226         if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4227                 struct hnae3_handle *h = hns3_get_handle(netdev);
4228                 u32 nsec = le32_to_cpu(desc->ts_nsec);
4229                 u32 sec = le32_to_cpu(desc->ts_sec);
4230
4231                 if (h->ae_algo->ops->get_rx_hwts)
4232                         h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4233         }
4234 }
4235
4236 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
4237                                     struct hns3_desc *desc, struct sk_buff *skb,
4238                                     u32 l234info)
4239 {
4240         struct net_device *netdev = ring_to_netdev(ring);
4241
4242         /* Based on hw strategy, the tag offloaded will be stored at
4243          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4244          * in one layer tag case.
4245          */
4246         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4247                 u16 vlan_tag;
4248
4249                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4250                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4251                                                vlan_tag);
4252         }
4253 }
4254
4255 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4256 {
4257         struct net_device *netdev = ring_to_netdev(ring);
4258         enum hns3_pkt_l2t_type l2_frame_type;
4259         u32 bd_base_info, l234info, ol_info;
4260         struct hns3_desc *desc;
4261         unsigned int len;
4262         int pre_ntc, ret;
4263         u16 csum;
4264
4265         /* bdinfo handled below is only valid on the last BD of the
4266          * current packet, and ring->next_to_clean indicates the first
4267          * descriptor of next packet, so need - 1 below.
4268          */
4269         pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4270                                         (ring->desc_num - 1);
4271         desc = &ring->desc[pre_ntc];
4272         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4273         l234info = le32_to_cpu(desc->rx.l234_info);
4274         ol_info = le32_to_cpu(desc->rx.ol_info);
4275         csum = le16_to_cpu(desc->csum);
4276
4277         hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
4278
4279         hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
4280
4281         if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4282                                   BIT(HNS3_RXD_L2E_B))))) {
4283                 u64_stats_update_begin(&ring->syncp);
4284                 if (l234info & BIT(HNS3_RXD_L2E_B))
4285                         ring->stats.l2_err++;
4286                 else
4287                         ring->stats.err_pkt_len++;
4288                 u64_stats_update_end(&ring->syncp);
4289
4290                 return -EFAULT;
4291         }
4292
4293         len = skb->len;
4294
4295         /* Do update ip stack process */
4296         skb->protocol = eth_type_trans(skb, netdev);
4297
4298         /* This is needed in order to enable forwarding support */
4299         ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4300                                         bd_base_info, ol_info, csum);
4301         if (unlikely(ret)) {
4302                 hns3_ring_stats_update(ring, rx_err_cnt);
4303                 return ret;
4304         }
4305
4306         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4307                                         HNS3_RXD_DMAC_S);
4308
4309         u64_stats_update_begin(&ring->syncp);
4310         ring->stats.rx_pkts++;
4311         ring->stats.rx_bytes += len;
4312
4313         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4314                 ring->stats.rx_multicast++;
4315
4316         u64_stats_update_end(&ring->syncp);
4317
4318         ring->tqp_vector->rx_group.total_bytes += len;
4319
4320         hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash),
4321                                  l234info, ol_info);
4322         return 0;
4323 }
4324
4325 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4326 {
4327         struct sk_buff *skb = ring->skb;
4328         struct hns3_desc_cb *desc_cb;
4329         struct hns3_desc *desc;
4330         unsigned int length;
4331         u32 bd_base_info;
4332         int ret;
4333
4334         desc = &ring->desc[ring->next_to_clean];
4335         desc_cb = &ring->desc_cb[ring->next_to_clean];
4336
4337         prefetch(desc);
4338
4339         if (!skb) {
4340                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4341                 /* Check valid BD */
4342                 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4343                         return -ENXIO;
4344
4345                 dma_rmb();
4346                 length = le16_to_cpu(desc->rx.size);
4347
4348                 ring->va = desc_cb->buf + desc_cb->page_offset;
4349
4350                 dma_sync_single_for_cpu(ring_to_dev(ring),
4351                                 desc_cb->dma + desc_cb->page_offset,
4352                                 hns3_buf_size(ring),
4353                                 DMA_FROM_DEVICE);
4354
4355                 /* Prefetch first cache line of first page.
4356                  * Idea is to cache few bytes of the header of the packet.
4357                  * Our L1 Cache line size is 64B so need to prefetch twice to make
4358                  * it 128B. But in actual we can have greater size of caches with
4359                  * 128B Level 1 cache lines. In such a case, single fetch would
4360                  * suffice to cache in the relevant part of the header.
4361                  */
4362                 net_prefetch(ring->va);
4363
4364                 ret = hns3_alloc_skb(ring, length, ring->va);
4365                 skb = ring->skb;
4366
4367                 if (ret < 0) /* alloc buffer fail */
4368                         return ret;
4369                 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4370                         ret = hns3_add_frag(ring);
4371                         if (ret)
4372                                 return ret;
4373                 }
4374         } else {
4375                 ret = hns3_add_frag(ring);
4376                 if (ret)
4377                         return ret;
4378         }
4379
4380         /* As the head data may be changed when GRO enable, copy
4381          * the head data in after other data rx completed
4382          */
4383         if (skb->len > HNS3_RX_HEAD_SIZE)
4384                 memcpy(skb->data, ring->va,
4385                        ALIGN(ring->pull_len, sizeof(long)));
4386
4387         ret = hns3_handle_bdinfo(ring, skb);
4388         if (unlikely(ret)) {
4389                 dev_kfree_skb_any(skb);
4390                 return ret;
4391         }
4392
4393         skb_record_rx_queue(skb, ring->tqp->tqp_index);
4394         return 0;
4395 }
4396
4397 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4398                        void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4399 {
4400 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4401         int unused_count = hns3_desc_unused(ring);
4402         bool failure = false;
4403         int recv_pkts = 0;
4404         int err;
4405
4406         unused_count -= ring->pending_buf;
4407
4408         while (recv_pkts < budget) {
4409                 /* Reuse or realloc buffers */
4410                 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4411                         failure = failure ||
4412                                 hns3_nic_alloc_rx_buffers(ring, unused_count);
4413                         unused_count = 0;
4414                 }
4415
4416                 /* Poll one pkt */
4417                 err = hns3_handle_rx_bd(ring);
4418                 /* Do not get FE for the packet or failed to alloc skb */
4419                 if (unlikely(!ring->skb || err == -ENXIO)) {
4420                         goto out;
4421                 } else if (likely(!err)) {
4422                         rx_fn(ring, ring->skb);
4423                         recv_pkts++;
4424                 }
4425
4426                 unused_count += ring->pending_buf;
4427                 ring->skb = NULL;
4428                 ring->pending_buf = 0;
4429         }
4430
4431 out:
4432         /* sync head pointer before exiting, since hardware will calculate
4433          * FBD number with head pointer
4434          */
4435         if (unused_count > 0)
4436                 failure = failure ||
4437                           hns3_nic_alloc_rx_buffers(ring, unused_count);
4438
4439         return failure ? budget : recv_pkts;
4440 }
4441
4442 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4443 {
4444         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4445         struct dim_sample sample = {};
4446
4447         if (!rx_group->coal.adapt_enable)
4448                 return;
4449
4450         dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4451                           rx_group->total_bytes, &sample);
4452         net_dim(&rx_group->dim, sample);
4453 }
4454
4455 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4456 {
4457         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4458         struct dim_sample sample = {};
4459
4460         if (!tx_group->coal.adapt_enable)
4461                 return;
4462
4463         dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4464                           tx_group->total_bytes, &sample);
4465         net_dim(&tx_group->dim, sample);
4466 }
4467
4468 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4469 {
4470         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4471         struct hns3_enet_ring *ring;
4472         int rx_pkt_total = 0;
4473
4474         struct hns3_enet_tqp_vector *tqp_vector =
4475                 container_of(napi, struct hns3_enet_tqp_vector, napi);
4476         bool clean_complete = true;
4477         int rx_budget = budget;
4478
4479         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4480                 napi_complete(napi);
4481                 return 0;
4482         }
4483
4484         /* Since the actual Tx work is minimal, we can give the Tx a larger
4485          * budget and be more aggressive about cleaning up the Tx descriptors.
4486          */
4487         hns3_for_each_ring(ring, tqp_vector->tx_group)
4488                 hns3_clean_tx_ring(ring, budget);
4489
4490         /* make sure rx ring budget not smaller than 1 */
4491         if (tqp_vector->num_tqps > 1)
4492                 rx_budget = max(budget / tqp_vector->num_tqps, 1);
4493
4494         hns3_for_each_ring(ring, tqp_vector->rx_group) {
4495                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4496                                                     hns3_rx_skb);
4497                 if (rx_cleaned >= rx_budget)
4498                         clean_complete = false;
4499
4500                 rx_pkt_total += rx_cleaned;
4501         }
4502
4503         tqp_vector->rx_group.total_packets += rx_pkt_total;
4504
4505         if (!clean_complete)
4506                 return budget;
4507
4508         if (napi_complete(napi) &&
4509             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4510                 hns3_update_rx_int_coalesce(tqp_vector);
4511                 hns3_update_tx_int_coalesce(tqp_vector);
4512
4513                 hns3_mask_vector_irq(tqp_vector, 1);
4514         }
4515
4516         return rx_pkt_total;
4517 }
4518
4519 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4520                                   struct hnae3_ring_chain_node **head,
4521                                   bool is_tx)
4522 {
4523         u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
4524         u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
4525         struct hnae3_ring_chain_node *cur_chain = *head;
4526         struct pci_dev *pdev = tqp_vector->handle->pdev;
4527         struct hnae3_ring_chain_node *chain;
4528         struct hns3_enet_ring *ring;
4529
4530         ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
4531
4532         if (cur_chain) {
4533                 while (cur_chain->next)
4534                         cur_chain = cur_chain->next;
4535         }
4536
4537         while (ring) {
4538                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4539                 if (!chain)
4540                         return -ENOMEM;
4541                 if (cur_chain)
4542                         cur_chain->next = chain;
4543                 else
4544                         *head = chain;
4545                 chain->tqp_index = ring->tqp->tqp_index;
4546                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4547                                 bit_value);
4548                 hnae3_set_field(chain->int_gl_idx,
4549                                 HNAE3_RING_GL_IDX_M,
4550                                 HNAE3_RING_GL_IDX_S, field_value);
4551
4552                 cur_chain = chain;
4553
4554                 ring = ring->next;
4555         }
4556
4557         return 0;
4558 }
4559
4560 static struct hnae3_ring_chain_node *
4561 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
4562 {
4563         struct pci_dev *pdev = tqp_vector->handle->pdev;
4564         struct hnae3_ring_chain_node *cur_chain = NULL;
4565         struct hnae3_ring_chain_node *chain;
4566
4567         if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
4568                 goto err_free_chain;
4569
4570         if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
4571                 goto err_free_chain;
4572
4573         return cur_chain;
4574
4575 err_free_chain:
4576         while (cur_chain) {
4577                 chain = cur_chain->next;
4578                 devm_kfree(&pdev->dev, cur_chain);
4579                 cur_chain = chain;
4580         }
4581
4582         return NULL;
4583 }
4584
4585 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4586                                         struct hnae3_ring_chain_node *head)
4587 {
4588         struct pci_dev *pdev = tqp_vector->handle->pdev;
4589         struct hnae3_ring_chain_node *chain_tmp, *chain;
4590
4591         chain = head;
4592
4593         while (chain) {
4594                 chain_tmp = chain->next;
4595                 devm_kfree(&pdev->dev, chain);
4596                 chain = chain_tmp;
4597         }
4598 }
4599
4600 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4601                                    struct hns3_enet_ring *ring)
4602 {
4603         ring->next = group->ring;
4604         group->ring = ring;
4605
4606         group->count++;
4607 }
4608
4609 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4610 {
4611         struct pci_dev *pdev = priv->ae_handle->pdev;
4612         struct hns3_enet_tqp_vector *tqp_vector;
4613         int num_vectors = priv->vector_num;
4614         int numa_node;
4615         int vector_i;
4616
4617         numa_node = dev_to_node(&pdev->dev);
4618
4619         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4620                 tqp_vector = &priv->tqp_vector[vector_i];
4621                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4622                                 &tqp_vector->affinity_mask);
4623         }
4624 }
4625
4626 static void hns3_rx_dim_work(struct work_struct *work)
4627 {
4628         struct dim *dim = container_of(work, struct dim, work);
4629         struct hns3_enet_ring_group *group = container_of(dim,
4630                 struct hns3_enet_ring_group, dim);
4631         struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4632         struct dim_cq_moder cur_moder =
4633                 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4634
4635         hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4636         tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4637
4638         if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4639                 hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4640                 tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4641         }
4642
4643         dim->state = DIM_START_MEASURE;
4644 }
4645
4646 static void hns3_tx_dim_work(struct work_struct *work)
4647 {
4648         struct dim *dim = container_of(work, struct dim, work);
4649         struct hns3_enet_ring_group *group = container_of(dim,
4650                 struct hns3_enet_ring_group, dim);
4651         struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4652         struct dim_cq_moder cur_moder =
4653                 net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4654
4655         hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4656         tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4657
4658         if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4659                 hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4660                 tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4661         }
4662
4663         dim->state = DIM_START_MEASURE;
4664 }
4665
4666 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4667 {
4668         INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4669         INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4670 }
4671
4672 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4673 {
4674         struct hnae3_handle *h = priv->ae_handle;
4675         struct hns3_enet_tqp_vector *tqp_vector;
4676         int ret;
4677         int i;
4678
4679         hns3_nic_set_cpumask(priv);
4680
4681         for (i = 0; i < priv->vector_num; i++) {
4682                 tqp_vector = &priv->tqp_vector[i];
4683                 hns3_vector_coalesce_init_hw(tqp_vector, priv);
4684                 tqp_vector->num_tqps = 0;
4685                 hns3_nic_init_dim(tqp_vector);
4686         }
4687
4688         for (i = 0; i < h->kinfo.num_tqps; i++) {
4689                 u16 vector_i = i % priv->vector_num;
4690                 u16 tqp_num = h->kinfo.num_tqps;
4691
4692                 tqp_vector = &priv->tqp_vector[vector_i];
4693
4694                 hns3_add_ring_to_group(&tqp_vector->tx_group,
4695                                        &priv->ring[i]);
4696
4697                 hns3_add_ring_to_group(&tqp_vector->rx_group,
4698                                        &priv->ring[i + tqp_num]);
4699
4700                 priv->ring[i].tqp_vector = tqp_vector;
4701                 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4702                 tqp_vector->num_tqps++;
4703         }
4704
4705         for (i = 0; i < priv->vector_num; i++) {
4706                 struct hnae3_ring_chain_node *vector_ring_chain;
4707
4708                 tqp_vector = &priv->tqp_vector[i];
4709
4710                 tqp_vector->rx_group.total_bytes = 0;
4711                 tqp_vector->rx_group.total_packets = 0;
4712                 tqp_vector->tx_group.total_bytes = 0;
4713                 tqp_vector->tx_group.total_packets = 0;
4714                 tqp_vector->handle = h;
4715
4716                 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4717                 if (!vector_ring_chain) {
4718                         ret = -ENOMEM;
4719                         goto map_ring_fail;
4720                 }
4721
4722                 ret = h->ae_algo->ops->map_ring_to_vector(h,
4723                         tqp_vector->vector_irq, vector_ring_chain);
4724
4725                 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4726
4727                 if (ret)
4728                         goto map_ring_fail;
4729
4730                 netif_napi_add(priv->netdev, &tqp_vector->napi,
4731                                hns3_nic_common_poll);
4732         }
4733
4734         return 0;
4735
4736 map_ring_fail:
4737         while (i--)
4738                 netif_napi_del(&priv->tqp_vector[i].napi);
4739
4740         return ret;
4741 }
4742
4743 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4744 {
4745         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4746         struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4747         struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4748
4749         /* initialize the configuration for interrupt coalescing.
4750          * 1. GL (Interrupt Gap Limiter)
4751          * 2. RL (Interrupt Rate Limiter)
4752          * 3. QL (Interrupt Quantity Limiter)
4753          *
4754          * Default: enable interrupt coalescing self-adaptive and GL
4755          */
4756         tx_coal->adapt_enable = 1;
4757         rx_coal->adapt_enable = 1;
4758
4759         tx_coal->int_gl = HNS3_INT_GL_50K;
4760         rx_coal->int_gl = HNS3_INT_GL_50K;
4761
4762         rx_coal->flow_level = HNS3_FLOW_LOW;
4763         tx_coal->flow_level = HNS3_FLOW_LOW;
4764
4765         if (ae_dev->dev_specs.int_ql_max) {
4766                 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4767                 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4768         }
4769 }
4770
4771 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4772 {
4773         struct hnae3_handle *h = priv->ae_handle;
4774         struct hns3_enet_tqp_vector *tqp_vector;
4775         struct hnae3_vector_info *vector;
4776         struct pci_dev *pdev = h->pdev;
4777         u16 tqp_num = h->kinfo.num_tqps;
4778         u16 vector_num;
4779         int ret = 0;
4780         u16 i;
4781
4782         /* RSS size, cpu online and vector_num should be the same */
4783         /* Should consider 2p/4p later */
4784         vector_num = min_t(u16, num_online_cpus(), tqp_num);
4785
4786         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4787                               GFP_KERNEL);
4788         if (!vector)
4789                 return -ENOMEM;
4790
4791         /* save the actual available vector number */
4792         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4793
4794         priv->vector_num = vector_num;
4795         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4796                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4797                              GFP_KERNEL);
4798         if (!priv->tqp_vector) {
4799                 ret = -ENOMEM;
4800                 goto out;
4801         }
4802
4803         for (i = 0; i < priv->vector_num; i++) {
4804                 tqp_vector = &priv->tqp_vector[i];
4805                 tqp_vector->idx = i;
4806                 tqp_vector->mask_addr = vector[i].io_addr;
4807                 tqp_vector->vector_irq = vector[i].vector;
4808                 hns3_vector_coalesce_init(tqp_vector, priv);
4809         }
4810
4811 out:
4812         devm_kfree(&pdev->dev, vector);
4813         return ret;
4814 }
4815
4816 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4817 {
4818         group->ring = NULL;
4819         group->count = 0;
4820 }
4821
4822 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4823 {
4824         struct hnae3_ring_chain_node *vector_ring_chain;
4825         struct hnae3_handle *h = priv->ae_handle;
4826         struct hns3_enet_tqp_vector *tqp_vector;
4827         int i;
4828
4829         for (i = 0; i < priv->vector_num; i++) {
4830                 tqp_vector = &priv->tqp_vector[i];
4831
4832                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4833                         continue;
4834
4835                 /* Since the mapping can be overwritten, when fail to get the
4836                  * chain between vector and ring, we should go on to deal with
4837                  * the remaining options.
4838                  */
4839                 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4840                 if (!vector_ring_chain)
4841                         dev_warn(priv->dev, "failed to get ring chain\n");
4842
4843                 h->ae_algo->ops->unmap_ring_from_vector(h,
4844                         tqp_vector->vector_irq, vector_ring_chain);
4845
4846                 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4847
4848                 hns3_clear_ring_group(&tqp_vector->rx_group);
4849                 hns3_clear_ring_group(&tqp_vector->tx_group);
4850                 netif_napi_del(&priv->tqp_vector[i].napi);
4851         }
4852 }
4853
4854 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4855 {
4856         struct hnae3_handle *h = priv->ae_handle;
4857         struct pci_dev *pdev = h->pdev;
4858         int i, ret;
4859
4860         for (i = 0; i < priv->vector_num; i++) {
4861                 struct hns3_enet_tqp_vector *tqp_vector;
4862
4863                 tqp_vector = &priv->tqp_vector[i];
4864                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4865                 if (ret)
4866                         return;
4867         }
4868
4869         devm_kfree(&pdev->dev, priv->tqp_vector);
4870 }
4871
4872 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4873                               unsigned int ring_type)
4874 {
4875         int queue_num = priv->ae_handle->kinfo.num_tqps;
4876         struct hns3_enet_ring *ring;
4877         int desc_num;
4878
4879         if (ring_type == HNAE3_RING_TYPE_TX) {
4880                 ring = &priv->ring[q->tqp_index];
4881                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
4882                 ring->queue_index = q->tqp_index;
4883                 ring->tx_copybreak = priv->tx_copybreak;
4884                 ring->last_to_use = 0;
4885         } else {
4886                 ring = &priv->ring[q->tqp_index + queue_num];
4887                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
4888                 ring->queue_index = q->tqp_index;
4889                 ring->rx_copybreak = priv->rx_copybreak;
4890         }
4891
4892         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4893
4894         ring->tqp = q;
4895         ring->desc = NULL;
4896         ring->desc_cb = NULL;
4897         ring->dev = priv->dev;
4898         ring->desc_dma_addr = 0;
4899         ring->buf_size = q->buf_size;
4900         ring->desc_num = desc_num;
4901         ring->next_to_use = 0;
4902         ring->next_to_clean = 0;
4903 }
4904
4905 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4906                                struct hns3_nic_priv *priv)
4907 {
4908         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4909         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4910 }
4911
4912 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4913 {
4914         struct hnae3_handle *h = priv->ae_handle;
4915         struct pci_dev *pdev = h->pdev;
4916         int i;
4917
4918         priv->ring = devm_kzalloc(&pdev->dev,
4919                                   array3_size(h->kinfo.num_tqps,
4920                                               sizeof(*priv->ring), 2),
4921                                   GFP_KERNEL);
4922         if (!priv->ring)
4923                 return -ENOMEM;
4924
4925         for (i = 0; i < h->kinfo.num_tqps; i++)
4926                 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4927
4928         return 0;
4929 }
4930
4931 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4932 {
4933         if (!priv->ring)
4934                 return;
4935
4936         devm_kfree(priv->dev, priv->ring);
4937         priv->ring = NULL;
4938 }
4939
4940 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4941 {
4942         struct page_pool_params pp_params = {
4943                 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
4944                 .order = hns3_page_order(ring),
4945                 .pool_size = ring->desc_num * hns3_buf_size(ring) /
4946                                 (PAGE_SIZE << hns3_page_order(ring)),
4947                 .nid = dev_to_node(ring_to_dev(ring)),
4948                 .dev = ring_to_dev(ring),
4949                 .dma_dir = DMA_FROM_DEVICE,
4950                 .offset = 0,
4951                 .max_len = PAGE_SIZE << hns3_page_order(ring),
4952         };
4953
4954         ring->page_pool = page_pool_create(&pp_params);
4955         if (IS_ERR(ring->page_pool)) {
4956                 dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4957                          PTR_ERR(ring->page_pool));
4958                 ring->page_pool = NULL;
4959         }
4960 }
4961
4962 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4963 {
4964         int ret;
4965
4966         if (ring->desc_num <= 0 || ring->buf_size <= 0)
4967                 return -EINVAL;
4968
4969         ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4970                                      sizeof(ring->desc_cb[0]), GFP_KERNEL);
4971         if (!ring->desc_cb) {
4972                 ret = -ENOMEM;
4973                 goto out;
4974         }
4975
4976         ret = hns3_alloc_desc(ring);
4977         if (ret)
4978                 goto out_with_desc_cb;
4979
4980         if (!HNAE3_IS_TX_RING(ring)) {
4981                 if (page_pool_enabled)
4982                         hns3_alloc_page_pool(ring);
4983
4984                 ret = hns3_alloc_ring_buffers(ring);
4985                 if (ret)
4986                         goto out_with_desc;
4987         } else {
4988                 hns3_init_tx_spare_buffer(ring);
4989         }
4990
4991         return 0;
4992
4993 out_with_desc:
4994         hns3_free_desc(ring);
4995 out_with_desc_cb:
4996         devm_kfree(ring_to_dev(ring), ring->desc_cb);
4997         ring->desc_cb = NULL;
4998 out:
4999         return ret;
5000 }
5001
5002 void hns3_fini_ring(struct hns3_enet_ring *ring)
5003 {
5004         hns3_free_desc(ring);
5005         devm_kfree(ring_to_dev(ring), ring->desc_cb);
5006         ring->desc_cb = NULL;
5007         ring->next_to_clean = 0;
5008         ring->next_to_use = 0;
5009         ring->last_to_use = 0;
5010         ring->pending_buf = 0;
5011         if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
5012                 dev_kfree_skb_any(ring->skb);
5013                 ring->skb = NULL;
5014         } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
5015                 struct hns3_tx_spare *tx_spare = ring->tx_spare;
5016
5017                 dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
5018                                DMA_TO_DEVICE);
5019                 free_pages((unsigned long)tx_spare->buf,
5020                            get_order(tx_spare->len));
5021                 devm_kfree(ring_to_dev(ring), tx_spare);
5022                 ring->tx_spare = NULL;
5023         }
5024
5025         if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
5026                 page_pool_destroy(ring->page_pool);
5027                 ring->page_pool = NULL;
5028         }
5029 }
5030
5031 static int hns3_buf_size2type(u32 buf_size)
5032 {
5033         int bd_size_type;
5034
5035         switch (buf_size) {
5036         case 512:
5037                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
5038                 break;
5039         case 1024:
5040                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
5041                 break;
5042         case 2048:
5043                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5044                 break;
5045         case 4096:
5046                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
5047                 break;
5048         default:
5049                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5050         }
5051
5052         return bd_size_type;
5053 }
5054
5055 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
5056 {
5057         dma_addr_t dma = ring->desc_dma_addr;
5058         struct hnae3_queue *q = ring->tqp;
5059
5060         if (!HNAE3_IS_TX_RING(ring)) {
5061                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
5062                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
5063                                (u32)((dma >> 31) >> 1));
5064
5065                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
5066                                hns3_buf_size2type(ring->buf_size));
5067                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
5068                                ring->desc_num / 8 - 1);
5069         } else {
5070                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
5071                                (u32)dma);
5072                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
5073                                (u32)((dma >> 31) >> 1));
5074
5075                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
5076                                ring->desc_num / 8 - 1);
5077         }
5078 }
5079
5080 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
5081 {
5082         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5083         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
5084         int i;
5085
5086         for (i = 0; i < tc_info->num_tc; i++) {
5087                 int j;
5088
5089                 for (j = 0; j < tc_info->tqp_count[i]; j++) {
5090                         struct hnae3_queue *q;
5091
5092                         q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
5093                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
5094                 }
5095         }
5096 }
5097
5098 int hns3_init_all_ring(struct hns3_nic_priv *priv)
5099 {
5100         struct hnae3_handle *h = priv->ae_handle;
5101         int ring_num = h->kinfo.num_tqps * 2;
5102         int i, j;
5103         int ret;
5104
5105         for (i = 0; i < ring_num; i++) {
5106                 ret = hns3_alloc_ring_memory(&priv->ring[i]);
5107                 if (ret) {
5108                         dev_err(priv->dev,
5109                                 "Alloc ring memory fail! ret=%d\n", ret);
5110                         goto out_when_alloc_ring_memory;
5111                 }
5112
5113                 u64_stats_init(&priv->ring[i].syncp);
5114         }
5115
5116         return 0;
5117
5118 out_when_alloc_ring_memory:
5119         for (j = i - 1; j >= 0; j--)
5120                 hns3_fini_ring(&priv->ring[j]);
5121
5122         return -ENOMEM;
5123 }
5124
5125 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
5126 {
5127         struct hnae3_handle *h = priv->ae_handle;
5128         int i;
5129
5130         for (i = 0; i < h->kinfo.num_tqps; i++) {
5131                 hns3_fini_ring(&priv->ring[i]);
5132                 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
5133         }
5134 }
5135
5136 /* Set mac addr if it is configured. or leave it to the AE driver */
5137 static int hns3_init_mac_addr(struct net_device *netdev)
5138 {
5139         struct hns3_nic_priv *priv = netdev_priv(netdev);
5140         char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5141         struct hnae3_handle *h = priv->ae_handle;
5142         u8 mac_addr_temp[ETH_ALEN] = {0};
5143         int ret = 0;
5144
5145         if (h->ae_algo->ops->get_mac_addr)
5146                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
5147
5148         /* Check if the MAC address is valid, if not get a random one */
5149         if (!is_valid_ether_addr(mac_addr_temp)) {
5150                 eth_hw_addr_random(netdev);
5151                 hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
5152                 dev_warn(priv->dev, "using random MAC address %s\n",
5153                          format_mac_addr);
5154         } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
5155                 eth_hw_addr_set(netdev, mac_addr_temp);
5156                 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
5157         } else {
5158                 return 0;
5159         }
5160
5161         if (h->ae_algo->ops->set_mac_addr)
5162                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
5163
5164         return ret;
5165 }
5166
5167 static int hns3_init_phy(struct net_device *netdev)
5168 {
5169         struct hnae3_handle *h = hns3_get_handle(netdev);
5170         int ret = 0;
5171
5172         if (h->ae_algo->ops->mac_connect_phy)
5173                 ret = h->ae_algo->ops->mac_connect_phy(h);
5174
5175         return ret;
5176 }
5177
5178 static void hns3_uninit_phy(struct net_device *netdev)
5179 {
5180         struct hnae3_handle *h = hns3_get_handle(netdev);
5181
5182         if (h->ae_algo->ops->mac_disconnect_phy)
5183                 h->ae_algo->ops->mac_disconnect_phy(h);
5184 }
5185
5186 static int hns3_client_start(struct hnae3_handle *handle)
5187 {
5188         if (!handle->ae_algo->ops->client_start)
5189                 return 0;
5190
5191         return handle->ae_algo->ops->client_start(handle);
5192 }
5193
5194 static void hns3_client_stop(struct hnae3_handle *handle)
5195 {
5196         if (!handle->ae_algo->ops->client_stop)
5197                 return;
5198
5199         handle->ae_algo->ops->client_stop(handle);
5200 }
5201
5202 static void hns3_info_show(struct hns3_nic_priv *priv)
5203 {
5204         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5205         char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5206
5207         hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
5208         dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
5209         dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
5210         dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
5211         dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
5212         dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
5213         dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
5214         dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
5215         dev_info(priv->dev, "Total number of enabled TCs: %u\n",
5216                  kinfo->tc_info.num_tc);
5217         dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
5218 }
5219
5220 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5221                                     enum dim_cq_period_mode mode, bool is_tx)
5222 {
5223         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5224         struct hnae3_handle *handle = priv->ae_handle;
5225         int i;
5226
5227         if (is_tx) {
5228                 priv->tx_cqe_mode = mode;
5229
5230                 for (i = 0; i < priv->vector_num; i++)
5231                         priv->tqp_vector[i].tx_group.dim.mode = mode;
5232         } else {
5233                 priv->rx_cqe_mode = mode;
5234
5235                 for (i = 0; i < priv->vector_num; i++)
5236                         priv->tqp_vector[i].rx_group.dim.mode = mode;
5237         }
5238
5239         if (hnae3_ae_dev_cq_supported(ae_dev)) {
5240                 u32 new_mode;
5241                 u64 reg;
5242
5243                 new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5244                         HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5245                 reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5246
5247                 writel(new_mode, handle->kinfo.io_base + reg);
5248         }
5249 }
5250
5251 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5252                               enum dim_cq_period_mode tx_mode,
5253                               enum dim_cq_period_mode rx_mode)
5254 {
5255         hns3_set_cq_period_mode(priv, tx_mode, true);
5256         hns3_set_cq_period_mode(priv, rx_mode, false);
5257 }
5258
5259 static void hns3_state_init(struct hnae3_handle *handle)
5260 {
5261         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5262         struct net_device *netdev = handle->kinfo.netdev;
5263         struct hns3_nic_priv *priv = netdev_priv(netdev);
5264
5265         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5266
5267         if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
5268                 set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state);
5269
5270         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5271                 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5272
5273         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5274                 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5275
5276         if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5277                 set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5278 }
5279
5280 static void hns3_state_uninit(struct hnae3_handle *handle)
5281 {
5282         struct hns3_nic_priv *priv  = handle->priv;
5283
5284         clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
5285 }
5286
5287 static int hns3_client_init(struct hnae3_handle *handle)
5288 {
5289         struct pci_dev *pdev = handle->pdev;
5290         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5291         u16 alloc_tqps, max_rss_size;
5292         struct hns3_nic_priv *priv;
5293         struct net_device *netdev;
5294         int ret;
5295
5296         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5297                                                     &max_rss_size);
5298         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5299         if (!netdev)
5300                 return -ENOMEM;
5301
5302         priv = netdev_priv(netdev);
5303         priv->dev = &pdev->dev;
5304         priv->netdev = netdev;
5305         priv->ae_handle = handle;
5306         priv->tx_timeout_count = 0;
5307         priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5308         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5309
5310         handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5311
5312         handle->kinfo.netdev = netdev;
5313         handle->priv = (void *)priv;
5314
5315         hns3_init_mac_addr(netdev);
5316
5317         hns3_set_default_feature(netdev);
5318
5319         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5320         netdev->priv_flags |= IFF_UNICAST_FLT;
5321         netdev->netdev_ops = &hns3_nic_netdev_ops;
5322         SET_NETDEV_DEV(netdev, &pdev->dev);
5323         hns3_ethtool_set_ops(netdev);
5324
5325         /* Carrier off reporting is important to ethtool even BEFORE open */
5326         netif_carrier_off(netdev);
5327
5328         ret = hns3_get_ring_config(priv);
5329         if (ret) {
5330                 ret = -ENOMEM;
5331                 goto out_get_ring_cfg;
5332         }
5333
5334         hns3_nic_init_coal_cfg(priv);
5335
5336         ret = hns3_nic_alloc_vector_data(priv);
5337         if (ret) {
5338                 ret = -ENOMEM;
5339                 goto out_alloc_vector_data;
5340         }
5341
5342         ret = hns3_nic_init_vector_data(priv);
5343         if (ret) {
5344                 ret = -ENOMEM;
5345                 goto out_init_vector_data;
5346         }
5347
5348         ret = hns3_init_all_ring(priv);
5349         if (ret) {
5350                 ret = -ENOMEM;
5351                 goto out_init_ring;
5352         }
5353
5354         hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5355                                  DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5356
5357         ret = hns3_init_phy(netdev);
5358         if (ret)
5359                 goto out_init_phy;
5360
5361         /* the device can work without cpu rmap, only aRFS needs it */
5362         ret = hns3_set_rx_cpu_rmap(netdev);
5363         if (ret)
5364                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5365
5366         ret = hns3_nic_init_irq(priv);
5367         if (ret) {
5368                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5369                 hns3_free_rx_cpu_rmap(netdev);
5370                 goto out_init_irq_fail;
5371         }
5372
5373         ret = hns3_client_start(handle);
5374         if (ret) {
5375                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5376                 goto out_client_start;
5377         }
5378
5379         hns3_dcbnl_setup(handle);
5380
5381         ret = hns3_dbg_init(handle);
5382         if (ret) {
5383                 dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5384                         ret);
5385                 goto out_client_start;
5386         }
5387
5388         netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5389
5390         hns3_state_init(handle);
5391
5392         ret = register_netdev(netdev);
5393         if (ret) {
5394                 dev_err(priv->dev, "probe register netdev fail!\n");
5395                 goto out_reg_netdev_fail;
5396         }
5397
5398         if (netif_msg_drv(handle))
5399                 hns3_info_show(priv);
5400
5401         return ret;
5402
5403 out_reg_netdev_fail:
5404         hns3_state_uninit(handle);
5405         hns3_dbg_uninit(handle);
5406         hns3_client_stop(handle);
5407 out_client_start:
5408         hns3_free_rx_cpu_rmap(netdev);
5409         hns3_nic_uninit_irq(priv);
5410 out_init_irq_fail:
5411         hns3_uninit_phy(netdev);
5412 out_init_phy:
5413         hns3_uninit_all_ring(priv);
5414 out_init_ring:
5415         hns3_nic_uninit_vector_data(priv);
5416 out_init_vector_data:
5417         hns3_nic_dealloc_vector_data(priv);
5418 out_alloc_vector_data:
5419         priv->ring = NULL;
5420 out_get_ring_cfg:
5421         priv->ae_handle = NULL;
5422         free_netdev(netdev);
5423         return ret;
5424 }
5425
5426 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5427 {
5428         struct net_device *netdev = handle->kinfo.netdev;
5429         struct hns3_nic_priv *priv = netdev_priv(netdev);
5430
5431         if (netdev->reg_state != NETREG_UNINITIALIZED)
5432                 unregister_netdev(netdev);
5433
5434         hns3_client_stop(handle);
5435
5436         hns3_uninit_phy(netdev);
5437
5438         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5439                 netdev_warn(netdev, "already uninitialized\n");
5440                 goto out_netdev_free;
5441         }
5442
5443         hns3_free_rx_cpu_rmap(netdev);
5444
5445         hns3_nic_uninit_irq(priv);
5446
5447         hns3_clear_all_ring(handle, true);
5448
5449         hns3_nic_uninit_vector_data(priv);
5450
5451         hns3_nic_dealloc_vector_data(priv);
5452
5453         hns3_uninit_all_ring(priv);
5454
5455         hns3_put_ring_config(priv);
5456
5457 out_netdev_free:
5458         hns3_dbg_uninit(handle);
5459         free_netdev(netdev);
5460 }
5461
5462 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5463 {
5464         struct net_device *netdev = handle->kinfo.netdev;
5465
5466         if (!netdev)
5467                 return;
5468
5469         if (linkup) {
5470                 netif_tx_wake_all_queues(netdev);
5471                 netif_carrier_on(netdev);
5472                 if (netif_msg_link(handle))
5473                         netdev_info(netdev, "link up\n");
5474         } else {
5475                 netif_carrier_off(netdev);
5476                 netif_tx_stop_all_queues(netdev);
5477                 if (netif_msg_link(handle))
5478                         netdev_info(netdev, "link down\n");
5479         }
5480 }
5481
5482 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5483 {
5484         while (ring->next_to_clean != ring->next_to_use) {
5485                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5486                 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5487                 ring_ptr_move_fw(ring, next_to_clean);
5488         }
5489
5490         ring->pending_buf = 0;
5491 }
5492
5493 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5494 {
5495         struct hns3_desc_cb res_cbs;
5496         int ret;
5497
5498         while (ring->next_to_use != ring->next_to_clean) {
5499                 /* When a buffer is not reused, it's memory has been
5500                  * freed in hns3_handle_rx_bd or will be freed by
5501                  * stack, so we need to replace the buffer here.
5502                  */
5503                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5504                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5505                         if (ret) {
5506                                 hns3_ring_stats_update(ring, sw_err_cnt);
5507                                 /* if alloc new buffer fail, exit directly
5508                                  * and reclear in up flow.
5509                                  */
5510                                 netdev_warn(ring_to_netdev(ring),
5511                                             "reserve buffer map failed, ret = %d\n",
5512                                             ret);
5513                                 return ret;
5514                         }
5515                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5516                 }
5517                 ring_ptr_move_fw(ring, next_to_use);
5518         }
5519
5520         /* Free the pending skb in rx ring */
5521         if (ring->skb) {
5522                 dev_kfree_skb_any(ring->skb);
5523                 ring->skb = NULL;
5524                 ring->pending_buf = 0;
5525         }
5526
5527         return 0;
5528 }
5529
5530 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5531 {
5532         while (ring->next_to_use != ring->next_to_clean) {
5533                 /* When a buffer is not reused, it's memory has been
5534                  * freed in hns3_handle_rx_bd or will be freed by
5535                  * stack, so only need to unmap the buffer here.
5536                  */
5537                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5538                         hns3_unmap_buffer(ring,
5539                                           &ring->desc_cb[ring->next_to_use]);
5540                         ring->desc_cb[ring->next_to_use].dma = 0;
5541                 }
5542
5543                 ring_ptr_move_fw(ring, next_to_use);
5544         }
5545 }
5546
5547 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5548 {
5549         struct net_device *ndev = h->kinfo.netdev;
5550         struct hns3_nic_priv *priv = netdev_priv(ndev);
5551         u32 i;
5552
5553         for (i = 0; i < h->kinfo.num_tqps; i++) {
5554                 struct hns3_enet_ring *ring;
5555
5556                 ring = &priv->ring[i];
5557                 hns3_clear_tx_ring(ring);
5558
5559                 ring = &priv->ring[i + h->kinfo.num_tqps];
5560                 /* Continue to clear other rings even if clearing some
5561                  * rings failed.
5562                  */
5563                 if (force)
5564                         hns3_force_clear_rx_ring(ring);
5565                 else
5566                         hns3_clear_rx_ring(ring);
5567         }
5568 }
5569
5570 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5571 {
5572         struct net_device *ndev = h->kinfo.netdev;
5573         struct hns3_nic_priv *priv = netdev_priv(ndev);
5574         struct hns3_enet_ring *rx_ring;
5575         int i, j;
5576         int ret;
5577
5578         ret = h->ae_algo->ops->reset_queue(h);
5579         if (ret)
5580                 return ret;
5581
5582         for (i = 0; i < h->kinfo.num_tqps; i++) {
5583                 hns3_init_ring_hw(&priv->ring[i]);
5584
5585                 /* We need to clear tx ring here because self test will
5586                  * use the ring and will not run down before up
5587                  */
5588                 hns3_clear_tx_ring(&priv->ring[i]);
5589                 priv->ring[i].next_to_clean = 0;
5590                 priv->ring[i].next_to_use = 0;
5591                 priv->ring[i].last_to_use = 0;
5592
5593                 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5594                 hns3_init_ring_hw(rx_ring);
5595                 ret = hns3_clear_rx_ring(rx_ring);
5596                 if (ret)
5597                         return ret;
5598
5599                 /* We can not know the hardware head and tail when this
5600                  * function is called in reset flow, so we reuse all desc.
5601                  */
5602                 for (j = 0; j < rx_ring->desc_num; j++)
5603                         hns3_reuse_buffer(rx_ring, j);
5604
5605                 rx_ring->next_to_clean = 0;
5606                 rx_ring->next_to_use = 0;
5607         }
5608
5609         hns3_init_tx_ring_tc(priv);
5610
5611         return 0;
5612 }
5613
5614 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5615 {
5616         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5617         struct net_device *ndev = kinfo->netdev;
5618         struct hns3_nic_priv *priv = netdev_priv(ndev);
5619
5620         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5621                 return 0;
5622
5623         if (!netif_running(ndev))
5624                 return 0;
5625
5626         return hns3_nic_net_stop(ndev);
5627 }
5628
5629 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5630 {
5631         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5632         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5633         int ret = 0;
5634
5635         if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5636                 netdev_err(kinfo->netdev, "device is not initialized yet\n");
5637                 return -EFAULT;
5638         }
5639
5640         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5641
5642         if (netif_running(kinfo->netdev)) {
5643                 ret = hns3_nic_net_open(kinfo->netdev);
5644                 if (ret) {
5645                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5646                         netdev_err(kinfo->netdev,
5647                                    "net up fail, ret=%d!\n", ret);
5648                         return ret;
5649                 }
5650         }
5651
5652         return ret;
5653 }
5654
5655 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5656 {
5657         struct net_device *netdev = handle->kinfo.netdev;
5658         struct hns3_nic_priv *priv = netdev_priv(netdev);
5659         int ret;
5660
5661         /* Carrier off reporting is important to ethtool even BEFORE open */
5662         netif_carrier_off(netdev);
5663
5664         ret = hns3_get_ring_config(priv);
5665         if (ret)
5666                 return ret;
5667
5668         ret = hns3_nic_alloc_vector_data(priv);
5669         if (ret)
5670                 goto err_put_ring;
5671
5672         ret = hns3_nic_init_vector_data(priv);
5673         if (ret)
5674                 goto err_dealloc_vector;
5675
5676         ret = hns3_init_all_ring(priv);
5677         if (ret)
5678                 goto err_uninit_vector;
5679
5680         hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5681
5682         /* the device can work without cpu rmap, only aRFS needs it */
5683         ret = hns3_set_rx_cpu_rmap(netdev);
5684         if (ret)
5685                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5686
5687         ret = hns3_nic_init_irq(priv);
5688         if (ret) {
5689                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5690                 hns3_free_rx_cpu_rmap(netdev);
5691                 goto err_init_irq_fail;
5692         }
5693
5694         if (!hns3_is_phys_func(handle->pdev))
5695                 hns3_init_mac_addr(netdev);
5696
5697         ret = hns3_client_start(handle);
5698         if (ret) {
5699                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5700                 goto err_client_start_fail;
5701         }
5702
5703         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5704
5705         return ret;
5706
5707 err_client_start_fail:
5708         hns3_free_rx_cpu_rmap(netdev);
5709         hns3_nic_uninit_irq(priv);
5710 err_init_irq_fail:
5711         hns3_uninit_all_ring(priv);
5712 err_uninit_vector:
5713         hns3_nic_uninit_vector_data(priv);
5714 err_dealloc_vector:
5715         hns3_nic_dealloc_vector_data(priv);
5716 err_put_ring:
5717         hns3_put_ring_config(priv);
5718
5719         return ret;
5720 }
5721
5722 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5723 {
5724         struct net_device *netdev = handle->kinfo.netdev;
5725         struct hns3_nic_priv *priv = netdev_priv(netdev);
5726
5727         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5728                 netdev_warn(netdev, "already uninitialized\n");
5729                 return 0;
5730         }
5731
5732         hns3_free_rx_cpu_rmap(netdev);
5733         hns3_nic_uninit_irq(priv);
5734         hns3_clear_all_ring(handle, true);
5735         hns3_reset_tx_queue(priv->ae_handle);
5736
5737         hns3_nic_uninit_vector_data(priv);
5738
5739         hns3_nic_dealloc_vector_data(priv);
5740
5741         hns3_uninit_all_ring(priv);
5742
5743         hns3_put_ring_config(priv);
5744
5745         return 0;
5746 }
5747
5748 int hns3_reset_notify(struct hnae3_handle *handle,
5749                       enum hnae3_reset_notify_type type)
5750 {
5751         int ret = 0;
5752
5753         switch (type) {
5754         case HNAE3_UP_CLIENT:
5755                 ret = hns3_reset_notify_up_enet(handle);
5756                 break;
5757         case HNAE3_DOWN_CLIENT:
5758                 ret = hns3_reset_notify_down_enet(handle);
5759                 break;
5760         case HNAE3_INIT_CLIENT:
5761                 ret = hns3_reset_notify_init_enet(handle);
5762                 break;
5763         case HNAE3_UNINIT_CLIENT:
5764                 ret = hns3_reset_notify_uninit_enet(handle);
5765                 break;
5766         default:
5767                 break;
5768         }
5769
5770         return ret;
5771 }
5772
5773 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5774                                 bool rxfh_configured)
5775 {
5776         int ret;
5777
5778         ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5779                                                  rxfh_configured);
5780         if (ret) {
5781                 dev_err(&handle->pdev->dev,
5782                         "Change tqp num(%u) fail.\n", new_tqp_num);
5783                 return ret;
5784         }
5785
5786         ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5787         if (ret)
5788                 return ret;
5789
5790         ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5791         if (ret)
5792                 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5793
5794         return ret;
5795 }
5796
5797 int hns3_set_channels(struct net_device *netdev,
5798                       struct ethtool_channels *ch)
5799 {
5800         struct hnae3_handle *h = hns3_get_handle(netdev);
5801         struct hnae3_knic_private_info *kinfo = &h->kinfo;
5802         bool rxfh_configured = netif_is_rxfh_configured(netdev);
5803         u32 new_tqp_num = ch->combined_count;
5804         u16 org_tqp_num;
5805         int ret;
5806
5807         if (hns3_nic_resetting(netdev))
5808                 return -EBUSY;
5809
5810         if (ch->rx_count || ch->tx_count)
5811                 return -EINVAL;
5812
5813         if (kinfo->tc_info.mqprio_active) {
5814                 dev_err(&netdev->dev,
5815                         "it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5816                 return -EINVAL;
5817         }
5818
5819         if (new_tqp_num > hns3_get_max_available_channels(h) ||
5820             new_tqp_num < 1) {
5821                 dev_err(&netdev->dev,
5822                         "Change tqps fail, the tqp range is from 1 to %u",
5823                         hns3_get_max_available_channels(h));
5824                 return -EINVAL;
5825         }
5826
5827         if (kinfo->rss_size == new_tqp_num)
5828                 return 0;
5829
5830         netif_dbg(h, drv, netdev,
5831                   "set channels: tqp_num=%u, rxfh=%d\n",
5832                   new_tqp_num, rxfh_configured);
5833
5834         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5835         if (ret)
5836                 return ret;
5837
5838         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5839         if (ret)
5840                 return ret;
5841
5842         org_tqp_num = h->kinfo.num_tqps;
5843         ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5844         if (ret) {
5845                 int ret1;
5846
5847                 netdev_warn(netdev,
5848                             "Change channels fail, revert to old value\n");
5849                 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5850                 if (ret1) {
5851                         netdev_err(netdev,
5852                                    "revert to old channel fail\n");
5853                         return ret1;
5854                 }
5855
5856                 return ret;
5857         }
5858
5859         return 0;
5860 }
5861
5862 void hns3_external_lb_prepare(struct net_device *ndev, bool if_running)
5863 {
5864         struct hns3_nic_priv *priv = netdev_priv(ndev);
5865         struct hnae3_handle *h = priv->ae_handle;
5866         int i;
5867
5868         if (!if_running)
5869                 return;
5870
5871         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5872                 return;
5873
5874         netif_carrier_off(ndev);
5875         netif_tx_disable(ndev);
5876
5877         for (i = 0; i < priv->vector_num; i++)
5878                 hns3_vector_disable(&priv->tqp_vector[i]);
5879
5880         for (i = 0; i < h->kinfo.num_tqps; i++)
5881                 hns3_tqp_disable(h->kinfo.tqp[i]);
5882
5883         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
5884          * during reset process, because driver may not be able
5885          * to disable the ring through firmware when downing the netdev.
5886          */
5887         if (!hns3_nic_resetting(ndev))
5888                 hns3_nic_reset_all_ring(priv->ae_handle);
5889
5890         hns3_reset_tx_queue(priv->ae_handle);
5891 }
5892
5893 void hns3_external_lb_restore(struct net_device *ndev, bool if_running)
5894 {
5895         struct hns3_nic_priv *priv = netdev_priv(ndev);
5896         struct hnae3_handle *h = priv->ae_handle;
5897         int i;
5898
5899         if (!if_running)
5900                 return;
5901
5902         if (hns3_nic_resetting(ndev))
5903                 return;
5904
5905         if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5906                 return;
5907
5908         if (hns3_nic_reset_all_ring(priv->ae_handle))
5909                 return;
5910
5911         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5912
5913         for (i = 0; i < priv->vector_num; i++)
5914                 hns3_vector_enable(&priv->tqp_vector[i]);
5915
5916         for (i = 0; i < h->kinfo.num_tqps; i++)
5917                 hns3_tqp_enable(h->kinfo.tqp[i]);
5918
5919         netif_tx_wake_all_queues(ndev);
5920
5921         if (h->ae_algo->ops->get_status(h))
5922                 netif_carrier_on(ndev);
5923 }
5924
5925 static const struct hns3_hw_error_info hns3_hw_err[] = {
5926         { .type = HNAE3_PPU_POISON_ERROR,
5927           .msg = "PPU poison" },
5928         { .type = HNAE3_CMDQ_ECC_ERROR,
5929           .msg = "IMP CMDQ error" },
5930         { .type = HNAE3_IMP_RD_POISON_ERROR,
5931           .msg = "IMP RD poison" },
5932         { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5933           .msg = "ROCEE AXI RESP error" },
5934 };
5935
5936 static void hns3_process_hw_error(struct hnae3_handle *handle,
5937                                   enum hnae3_hw_error_type type)
5938 {
5939         int i;
5940
5941         for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5942                 if (hns3_hw_err[i].type == type) {
5943                         dev_err(&handle->pdev->dev, "Detected %s!\n",
5944                                 hns3_hw_err[i].msg);
5945                         break;
5946                 }
5947         }
5948 }
5949
5950 static const struct hnae3_client_ops client_ops = {
5951         .init_instance = hns3_client_init,
5952         .uninit_instance = hns3_client_uninit,
5953         .link_status_change = hns3_link_status_change,
5954         .reset_notify = hns3_reset_notify,
5955         .process_hw_error = hns3_process_hw_error,
5956 };
5957
5958 /* hns3_init_module - Driver registration routine
5959  * hns3_init_module is the first routine called when the driver is
5960  * loaded. All it does is register with the PCI subsystem.
5961  */
5962 static int __init hns3_init_module(void)
5963 {
5964         int ret;
5965
5966         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5967         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5968
5969         client.type = HNAE3_CLIENT_KNIC;
5970         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5971                  hns3_driver_name);
5972
5973         client.ops = &client_ops;
5974
5975         INIT_LIST_HEAD(&client.node);
5976
5977         hns3_dbg_register_debugfs(hns3_driver_name);
5978
5979         ret = hnae3_register_client(&client);
5980         if (ret)
5981                 goto err_reg_client;
5982
5983         ret = pci_register_driver(&hns3_driver);
5984         if (ret)
5985                 goto err_reg_driver;
5986
5987         return ret;
5988
5989 err_reg_driver:
5990         hnae3_unregister_client(&client);
5991 err_reg_client:
5992         hns3_dbg_unregister_debugfs();
5993         return ret;
5994 }
5995 module_init(hns3_init_module);
5996
5997 /* hns3_exit_module - Driver exit cleanup routine
5998  * hns3_exit_module is called just before the driver is removed
5999  * from memory.
6000  */
6001 static void __exit hns3_exit_module(void)
6002 {
6003         pci_unregister_driver(&hns3_driver);
6004         hnae3_unregister_client(&client);
6005         hns3_dbg_unregister_debugfs();
6006 }
6007 module_exit(hns3_exit_module);
6008
6009 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
6010 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
6011 MODULE_LICENSE("GPL");
6012 MODULE_ALIAS("pci:hns-nic");