Merge tag 'mac80211-next-for-net-next-2020-04-25' of git://git.kernel.org/pub/scm...
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/aer.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <net/gre.h>
19 #include <net/ip6_checksum.h>
20 #include <net/pkt_cls.h>
21 #include <net/tcp.h>
22 #include <net/vxlan.h>
23
24 #include "hnae3.h"
25 #include "hns3_enet.h"
26 /* All hns3 tracepoints are defined by the include below, which
27  * must be included exactly once across the whole kernel with
28  * CREATE_TRACE_POINTS defined
29  */
30 #define CREATE_TRACE_POINTS
31 #include "hns3_trace.h"
32
33 #define hns3_set_field(origin, shift, val)      ((origin) |= ((val) << (shift)))
34 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
35
36 #define hns3_rl_err(fmt, ...)                                           \
37         do {                                                            \
38                 if (net_ratelimit())                                    \
39                         netdev_err(fmt, ##__VA_ARGS__);                 \
40         } while (0)
41
42 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
43
44 static const char hns3_driver_name[] = "hns3";
45 static const char hns3_driver_string[] =
46                         "Hisilicon Ethernet Network Driver for Hip08 Family";
47 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
48 static struct hnae3_client client;
49
50 static int debug = -1;
51 module_param(debug, int, 0);
52 MODULE_PARM_DESC(debug, " Network interface message level setting");
53
54 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
55                            NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
56
57 #define HNS3_INNER_VLAN_TAG     1
58 #define HNS3_OUTER_VLAN_TAG     2
59
60 #define HNS3_MIN_TX_LEN         33U
61
62 /* hns3_pci_tbl - PCI Device ID Table
63  *
64  * Last entry must be all 0s
65  *
66  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
67  *   Class, Class Mask, private data (not used) }
68  */
69 static const struct pci_device_id hns3_pci_tbl[] = {
70         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
71         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
72         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
73          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
74         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
75          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
77          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
79          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
81          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
83         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
84          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
85         /* required last entry */
86         {0, }
87 };
88 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
89
90 static irqreturn_t hns3_irq_handle(int irq, void *vector)
91 {
92         struct hns3_enet_tqp_vector *tqp_vector = vector;
93
94         napi_schedule_irqoff(&tqp_vector->napi);
95
96         return IRQ_HANDLED;
97 }
98
99 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
100 {
101         struct hns3_enet_tqp_vector *tqp_vectors;
102         unsigned int i;
103
104         for (i = 0; i < priv->vector_num; i++) {
105                 tqp_vectors = &priv->tqp_vector[i];
106
107                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
108                         continue;
109
110                 /* clear the affinity mask */
111                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
112
113                 /* release the irq resource */
114                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
115                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
116         }
117 }
118
119 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
120 {
121         struct hns3_enet_tqp_vector *tqp_vectors;
122         int txrx_int_idx = 0;
123         int rx_int_idx = 0;
124         int tx_int_idx = 0;
125         unsigned int i;
126         int ret;
127
128         for (i = 0; i < priv->vector_num; i++) {
129                 tqp_vectors = &priv->tqp_vector[i];
130
131                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
132                         continue;
133
134                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
135                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
136                                  "%s-%s-%s-%d", hns3_driver_name,
137                                  pci_name(priv->ae_handle->pdev),
138                                  "TxRx", txrx_int_idx++);
139                         txrx_int_idx++;
140                 } else if (tqp_vectors->rx_group.ring) {
141                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
142                                  "%s-%s-%s-%d", hns3_driver_name,
143                                  pci_name(priv->ae_handle->pdev),
144                                  "Rx", rx_int_idx++);
145                 } else if (tqp_vectors->tx_group.ring) {
146                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
147                                  "%s-%s-%s-%d", hns3_driver_name,
148                                  pci_name(priv->ae_handle->pdev),
149                                  "Tx", tx_int_idx++);
150                 } else {
151                         /* Skip this unused q_vector */
152                         continue;
153                 }
154
155                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
156
157                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
158                                   tqp_vectors->name, tqp_vectors);
159                 if (ret) {
160                         netdev_err(priv->netdev, "request irq(%d) fail\n",
161                                    tqp_vectors->vector_irq);
162                         hns3_nic_uninit_irq(priv);
163                         return ret;
164                 }
165
166                 disable_irq(tqp_vectors->vector_irq);
167
168                 irq_set_affinity_hint(tqp_vectors->vector_irq,
169                                       &tqp_vectors->affinity_mask);
170
171                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
172         }
173
174         return 0;
175 }
176
177 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
178                                  u32 mask_en)
179 {
180         writel(mask_en, tqp_vector->mask_addr);
181 }
182
183 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185         napi_enable(&tqp_vector->napi);
186         enable_irq(tqp_vector->vector_irq);
187
188         /* enable vector */
189         hns3_mask_vector_irq(tqp_vector, 1);
190 }
191
192 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
193 {
194         /* disable vector */
195         hns3_mask_vector_irq(tqp_vector, 0);
196
197         disable_irq(tqp_vector->vector_irq);
198         napi_disable(&tqp_vector->napi);
199 }
200
201 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
202                                  u32 rl_value)
203 {
204         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
205
206         /* this defines the configuration for RL (Interrupt Rate Limiter).
207          * Rl defines rate of interrupts i.e. number of interrupts-per-second
208          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
209          */
210
211         if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
212             !tqp_vector->rx_group.coal.gl_adapt_enable)
213                 /* According to the hardware, the range of rl_reg is
214                  * 0-59 and the unit is 4.
215                  */
216                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
217
218         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
219 }
220
221 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
222                                     u32 gl_value)
223 {
224         u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
225
226         writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
227 }
228
229 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
230                                     u32 gl_value)
231 {
232         u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
233
234         writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
235 }
236
237 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
238                                    struct hns3_nic_priv *priv)
239 {
240         /* initialize the configuration for interrupt coalescing.
241          * 1. GL (Interrupt Gap Limiter)
242          * 2. RL (Interrupt Rate Limiter)
243          *
244          * Default: enable interrupt coalescing self-adaptive and GL
245          */
246         tqp_vector->tx_group.coal.gl_adapt_enable = 1;
247         tqp_vector->rx_group.coal.gl_adapt_enable = 1;
248
249         tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
250         tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
251
252         tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
253         tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
254 }
255
256 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
257                                       struct hns3_nic_priv *priv)
258 {
259         struct hnae3_handle *h = priv->ae_handle;
260
261         hns3_set_vector_coalesce_tx_gl(tqp_vector,
262                                        tqp_vector->tx_group.coal.int_gl);
263         hns3_set_vector_coalesce_rx_gl(tqp_vector,
264                                        tqp_vector->rx_group.coal.int_gl);
265         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
266 }
267
268 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
269 {
270         struct hnae3_handle *h = hns3_get_handle(netdev);
271         struct hnae3_knic_private_info *kinfo = &h->kinfo;
272         unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
273         int i, ret;
274
275         if (kinfo->num_tc <= 1) {
276                 netdev_reset_tc(netdev);
277         } else {
278                 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
279                 if (ret) {
280                         netdev_err(netdev,
281                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
282                         return ret;
283                 }
284
285                 for (i = 0; i < HNAE3_MAX_TC; i++) {
286                         if (!kinfo->tc_info[i].enable)
287                                 continue;
288
289                         netdev_set_tc_queue(netdev,
290                                             kinfo->tc_info[i].tc,
291                                             kinfo->tc_info[i].tqp_count,
292                                             kinfo->tc_info[i].tqp_offset);
293                 }
294         }
295
296         ret = netif_set_real_num_tx_queues(netdev, queue_size);
297         if (ret) {
298                 netdev_err(netdev,
299                            "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
300                 return ret;
301         }
302
303         ret = netif_set_real_num_rx_queues(netdev, queue_size);
304         if (ret) {
305                 netdev_err(netdev,
306                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
307                 return ret;
308         }
309
310         return 0;
311 }
312
313 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
314 {
315         u16 alloc_tqps, max_rss_size, rss_size;
316
317         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
318         rss_size = alloc_tqps / h->kinfo.num_tc;
319
320         return min_t(u16, rss_size, max_rss_size);
321 }
322
323 static void hns3_tqp_enable(struct hnae3_queue *tqp)
324 {
325         u32 rcb_reg;
326
327         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
328         rcb_reg |= BIT(HNS3_RING_EN_B);
329         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
330 }
331
332 static void hns3_tqp_disable(struct hnae3_queue *tqp)
333 {
334         u32 rcb_reg;
335
336         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
337         rcb_reg &= ~BIT(HNS3_RING_EN_B);
338         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
339 }
340
341 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
342 {
343 #ifdef CONFIG_RFS_ACCEL
344         free_irq_cpu_rmap(netdev->rx_cpu_rmap);
345         netdev->rx_cpu_rmap = NULL;
346 #endif
347 }
348
349 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
350 {
351 #ifdef CONFIG_RFS_ACCEL
352         struct hns3_nic_priv *priv = netdev_priv(netdev);
353         struct hns3_enet_tqp_vector *tqp_vector;
354         int i, ret;
355
356         if (!netdev->rx_cpu_rmap) {
357                 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
358                 if (!netdev->rx_cpu_rmap)
359                         return -ENOMEM;
360         }
361
362         for (i = 0; i < priv->vector_num; i++) {
363                 tqp_vector = &priv->tqp_vector[i];
364                 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
365                                        tqp_vector->vector_irq);
366                 if (ret) {
367                         hns3_free_rx_cpu_rmap(netdev);
368                         return ret;
369                 }
370         }
371 #endif
372         return 0;
373 }
374
375 static int hns3_nic_net_up(struct net_device *netdev)
376 {
377         struct hns3_nic_priv *priv = netdev_priv(netdev);
378         struct hnae3_handle *h = priv->ae_handle;
379         int i, j;
380         int ret;
381
382         ret = hns3_nic_reset_all_ring(h);
383         if (ret)
384                 return ret;
385
386         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
387
388         /* enable the vectors */
389         for (i = 0; i < priv->vector_num; i++)
390                 hns3_vector_enable(&priv->tqp_vector[i]);
391
392         /* enable rcb */
393         for (j = 0; j < h->kinfo.num_tqps; j++)
394                 hns3_tqp_enable(h->kinfo.tqp[j]);
395
396         /* start the ae_dev */
397         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
398         if (ret) {
399                 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
400                 while (j--)
401                         hns3_tqp_disable(h->kinfo.tqp[j]);
402
403                 for (j = i - 1; j >= 0; j--)
404                         hns3_vector_disable(&priv->tqp_vector[j]);
405         }
406
407         return ret;
408 }
409
410 static void hns3_config_xps(struct hns3_nic_priv *priv)
411 {
412         int i;
413
414         for (i = 0; i < priv->vector_num; i++) {
415                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
416                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
417
418                 while (ring) {
419                         int ret;
420
421                         ret = netif_set_xps_queue(priv->netdev,
422                                                   &tqp_vector->affinity_mask,
423                                                   ring->tqp->tqp_index);
424                         if (ret)
425                                 netdev_warn(priv->netdev,
426                                             "set xps queue failed: %d", ret);
427
428                         ring = ring->next;
429                 }
430         }
431 }
432
433 static int hns3_nic_net_open(struct net_device *netdev)
434 {
435         struct hns3_nic_priv *priv = netdev_priv(netdev);
436         struct hnae3_handle *h = hns3_get_handle(netdev);
437         struct hnae3_knic_private_info *kinfo;
438         int i, ret;
439
440         if (hns3_nic_resetting(netdev))
441                 return -EBUSY;
442
443         netif_carrier_off(netdev);
444
445         ret = hns3_nic_set_real_num_queue(netdev);
446         if (ret)
447                 return ret;
448
449         ret = hns3_nic_net_up(netdev);
450         if (ret) {
451                 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
452                 return ret;
453         }
454
455         kinfo = &h->kinfo;
456         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
457                 netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
458
459         if (h->ae_algo->ops->set_timer_task)
460                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
461
462         hns3_config_xps(priv);
463
464         netif_dbg(h, drv, netdev, "net open\n");
465
466         return 0;
467 }
468
469 static void hns3_reset_tx_queue(struct hnae3_handle *h)
470 {
471         struct net_device *ndev = h->kinfo.netdev;
472         struct hns3_nic_priv *priv = netdev_priv(ndev);
473         struct netdev_queue *dev_queue;
474         u32 i;
475
476         for (i = 0; i < h->kinfo.num_tqps; i++) {
477                 dev_queue = netdev_get_tx_queue(ndev,
478                                                 priv->ring[i].queue_index);
479                 netdev_tx_reset_queue(dev_queue);
480         }
481 }
482
483 static void hns3_nic_net_down(struct net_device *netdev)
484 {
485         struct hns3_nic_priv *priv = netdev_priv(netdev);
486         struct hnae3_handle *h = hns3_get_handle(netdev);
487         const struct hnae3_ae_ops *ops;
488         int i;
489
490         /* disable vectors */
491         for (i = 0; i < priv->vector_num; i++)
492                 hns3_vector_disable(&priv->tqp_vector[i]);
493
494         /* disable rcb */
495         for (i = 0; i < h->kinfo.num_tqps; i++)
496                 hns3_tqp_disable(h->kinfo.tqp[i]);
497
498         /* stop ae_dev */
499         ops = priv->ae_handle->ae_algo->ops;
500         if (ops->stop)
501                 ops->stop(priv->ae_handle);
502
503         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
504          * during reset process, because driver may not be able
505          * to disable the ring through firmware when downing the netdev.
506          */
507         if (!hns3_nic_resetting(netdev))
508                 hns3_clear_all_ring(priv->ae_handle, false);
509
510         hns3_reset_tx_queue(priv->ae_handle);
511 }
512
513 static int hns3_nic_net_stop(struct net_device *netdev)
514 {
515         struct hns3_nic_priv *priv = netdev_priv(netdev);
516         struct hnae3_handle *h = hns3_get_handle(netdev);
517
518         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
519                 return 0;
520
521         netif_dbg(h, drv, netdev, "net stop\n");
522
523         if (h->ae_algo->ops->set_timer_task)
524                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
525
526         netif_tx_stop_all_queues(netdev);
527         netif_carrier_off(netdev);
528
529         hns3_nic_net_down(netdev);
530
531         return 0;
532 }
533
534 static int hns3_nic_uc_sync(struct net_device *netdev,
535                             const unsigned char *addr)
536 {
537         struct hnae3_handle *h = hns3_get_handle(netdev);
538
539         if (h->ae_algo->ops->add_uc_addr)
540                 return h->ae_algo->ops->add_uc_addr(h, addr);
541
542         return 0;
543 }
544
545 static int hns3_nic_uc_unsync(struct net_device *netdev,
546                               const unsigned char *addr)
547 {
548         struct hnae3_handle *h = hns3_get_handle(netdev);
549
550         /* need ignore the request of removing device address, because
551          * we store the device address and other addresses of uc list
552          * in the function's mac filter list.
553          */
554         if (ether_addr_equal(addr, netdev->dev_addr))
555                 return 0;
556
557         if (h->ae_algo->ops->rm_uc_addr)
558                 return h->ae_algo->ops->rm_uc_addr(h, addr);
559
560         return 0;
561 }
562
563 static int hns3_nic_mc_sync(struct net_device *netdev,
564                             const unsigned char *addr)
565 {
566         struct hnae3_handle *h = hns3_get_handle(netdev);
567
568         if (h->ae_algo->ops->add_mc_addr)
569                 return h->ae_algo->ops->add_mc_addr(h, addr);
570
571         return 0;
572 }
573
574 static int hns3_nic_mc_unsync(struct net_device *netdev,
575                               const unsigned char *addr)
576 {
577         struct hnae3_handle *h = hns3_get_handle(netdev);
578
579         if (h->ae_algo->ops->rm_mc_addr)
580                 return h->ae_algo->ops->rm_mc_addr(h, addr);
581
582         return 0;
583 }
584
585 static u8 hns3_get_netdev_flags(struct net_device *netdev)
586 {
587         u8 flags = 0;
588
589         if (netdev->flags & IFF_PROMISC) {
590                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
591         } else {
592                 flags |= HNAE3_VLAN_FLTR;
593                 if (netdev->flags & IFF_ALLMULTI)
594                         flags |= HNAE3_USER_MPE;
595         }
596
597         return flags;
598 }
599
600 static void hns3_nic_set_rx_mode(struct net_device *netdev)
601 {
602         struct hnae3_handle *h = hns3_get_handle(netdev);
603         u8 new_flags;
604
605         new_flags = hns3_get_netdev_flags(netdev);
606
607         __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
608         __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
609
610         /* User mode Promisc mode enable and vlan filtering is disabled to
611          * let all packets in.
612          */
613         h->netdev_flags = new_flags;
614         hns3_request_update_promisc_mode(h);
615 }
616
617 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
618 {
619         const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
620
621         if (ops->request_update_promisc_mode)
622                 ops->request_update_promisc_mode(handle);
623 }
624
625 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
626 {
627         struct hns3_nic_priv *priv = netdev_priv(netdev);
628         struct hnae3_handle *h = priv->ae_handle;
629
630         if (h->ae_algo->ops->set_promisc_mode) {
631                 return h->ae_algo->ops->set_promisc_mode(h,
632                                                 promisc_flags & HNAE3_UPE,
633                                                 promisc_flags & HNAE3_MPE);
634         }
635
636         return 0;
637 }
638
639 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
640 {
641         struct hns3_nic_priv *priv = netdev_priv(netdev);
642         struct hnae3_handle *h = priv->ae_handle;
643         bool last_state;
644
645         if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
646                 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
647                 if (enable != last_state) {
648                         netdev_info(netdev,
649                                     "%s vlan filter\n",
650                                     enable ? "enable" : "disable");
651                         h->ae_algo->ops->enable_vlan_filter(h, enable);
652                 }
653         }
654 }
655
656 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
657                         u16 *mss, u32 *type_cs_vlan_tso)
658 {
659         u32 l4_offset, hdr_len;
660         union l3_hdr_info l3;
661         union l4_hdr_info l4;
662         u32 l4_paylen;
663         int ret;
664
665         if (!skb_is_gso(skb))
666                 return 0;
667
668         ret = skb_cow_head(skb, 0);
669         if (unlikely(ret < 0))
670                 return ret;
671
672         l3.hdr = skb_network_header(skb);
673         l4.hdr = skb_transport_header(skb);
674
675         /* Software should clear the IPv4's checksum field when tso is
676          * needed.
677          */
678         if (l3.v4->version == 4)
679                 l3.v4->check = 0;
680
681         /* tunnel packet */
682         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
683                                          SKB_GSO_GRE_CSUM |
684                                          SKB_GSO_UDP_TUNNEL |
685                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
686                 if ((!(skb_shinfo(skb)->gso_type &
687                     SKB_GSO_PARTIAL)) &&
688                     (skb_shinfo(skb)->gso_type &
689                     SKB_GSO_UDP_TUNNEL_CSUM)) {
690                         /* Software should clear the udp's checksum
691                          * field when tso is needed.
692                          */
693                         l4.udp->check = 0;
694                 }
695                 /* reset l3&l4 pointers from outer to inner headers */
696                 l3.hdr = skb_inner_network_header(skb);
697                 l4.hdr = skb_inner_transport_header(skb);
698
699                 /* Software should clear the IPv4's checksum field when
700                  * tso is needed.
701                  */
702                 if (l3.v4->version == 4)
703                         l3.v4->check = 0;
704         }
705
706         /* normal or tunnel packet */
707         l4_offset = l4.hdr - skb->data;
708         hdr_len = (l4.tcp->doff << 2) + l4_offset;
709
710         /* remove payload length from inner pseudo checksum when tso */
711         l4_paylen = skb->len - l4_offset;
712         csum_replace_by_diff(&l4.tcp->check,
713                              (__force __wsum)htonl(l4_paylen));
714
715         /* find the txbd field values */
716         *paylen = skb->len - hdr_len;
717         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
718
719         /* get MSS for TSO */
720         *mss = skb_shinfo(skb)->gso_size;
721
722         trace_hns3_tso(skb);
723
724         return 0;
725 }
726
727 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
728                                 u8 *il4_proto)
729 {
730         union l3_hdr_info l3;
731         unsigned char *l4_hdr;
732         unsigned char *exthdr;
733         u8 l4_proto_tmp;
734         __be16 frag_off;
735
736         /* find outer header point */
737         l3.hdr = skb_network_header(skb);
738         l4_hdr = skb_transport_header(skb);
739
740         if (skb->protocol == htons(ETH_P_IPV6)) {
741                 exthdr = l3.hdr + sizeof(*l3.v6);
742                 l4_proto_tmp = l3.v6->nexthdr;
743                 if (l4_hdr != exthdr)
744                         ipv6_skip_exthdr(skb, exthdr - skb->data,
745                                          &l4_proto_tmp, &frag_off);
746         } else if (skb->protocol == htons(ETH_P_IP)) {
747                 l4_proto_tmp = l3.v4->protocol;
748         } else {
749                 return -EINVAL;
750         }
751
752         *ol4_proto = l4_proto_tmp;
753
754         /* tunnel packet */
755         if (!skb->encapsulation) {
756                 *il4_proto = 0;
757                 return 0;
758         }
759
760         /* find inner header point */
761         l3.hdr = skb_inner_network_header(skb);
762         l4_hdr = skb_inner_transport_header(skb);
763
764         if (l3.v6->version == 6) {
765                 exthdr = l3.hdr + sizeof(*l3.v6);
766                 l4_proto_tmp = l3.v6->nexthdr;
767                 if (l4_hdr != exthdr)
768                         ipv6_skip_exthdr(skb, exthdr - skb->data,
769                                          &l4_proto_tmp, &frag_off);
770         } else if (l3.v4->version == 4) {
771                 l4_proto_tmp = l3.v4->protocol;
772         }
773
774         *il4_proto = l4_proto_tmp;
775
776         return 0;
777 }
778
779 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
780  * and it is udp packet, which has a dest port as the IANA assigned.
781  * the hardware is expected to do the checksum offload, but the
782  * hardware will not do the checksum offload when udp dest port is
783  * 4789.
784  */
785 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
786 {
787         union l4_hdr_info l4;
788
789         l4.hdr = skb_transport_header(skb);
790
791         if (!(!skb->encapsulation &&
792               l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
793                 return false;
794
795         skb_checksum_help(skb);
796
797         return true;
798 }
799
800 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
801                                   u32 *ol_type_vlan_len_msec)
802 {
803         u32 l2_len, l3_len, l4_len;
804         unsigned char *il2_hdr;
805         union l3_hdr_info l3;
806         union l4_hdr_info l4;
807
808         l3.hdr = skb_network_header(skb);
809         l4.hdr = skb_transport_header(skb);
810
811         /* compute OL2 header size, defined in 2 Bytes */
812         l2_len = l3.hdr - skb->data;
813         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
814
815         /* compute OL3 header size, defined in 4 Bytes */
816         l3_len = l4.hdr - l3.hdr;
817         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
818
819         il2_hdr = skb_inner_mac_header(skb);
820         /* compute OL4 header size, defined in 4 Bytes */
821         l4_len = il2_hdr - l4.hdr;
822         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
823
824         /* define outer network header type */
825         if (skb->protocol == htons(ETH_P_IP)) {
826                 if (skb_is_gso(skb))
827                         hns3_set_field(*ol_type_vlan_len_msec,
828                                        HNS3_TXD_OL3T_S,
829                                        HNS3_OL3T_IPV4_CSUM);
830                 else
831                         hns3_set_field(*ol_type_vlan_len_msec,
832                                        HNS3_TXD_OL3T_S,
833                                        HNS3_OL3T_IPV4_NO_CSUM);
834
835         } else if (skb->protocol == htons(ETH_P_IPV6)) {
836                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
837                                HNS3_OL3T_IPV6);
838         }
839
840         if (ol4_proto == IPPROTO_UDP)
841                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
842                                HNS3_TUN_MAC_IN_UDP);
843         else if (ol4_proto == IPPROTO_GRE)
844                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
845                                HNS3_TUN_NVGRE);
846 }
847
848 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
849                            u8 il4_proto, u32 *type_cs_vlan_tso,
850                            u32 *ol_type_vlan_len_msec)
851 {
852         unsigned char *l2_hdr = skb->data;
853         u32 l4_proto = ol4_proto;
854         union l4_hdr_info l4;
855         union l3_hdr_info l3;
856         u32 l2_len, l3_len;
857
858         l4.hdr = skb_transport_header(skb);
859         l3.hdr = skb_network_header(skb);
860
861         /* handle encapsulation skb */
862         if (skb->encapsulation) {
863                 /* If this is a not UDP/GRE encapsulation skb */
864                 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
865                         /* drop the skb tunnel packet if hardware don't support,
866                          * because hardware can't calculate csum when TSO.
867                          */
868                         if (skb_is_gso(skb))
869                                 return -EDOM;
870
871                         /* the stack computes the IP header already,
872                          * driver calculate l4 checksum when not TSO.
873                          */
874                         skb_checksum_help(skb);
875                         return 0;
876                 }
877
878                 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
879
880                 /* switch to inner header */
881                 l2_hdr = skb_inner_mac_header(skb);
882                 l3.hdr = skb_inner_network_header(skb);
883                 l4.hdr = skb_inner_transport_header(skb);
884                 l4_proto = il4_proto;
885         }
886
887         if (l3.v4->version == 4) {
888                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
889                                HNS3_L3T_IPV4);
890
891                 /* the stack computes the IP header already, the only time we
892                  * need the hardware to recompute it is in the case of TSO.
893                  */
894                 if (skb_is_gso(skb))
895                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
896         } else if (l3.v6->version == 6) {
897                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
898                                HNS3_L3T_IPV6);
899         }
900
901         /* compute inner(/normal) L2 header size, defined in 2 Bytes */
902         l2_len = l3.hdr - l2_hdr;
903         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
904
905         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
906         l3_len = l4.hdr - l3.hdr;
907         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
908
909         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
910         switch (l4_proto) {
911         case IPPROTO_TCP:
912                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
913                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
914                                HNS3_L4T_TCP);
915                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
916                                l4.tcp->doff);
917                 break;
918         case IPPROTO_UDP:
919                 if (hns3_tunnel_csum_bug(skb))
920                         break;
921
922                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
923                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
924                                HNS3_L4T_UDP);
925                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
926                                (sizeof(struct udphdr) >> 2));
927                 break;
928         case IPPROTO_SCTP:
929                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931                                HNS3_L4T_SCTP);
932                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
933                                (sizeof(struct sctphdr) >> 2));
934                 break;
935         default:
936                 /* drop the skb tunnel packet if hardware don't support,
937                  * because hardware can't calculate csum when TSO.
938                  */
939                 if (skb_is_gso(skb))
940                         return -EDOM;
941
942                 /* the stack computes the IP header already,
943                  * driver calculate l4 checksum when not TSO.
944                  */
945                 skb_checksum_help(skb);
946                 return 0;
947         }
948
949         return 0;
950 }
951
952 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
953                              struct sk_buff *skb)
954 {
955         struct hnae3_handle *handle = tx_ring->tqp->handle;
956         struct vlan_ethhdr *vhdr;
957         int rc;
958
959         if (!(skb->protocol == htons(ETH_P_8021Q) ||
960               skb_vlan_tag_present(skb)))
961                 return 0;
962
963         /* Since HW limitation, if port based insert VLAN enabled, only one VLAN
964          * header is allowed in skb, otherwise it will cause RAS error.
965          */
966         if (unlikely(skb_vlan_tagged_multi(skb) &&
967                      handle->port_base_vlan_state ==
968                      HNAE3_PORT_BASE_VLAN_ENABLE))
969                 return -EINVAL;
970
971         if (skb->protocol == htons(ETH_P_8021Q) &&
972             !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
973                 /* When HW VLAN acceleration is turned off, and the stack
974                  * sets the protocol to 802.1q, the driver just need to
975                  * set the protocol to the encapsulated ethertype.
976                  */
977                 skb->protocol = vlan_get_protocol(skb);
978                 return 0;
979         }
980
981         if (skb_vlan_tag_present(skb)) {
982                 /* Based on hw strategy, use out_vtag in two layer tag case,
983                  * and use inner_vtag in one tag case.
984                  */
985                 if (skb->protocol == htons(ETH_P_8021Q) &&
986                     handle->port_base_vlan_state ==
987                     HNAE3_PORT_BASE_VLAN_DISABLE)
988                         rc = HNS3_OUTER_VLAN_TAG;
989                 else
990                         rc = HNS3_INNER_VLAN_TAG;
991
992                 skb->protocol = vlan_get_protocol(skb);
993                 return rc;
994         }
995
996         rc = skb_cow_head(skb, 0);
997         if (unlikely(rc < 0))
998                 return rc;
999
1000         vhdr = (struct vlan_ethhdr *)skb->data;
1001         vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1002                                          & VLAN_PRIO_MASK);
1003
1004         skb->protocol = vlan_get_protocol(skb);
1005         return 0;
1006 }
1007
1008 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1009                               struct sk_buff *skb, struct hns3_desc *desc)
1010 {
1011         u32 ol_type_vlan_len_msec = 0;
1012         u32 type_cs_vlan_tso = 0;
1013         u32 paylen = skb->len;
1014         u16 inner_vtag = 0;
1015         u16 out_vtag = 0;
1016         u16 mss = 0;
1017         int ret;
1018
1019         ret = hns3_handle_vtags(ring, skb);
1020         if (unlikely(ret < 0)) {
1021                 u64_stats_update_begin(&ring->syncp);
1022                 ring->stats.tx_vlan_err++;
1023                 u64_stats_update_end(&ring->syncp);
1024                 return ret;
1025         } else if (ret == HNS3_INNER_VLAN_TAG) {
1026                 inner_vtag = skb_vlan_tag_get(skb);
1027                 inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1028                                 VLAN_PRIO_MASK;
1029                 hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1030         } else if (ret == HNS3_OUTER_VLAN_TAG) {
1031                 out_vtag = skb_vlan_tag_get(skb);
1032                 out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1033                                 VLAN_PRIO_MASK;
1034                 hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1035                                1);
1036         }
1037
1038         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1039                 u8 ol4_proto, il4_proto;
1040
1041                 skb_reset_mac_len(skb);
1042
1043                 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1044                 if (unlikely(ret < 0)) {
1045                         u64_stats_update_begin(&ring->syncp);
1046                         ring->stats.tx_l4_proto_err++;
1047                         u64_stats_update_end(&ring->syncp);
1048                         return ret;
1049                 }
1050
1051                 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1052                                       &type_cs_vlan_tso,
1053                                       &ol_type_vlan_len_msec);
1054                 if (unlikely(ret < 0)) {
1055                         u64_stats_update_begin(&ring->syncp);
1056                         ring->stats.tx_l2l3l4_err++;
1057                         u64_stats_update_end(&ring->syncp);
1058                         return ret;
1059                 }
1060
1061                 ret = hns3_set_tso(skb, &paylen, &mss,
1062                                    &type_cs_vlan_tso);
1063                 if (unlikely(ret < 0)) {
1064                         u64_stats_update_begin(&ring->syncp);
1065                         ring->stats.tx_tso_err++;
1066                         u64_stats_update_end(&ring->syncp);
1067                         return ret;
1068                 }
1069         }
1070
1071         /* Set txbd */
1072         desc->tx.ol_type_vlan_len_msec =
1073                 cpu_to_le32(ol_type_vlan_len_msec);
1074         desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1075         desc->tx.paylen = cpu_to_le32(paylen);
1076         desc->tx.mss = cpu_to_le16(mss);
1077         desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1078         desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1079
1080         return 0;
1081 }
1082
1083 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1084                           unsigned int size, enum hns_desc_type type)
1085 {
1086 #define HNS3_LIKELY_BD_NUM      1
1087
1088         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1089         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1090         struct device *dev = ring_to_dev(ring);
1091         skb_frag_t *frag;
1092         unsigned int frag_buf_num;
1093         int k, sizeoflast;
1094         dma_addr_t dma;
1095
1096         if (type == DESC_TYPE_SKB) {
1097                 struct sk_buff *skb = (struct sk_buff *)priv;
1098                 int ret;
1099
1100                 ret = hns3_fill_skb_desc(ring, skb, desc);
1101                 if (unlikely(ret < 0))
1102                         return ret;
1103
1104                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1105         } else if (type == DESC_TYPE_FRAGLIST_SKB) {
1106                 struct sk_buff *skb = (struct sk_buff *)priv;
1107
1108                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1109         } else {
1110                 frag = (skb_frag_t *)priv;
1111                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1112         }
1113
1114         if (unlikely(dma_mapping_error(dev, dma))) {
1115                 u64_stats_update_begin(&ring->syncp);
1116                 ring->stats.sw_err_cnt++;
1117                 u64_stats_update_end(&ring->syncp);
1118                 return -ENOMEM;
1119         }
1120
1121         desc_cb->length = size;
1122
1123         if (likely(size <= HNS3_MAX_BD_SIZE)) {
1124                 desc_cb->priv = priv;
1125                 desc_cb->dma = dma;
1126                 desc_cb->type = type;
1127                 desc->addr = cpu_to_le64(dma);
1128                 desc->tx.send_size = cpu_to_le16(size);
1129                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1130                         cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1131
1132                 trace_hns3_tx_desc(ring, ring->next_to_use);
1133                 ring_ptr_move_fw(ring, next_to_use);
1134                 return HNS3_LIKELY_BD_NUM;
1135         }
1136
1137         frag_buf_num = hns3_tx_bd_count(size);
1138         sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1139         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1140
1141         /* When frag size is bigger than hardware limit, split this frag */
1142         for (k = 0; k < frag_buf_num; k++) {
1143                 /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1144                 desc_cb->priv = priv;
1145                 desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1146                 desc_cb->type = ((type == DESC_TYPE_FRAGLIST_SKB ||
1147                                   type == DESC_TYPE_SKB) && !k) ?
1148                                 type : DESC_TYPE_PAGE;
1149
1150                 /* now, fill the descriptor */
1151                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1152                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1153                                      (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1154                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1155                                 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1156
1157                 trace_hns3_tx_desc(ring, ring->next_to_use);
1158                 /* move ring pointer to next */
1159                 ring_ptr_move_fw(ring, next_to_use);
1160
1161                 desc_cb = &ring->desc_cb[ring->next_to_use];
1162                 desc = &ring->desc[ring->next_to_use];
1163         }
1164
1165         return frag_buf_num;
1166 }
1167
1168 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1169                                     unsigned int bd_num)
1170 {
1171         unsigned int size;
1172         int i;
1173
1174         size = skb_headlen(skb);
1175         while (size > HNS3_MAX_BD_SIZE) {
1176                 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1177                 size -= HNS3_MAX_BD_SIZE;
1178
1179                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1180                         return bd_num;
1181         }
1182
1183         if (size) {
1184                 bd_size[bd_num++] = size;
1185                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1186                         return bd_num;
1187         }
1188
1189         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1190                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1191                 size = skb_frag_size(frag);
1192                 if (!size)
1193                         continue;
1194
1195                 while (size > HNS3_MAX_BD_SIZE) {
1196                         bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1197                         size -= HNS3_MAX_BD_SIZE;
1198
1199                         if (bd_num > HNS3_MAX_TSO_BD_NUM)
1200                                 return bd_num;
1201                 }
1202
1203                 bd_size[bd_num++] = size;
1204                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1205                         return bd_num;
1206         }
1207
1208         return bd_num;
1209 }
1210
1211 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size)
1212 {
1213         struct sk_buff *frag_skb;
1214         unsigned int bd_num = 0;
1215
1216         /* If the total len is within the max bd limit */
1217         if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1218                    skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM))
1219                 return skb_shinfo(skb)->nr_frags + 1U;
1220
1221         /* The below case will always be linearized, return
1222          * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1223          */
1224         if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1225                      (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)))
1226                 return HNS3_MAX_TSO_BD_NUM + 1U;
1227
1228         bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1229
1230         if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1231                 return bd_num;
1232
1233         skb_walk_frags(skb, frag_skb) {
1234                 bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1235                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1236                         return bd_num;
1237         }
1238
1239         return bd_num;
1240 }
1241
1242 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1243 {
1244         if (!skb->encapsulation)
1245                 return skb_transport_offset(skb) + tcp_hdrlen(skb);
1246
1247         return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1248 }
1249
1250 /* HW need every continuous 8 buffer data to be larger than MSS,
1251  * we simplify it by ensuring skb_headlen + the first continuous
1252  * 7 frags to to be larger than gso header len + mss, and the remaining
1253  * continuous 7 frags to be larger than MSS except the last 7 frags.
1254  */
1255 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1256                                      unsigned int bd_num)
1257 {
1258         unsigned int tot_len = 0;
1259         int i;
1260
1261         for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++)
1262                 tot_len += bd_size[i];
1263
1264         /* ensure the first 8 frags is greater than mss + header */
1265         if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] <
1266             skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1267                 return true;
1268
1269         /* ensure every continuous 7 buffer is greater than mss
1270          * except the last one.
1271          */
1272         for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) {
1273                 tot_len -= bd_size[i];
1274                 tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U];
1275
1276                 if (tot_len < skb_shinfo(skb)->gso_size)
1277                         return true;
1278         }
1279
1280         return false;
1281 }
1282
1283 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1284 {
1285         int i = 0;
1286
1287         for (i = 0; i < MAX_SKB_FRAGS; i++)
1288                 size[i] = skb_frag_size(&shinfo->frags[i]);
1289 }
1290
1291 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1292                                   struct net_device *netdev,
1293                                   struct sk_buff *skb)
1294 {
1295         struct hns3_nic_priv *priv = netdev_priv(netdev);
1296         unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1297         unsigned int bd_num;
1298
1299         bd_num = hns3_tx_bd_num(skb, bd_size);
1300         if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1301                 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1302                     !hns3_skb_need_linearized(skb, bd_size, bd_num)) {
1303                         trace_hns3_over_8bd(skb);
1304                         goto out;
1305                 }
1306
1307                 if (__skb_linearize(skb))
1308                         return -ENOMEM;
1309
1310                 bd_num = hns3_tx_bd_count(skb->len);
1311                 if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1312                     (!skb_is_gso(skb) &&
1313                      bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1314                         trace_hns3_over_8bd(skb);
1315                         return -ENOMEM;
1316                 }
1317
1318                 u64_stats_update_begin(&ring->syncp);
1319                 ring->stats.tx_copy++;
1320                 u64_stats_update_end(&ring->syncp);
1321         }
1322
1323 out:
1324         if (likely(ring_space(ring) >= bd_num))
1325                 return bd_num;
1326
1327         netif_stop_subqueue(netdev, ring->queue_index);
1328         smp_mb(); /* Memory barrier before checking ring_space */
1329
1330         /* Start queue in case hns3_clean_tx_ring has just made room
1331          * available and has not seen the queue stopped state performed
1332          * by netif_stop_subqueue above.
1333          */
1334         if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1335             !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1336                 netif_start_subqueue(netdev, ring->queue_index);
1337                 return bd_num;
1338         }
1339
1340         return -EBUSY;
1341 }
1342
1343 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1344 {
1345         struct device *dev = ring_to_dev(ring);
1346         unsigned int i;
1347
1348         for (i = 0; i < ring->desc_num; i++) {
1349                 /* check if this is where we started */
1350                 if (ring->next_to_use == next_to_use_orig)
1351                         break;
1352
1353                 /* rollback one */
1354                 ring_ptr_move_bw(ring, next_to_use);
1355
1356                 /* unmap the descriptor dma address */
1357                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1358                     ring->desc_cb[ring->next_to_use].type ==
1359                     DESC_TYPE_FRAGLIST_SKB)
1360                         dma_unmap_single(dev,
1361                                          ring->desc_cb[ring->next_to_use].dma,
1362                                         ring->desc_cb[ring->next_to_use].length,
1363                                         DMA_TO_DEVICE);
1364                 else if (ring->desc_cb[ring->next_to_use].length)
1365                         dma_unmap_page(dev,
1366                                        ring->desc_cb[ring->next_to_use].dma,
1367                                        ring->desc_cb[ring->next_to_use].length,
1368                                        DMA_TO_DEVICE);
1369
1370                 ring->desc_cb[ring->next_to_use].length = 0;
1371                 ring->desc_cb[ring->next_to_use].dma = 0;
1372         }
1373 }
1374
1375 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1376                                  struct sk_buff *skb, enum hns_desc_type type)
1377 {
1378         unsigned int size = skb_headlen(skb);
1379         int i, ret, bd_num = 0;
1380
1381         if (size) {
1382                 ret = hns3_fill_desc(ring, skb, size, type);
1383                 if (unlikely(ret < 0))
1384                         return ret;
1385
1386                 bd_num += ret;
1387         }
1388
1389         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1390                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1391
1392                 size = skb_frag_size(frag);
1393                 if (!size)
1394                         continue;
1395
1396                 ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1397                 if (unlikely(ret < 0))
1398                         return ret;
1399
1400                 bd_num += ret;
1401         }
1402
1403         return bd_num;
1404 }
1405
1406 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1407 {
1408         struct hns3_nic_priv *priv = netdev_priv(netdev);
1409         struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1410         struct netdev_queue *dev_queue;
1411         int pre_ntu, next_to_use_head;
1412         struct sk_buff *frag_skb;
1413         int bd_num = 0;
1414         int ret;
1415
1416         /* Hardware can only handle short frames above 32 bytes */
1417         if (skb_put_padto(skb, HNS3_MIN_TX_LEN))
1418                 return NETDEV_TX_OK;
1419
1420         /* Prefetch the data used later */
1421         prefetch(skb->data);
1422
1423         ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1424         if (unlikely(ret <= 0)) {
1425                 if (ret == -EBUSY) {
1426                         u64_stats_update_begin(&ring->syncp);
1427                         ring->stats.tx_busy++;
1428                         u64_stats_update_end(&ring->syncp);
1429                         return NETDEV_TX_BUSY;
1430                 } else if (ret == -ENOMEM) {
1431                         u64_stats_update_begin(&ring->syncp);
1432                         ring->stats.sw_err_cnt++;
1433                         u64_stats_update_end(&ring->syncp);
1434                 }
1435
1436                 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1437                 goto out_err_tx_ok;
1438         }
1439
1440         next_to_use_head = ring->next_to_use;
1441
1442         ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1443         if (unlikely(ret < 0))
1444                 goto fill_err;
1445
1446         bd_num += ret;
1447
1448         skb_walk_frags(skb, frag_skb) {
1449                 ret = hns3_fill_skb_to_desc(ring, frag_skb,
1450                                             DESC_TYPE_FRAGLIST_SKB);
1451                 if (unlikely(ret < 0))
1452                         goto fill_err;
1453
1454                 bd_num += ret;
1455         }
1456
1457         pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1458                                         (ring->desc_num - 1);
1459         ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1460                                 cpu_to_le16(BIT(HNS3_TXD_FE_B));
1461         trace_hns3_tx_desc(ring, pre_ntu);
1462
1463         /* Complete translate all packets */
1464         dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1465         netdev_tx_sent_queue(dev_queue, skb->len);
1466
1467         wmb(); /* Commit all data before submit */
1468
1469         hnae3_queue_xmit(ring->tqp, bd_num);
1470
1471         return NETDEV_TX_OK;
1472
1473 fill_err:
1474         hns3_clear_desc(ring, next_to_use_head);
1475
1476 out_err_tx_ok:
1477         dev_kfree_skb_any(skb);
1478         return NETDEV_TX_OK;
1479 }
1480
1481 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1482 {
1483         struct hnae3_handle *h = hns3_get_handle(netdev);
1484         struct sockaddr *mac_addr = p;
1485         int ret;
1486
1487         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1488                 return -EADDRNOTAVAIL;
1489
1490         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1491                 netdev_info(netdev, "already using mac address %pM\n",
1492                             mac_addr->sa_data);
1493                 return 0;
1494         }
1495
1496         /* For VF device, if there is a perm_addr, then the user will not
1497          * be allowed to change the address.
1498          */
1499         if (!hns3_is_phys_func(h->pdev) &&
1500             !is_zero_ether_addr(netdev->perm_addr)) {
1501                 netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1502                            netdev->perm_addr, mac_addr->sa_data);
1503                 return -EPERM;
1504         }
1505
1506         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1507         if (ret) {
1508                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1509                 return ret;
1510         }
1511
1512         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1513
1514         return 0;
1515 }
1516
1517 static int hns3_nic_do_ioctl(struct net_device *netdev,
1518                              struct ifreq *ifr, int cmd)
1519 {
1520         struct hnae3_handle *h = hns3_get_handle(netdev);
1521
1522         if (!netif_running(netdev))
1523                 return -EINVAL;
1524
1525         if (!h->ae_algo->ops->do_ioctl)
1526                 return -EOPNOTSUPP;
1527
1528         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1529 }
1530
1531 static int hns3_nic_set_features(struct net_device *netdev,
1532                                  netdev_features_t features)
1533 {
1534         netdev_features_t changed = netdev->features ^ features;
1535         struct hns3_nic_priv *priv = netdev_priv(netdev);
1536         struct hnae3_handle *h = priv->ae_handle;
1537         bool enable;
1538         int ret;
1539
1540         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1541                 enable = !!(features & NETIF_F_GRO_HW);
1542                 ret = h->ae_algo->ops->set_gro_en(h, enable);
1543                 if (ret)
1544                         return ret;
1545         }
1546
1547         if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1548             h->ae_algo->ops->enable_vlan_filter) {
1549                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1550                 h->ae_algo->ops->enable_vlan_filter(h, enable);
1551         }
1552
1553         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1554             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1555                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1556                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1557                 if (ret)
1558                         return ret;
1559         }
1560
1561         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1562                 enable = !!(features & NETIF_F_NTUPLE);
1563                 h->ae_algo->ops->enable_fd(h, enable);
1564         }
1565
1566         netdev->features = features;
1567         return 0;
1568 }
1569
1570 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1571                                              struct net_device *dev,
1572                                              netdev_features_t features)
1573 {
1574 #define HNS3_MAX_HDR_LEN        480U
1575 #define HNS3_MAX_L4_HDR_LEN     60U
1576
1577         size_t len;
1578
1579         if (skb->ip_summed != CHECKSUM_PARTIAL)
1580                 return features;
1581
1582         if (skb->encapsulation)
1583                 len = skb_inner_transport_header(skb) - skb->data;
1584         else
1585                 len = skb_transport_header(skb) - skb->data;
1586
1587         /* Assume L4 is 60 byte as TCP is the only protocol with a
1588          * a flexible value, and it's max len is 60 bytes.
1589          */
1590         len += HNS3_MAX_L4_HDR_LEN;
1591
1592         /* Hardware only supports checksum on the skb with a max header
1593          * len of 480 bytes.
1594          */
1595         if (len > HNS3_MAX_HDR_LEN)
1596                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1597
1598         return features;
1599 }
1600
1601 static void hns3_nic_get_stats64(struct net_device *netdev,
1602                                  struct rtnl_link_stats64 *stats)
1603 {
1604         struct hns3_nic_priv *priv = netdev_priv(netdev);
1605         int queue_num = priv->ae_handle->kinfo.num_tqps;
1606         struct hnae3_handle *handle = priv->ae_handle;
1607         struct hns3_enet_ring *ring;
1608         u64 rx_length_errors = 0;
1609         u64 rx_crc_errors = 0;
1610         u64 rx_multicast = 0;
1611         unsigned int start;
1612         u64 tx_errors = 0;
1613         u64 rx_errors = 0;
1614         unsigned int idx;
1615         u64 tx_bytes = 0;
1616         u64 rx_bytes = 0;
1617         u64 tx_pkts = 0;
1618         u64 rx_pkts = 0;
1619         u64 tx_drop = 0;
1620         u64 rx_drop = 0;
1621
1622         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1623                 return;
1624
1625         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1626
1627         for (idx = 0; idx < queue_num; idx++) {
1628                 /* fetch the tx stats */
1629                 ring = &priv->ring[idx];
1630                 do {
1631                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1632                         tx_bytes += ring->stats.tx_bytes;
1633                         tx_pkts += ring->stats.tx_pkts;
1634                         tx_drop += ring->stats.sw_err_cnt;
1635                         tx_drop += ring->stats.tx_vlan_err;
1636                         tx_drop += ring->stats.tx_l4_proto_err;
1637                         tx_drop += ring->stats.tx_l2l3l4_err;
1638                         tx_drop += ring->stats.tx_tso_err;
1639                         tx_errors += ring->stats.sw_err_cnt;
1640                         tx_errors += ring->stats.tx_vlan_err;
1641                         tx_errors += ring->stats.tx_l4_proto_err;
1642                         tx_errors += ring->stats.tx_l2l3l4_err;
1643                         tx_errors += ring->stats.tx_tso_err;
1644                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1645
1646                 /* fetch the rx stats */
1647                 ring = &priv->ring[idx + queue_num];
1648                 do {
1649                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1650                         rx_bytes += ring->stats.rx_bytes;
1651                         rx_pkts += ring->stats.rx_pkts;
1652                         rx_drop += ring->stats.l2_err;
1653                         rx_errors += ring->stats.l2_err;
1654                         rx_errors += ring->stats.l3l4_csum_err;
1655                         rx_crc_errors += ring->stats.l2_err;
1656                         rx_multicast += ring->stats.rx_multicast;
1657                         rx_length_errors += ring->stats.err_pkt_len;
1658                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1659         }
1660
1661         stats->tx_bytes = tx_bytes;
1662         stats->tx_packets = tx_pkts;
1663         stats->rx_bytes = rx_bytes;
1664         stats->rx_packets = rx_pkts;
1665
1666         stats->rx_errors = rx_errors;
1667         stats->multicast = rx_multicast;
1668         stats->rx_length_errors = rx_length_errors;
1669         stats->rx_crc_errors = rx_crc_errors;
1670         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1671
1672         stats->tx_errors = tx_errors;
1673         stats->rx_dropped = rx_drop;
1674         stats->tx_dropped = tx_drop;
1675         stats->collisions = netdev->stats.collisions;
1676         stats->rx_over_errors = netdev->stats.rx_over_errors;
1677         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1678         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1679         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1680         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1681         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1682         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1683         stats->tx_window_errors = netdev->stats.tx_window_errors;
1684         stats->rx_compressed = netdev->stats.rx_compressed;
1685         stats->tx_compressed = netdev->stats.tx_compressed;
1686 }
1687
1688 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1689 {
1690         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1691         u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1692         struct hnae3_knic_private_info *kinfo;
1693         u8 tc = mqprio_qopt->qopt.num_tc;
1694         u16 mode = mqprio_qopt->mode;
1695         u8 hw = mqprio_qopt->qopt.hw;
1696         struct hnae3_handle *h;
1697
1698         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1699                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1700                 return -EOPNOTSUPP;
1701
1702         if (tc > HNAE3_MAX_TC)
1703                 return -EINVAL;
1704
1705         if (!netdev)
1706                 return -EINVAL;
1707
1708         h = hns3_get_handle(netdev);
1709         kinfo = &h->kinfo;
1710
1711         netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1712
1713         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1714                 kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1715 }
1716
1717 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1718                              void *type_data)
1719 {
1720         if (type != TC_SETUP_QDISC_MQPRIO)
1721                 return -EOPNOTSUPP;
1722
1723         return hns3_setup_tc(dev, type_data);
1724 }
1725
1726 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1727                                 __be16 proto, u16 vid)
1728 {
1729         struct hnae3_handle *h = hns3_get_handle(netdev);
1730         int ret = -EIO;
1731
1732         if (h->ae_algo->ops->set_vlan_filter)
1733                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1734
1735         return ret;
1736 }
1737
1738 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1739                                  __be16 proto, u16 vid)
1740 {
1741         struct hnae3_handle *h = hns3_get_handle(netdev);
1742         int ret = -EIO;
1743
1744         if (h->ae_algo->ops->set_vlan_filter)
1745                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1746
1747         return ret;
1748 }
1749
1750 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1751                                 u8 qos, __be16 vlan_proto)
1752 {
1753         struct hnae3_handle *h = hns3_get_handle(netdev);
1754         int ret = -EIO;
1755
1756         netif_dbg(h, drv, netdev,
1757                   "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1758                   vf, vlan, qos, ntohs(vlan_proto));
1759
1760         if (h->ae_algo->ops->set_vf_vlan_filter)
1761                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1762                                                           qos, vlan_proto);
1763
1764         return ret;
1765 }
1766
1767 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1768 {
1769         struct hnae3_handle *handle = hns3_get_handle(netdev);
1770
1771         if (hns3_nic_resetting(netdev))
1772                 return -EBUSY;
1773
1774         if (!handle->ae_algo->ops->set_vf_spoofchk)
1775                 return -EOPNOTSUPP;
1776
1777         return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1778 }
1779
1780 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1781 {
1782         struct hnae3_handle *handle = hns3_get_handle(netdev);
1783
1784         if (!handle->ae_algo->ops->set_vf_trust)
1785                 return -EOPNOTSUPP;
1786
1787         return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1788 }
1789
1790 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1791 {
1792         struct hnae3_handle *h = hns3_get_handle(netdev);
1793         int ret;
1794
1795         if (hns3_nic_resetting(netdev))
1796                 return -EBUSY;
1797
1798         if (!h->ae_algo->ops->set_mtu)
1799                 return -EOPNOTSUPP;
1800
1801         netif_dbg(h, drv, netdev,
1802                   "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1803
1804         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1805         if (ret)
1806                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1807                            ret);
1808         else
1809                 netdev->mtu = new_mtu;
1810
1811         return ret;
1812 }
1813
1814 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1815 {
1816         struct hns3_nic_priv *priv = netdev_priv(ndev);
1817         struct hnae3_handle *h = hns3_get_handle(ndev);
1818         struct hns3_enet_ring *tx_ring;
1819         struct napi_struct *napi;
1820         int timeout_queue = 0;
1821         int hw_head, hw_tail;
1822         int fbd_num, fbd_oft;
1823         int ebd_num, ebd_oft;
1824         int bd_num, bd_err;
1825         int ring_en, tc;
1826         int i;
1827
1828         /* Find the stopped queue the same way the stack does */
1829         for (i = 0; i < ndev->num_tx_queues; i++) {
1830                 struct netdev_queue *q;
1831                 unsigned long trans_start;
1832
1833                 q = netdev_get_tx_queue(ndev, i);
1834                 trans_start = q->trans_start;
1835                 if (netif_xmit_stopped(q) &&
1836                     time_after(jiffies,
1837                                (trans_start + ndev->watchdog_timeo))) {
1838                         timeout_queue = i;
1839                         netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1840                                     q->state,
1841                                     jiffies_to_msecs(jiffies - trans_start));
1842                         break;
1843                 }
1844         }
1845
1846         if (i == ndev->num_tx_queues) {
1847                 netdev_info(ndev,
1848                             "no netdev TX timeout queue found, timeout count: %llu\n",
1849                             priv->tx_timeout_count);
1850                 return false;
1851         }
1852
1853         priv->tx_timeout_count++;
1854
1855         tx_ring = &priv->ring[timeout_queue];
1856         napi = &tx_ring->tqp_vector->napi;
1857
1858         netdev_info(ndev,
1859                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1860                     priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1861                     tx_ring->next_to_clean, napi->state);
1862
1863         netdev_info(ndev,
1864                     "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1865                     tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1866                     tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1867
1868         netdev_info(ndev,
1869                     "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1870                     tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1871                     tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1872
1873         /* When mac received many pause frames continuous, it's unable to send
1874          * packets, which may cause tx timeout
1875          */
1876         if (h->ae_algo->ops->get_mac_stats) {
1877                 struct hns3_mac_stats mac_stats;
1878
1879                 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1880                 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1881                             mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1882         }
1883
1884         hw_head = readl_relaxed(tx_ring->tqp->io_base +
1885                                 HNS3_RING_TX_RING_HEAD_REG);
1886         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1887                                 HNS3_RING_TX_RING_TAIL_REG);
1888         fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1889                                 HNS3_RING_TX_RING_FBDNUM_REG);
1890         fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1891                                 HNS3_RING_TX_RING_OFFSET_REG);
1892         ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1893                                 HNS3_RING_TX_RING_EBDNUM_REG);
1894         ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1895                                 HNS3_RING_TX_RING_EBD_OFFSET_REG);
1896         bd_num = readl_relaxed(tx_ring->tqp->io_base +
1897                                HNS3_RING_TX_RING_BD_NUM_REG);
1898         bd_err = readl_relaxed(tx_ring->tqp->io_base +
1899                                HNS3_RING_TX_RING_BD_ERR_REG);
1900         ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1901         tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1902
1903         netdev_info(ndev,
1904                     "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1905                     bd_num, hw_head, hw_tail, bd_err,
1906                     readl(tx_ring->tqp_vector->mask_addr));
1907         netdev_info(ndev,
1908                     "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1909                     ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1910
1911         return true;
1912 }
1913
1914 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1915 {
1916         struct hns3_nic_priv *priv = netdev_priv(ndev);
1917         struct hnae3_handle *h = priv->ae_handle;
1918
1919         if (!hns3_get_tx_timeo_queue_info(ndev))
1920                 return;
1921
1922         /* request the reset, and let the hclge to determine
1923          * which reset level should be done
1924          */
1925         if (h->ae_algo->ops->reset_event)
1926                 h->ae_algo->ops->reset_event(h->pdev, h);
1927 }
1928
1929 #ifdef CONFIG_RFS_ACCEL
1930 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1931                               u16 rxq_index, u32 flow_id)
1932 {
1933         struct hnae3_handle *h = hns3_get_handle(dev);
1934         struct flow_keys fkeys;
1935
1936         if (!h->ae_algo->ops->add_arfs_entry)
1937                 return -EOPNOTSUPP;
1938
1939         if (skb->encapsulation)
1940                 return -EPROTONOSUPPORT;
1941
1942         if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1943                 return -EPROTONOSUPPORT;
1944
1945         if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1946              fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1947             (fkeys.basic.ip_proto != IPPROTO_TCP &&
1948              fkeys.basic.ip_proto != IPPROTO_UDP))
1949                 return -EPROTONOSUPPORT;
1950
1951         return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1952 }
1953 #endif
1954
1955 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
1956                                   struct ifla_vf_info *ivf)
1957 {
1958         struct hnae3_handle *h = hns3_get_handle(ndev);
1959
1960         if (!h->ae_algo->ops->get_vf_config)
1961                 return -EOPNOTSUPP;
1962
1963         return h->ae_algo->ops->get_vf_config(h, vf, ivf);
1964 }
1965
1966 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
1967                                       int link_state)
1968 {
1969         struct hnae3_handle *h = hns3_get_handle(ndev);
1970
1971         if (!h->ae_algo->ops->set_vf_link_state)
1972                 return -EOPNOTSUPP;
1973
1974         return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
1975 }
1976
1977 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
1978                                 int min_tx_rate, int max_tx_rate)
1979 {
1980         struct hnae3_handle *h = hns3_get_handle(ndev);
1981
1982         if (!h->ae_algo->ops->set_vf_rate)
1983                 return -EOPNOTSUPP;
1984
1985         return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
1986                                             false);
1987 }
1988
1989 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1990 {
1991         struct hnae3_handle *h = hns3_get_handle(netdev);
1992
1993         if (!h->ae_algo->ops->set_vf_mac)
1994                 return -EOPNOTSUPP;
1995
1996         if (is_multicast_ether_addr(mac)) {
1997                 netdev_err(netdev,
1998                            "Invalid MAC:%pM specified. Could not set MAC\n",
1999                            mac);
2000                 return -EINVAL;
2001         }
2002
2003         return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2004 }
2005
2006 static const struct net_device_ops hns3_nic_netdev_ops = {
2007         .ndo_open               = hns3_nic_net_open,
2008         .ndo_stop               = hns3_nic_net_stop,
2009         .ndo_start_xmit         = hns3_nic_net_xmit,
2010         .ndo_tx_timeout         = hns3_nic_net_timeout,
2011         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
2012         .ndo_do_ioctl           = hns3_nic_do_ioctl,
2013         .ndo_change_mtu         = hns3_nic_change_mtu,
2014         .ndo_set_features       = hns3_nic_set_features,
2015         .ndo_features_check     = hns3_features_check,
2016         .ndo_get_stats64        = hns3_nic_get_stats64,
2017         .ndo_setup_tc           = hns3_nic_setup_tc,
2018         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
2019         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
2020         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
2021         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
2022         .ndo_set_vf_spoofchk    = hns3_set_vf_spoofchk,
2023         .ndo_set_vf_trust       = hns3_set_vf_trust,
2024 #ifdef CONFIG_RFS_ACCEL
2025         .ndo_rx_flow_steer      = hns3_rx_flow_steer,
2026 #endif
2027         .ndo_get_vf_config      = hns3_nic_get_vf_config,
2028         .ndo_set_vf_link_state  = hns3_nic_set_vf_link_state,
2029         .ndo_set_vf_rate        = hns3_nic_set_vf_rate,
2030         .ndo_set_vf_mac         = hns3_nic_set_vf_mac,
2031 };
2032
2033 bool hns3_is_phys_func(struct pci_dev *pdev)
2034 {
2035         u32 dev_id = pdev->device;
2036
2037         switch (dev_id) {
2038         case HNAE3_DEV_ID_GE:
2039         case HNAE3_DEV_ID_25GE:
2040         case HNAE3_DEV_ID_25GE_RDMA:
2041         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2042         case HNAE3_DEV_ID_50GE_RDMA:
2043         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2044         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2045                 return true;
2046         case HNAE3_DEV_ID_100G_VF:
2047         case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
2048                 return false;
2049         default:
2050                 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2051                          dev_id);
2052         }
2053
2054         return false;
2055 }
2056
2057 static void hns3_disable_sriov(struct pci_dev *pdev)
2058 {
2059         /* If our VFs are assigned we cannot shut down SR-IOV
2060          * without causing issues, so just leave the hardware
2061          * available but disabled
2062          */
2063         if (pci_vfs_assigned(pdev)) {
2064                 dev_warn(&pdev->dev,
2065                          "disabling driver while VFs are assigned\n");
2066                 return;
2067         }
2068
2069         pci_disable_sriov(pdev);
2070 }
2071
2072 static void hns3_get_dev_capability(struct pci_dev *pdev,
2073                                     struct hnae3_ae_dev *ae_dev)
2074 {
2075         if (pdev->revision >= 0x21) {
2076                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
2077                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
2078         }
2079 }
2080
2081 /* hns3_probe - Device initialization routine
2082  * @pdev: PCI device information struct
2083  * @ent: entry in hns3_pci_tbl
2084  *
2085  * hns3_probe initializes a PF identified by a pci_dev structure.
2086  * The OS initialization, configuring of the PF private structure,
2087  * and a hardware reset occur.
2088  *
2089  * Returns 0 on success, negative on failure
2090  */
2091 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2092 {
2093         struct hnae3_ae_dev *ae_dev;
2094         int ret;
2095
2096         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2097         if (!ae_dev)
2098                 return -ENOMEM;
2099
2100         ae_dev->pdev = pdev;
2101         ae_dev->flag = ent->driver_data;
2102         hns3_get_dev_capability(pdev, ae_dev);
2103         pci_set_drvdata(pdev, ae_dev);
2104
2105         ret = hnae3_register_ae_dev(ae_dev);
2106         if (ret) {
2107                 devm_kfree(&pdev->dev, ae_dev);
2108                 pci_set_drvdata(pdev, NULL);
2109         }
2110
2111         return ret;
2112 }
2113
2114 /* hns3_remove - Device removal routine
2115  * @pdev: PCI device information struct
2116  */
2117 static void hns3_remove(struct pci_dev *pdev)
2118 {
2119         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2120
2121         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2122                 hns3_disable_sriov(pdev);
2123
2124         hnae3_unregister_ae_dev(ae_dev);
2125         pci_set_drvdata(pdev, NULL);
2126 }
2127
2128 /**
2129  * hns3_pci_sriov_configure
2130  * @pdev: pointer to a pci_dev structure
2131  * @num_vfs: number of VFs to allocate
2132  *
2133  * Enable or change the number of VFs. Called when the user updates the number
2134  * of VFs in sysfs.
2135  **/
2136 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2137 {
2138         int ret;
2139
2140         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2141                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
2142                 return -EINVAL;
2143         }
2144
2145         if (num_vfs) {
2146                 ret = pci_enable_sriov(pdev, num_vfs);
2147                 if (ret)
2148                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2149                 else
2150                         return num_vfs;
2151         } else if (!pci_vfs_assigned(pdev)) {
2152                 pci_disable_sriov(pdev);
2153         } else {
2154                 dev_warn(&pdev->dev,
2155                          "Unable to free VFs because some are assigned to VMs.\n");
2156         }
2157
2158         return 0;
2159 }
2160
2161 static void hns3_shutdown(struct pci_dev *pdev)
2162 {
2163         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2164
2165         hnae3_unregister_ae_dev(ae_dev);
2166         devm_kfree(&pdev->dev, ae_dev);
2167         pci_set_drvdata(pdev, NULL);
2168
2169         if (system_state == SYSTEM_POWER_OFF)
2170                 pci_set_power_state(pdev, PCI_D3hot);
2171 }
2172
2173 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2174                                             pci_channel_state_t state)
2175 {
2176         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2177         pci_ers_result_t ret;
2178
2179         dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2180
2181         if (state == pci_channel_io_perm_failure)
2182                 return PCI_ERS_RESULT_DISCONNECT;
2183
2184         if (!ae_dev || !ae_dev->ops) {
2185                 dev_err(&pdev->dev,
2186                         "Can't recover - error happened before device initialized\n");
2187                 return PCI_ERS_RESULT_NONE;
2188         }
2189
2190         if (ae_dev->ops->handle_hw_ras_error)
2191                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2192         else
2193                 return PCI_ERS_RESULT_NONE;
2194
2195         return ret;
2196 }
2197
2198 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2199 {
2200         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2201         const struct hnae3_ae_ops *ops;
2202         enum hnae3_reset_type reset_type;
2203         struct device *dev = &pdev->dev;
2204
2205         if (!ae_dev || !ae_dev->ops)
2206                 return PCI_ERS_RESULT_NONE;
2207
2208         ops = ae_dev->ops;
2209         /* request the reset */
2210         if (ops->reset_event && ops->get_reset_level &&
2211             ops->set_default_reset_request) {
2212                 if (ae_dev->hw_err_reset_req) {
2213                         reset_type = ops->get_reset_level(ae_dev,
2214                                                 &ae_dev->hw_err_reset_req);
2215                         ops->set_default_reset_request(ae_dev, reset_type);
2216                         dev_info(dev, "requesting reset due to PCI error\n");
2217                         ops->reset_event(pdev, NULL);
2218                 }
2219
2220                 return PCI_ERS_RESULT_RECOVERED;
2221         }
2222
2223         return PCI_ERS_RESULT_DISCONNECT;
2224 }
2225
2226 static void hns3_reset_prepare(struct pci_dev *pdev)
2227 {
2228         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2229
2230         dev_info(&pdev->dev, "FLR prepare\n");
2231         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2232                 ae_dev->ops->flr_prepare(ae_dev);
2233 }
2234
2235 static void hns3_reset_done(struct pci_dev *pdev)
2236 {
2237         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2238
2239         dev_info(&pdev->dev, "FLR done\n");
2240         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2241                 ae_dev->ops->flr_done(ae_dev);
2242 }
2243
2244 static const struct pci_error_handlers hns3_err_handler = {
2245         .error_detected = hns3_error_detected,
2246         .slot_reset     = hns3_slot_reset,
2247         .reset_prepare  = hns3_reset_prepare,
2248         .reset_done     = hns3_reset_done,
2249 };
2250
2251 static struct pci_driver hns3_driver = {
2252         .name     = hns3_driver_name,
2253         .id_table = hns3_pci_tbl,
2254         .probe    = hns3_probe,
2255         .remove   = hns3_remove,
2256         .shutdown = hns3_shutdown,
2257         .sriov_configure = hns3_pci_sriov_configure,
2258         .err_handler    = &hns3_err_handler,
2259 };
2260
2261 /* set default feature to hns3 */
2262 static void hns3_set_default_feature(struct net_device *netdev)
2263 {
2264         struct hnae3_handle *h = hns3_get_handle(netdev);
2265         struct pci_dev *pdev = h->pdev;
2266
2267         netdev->priv_flags |= IFF_UNICAST_FLT;
2268
2269         netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2270                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2271                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2272                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2273                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2274                 NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2275
2276         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2277
2278         netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2279                 NETIF_F_HW_VLAN_CTAG_FILTER |
2280                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2281                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2282                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2283                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2284                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2285                 NETIF_F_FRAGLIST;
2286
2287         netdev->vlan_features |=
2288                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2289                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2290                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2291                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2292                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2293                 NETIF_F_FRAGLIST;
2294
2295         netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2296                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2297                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2298                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2299                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2300                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2301                 NETIF_F_FRAGLIST;
2302
2303         if (pdev->revision >= 0x21) {
2304                 netdev->hw_features |= NETIF_F_GRO_HW;
2305                 netdev->features |= NETIF_F_GRO_HW;
2306
2307                 if (!(h->flags & HNAE3_SUPPORT_VF)) {
2308                         netdev->hw_features |= NETIF_F_NTUPLE;
2309                         netdev->features |= NETIF_F_NTUPLE;
2310                 }
2311         }
2312 }
2313
2314 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2315                              struct hns3_desc_cb *cb)
2316 {
2317         unsigned int order = hns3_page_order(ring);
2318         struct page *p;
2319
2320         p = dev_alloc_pages(order);
2321         if (!p)
2322                 return -ENOMEM;
2323
2324         cb->priv = p;
2325         cb->page_offset = 0;
2326         cb->reuse_flag = 0;
2327         cb->buf  = page_address(p);
2328         cb->length = hns3_page_size(ring);
2329         cb->type = DESC_TYPE_PAGE;
2330
2331         return 0;
2332 }
2333
2334 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2335                              struct hns3_desc_cb *cb)
2336 {
2337         if (cb->type == DESC_TYPE_SKB)
2338                 dev_kfree_skb_any((struct sk_buff *)cb->priv);
2339         else if (!HNAE3_IS_TX_RING(ring))
2340                 put_page((struct page *)cb->priv);
2341         memset(cb, 0, sizeof(*cb));
2342 }
2343
2344 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2345 {
2346         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2347                                cb->length, ring_to_dma_dir(ring));
2348
2349         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2350                 return -EIO;
2351
2352         return 0;
2353 }
2354
2355 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2356                               struct hns3_desc_cb *cb)
2357 {
2358         if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2359                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2360                                  ring_to_dma_dir(ring));
2361         else if (cb->length)
2362                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2363                                ring_to_dma_dir(ring));
2364 }
2365
2366 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2367 {
2368         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2369         ring->desc[i].addr = 0;
2370 }
2371
2372 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2373 {
2374         struct hns3_desc_cb *cb = &ring->desc_cb[i];
2375
2376         if (!ring->desc_cb[i].dma)
2377                 return;
2378
2379         hns3_buffer_detach(ring, i);
2380         hns3_free_buffer(ring, cb);
2381 }
2382
2383 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2384 {
2385         int i;
2386
2387         for (i = 0; i < ring->desc_num; i++)
2388                 hns3_free_buffer_detach(ring, i);
2389 }
2390
2391 /* free desc along with its attached buffer */
2392 static void hns3_free_desc(struct hns3_enet_ring *ring)
2393 {
2394         int size = ring->desc_num * sizeof(ring->desc[0]);
2395
2396         hns3_free_buffers(ring);
2397
2398         if (ring->desc) {
2399                 dma_free_coherent(ring_to_dev(ring), size,
2400                                   ring->desc, ring->desc_dma_addr);
2401                 ring->desc = NULL;
2402         }
2403 }
2404
2405 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2406 {
2407         int size = ring->desc_num * sizeof(ring->desc[0]);
2408
2409         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2410                                         &ring->desc_dma_addr, GFP_KERNEL);
2411         if (!ring->desc)
2412                 return -ENOMEM;
2413
2414         return 0;
2415 }
2416
2417 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2418                                    struct hns3_desc_cb *cb)
2419 {
2420         int ret;
2421
2422         ret = hns3_alloc_buffer(ring, cb);
2423         if (ret)
2424                 goto out;
2425
2426         ret = hns3_map_buffer(ring, cb);
2427         if (ret)
2428                 goto out_with_buf;
2429
2430         return 0;
2431
2432 out_with_buf:
2433         hns3_free_buffer(ring, cb);
2434 out:
2435         return ret;
2436 }
2437
2438 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2439 {
2440         int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2441
2442         if (ret)
2443                 return ret;
2444
2445         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2446
2447         return 0;
2448 }
2449
2450 /* Allocate memory for raw pkg, and map with dma */
2451 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2452 {
2453         int i, j, ret;
2454
2455         for (i = 0; i < ring->desc_num; i++) {
2456                 ret = hns3_alloc_buffer_attach(ring, i);
2457                 if (ret)
2458                         goto out_buffer_fail;
2459         }
2460
2461         return 0;
2462
2463 out_buffer_fail:
2464         for (j = i - 1; j >= 0; j--)
2465                 hns3_free_buffer_detach(ring, j);
2466         return ret;
2467 }
2468
2469 /* detach a in-used buffer and replace with a reserved one */
2470 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2471                                 struct hns3_desc_cb *res_cb)
2472 {
2473         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2474         ring->desc_cb[i] = *res_cb;
2475         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2476         ring->desc[i].rx.bd_base_info = 0;
2477 }
2478
2479 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2480 {
2481         ring->desc_cb[i].reuse_flag = 0;
2482         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2483                                          ring->desc_cb[i].page_offset);
2484         ring->desc[i].rx.bd_base_info = 0;
2485 }
2486
2487 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2488                                   int *bytes, int *pkts)
2489 {
2490         int ntc = ring->next_to_clean;
2491         struct hns3_desc_cb *desc_cb;
2492
2493         while (head != ntc) {
2494                 desc_cb = &ring->desc_cb[ntc];
2495                 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2496                 (*bytes) += desc_cb->length;
2497                 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2498                 hns3_free_buffer_detach(ring, ntc);
2499
2500                 if (++ntc == ring->desc_num)
2501                         ntc = 0;
2502
2503                 /* Issue prefetch for next Tx descriptor */
2504                 prefetch(&ring->desc_cb[ntc]);
2505         }
2506
2507         /* This smp_store_release() pairs with smp_load_acquire() in
2508          * ring_space called by hns3_nic_net_xmit.
2509          */
2510         smp_store_release(&ring->next_to_clean, ntc);
2511 }
2512
2513 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2514 {
2515         int u = ring->next_to_use;
2516         int c = ring->next_to_clean;
2517
2518         if (unlikely(h > ring->desc_num))
2519                 return 0;
2520
2521         return u > c ? (h > c && h <= u) : (h > c || h <= u);
2522 }
2523
2524 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2525 {
2526         struct net_device *netdev = ring_to_netdev(ring);
2527         struct hns3_nic_priv *priv = netdev_priv(netdev);
2528         struct netdev_queue *dev_queue;
2529         int bytes, pkts;
2530         int head;
2531
2532         head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2533
2534         if (is_ring_empty(ring) || head == ring->next_to_clean)
2535                 return; /* no data to poll */
2536
2537         rmb(); /* Make sure head is ready before touch any data */
2538
2539         if (unlikely(!is_valid_clean_head(ring, head))) {
2540                 hns3_rl_err(netdev, "wrong head (%d, %d-%d)\n", head,
2541                             ring->next_to_use, ring->next_to_clean);
2542
2543                 u64_stats_update_begin(&ring->syncp);
2544                 ring->stats.io_err_cnt++;
2545                 u64_stats_update_end(&ring->syncp);
2546                 return;
2547         }
2548
2549         bytes = 0;
2550         pkts = 0;
2551         hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2552
2553         ring->tqp_vector->tx_group.total_bytes += bytes;
2554         ring->tqp_vector->tx_group.total_packets += pkts;
2555
2556         u64_stats_update_begin(&ring->syncp);
2557         ring->stats.tx_bytes += bytes;
2558         ring->stats.tx_pkts += pkts;
2559         u64_stats_update_end(&ring->syncp);
2560
2561         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2562         netdev_tx_completed_queue(dev_queue, pkts, bytes);
2563
2564         if (unlikely(netif_carrier_ok(netdev) &&
2565                      ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2566                 /* Make sure that anybody stopping the queue after this
2567                  * sees the new next_to_clean.
2568                  */
2569                 smp_mb();
2570                 if (netif_tx_queue_stopped(dev_queue) &&
2571                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2572                         netif_tx_wake_queue(dev_queue);
2573                         ring->stats.restart_queue++;
2574                 }
2575         }
2576 }
2577
2578 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2579 {
2580         int ntc = ring->next_to_clean;
2581         int ntu = ring->next_to_use;
2582
2583         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2584 }
2585
2586 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2587                                       int cleand_count)
2588 {
2589         struct hns3_desc_cb *desc_cb;
2590         struct hns3_desc_cb res_cbs;
2591         int i, ret;
2592
2593         for (i = 0; i < cleand_count; i++) {
2594                 desc_cb = &ring->desc_cb[ring->next_to_use];
2595                 if (desc_cb->reuse_flag) {
2596                         u64_stats_update_begin(&ring->syncp);
2597                         ring->stats.reuse_pg_cnt++;
2598                         u64_stats_update_end(&ring->syncp);
2599
2600                         hns3_reuse_buffer(ring, ring->next_to_use);
2601                 } else {
2602                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
2603                         if (ret) {
2604                                 u64_stats_update_begin(&ring->syncp);
2605                                 ring->stats.sw_err_cnt++;
2606                                 u64_stats_update_end(&ring->syncp);
2607
2608                                 hns3_rl_err(ring_to_netdev(ring),
2609                                             "alloc rx buffer failed: %d\n",
2610                                             ret);
2611                                 break;
2612                         }
2613                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2614
2615                         u64_stats_update_begin(&ring->syncp);
2616                         ring->stats.non_reuse_pg++;
2617                         u64_stats_update_end(&ring->syncp);
2618                 }
2619
2620                 ring_ptr_move_fw(ring, next_to_use);
2621         }
2622
2623         wmb(); /* Make all data has been write before submit */
2624         writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2625 }
2626
2627 static bool hns3_page_is_reusable(struct page *page)
2628 {
2629         return page_to_nid(page) == numa_mem_id() &&
2630                 !page_is_pfmemalloc(page);
2631 }
2632
2633 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2634                                 struct hns3_enet_ring *ring, int pull_len,
2635                                 struct hns3_desc_cb *desc_cb)
2636 {
2637         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2638         int size = le16_to_cpu(desc->rx.size);
2639         u32 truesize = hns3_buf_size(ring);
2640
2641         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2642                         size - pull_len, truesize);
2643
2644         /* Avoid re-using remote pages, or the stack is still using the page
2645          * when page_offset rollback to zero, flag default unreuse
2646          */
2647         if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2648             (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2649                 return;
2650
2651         /* Move offset up to the next cache line */
2652         desc_cb->page_offset += truesize;
2653
2654         if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2655                 desc_cb->reuse_flag = 1;
2656                 /* Bump ref count on page before it is given */
2657                 get_page(desc_cb->priv);
2658         } else if (page_count(desc_cb->priv) == 1) {
2659                 desc_cb->reuse_flag = 1;
2660                 desc_cb->page_offset = 0;
2661                 get_page(desc_cb->priv);
2662         }
2663 }
2664
2665 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2666 {
2667         __be16 type = skb->protocol;
2668         struct tcphdr *th;
2669         int depth = 0;
2670
2671         while (eth_type_vlan(type)) {
2672                 struct vlan_hdr *vh;
2673
2674                 if ((depth + VLAN_HLEN) > skb_headlen(skb))
2675                         return -EFAULT;
2676
2677                 vh = (struct vlan_hdr *)(skb->data + depth);
2678                 type = vh->h_vlan_encapsulated_proto;
2679                 depth += VLAN_HLEN;
2680         }
2681
2682         skb_set_network_header(skb, depth);
2683
2684         if (type == htons(ETH_P_IP)) {
2685                 const struct iphdr *iph = ip_hdr(skb);
2686
2687                 depth += sizeof(struct iphdr);
2688                 skb_set_transport_header(skb, depth);
2689                 th = tcp_hdr(skb);
2690                 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2691                                           iph->daddr, 0);
2692         } else if (type == htons(ETH_P_IPV6)) {
2693                 const struct ipv6hdr *iph = ipv6_hdr(skb);
2694
2695                 depth += sizeof(struct ipv6hdr);
2696                 skb_set_transport_header(skb, depth);
2697                 th = tcp_hdr(skb);
2698                 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2699                                           &iph->daddr, 0);
2700         } else {
2701                 hns3_rl_err(skb->dev,
2702                             "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2703                             be16_to_cpu(type), depth);
2704                 return -EFAULT;
2705         }
2706
2707         skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2708         if (th->cwr)
2709                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2710
2711         if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2712                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2713
2714         skb->csum_start = (unsigned char *)th - skb->head;
2715         skb->csum_offset = offsetof(struct tcphdr, check);
2716         skb->ip_summed = CHECKSUM_PARTIAL;
2717
2718         trace_hns3_gro(skb);
2719
2720         return 0;
2721 }
2722
2723 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2724                              u32 l234info, u32 bd_base_info, u32 ol_info)
2725 {
2726         struct net_device *netdev = ring_to_netdev(ring);
2727         int l3_type, l4_type;
2728         int ol4_type;
2729
2730         skb->ip_summed = CHECKSUM_NONE;
2731
2732         skb_checksum_none_assert(skb);
2733
2734         if (!(netdev->features & NETIF_F_RXCSUM))
2735                 return;
2736
2737         /* check if hardware has done checksum */
2738         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2739                 return;
2740
2741         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2742                                  BIT(HNS3_RXD_OL3E_B) |
2743                                  BIT(HNS3_RXD_OL4E_B)))) {
2744                 u64_stats_update_begin(&ring->syncp);
2745                 ring->stats.l3l4_csum_err++;
2746                 u64_stats_update_end(&ring->syncp);
2747
2748                 return;
2749         }
2750
2751         ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2752                                    HNS3_RXD_OL4ID_S);
2753         switch (ol4_type) {
2754         case HNS3_OL4_TYPE_MAC_IN_UDP:
2755         case HNS3_OL4_TYPE_NVGRE:
2756                 skb->csum_level = 1;
2757                 /* fall through */
2758         case HNS3_OL4_TYPE_NO_TUN:
2759                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2760                                           HNS3_RXD_L3ID_S);
2761                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2762                                           HNS3_RXD_L4ID_S);
2763
2764                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2765                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2766                      l3_type == HNS3_L3_TYPE_IPV6) &&
2767                     (l4_type == HNS3_L4_TYPE_UDP ||
2768                      l4_type == HNS3_L4_TYPE_TCP ||
2769                      l4_type == HNS3_L4_TYPE_SCTP))
2770                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2771                 break;
2772         default:
2773                 break;
2774         }
2775 }
2776
2777 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2778 {
2779         if (skb_has_frag_list(skb))
2780                 napi_gro_flush(&ring->tqp_vector->napi, false);
2781
2782         napi_gro_receive(&ring->tqp_vector->napi, skb);
2783 }
2784
2785 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2786                                 struct hns3_desc *desc, u32 l234info,
2787                                 u16 *vlan_tag)
2788 {
2789         struct hnae3_handle *handle = ring->tqp->handle;
2790         struct pci_dev *pdev = ring->tqp->handle->pdev;
2791
2792         if (pdev->revision == 0x20) {
2793                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2794                 if (!(*vlan_tag & VLAN_VID_MASK))
2795                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2796
2797                 return (*vlan_tag != 0);
2798         }
2799
2800 #define HNS3_STRP_OUTER_VLAN    0x1
2801 #define HNS3_STRP_INNER_VLAN    0x2
2802 #define HNS3_STRP_BOTH          0x3
2803
2804         /* Hardware always insert VLAN tag into RX descriptor when
2805          * remove the tag from packet, driver needs to determine
2806          * reporting which tag to stack.
2807          */
2808         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2809                                 HNS3_RXD_STRP_TAGP_S)) {
2810         case HNS3_STRP_OUTER_VLAN:
2811                 if (handle->port_base_vlan_state !=
2812                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2813                         return false;
2814
2815                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2816                 return true;
2817         case HNS3_STRP_INNER_VLAN:
2818                 if (handle->port_base_vlan_state !=
2819                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2820                         return false;
2821
2822                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2823                 return true;
2824         case HNS3_STRP_BOTH:
2825                 if (handle->port_base_vlan_state ==
2826                                 HNAE3_PORT_BASE_VLAN_DISABLE)
2827                         *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2828                 else
2829                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2830
2831                 return true;
2832         default:
2833                 return false;
2834         }
2835 }
2836
2837 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2838                           unsigned char *va)
2839 {
2840         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2841         struct net_device *netdev = ring_to_netdev(ring);
2842         struct sk_buff *skb;
2843
2844         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2845         skb = ring->skb;
2846         if (unlikely(!skb)) {
2847                 hns3_rl_err(netdev, "alloc rx skb fail\n");
2848
2849                 u64_stats_update_begin(&ring->syncp);
2850                 ring->stats.sw_err_cnt++;
2851                 u64_stats_update_end(&ring->syncp);
2852
2853                 return -ENOMEM;
2854         }
2855
2856         trace_hns3_rx_desc(ring);
2857         prefetchw(skb->data);
2858
2859         ring->pending_buf = 1;
2860         ring->frag_num = 0;
2861         ring->tail_skb = NULL;
2862         if (length <= HNS3_RX_HEAD_SIZE) {
2863                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2864
2865                 /* We can reuse buffer as-is, just make sure it is local */
2866                 if (likely(hns3_page_is_reusable(desc_cb->priv)))
2867                         desc_cb->reuse_flag = 1;
2868                 else /* This page cannot be reused so discard it */
2869                         put_page(desc_cb->priv);
2870
2871                 ring_ptr_move_fw(ring, next_to_clean);
2872                 return 0;
2873         }
2874         u64_stats_update_begin(&ring->syncp);
2875         ring->stats.seg_pkt_cnt++;
2876         u64_stats_update_end(&ring->syncp);
2877
2878         ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2879         __skb_put(skb, ring->pull_len);
2880         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2881                             desc_cb);
2882         ring_ptr_move_fw(ring, next_to_clean);
2883
2884         return 0;
2885 }
2886
2887 static int hns3_add_frag(struct hns3_enet_ring *ring)
2888 {
2889         struct sk_buff *skb = ring->skb;
2890         struct sk_buff *head_skb = skb;
2891         struct sk_buff *new_skb;
2892         struct hns3_desc_cb *desc_cb;
2893         struct hns3_desc *desc;
2894         u32 bd_base_info;
2895
2896         do {
2897                 desc = &ring->desc[ring->next_to_clean];
2898                 desc_cb = &ring->desc_cb[ring->next_to_clean];
2899                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2900                 /* make sure HW write desc complete */
2901                 dma_rmb();
2902                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2903                         return -ENXIO;
2904
2905                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2906                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2907                         if (unlikely(!new_skb)) {
2908                                 hns3_rl_err(ring_to_netdev(ring),
2909                                             "alloc rx fraglist skb fail\n");
2910                                 return -ENXIO;
2911                         }
2912                         ring->frag_num = 0;
2913
2914                         if (ring->tail_skb) {
2915                                 ring->tail_skb->next = new_skb;
2916                                 ring->tail_skb = new_skb;
2917                         } else {
2918                                 skb_shinfo(skb)->frag_list = new_skb;
2919                                 ring->tail_skb = new_skb;
2920                         }
2921                 }
2922
2923                 if (ring->tail_skb) {
2924                         head_skb->truesize += hns3_buf_size(ring);
2925                         head_skb->data_len += le16_to_cpu(desc->rx.size);
2926                         head_skb->len += le16_to_cpu(desc->rx.size);
2927                         skb = ring->tail_skb;
2928                 }
2929
2930                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2931                 trace_hns3_rx_desc(ring);
2932                 ring_ptr_move_fw(ring, next_to_clean);
2933                 ring->pending_buf++;
2934         } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
2935
2936         return 0;
2937 }
2938
2939 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2940                                      struct sk_buff *skb, u32 l234info,
2941                                      u32 bd_base_info, u32 ol_info)
2942 {
2943         u32 l3_type;
2944
2945         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2946                                                     HNS3_RXD_GRO_SIZE_M,
2947                                                     HNS3_RXD_GRO_SIZE_S);
2948         /* if there is no HW GRO, do not set gro params */
2949         if (!skb_shinfo(skb)->gso_size) {
2950                 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2951                 return 0;
2952         }
2953
2954         NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2955                                                   HNS3_RXD_GRO_COUNT_M,
2956                                                   HNS3_RXD_GRO_COUNT_S);
2957
2958         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2959         if (l3_type == HNS3_L3_TYPE_IPV4)
2960                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2961         else if (l3_type == HNS3_L3_TYPE_IPV6)
2962                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2963         else
2964                 return -EFAULT;
2965
2966         return  hns3_gro_complete(skb, l234info);
2967 }
2968
2969 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2970                                      struct sk_buff *skb, u32 rss_hash)
2971 {
2972         struct hnae3_handle *handle = ring->tqp->handle;
2973         enum pkt_hash_types rss_type;
2974
2975         if (rss_hash)
2976                 rss_type = handle->kinfo.rss_type;
2977         else
2978                 rss_type = PKT_HASH_TYPE_NONE;
2979
2980         skb_set_hash(skb, rss_hash, rss_type);
2981 }
2982
2983 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2984 {
2985         struct net_device *netdev = ring_to_netdev(ring);
2986         enum hns3_pkt_l2t_type l2_frame_type;
2987         u32 bd_base_info, l234info, ol_info;
2988         struct hns3_desc *desc;
2989         unsigned int len;
2990         int pre_ntc, ret;
2991
2992         /* bdinfo handled below is only valid on the last BD of the
2993          * current packet, and ring->next_to_clean indicates the first
2994          * descriptor of next packet, so need - 1 below.
2995          */
2996         pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2997                                         (ring->desc_num - 1);
2998         desc = &ring->desc[pre_ntc];
2999         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3000         l234info = le32_to_cpu(desc->rx.l234_info);
3001         ol_info = le32_to_cpu(desc->rx.ol_info);
3002
3003         /* Based on hw strategy, the tag offloaded will be stored at
3004          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3005          * in one layer tag case.
3006          */
3007         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3008                 u16 vlan_tag;
3009
3010                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3011                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3012                                                vlan_tag);
3013         }
3014
3015         if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3016                                   BIT(HNS3_RXD_L2E_B))))) {
3017                 u64_stats_update_begin(&ring->syncp);
3018                 if (l234info & BIT(HNS3_RXD_L2E_B))
3019                         ring->stats.l2_err++;
3020                 else
3021                         ring->stats.err_pkt_len++;
3022                 u64_stats_update_end(&ring->syncp);
3023
3024                 return -EFAULT;
3025         }
3026
3027         len = skb->len;
3028
3029         /* Do update ip stack process */
3030         skb->protocol = eth_type_trans(skb, netdev);
3031
3032         /* This is needed in order to enable forwarding support */
3033         ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3034                                         bd_base_info, ol_info);
3035         if (unlikely(ret)) {
3036                 u64_stats_update_begin(&ring->syncp);
3037                 ring->stats.rx_err_cnt++;
3038                 u64_stats_update_end(&ring->syncp);
3039                 return ret;
3040         }
3041
3042         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3043                                         HNS3_RXD_DMAC_S);
3044
3045         u64_stats_update_begin(&ring->syncp);
3046         ring->stats.rx_pkts++;
3047         ring->stats.rx_bytes += len;
3048
3049         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3050                 ring->stats.rx_multicast++;
3051
3052         u64_stats_update_end(&ring->syncp);
3053
3054         ring->tqp_vector->rx_group.total_bytes += len;
3055
3056         hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3057         return 0;
3058 }
3059
3060 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3061 {
3062         struct sk_buff *skb = ring->skb;
3063         struct hns3_desc_cb *desc_cb;
3064         struct hns3_desc *desc;
3065         unsigned int length;
3066         u32 bd_base_info;
3067         int ret;
3068
3069         desc = &ring->desc[ring->next_to_clean];
3070         desc_cb = &ring->desc_cb[ring->next_to_clean];
3071
3072         prefetch(desc);
3073
3074         length = le16_to_cpu(desc->rx.size);
3075         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3076
3077         /* Check valid BD */
3078         if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3079                 return -ENXIO;
3080
3081         if (!skb)
3082                 ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
3083
3084         /* Prefetch first cache line of first page
3085          * Idea is to cache few bytes of the header of the packet. Our L1 Cache
3086          * line size is 64B so need to prefetch twice to make it 128B. But in
3087          * actual we can have greater size of caches with 128B Level 1 cache
3088          * lines. In such a case, single fetch would suffice to cache in the
3089          * relevant part of the header.
3090          */
3091         prefetch(ring->va);
3092 #if L1_CACHE_BYTES < 128
3093         prefetch(ring->va + L1_CACHE_BYTES);
3094 #endif
3095
3096         if (!skb) {
3097                 ret = hns3_alloc_skb(ring, length, ring->va);
3098                 skb = ring->skb;
3099
3100                 if (ret < 0) /* alloc buffer fail */
3101                         return ret;
3102                 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3103                         ret = hns3_add_frag(ring);
3104                         if (ret)
3105                                 return ret;
3106                 }
3107         } else {
3108                 ret = hns3_add_frag(ring);
3109                 if (ret)
3110                         return ret;
3111         }
3112
3113         /* As the head data may be changed when GRO enable, copy
3114          * the head data in after other data rx completed
3115          */
3116         if (skb->len > HNS3_RX_HEAD_SIZE)
3117                 memcpy(skb->data, ring->va,
3118                        ALIGN(ring->pull_len, sizeof(long)));
3119
3120         ret = hns3_handle_bdinfo(ring, skb);
3121         if (unlikely(ret)) {
3122                 dev_kfree_skb_any(skb);
3123                 return ret;
3124         }
3125
3126         skb_record_rx_queue(skb, ring->tqp->tqp_index);
3127         return 0;
3128 }
3129
3130 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3131                        void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3132 {
3133 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3134         int unused_count = hns3_desc_unused(ring);
3135         int recv_pkts = 0;
3136         int recv_bds = 0;
3137         int err, num;
3138
3139         num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
3140         num -= unused_count;
3141         unused_count -= ring->pending_buf;
3142
3143         if (num <= 0)
3144                 goto out;
3145
3146         rmb(); /* Make sure num taken effect before the other data is touched */
3147
3148         while (recv_pkts < budget && recv_bds < num) {
3149                 /* Reuse or realloc buffers */
3150                 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3151                         hns3_nic_alloc_rx_buffers(ring, unused_count);
3152                         unused_count = hns3_desc_unused(ring) -
3153                                         ring->pending_buf;
3154                 }
3155
3156                 /* Poll one pkt */
3157                 err = hns3_handle_rx_bd(ring);
3158                 /* Do not get FE for the packet or failed to alloc skb */
3159                 if (unlikely(!ring->skb || err == -ENXIO)) {
3160                         goto out;
3161                 } else if (likely(!err)) {
3162                         rx_fn(ring, ring->skb);
3163                         recv_pkts++;
3164                 }
3165
3166                 recv_bds += ring->pending_buf;
3167                 unused_count += ring->pending_buf;
3168                 ring->skb = NULL;
3169                 ring->pending_buf = 0;
3170         }
3171
3172 out:
3173         /* Make all data has been write before submit */
3174         if (unused_count > 0)
3175                 hns3_nic_alloc_rx_buffers(ring, unused_count);
3176
3177         return recv_pkts;
3178 }
3179
3180 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3181 {
3182 #define HNS3_RX_LOW_BYTE_RATE 10000
3183 #define HNS3_RX_MID_BYTE_RATE 20000
3184 #define HNS3_RX_ULTRA_PACKET_RATE 40
3185
3186         enum hns3_flow_level_range new_flow_level;
3187         struct hns3_enet_tqp_vector *tqp_vector;
3188         int packets_per_msecs, bytes_per_msecs;
3189         u32 time_passed_ms;
3190
3191         tqp_vector = ring_group->ring->tqp_vector;
3192         time_passed_ms =
3193                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3194         if (!time_passed_ms)
3195                 return false;
3196
3197         do_div(ring_group->total_packets, time_passed_ms);
3198         packets_per_msecs = ring_group->total_packets;
3199
3200         do_div(ring_group->total_bytes, time_passed_ms);
3201         bytes_per_msecs = ring_group->total_bytes;
3202
3203         new_flow_level = ring_group->coal.flow_level;
3204
3205         /* Simple throttlerate management
3206          * 0-10MB/s   lower     (50000 ints/s)
3207          * 10-20MB/s   middle    (20000 ints/s)
3208          * 20-1249MB/s high      (18000 ints/s)
3209          * > 40000pps  ultra     (8000 ints/s)
3210          */
3211         switch (new_flow_level) {
3212         case HNS3_FLOW_LOW:
3213                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3214                         new_flow_level = HNS3_FLOW_MID;
3215                 break;
3216         case HNS3_FLOW_MID:
3217                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3218                         new_flow_level = HNS3_FLOW_HIGH;
3219                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3220                         new_flow_level = HNS3_FLOW_LOW;
3221                 break;
3222         case HNS3_FLOW_HIGH:
3223         case HNS3_FLOW_ULTRA:
3224         default:
3225                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3226                         new_flow_level = HNS3_FLOW_MID;
3227                 break;
3228         }
3229
3230         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3231             &tqp_vector->rx_group == ring_group)
3232                 new_flow_level = HNS3_FLOW_ULTRA;
3233
3234         ring_group->total_bytes = 0;
3235         ring_group->total_packets = 0;
3236         ring_group->coal.flow_level = new_flow_level;
3237
3238         return true;
3239 }
3240
3241 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3242 {
3243         struct hns3_enet_tqp_vector *tqp_vector;
3244         u16 new_int_gl;
3245
3246         if (!ring_group->ring)
3247                 return false;
3248
3249         tqp_vector = ring_group->ring->tqp_vector;
3250         if (!tqp_vector->last_jiffies)
3251                 return false;
3252
3253         if (ring_group->total_packets == 0) {
3254                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
3255                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
3256                 return true;
3257         }
3258
3259         if (!hns3_get_new_flow_lvl(ring_group))
3260                 return false;
3261
3262         new_int_gl = ring_group->coal.int_gl;
3263         switch (ring_group->coal.flow_level) {
3264         case HNS3_FLOW_LOW:
3265                 new_int_gl = HNS3_INT_GL_50K;
3266                 break;
3267         case HNS3_FLOW_MID:
3268                 new_int_gl = HNS3_INT_GL_20K;
3269                 break;
3270         case HNS3_FLOW_HIGH:
3271                 new_int_gl = HNS3_INT_GL_18K;
3272                 break;
3273         case HNS3_FLOW_ULTRA:
3274                 new_int_gl = HNS3_INT_GL_8K;
3275                 break;
3276         default:
3277                 break;
3278         }
3279
3280         if (new_int_gl != ring_group->coal.int_gl) {
3281                 ring_group->coal.int_gl = new_int_gl;
3282                 return true;
3283         }
3284         return false;
3285 }
3286
3287 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3288 {
3289         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3290         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3291         bool rx_update, tx_update;
3292
3293         /* update param every 1000ms */
3294         if (time_before(jiffies,
3295                         tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3296                 return;
3297
3298         if (rx_group->coal.gl_adapt_enable) {
3299                 rx_update = hns3_get_new_int_gl(rx_group);
3300                 if (rx_update)
3301                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
3302                                                        rx_group->coal.int_gl);
3303         }
3304
3305         if (tx_group->coal.gl_adapt_enable) {
3306                 tx_update = hns3_get_new_int_gl(tx_group);
3307                 if (tx_update)
3308                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
3309                                                        tx_group->coal.int_gl);
3310         }
3311
3312         tqp_vector->last_jiffies = jiffies;
3313 }
3314
3315 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3316 {
3317         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3318         struct hns3_enet_ring *ring;
3319         int rx_pkt_total = 0;
3320
3321         struct hns3_enet_tqp_vector *tqp_vector =
3322                 container_of(napi, struct hns3_enet_tqp_vector, napi);
3323         bool clean_complete = true;
3324         int rx_budget = budget;
3325
3326         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3327                 napi_complete(napi);
3328                 return 0;
3329         }
3330
3331         /* Since the actual Tx work is minimal, we can give the Tx a larger
3332          * budget and be more aggressive about cleaning up the Tx descriptors.
3333          */
3334         hns3_for_each_ring(ring, tqp_vector->tx_group)
3335                 hns3_clean_tx_ring(ring);
3336
3337         /* make sure rx ring budget not smaller than 1 */
3338         if (tqp_vector->num_tqps > 1)
3339                 rx_budget = max(budget / tqp_vector->num_tqps, 1);
3340
3341         hns3_for_each_ring(ring, tqp_vector->rx_group) {
3342                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3343                                                     hns3_rx_skb);
3344
3345                 if (rx_cleaned >= rx_budget)
3346                         clean_complete = false;
3347
3348                 rx_pkt_total += rx_cleaned;
3349         }
3350
3351         tqp_vector->rx_group.total_packets += rx_pkt_total;
3352
3353         if (!clean_complete)
3354                 return budget;
3355
3356         if (napi_complete(napi) &&
3357             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3358                 hns3_update_new_int_gl(tqp_vector);
3359                 hns3_mask_vector_irq(tqp_vector, 1);
3360         }
3361
3362         return rx_pkt_total;
3363 }
3364
3365 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3366                                       struct hnae3_ring_chain_node *head)
3367 {
3368         struct pci_dev *pdev = tqp_vector->handle->pdev;
3369         struct hnae3_ring_chain_node *cur_chain = head;
3370         struct hnae3_ring_chain_node *chain;
3371         struct hns3_enet_ring *tx_ring;
3372         struct hns3_enet_ring *rx_ring;
3373
3374         tx_ring = tqp_vector->tx_group.ring;
3375         if (tx_ring) {
3376                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3377                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3378                               HNAE3_RING_TYPE_TX);
3379                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3380                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3381
3382                 cur_chain->next = NULL;
3383
3384                 while (tx_ring->next) {
3385                         tx_ring = tx_ring->next;
3386
3387                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3388                                              GFP_KERNEL);
3389                         if (!chain)
3390                                 goto err_free_chain;
3391
3392                         cur_chain->next = chain;
3393                         chain->tqp_index = tx_ring->tqp->tqp_index;
3394                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3395                                       HNAE3_RING_TYPE_TX);
3396                         hnae3_set_field(chain->int_gl_idx,
3397                                         HNAE3_RING_GL_IDX_M,
3398                                         HNAE3_RING_GL_IDX_S,
3399                                         HNAE3_RING_GL_TX);
3400
3401                         cur_chain = chain;
3402                 }
3403         }
3404
3405         rx_ring = tqp_vector->rx_group.ring;
3406         if (!tx_ring && rx_ring) {
3407                 cur_chain->next = NULL;
3408                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3409                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3410                               HNAE3_RING_TYPE_RX);
3411                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3412                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3413
3414                 rx_ring = rx_ring->next;
3415         }
3416
3417         while (rx_ring) {
3418                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3419                 if (!chain)
3420                         goto err_free_chain;
3421
3422                 cur_chain->next = chain;
3423                 chain->tqp_index = rx_ring->tqp->tqp_index;
3424                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3425                               HNAE3_RING_TYPE_RX);
3426                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3427                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3428
3429                 cur_chain = chain;
3430
3431                 rx_ring = rx_ring->next;
3432         }
3433
3434         return 0;
3435
3436 err_free_chain:
3437         cur_chain = head->next;
3438         while (cur_chain) {
3439                 chain = cur_chain->next;
3440                 devm_kfree(&pdev->dev, cur_chain);
3441                 cur_chain = chain;
3442         }
3443         head->next = NULL;
3444
3445         return -ENOMEM;
3446 }
3447
3448 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3449                                         struct hnae3_ring_chain_node *head)
3450 {
3451         struct pci_dev *pdev = tqp_vector->handle->pdev;
3452         struct hnae3_ring_chain_node *chain_tmp, *chain;
3453
3454         chain = head->next;
3455
3456         while (chain) {
3457                 chain_tmp = chain->next;
3458                 devm_kfree(&pdev->dev, chain);
3459                 chain = chain_tmp;
3460         }
3461 }
3462
3463 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3464                                    struct hns3_enet_ring *ring)
3465 {
3466         ring->next = group->ring;
3467         group->ring = ring;
3468
3469         group->count++;
3470 }
3471
3472 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3473 {
3474         struct pci_dev *pdev = priv->ae_handle->pdev;
3475         struct hns3_enet_tqp_vector *tqp_vector;
3476         int num_vectors = priv->vector_num;
3477         int numa_node;
3478         int vector_i;
3479
3480         numa_node = dev_to_node(&pdev->dev);
3481
3482         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3483                 tqp_vector = &priv->tqp_vector[vector_i];
3484                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3485                                 &tqp_vector->affinity_mask);
3486         }
3487 }
3488
3489 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3490 {
3491         struct hnae3_ring_chain_node vector_ring_chain;
3492         struct hnae3_handle *h = priv->ae_handle;
3493         struct hns3_enet_tqp_vector *tqp_vector;
3494         int ret = 0;
3495         int i;
3496
3497         hns3_nic_set_cpumask(priv);
3498
3499         for (i = 0; i < priv->vector_num; i++) {
3500                 tqp_vector = &priv->tqp_vector[i];
3501                 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3502                 tqp_vector->num_tqps = 0;
3503         }
3504
3505         for (i = 0; i < h->kinfo.num_tqps; i++) {
3506                 u16 vector_i = i % priv->vector_num;
3507                 u16 tqp_num = h->kinfo.num_tqps;
3508
3509                 tqp_vector = &priv->tqp_vector[vector_i];
3510
3511                 hns3_add_ring_to_group(&tqp_vector->tx_group,
3512                                        &priv->ring[i]);
3513
3514                 hns3_add_ring_to_group(&tqp_vector->rx_group,
3515                                        &priv->ring[i + tqp_num]);
3516
3517                 priv->ring[i].tqp_vector = tqp_vector;
3518                 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3519                 tqp_vector->num_tqps++;
3520         }
3521
3522         for (i = 0; i < priv->vector_num; i++) {
3523                 tqp_vector = &priv->tqp_vector[i];
3524
3525                 tqp_vector->rx_group.total_bytes = 0;
3526                 tqp_vector->rx_group.total_packets = 0;
3527                 tqp_vector->tx_group.total_bytes = 0;
3528                 tqp_vector->tx_group.total_packets = 0;
3529                 tqp_vector->handle = h;
3530
3531                 ret = hns3_get_vector_ring_chain(tqp_vector,
3532                                                  &vector_ring_chain);
3533                 if (ret)
3534                         goto map_ring_fail;
3535
3536                 ret = h->ae_algo->ops->map_ring_to_vector(h,
3537                         tqp_vector->vector_irq, &vector_ring_chain);
3538
3539                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3540
3541                 if (ret)
3542                         goto map_ring_fail;
3543
3544                 netif_napi_add(priv->netdev, &tqp_vector->napi,
3545                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3546         }
3547
3548         return 0;
3549
3550 map_ring_fail:
3551         while (i--)
3552                 netif_napi_del(&priv->tqp_vector[i].napi);
3553
3554         return ret;
3555 }
3556
3557 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3558 {
3559 #define HNS3_VECTOR_PF_MAX_NUM          64
3560
3561         struct hnae3_handle *h = priv->ae_handle;
3562         struct hns3_enet_tqp_vector *tqp_vector;
3563         struct hnae3_vector_info *vector;
3564         struct pci_dev *pdev = h->pdev;
3565         u16 tqp_num = h->kinfo.num_tqps;
3566         u16 vector_num;
3567         int ret = 0;
3568         u16 i;
3569
3570         /* RSS size, cpu online and vector_num should be the same */
3571         /* Should consider 2p/4p later */
3572         vector_num = min_t(u16, num_online_cpus(), tqp_num);
3573         vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3574
3575         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3576                               GFP_KERNEL);
3577         if (!vector)
3578                 return -ENOMEM;
3579
3580         /* save the actual available vector number */
3581         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3582
3583         priv->vector_num = vector_num;
3584         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3585                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3586                              GFP_KERNEL);
3587         if (!priv->tqp_vector) {
3588                 ret = -ENOMEM;
3589                 goto out;
3590         }
3591
3592         for (i = 0; i < priv->vector_num; i++) {
3593                 tqp_vector = &priv->tqp_vector[i];
3594                 tqp_vector->idx = i;
3595                 tqp_vector->mask_addr = vector[i].io_addr;
3596                 tqp_vector->vector_irq = vector[i].vector;
3597                 hns3_vector_gl_rl_init(tqp_vector, priv);
3598         }
3599
3600 out:
3601         devm_kfree(&pdev->dev, vector);
3602         return ret;
3603 }
3604
3605 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3606 {
3607         group->ring = NULL;
3608         group->count = 0;
3609 }
3610
3611 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3612 {
3613         struct hnae3_ring_chain_node vector_ring_chain;
3614         struct hnae3_handle *h = priv->ae_handle;
3615         struct hns3_enet_tqp_vector *tqp_vector;
3616         int i;
3617
3618         for (i = 0; i < priv->vector_num; i++) {
3619                 tqp_vector = &priv->tqp_vector[i];
3620
3621                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3622                         continue;
3623
3624                 /* Since the mapping can be overwritten, when fail to get the
3625                  * chain between vector and ring, we should go on to deal with
3626                  * the remaining options.
3627                  */
3628                 if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3629                         dev_warn(priv->dev, "failed to get ring chain\n");
3630
3631                 h->ae_algo->ops->unmap_ring_from_vector(h,
3632                         tqp_vector->vector_irq, &vector_ring_chain);
3633
3634                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3635
3636                 hns3_clear_ring_group(&tqp_vector->rx_group);
3637                 hns3_clear_ring_group(&tqp_vector->tx_group);
3638                 netif_napi_del(&priv->tqp_vector[i].napi);
3639         }
3640 }
3641
3642 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3643 {
3644         struct hnae3_handle *h = priv->ae_handle;
3645         struct pci_dev *pdev = h->pdev;
3646         int i, ret;
3647
3648         for (i = 0; i < priv->vector_num; i++) {
3649                 struct hns3_enet_tqp_vector *tqp_vector;
3650
3651                 tqp_vector = &priv->tqp_vector[i];
3652                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3653                 if (ret)
3654                         return;
3655         }
3656
3657         devm_kfree(&pdev->dev, priv->tqp_vector);
3658 }
3659
3660 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3661                               unsigned int ring_type)
3662 {
3663         int queue_num = priv->ae_handle->kinfo.num_tqps;
3664         struct hns3_enet_ring *ring;
3665         int desc_num;
3666
3667         if (ring_type == HNAE3_RING_TYPE_TX) {
3668                 ring = &priv->ring[q->tqp_index];
3669                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3670                 ring->queue_index = q->tqp_index;
3671                 ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3672         } else {
3673                 ring = &priv->ring[q->tqp_index + queue_num];
3674                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3675                 ring->queue_index = q->tqp_index;
3676                 ring->io_base = q->io_base;
3677         }
3678
3679         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3680
3681         ring->tqp = q;
3682         ring->desc = NULL;
3683         ring->desc_cb = NULL;
3684         ring->dev = priv->dev;
3685         ring->desc_dma_addr = 0;
3686         ring->buf_size = q->buf_size;
3687         ring->desc_num = desc_num;
3688         ring->next_to_use = 0;
3689         ring->next_to_clean = 0;
3690 }
3691
3692 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3693                                struct hns3_nic_priv *priv)
3694 {
3695         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3696         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3697 }
3698
3699 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3700 {
3701         struct hnae3_handle *h = priv->ae_handle;
3702         struct pci_dev *pdev = h->pdev;
3703         int i;
3704
3705         priv->ring = devm_kzalloc(&pdev->dev,
3706                                   array3_size(h->kinfo.num_tqps,
3707                                               sizeof(*priv->ring), 2),
3708                                   GFP_KERNEL);
3709         if (!priv->ring)
3710                 return -ENOMEM;
3711
3712         for (i = 0; i < h->kinfo.num_tqps; i++)
3713                 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3714
3715         return 0;
3716 }
3717
3718 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3719 {
3720         if (!priv->ring)
3721                 return;
3722
3723         devm_kfree(priv->dev, priv->ring);
3724         priv->ring = NULL;
3725 }
3726
3727 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3728 {
3729         int ret;
3730
3731         if (ring->desc_num <= 0 || ring->buf_size <= 0)
3732                 return -EINVAL;
3733
3734         ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3735                                      sizeof(ring->desc_cb[0]), GFP_KERNEL);
3736         if (!ring->desc_cb) {
3737                 ret = -ENOMEM;
3738                 goto out;
3739         }
3740
3741         ret = hns3_alloc_desc(ring);
3742         if (ret)
3743                 goto out_with_desc_cb;
3744
3745         if (!HNAE3_IS_TX_RING(ring)) {
3746                 ret = hns3_alloc_ring_buffers(ring);
3747                 if (ret)
3748                         goto out_with_desc;
3749         }
3750
3751         return 0;
3752
3753 out_with_desc:
3754         hns3_free_desc(ring);
3755 out_with_desc_cb:
3756         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3757         ring->desc_cb = NULL;
3758 out:
3759         return ret;
3760 }
3761
3762 void hns3_fini_ring(struct hns3_enet_ring *ring)
3763 {
3764         hns3_free_desc(ring);
3765         devm_kfree(ring_to_dev(ring), ring->desc_cb);
3766         ring->desc_cb = NULL;
3767         ring->next_to_clean = 0;
3768         ring->next_to_use = 0;
3769         ring->pending_buf = 0;
3770         if (ring->skb) {
3771                 dev_kfree_skb_any(ring->skb);
3772                 ring->skb = NULL;
3773         }
3774 }
3775
3776 static int hns3_buf_size2type(u32 buf_size)
3777 {
3778         int bd_size_type;
3779
3780         switch (buf_size) {
3781         case 512:
3782                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3783                 break;
3784         case 1024:
3785                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3786                 break;
3787         case 2048:
3788                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3789                 break;
3790         case 4096:
3791                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3792                 break;
3793         default:
3794                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3795         }
3796
3797         return bd_size_type;
3798 }
3799
3800 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3801 {
3802         dma_addr_t dma = ring->desc_dma_addr;
3803         struct hnae3_queue *q = ring->tqp;
3804
3805         if (!HNAE3_IS_TX_RING(ring)) {
3806                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3807                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3808                                (u32)((dma >> 31) >> 1));
3809
3810                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3811                                hns3_buf_size2type(ring->buf_size));
3812                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3813                                ring->desc_num / 8 - 1);
3814
3815         } else {
3816                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3817                                (u32)dma);
3818                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3819                                (u32)((dma >> 31) >> 1));
3820
3821                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3822                                ring->desc_num / 8 - 1);
3823         }
3824 }
3825
3826 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3827 {
3828         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3829         int i;
3830
3831         for (i = 0; i < HNAE3_MAX_TC; i++) {
3832                 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3833                 int j;
3834
3835                 if (!tc_info->enable)
3836                         continue;
3837
3838                 for (j = 0; j < tc_info->tqp_count; j++) {
3839                         struct hnae3_queue *q;
3840
3841                         q = priv->ring[tc_info->tqp_offset + j].tqp;
3842                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3843                                        tc_info->tc);
3844                 }
3845         }
3846 }
3847
3848 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3849 {
3850         struct hnae3_handle *h = priv->ae_handle;
3851         int ring_num = h->kinfo.num_tqps * 2;
3852         int i, j;
3853         int ret;
3854
3855         for (i = 0; i < ring_num; i++) {
3856                 ret = hns3_alloc_ring_memory(&priv->ring[i]);
3857                 if (ret) {
3858                         dev_err(priv->dev,
3859                                 "Alloc ring memory fail! ret=%d\n", ret);
3860                         goto out_when_alloc_ring_memory;
3861                 }
3862
3863                 u64_stats_init(&priv->ring[i].syncp);
3864         }
3865
3866         return 0;
3867
3868 out_when_alloc_ring_memory:
3869         for (j = i - 1; j >= 0; j--)
3870                 hns3_fini_ring(&priv->ring[j]);
3871
3872         return -ENOMEM;
3873 }
3874
3875 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3876 {
3877         struct hnae3_handle *h = priv->ae_handle;
3878         int i;
3879
3880         for (i = 0; i < h->kinfo.num_tqps; i++) {
3881                 hns3_fini_ring(&priv->ring[i]);
3882                 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3883         }
3884         return 0;
3885 }
3886
3887 /* Set mac addr if it is configured. or leave it to the AE driver */
3888 static int hns3_init_mac_addr(struct net_device *netdev)
3889 {
3890         struct hns3_nic_priv *priv = netdev_priv(netdev);
3891         struct hnae3_handle *h = priv->ae_handle;
3892         u8 mac_addr_temp[ETH_ALEN];
3893         int ret = 0;
3894
3895         if (h->ae_algo->ops->get_mac_addr)
3896                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3897
3898         /* Check if the MAC address is valid, if not get a random one */
3899         if (!is_valid_ether_addr(mac_addr_temp)) {
3900                 eth_hw_addr_random(netdev);
3901                 dev_warn(priv->dev, "using random MAC address %pM\n",
3902                          netdev->dev_addr);
3903         } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
3904                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3905                 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3906         } else {
3907                 return 0;
3908         }
3909
3910         if (h->ae_algo->ops->set_mac_addr)
3911                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3912
3913         return ret;
3914 }
3915
3916 static int hns3_init_phy(struct net_device *netdev)
3917 {
3918         struct hnae3_handle *h = hns3_get_handle(netdev);
3919         int ret = 0;
3920
3921         if (h->ae_algo->ops->mac_connect_phy)
3922                 ret = h->ae_algo->ops->mac_connect_phy(h);
3923
3924         return ret;
3925 }
3926
3927 static void hns3_uninit_phy(struct net_device *netdev)
3928 {
3929         struct hnae3_handle *h = hns3_get_handle(netdev);
3930
3931         if (h->ae_algo->ops->mac_disconnect_phy)
3932                 h->ae_algo->ops->mac_disconnect_phy(h);
3933 }
3934
3935 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3936 {
3937         struct hnae3_handle *h = hns3_get_handle(netdev);
3938
3939         if (h->ae_algo->ops->del_all_fd_entries)
3940                 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3941 }
3942
3943 static int hns3_client_start(struct hnae3_handle *handle)
3944 {
3945         if (!handle->ae_algo->ops->client_start)
3946                 return 0;
3947
3948         return handle->ae_algo->ops->client_start(handle);
3949 }
3950
3951 static void hns3_client_stop(struct hnae3_handle *handle)
3952 {
3953         if (!handle->ae_algo->ops->client_stop)
3954                 return;
3955
3956         handle->ae_algo->ops->client_stop(handle);
3957 }
3958
3959 static void hns3_info_show(struct hns3_nic_priv *priv)
3960 {
3961         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3962
3963         dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3964         dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
3965         dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
3966         dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
3967         dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
3968         dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
3969         dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
3970         dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
3971         dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
3972 }
3973
3974 static int hns3_client_init(struct hnae3_handle *handle)
3975 {
3976         struct pci_dev *pdev = handle->pdev;
3977         u16 alloc_tqps, max_rss_size;
3978         struct hns3_nic_priv *priv;
3979         struct net_device *netdev;
3980         int ret;
3981
3982         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3983                                                     &max_rss_size);
3984         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3985         if (!netdev)
3986                 return -ENOMEM;
3987
3988         priv = netdev_priv(netdev);
3989         priv->dev = &pdev->dev;
3990         priv->netdev = netdev;
3991         priv->ae_handle = handle;
3992         priv->tx_timeout_count = 0;
3993         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3994
3995         handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
3996
3997         handle->kinfo.netdev = netdev;
3998         handle->priv = (void *)priv;
3999
4000         hns3_init_mac_addr(netdev);
4001
4002         hns3_set_default_feature(netdev);
4003
4004         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4005         netdev->priv_flags |= IFF_UNICAST_FLT;
4006         netdev->netdev_ops = &hns3_nic_netdev_ops;
4007         SET_NETDEV_DEV(netdev, &pdev->dev);
4008         hns3_ethtool_set_ops(netdev);
4009
4010         /* Carrier off reporting is important to ethtool even BEFORE open */
4011         netif_carrier_off(netdev);
4012
4013         ret = hns3_get_ring_config(priv);
4014         if (ret) {
4015                 ret = -ENOMEM;
4016                 goto out_get_ring_cfg;
4017         }
4018
4019         ret = hns3_nic_alloc_vector_data(priv);
4020         if (ret) {
4021                 ret = -ENOMEM;
4022                 goto out_alloc_vector_data;
4023         }
4024
4025         ret = hns3_nic_init_vector_data(priv);
4026         if (ret) {
4027                 ret = -ENOMEM;
4028                 goto out_init_vector_data;
4029         }
4030
4031         ret = hns3_init_all_ring(priv);
4032         if (ret) {
4033                 ret = -ENOMEM;
4034                 goto out_init_ring;
4035         }
4036
4037         ret = hns3_init_phy(netdev);
4038         if (ret)
4039                 goto out_init_phy;
4040
4041         ret = register_netdev(netdev);
4042         if (ret) {
4043                 dev_err(priv->dev, "probe register netdev fail!\n");
4044                 goto out_reg_netdev_fail;
4045         }
4046
4047         /* the device can work without cpu rmap, only aRFS needs it */
4048         ret = hns3_set_rx_cpu_rmap(netdev);
4049         if (ret)
4050                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4051
4052         ret = hns3_nic_init_irq(priv);
4053         if (ret) {
4054                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4055                 hns3_free_rx_cpu_rmap(netdev);
4056                 goto out_init_irq_fail;
4057         }
4058
4059         ret = hns3_client_start(handle);
4060         if (ret) {
4061                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4062                 goto out_client_start;
4063         }
4064
4065         hns3_dcbnl_setup(handle);
4066
4067         hns3_dbg_init(handle);
4068
4069         /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4070         netdev->max_mtu = HNS3_MAX_MTU;
4071
4072         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4073
4074         if (netif_msg_drv(handle))
4075                 hns3_info_show(priv);
4076
4077         return ret;
4078
4079 out_client_start:
4080         hns3_free_rx_cpu_rmap(netdev);
4081         hns3_nic_uninit_irq(priv);
4082 out_init_irq_fail:
4083         unregister_netdev(netdev);
4084 out_reg_netdev_fail:
4085         hns3_uninit_phy(netdev);
4086 out_init_phy:
4087         hns3_uninit_all_ring(priv);
4088 out_init_ring:
4089         hns3_nic_uninit_vector_data(priv);
4090 out_init_vector_data:
4091         hns3_nic_dealloc_vector_data(priv);
4092 out_alloc_vector_data:
4093         priv->ring = NULL;
4094 out_get_ring_cfg:
4095         priv->ae_handle = NULL;
4096         free_netdev(netdev);
4097         return ret;
4098 }
4099
4100 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4101 {
4102         struct net_device *netdev = handle->kinfo.netdev;
4103         struct hns3_nic_priv *priv = netdev_priv(netdev);
4104         int ret;
4105
4106         if (netdev->reg_state != NETREG_UNINITIALIZED)
4107                 unregister_netdev(netdev);
4108
4109         hns3_client_stop(handle);
4110
4111         hns3_uninit_phy(netdev);
4112
4113         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4114                 netdev_warn(netdev, "already uninitialized\n");
4115                 goto out_netdev_free;
4116         }
4117
4118         hns3_free_rx_cpu_rmap(netdev);
4119
4120         hns3_nic_uninit_irq(priv);
4121
4122         hns3_del_all_fd_rules(netdev, true);
4123
4124         hns3_clear_all_ring(handle, true);
4125
4126         hns3_nic_uninit_vector_data(priv);
4127
4128         hns3_nic_dealloc_vector_data(priv);
4129
4130         ret = hns3_uninit_all_ring(priv);
4131         if (ret)
4132                 netdev_err(netdev, "uninit ring error\n");
4133
4134         hns3_put_ring_config(priv);
4135
4136         hns3_dbg_uninit(handle);
4137
4138 out_netdev_free:
4139         free_netdev(netdev);
4140 }
4141
4142 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4143 {
4144         struct net_device *netdev = handle->kinfo.netdev;
4145
4146         if (!netdev)
4147                 return;
4148
4149         if (linkup) {
4150                 netif_carrier_on(netdev);
4151                 netif_tx_wake_all_queues(netdev);
4152                 if (netif_msg_link(handle))
4153                         netdev_info(netdev, "link up\n");
4154         } else {
4155                 netif_carrier_off(netdev);
4156                 netif_tx_stop_all_queues(netdev);
4157                 if (netif_msg_link(handle))
4158                         netdev_info(netdev, "link down\n");
4159         }
4160 }
4161
4162 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4163 {
4164         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4165         struct net_device *ndev = kinfo->netdev;
4166
4167         if (tc > HNAE3_MAX_TC)
4168                 return -EINVAL;
4169
4170         if (!ndev)
4171                 return -ENODEV;
4172
4173         return hns3_nic_set_real_num_queue(ndev);
4174 }
4175
4176 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4177 {
4178         while (ring->next_to_clean != ring->next_to_use) {
4179                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4180                 hns3_free_buffer_detach(ring, ring->next_to_clean);
4181                 ring_ptr_move_fw(ring, next_to_clean);
4182         }
4183 }
4184
4185 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4186 {
4187         struct hns3_desc_cb res_cbs;
4188         int ret;
4189
4190         while (ring->next_to_use != ring->next_to_clean) {
4191                 /* When a buffer is not reused, it's memory has been
4192                  * freed in hns3_handle_rx_bd or will be freed by
4193                  * stack, so we need to replace the buffer here.
4194                  */
4195                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4196                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
4197                         if (ret) {
4198                                 u64_stats_update_begin(&ring->syncp);
4199                                 ring->stats.sw_err_cnt++;
4200                                 u64_stats_update_end(&ring->syncp);
4201                                 /* if alloc new buffer fail, exit directly
4202                                  * and reclear in up flow.
4203                                  */
4204                                 netdev_warn(ring_to_netdev(ring),
4205                                             "reserve buffer map failed, ret = %d\n",
4206                                             ret);
4207                                 return ret;
4208                         }
4209                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4210                 }
4211                 ring_ptr_move_fw(ring, next_to_use);
4212         }
4213
4214         /* Free the pending skb in rx ring */
4215         if (ring->skb) {
4216                 dev_kfree_skb_any(ring->skb);
4217                 ring->skb = NULL;
4218                 ring->pending_buf = 0;
4219         }
4220
4221         return 0;
4222 }
4223
4224 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4225 {
4226         while (ring->next_to_use != ring->next_to_clean) {
4227                 /* When a buffer is not reused, it's memory has been
4228                  * freed in hns3_handle_rx_bd or will be freed by
4229                  * stack, so only need to unmap the buffer here.
4230                  */
4231                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4232                         hns3_unmap_buffer(ring,
4233                                           &ring->desc_cb[ring->next_to_use]);
4234                         ring->desc_cb[ring->next_to_use].dma = 0;
4235                 }
4236
4237                 ring_ptr_move_fw(ring, next_to_use);
4238         }
4239 }
4240
4241 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4242 {
4243         struct net_device *ndev = h->kinfo.netdev;
4244         struct hns3_nic_priv *priv = netdev_priv(ndev);
4245         u32 i;
4246
4247         for (i = 0; i < h->kinfo.num_tqps; i++) {
4248                 struct hns3_enet_ring *ring;
4249
4250                 ring = &priv->ring[i];
4251                 hns3_clear_tx_ring(ring);
4252
4253                 ring = &priv->ring[i + h->kinfo.num_tqps];
4254                 /* Continue to clear other rings even if clearing some
4255                  * rings failed.
4256                  */
4257                 if (force)
4258                         hns3_force_clear_rx_ring(ring);
4259                 else
4260                         hns3_clear_rx_ring(ring);
4261         }
4262 }
4263
4264 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4265 {
4266         struct net_device *ndev = h->kinfo.netdev;
4267         struct hns3_nic_priv *priv = netdev_priv(ndev);
4268         struct hns3_enet_ring *rx_ring;
4269         int i, j;
4270         int ret;
4271
4272         for (i = 0; i < h->kinfo.num_tqps; i++) {
4273                 ret = h->ae_algo->ops->reset_queue(h, i);
4274                 if (ret)
4275                         return ret;
4276
4277                 hns3_init_ring_hw(&priv->ring[i]);
4278
4279                 /* We need to clear tx ring here because self test will
4280                  * use the ring and will not run down before up
4281                  */
4282                 hns3_clear_tx_ring(&priv->ring[i]);
4283                 priv->ring[i].next_to_clean = 0;
4284                 priv->ring[i].next_to_use = 0;
4285
4286                 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4287                 hns3_init_ring_hw(rx_ring);
4288                 ret = hns3_clear_rx_ring(rx_ring);
4289                 if (ret)
4290                         return ret;
4291
4292                 /* We can not know the hardware head and tail when this
4293                  * function is called in reset flow, so we reuse all desc.
4294                  */
4295                 for (j = 0; j < rx_ring->desc_num; j++)
4296                         hns3_reuse_buffer(rx_ring, j);
4297
4298                 rx_ring->next_to_clean = 0;
4299                 rx_ring->next_to_use = 0;
4300         }
4301
4302         hns3_init_tx_ring_tc(priv);
4303
4304         return 0;
4305 }
4306
4307 static void hns3_store_coal(struct hns3_nic_priv *priv)
4308 {
4309         /* ethtool only support setting and querying one coal
4310          * configuration for now, so save the vector 0' coal
4311          * configuration here in order to restore it.
4312          */
4313         memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4314                sizeof(struct hns3_enet_coalesce));
4315         memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4316                sizeof(struct hns3_enet_coalesce));
4317 }
4318
4319 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4320 {
4321         u16 vector_num = priv->vector_num;
4322         int i;
4323
4324         for (i = 0; i < vector_num; i++) {
4325                 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4326                        sizeof(struct hns3_enet_coalesce));
4327                 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4328                        sizeof(struct hns3_enet_coalesce));
4329         }
4330 }
4331
4332 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4333 {
4334         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4335         struct net_device *ndev = kinfo->netdev;
4336         struct hns3_nic_priv *priv = netdev_priv(ndev);
4337
4338         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4339                 return 0;
4340
4341         if (!netif_running(ndev))
4342                 return 0;
4343
4344         return hns3_nic_net_stop(ndev);
4345 }
4346
4347 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4348 {
4349         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4350         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4351         int ret = 0;
4352
4353         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4354
4355         if (netif_running(kinfo->netdev)) {
4356                 ret = hns3_nic_net_open(kinfo->netdev);
4357                 if (ret) {
4358                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4359                         netdev_err(kinfo->netdev,
4360                                    "net up fail, ret=%d!\n", ret);
4361                         return ret;
4362                 }
4363         }
4364
4365         return ret;
4366 }
4367
4368 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4369 {
4370         struct net_device *netdev = handle->kinfo.netdev;
4371         struct hns3_nic_priv *priv = netdev_priv(netdev);
4372         int ret;
4373
4374         /* Carrier off reporting is important to ethtool even BEFORE open */
4375         netif_carrier_off(netdev);
4376
4377         ret = hns3_get_ring_config(priv);
4378         if (ret)
4379                 return ret;
4380
4381         ret = hns3_nic_alloc_vector_data(priv);
4382         if (ret)
4383                 goto err_put_ring;
4384
4385         hns3_restore_coal(priv);
4386
4387         ret = hns3_nic_init_vector_data(priv);
4388         if (ret)
4389                 goto err_dealloc_vector;
4390
4391         ret = hns3_init_all_ring(priv);
4392         if (ret)
4393                 goto err_uninit_vector;
4394
4395         /* the device can work without cpu rmap, only aRFS needs it */
4396         ret = hns3_set_rx_cpu_rmap(netdev);
4397         if (ret)
4398                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4399
4400         ret = hns3_nic_init_irq(priv);
4401         if (ret) {
4402                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4403                 hns3_free_rx_cpu_rmap(netdev);
4404                 goto err_init_irq_fail;
4405         }
4406
4407         if (!hns3_is_phys_func(handle->pdev))
4408                 hns3_init_mac_addr(netdev);
4409
4410         ret = hns3_client_start(handle);
4411         if (ret) {
4412                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4413                 goto err_client_start_fail;
4414         }
4415
4416         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4417
4418         return ret;
4419
4420 err_client_start_fail:
4421         hns3_free_rx_cpu_rmap(netdev);
4422         hns3_nic_uninit_irq(priv);
4423 err_init_irq_fail:
4424         hns3_uninit_all_ring(priv);
4425 err_uninit_vector:
4426         hns3_nic_uninit_vector_data(priv);
4427 err_dealloc_vector:
4428         hns3_nic_dealloc_vector_data(priv);
4429 err_put_ring:
4430         hns3_put_ring_config(priv);
4431
4432         return ret;
4433 }
4434
4435 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4436 {
4437         struct net_device *netdev = handle->kinfo.netdev;
4438         struct hns3_nic_priv *priv = netdev_priv(netdev);
4439         int ret;
4440
4441         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4442                 netdev_warn(netdev, "already uninitialized\n");
4443                 return 0;
4444         }
4445
4446         hns3_free_rx_cpu_rmap(netdev);
4447         hns3_nic_uninit_irq(priv);
4448         hns3_clear_all_ring(handle, true);
4449         hns3_reset_tx_queue(priv->ae_handle);
4450
4451         hns3_nic_uninit_vector_data(priv);
4452
4453         hns3_store_coal(priv);
4454
4455         hns3_nic_dealloc_vector_data(priv);
4456
4457         ret = hns3_uninit_all_ring(priv);
4458         if (ret)
4459                 netdev_err(netdev, "uninit ring error\n");
4460
4461         hns3_put_ring_config(priv);
4462
4463         return ret;
4464 }
4465
4466 static int hns3_reset_notify(struct hnae3_handle *handle,
4467                              enum hnae3_reset_notify_type type)
4468 {
4469         int ret = 0;
4470
4471         switch (type) {
4472         case HNAE3_UP_CLIENT:
4473                 ret = hns3_reset_notify_up_enet(handle);
4474                 break;
4475         case HNAE3_DOWN_CLIENT:
4476                 ret = hns3_reset_notify_down_enet(handle);
4477                 break;
4478         case HNAE3_INIT_CLIENT:
4479                 ret = hns3_reset_notify_init_enet(handle);
4480                 break;
4481         case HNAE3_UNINIT_CLIENT:
4482                 ret = hns3_reset_notify_uninit_enet(handle);
4483                 break;
4484         default:
4485                 break;
4486         }
4487
4488         return ret;
4489 }
4490
4491 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4492                                 bool rxfh_configured)
4493 {
4494         int ret;
4495
4496         ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4497                                                  rxfh_configured);
4498         if (ret) {
4499                 dev_err(&handle->pdev->dev,
4500                         "Change tqp num(%u) fail.\n", new_tqp_num);
4501                 return ret;
4502         }
4503
4504         ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4505         if (ret)
4506                 return ret;
4507
4508         ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4509         if (ret)
4510                 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4511
4512         return ret;
4513 }
4514
4515 int hns3_set_channels(struct net_device *netdev,
4516                       struct ethtool_channels *ch)
4517 {
4518         struct hnae3_handle *h = hns3_get_handle(netdev);
4519         struct hnae3_knic_private_info *kinfo = &h->kinfo;
4520         bool rxfh_configured = netif_is_rxfh_configured(netdev);
4521         u32 new_tqp_num = ch->combined_count;
4522         u16 org_tqp_num;
4523         int ret;
4524
4525         if (hns3_nic_resetting(netdev))
4526                 return -EBUSY;
4527
4528         if (ch->rx_count || ch->tx_count)
4529                 return -EINVAL;
4530
4531         if (new_tqp_num > hns3_get_max_available_channels(h) ||
4532             new_tqp_num < 1) {
4533                 dev_err(&netdev->dev,
4534                         "Change tqps fail, the tqp range is from 1 to %u",
4535                         hns3_get_max_available_channels(h));
4536                 return -EINVAL;
4537         }
4538
4539         if (kinfo->rss_size == new_tqp_num)
4540                 return 0;
4541
4542         netif_dbg(h, drv, netdev,
4543                   "set channels: tqp_num=%u, rxfh=%d\n",
4544                   new_tqp_num, rxfh_configured);
4545
4546         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4547         if (ret)
4548                 return ret;
4549
4550         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4551         if (ret)
4552                 return ret;
4553
4554         org_tqp_num = h->kinfo.num_tqps;
4555         ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4556         if (ret) {
4557                 int ret1;
4558
4559                 netdev_warn(netdev,
4560                             "Change channels fail, revert to old value\n");
4561                 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4562                 if (ret1) {
4563                         netdev_err(netdev,
4564                                    "revert to old channel fail\n");
4565                         return ret1;
4566                 }
4567
4568                 return ret;
4569         }
4570
4571         return 0;
4572 }
4573
4574 static const struct hns3_hw_error_info hns3_hw_err[] = {
4575         { .type = HNAE3_PPU_POISON_ERROR,
4576           .msg = "PPU poison" },
4577         { .type = HNAE3_CMDQ_ECC_ERROR,
4578           .msg = "IMP CMDQ error" },
4579         { .type = HNAE3_IMP_RD_POISON_ERROR,
4580           .msg = "IMP RD poison" },
4581 };
4582
4583 static void hns3_process_hw_error(struct hnae3_handle *handle,
4584                                   enum hnae3_hw_error_type type)
4585 {
4586         int i;
4587
4588         for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4589                 if (hns3_hw_err[i].type == type) {
4590                         dev_err(&handle->pdev->dev, "Detected %s!\n",
4591                                 hns3_hw_err[i].msg);
4592                         break;
4593                 }
4594         }
4595 }
4596
4597 static const struct hnae3_client_ops client_ops = {
4598         .init_instance = hns3_client_init,
4599         .uninit_instance = hns3_client_uninit,
4600         .link_status_change = hns3_link_status_change,
4601         .setup_tc = hns3_client_setup_tc,
4602         .reset_notify = hns3_reset_notify,
4603         .process_hw_error = hns3_process_hw_error,
4604 };
4605
4606 /* hns3_init_module - Driver registration routine
4607  * hns3_init_module is the first routine called when the driver is
4608  * loaded. All it does is register with the PCI subsystem.
4609  */
4610 static int __init hns3_init_module(void)
4611 {
4612         int ret;
4613
4614         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4615         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4616
4617         client.type = HNAE3_CLIENT_KNIC;
4618         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4619                  hns3_driver_name);
4620
4621         client.ops = &client_ops;
4622
4623         INIT_LIST_HEAD(&client.node);
4624
4625         hns3_dbg_register_debugfs(hns3_driver_name);
4626
4627         ret = hnae3_register_client(&client);
4628         if (ret)
4629                 goto err_reg_client;
4630
4631         ret = pci_register_driver(&hns3_driver);
4632         if (ret)
4633                 goto err_reg_driver;
4634
4635         return ret;
4636
4637 err_reg_driver:
4638         hnae3_unregister_client(&client);
4639 err_reg_client:
4640         hns3_dbg_unregister_debugfs();
4641         return ret;
4642 }
4643 module_init(hns3_init_module);
4644
4645 /* hns3_exit_module - Driver exit cleanup routine
4646  * hns3_exit_module is called just before the driver is removed
4647  * from memory.
4648  */
4649 static void __exit hns3_exit_module(void)
4650 {
4651         pci_unregister_driver(&hns3_driver);
4652         hnae3_unregister_client(&client);
4653         hns3_dbg_unregister_debugfs();
4654 }
4655 module_exit(hns3_exit_module);
4656
4657 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4658 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4659 MODULE_LICENSE("GPL");
4660 MODULE_ALIAS("pci:hns-nic");