468b8f07bf47c57463b6f4d3174df5a2e84484cb
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34
35 #define hns3_set_field(origin, shift, val)      ((origin) |= (val) << (shift))
36 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37
38 #define hns3_rl_err(fmt, ...)                                           \
39         do {                                                            \
40                 if (net_ratelimit())                                    \
41                         netdev_err(fmt, ##__VA_ARGS__);                 \
42         } while (0)
43
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48                         "Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55
56 static unsigned int tx_spare_buf_size;
57 module_param(tx_spare_buf_size, uint, 0400);
58 MODULE_PARM_DESC(tx_spare_buf_size, "Size used to allocate tx spare buffer");
59
60 static unsigned int tx_sgl = 1;
61 module_param(tx_sgl, uint, 0600);
62 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
63
64 static bool page_pool_enabled = true;
65 module_param(page_pool_enabled, bool, 0400);
66
67 #define HNS3_SGL_SIZE(nfrag)    (sizeof(struct scatterlist) * (nfrag) + \
68                                  sizeof(struct sg_table))
69 #define HNS3_MAX_SGL_SIZE       ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
70                                       dma_get_cache_alignment())
71
72 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
73                            NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
74
75 #define HNS3_INNER_VLAN_TAG     1
76 #define HNS3_OUTER_VLAN_TAG     2
77
78 #define HNS3_MIN_TX_LEN         33U
79 #define HNS3_MIN_TUN_PKT_LEN    65U
80
81 /* hns3_pci_tbl - PCI Device ID Table
82  *
83  * Last entry must be all 0s
84  *
85  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
86  *   Class, Class Mask, private data (not used) }
87  */
88 static const struct pci_device_id hns3_pci_tbl[] = {
89         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
90         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
91         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
92          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
93         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
94          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
95         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
96          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
97         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
98          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
99         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
100          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
101         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
102          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
103         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
104         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
105          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
106         /* required last entry */
107         {0,}
108 };
109 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
110
111 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t) \
112         {       ptype, \
113                 l, \
114                 CHECKSUM_##s, \
115                 HNS3_L3_TYPE_##t, \
116                 1 }
117
118 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
119                 { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0 }
120
121 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
122         HNS3_RX_PTYPE_UNUSED_ENTRY(0),
123         HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP),
124         HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP),
125         HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP),
126         HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL),
127         HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL),
128         HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL),
129         HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM),
130         HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL),
131         HNS3_RX_PTYPE_UNUSED_ENTRY(9),
132         HNS3_RX_PTYPE_UNUSED_ENTRY(10),
133         HNS3_RX_PTYPE_UNUSED_ENTRY(11),
134         HNS3_RX_PTYPE_UNUSED_ENTRY(12),
135         HNS3_RX_PTYPE_UNUSED_ENTRY(13),
136         HNS3_RX_PTYPE_UNUSED_ENTRY(14),
137         HNS3_RX_PTYPE_UNUSED_ENTRY(15),
138         HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL),
139         HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4),
140         HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4),
141         HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4),
142         HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4),
143         HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4),
144         HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4),
145         HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4),
146         HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4),
147         HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4),
148         HNS3_RX_PTYPE_UNUSED_ENTRY(26),
149         HNS3_RX_PTYPE_UNUSED_ENTRY(27),
150         HNS3_RX_PTYPE_UNUSED_ENTRY(28),
151         HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL),
152         HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL),
153         HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4),
154         HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4),
155         HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4),
156         HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4),
157         HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4),
158         HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4),
159         HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4),
160         HNS3_RX_PTYPE_UNUSED_ENTRY(38),
161         HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6),
162         HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6),
163         HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6),
164         HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6),
165         HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6),
166         HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6),
167         HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6),
168         HNS3_RX_PTYPE_UNUSED_ENTRY(46),
169         HNS3_RX_PTYPE_UNUSED_ENTRY(47),
170         HNS3_RX_PTYPE_UNUSED_ENTRY(48),
171         HNS3_RX_PTYPE_UNUSED_ENTRY(49),
172         HNS3_RX_PTYPE_UNUSED_ENTRY(50),
173         HNS3_RX_PTYPE_UNUSED_ENTRY(51),
174         HNS3_RX_PTYPE_UNUSED_ENTRY(52),
175         HNS3_RX_PTYPE_UNUSED_ENTRY(53),
176         HNS3_RX_PTYPE_UNUSED_ENTRY(54),
177         HNS3_RX_PTYPE_UNUSED_ENTRY(55),
178         HNS3_RX_PTYPE_UNUSED_ENTRY(56),
179         HNS3_RX_PTYPE_UNUSED_ENTRY(57),
180         HNS3_RX_PTYPE_UNUSED_ENTRY(58),
181         HNS3_RX_PTYPE_UNUSED_ENTRY(59),
182         HNS3_RX_PTYPE_UNUSED_ENTRY(60),
183         HNS3_RX_PTYPE_UNUSED_ENTRY(61),
184         HNS3_RX_PTYPE_UNUSED_ENTRY(62),
185         HNS3_RX_PTYPE_UNUSED_ENTRY(63),
186         HNS3_RX_PTYPE_UNUSED_ENTRY(64),
187         HNS3_RX_PTYPE_UNUSED_ENTRY(65),
188         HNS3_RX_PTYPE_UNUSED_ENTRY(66),
189         HNS3_RX_PTYPE_UNUSED_ENTRY(67),
190         HNS3_RX_PTYPE_UNUSED_ENTRY(68),
191         HNS3_RX_PTYPE_UNUSED_ENTRY(69),
192         HNS3_RX_PTYPE_UNUSED_ENTRY(70),
193         HNS3_RX_PTYPE_UNUSED_ENTRY(71),
194         HNS3_RX_PTYPE_UNUSED_ENTRY(72),
195         HNS3_RX_PTYPE_UNUSED_ENTRY(73),
196         HNS3_RX_PTYPE_UNUSED_ENTRY(74),
197         HNS3_RX_PTYPE_UNUSED_ENTRY(75),
198         HNS3_RX_PTYPE_UNUSED_ENTRY(76),
199         HNS3_RX_PTYPE_UNUSED_ENTRY(77),
200         HNS3_RX_PTYPE_UNUSED_ENTRY(78),
201         HNS3_RX_PTYPE_UNUSED_ENTRY(79),
202         HNS3_RX_PTYPE_UNUSED_ENTRY(80),
203         HNS3_RX_PTYPE_UNUSED_ENTRY(81),
204         HNS3_RX_PTYPE_UNUSED_ENTRY(82),
205         HNS3_RX_PTYPE_UNUSED_ENTRY(83),
206         HNS3_RX_PTYPE_UNUSED_ENTRY(84),
207         HNS3_RX_PTYPE_UNUSED_ENTRY(85),
208         HNS3_RX_PTYPE_UNUSED_ENTRY(86),
209         HNS3_RX_PTYPE_UNUSED_ENTRY(87),
210         HNS3_RX_PTYPE_UNUSED_ENTRY(88),
211         HNS3_RX_PTYPE_UNUSED_ENTRY(89),
212         HNS3_RX_PTYPE_UNUSED_ENTRY(90),
213         HNS3_RX_PTYPE_UNUSED_ENTRY(91),
214         HNS3_RX_PTYPE_UNUSED_ENTRY(92),
215         HNS3_RX_PTYPE_UNUSED_ENTRY(93),
216         HNS3_RX_PTYPE_UNUSED_ENTRY(94),
217         HNS3_RX_PTYPE_UNUSED_ENTRY(95),
218         HNS3_RX_PTYPE_UNUSED_ENTRY(96),
219         HNS3_RX_PTYPE_UNUSED_ENTRY(97),
220         HNS3_RX_PTYPE_UNUSED_ENTRY(98),
221         HNS3_RX_PTYPE_UNUSED_ENTRY(99),
222         HNS3_RX_PTYPE_UNUSED_ENTRY(100),
223         HNS3_RX_PTYPE_UNUSED_ENTRY(101),
224         HNS3_RX_PTYPE_UNUSED_ENTRY(102),
225         HNS3_RX_PTYPE_UNUSED_ENTRY(103),
226         HNS3_RX_PTYPE_UNUSED_ENTRY(104),
227         HNS3_RX_PTYPE_UNUSED_ENTRY(105),
228         HNS3_RX_PTYPE_UNUSED_ENTRY(106),
229         HNS3_RX_PTYPE_UNUSED_ENTRY(107),
230         HNS3_RX_PTYPE_UNUSED_ENTRY(108),
231         HNS3_RX_PTYPE_UNUSED_ENTRY(109),
232         HNS3_RX_PTYPE_UNUSED_ENTRY(110),
233         HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6),
234         HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6),
235         HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6),
236         HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6),
237         HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6),
238         HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6),
239         HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6),
240         HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6),
241         HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6),
242         HNS3_RX_PTYPE_UNUSED_ENTRY(120),
243         HNS3_RX_PTYPE_UNUSED_ENTRY(121),
244         HNS3_RX_PTYPE_UNUSED_ENTRY(122),
245         HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL),
246         HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL),
247         HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4),
248         HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4),
249         HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4),
250         HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4),
251         HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4),
252         HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4),
253         HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4),
254         HNS3_RX_PTYPE_UNUSED_ENTRY(132),
255         HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6),
256         HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6),
257         HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6),
258         HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6),
259         HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6),
260         HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6),
261         HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6),
262         HNS3_RX_PTYPE_UNUSED_ENTRY(140),
263         HNS3_RX_PTYPE_UNUSED_ENTRY(141),
264         HNS3_RX_PTYPE_UNUSED_ENTRY(142),
265         HNS3_RX_PTYPE_UNUSED_ENTRY(143),
266         HNS3_RX_PTYPE_UNUSED_ENTRY(144),
267         HNS3_RX_PTYPE_UNUSED_ENTRY(145),
268         HNS3_RX_PTYPE_UNUSED_ENTRY(146),
269         HNS3_RX_PTYPE_UNUSED_ENTRY(147),
270         HNS3_RX_PTYPE_UNUSED_ENTRY(148),
271         HNS3_RX_PTYPE_UNUSED_ENTRY(149),
272         HNS3_RX_PTYPE_UNUSED_ENTRY(150),
273         HNS3_RX_PTYPE_UNUSED_ENTRY(151),
274         HNS3_RX_PTYPE_UNUSED_ENTRY(152),
275         HNS3_RX_PTYPE_UNUSED_ENTRY(153),
276         HNS3_RX_PTYPE_UNUSED_ENTRY(154),
277         HNS3_RX_PTYPE_UNUSED_ENTRY(155),
278         HNS3_RX_PTYPE_UNUSED_ENTRY(156),
279         HNS3_RX_PTYPE_UNUSED_ENTRY(157),
280         HNS3_RX_PTYPE_UNUSED_ENTRY(158),
281         HNS3_RX_PTYPE_UNUSED_ENTRY(159),
282         HNS3_RX_PTYPE_UNUSED_ENTRY(160),
283         HNS3_RX_PTYPE_UNUSED_ENTRY(161),
284         HNS3_RX_PTYPE_UNUSED_ENTRY(162),
285         HNS3_RX_PTYPE_UNUSED_ENTRY(163),
286         HNS3_RX_PTYPE_UNUSED_ENTRY(164),
287         HNS3_RX_PTYPE_UNUSED_ENTRY(165),
288         HNS3_RX_PTYPE_UNUSED_ENTRY(166),
289         HNS3_RX_PTYPE_UNUSED_ENTRY(167),
290         HNS3_RX_PTYPE_UNUSED_ENTRY(168),
291         HNS3_RX_PTYPE_UNUSED_ENTRY(169),
292         HNS3_RX_PTYPE_UNUSED_ENTRY(170),
293         HNS3_RX_PTYPE_UNUSED_ENTRY(171),
294         HNS3_RX_PTYPE_UNUSED_ENTRY(172),
295         HNS3_RX_PTYPE_UNUSED_ENTRY(173),
296         HNS3_RX_PTYPE_UNUSED_ENTRY(174),
297         HNS3_RX_PTYPE_UNUSED_ENTRY(175),
298         HNS3_RX_PTYPE_UNUSED_ENTRY(176),
299         HNS3_RX_PTYPE_UNUSED_ENTRY(177),
300         HNS3_RX_PTYPE_UNUSED_ENTRY(178),
301         HNS3_RX_PTYPE_UNUSED_ENTRY(179),
302         HNS3_RX_PTYPE_UNUSED_ENTRY(180),
303         HNS3_RX_PTYPE_UNUSED_ENTRY(181),
304         HNS3_RX_PTYPE_UNUSED_ENTRY(182),
305         HNS3_RX_PTYPE_UNUSED_ENTRY(183),
306         HNS3_RX_PTYPE_UNUSED_ENTRY(184),
307         HNS3_RX_PTYPE_UNUSED_ENTRY(185),
308         HNS3_RX_PTYPE_UNUSED_ENTRY(186),
309         HNS3_RX_PTYPE_UNUSED_ENTRY(187),
310         HNS3_RX_PTYPE_UNUSED_ENTRY(188),
311         HNS3_RX_PTYPE_UNUSED_ENTRY(189),
312         HNS3_RX_PTYPE_UNUSED_ENTRY(190),
313         HNS3_RX_PTYPE_UNUSED_ENTRY(191),
314         HNS3_RX_PTYPE_UNUSED_ENTRY(192),
315         HNS3_RX_PTYPE_UNUSED_ENTRY(193),
316         HNS3_RX_PTYPE_UNUSED_ENTRY(194),
317         HNS3_RX_PTYPE_UNUSED_ENTRY(195),
318         HNS3_RX_PTYPE_UNUSED_ENTRY(196),
319         HNS3_RX_PTYPE_UNUSED_ENTRY(197),
320         HNS3_RX_PTYPE_UNUSED_ENTRY(198),
321         HNS3_RX_PTYPE_UNUSED_ENTRY(199),
322         HNS3_RX_PTYPE_UNUSED_ENTRY(200),
323         HNS3_RX_PTYPE_UNUSED_ENTRY(201),
324         HNS3_RX_PTYPE_UNUSED_ENTRY(202),
325         HNS3_RX_PTYPE_UNUSED_ENTRY(203),
326         HNS3_RX_PTYPE_UNUSED_ENTRY(204),
327         HNS3_RX_PTYPE_UNUSED_ENTRY(205),
328         HNS3_RX_PTYPE_UNUSED_ENTRY(206),
329         HNS3_RX_PTYPE_UNUSED_ENTRY(207),
330         HNS3_RX_PTYPE_UNUSED_ENTRY(208),
331         HNS3_RX_PTYPE_UNUSED_ENTRY(209),
332         HNS3_RX_PTYPE_UNUSED_ENTRY(210),
333         HNS3_RX_PTYPE_UNUSED_ENTRY(211),
334         HNS3_RX_PTYPE_UNUSED_ENTRY(212),
335         HNS3_RX_PTYPE_UNUSED_ENTRY(213),
336         HNS3_RX_PTYPE_UNUSED_ENTRY(214),
337         HNS3_RX_PTYPE_UNUSED_ENTRY(215),
338         HNS3_RX_PTYPE_UNUSED_ENTRY(216),
339         HNS3_RX_PTYPE_UNUSED_ENTRY(217),
340         HNS3_RX_PTYPE_UNUSED_ENTRY(218),
341         HNS3_RX_PTYPE_UNUSED_ENTRY(219),
342         HNS3_RX_PTYPE_UNUSED_ENTRY(220),
343         HNS3_RX_PTYPE_UNUSED_ENTRY(221),
344         HNS3_RX_PTYPE_UNUSED_ENTRY(222),
345         HNS3_RX_PTYPE_UNUSED_ENTRY(223),
346         HNS3_RX_PTYPE_UNUSED_ENTRY(224),
347         HNS3_RX_PTYPE_UNUSED_ENTRY(225),
348         HNS3_RX_PTYPE_UNUSED_ENTRY(226),
349         HNS3_RX_PTYPE_UNUSED_ENTRY(227),
350         HNS3_RX_PTYPE_UNUSED_ENTRY(228),
351         HNS3_RX_PTYPE_UNUSED_ENTRY(229),
352         HNS3_RX_PTYPE_UNUSED_ENTRY(230),
353         HNS3_RX_PTYPE_UNUSED_ENTRY(231),
354         HNS3_RX_PTYPE_UNUSED_ENTRY(232),
355         HNS3_RX_PTYPE_UNUSED_ENTRY(233),
356         HNS3_RX_PTYPE_UNUSED_ENTRY(234),
357         HNS3_RX_PTYPE_UNUSED_ENTRY(235),
358         HNS3_RX_PTYPE_UNUSED_ENTRY(236),
359         HNS3_RX_PTYPE_UNUSED_ENTRY(237),
360         HNS3_RX_PTYPE_UNUSED_ENTRY(238),
361         HNS3_RX_PTYPE_UNUSED_ENTRY(239),
362         HNS3_RX_PTYPE_UNUSED_ENTRY(240),
363         HNS3_RX_PTYPE_UNUSED_ENTRY(241),
364         HNS3_RX_PTYPE_UNUSED_ENTRY(242),
365         HNS3_RX_PTYPE_UNUSED_ENTRY(243),
366         HNS3_RX_PTYPE_UNUSED_ENTRY(244),
367         HNS3_RX_PTYPE_UNUSED_ENTRY(245),
368         HNS3_RX_PTYPE_UNUSED_ENTRY(246),
369         HNS3_RX_PTYPE_UNUSED_ENTRY(247),
370         HNS3_RX_PTYPE_UNUSED_ENTRY(248),
371         HNS3_RX_PTYPE_UNUSED_ENTRY(249),
372         HNS3_RX_PTYPE_UNUSED_ENTRY(250),
373         HNS3_RX_PTYPE_UNUSED_ENTRY(251),
374         HNS3_RX_PTYPE_UNUSED_ENTRY(252),
375         HNS3_RX_PTYPE_UNUSED_ENTRY(253),
376         HNS3_RX_PTYPE_UNUSED_ENTRY(254),
377         HNS3_RX_PTYPE_UNUSED_ENTRY(255),
378 };
379
380 #define HNS3_INVALID_PTYPE \
381                 ARRAY_SIZE(hns3_rx_ptype_tbl)
382
383 static irqreturn_t hns3_irq_handle(int irq, void *vector)
384 {
385         struct hns3_enet_tqp_vector *tqp_vector = vector;
386
387         napi_schedule_irqoff(&tqp_vector->napi);
388         tqp_vector->event_cnt++;
389
390         return IRQ_HANDLED;
391 }
392
393 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
394 {
395         struct hns3_enet_tqp_vector *tqp_vectors;
396         unsigned int i;
397
398         for (i = 0; i < priv->vector_num; i++) {
399                 tqp_vectors = &priv->tqp_vector[i];
400
401                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
402                         continue;
403
404                 /* clear the affinity mask */
405                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
406
407                 /* release the irq resource */
408                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
409                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
410         }
411 }
412
413 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
414 {
415         struct hns3_enet_tqp_vector *tqp_vectors;
416         int txrx_int_idx = 0;
417         int rx_int_idx = 0;
418         int tx_int_idx = 0;
419         unsigned int i;
420         int ret;
421
422         for (i = 0; i < priv->vector_num; i++) {
423                 tqp_vectors = &priv->tqp_vector[i];
424
425                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
426                         continue;
427
428                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
429                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
430                                  "%s-%s-%s-%d", hns3_driver_name,
431                                  pci_name(priv->ae_handle->pdev),
432                                  "TxRx", txrx_int_idx++);
433                         txrx_int_idx++;
434                 } else if (tqp_vectors->rx_group.ring) {
435                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
436                                  "%s-%s-%s-%d", hns3_driver_name,
437                                  pci_name(priv->ae_handle->pdev),
438                                  "Rx", rx_int_idx++);
439                 } else if (tqp_vectors->tx_group.ring) {
440                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
441                                  "%s-%s-%s-%d", hns3_driver_name,
442                                  pci_name(priv->ae_handle->pdev),
443                                  "Tx", tx_int_idx++);
444                 } else {
445                         /* Skip this unused q_vector */
446                         continue;
447                 }
448
449                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
450
451                 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
452                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
453                                   tqp_vectors->name, tqp_vectors);
454                 if (ret) {
455                         netdev_err(priv->netdev, "request irq(%d) fail\n",
456                                    tqp_vectors->vector_irq);
457                         hns3_nic_uninit_irq(priv);
458                         return ret;
459                 }
460
461                 irq_set_affinity_hint(tqp_vectors->vector_irq,
462                                       &tqp_vectors->affinity_mask);
463
464                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
465         }
466
467         return 0;
468 }
469
470 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
471                                  u32 mask_en)
472 {
473         writel(mask_en, tqp_vector->mask_addr);
474 }
475
476 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
477 {
478         napi_enable(&tqp_vector->napi);
479         enable_irq(tqp_vector->vector_irq);
480
481         /* enable vector */
482         hns3_mask_vector_irq(tqp_vector, 1);
483 }
484
485 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
486 {
487         /* disable vector */
488         hns3_mask_vector_irq(tqp_vector, 0);
489
490         disable_irq(tqp_vector->vector_irq);
491         napi_disable(&tqp_vector->napi);
492         cancel_work_sync(&tqp_vector->rx_group.dim.work);
493         cancel_work_sync(&tqp_vector->tx_group.dim.work);
494 }
495
496 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
497                                  u32 rl_value)
498 {
499         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
500
501         /* this defines the configuration for RL (Interrupt Rate Limiter).
502          * Rl defines rate of interrupts i.e. number of interrupts-per-second
503          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
504          */
505         if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
506             !tqp_vector->rx_group.coal.adapt_enable)
507                 /* According to the hardware, the range of rl_reg is
508                  * 0-59 and the unit is 4.
509                  */
510                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
511
512         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
513 }
514
515 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
516                                     u32 gl_value)
517 {
518         u32 new_val;
519
520         if (tqp_vector->rx_group.coal.unit_1us)
521                 new_val = gl_value | HNS3_INT_GL_1US;
522         else
523                 new_val = hns3_gl_usec_to_reg(gl_value);
524
525         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
526 }
527
528 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
529                                     u32 gl_value)
530 {
531         u32 new_val;
532
533         if (tqp_vector->tx_group.coal.unit_1us)
534                 new_val = gl_value | HNS3_INT_GL_1US;
535         else
536                 new_val = hns3_gl_usec_to_reg(gl_value);
537
538         writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
539 }
540
541 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
542                                     u32 ql_value)
543 {
544         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
545 }
546
547 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
548                                     u32 ql_value)
549 {
550         writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
551 }
552
553 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
554                                       struct hns3_nic_priv *priv)
555 {
556         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
557         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
558         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
559         struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
560         struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
561
562         tx_coal->adapt_enable = ptx_coal->adapt_enable;
563         rx_coal->adapt_enable = prx_coal->adapt_enable;
564
565         tx_coal->int_gl = ptx_coal->int_gl;
566         rx_coal->int_gl = prx_coal->int_gl;
567
568         rx_coal->flow_level = prx_coal->flow_level;
569         tx_coal->flow_level = ptx_coal->flow_level;
570
571         /* device version above V3(include V3), GL can configure 1us
572          * unit, so uses 1us unit.
573          */
574         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
575                 tx_coal->unit_1us = 1;
576                 rx_coal->unit_1us = 1;
577         }
578
579         if (ae_dev->dev_specs.int_ql_max) {
580                 tx_coal->ql_enable = 1;
581                 rx_coal->ql_enable = 1;
582                 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
583                 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
584                 tx_coal->int_ql = ptx_coal->int_ql;
585                 rx_coal->int_ql = prx_coal->int_ql;
586         }
587 }
588
589 static void
590 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
591                              struct hns3_nic_priv *priv)
592 {
593         struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
594         struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
595         struct hnae3_handle *h = priv->ae_handle;
596
597         hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
598         hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
599         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
600
601         if (tx_coal->ql_enable)
602                 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
603
604         if (rx_coal->ql_enable)
605                 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
606 }
607
608 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
609 {
610         struct hnae3_handle *h = hns3_get_handle(netdev);
611         struct hnae3_knic_private_info *kinfo = &h->kinfo;
612         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
613         unsigned int queue_size = kinfo->num_tqps;
614         int i, ret;
615
616         if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
617                 netdev_reset_tc(netdev);
618         } else {
619                 ret = netdev_set_num_tc(netdev, tc_info->num_tc);
620                 if (ret) {
621                         netdev_err(netdev,
622                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
623                         return ret;
624                 }
625
626                 for (i = 0; i < tc_info->num_tc; i++)
627                         netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
628                                             tc_info->tqp_offset[i]);
629         }
630
631         ret = netif_set_real_num_tx_queues(netdev, queue_size);
632         if (ret) {
633                 netdev_err(netdev,
634                            "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
635                 return ret;
636         }
637
638         ret = netif_set_real_num_rx_queues(netdev, queue_size);
639         if (ret) {
640                 netdev_err(netdev,
641                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
642                 return ret;
643         }
644
645         return 0;
646 }
647
648 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
649 {
650         u16 alloc_tqps, max_rss_size, rss_size;
651
652         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
653         rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
654
655         return min_t(u16, rss_size, max_rss_size);
656 }
657
658 static void hns3_tqp_enable(struct hnae3_queue *tqp)
659 {
660         u32 rcb_reg;
661
662         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
663         rcb_reg |= BIT(HNS3_RING_EN_B);
664         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
665 }
666
667 static void hns3_tqp_disable(struct hnae3_queue *tqp)
668 {
669         u32 rcb_reg;
670
671         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
672         rcb_reg &= ~BIT(HNS3_RING_EN_B);
673         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
674 }
675
676 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
677 {
678 #ifdef CONFIG_RFS_ACCEL
679         free_irq_cpu_rmap(netdev->rx_cpu_rmap);
680         netdev->rx_cpu_rmap = NULL;
681 #endif
682 }
683
684 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
685 {
686 #ifdef CONFIG_RFS_ACCEL
687         struct hns3_nic_priv *priv = netdev_priv(netdev);
688         struct hns3_enet_tqp_vector *tqp_vector;
689         int i, ret;
690
691         if (!netdev->rx_cpu_rmap) {
692                 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
693                 if (!netdev->rx_cpu_rmap)
694                         return -ENOMEM;
695         }
696
697         for (i = 0; i < priv->vector_num; i++) {
698                 tqp_vector = &priv->tqp_vector[i];
699                 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
700                                        tqp_vector->vector_irq);
701                 if (ret) {
702                         hns3_free_rx_cpu_rmap(netdev);
703                         return ret;
704                 }
705         }
706 #endif
707         return 0;
708 }
709
710 static int hns3_nic_net_up(struct net_device *netdev)
711 {
712         struct hns3_nic_priv *priv = netdev_priv(netdev);
713         struct hnae3_handle *h = priv->ae_handle;
714         int i, j;
715         int ret;
716
717         ret = hns3_nic_reset_all_ring(h);
718         if (ret)
719                 return ret;
720
721         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
722
723         /* enable the vectors */
724         for (i = 0; i < priv->vector_num; i++)
725                 hns3_vector_enable(&priv->tqp_vector[i]);
726
727         /* enable rcb */
728         for (j = 0; j < h->kinfo.num_tqps; j++)
729                 hns3_tqp_enable(h->kinfo.tqp[j]);
730
731         /* start the ae_dev */
732         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
733         if (ret) {
734                 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
735                 while (j--)
736                         hns3_tqp_disable(h->kinfo.tqp[j]);
737
738                 for (j = i - 1; j >= 0; j--)
739                         hns3_vector_disable(&priv->tqp_vector[j]);
740         }
741
742         return ret;
743 }
744
745 static void hns3_config_xps(struct hns3_nic_priv *priv)
746 {
747         int i;
748
749         for (i = 0; i < priv->vector_num; i++) {
750                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
751                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
752
753                 while (ring) {
754                         int ret;
755
756                         ret = netif_set_xps_queue(priv->netdev,
757                                                   &tqp_vector->affinity_mask,
758                                                   ring->tqp->tqp_index);
759                         if (ret)
760                                 netdev_warn(priv->netdev,
761                                             "set xps queue failed: %d", ret);
762
763                         ring = ring->next;
764                 }
765         }
766 }
767
768 static int hns3_nic_net_open(struct net_device *netdev)
769 {
770         struct hns3_nic_priv *priv = netdev_priv(netdev);
771         struct hnae3_handle *h = hns3_get_handle(netdev);
772         struct hnae3_knic_private_info *kinfo;
773         int i, ret;
774
775         if (hns3_nic_resetting(netdev))
776                 return -EBUSY;
777
778         if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
779                 netdev_warn(netdev, "net open repeatedly!\n");
780                 return 0;
781         }
782
783         netif_carrier_off(netdev);
784
785         ret = hns3_nic_set_real_num_queue(netdev);
786         if (ret)
787                 return ret;
788
789         ret = hns3_nic_net_up(netdev);
790         if (ret) {
791                 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
792                 return ret;
793         }
794
795         kinfo = &h->kinfo;
796         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
797                 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
798
799         if (h->ae_algo->ops->set_timer_task)
800                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
801
802         hns3_config_xps(priv);
803
804         netif_dbg(h, drv, netdev, "net open\n");
805
806         return 0;
807 }
808
809 static void hns3_reset_tx_queue(struct hnae3_handle *h)
810 {
811         struct net_device *ndev = h->kinfo.netdev;
812         struct hns3_nic_priv *priv = netdev_priv(ndev);
813         struct netdev_queue *dev_queue;
814         u32 i;
815
816         for (i = 0; i < h->kinfo.num_tqps; i++) {
817                 dev_queue = netdev_get_tx_queue(ndev,
818                                                 priv->ring[i].queue_index);
819                 netdev_tx_reset_queue(dev_queue);
820         }
821 }
822
823 static void hns3_nic_net_down(struct net_device *netdev)
824 {
825         struct hns3_nic_priv *priv = netdev_priv(netdev);
826         struct hnae3_handle *h = hns3_get_handle(netdev);
827         const struct hnae3_ae_ops *ops;
828         int i;
829
830         /* disable vectors */
831         for (i = 0; i < priv->vector_num; i++)
832                 hns3_vector_disable(&priv->tqp_vector[i]);
833
834         /* disable rcb */
835         for (i = 0; i < h->kinfo.num_tqps; i++)
836                 hns3_tqp_disable(h->kinfo.tqp[i]);
837
838         /* stop ae_dev */
839         ops = priv->ae_handle->ae_algo->ops;
840         if (ops->stop)
841                 ops->stop(priv->ae_handle);
842
843         /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
844          * during reset process, because driver may not be able
845          * to disable the ring through firmware when downing the netdev.
846          */
847         if (!hns3_nic_resetting(netdev))
848                 hns3_clear_all_ring(priv->ae_handle, false);
849
850         hns3_reset_tx_queue(priv->ae_handle);
851 }
852
853 static int hns3_nic_net_stop(struct net_device *netdev)
854 {
855         struct hns3_nic_priv *priv = netdev_priv(netdev);
856         struct hnae3_handle *h = hns3_get_handle(netdev);
857
858         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
859                 return 0;
860
861         netif_dbg(h, drv, netdev, "net stop\n");
862
863         if (h->ae_algo->ops->set_timer_task)
864                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
865
866         netif_carrier_off(netdev);
867         netif_tx_disable(netdev);
868
869         hns3_nic_net_down(netdev);
870
871         return 0;
872 }
873
874 static int hns3_nic_uc_sync(struct net_device *netdev,
875                             const unsigned char *addr)
876 {
877         struct hnae3_handle *h = hns3_get_handle(netdev);
878
879         if (h->ae_algo->ops->add_uc_addr)
880                 return h->ae_algo->ops->add_uc_addr(h, addr);
881
882         return 0;
883 }
884
885 static int hns3_nic_uc_unsync(struct net_device *netdev,
886                               const unsigned char *addr)
887 {
888         struct hnae3_handle *h = hns3_get_handle(netdev);
889
890         /* need ignore the request of removing device address, because
891          * we store the device address and other addresses of uc list
892          * in the function's mac filter list.
893          */
894         if (ether_addr_equal(addr, netdev->dev_addr))
895                 return 0;
896
897         if (h->ae_algo->ops->rm_uc_addr)
898                 return h->ae_algo->ops->rm_uc_addr(h, addr);
899
900         return 0;
901 }
902
903 static int hns3_nic_mc_sync(struct net_device *netdev,
904                             const unsigned char *addr)
905 {
906         struct hnae3_handle *h = hns3_get_handle(netdev);
907
908         if (h->ae_algo->ops->add_mc_addr)
909                 return h->ae_algo->ops->add_mc_addr(h, addr);
910
911         return 0;
912 }
913
914 static int hns3_nic_mc_unsync(struct net_device *netdev,
915                               const unsigned char *addr)
916 {
917         struct hnae3_handle *h = hns3_get_handle(netdev);
918
919         if (h->ae_algo->ops->rm_mc_addr)
920                 return h->ae_algo->ops->rm_mc_addr(h, addr);
921
922         return 0;
923 }
924
925 static u8 hns3_get_netdev_flags(struct net_device *netdev)
926 {
927         u8 flags = 0;
928
929         if (netdev->flags & IFF_PROMISC)
930                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
931         else if (netdev->flags & IFF_ALLMULTI)
932                 flags = HNAE3_USER_MPE;
933
934         return flags;
935 }
936
937 static void hns3_nic_set_rx_mode(struct net_device *netdev)
938 {
939         struct hnae3_handle *h = hns3_get_handle(netdev);
940         u8 new_flags;
941
942         new_flags = hns3_get_netdev_flags(netdev);
943
944         __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
945         __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
946
947         /* User mode Promisc mode enable and vlan filtering is disabled to
948          * let all packets in.
949          */
950         h->netdev_flags = new_flags;
951         hns3_request_update_promisc_mode(h);
952 }
953
954 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
955 {
956         const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
957
958         if (ops->request_update_promisc_mode)
959                 ops->request_update_promisc_mode(handle);
960 }
961
962 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
963 {
964         struct hns3_tx_spare *tx_spare = ring->tx_spare;
965         u32 ntc, ntu;
966
967         /* This smp_load_acquire() pairs with smp_store_release() in
968          * hns3_tx_spare_update() called in tx desc cleaning process.
969          */
970         ntc = smp_load_acquire(&tx_spare->last_to_clean);
971         ntu = tx_spare->next_to_use;
972
973         if (ntc > ntu)
974                 return ntc - ntu - 1;
975
976         /* The free tx buffer is divided into two part, so pick the
977          * larger one.
978          */
979         return max(ntc, tx_spare->len - ntu) - 1;
980 }
981
982 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
983 {
984         struct hns3_tx_spare *tx_spare = ring->tx_spare;
985
986         if (!tx_spare ||
987             tx_spare->last_to_clean == tx_spare->next_to_clean)
988                 return;
989
990         /* This smp_store_release() pairs with smp_load_acquire() in
991          * hns3_tx_spare_space() called in xmit process.
992          */
993         smp_store_release(&tx_spare->last_to_clean,
994                           tx_spare->next_to_clean);
995 }
996
997 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
998                                    struct sk_buff *skb,
999                                    u32 space)
1000 {
1001         u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1002                                 skb_headlen(skb);
1003
1004         if (len > ring->tx_copybreak)
1005                 return false;
1006
1007         if (ALIGN(len, dma_get_cache_alignment()) > space) {
1008                 u64_stats_update_begin(&ring->syncp);
1009                 ring->stats.tx_spare_full++;
1010                 u64_stats_update_end(&ring->syncp);
1011                 return false;
1012         }
1013
1014         return true;
1015 }
1016
1017 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1018                                 struct sk_buff *skb,
1019                                 u32 space)
1020 {
1021         if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1022             (!skb_has_frag_list(skb) &&
1023              skb_shinfo(skb)->nr_frags < tx_sgl))
1024                 return false;
1025
1026         if (space < HNS3_MAX_SGL_SIZE) {
1027                 u64_stats_update_begin(&ring->syncp);
1028                 ring->stats.tx_spare_full++;
1029                 u64_stats_update_end(&ring->syncp);
1030                 return false;
1031         }
1032
1033         return true;
1034 }
1035
1036 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1037 {
1038         struct hns3_tx_spare *tx_spare;
1039         struct page *page;
1040         u32 alloc_size;
1041         dma_addr_t dma;
1042         int order;
1043
1044         alloc_size = tx_spare_buf_size ? tx_spare_buf_size :
1045                      ring->tqp->handle->kinfo.tx_spare_buf_size;
1046         if (!alloc_size)
1047                 return;
1048
1049         order = get_order(alloc_size);
1050         tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1051                                 GFP_KERNEL);
1052         if (!tx_spare) {
1053                 /* The driver still work without the tx spare buffer */
1054                 dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1055                 return;
1056         }
1057
1058         page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1059                                 GFP_KERNEL, order);
1060         if (!page) {
1061                 dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1062                 devm_kfree(ring_to_dev(ring), tx_spare);
1063                 return;
1064         }
1065
1066         dma = dma_map_page(ring_to_dev(ring), page, 0,
1067                            PAGE_SIZE << order, DMA_TO_DEVICE);
1068         if (dma_mapping_error(ring_to_dev(ring), dma)) {
1069                 dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1070                 put_page(page);
1071                 devm_kfree(ring_to_dev(ring), tx_spare);
1072                 return;
1073         }
1074
1075         tx_spare->dma = dma;
1076         tx_spare->buf = page_address(page);
1077         tx_spare->len = PAGE_SIZE << order;
1078         ring->tx_spare = tx_spare;
1079 }
1080
1081 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1082  * before calling below function to allocate tx buffer.
1083  */
1084 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1085                                  unsigned int size, dma_addr_t *dma,
1086                                  u32 *cb_len)
1087 {
1088         struct hns3_tx_spare *tx_spare = ring->tx_spare;
1089         u32 ntu = tx_spare->next_to_use;
1090
1091         size = ALIGN(size, dma_get_cache_alignment());
1092         *cb_len = size;
1093
1094         /* Tx spare buffer wraps back here because the end of
1095          * freed tx buffer is not enough.
1096          */
1097         if (ntu + size > tx_spare->len) {
1098                 *cb_len += (tx_spare->len - ntu);
1099                 ntu = 0;
1100         }
1101
1102         tx_spare->next_to_use = ntu + size;
1103         if (tx_spare->next_to_use == tx_spare->len)
1104                 tx_spare->next_to_use = 0;
1105
1106         *dma = tx_spare->dma + ntu;
1107
1108         return tx_spare->buf + ntu;
1109 }
1110
1111 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1112 {
1113         struct hns3_tx_spare *tx_spare = ring->tx_spare;
1114
1115         if (len > tx_spare->next_to_use) {
1116                 len -= tx_spare->next_to_use;
1117                 tx_spare->next_to_use = tx_spare->len - len;
1118         } else {
1119                 tx_spare->next_to_use -= len;
1120         }
1121 }
1122
1123 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1124                                      struct hns3_desc_cb *cb)
1125 {
1126         struct hns3_tx_spare *tx_spare = ring->tx_spare;
1127         u32 ntc = tx_spare->next_to_clean;
1128         u32 len = cb->length;
1129
1130         tx_spare->next_to_clean += len;
1131
1132         if (tx_spare->next_to_clean >= tx_spare->len) {
1133                 tx_spare->next_to_clean -= tx_spare->len;
1134
1135                 if (tx_spare->next_to_clean) {
1136                         ntc = 0;
1137                         len = tx_spare->next_to_clean;
1138                 }
1139         }
1140
1141         /* This tx spare buffer is only really reclaimed after calling
1142          * hns3_tx_spare_update(), so it is still safe to use the info in
1143          * the tx buffer to do the dma sync or sg unmapping after
1144          * tx_spare->next_to_clean is moved forword.
1145          */
1146         if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1147                 dma_addr_t dma = tx_spare->dma + ntc;
1148
1149                 dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1150                                         DMA_TO_DEVICE);
1151         } else {
1152                 struct sg_table *sgt = tx_spare->buf + ntc;
1153
1154                 dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1155                              DMA_TO_DEVICE);
1156         }
1157 }
1158
1159 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1160                         u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1161 {
1162         u32 l4_offset, hdr_len;
1163         union l3_hdr_info l3;
1164         union l4_hdr_info l4;
1165         u32 l4_paylen;
1166         int ret;
1167
1168         if (!skb_is_gso(skb))
1169                 return 0;
1170
1171         ret = skb_cow_head(skb, 0);
1172         if (unlikely(ret < 0))
1173                 return ret;
1174
1175         l3.hdr = skb_network_header(skb);
1176         l4.hdr = skb_transport_header(skb);
1177
1178         /* Software should clear the IPv4's checksum field when tso is
1179          * needed.
1180          */
1181         if (l3.v4->version == 4)
1182                 l3.v4->check = 0;
1183
1184         /* tunnel packet */
1185         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1186                                          SKB_GSO_GRE_CSUM |
1187                                          SKB_GSO_UDP_TUNNEL |
1188                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
1189                 /* reset l3&l4 pointers from outer to inner headers */
1190                 l3.hdr = skb_inner_network_header(skb);
1191                 l4.hdr = skb_inner_transport_header(skb);
1192
1193                 /* Software should clear the IPv4's checksum field when
1194                  * tso is needed.
1195                  */
1196                 if (l3.v4->version == 4)
1197                         l3.v4->check = 0;
1198         }
1199
1200         /* normal or tunnel packet */
1201         l4_offset = l4.hdr - skb->data;
1202
1203         /* remove payload length from inner pseudo checksum when tso */
1204         l4_paylen = skb->len - l4_offset;
1205
1206         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1207                 hdr_len = sizeof(*l4.udp) + l4_offset;
1208                 csum_replace_by_diff(&l4.udp->check,
1209                                      (__force __wsum)htonl(l4_paylen));
1210         } else {
1211                 hdr_len = (l4.tcp->doff << 2) + l4_offset;
1212                 csum_replace_by_diff(&l4.tcp->check,
1213                                      (__force __wsum)htonl(l4_paylen));
1214         }
1215
1216         *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1217
1218         /* find the txbd field values */
1219         *paylen_fdop_ol4cs = skb->len - hdr_len;
1220         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1221
1222         /* offload outer UDP header checksum */
1223         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1224                 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1225
1226         /* get MSS for TSO */
1227         *mss = skb_shinfo(skb)->gso_size;
1228
1229         trace_hns3_tso(skb);
1230
1231         return 0;
1232 }
1233
1234 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1235                                 u8 *il4_proto)
1236 {
1237         union l3_hdr_info l3;
1238         unsigned char *l4_hdr;
1239         unsigned char *exthdr;
1240         u8 l4_proto_tmp;
1241         __be16 frag_off;
1242
1243         /* find outer header point */
1244         l3.hdr = skb_network_header(skb);
1245         l4_hdr = skb_transport_header(skb);
1246
1247         if (skb->protocol == htons(ETH_P_IPV6)) {
1248                 exthdr = l3.hdr + sizeof(*l3.v6);
1249                 l4_proto_tmp = l3.v6->nexthdr;
1250                 if (l4_hdr != exthdr)
1251                         ipv6_skip_exthdr(skb, exthdr - skb->data,
1252                                          &l4_proto_tmp, &frag_off);
1253         } else if (skb->protocol == htons(ETH_P_IP)) {
1254                 l4_proto_tmp = l3.v4->protocol;
1255         } else {
1256                 return -EINVAL;
1257         }
1258
1259         *ol4_proto = l4_proto_tmp;
1260
1261         /* tunnel packet */
1262         if (!skb->encapsulation) {
1263                 *il4_proto = 0;
1264                 return 0;
1265         }
1266
1267         /* find inner header point */
1268         l3.hdr = skb_inner_network_header(skb);
1269         l4_hdr = skb_inner_transport_header(skb);
1270
1271         if (l3.v6->version == 6) {
1272                 exthdr = l3.hdr + sizeof(*l3.v6);
1273                 l4_proto_tmp = l3.v6->nexthdr;
1274                 if (l4_hdr != exthdr)
1275                         ipv6_skip_exthdr(skb, exthdr - skb->data,
1276                                          &l4_proto_tmp, &frag_off);
1277         } else if (l3.v4->version == 4) {
1278                 l4_proto_tmp = l3.v4->protocol;
1279         }
1280
1281         *il4_proto = l4_proto_tmp;
1282
1283         return 0;
1284 }
1285
1286 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1287  * and it is udp packet, which has a dest port as the IANA assigned.
1288  * the hardware is expected to do the checksum offload, but the
1289  * hardware will not do the checksum offload when udp dest port is
1290  * 4789, 4790 or 6081.
1291  */
1292 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1293 {
1294         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1295         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1296         union l4_hdr_info l4;
1297
1298         /* device version above V3(include V3), the hardware can
1299          * do this checksum offload.
1300          */
1301         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1302                 return false;
1303
1304         l4.hdr = skb_transport_header(skb);
1305
1306         if (!(!skb->encapsulation &&
1307               (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1308               l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1309               l4.udp->dest == htons(4790))))
1310                 return false;
1311
1312         return true;
1313 }
1314
1315 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1316                                   u32 *ol_type_vlan_len_msec)
1317 {
1318         u32 l2_len, l3_len, l4_len;
1319         unsigned char *il2_hdr;
1320         union l3_hdr_info l3;
1321         union l4_hdr_info l4;
1322
1323         l3.hdr = skb_network_header(skb);
1324         l4.hdr = skb_transport_header(skb);
1325
1326         /* compute OL2 header size, defined in 2 Bytes */
1327         l2_len = l3.hdr - skb->data;
1328         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1329
1330         /* compute OL3 header size, defined in 4 Bytes */
1331         l3_len = l4.hdr - l3.hdr;
1332         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1333
1334         il2_hdr = skb_inner_mac_header(skb);
1335         /* compute OL4 header size, defined in 4 Bytes */
1336         l4_len = il2_hdr - l4.hdr;
1337         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1338
1339         /* define outer network header type */
1340         if (skb->protocol == htons(ETH_P_IP)) {
1341                 if (skb_is_gso(skb))
1342                         hns3_set_field(*ol_type_vlan_len_msec,
1343                                        HNS3_TXD_OL3T_S,
1344                                        HNS3_OL3T_IPV4_CSUM);
1345                 else
1346                         hns3_set_field(*ol_type_vlan_len_msec,
1347                                        HNS3_TXD_OL3T_S,
1348                                        HNS3_OL3T_IPV4_NO_CSUM);
1349         } else if (skb->protocol == htons(ETH_P_IPV6)) {
1350                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1351                                HNS3_OL3T_IPV6);
1352         }
1353
1354         if (ol4_proto == IPPROTO_UDP)
1355                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1356                                HNS3_TUN_MAC_IN_UDP);
1357         else if (ol4_proto == IPPROTO_GRE)
1358                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1359                                HNS3_TUN_NVGRE);
1360 }
1361
1362 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1363                            u8 il4_proto, u32 *type_cs_vlan_tso,
1364                            u32 *ol_type_vlan_len_msec)
1365 {
1366         unsigned char *l2_hdr = skb->data;
1367         u32 l4_proto = ol4_proto;
1368         union l4_hdr_info l4;
1369         union l3_hdr_info l3;
1370         u32 l2_len, l3_len;
1371
1372         l4.hdr = skb_transport_header(skb);
1373         l3.hdr = skb_network_header(skb);
1374
1375         /* handle encapsulation skb */
1376         if (skb->encapsulation) {
1377                 /* If this is a not UDP/GRE encapsulation skb */
1378                 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1379                         /* drop the skb tunnel packet if hardware don't support,
1380                          * because hardware can't calculate csum when TSO.
1381                          */
1382                         if (skb_is_gso(skb))
1383                                 return -EDOM;
1384
1385                         /* the stack computes the IP header already,
1386                          * driver calculate l4 checksum when not TSO.
1387                          */
1388                         return skb_checksum_help(skb);
1389                 }
1390
1391                 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1392
1393                 /* switch to inner header */
1394                 l2_hdr = skb_inner_mac_header(skb);
1395                 l3.hdr = skb_inner_network_header(skb);
1396                 l4.hdr = skb_inner_transport_header(skb);
1397                 l4_proto = il4_proto;
1398         }
1399
1400         if (l3.v4->version == 4) {
1401                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1402                                HNS3_L3T_IPV4);
1403
1404                 /* the stack computes the IP header already, the only time we
1405                  * need the hardware to recompute it is in the case of TSO.
1406                  */
1407                 if (skb_is_gso(skb))
1408                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1409         } else if (l3.v6->version == 6) {
1410                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1411                                HNS3_L3T_IPV6);
1412         }
1413
1414         /* compute inner(/normal) L2 header size, defined in 2 Bytes */
1415         l2_len = l3.hdr - l2_hdr;
1416         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1417
1418         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
1419         l3_len = l4.hdr - l3.hdr;
1420         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1421
1422         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
1423         switch (l4_proto) {
1424         case IPPROTO_TCP:
1425                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1426                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1427                                HNS3_L4T_TCP);
1428                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1429                                l4.tcp->doff);
1430                 break;
1431         case IPPROTO_UDP:
1432                 if (hns3_tunnel_csum_bug(skb)) {
1433                         int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1434
1435                         return ret ? ret : skb_checksum_help(skb);
1436                 }
1437
1438                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1439                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1440                                HNS3_L4T_UDP);
1441                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1442                                (sizeof(struct udphdr) >> 2));
1443                 break;
1444         case IPPROTO_SCTP:
1445                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1446                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1447                                HNS3_L4T_SCTP);
1448                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1449                                (sizeof(struct sctphdr) >> 2));
1450                 break;
1451         default:
1452                 /* drop the skb tunnel packet if hardware don't support,
1453                  * because hardware can't calculate csum when TSO.
1454                  */
1455                 if (skb_is_gso(skb))
1456                         return -EDOM;
1457
1458                 /* the stack computes the IP header already,
1459                  * driver calculate l4 checksum when not TSO.
1460                  */
1461                 return skb_checksum_help(skb);
1462         }
1463
1464         return 0;
1465 }
1466
1467 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1468                              struct sk_buff *skb)
1469 {
1470         struct hnae3_handle *handle = tx_ring->tqp->handle;
1471         struct hnae3_ae_dev *ae_dev;
1472         struct vlan_ethhdr *vhdr;
1473         int rc;
1474
1475         if (!(skb->protocol == htons(ETH_P_8021Q) ||
1476               skb_vlan_tag_present(skb)))
1477                 return 0;
1478
1479         /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1480          * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1481          * will cause RAS error.
1482          */
1483         ae_dev = pci_get_drvdata(handle->pdev);
1484         if (unlikely(skb_vlan_tagged_multi(skb) &&
1485                      ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1486                      handle->port_base_vlan_state ==
1487                      HNAE3_PORT_BASE_VLAN_ENABLE))
1488                 return -EINVAL;
1489
1490         if (skb->protocol == htons(ETH_P_8021Q) &&
1491             !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1492                 /* When HW VLAN acceleration is turned off, and the stack
1493                  * sets the protocol to 802.1q, the driver just need to
1494                  * set the protocol to the encapsulated ethertype.
1495                  */
1496                 skb->protocol = vlan_get_protocol(skb);
1497                 return 0;
1498         }
1499
1500         if (skb_vlan_tag_present(skb)) {
1501                 /* Based on hw strategy, use out_vtag in two layer tag case,
1502                  * and use inner_vtag in one tag case.
1503                  */
1504                 if (skb->protocol == htons(ETH_P_8021Q) &&
1505                     handle->port_base_vlan_state ==
1506                     HNAE3_PORT_BASE_VLAN_DISABLE)
1507                         rc = HNS3_OUTER_VLAN_TAG;
1508                 else
1509                         rc = HNS3_INNER_VLAN_TAG;
1510
1511                 skb->protocol = vlan_get_protocol(skb);
1512                 return rc;
1513         }
1514
1515         rc = skb_cow_head(skb, 0);
1516         if (unlikely(rc < 0))
1517                 return rc;
1518
1519         vhdr = (struct vlan_ethhdr *)skb->data;
1520         vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1521                                          & VLAN_PRIO_MASK);
1522
1523         skb->protocol = vlan_get_protocol(skb);
1524         return 0;
1525 }
1526
1527 /* check if the hardware is capable of checksum offloading */
1528 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1529 {
1530         struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1531
1532         /* Kindly note, due to backward compatibility of the TX descriptor,
1533          * HW checksum of the non-IP packets and GSO packets is handled at
1534          * different place in the following code
1535          */
1536         if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1537             !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1538                 return false;
1539
1540         return true;
1541 }
1542
1543 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1544                               struct sk_buff *skb, struct hns3_desc *desc,
1545                               struct hns3_desc_cb *desc_cb)
1546 {
1547         u32 ol_type_vlan_len_msec = 0;
1548         u32 paylen_ol4cs = skb->len;
1549         u32 type_cs_vlan_tso = 0;
1550         u16 mss_hw_csum = 0;
1551         u16 inner_vtag = 0;
1552         u16 out_vtag = 0;
1553         int ret;
1554
1555         ret = hns3_handle_vtags(ring, skb);
1556         if (unlikely(ret < 0)) {
1557                 u64_stats_update_begin(&ring->syncp);
1558                 ring->stats.tx_vlan_err++;
1559                 u64_stats_update_end(&ring->syncp);
1560                 return ret;
1561         } else if (ret == HNS3_INNER_VLAN_TAG) {
1562                 inner_vtag = skb_vlan_tag_get(skb);
1563                 inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1564                                 VLAN_PRIO_MASK;
1565                 hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1566         } else if (ret == HNS3_OUTER_VLAN_TAG) {
1567                 out_vtag = skb_vlan_tag_get(skb);
1568                 out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1569                                 VLAN_PRIO_MASK;
1570                 hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1571                                1);
1572         }
1573
1574         desc_cb->send_bytes = skb->len;
1575
1576         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1577                 u8 ol4_proto, il4_proto;
1578
1579                 if (hns3_check_hw_tx_csum(skb)) {
1580                         /* set checksum start and offset, defined in 2 Bytes */
1581                         hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1582                                        skb_checksum_start_offset(skb) >> 1);
1583                         hns3_set_field(ol_type_vlan_len_msec,
1584                                        HNS3_TXD_CSUM_OFFSET_S,
1585                                        skb->csum_offset >> 1);
1586                         mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1587                         goto out_hw_tx_csum;
1588                 }
1589
1590                 skb_reset_mac_len(skb);
1591
1592                 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1593                 if (unlikely(ret < 0)) {
1594                         u64_stats_update_begin(&ring->syncp);
1595                         ring->stats.tx_l4_proto_err++;
1596                         u64_stats_update_end(&ring->syncp);
1597                         return ret;
1598                 }
1599
1600                 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1601                                       &type_cs_vlan_tso,
1602                                       &ol_type_vlan_len_msec);
1603                 if (unlikely(ret < 0)) {
1604                         u64_stats_update_begin(&ring->syncp);
1605                         ring->stats.tx_l2l3l4_err++;
1606                         u64_stats_update_end(&ring->syncp);
1607                         return ret;
1608                 }
1609
1610                 ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1611                                    &type_cs_vlan_tso, &desc_cb->send_bytes);
1612                 if (unlikely(ret < 0)) {
1613                         u64_stats_update_begin(&ring->syncp);
1614                         ring->stats.tx_tso_err++;
1615                         u64_stats_update_end(&ring->syncp);
1616                         return ret;
1617                 }
1618         }
1619
1620 out_hw_tx_csum:
1621         /* Set txbd */
1622         desc->tx.ol_type_vlan_len_msec =
1623                 cpu_to_le32(ol_type_vlan_len_msec);
1624         desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1625         desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1626         desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1627         desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1628         desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1629
1630         return 0;
1631 }
1632
1633 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1634                           unsigned int size)
1635 {
1636 #define HNS3_LIKELY_BD_NUM      1
1637
1638         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1639         unsigned int frag_buf_num;
1640         int k, sizeoflast;
1641
1642         if (likely(size <= HNS3_MAX_BD_SIZE)) {
1643                 desc->addr = cpu_to_le64(dma);
1644                 desc->tx.send_size = cpu_to_le16(size);
1645                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1646                         cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1647
1648                 trace_hns3_tx_desc(ring, ring->next_to_use);
1649                 ring_ptr_move_fw(ring, next_to_use);
1650                 return HNS3_LIKELY_BD_NUM;
1651         }
1652
1653         frag_buf_num = hns3_tx_bd_count(size);
1654         sizeoflast = size % HNS3_MAX_BD_SIZE;
1655         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1656
1657         /* When frag size is bigger than hardware limit, split this frag */
1658         for (k = 0; k < frag_buf_num; k++) {
1659                 /* now, fill the descriptor */
1660                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1661                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1662                                      (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1663                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1664                                 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1665
1666                 trace_hns3_tx_desc(ring, ring->next_to_use);
1667                 /* move ring pointer to next */
1668                 ring_ptr_move_fw(ring, next_to_use);
1669
1670                 desc = &ring->desc[ring->next_to_use];
1671         }
1672
1673         return frag_buf_num;
1674 }
1675
1676 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1677                                   unsigned int type)
1678 {
1679         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1680         struct device *dev = ring_to_dev(ring);
1681         unsigned int size;
1682         dma_addr_t dma;
1683
1684         if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1685                 struct sk_buff *skb = (struct sk_buff *)priv;
1686
1687                 size = skb_headlen(skb);
1688                 if (!size)
1689                         return 0;
1690
1691                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1692         } else if (type & DESC_TYPE_BOUNCE_HEAD) {
1693                 /* Head data has been filled in hns3_handle_tx_bounce(),
1694                  * just return 0 here.
1695                  */
1696                 return 0;
1697         } else {
1698                 skb_frag_t *frag = (skb_frag_t *)priv;
1699
1700                 size = skb_frag_size(frag);
1701                 if (!size)
1702                         return 0;
1703
1704                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1705         }
1706
1707         if (unlikely(dma_mapping_error(dev, dma))) {
1708                 u64_stats_update_begin(&ring->syncp);
1709                 ring->stats.sw_err_cnt++;
1710                 u64_stats_update_end(&ring->syncp);
1711                 return -ENOMEM;
1712         }
1713
1714         desc_cb->priv = priv;
1715         desc_cb->length = size;
1716         desc_cb->dma = dma;
1717         desc_cb->type = type;
1718
1719         return hns3_fill_desc(ring, dma, size);
1720 }
1721
1722 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1723                                     unsigned int bd_num)
1724 {
1725         unsigned int size;
1726         int i;
1727
1728         size = skb_headlen(skb);
1729         while (size > HNS3_MAX_BD_SIZE) {
1730                 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1731                 size -= HNS3_MAX_BD_SIZE;
1732
1733                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1734                         return bd_num;
1735         }
1736
1737         if (size) {
1738                 bd_size[bd_num++] = size;
1739                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1740                         return bd_num;
1741         }
1742
1743         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1744                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1745                 size = skb_frag_size(frag);
1746                 if (!size)
1747                         continue;
1748
1749                 while (size > HNS3_MAX_BD_SIZE) {
1750                         bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1751                         size -= HNS3_MAX_BD_SIZE;
1752
1753                         if (bd_num > HNS3_MAX_TSO_BD_NUM)
1754                                 return bd_num;
1755                 }
1756
1757                 bd_size[bd_num++] = size;
1758                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1759                         return bd_num;
1760         }
1761
1762         return bd_num;
1763 }
1764
1765 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1766                                    u8 max_non_tso_bd_num, unsigned int bd_num,
1767                                    unsigned int recursion_level)
1768 {
1769 #define HNS3_MAX_RECURSION_LEVEL        24
1770
1771         struct sk_buff *frag_skb;
1772
1773         /* If the total len is within the max bd limit */
1774         if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1775                    !skb_has_frag_list(skb) &&
1776                    skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1777                 return skb_shinfo(skb)->nr_frags + 1U;
1778
1779         if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1780                 return UINT_MAX;
1781
1782         bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1783         if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1784                 return bd_num;
1785
1786         skb_walk_frags(skb, frag_skb) {
1787                 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1788                                         bd_num, recursion_level + 1);
1789                 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1790                         return bd_num;
1791         }
1792
1793         return bd_num;
1794 }
1795
1796 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1797 {
1798         if (!skb->encapsulation)
1799                 return skb_transport_offset(skb) + tcp_hdrlen(skb);
1800
1801         return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1802 }
1803
1804 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1805  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1806  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1807  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1808  * than MSS except the last max_non_tso_bd_num - 1 frags.
1809  */
1810 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1811                                      unsigned int bd_num, u8 max_non_tso_bd_num)
1812 {
1813         unsigned int tot_len = 0;
1814         int i;
1815
1816         for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1817                 tot_len += bd_size[i];
1818
1819         /* ensure the first max_non_tso_bd_num frags is greater than
1820          * mss + header
1821          */
1822         if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1823             skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1824                 return true;
1825
1826         /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1827          * than mss except the last one.
1828          */
1829         for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1830                 tot_len -= bd_size[i];
1831                 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1832
1833                 if (tot_len < skb_shinfo(skb)->gso_size)
1834                         return true;
1835         }
1836
1837         return false;
1838 }
1839
1840 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1841 {
1842         int i;
1843
1844         for (i = 0; i < MAX_SKB_FRAGS; i++)
1845                 size[i] = skb_frag_size(&shinfo->frags[i]);
1846 }
1847
1848 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1849                               struct sk_buff *skb,
1850                               u8 max_non_tso_bd_num,
1851                               unsigned int bd_num)
1852 {
1853         /* 'bd_num == UINT_MAX' means the skb' fraglist has a
1854          * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1855          */
1856         if (bd_num == UINT_MAX) {
1857                 u64_stats_update_begin(&ring->syncp);
1858                 ring->stats.over_max_recursion++;
1859                 u64_stats_update_end(&ring->syncp);
1860                 return -ENOMEM;
1861         }
1862
1863         /* The skb->len has exceeded the hw limitation, linearization
1864          * will not help.
1865          */
1866         if (skb->len > HNS3_MAX_TSO_SIZE ||
1867             (!skb_is_gso(skb) && skb->len >
1868              HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))) {
1869                 u64_stats_update_begin(&ring->syncp);
1870                 ring->stats.hw_limitation++;
1871                 u64_stats_update_end(&ring->syncp);
1872                 return -ENOMEM;
1873         }
1874
1875         if (__skb_linearize(skb)) {
1876                 u64_stats_update_begin(&ring->syncp);
1877                 ring->stats.sw_err_cnt++;
1878                 u64_stats_update_end(&ring->syncp);
1879                 return -ENOMEM;
1880         }
1881
1882         return 0;
1883 }
1884
1885 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1886                                   struct net_device *netdev,
1887                                   struct sk_buff *skb)
1888 {
1889         struct hns3_nic_priv *priv = netdev_priv(netdev);
1890         u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1891         unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1892         unsigned int bd_num;
1893
1894         bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1895         if (unlikely(bd_num > max_non_tso_bd_num)) {
1896                 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1897                     !hns3_skb_need_linearized(skb, bd_size, bd_num,
1898                                               max_non_tso_bd_num)) {
1899                         trace_hns3_over_max_bd(skb);
1900                         goto out;
1901                 }
1902
1903                 if (hns3_skb_linearize(ring, skb, max_non_tso_bd_num,
1904                                        bd_num))
1905                         return -ENOMEM;
1906
1907                 bd_num = hns3_tx_bd_count(skb->len);
1908
1909                 u64_stats_update_begin(&ring->syncp);
1910                 ring->stats.tx_copy++;
1911                 u64_stats_update_end(&ring->syncp);
1912         }
1913
1914 out:
1915         if (likely(ring_space(ring) >= bd_num))
1916                 return bd_num;
1917
1918         netif_stop_subqueue(netdev, ring->queue_index);
1919         smp_mb(); /* Memory barrier before checking ring_space */
1920
1921         /* Start queue in case hns3_clean_tx_ring has just made room
1922          * available and has not seen the queue stopped state performed
1923          * by netif_stop_subqueue above.
1924          */
1925         if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1926             !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1927                 netif_start_subqueue(netdev, ring->queue_index);
1928                 return bd_num;
1929         }
1930
1931         u64_stats_update_begin(&ring->syncp);
1932         ring->stats.tx_busy++;
1933         u64_stats_update_end(&ring->syncp);
1934
1935         return -EBUSY;
1936 }
1937
1938 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1939 {
1940         struct device *dev = ring_to_dev(ring);
1941         unsigned int i;
1942
1943         for (i = 0; i < ring->desc_num; i++) {
1944                 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1945                 struct hns3_desc_cb *desc_cb;
1946
1947                 memset(desc, 0, sizeof(*desc));
1948
1949                 /* check if this is where we started */
1950                 if (ring->next_to_use == next_to_use_orig)
1951                         break;
1952
1953                 /* rollback one */
1954                 ring_ptr_move_bw(ring, next_to_use);
1955
1956                 desc_cb = &ring->desc_cb[ring->next_to_use];
1957
1958                 if (!desc_cb->dma)
1959                         continue;
1960
1961                 /* unmap the descriptor dma address */
1962                 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1963                         dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1964                                          DMA_TO_DEVICE);
1965                 else if (desc_cb->type &
1966                          (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1967                         hns3_tx_spare_rollback(ring, desc_cb->length);
1968                 else if (desc_cb->length)
1969                         dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
1970                                        DMA_TO_DEVICE);
1971
1972                 desc_cb->length = 0;
1973                 desc_cb->dma = 0;
1974                 desc_cb->type = DESC_TYPE_UNKNOWN;
1975         }
1976 }
1977
1978 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1979                                  struct sk_buff *skb, unsigned int type)
1980 {
1981         struct sk_buff *frag_skb;
1982         int i, ret, bd_num = 0;
1983
1984         ret = hns3_map_and_fill_desc(ring, skb, type);
1985         if (unlikely(ret < 0))
1986                 return ret;
1987
1988         bd_num += ret;
1989
1990         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1991                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1992
1993                 ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
1994                 if (unlikely(ret < 0))
1995                         return ret;
1996
1997                 bd_num += ret;
1998         }
1999
2000         skb_walk_frags(skb, frag_skb) {
2001                 ret = hns3_fill_skb_to_desc(ring, frag_skb,
2002                                             DESC_TYPE_FRAGLIST_SKB);
2003                 if (unlikely(ret < 0))
2004                         return ret;
2005
2006                 bd_num += ret;
2007         }
2008
2009         return bd_num;
2010 }
2011
2012 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2013                              bool doorbell)
2014 {
2015         ring->pending_buf += num;
2016
2017         if (!doorbell) {
2018                 u64_stats_update_begin(&ring->syncp);
2019                 ring->stats.tx_more++;
2020                 u64_stats_update_end(&ring->syncp);
2021                 return;
2022         }
2023
2024         if (!ring->pending_buf)
2025                 return;
2026
2027         writel(ring->pending_buf,
2028                ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2029         ring->pending_buf = 0;
2030         WRITE_ONCE(ring->last_to_use, ring->next_to_use);
2031 }
2032
2033 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2034                       struct hns3_desc *desc)
2035 {
2036         struct hnae3_handle *h = hns3_get_handle(netdev);
2037
2038         if (!(h->ae_algo->ops->set_tx_hwts_info &&
2039               h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2040                 return;
2041
2042         desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2043 }
2044
2045 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2046                                  struct sk_buff *skb)
2047 {
2048         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2049         unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2050         unsigned int size = skb_headlen(skb);
2051         dma_addr_t dma;
2052         int bd_num = 0;
2053         u32 cb_len;
2054         void *buf;
2055         int ret;
2056
2057         if (skb->len <= ring->tx_copybreak) {
2058                 size = skb->len;
2059                 type = DESC_TYPE_BOUNCE_ALL;
2060         }
2061
2062         /* hns3_can_use_tx_bounce() is called to ensure the below
2063          * function can always return the tx buffer.
2064          */
2065         buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2066
2067         ret = skb_copy_bits(skb, 0, buf, size);
2068         if (unlikely(ret < 0)) {
2069                 hns3_tx_spare_rollback(ring, cb_len);
2070                 u64_stats_update_begin(&ring->syncp);
2071                 ring->stats.copy_bits_err++;
2072                 u64_stats_update_end(&ring->syncp);
2073                 return ret;
2074         }
2075
2076         desc_cb->priv = skb;
2077         desc_cb->length = cb_len;
2078         desc_cb->dma = dma;
2079         desc_cb->type = type;
2080
2081         bd_num += hns3_fill_desc(ring, dma, size);
2082
2083         if (type == DESC_TYPE_BOUNCE_HEAD) {
2084                 ret = hns3_fill_skb_to_desc(ring, skb,
2085                                             DESC_TYPE_BOUNCE_HEAD);
2086                 if (unlikely(ret < 0))
2087                         return ret;
2088
2089                 bd_num += ret;
2090         }
2091
2092         dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2093                                    DMA_TO_DEVICE);
2094
2095         u64_stats_update_begin(&ring->syncp);
2096         ring->stats.tx_bounce++;
2097         u64_stats_update_end(&ring->syncp);
2098         return bd_num;
2099 }
2100
2101 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2102                               struct sk_buff *skb)
2103 {
2104         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2105         u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2106         struct sg_table *sgt;
2107         int i, bd_num = 0;
2108         dma_addr_t dma;
2109         u32 cb_len;
2110         int nents;
2111
2112         if (skb_has_frag_list(skb))
2113                 nfrag = HNS3_MAX_TSO_BD_NUM;
2114
2115         /* hns3_can_use_tx_sgl() is called to ensure the below
2116          * function can always return the tx buffer.
2117          */
2118         sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2119                                   &dma, &cb_len);
2120
2121         /* scatterlist follows by the sg table */
2122         sgt->sgl = (struct scatterlist *)(sgt + 1);
2123         sg_init_table(sgt->sgl, nfrag);
2124         nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2125         if (unlikely(nents < 0)) {
2126                 hns3_tx_spare_rollback(ring, cb_len);
2127                 u64_stats_update_begin(&ring->syncp);
2128                 ring->stats.skb2sgl_err++;
2129                 u64_stats_update_end(&ring->syncp);
2130                 return -ENOMEM;
2131         }
2132
2133         sgt->orig_nents = nents;
2134         sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2135                                 DMA_TO_DEVICE);
2136         if (unlikely(!sgt->nents)) {
2137                 hns3_tx_spare_rollback(ring, cb_len);
2138                 u64_stats_update_begin(&ring->syncp);
2139                 ring->stats.map_sg_err++;
2140                 u64_stats_update_end(&ring->syncp);
2141                 return -ENOMEM;
2142         }
2143
2144         desc_cb->priv = skb;
2145         desc_cb->length = cb_len;
2146         desc_cb->dma = dma;
2147         desc_cb->type = DESC_TYPE_SGL_SKB;
2148
2149         for (i = 0; i < sgt->nents; i++)
2150                 bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2151                                          sg_dma_len(sgt->sgl + i));
2152
2153         u64_stats_update_begin(&ring->syncp);
2154         ring->stats.tx_sgl++;
2155         u64_stats_update_end(&ring->syncp);
2156
2157         return bd_num;
2158 }
2159
2160 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2161                                     struct sk_buff *skb)
2162 {
2163         u32 space;
2164
2165         if (!ring->tx_spare)
2166                 goto out;
2167
2168         space = hns3_tx_spare_space(ring);
2169
2170         if (hns3_can_use_tx_sgl(ring, skb, space))
2171                 return hns3_handle_tx_sgl(ring, skb);
2172
2173         if (hns3_can_use_tx_bounce(ring, skb, space))
2174                 return hns3_handle_tx_bounce(ring, skb);
2175
2176 out:
2177         return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2178 }
2179
2180 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2181 {
2182         struct hns3_nic_priv *priv = netdev_priv(netdev);
2183         struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2184         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2185         struct netdev_queue *dev_queue;
2186         int pre_ntu, next_to_use_head;
2187         bool doorbell;
2188         int ret;
2189
2190         /* Hardware can only handle short frames above 32 bytes */
2191         if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2192                 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2193
2194                 u64_stats_update_begin(&ring->syncp);
2195                 ring->stats.sw_err_cnt++;
2196                 u64_stats_update_end(&ring->syncp);
2197
2198                 return NETDEV_TX_OK;
2199         }
2200
2201         /* Prefetch the data used later */
2202         prefetch(skb->data);
2203
2204         ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2205         if (unlikely(ret <= 0)) {
2206                 if (ret == -EBUSY) {
2207                         hns3_tx_doorbell(ring, 0, true);
2208                         return NETDEV_TX_BUSY;
2209                 }
2210
2211                 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2212                 goto out_err_tx_ok;
2213         }
2214
2215         next_to_use_head = ring->next_to_use;
2216
2217         ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2218                                  desc_cb);
2219         if (unlikely(ret < 0))
2220                 goto fill_err;
2221
2222         /* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2223          * zero, which is unlikely, and 'ret > 0' means how many tx desc
2224          * need to be notified to the hw.
2225          */
2226         ret = hns3_handle_desc_filling(ring, skb);
2227         if (unlikely(ret <= 0))
2228                 goto fill_err;
2229
2230         pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2231                                         (ring->desc_num - 1);
2232
2233         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2234                 hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2235
2236         ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2237                                 cpu_to_le16(BIT(HNS3_TXD_FE_B));
2238         trace_hns3_tx_desc(ring, pre_ntu);
2239
2240         skb_tx_timestamp(skb);
2241
2242         /* Complete translate all packets */
2243         dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2244         doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2245                                           netdev_xmit_more());
2246         hns3_tx_doorbell(ring, ret, doorbell);
2247
2248         return NETDEV_TX_OK;
2249
2250 fill_err:
2251         hns3_clear_desc(ring, next_to_use_head);
2252
2253 out_err_tx_ok:
2254         dev_kfree_skb_any(skb);
2255         hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2256         return NETDEV_TX_OK;
2257 }
2258
2259 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2260 {
2261         struct hnae3_handle *h = hns3_get_handle(netdev);
2262         struct sockaddr *mac_addr = p;
2263         int ret;
2264
2265         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2266                 return -EADDRNOTAVAIL;
2267
2268         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2269                 netdev_info(netdev, "already using mac address %pM\n",
2270                             mac_addr->sa_data);
2271                 return 0;
2272         }
2273
2274         /* For VF device, if there is a perm_addr, then the user will not
2275          * be allowed to change the address.
2276          */
2277         if (!hns3_is_phys_func(h->pdev) &&
2278             !is_zero_ether_addr(netdev->perm_addr)) {
2279                 netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
2280                            netdev->perm_addr, mac_addr->sa_data);
2281                 return -EPERM;
2282         }
2283
2284         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2285         if (ret) {
2286                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2287                 return ret;
2288         }
2289
2290         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
2291
2292         return 0;
2293 }
2294
2295 static int hns3_nic_do_ioctl(struct net_device *netdev,
2296                              struct ifreq *ifr, int cmd)
2297 {
2298         struct hnae3_handle *h = hns3_get_handle(netdev);
2299
2300         if (!netif_running(netdev))
2301                 return -EINVAL;
2302
2303         if (!h->ae_algo->ops->do_ioctl)
2304                 return -EOPNOTSUPP;
2305
2306         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2307 }
2308
2309 static int hns3_nic_set_features(struct net_device *netdev,
2310                                  netdev_features_t features)
2311 {
2312         netdev_features_t changed = netdev->features ^ features;
2313         struct hns3_nic_priv *priv = netdev_priv(netdev);
2314         struct hnae3_handle *h = priv->ae_handle;
2315         bool enable;
2316         int ret;
2317
2318         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2319                 enable = !!(features & NETIF_F_GRO_HW);
2320                 ret = h->ae_algo->ops->set_gro_en(h, enable);
2321                 if (ret)
2322                         return ret;
2323         }
2324
2325         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2326             h->ae_algo->ops->enable_hw_strip_rxvtag) {
2327                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2328                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2329                 if (ret)
2330                         return ret;
2331         }
2332
2333         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2334                 enable = !!(features & NETIF_F_NTUPLE);
2335                 h->ae_algo->ops->enable_fd(h, enable);
2336         }
2337
2338         if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2339             h->ae_algo->ops->cls_flower_active(h)) {
2340                 netdev_err(netdev,
2341                            "there are offloaded TC filters active, cannot disable HW TC offload");
2342                 return -EINVAL;
2343         }
2344
2345         if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2346             h->ae_algo->ops->enable_vlan_filter) {
2347                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2348                 ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2349                 if (ret)
2350                         return ret;
2351         }
2352
2353         netdev->features = features;
2354         return 0;
2355 }
2356
2357 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2358                                              struct net_device *dev,
2359                                              netdev_features_t features)
2360 {
2361 #define HNS3_MAX_HDR_LEN        480U
2362 #define HNS3_MAX_L4_HDR_LEN     60U
2363
2364         size_t len;
2365
2366         if (skb->ip_summed != CHECKSUM_PARTIAL)
2367                 return features;
2368
2369         if (skb->encapsulation)
2370                 len = skb_inner_transport_header(skb) - skb->data;
2371         else
2372                 len = skb_transport_header(skb) - skb->data;
2373
2374         /* Assume L4 is 60 byte as TCP is the only protocol with a
2375          * a flexible value, and it's max len is 60 bytes.
2376          */
2377         len += HNS3_MAX_L4_HDR_LEN;
2378
2379         /* Hardware only supports checksum on the skb with a max header
2380          * len of 480 bytes.
2381          */
2382         if (len > HNS3_MAX_HDR_LEN)
2383                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2384
2385         return features;
2386 }
2387
2388 static void hns3_nic_get_stats64(struct net_device *netdev,
2389                                  struct rtnl_link_stats64 *stats)
2390 {
2391         struct hns3_nic_priv *priv = netdev_priv(netdev);
2392         int queue_num = priv->ae_handle->kinfo.num_tqps;
2393         struct hnae3_handle *handle = priv->ae_handle;
2394         struct hns3_enet_ring *ring;
2395         u64 rx_length_errors = 0;
2396         u64 rx_crc_errors = 0;
2397         u64 rx_multicast = 0;
2398         unsigned int start;
2399         u64 tx_errors = 0;
2400         u64 rx_errors = 0;
2401         unsigned int idx;
2402         u64 tx_bytes = 0;
2403         u64 rx_bytes = 0;
2404         u64 tx_pkts = 0;
2405         u64 rx_pkts = 0;
2406         u64 tx_drop = 0;
2407         u64 rx_drop = 0;
2408
2409         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2410                 return;
2411
2412         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
2413
2414         for (idx = 0; idx < queue_num; idx++) {
2415                 /* fetch the tx stats */
2416                 ring = &priv->ring[idx];
2417                 do {
2418                         start = u64_stats_fetch_begin_irq(&ring->syncp);
2419                         tx_bytes += ring->stats.tx_bytes;
2420                         tx_pkts += ring->stats.tx_pkts;
2421                         tx_drop += ring->stats.sw_err_cnt;
2422                         tx_drop += ring->stats.tx_vlan_err;
2423                         tx_drop += ring->stats.tx_l4_proto_err;
2424                         tx_drop += ring->stats.tx_l2l3l4_err;
2425                         tx_drop += ring->stats.tx_tso_err;
2426                         tx_drop += ring->stats.over_max_recursion;
2427                         tx_drop += ring->stats.hw_limitation;
2428                         tx_drop += ring->stats.copy_bits_err;
2429                         tx_drop += ring->stats.skb2sgl_err;
2430                         tx_drop += ring->stats.map_sg_err;
2431                         tx_errors += ring->stats.sw_err_cnt;
2432                         tx_errors += ring->stats.tx_vlan_err;
2433                         tx_errors += ring->stats.tx_l4_proto_err;
2434                         tx_errors += ring->stats.tx_l2l3l4_err;
2435                         tx_errors += ring->stats.tx_tso_err;
2436                         tx_errors += ring->stats.over_max_recursion;
2437                         tx_errors += ring->stats.hw_limitation;
2438                         tx_errors += ring->stats.copy_bits_err;
2439                         tx_errors += ring->stats.skb2sgl_err;
2440                         tx_errors += ring->stats.map_sg_err;
2441                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2442
2443                 /* fetch the rx stats */
2444                 ring = &priv->ring[idx + queue_num];
2445                 do {
2446                         start = u64_stats_fetch_begin_irq(&ring->syncp);
2447                         rx_bytes += ring->stats.rx_bytes;
2448                         rx_pkts += ring->stats.rx_pkts;
2449                         rx_drop += ring->stats.l2_err;
2450                         rx_errors += ring->stats.l2_err;
2451                         rx_errors += ring->stats.l3l4_csum_err;
2452                         rx_crc_errors += ring->stats.l2_err;
2453                         rx_multicast += ring->stats.rx_multicast;
2454                         rx_length_errors += ring->stats.err_pkt_len;
2455                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2456         }
2457
2458         stats->tx_bytes = tx_bytes;
2459         stats->tx_packets = tx_pkts;
2460         stats->rx_bytes = rx_bytes;
2461         stats->rx_packets = rx_pkts;
2462
2463         stats->rx_errors = rx_errors;
2464         stats->multicast = rx_multicast;
2465         stats->rx_length_errors = rx_length_errors;
2466         stats->rx_crc_errors = rx_crc_errors;
2467         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2468
2469         stats->tx_errors = tx_errors;
2470         stats->rx_dropped = rx_drop;
2471         stats->tx_dropped = tx_drop;
2472         stats->collisions = netdev->stats.collisions;
2473         stats->rx_over_errors = netdev->stats.rx_over_errors;
2474         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2475         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2476         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2477         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2478         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2479         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2480         stats->tx_window_errors = netdev->stats.tx_window_errors;
2481         stats->rx_compressed = netdev->stats.rx_compressed;
2482         stats->tx_compressed = netdev->stats.tx_compressed;
2483 }
2484
2485 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2486 {
2487         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2488         struct hnae3_knic_private_info *kinfo;
2489         u8 tc = mqprio_qopt->qopt.num_tc;
2490         u16 mode = mqprio_qopt->mode;
2491         u8 hw = mqprio_qopt->qopt.hw;
2492         struct hnae3_handle *h;
2493
2494         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2495                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2496                 return -EOPNOTSUPP;
2497
2498         if (tc > HNAE3_MAX_TC)
2499                 return -EINVAL;
2500
2501         if (!netdev)
2502                 return -EINVAL;
2503
2504         h = hns3_get_handle(netdev);
2505         kinfo = &h->kinfo;
2506
2507         netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2508
2509         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2510                 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2511 }
2512
2513 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2514                                     struct flow_cls_offload *flow)
2515 {
2516         int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2517         struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2518
2519         switch (flow->command) {
2520         case FLOW_CLS_REPLACE:
2521                 if (h->ae_algo->ops->add_cls_flower)
2522                         return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2523                 break;
2524         case FLOW_CLS_DESTROY:
2525                 if (h->ae_algo->ops->del_cls_flower)
2526                         return h->ae_algo->ops->del_cls_flower(h, flow);
2527                 break;
2528         default:
2529                 break;
2530         }
2531
2532         return -EOPNOTSUPP;
2533 }
2534
2535 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2536                                   void *cb_priv)
2537 {
2538         struct hns3_nic_priv *priv = cb_priv;
2539
2540         if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2541                 return -EOPNOTSUPP;
2542
2543         switch (type) {
2544         case TC_SETUP_CLSFLOWER:
2545                 return hns3_setup_tc_cls_flower(priv, type_data);
2546         default:
2547                 return -EOPNOTSUPP;
2548         }
2549 }
2550
2551 static LIST_HEAD(hns3_block_cb_list);
2552
2553 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2554                              void *type_data)
2555 {
2556         struct hns3_nic_priv *priv = netdev_priv(dev);
2557         int ret;
2558
2559         switch (type) {
2560         case TC_SETUP_QDISC_MQPRIO:
2561                 ret = hns3_setup_tc(dev, type_data);
2562                 break;
2563         case TC_SETUP_BLOCK:
2564                 ret = flow_block_cb_setup_simple(type_data,
2565                                                  &hns3_block_cb_list,
2566                                                  hns3_setup_tc_block_cb,
2567                                                  priv, priv, true);
2568                 break;
2569         default:
2570                 return -EOPNOTSUPP;
2571         }
2572
2573         return ret;
2574 }
2575
2576 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2577                                 __be16 proto, u16 vid)
2578 {
2579         struct hnae3_handle *h = hns3_get_handle(netdev);
2580         int ret = -EIO;
2581
2582         if (h->ae_algo->ops->set_vlan_filter)
2583                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2584
2585         return ret;
2586 }
2587
2588 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2589                                  __be16 proto, u16 vid)
2590 {
2591         struct hnae3_handle *h = hns3_get_handle(netdev);
2592         int ret = -EIO;
2593
2594         if (h->ae_algo->ops->set_vlan_filter)
2595                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2596
2597         return ret;
2598 }
2599
2600 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2601                                 u8 qos, __be16 vlan_proto)
2602 {
2603         struct hnae3_handle *h = hns3_get_handle(netdev);
2604         int ret = -EIO;
2605
2606         netif_dbg(h, drv, netdev,
2607                   "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2608                   vf, vlan, qos, ntohs(vlan_proto));
2609
2610         if (h->ae_algo->ops->set_vf_vlan_filter)
2611                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2612                                                           qos, vlan_proto);
2613
2614         return ret;
2615 }
2616
2617 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2618 {
2619         struct hnae3_handle *handle = hns3_get_handle(netdev);
2620
2621         if (hns3_nic_resetting(netdev))
2622                 return -EBUSY;
2623
2624         if (!handle->ae_algo->ops->set_vf_spoofchk)
2625                 return -EOPNOTSUPP;
2626
2627         return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2628 }
2629
2630 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2631 {
2632         struct hnae3_handle *handle = hns3_get_handle(netdev);
2633
2634         if (!handle->ae_algo->ops->set_vf_trust)
2635                 return -EOPNOTSUPP;
2636
2637         return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2638 }
2639
2640 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2641 {
2642         struct hnae3_handle *h = hns3_get_handle(netdev);
2643         int ret;
2644
2645         if (hns3_nic_resetting(netdev))
2646                 return -EBUSY;
2647
2648         if (!h->ae_algo->ops->set_mtu)
2649                 return -EOPNOTSUPP;
2650
2651         netif_dbg(h, drv, netdev,
2652                   "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2653
2654         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2655         if (ret)
2656                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
2657                            ret);
2658         else
2659                 netdev->mtu = new_mtu;
2660
2661         return ret;
2662 }
2663
2664 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2665 {
2666         struct hns3_nic_priv *priv = netdev_priv(ndev);
2667         struct hnae3_handle *h = hns3_get_handle(ndev);
2668         struct hns3_enet_ring *tx_ring;
2669         struct napi_struct *napi;
2670         int timeout_queue = 0;
2671         int hw_head, hw_tail;
2672         int fbd_num, fbd_oft;
2673         int ebd_num, ebd_oft;
2674         int bd_num, bd_err;
2675         int ring_en, tc;
2676         int i;
2677
2678         /* Find the stopped queue the same way the stack does */
2679         for (i = 0; i < ndev->num_tx_queues; i++) {
2680                 struct netdev_queue *q;
2681                 unsigned long trans_start;
2682
2683                 q = netdev_get_tx_queue(ndev, i);
2684                 trans_start = q->trans_start;
2685                 if (netif_xmit_stopped(q) &&
2686                     time_after(jiffies,
2687                                (trans_start + ndev->watchdog_timeo))) {
2688                         timeout_queue = i;
2689                         netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2690                                     q->state,
2691                                     jiffies_to_msecs(jiffies - trans_start));
2692                         break;
2693                 }
2694         }
2695
2696         if (i == ndev->num_tx_queues) {
2697                 netdev_info(ndev,
2698                             "no netdev TX timeout queue found, timeout count: %llu\n",
2699                             priv->tx_timeout_count);
2700                 return false;
2701         }
2702
2703         priv->tx_timeout_count++;
2704
2705         tx_ring = &priv->ring[timeout_queue];
2706         napi = &tx_ring->tqp_vector->napi;
2707
2708         netdev_info(ndev,
2709                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2710                     priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2711                     tx_ring->next_to_clean, napi->state);
2712
2713         netdev_info(ndev,
2714                     "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2715                     tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2716                     tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2717
2718         netdev_info(ndev,
2719                     "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2720                     tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2721                     tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2722
2723         /* When mac received many pause frames continuous, it's unable to send
2724          * packets, which may cause tx timeout
2725          */
2726         if (h->ae_algo->ops->get_mac_stats) {
2727                 struct hns3_mac_stats mac_stats;
2728
2729                 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2730                 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2731                             mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2732         }
2733
2734         hw_head = readl_relaxed(tx_ring->tqp->io_base +
2735                                 HNS3_RING_TX_RING_HEAD_REG);
2736         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2737                                 HNS3_RING_TX_RING_TAIL_REG);
2738         fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2739                                 HNS3_RING_TX_RING_FBDNUM_REG);
2740         fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2741                                 HNS3_RING_TX_RING_OFFSET_REG);
2742         ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2743                                 HNS3_RING_TX_RING_EBDNUM_REG);
2744         ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2745                                 HNS3_RING_TX_RING_EBD_OFFSET_REG);
2746         bd_num = readl_relaxed(tx_ring->tqp->io_base +
2747                                HNS3_RING_TX_RING_BD_NUM_REG);
2748         bd_err = readl_relaxed(tx_ring->tqp->io_base +
2749                                HNS3_RING_TX_RING_BD_ERR_REG);
2750         ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2751         tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2752
2753         netdev_info(ndev,
2754                     "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2755                     bd_num, hw_head, hw_tail, bd_err,
2756                     readl(tx_ring->tqp_vector->mask_addr));
2757         netdev_info(ndev,
2758                     "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2759                     ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2760
2761         return true;
2762 }
2763
2764 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2765 {
2766         struct hns3_nic_priv *priv = netdev_priv(ndev);
2767         struct hnae3_handle *h = priv->ae_handle;
2768
2769         if (!hns3_get_tx_timeo_queue_info(ndev))
2770                 return;
2771
2772         /* request the reset, and let the hclge to determine
2773          * which reset level should be done
2774          */
2775         if (h->ae_algo->ops->reset_event)
2776                 h->ae_algo->ops->reset_event(h->pdev, h);
2777 }
2778
2779 #ifdef CONFIG_RFS_ACCEL
2780 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2781                               u16 rxq_index, u32 flow_id)
2782 {
2783         struct hnae3_handle *h = hns3_get_handle(dev);
2784         struct flow_keys fkeys;
2785
2786         if (!h->ae_algo->ops->add_arfs_entry)
2787                 return -EOPNOTSUPP;
2788
2789         if (skb->encapsulation)
2790                 return -EPROTONOSUPPORT;
2791
2792         if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2793                 return -EPROTONOSUPPORT;
2794
2795         if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2796              fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2797             (fkeys.basic.ip_proto != IPPROTO_TCP &&
2798              fkeys.basic.ip_proto != IPPROTO_UDP))
2799                 return -EPROTONOSUPPORT;
2800
2801         return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2802 }
2803 #endif
2804
2805 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2806                                   struct ifla_vf_info *ivf)
2807 {
2808         struct hnae3_handle *h = hns3_get_handle(ndev);
2809
2810         if (!h->ae_algo->ops->get_vf_config)
2811                 return -EOPNOTSUPP;
2812
2813         return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2814 }
2815
2816 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2817                                       int link_state)
2818 {
2819         struct hnae3_handle *h = hns3_get_handle(ndev);
2820
2821         if (!h->ae_algo->ops->set_vf_link_state)
2822                 return -EOPNOTSUPP;
2823
2824         return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2825 }
2826
2827 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2828                                 int min_tx_rate, int max_tx_rate)
2829 {
2830         struct hnae3_handle *h = hns3_get_handle(ndev);
2831
2832         if (!h->ae_algo->ops->set_vf_rate)
2833                 return -EOPNOTSUPP;
2834
2835         return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2836                                             false);
2837 }
2838
2839 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2840 {
2841         struct hnae3_handle *h = hns3_get_handle(netdev);
2842
2843         if (!h->ae_algo->ops->set_vf_mac)
2844                 return -EOPNOTSUPP;
2845
2846         if (is_multicast_ether_addr(mac)) {
2847                 netdev_err(netdev,
2848                            "Invalid MAC:%pM specified. Could not set MAC\n",
2849                            mac);
2850                 return -EINVAL;
2851         }
2852
2853         return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2854 }
2855
2856 static const struct net_device_ops hns3_nic_netdev_ops = {
2857         .ndo_open               = hns3_nic_net_open,
2858         .ndo_stop               = hns3_nic_net_stop,
2859         .ndo_start_xmit         = hns3_nic_net_xmit,
2860         .ndo_tx_timeout         = hns3_nic_net_timeout,
2861         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
2862         .ndo_eth_ioctl          = hns3_nic_do_ioctl,
2863         .ndo_change_mtu         = hns3_nic_change_mtu,
2864         .ndo_set_features       = hns3_nic_set_features,
2865         .ndo_features_check     = hns3_features_check,
2866         .ndo_get_stats64        = hns3_nic_get_stats64,
2867         .ndo_setup_tc           = hns3_nic_setup_tc,
2868         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
2869         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
2870         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
2871         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
2872         .ndo_set_vf_spoofchk    = hns3_set_vf_spoofchk,
2873         .ndo_set_vf_trust       = hns3_set_vf_trust,
2874 #ifdef CONFIG_RFS_ACCEL
2875         .ndo_rx_flow_steer      = hns3_rx_flow_steer,
2876 #endif
2877         .ndo_get_vf_config      = hns3_nic_get_vf_config,
2878         .ndo_set_vf_link_state  = hns3_nic_set_vf_link_state,
2879         .ndo_set_vf_rate        = hns3_nic_set_vf_rate,
2880         .ndo_set_vf_mac         = hns3_nic_set_vf_mac,
2881 };
2882
2883 bool hns3_is_phys_func(struct pci_dev *pdev)
2884 {
2885         u32 dev_id = pdev->device;
2886
2887         switch (dev_id) {
2888         case HNAE3_DEV_ID_GE:
2889         case HNAE3_DEV_ID_25GE:
2890         case HNAE3_DEV_ID_25GE_RDMA:
2891         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2892         case HNAE3_DEV_ID_50GE_RDMA:
2893         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2894         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2895         case HNAE3_DEV_ID_200G_RDMA:
2896                 return true;
2897         case HNAE3_DEV_ID_VF:
2898         case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2899                 return false;
2900         default:
2901                 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2902                          dev_id);
2903         }
2904
2905         return false;
2906 }
2907
2908 static void hns3_disable_sriov(struct pci_dev *pdev)
2909 {
2910         /* If our VFs are assigned we cannot shut down SR-IOV
2911          * without causing issues, so just leave the hardware
2912          * available but disabled
2913          */
2914         if (pci_vfs_assigned(pdev)) {
2915                 dev_warn(&pdev->dev,
2916                          "disabling driver while VFs are assigned\n");
2917                 return;
2918         }
2919
2920         pci_disable_sriov(pdev);
2921 }
2922
2923 /* hns3_probe - Device initialization routine
2924  * @pdev: PCI device information struct
2925  * @ent: entry in hns3_pci_tbl
2926  *
2927  * hns3_probe initializes a PF identified by a pci_dev structure.
2928  * The OS initialization, configuring of the PF private structure,
2929  * and a hardware reset occur.
2930  *
2931  * Returns 0 on success, negative on failure
2932  */
2933 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2934 {
2935         struct hnae3_ae_dev *ae_dev;
2936         int ret;
2937
2938         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2939         if (!ae_dev)
2940                 return -ENOMEM;
2941
2942         ae_dev->pdev = pdev;
2943         ae_dev->flag = ent->driver_data;
2944         pci_set_drvdata(pdev, ae_dev);
2945
2946         ret = hnae3_register_ae_dev(ae_dev);
2947         if (ret)
2948                 pci_set_drvdata(pdev, NULL);
2949
2950         return ret;
2951 }
2952
2953 /* hns3_remove - Device removal routine
2954  * @pdev: PCI device information struct
2955  */
2956 static void hns3_remove(struct pci_dev *pdev)
2957 {
2958         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2959
2960         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2961                 hns3_disable_sriov(pdev);
2962
2963         hnae3_unregister_ae_dev(ae_dev);
2964         pci_set_drvdata(pdev, NULL);
2965 }
2966
2967 /**
2968  * hns3_pci_sriov_configure
2969  * @pdev: pointer to a pci_dev structure
2970  * @num_vfs: number of VFs to allocate
2971  *
2972  * Enable or change the number of VFs. Called when the user updates the number
2973  * of VFs in sysfs.
2974  **/
2975 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2976 {
2977         int ret;
2978
2979         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2980                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
2981                 return -EINVAL;
2982         }
2983
2984         if (num_vfs) {
2985                 ret = pci_enable_sriov(pdev, num_vfs);
2986                 if (ret)
2987                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2988                 else
2989                         return num_vfs;
2990         } else if (!pci_vfs_assigned(pdev)) {
2991                 pci_disable_sriov(pdev);
2992         } else {
2993                 dev_warn(&pdev->dev,
2994                          "Unable to free VFs because some are assigned to VMs.\n");
2995         }
2996
2997         return 0;
2998 }
2999
3000 static void hns3_shutdown(struct pci_dev *pdev)
3001 {
3002         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3003
3004         hnae3_unregister_ae_dev(ae_dev);
3005         pci_set_drvdata(pdev, NULL);
3006
3007         if (system_state == SYSTEM_POWER_OFF)
3008                 pci_set_power_state(pdev, PCI_D3hot);
3009 }
3010
3011 static int __maybe_unused hns3_suspend(struct device *dev)
3012 {
3013         struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3014
3015         if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3016                 dev_info(dev, "Begin to suspend.\n");
3017                 if (ae_dev->ops && ae_dev->ops->reset_prepare)
3018                         ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3019         }
3020
3021         return 0;
3022 }
3023
3024 static int __maybe_unused hns3_resume(struct device *dev)
3025 {
3026         struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3027
3028         if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3029                 dev_info(dev, "Begin to resume.\n");
3030                 if (ae_dev->ops && ae_dev->ops->reset_done)
3031                         ae_dev->ops->reset_done(ae_dev);
3032         }
3033
3034         return 0;
3035 }
3036
3037 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3038                                             pci_channel_state_t state)
3039 {
3040         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3041         pci_ers_result_t ret;
3042
3043         dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3044
3045         if (state == pci_channel_io_perm_failure)
3046                 return PCI_ERS_RESULT_DISCONNECT;
3047
3048         if (!ae_dev || !ae_dev->ops) {
3049                 dev_err(&pdev->dev,
3050                         "Can't recover - error happened before device initialized\n");
3051                 return PCI_ERS_RESULT_NONE;
3052         }
3053
3054         if (ae_dev->ops->handle_hw_ras_error)
3055                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3056         else
3057                 return PCI_ERS_RESULT_NONE;
3058
3059         return ret;
3060 }
3061
3062 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3063 {
3064         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3065         const struct hnae3_ae_ops *ops;
3066         enum hnae3_reset_type reset_type;
3067         struct device *dev = &pdev->dev;
3068
3069         if (!ae_dev || !ae_dev->ops)
3070                 return PCI_ERS_RESULT_NONE;
3071
3072         ops = ae_dev->ops;
3073         /* request the reset */
3074         if (ops->reset_event && ops->get_reset_level &&
3075             ops->set_default_reset_request) {
3076                 if (ae_dev->hw_err_reset_req) {
3077                         reset_type = ops->get_reset_level(ae_dev,
3078                                                 &ae_dev->hw_err_reset_req);
3079                         ops->set_default_reset_request(ae_dev, reset_type);
3080                         dev_info(dev, "requesting reset due to PCI error\n");
3081                         ops->reset_event(pdev, NULL);
3082                 }
3083
3084                 return PCI_ERS_RESULT_RECOVERED;
3085         }
3086
3087         return PCI_ERS_RESULT_DISCONNECT;
3088 }
3089
3090 static void hns3_reset_prepare(struct pci_dev *pdev)
3091 {
3092         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3093
3094         dev_info(&pdev->dev, "FLR prepare\n");
3095         if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3096                 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3097 }
3098
3099 static void hns3_reset_done(struct pci_dev *pdev)
3100 {
3101         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3102
3103         dev_info(&pdev->dev, "FLR done\n");
3104         if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3105                 ae_dev->ops->reset_done(ae_dev);
3106 }
3107
3108 static const struct pci_error_handlers hns3_err_handler = {
3109         .error_detected = hns3_error_detected,
3110         .slot_reset     = hns3_slot_reset,
3111         .reset_prepare  = hns3_reset_prepare,
3112         .reset_done     = hns3_reset_done,
3113 };
3114
3115 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3116
3117 static struct pci_driver hns3_driver = {
3118         .name     = hns3_driver_name,
3119         .id_table = hns3_pci_tbl,
3120         .probe    = hns3_probe,
3121         .remove   = hns3_remove,
3122         .shutdown = hns3_shutdown,
3123         .driver.pm  = &hns3_pm_ops,
3124         .sriov_configure = hns3_pci_sriov_configure,
3125         .err_handler    = &hns3_err_handler,
3126 };
3127
3128 /* set default feature to hns3 */
3129 static void hns3_set_default_feature(struct net_device *netdev)
3130 {
3131         struct hnae3_handle *h = hns3_get_handle(netdev);
3132         struct pci_dev *pdev = h->pdev;
3133         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3134
3135         netdev->priv_flags |= IFF_UNICAST_FLT;
3136
3137         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3138
3139         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3140                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3141                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3142                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3143                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3144                 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3145
3146         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3147                 netdev->features |= NETIF_F_GRO_HW;
3148
3149                 if (!(h->flags & HNAE3_SUPPORT_VF))
3150                         netdev->features |= NETIF_F_NTUPLE;
3151         }
3152
3153         if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3154                 netdev->features |= NETIF_F_GSO_UDP_L4;
3155
3156         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3157                 netdev->features |= NETIF_F_HW_CSUM;
3158         else
3159                 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3160
3161         if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3162                 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3163
3164         if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3165                 netdev->features |= NETIF_F_HW_TC;
3166
3167         netdev->hw_features |= netdev->features;
3168         if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3169                 netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3170
3171         netdev->vlan_features |= netdev->features &
3172                 ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3173                   NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3174                   NETIF_F_HW_TC);
3175
3176         netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3177 }
3178
3179 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3180                              struct hns3_desc_cb *cb)
3181 {
3182         unsigned int order = hns3_page_order(ring);
3183         struct page *p;
3184
3185         if (ring->page_pool) {
3186                 p = page_pool_dev_alloc_frag(ring->page_pool,
3187                                              &cb->page_offset,
3188                                              hns3_buf_size(ring));
3189                 if (unlikely(!p))
3190                         return -ENOMEM;
3191
3192                 cb->priv = p;
3193                 cb->buf = page_address(p);
3194                 cb->dma = page_pool_get_dma_addr(p);
3195                 cb->type = DESC_TYPE_PP_FRAG;
3196                 cb->reuse_flag = 0;
3197                 return 0;
3198         }
3199
3200         p = dev_alloc_pages(order);
3201         if (!p)
3202                 return -ENOMEM;
3203
3204         cb->priv = p;
3205         cb->page_offset = 0;
3206         cb->reuse_flag = 0;
3207         cb->buf  = page_address(p);
3208         cb->length = hns3_page_size(ring);
3209         cb->type = DESC_TYPE_PAGE;
3210         page_ref_add(p, USHRT_MAX - 1);
3211         cb->pagecnt_bias = USHRT_MAX;
3212
3213         return 0;
3214 }
3215
3216 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3217                              struct hns3_desc_cb *cb, int budget)
3218 {
3219         if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3220                         DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3221                 napi_consume_skb(cb->priv, budget);
3222         else if (!HNAE3_IS_TX_RING(ring)) {
3223                 if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3224                         __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3225                 else if (cb->type & DESC_TYPE_PP_FRAG)
3226                         page_pool_put_full_page(ring->page_pool, cb->priv,
3227                                                 false);
3228         }
3229         memset(cb, 0, sizeof(*cb));
3230 }
3231
3232 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3233 {
3234         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3235                                cb->length, ring_to_dma_dir(ring));
3236
3237         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3238                 return -EIO;
3239
3240         return 0;
3241 }
3242
3243 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3244                               struct hns3_desc_cb *cb)
3245 {
3246         if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3247                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3248                                  ring_to_dma_dir(ring));
3249         else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3250                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3251                                ring_to_dma_dir(ring));
3252         else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3253                              DESC_TYPE_SGL_SKB))
3254                 hns3_tx_spare_reclaim_cb(ring, cb);
3255 }
3256
3257 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3258 {
3259         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3260         ring->desc[i].addr = 0;
3261 }
3262
3263 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3264                                     int budget)
3265 {
3266         struct hns3_desc_cb *cb = &ring->desc_cb[i];
3267
3268         if (!ring->desc_cb[i].dma)
3269                 return;
3270
3271         hns3_buffer_detach(ring, i);
3272         hns3_free_buffer(ring, cb, budget);
3273 }
3274
3275 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3276 {
3277         int i;
3278
3279         for (i = 0; i < ring->desc_num; i++)
3280                 hns3_free_buffer_detach(ring, i, 0);
3281 }
3282
3283 /* free desc along with its attached buffer */
3284 static void hns3_free_desc(struct hns3_enet_ring *ring)
3285 {
3286         int size = ring->desc_num * sizeof(ring->desc[0]);
3287
3288         hns3_free_buffers(ring);
3289
3290         if (ring->desc) {
3291                 dma_free_coherent(ring_to_dev(ring), size,
3292                                   ring->desc, ring->desc_dma_addr);
3293                 ring->desc = NULL;
3294         }
3295 }
3296
3297 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3298 {
3299         int size = ring->desc_num * sizeof(ring->desc[0]);
3300
3301         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3302                                         &ring->desc_dma_addr, GFP_KERNEL);
3303         if (!ring->desc)
3304                 return -ENOMEM;
3305
3306         return 0;
3307 }
3308
3309 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3310                                    struct hns3_desc_cb *cb)
3311 {
3312         int ret;
3313
3314         ret = hns3_alloc_buffer(ring, cb);
3315         if (ret || ring->page_pool)
3316                 goto out;
3317
3318         ret = hns3_map_buffer(ring, cb);
3319         if (ret)
3320                 goto out_with_buf;
3321
3322         return 0;
3323
3324 out_with_buf:
3325         hns3_free_buffer(ring, cb, 0);
3326 out:
3327         return ret;
3328 }
3329
3330 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3331 {
3332         int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3333
3334         if (ret)
3335                 return ret;
3336
3337         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3338                                          ring->desc_cb[i].page_offset);
3339
3340         return 0;
3341 }
3342
3343 /* Allocate memory for raw pkg, and map with dma */
3344 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3345 {
3346         int i, j, ret;
3347
3348         for (i = 0; i < ring->desc_num; i++) {
3349                 ret = hns3_alloc_and_attach_buffer(ring, i);
3350                 if (ret)
3351                         goto out_buffer_fail;
3352         }
3353
3354         return 0;
3355
3356 out_buffer_fail:
3357         for (j = i - 1; j >= 0; j--)
3358                 hns3_free_buffer_detach(ring, j, 0);
3359         return ret;
3360 }
3361
3362 /* detach a in-used buffer and replace with a reserved one */
3363 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3364                                 struct hns3_desc_cb *res_cb)
3365 {
3366         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3367         ring->desc_cb[i] = *res_cb;
3368         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3369                                          ring->desc_cb[i].page_offset);
3370         ring->desc[i].rx.bd_base_info = 0;
3371 }
3372
3373 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3374 {
3375         ring->desc_cb[i].reuse_flag = 0;
3376         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3377                                          ring->desc_cb[i].page_offset);
3378         ring->desc[i].rx.bd_base_info = 0;
3379
3380         dma_sync_single_for_device(ring_to_dev(ring),
3381                         ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3382                         hns3_buf_size(ring),
3383                         DMA_FROM_DEVICE);
3384 }
3385
3386 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3387                                   int *bytes, int *pkts, int budget)
3388 {
3389         /* pair with ring->last_to_use update in hns3_tx_doorbell(),
3390          * smp_store_release() is not used in hns3_tx_doorbell() because
3391          * the doorbell operation already have the needed barrier operation.
3392          */
3393         int ltu = smp_load_acquire(&ring->last_to_use);
3394         int ntc = ring->next_to_clean;
3395         struct hns3_desc_cb *desc_cb;
3396         bool reclaimed = false;
3397         struct hns3_desc *desc;
3398
3399         while (ltu != ntc) {
3400                 desc = &ring->desc[ntc];
3401
3402                 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3403                                 BIT(HNS3_TXD_VLD_B))
3404                         break;
3405
3406                 desc_cb = &ring->desc_cb[ntc];
3407
3408                 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3409                                      DESC_TYPE_BOUNCE_HEAD |
3410                                      DESC_TYPE_SGL_SKB)) {
3411                         (*pkts)++;
3412                         (*bytes) += desc_cb->send_bytes;
3413                 }
3414
3415                 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3416                 hns3_free_buffer_detach(ring, ntc, budget);
3417
3418                 if (++ntc == ring->desc_num)
3419                         ntc = 0;
3420
3421                 /* Issue prefetch for next Tx descriptor */
3422                 prefetch(&ring->desc_cb[ntc]);
3423                 reclaimed = true;
3424         }
3425
3426         if (unlikely(!reclaimed))
3427                 return false;
3428
3429         /* This smp_store_release() pairs with smp_load_acquire() in
3430          * ring_space called by hns3_nic_net_xmit.
3431          */
3432         smp_store_release(&ring->next_to_clean, ntc);
3433
3434         hns3_tx_spare_update(ring);
3435
3436         return true;
3437 }
3438
3439 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3440 {
3441         struct net_device *netdev = ring_to_netdev(ring);
3442         struct hns3_nic_priv *priv = netdev_priv(netdev);
3443         struct netdev_queue *dev_queue;
3444         int bytes, pkts;
3445
3446         bytes = 0;
3447         pkts = 0;
3448
3449         if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3450                 return;
3451
3452         ring->tqp_vector->tx_group.total_bytes += bytes;
3453         ring->tqp_vector->tx_group.total_packets += pkts;
3454
3455         u64_stats_update_begin(&ring->syncp);
3456         ring->stats.tx_bytes += bytes;
3457         ring->stats.tx_pkts += pkts;
3458         u64_stats_update_end(&ring->syncp);
3459
3460         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3461         netdev_tx_completed_queue(dev_queue, pkts, bytes);
3462
3463         if (unlikely(netif_carrier_ok(netdev) &&
3464                      ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3465                 /* Make sure that anybody stopping the queue after this
3466                  * sees the new next_to_clean.
3467                  */
3468                 smp_mb();
3469                 if (netif_tx_queue_stopped(dev_queue) &&
3470                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3471                         netif_tx_wake_queue(dev_queue);
3472                         ring->stats.restart_queue++;
3473                 }
3474         }
3475 }
3476
3477 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3478 {
3479         int ntc = ring->next_to_clean;
3480         int ntu = ring->next_to_use;
3481
3482         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3483 }
3484
3485 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3486                                       int cleand_count)
3487 {
3488         struct hns3_desc_cb *desc_cb;
3489         struct hns3_desc_cb res_cbs;
3490         int i, ret;
3491
3492         for (i = 0; i < cleand_count; i++) {
3493                 desc_cb = &ring->desc_cb[ring->next_to_use];
3494                 if (desc_cb->reuse_flag) {
3495                         u64_stats_update_begin(&ring->syncp);
3496                         ring->stats.reuse_pg_cnt++;
3497                         u64_stats_update_end(&ring->syncp);
3498
3499                         hns3_reuse_buffer(ring, ring->next_to_use);
3500                 } else {
3501                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3502                         if (ret) {
3503                                 u64_stats_update_begin(&ring->syncp);
3504                                 ring->stats.sw_err_cnt++;
3505                                 u64_stats_update_end(&ring->syncp);
3506
3507                                 hns3_rl_err(ring_to_netdev(ring),
3508                                             "alloc rx buffer failed: %d\n",
3509                                             ret);
3510                                 break;
3511                         }
3512                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3513
3514                         u64_stats_update_begin(&ring->syncp);
3515                         ring->stats.non_reuse_pg++;
3516                         u64_stats_update_end(&ring->syncp);
3517                 }
3518
3519                 ring_ptr_move_fw(ring, next_to_use);
3520         }
3521
3522         writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3523 }
3524
3525 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3526 {
3527         return page_count(cb->priv) == cb->pagecnt_bias;
3528 }
3529
3530 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3531                                 struct hns3_enet_ring *ring, int pull_len,
3532                                 struct hns3_desc_cb *desc_cb)
3533 {
3534         struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3535         u32 frag_offset = desc_cb->page_offset + pull_len;
3536         int size = le16_to_cpu(desc->rx.size);
3537         u32 truesize = hns3_buf_size(ring);
3538         u32 frag_size = size - pull_len;
3539         bool reused;
3540
3541         if (ring->page_pool) {
3542                 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3543                                 frag_size, truesize);
3544                 return;
3545         }
3546
3547         /* Avoid re-using remote or pfmem page */
3548         if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3549                 goto out;
3550
3551         reused = hns3_can_reuse_page(desc_cb);
3552
3553         /* Rx page can be reused when:
3554          * 1. Rx page is only owned by the driver when page_offset
3555          *    is zero, which means 0 @ truesize will be used by
3556          *    stack after skb_add_rx_frag() is called, and the rest
3557          *    of rx page can be reused by driver.
3558          * Or
3559          * 2. Rx page is only owned by the driver when page_offset
3560          *    is non-zero, which means page_offset @ truesize will
3561          *    be used by stack after skb_add_rx_frag() is called,
3562          *    and 0 @ truesize can be reused by driver.
3563          */
3564         if ((!desc_cb->page_offset && reused) ||
3565             ((desc_cb->page_offset + truesize + truesize) <=
3566              hns3_page_size(ring) && desc_cb->page_offset)) {
3567                 desc_cb->page_offset += truesize;
3568                 desc_cb->reuse_flag = 1;
3569         } else if (desc_cb->page_offset && reused) {
3570                 desc_cb->page_offset = 0;
3571                 desc_cb->reuse_flag = 1;
3572         } else if (frag_size <= ring->rx_copybreak) {
3573                 void *frag = napi_alloc_frag(frag_size);
3574
3575                 if (unlikely(!frag)) {
3576                         u64_stats_update_begin(&ring->syncp);
3577                         ring->stats.frag_alloc_err++;
3578                         u64_stats_update_end(&ring->syncp);
3579
3580                         hns3_rl_err(ring_to_netdev(ring),
3581                                     "failed to allocate rx frag\n");
3582                         goto out;
3583                 }
3584
3585                 desc_cb->reuse_flag = 1;
3586                 memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3587                 skb_add_rx_frag(skb, i, virt_to_page(frag),
3588                                 offset_in_page(frag), frag_size, frag_size);
3589
3590                 u64_stats_update_begin(&ring->syncp);
3591                 ring->stats.frag_alloc++;
3592                 u64_stats_update_end(&ring->syncp);
3593                 return;
3594         }
3595
3596 out:
3597         desc_cb->pagecnt_bias--;
3598
3599         if (unlikely(!desc_cb->pagecnt_bias)) {
3600                 page_ref_add(desc_cb->priv, USHRT_MAX);
3601                 desc_cb->pagecnt_bias = USHRT_MAX;
3602         }
3603
3604         skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3605                         frag_size, truesize);
3606
3607         if (unlikely(!desc_cb->reuse_flag))
3608                 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3609 }
3610
3611 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3612 {
3613         __be16 type = skb->protocol;
3614         struct tcphdr *th;
3615         int depth = 0;
3616
3617         while (eth_type_vlan(type)) {
3618                 struct vlan_hdr *vh;
3619
3620                 if ((depth + VLAN_HLEN) > skb_headlen(skb))
3621                         return -EFAULT;
3622
3623                 vh = (struct vlan_hdr *)(skb->data + depth);
3624                 type = vh->h_vlan_encapsulated_proto;
3625                 depth += VLAN_HLEN;
3626         }
3627
3628         skb_set_network_header(skb, depth);
3629
3630         if (type == htons(ETH_P_IP)) {
3631                 const struct iphdr *iph = ip_hdr(skb);
3632
3633                 depth += sizeof(struct iphdr);
3634                 skb_set_transport_header(skb, depth);
3635                 th = tcp_hdr(skb);
3636                 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3637                                           iph->daddr, 0);
3638         } else if (type == htons(ETH_P_IPV6)) {
3639                 const struct ipv6hdr *iph = ipv6_hdr(skb);
3640
3641                 depth += sizeof(struct ipv6hdr);
3642                 skb_set_transport_header(skb, depth);
3643                 th = tcp_hdr(skb);
3644                 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3645                                           &iph->daddr, 0);
3646         } else {
3647                 hns3_rl_err(skb->dev,
3648                             "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3649                             be16_to_cpu(type), depth);
3650                 return -EFAULT;
3651         }
3652
3653         skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3654         if (th->cwr)
3655                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3656
3657         if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3658                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3659
3660         skb->csum_start = (unsigned char *)th - skb->head;
3661         skb->csum_offset = offsetof(struct tcphdr, check);
3662         skb->ip_summed = CHECKSUM_PARTIAL;
3663
3664         trace_hns3_gro(skb);
3665
3666         return 0;
3667 }
3668
3669 static bool hns3_checksum_complete(struct hns3_enet_ring *ring,
3670                                    struct sk_buff *skb, u32 ptype, u16 csum)
3671 {
3672         if (ptype == HNS3_INVALID_PTYPE ||
3673             hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3674                 return false;
3675
3676         u64_stats_update_begin(&ring->syncp);
3677         ring->stats.csum_complete++;
3678         u64_stats_update_end(&ring->syncp);
3679         skb->ip_summed = CHECKSUM_COMPLETE;
3680         skb->csum = csum_unfold((__force __sum16)csum);
3681
3682         return true;
3683 }
3684
3685 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3686                                 u32 ol_info, u32 ptype)
3687 {
3688         int l3_type, l4_type;
3689         int ol4_type;
3690
3691         if (ptype != HNS3_INVALID_PTYPE) {
3692                 skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3693                 skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3694
3695                 return;
3696         }
3697
3698         ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3699                                    HNS3_RXD_OL4ID_S);
3700         switch (ol4_type) {
3701         case HNS3_OL4_TYPE_MAC_IN_UDP:
3702         case HNS3_OL4_TYPE_NVGRE:
3703                 skb->csum_level = 1;
3704                 fallthrough;
3705         case HNS3_OL4_TYPE_NO_TUN:
3706                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3707                                           HNS3_RXD_L3ID_S);
3708                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3709                                           HNS3_RXD_L4ID_S);
3710                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3711                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3712                      l3_type == HNS3_L3_TYPE_IPV6) &&
3713                     (l4_type == HNS3_L4_TYPE_UDP ||
3714                      l4_type == HNS3_L4_TYPE_TCP ||
3715                      l4_type == HNS3_L4_TYPE_SCTP))
3716                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3717                 break;
3718         default:
3719                 break;
3720         }
3721 }
3722
3723 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3724                              u32 l234info, u32 bd_base_info, u32 ol_info,
3725                              u16 csum)
3726 {
3727         struct net_device *netdev = ring_to_netdev(ring);
3728         struct hns3_nic_priv *priv = netdev_priv(netdev);
3729         u32 ptype = HNS3_INVALID_PTYPE;
3730
3731         skb->ip_summed = CHECKSUM_NONE;
3732
3733         skb_checksum_none_assert(skb);
3734
3735         if (!(netdev->features & NETIF_F_RXCSUM))
3736                 return;
3737
3738         if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3739                 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3740                                         HNS3_RXD_PTYPE_S);
3741
3742         if (hns3_checksum_complete(ring, skb, ptype, csum))
3743                 return;
3744
3745         /* check if hardware has done checksum */
3746         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3747                 return;
3748
3749         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3750                                  BIT(HNS3_RXD_OL3E_B) |
3751                                  BIT(HNS3_RXD_OL4E_B)))) {
3752                 u64_stats_update_begin(&ring->syncp);
3753                 ring->stats.l3l4_csum_err++;
3754                 u64_stats_update_end(&ring->syncp);
3755
3756                 return;
3757         }
3758
3759         hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3760 }
3761
3762 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3763 {
3764         if (skb_has_frag_list(skb))
3765                 napi_gro_flush(&ring->tqp_vector->napi, false);
3766
3767         napi_gro_receive(&ring->tqp_vector->napi, skb);
3768 }
3769
3770 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3771                                 struct hns3_desc *desc, u32 l234info,
3772                                 u16 *vlan_tag)
3773 {
3774         struct hnae3_handle *handle = ring->tqp->handle;
3775         struct pci_dev *pdev = ring->tqp->handle->pdev;
3776         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3777
3778         if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3779                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3780                 if (!(*vlan_tag & VLAN_VID_MASK))
3781                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3782
3783                 return (*vlan_tag != 0);
3784         }
3785
3786 #define HNS3_STRP_OUTER_VLAN    0x1
3787 #define HNS3_STRP_INNER_VLAN    0x2
3788 #define HNS3_STRP_BOTH          0x3
3789
3790         /* Hardware always insert VLAN tag into RX descriptor when
3791          * remove the tag from packet, driver needs to determine
3792          * reporting which tag to stack.
3793          */
3794         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3795                                 HNS3_RXD_STRP_TAGP_S)) {
3796         case HNS3_STRP_OUTER_VLAN:
3797                 if (handle->port_base_vlan_state !=
3798                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3799                         return false;
3800
3801                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3802                 return true;
3803         case HNS3_STRP_INNER_VLAN:
3804                 if (handle->port_base_vlan_state !=
3805                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3806                         return false;
3807
3808                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3809                 return true;
3810         case HNS3_STRP_BOTH:
3811                 if (handle->port_base_vlan_state ==
3812                                 HNAE3_PORT_BASE_VLAN_DISABLE)
3813                         *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3814                 else
3815                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3816
3817                 return true;
3818         default:
3819                 return false;
3820         }
3821 }
3822
3823 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3824 {
3825         ring->desc[ring->next_to_clean].rx.bd_base_info &=
3826                 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3827         ring->next_to_clean += 1;
3828
3829         if (unlikely(ring->next_to_clean == ring->desc_num))
3830                 ring->next_to_clean = 0;
3831 }
3832
3833 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3834                           unsigned char *va)
3835 {
3836         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3837         struct net_device *netdev = ring_to_netdev(ring);
3838         struct sk_buff *skb;
3839
3840         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3841         skb = ring->skb;
3842         if (unlikely(!skb)) {
3843                 hns3_rl_err(netdev, "alloc rx skb fail\n");
3844
3845                 u64_stats_update_begin(&ring->syncp);
3846                 ring->stats.sw_err_cnt++;
3847                 u64_stats_update_end(&ring->syncp);
3848
3849                 return -ENOMEM;
3850         }
3851
3852         trace_hns3_rx_desc(ring);
3853         prefetchw(skb->data);
3854
3855         ring->pending_buf = 1;
3856         ring->frag_num = 0;
3857         ring->tail_skb = NULL;
3858         if (length <= HNS3_RX_HEAD_SIZE) {
3859                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3860
3861                 /* We can reuse buffer as-is, just make sure it is reusable */
3862                 if (dev_page_is_reusable(desc_cb->priv))
3863                         desc_cb->reuse_flag = 1;
3864                 else if (desc_cb->type & DESC_TYPE_PP_FRAG)
3865                         page_pool_put_full_page(ring->page_pool, desc_cb->priv,
3866                                                 false);
3867                 else /* This page cannot be reused so discard it */
3868                         __page_frag_cache_drain(desc_cb->priv,
3869                                                 desc_cb->pagecnt_bias);
3870
3871                 hns3_rx_ring_move_fw(ring);
3872                 return 0;
3873         }
3874
3875         if (ring->page_pool)
3876                 skb_mark_for_recycle(skb);
3877
3878         u64_stats_update_begin(&ring->syncp);
3879         ring->stats.seg_pkt_cnt++;
3880         u64_stats_update_end(&ring->syncp);
3881
3882         ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3883         __skb_put(skb, ring->pull_len);
3884         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3885                             desc_cb);
3886         hns3_rx_ring_move_fw(ring);
3887
3888         return 0;
3889 }
3890
3891 static int hns3_add_frag(struct hns3_enet_ring *ring)
3892 {
3893         struct sk_buff *skb = ring->skb;
3894         struct sk_buff *head_skb = skb;
3895         struct sk_buff *new_skb;
3896         struct hns3_desc_cb *desc_cb;
3897         struct hns3_desc *desc;
3898         u32 bd_base_info;
3899
3900         do {
3901                 desc = &ring->desc[ring->next_to_clean];
3902                 desc_cb = &ring->desc_cb[ring->next_to_clean];
3903                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3904                 /* make sure HW write desc complete */
3905                 dma_rmb();
3906                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3907                         return -ENXIO;
3908
3909                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3910                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3911                         if (unlikely(!new_skb)) {
3912                                 hns3_rl_err(ring_to_netdev(ring),
3913                                             "alloc rx fraglist skb fail\n");
3914                                 return -ENXIO;
3915                         }
3916
3917                         if (ring->page_pool)
3918                                 skb_mark_for_recycle(new_skb);
3919
3920                         ring->frag_num = 0;
3921
3922                         if (ring->tail_skb) {
3923                                 ring->tail_skb->next = new_skb;
3924                                 ring->tail_skb = new_skb;
3925                         } else {
3926                                 skb_shinfo(skb)->frag_list = new_skb;
3927                                 ring->tail_skb = new_skb;
3928                         }
3929                 }
3930
3931                 if (ring->tail_skb) {
3932                         head_skb->truesize += hns3_buf_size(ring);
3933                         head_skb->data_len += le16_to_cpu(desc->rx.size);
3934                         head_skb->len += le16_to_cpu(desc->rx.size);
3935                         skb = ring->tail_skb;
3936                 }
3937
3938                 dma_sync_single_for_cpu(ring_to_dev(ring),
3939                                 desc_cb->dma + desc_cb->page_offset,
3940                                 hns3_buf_size(ring),
3941                                 DMA_FROM_DEVICE);
3942
3943                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3944                 trace_hns3_rx_desc(ring);
3945                 hns3_rx_ring_move_fw(ring);
3946                 ring->pending_buf++;
3947         } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3948
3949         return 0;
3950 }
3951
3952 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3953                                      struct sk_buff *skb, u32 l234info,
3954                                      u32 bd_base_info, u32 ol_info, u16 csum)
3955 {
3956         struct net_device *netdev = ring_to_netdev(ring);
3957         struct hns3_nic_priv *priv = netdev_priv(netdev);
3958         u32 l3_type;
3959
3960         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3961                                                     HNS3_RXD_GRO_SIZE_M,
3962                                                     HNS3_RXD_GRO_SIZE_S);
3963         /* if there is no HW GRO, do not set gro params */
3964         if (!skb_shinfo(skb)->gso_size) {
3965                 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
3966                                  csum);
3967                 return 0;
3968         }
3969
3970         NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3971                                                   HNS3_RXD_GRO_COUNT_M,
3972                                                   HNS3_RXD_GRO_COUNT_S);
3973
3974         if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
3975                 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3976                                             HNS3_RXD_PTYPE_S);
3977
3978                 l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
3979         } else {
3980                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3981                                           HNS3_RXD_L3ID_S);
3982         }
3983
3984         if (l3_type == HNS3_L3_TYPE_IPV4)
3985                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3986         else if (l3_type == HNS3_L3_TYPE_IPV6)
3987                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3988         else
3989                 return -EFAULT;
3990
3991         return  hns3_gro_complete(skb, l234info);
3992 }
3993
3994 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3995                                      struct sk_buff *skb, u32 rss_hash)
3996 {
3997         struct hnae3_handle *handle = ring->tqp->handle;
3998         enum pkt_hash_types rss_type;
3999
4000         if (rss_hash)
4001                 rss_type = handle->kinfo.rss_type;
4002         else
4003                 rss_type = PKT_HASH_TYPE_NONE;
4004
4005         skb_set_hash(skb, rss_hash, rss_type);
4006 }
4007
4008 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4009 {
4010         struct net_device *netdev = ring_to_netdev(ring);
4011         enum hns3_pkt_l2t_type l2_frame_type;
4012         u32 bd_base_info, l234info, ol_info;
4013         struct hns3_desc *desc;
4014         unsigned int len;
4015         int pre_ntc, ret;
4016         u16 csum;
4017
4018         /* bdinfo handled below is only valid on the last BD of the
4019          * current packet, and ring->next_to_clean indicates the first
4020          * descriptor of next packet, so need - 1 below.
4021          */
4022         pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4023                                         (ring->desc_num - 1);
4024         desc = &ring->desc[pre_ntc];
4025         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4026         l234info = le32_to_cpu(desc->rx.l234_info);
4027         ol_info = le32_to_cpu(desc->rx.ol_info);
4028         csum = le16_to_cpu(desc->csum);
4029
4030         if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4031                 struct hnae3_handle *h = hns3_get_handle(netdev);
4032                 u32 nsec = le32_to_cpu(desc->ts_nsec);
4033                 u32 sec = le32_to_cpu(desc->ts_sec);
4034
4035                 if (h->ae_algo->ops->get_rx_hwts)
4036                         h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4037         }
4038
4039         /* Based on hw strategy, the tag offloaded will be stored at
4040          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4041          * in one layer tag case.
4042          */
4043         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4044                 u16 vlan_tag;
4045
4046                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4047                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4048                                                vlan_tag);
4049         }
4050
4051         if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4052                                   BIT(HNS3_RXD_L2E_B))))) {
4053                 u64_stats_update_begin(&ring->syncp);
4054                 if (l234info & BIT(HNS3_RXD_L2E_B))
4055                         ring->stats.l2_err++;
4056                 else
4057                         ring->stats.err_pkt_len++;
4058                 u64_stats_update_end(&ring->syncp);
4059
4060                 return -EFAULT;
4061         }
4062
4063         len = skb->len;
4064
4065         /* Do update ip stack process */
4066         skb->protocol = eth_type_trans(skb, netdev);
4067
4068         /* This is needed in order to enable forwarding support */
4069         ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4070                                         bd_base_info, ol_info, csum);
4071         if (unlikely(ret)) {
4072                 u64_stats_update_begin(&ring->syncp);
4073                 ring->stats.rx_err_cnt++;
4074                 u64_stats_update_end(&ring->syncp);
4075                 return ret;
4076         }
4077
4078         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4079                                         HNS3_RXD_DMAC_S);
4080
4081         u64_stats_update_begin(&ring->syncp);
4082         ring->stats.rx_pkts++;
4083         ring->stats.rx_bytes += len;
4084
4085         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4086                 ring->stats.rx_multicast++;
4087
4088         u64_stats_update_end(&ring->syncp);
4089
4090         ring->tqp_vector->rx_group.total_bytes += len;
4091
4092         hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
4093         return 0;
4094 }
4095
4096 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4097 {
4098         struct sk_buff *skb = ring->skb;
4099         struct hns3_desc_cb *desc_cb;
4100         struct hns3_desc *desc;
4101         unsigned int length;
4102         u32 bd_base_info;
4103         int ret;
4104
4105         desc = &ring->desc[ring->next_to_clean];
4106         desc_cb = &ring->desc_cb[ring->next_to_clean];
4107
4108         prefetch(desc);
4109
4110         if (!skb) {
4111                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4112                 /* Check valid BD */
4113                 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4114                         return -ENXIO;
4115
4116                 dma_rmb();
4117                 length = le16_to_cpu(desc->rx.size);
4118
4119                 ring->va = desc_cb->buf + desc_cb->page_offset;
4120
4121                 dma_sync_single_for_cpu(ring_to_dev(ring),
4122                                 desc_cb->dma + desc_cb->page_offset,
4123                                 hns3_buf_size(ring),
4124                                 DMA_FROM_DEVICE);
4125
4126                 /* Prefetch first cache line of first page.
4127                  * Idea is to cache few bytes of the header of the packet.
4128                  * Our L1 Cache line size is 64B so need to prefetch twice to make
4129                  * it 128B. But in actual we can have greater size of caches with
4130                  * 128B Level 1 cache lines. In such a case, single fetch would
4131                  * suffice to cache in the relevant part of the header.
4132                  */
4133                 net_prefetch(ring->va);
4134
4135                 ret = hns3_alloc_skb(ring, length, ring->va);
4136                 skb = ring->skb;
4137
4138                 if (ret < 0) /* alloc buffer fail */
4139                         return ret;
4140                 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4141                         ret = hns3_add_frag(ring);
4142                         if (ret)
4143                                 return ret;
4144                 }
4145         } else {
4146                 ret = hns3_add_frag(ring);
4147                 if (ret)
4148                         return ret;
4149         }
4150
4151         /* As the head data may be changed when GRO enable, copy
4152          * the head data in after other data rx completed
4153          */
4154         if (skb->len > HNS3_RX_HEAD_SIZE)
4155                 memcpy(skb->data, ring->va,
4156                        ALIGN(ring->pull_len, sizeof(long)));
4157
4158         ret = hns3_handle_bdinfo(ring, skb);
4159         if (unlikely(ret)) {
4160                 dev_kfree_skb_any(skb);
4161                 return ret;
4162         }
4163
4164         skb_record_rx_queue(skb, ring->tqp->tqp_index);
4165         return 0;
4166 }
4167
4168 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4169                        void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4170 {
4171 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4172         int unused_count = hns3_desc_unused(ring);
4173         int recv_pkts = 0;
4174         int err;
4175
4176         unused_count -= ring->pending_buf;
4177
4178         while (recv_pkts < budget) {
4179                 /* Reuse or realloc buffers */
4180                 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4181                         hns3_nic_alloc_rx_buffers(ring, unused_count);
4182                         unused_count = hns3_desc_unused(ring) -
4183                                         ring->pending_buf;
4184                 }
4185
4186                 /* Poll one pkt */
4187                 err = hns3_handle_rx_bd(ring);
4188                 /* Do not get FE for the packet or failed to alloc skb */
4189                 if (unlikely(!ring->skb || err == -ENXIO)) {
4190                         goto out;
4191                 } else if (likely(!err)) {
4192                         rx_fn(ring, ring->skb);
4193                         recv_pkts++;
4194                 }
4195
4196                 unused_count += ring->pending_buf;
4197                 ring->skb = NULL;
4198                 ring->pending_buf = 0;
4199         }
4200
4201 out:
4202         /* Make all data has been write before submit */
4203         if (unused_count > 0)
4204                 hns3_nic_alloc_rx_buffers(ring, unused_count);
4205
4206         return recv_pkts;
4207 }
4208
4209 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4210 {
4211         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4212         struct dim_sample sample = {};
4213
4214         if (!rx_group->coal.adapt_enable)
4215                 return;
4216
4217         dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4218                           rx_group->total_bytes, &sample);
4219         net_dim(&rx_group->dim, sample);
4220 }
4221
4222 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4223 {
4224         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4225         struct dim_sample sample = {};
4226
4227         if (!tx_group->coal.adapt_enable)
4228                 return;
4229
4230         dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4231                           tx_group->total_bytes, &sample);
4232         net_dim(&tx_group->dim, sample);
4233 }
4234
4235 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4236 {
4237         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4238         struct hns3_enet_ring *ring;
4239         int rx_pkt_total = 0;
4240
4241         struct hns3_enet_tqp_vector *tqp_vector =
4242                 container_of(napi, struct hns3_enet_tqp_vector, napi);
4243         bool clean_complete = true;
4244         int rx_budget = budget;
4245
4246         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4247                 napi_complete(napi);
4248                 return 0;
4249         }
4250
4251         /* Since the actual Tx work is minimal, we can give the Tx a larger
4252          * budget and be more aggressive about cleaning up the Tx descriptors.
4253          */
4254         hns3_for_each_ring(ring, tqp_vector->tx_group)
4255                 hns3_clean_tx_ring(ring, budget);
4256
4257         /* make sure rx ring budget not smaller than 1 */
4258         if (tqp_vector->num_tqps > 1)
4259                 rx_budget = max(budget / tqp_vector->num_tqps, 1);
4260
4261         hns3_for_each_ring(ring, tqp_vector->rx_group) {
4262                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4263                                                     hns3_rx_skb);
4264                 if (rx_cleaned >= rx_budget)
4265                         clean_complete = false;
4266
4267                 rx_pkt_total += rx_cleaned;
4268         }
4269
4270         tqp_vector->rx_group.total_packets += rx_pkt_total;
4271
4272         if (!clean_complete)
4273                 return budget;
4274
4275         if (napi_complete(napi) &&
4276             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4277                 hns3_update_rx_int_coalesce(tqp_vector);
4278                 hns3_update_tx_int_coalesce(tqp_vector);
4279
4280                 hns3_mask_vector_irq(tqp_vector, 1);
4281         }
4282
4283         return rx_pkt_total;
4284 }
4285
4286 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4287                                       struct hnae3_ring_chain_node *head)
4288 {
4289         struct pci_dev *pdev = tqp_vector->handle->pdev;
4290         struct hnae3_ring_chain_node *cur_chain = head;
4291         struct hnae3_ring_chain_node *chain;
4292         struct hns3_enet_ring *tx_ring;
4293         struct hns3_enet_ring *rx_ring;
4294
4295         tx_ring = tqp_vector->tx_group.ring;
4296         if (tx_ring) {
4297                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
4298                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
4299                               HNAE3_RING_TYPE_TX);
4300                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
4301                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
4302
4303                 cur_chain->next = NULL;
4304
4305                 while (tx_ring->next) {
4306                         tx_ring = tx_ring->next;
4307
4308                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
4309                                              GFP_KERNEL);
4310                         if (!chain)
4311                                 goto err_free_chain;
4312
4313                         cur_chain->next = chain;
4314                         chain->tqp_index = tx_ring->tqp->tqp_index;
4315                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4316                                       HNAE3_RING_TYPE_TX);
4317                         hnae3_set_field(chain->int_gl_idx,
4318                                         HNAE3_RING_GL_IDX_M,
4319                                         HNAE3_RING_GL_IDX_S,
4320                                         HNAE3_RING_GL_TX);
4321
4322                         cur_chain = chain;
4323                 }
4324         }
4325
4326         rx_ring = tqp_vector->rx_group.ring;
4327         if (!tx_ring && rx_ring) {
4328                 cur_chain->next = NULL;
4329                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
4330                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
4331                               HNAE3_RING_TYPE_RX);
4332                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
4333                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
4334
4335                 rx_ring = rx_ring->next;
4336         }
4337
4338         while (rx_ring) {
4339                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4340                 if (!chain)
4341                         goto err_free_chain;
4342
4343                 cur_chain->next = chain;
4344                 chain->tqp_index = rx_ring->tqp->tqp_index;
4345                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4346                               HNAE3_RING_TYPE_RX);
4347                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
4348                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
4349
4350                 cur_chain = chain;
4351
4352                 rx_ring = rx_ring->next;
4353         }
4354
4355         return 0;
4356
4357 err_free_chain:
4358         cur_chain = head->next;
4359         while (cur_chain) {
4360                 chain = cur_chain->next;
4361                 devm_kfree(&pdev->dev, cur_chain);
4362                 cur_chain = chain;
4363         }
4364         head->next = NULL;
4365
4366         return -ENOMEM;
4367 }
4368
4369 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4370                                         struct hnae3_ring_chain_node *head)
4371 {
4372         struct pci_dev *pdev = tqp_vector->handle->pdev;
4373         struct hnae3_ring_chain_node *chain_tmp, *chain;
4374
4375         chain = head->next;
4376
4377         while (chain) {
4378                 chain_tmp = chain->next;
4379                 devm_kfree(&pdev->dev, chain);
4380                 chain = chain_tmp;
4381         }
4382 }
4383
4384 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4385                                    struct hns3_enet_ring *ring)
4386 {
4387         ring->next = group->ring;
4388         group->ring = ring;
4389
4390         group->count++;
4391 }
4392
4393 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4394 {
4395         struct pci_dev *pdev = priv->ae_handle->pdev;
4396         struct hns3_enet_tqp_vector *tqp_vector;
4397         int num_vectors = priv->vector_num;
4398         int numa_node;
4399         int vector_i;
4400
4401         numa_node = dev_to_node(&pdev->dev);
4402
4403         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4404                 tqp_vector = &priv->tqp_vector[vector_i];
4405                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4406                                 &tqp_vector->affinity_mask);
4407         }
4408 }
4409
4410 static void hns3_rx_dim_work(struct work_struct *work)
4411 {
4412         struct dim *dim = container_of(work, struct dim, work);
4413         struct hns3_enet_ring_group *group = container_of(dim,
4414                 struct hns3_enet_ring_group, dim);
4415         struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4416         struct dim_cq_moder cur_moder =
4417                 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4418
4419         hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4420         tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4421
4422         if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4423                 hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4424                 tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4425         }
4426
4427         dim->state = DIM_START_MEASURE;
4428 }
4429
4430 static void hns3_tx_dim_work(struct work_struct *work)
4431 {
4432         struct dim *dim = container_of(work, struct dim, work);
4433         struct hns3_enet_ring_group *group = container_of(dim,
4434                 struct hns3_enet_ring_group, dim);
4435         struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4436         struct dim_cq_moder cur_moder =
4437                 net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4438
4439         hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4440         tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4441
4442         if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4443                 hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4444                 tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4445         }
4446
4447         dim->state = DIM_START_MEASURE;
4448 }
4449
4450 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4451 {
4452         INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4453         INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4454 }
4455
4456 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4457 {
4458         struct hnae3_handle *h = priv->ae_handle;
4459         struct hns3_enet_tqp_vector *tqp_vector;
4460         int ret;
4461         int i;
4462
4463         hns3_nic_set_cpumask(priv);
4464
4465         for (i = 0; i < priv->vector_num; i++) {
4466                 tqp_vector = &priv->tqp_vector[i];
4467                 hns3_vector_coalesce_init_hw(tqp_vector, priv);
4468                 tqp_vector->num_tqps = 0;
4469                 hns3_nic_init_dim(tqp_vector);
4470         }
4471
4472         for (i = 0; i < h->kinfo.num_tqps; i++) {
4473                 u16 vector_i = i % priv->vector_num;
4474                 u16 tqp_num = h->kinfo.num_tqps;
4475
4476                 tqp_vector = &priv->tqp_vector[vector_i];
4477
4478                 hns3_add_ring_to_group(&tqp_vector->tx_group,
4479                                        &priv->ring[i]);
4480
4481                 hns3_add_ring_to_group(&tqp_vector->rx_group,
4482                                        &priv->ring[i + tqp_num]);
4483
4484                 priv->ring[i].tqp_vector = tqp_vector;
4485                 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4486                 tqp_vector->num_tqps++;
4487         }
4488
4489         for (i = 0; i < priv->vector_num; i++) {
4490                 struct hnae3_ring_chain_node vector_ring_chain;
4491
4492                 tqp_vector = &priv->tqp_vector[i];
4493
4494                 tqp_vector->rx_group.total_bytes = 0;
4495                 tqp_vector->rx_group.total_packets = 0;
4496                 tqp_vector->tx_group.total_bytes = 0;
4497                 tqp_vector->tx_group.total_packets = 0;
4498                 tqp_vector->handle = h;
4499
4500                 ret = hns3_get_vector_ring_chain(tqp_vector,
4501                                                  &vector_ring_chain);
4502                 if (ret)
4503                         goto map_ring_fail;
4504
4505                 ret = h->ae_algo->ops->map_ring_to_vector(h,
4506                         tqp_vector->vector_irq, &vector_ring_chain);
4507
4508                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
4509
4510                 if (ret)
4511                         goto map_ring_fail;
4512
4513                 netif_napi_add(priv->netdev, &tqp_vector->napi,
4514                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
4515         }
4516
4517         return 0;
4518
4519 map_ring_fail:
4520         while (i--)
4521                 netif_napi_del(&priv->tqp_vector[i].napi);
4522
4523         return ret;
4524 }
4525
4526 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4527 {
4528         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4529         struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4530         struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4531
4532         /* initialize the configuration for interrupt coalescing.
4533          * 1. GL (Interrupt Gap Limiter)
4534          * 2. RL (Interrupt Rate Limiter)
4535          * 3. QL (Interrupt Quantity Limiter)
4536          *
4537          * Default: enable interrupt coalescing self-adaptive and GL
4538          */
4539         tx_coal->adapt_enable = 1;
4540         rx_coal->adapt_enable = 1;
4541
4542         tx_coal->int_gl = HNS3_INT_GL_50K;
4543         rx_coal->int_gl = HNS3_INT_GL_50K;
4544
4545         rx_coal->flow_level = HNS3_FLOW_LOW;
4546         tx_coal->flow_level = HNS3_FLOW_LOW;
4547
4548         if (ae_dev->dev_specs.int_ql_max) {
4549                 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4550                 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4551         }
4552 }
4553
4554 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4555 {
4556         struct hnae3_handle *h = priv->ae_handle;
4557         struct hns3_enet_tqp_vector *tqp_vector;
4558         struct hnae3_vector_info *vector;
4559         struct pci_dev *pdev = h->pdev;
4560         u16 tqp_num = h->kinfo.num_tqps;
4561         u16 vector_num;
4562         int ret = 0;
4563         u16 i;
4564
4565         /* RSS size, cpu online and vector_num should be the same */
4566         /* Should consider 2p/4p later */
4567         vector_num = min_t(u16, num_online_cpus(), tqp_num);
4568
4569         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4570                               GFP_KERNEL);
4571         if (!vector)
4572                 return -ENOMEM;
4573
4574         /* save the actual available vector number */
4575         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4576
4577         priv->vector_num = vector_num;
4578         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4579                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4580                              GFP_KERNEL);
4581         if (!priv->tqp_vector) {
4582                 ret = -ENOMEM;
4583                 goto out;
4584         }
4585
4586         for (i = 0; i < priv->vector_num; i++) {
4587                 tqp_vector = &priv->tqp_vector[i];
4588                 tqp_vector->idx = i;
4589                 tqp_vector->mask_addr = vector[i].io_addr;
4590                 tqp_vector->vector_irq = vector[i].vector;
4591                 hns3_vector_coalesce_init(tqp_vector, priv);
4592         }
4593
4594 out:
4595         devm_kfree(&pdev->dev, vector);
4596         return ret;
4597 }
4598
4599 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4600 {
4601         group->ring = NULL;
4602         group->count = 0;
4603 }
4604
4605 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4606 {
4607         struct hnae3_ring_chain_node vector_ring_chain;
4608         struct hnae3_handle *h = priv->ae_handle;
4609         struct hns3_enet_tqp_vector *tqp_vector;
4610         int i;
4611
4612         for (i = 0; i < priv->vector_num; i++) {
4613                 tqp_vector = &priv->tqp_vector[i];
4614
4615                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4616                         continue;
4617
4618                 /* Since the mapping can be overwritten, when fail to get the
4619                  * chain between vector and ring, we should go on to deal with
4620                  * the remaining options.
4621                  */
4622                 if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
4623                         dev_warn(priv->dev, "failed to get ring chain\n");
4624
4625                 h->ae_algo->ops->unmap_ring_from_vector(h,
4626                         tqp_vector->vector_irq, &vector_ring_chain);
4627
4628                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
4629
4630                 hns3_clear_ring_group(&tqp_vector->rx_group);
4631                 hns3_clear_ring_group(&tqp_vector->tx_group);
4632                 netif_napi_del(&priv->tqp_vector[i].napi);
4633         }
4634 }
4635
4636 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4637 {
4638         struct hnae3_handle *h = priv->ae_handle;
4639         struct pci_dev *pdev = h->pdev;
4640         int i, ret;
4641
4642         for (i = 0; i < priv->vector_num; i++) {
4643                 struct hns3_enet_tqp_vector *tqp_vector;
4644
4645                 tqp_vector = &priv->tqp_vector[i];
4646                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4647                 if (ret)
4648                         return;
4649         }
4650
4651         devm_kfree(&pdev->dev, priv->tqp_vector);
4652 }
4653
4654 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4655                               unsigned int ring_type)
4656 {
4657         int queue_num = priv->ae_handle->kinfo.num_tqps;
4658         struct hns3_enet_ring *ring;
4659         int desc_num;
4660
4661         if (ring_type == HNAE3_RING_TYPE_TX) {
4662                 ring = &priv->ring[q->tqp_index];
4663                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
4664                 ring->queue_index = q->tqp_index;
4665                 ring->tx_copybreak = priv->tx_copybreak;
4666                 ring->last_to_use = 0;
4667         } else {
4668                 ring = &priv->ring[q->tqp_index + queue_num];
4669                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
4670                 ring->queue_index = q->tqp_index;
4671                 ring->rx_copybreak = priv->rx_copybreak;
4672         }
4673
4674         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4675
4676         ring->tqp = q;
4677         ring->desc = NULL;
4678         ring->desc_cb = NULL;
4679         ring->dev = priv->dev;
4680         ring->desc_dma_addr = 0;
4681         ring->buf_size = q->buf_size;
4682         ring->desc_num = desc_num;
4683         ring->next_to_use = 0;
4684         ring->next_to_clean = 0;
4685 }
4686
4687 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4688                                struct hns3_nic_priv *priv)
4689 {
4690         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4691         hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4692 }
4693
4694 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4695 {
4696         struct hnae3_handle *h = priv->ae_handle;
4697         struct pci_dev *pdev = h->pdev;
4698         int i;
4699
4700         priv->ring = devm_kzalloc(&pdev->dev,
4701                                   array3_size(h->kinfo.num_tqps,
4702                                               sizeof(*priv->ring), 2),
4703                                   GFP_KERNEL);
4704         if (!priv->ring)
4705                 return -ENOMEM;
4706
4707         for (i = 0; i < h->kinfo.num_tqps; i++)
4708                 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4709
4710         return 0;
4711 }
4712
4713 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4714 {
4715         if (!priv->ring)
4716                 return;
4717
4718         devm_kfree(priv->dev, priv->ring);
4719         priv->ring = NULL;
4720 }
4721
4722 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4723 {
4724         struct page_pool_params pp_params = {
4725                 .flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG |
4726                                 PP_FLAG_DMA_SYNC_DEV,
4727                 .order = hns3_page_order(ring),
4728                 .pool_size = ring->desc_num * hns3_buf_size(ring) /
4729                                 (PAGE_SIZE << hns3_page_order(ring)),
4730                 .nid = dev_to_node(ring_to_dev(ring)),
4731                 .dev = ring_to_dev(ring),
4732                 .dma_dir = DMA_FROM_DEVICE,
4733                 .offset = 0,
4734                 .max_len = PAGE_SIZE << hns3_page_order(ring),
4735         };
4736
4737         ring->page_pool = page_pool_create(&pp_params);
4738         if (IS_ERR(ring->page_pool)) {
4739                 dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4740                          PTR_ERR(ring->page_pool));
4741                 ring->page_pool = NULL;
4742         }
4743 }
4744
4745 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4746 {
4747         int ret;
4748
4749         if (ring->desc_num <= 0 || ring->buf_size <= 0)
4750                 return -EINVAL;
4751
4752         ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4753                                      sizeof(ring->desc_cb[0]), GFP_KERNEL);
4754         if (!ring->desc_cb) {
4755                 ret = -ENOMEM;
4756                 goto out;
4757         }
4758
4759         ret = hns3_alloc_desc(ring);
4760         if (ret)
4761                 goto out_with_desc_cb;
4762
4763         if (!HNAE3_IS_TX_RING(ring)) {
4764                 if (page_pool_enabled)
4765                         hns3_alloc_page_pool(ring);
4766
4767                 ret = hns3_alloc_ring_buffers(ring);
4768                 if (ret)
4769                         goto out_with_desc;
4770         } else {
4771                 hns3_init_tx_spare_buffer(ring);
4772         }
4773
4774         return 0;
4775
4776 out_with_desc:
4777         hns3_free_desc(ring);
4778 out_with_desc_cb:
4779         devm_kfree(ring_to_dev(ring), ring->desc_cb);
4780         ring->desc_cb = NULL;
4781 out:
4782         return ret;
4783 }
4784
4785 void hns3_fini_ring(struct hns3_enet_ring *ring)
4786 {
4787         hns3_free_desc(ring);
4788         devm_kfree(ring_to_dev(ring), ring->desc_cb);
4789         ring->desc_cb = NULL;
4790         ring->next_to_clean = 0;
4791         ring->next_to_use = 0;
4792         ring->last_to_use = 0;
4793         ring->pending_buf = 0;
4794         if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
4795                 dev_kfree_skb_any(ring->skb);
4796                 ring->skb = NULL;
4797         } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
4798                 struct hns3_tx_spare *tx_spare = ring->tx_spare;
4799
4800                 dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
4801                                DMA_TO_DEVICE);
4802                 free_pages((unsigned long)tx_spare->buf,
4803                            get_order(tx_spare->len));
4804                 devm_kfree(ring_to_dev(ring), tx_spare);
4805                 ring->tx_spare = NULL;
4806         }
4807
4808         if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
4809                 page_pool_destroy(ring->page_pool);
4810                 ring->page_pool = NULL;
4811         }
4812 }
4813
4814 static int hns3_buf_size2type(u32 buf_size)
4815 {
4816         int bd_size_type;
4817
4818         switch (buf_size) {
4819         case 512:
4820                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
4821                 break;
4822         case 1024:
4823                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4824                 break;
4825         case 2048:
4826                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4827                 break;
4828         case 4096:
4829                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4830                 break;
4831         default:
4832                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4833         }
4834
4835         return bd_size_type;
4836 }
4837
4838 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4839 {
4840         dma_addr_t dma = ring->desc_dma_addr;
4841         struct hnae3_queue *q = ring->tqp;
4842
4843         if (!HNAE3_IS_TX_RING(ring)) {
4844                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4845                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4846                                (u32)((dma >> 31) >> 1));
4847
4848                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4849                                hns3_buf_size2type(ring->buf_size));
4850                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4851                                ring->desc_num / 8 - 1);
4852         } else {
4853                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4854                                (u32)dma);
4855                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4856                                (u32)((dma >> 31) >> 1));
4857
4858                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4859                                ring->desc_num / 8 - 1);
4860         }
4861 }
4862
4863 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4864 {
4865         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4866         struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4867         int i;
4868
4869         for (i = 0; i < tc_info->num_tc; i++) {
4870                 int j;
4871
4872                 for (j = 0; j < tc_info->tqp_count[i]; j++) {
4873                         struct hnae3_queue *q;
4874
4875                         q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4876                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4877                 }
4878         }
4879 }
4880
4881 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4882 {
4883         struct hnae3_handle *h = priv->ae_handle;
4884         int ring_num = h->kinfo.num_tqps * 2;
4885         int i, j;
4886         int ret;
4887
4888         for (i = 0; i < ring_num; i++) {
4889                 ret = hns3_alloc_ring_memory(&priv->ring[i]);
4890                 if (ret) {
4891                         dev_err(priv->dev,
4892                                 "Alloc ring memory fail! ret=%d\n", ret);
4893                         goto out_when_alloc_ring_memory;
4894                 }
4895
4896                 u64_stats_init(&priv->ring[i].syncp);
4897         }
4898
4899         return 0;
4900
4901 out_when_alloc_ring_memory:
4902         for (j = i - 1; j >= 0; j--)
4903                 hns3_fini_ring(&priv->ring[j]);
4904
4905         return -ENOMEM;
4906 }
4907
4908 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4909 {
4910         struct hnae3_handle *h = priv->ae_handle;
4911         int i;
4912
4913         for (i = 0; i < h->kinfo.num_tqps; i++) {
4914                 hns3_fini_ring(&priv->ring[i]);
4915                 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4916         }
4917 }
4918
4919 /* Set mac addr if it is configured. or leave it to the AE driver */
4920 static int hns3_init_mac_addr(struct net_device *netdev)
4921 {
4922         struct hns3_nic_priv *priv = netdev_priv(netdev);
4923         struct hnae3_handle *h = priv->ae_handle;
4924         u8 mac_addr_temp[ETH_ALEN];
4925         int ret = 0;
4926
4927         if (h->ae_algo->ops->get_mac_addr)
4928                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4929
4930         /* Check if the MAC address is valid, if not get a random one */
4931         if (!is_valid_ether_addr(mac_addr_temp)) {
4932                 eth_hw_addr_random(netdev);
4933                 dev_warn(priv->dev, "using random MAC address %pM\n",
4934                          netdev->dev_addr);
4935         } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4936                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4937                 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4938         } else {
4939                 return 0;
4940         }
4941
4942         if (h->ae_algo->ops->set_mac_addr)
4943                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4944
4945         return ret;
4946 }
4947
4948 static int hns3_init_phy(struct net_device *netdev)
4949 {
4950         struct hnae3_handle *h = hns3_get_handle(netdev);
4951         int ret = 0;
4952
4953         if (h->ae_algo->ops->mac_connect_phy)
4954                 ret = h->ae_algo->ops->mac_connect_phy(h);
4955
4956         return ret;
4957 }
4958
4959 static void hns3_uninit_phy(struct net_device *netdev)
4960 {
4961         struct hnae3_handle *h = hns3_get_handle(netdev);
4962
4963         if (h->ae_algo->ops->mac_disconnect_phy)
4964                 h->ae_algo->ops->mac_disconnect_phy(h);
4965 }
4966
4967 static int hns3_client_start(struct hnae3_handle *handle)
4968 {
4969         if (!handle->ae_algo->ops->client_start)
4970                 return 0;
4971
4972         return handle->ae_algo->ops->client_start(handle);
4973 }
4974
4975 static void hns3_client_stop(struct hnae3_handle *handle)
4976 {
4977         if (!handle->ae_algo->ops->client_stop)
4978                 return;
4979
4980         handle->ae_algo->ops->client_stop(handle);
4981 }
4982
4983 static void hns3_info_show(struct hns3_nic_priv *priv)
4984 {
4985         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4986
4987         dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4988         dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4989         dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4990         dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4991         dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4992         dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4993         dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4994         dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4995                  kinfo->tc_info.num_tc);
4996         dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4997 }
4998
4999 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5000                                     enum dim_cq_period_mode mode, bool is_tx)
5001 {
5002         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5003         struct hnae3_handle *handle = priv->ae_handle;
5004         int i;
5005
5006         if (is_tx) {
5007                 priv->tx_cqe_mode = mode;
5008
5009                 for (i = 0; i < priv->vector_num; i++)
5010                         priv->tqp_vector[i].tx_group.dim.mode = mode;
5011         } else {
5012                 priv->rx_cqe_mode = mode;
5013
5014                 for (i = 0; i < priv->vector_num; i++)
5015                         priv->tqp_vector[i].rx_group.dim.mode = mode;
5016         }
5017
5018         /* only device version above V3(include V3), GL can switch CQ/EQ
5019          * period mode.
5020          */
5021         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
5022                 u32 new_mode;
5023                 u64 reg;
5024
5025                 new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5026                         HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5027                 reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5028
5029                 writel(new_mode, handle->kinfo.io_base + reg);
5030         }
5031 }
5032
5033 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5034                               enum dim_cq_period_mode tx_mode,
5035                               enum dim_cq_period_mode rx_mode)
5036 {
5037         hns3_set_cq_period_mode(priv, tx_mode, true);
5038         hns3_set_cq_period_mode(priv, rx_mode, false);
5039 }
5040
5041 static void hns3_state_init(struct hnae3_handle *handle)
5042 {
5043         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5044         struct net_device *netdev = handle->kinfo.netdev;
5045         struct hns3_nic_priv *priv = netdev_priv(netdev);
5046
5047         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5048
5049         if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5050                 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5051
5052         if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5053                 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5054
5055         if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5056                 set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5057 }
5058
5059 static int hns3_client_init(struct hnae3_handle *handle)
5060 {
5061         struct pci_dev *pdev = handle->pdev;
5062         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5063         u16 alloc_tqps, max_rss_size;
5064         struct hns3_nic_priv *priv;
5065         struct net_device *netdev;
5066         int ret;
5067
5068         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5069                                                     &max_rss_size);
5070         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5071         if (!netdev)
5072                 return -ENOMEM;
5073
5074         priv = netdev_priv(netdev);
5075         priv->dev = &pdev->dev;
5076         priv->netdev = netdev;
5077         priv->ae_handle = handle;
5078         priv->tx_timeout_count = 0;
5079         priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5080         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5081
5082         handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5083
5084         handle->kinfo.netdev = netdev;
5085         handle->priv = (void *)priv;
5086
5087         hns3_init_mac_addr(netdev);
5088
5089         hns3_set_default_feature(netdev);
5090
5091         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5092         netdev->priv_flags |= IFF_UNICAST_FLT;
5093         netdev->netdev_ops = &hns3_nic_netdev_ops;
5094         SET_NETDEV_DEV(netdev, &pdev->dev);
5095         hns3_ethtool_set_ops(netdev);
5096
5097         /* Carrier off reporting is important to ethtool even BEFORE open */
5098         netif_carrier_off(netdev);
5099
5100         ret = hns3_get_ring_config(priv);
5101         if (ret) {
5102                 ret = -ENOMEM;
5103                 goto out_get_ring_cfg;
5104         }
5105
5106         hns3_nic_init_coal_cfg(priv);
5107
5108         ret = hns3_nic_alloc_vector_data(priv);
5109         if (ret) {
5110                 ret = -ENOMEM;
5111                 goto out_alloc_vector_data;
5112         }
5113
5114         ret = hns3_nic_init_vector_data(priv);
5115         if (ret) {
5116                 ret = -ENOMEM;
5117                 goto out_init_vector_data;
5118         }
5119
5120         ret = hns3_init_all_ring(priv);
5121         if (ret) {
5122                 ret = -ENOMEM;
5123                 goto out_init_ring;
5124         }
5125
5126         hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5127                                  DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5128
5129         ret = hns3_init_phy(netdev);
5130         if (ret)
5131                 goto out_init_phy;
5132
5133         /* the device can work without cpu rmap, only aRFS needs it */
5134         ret = hns3_set_rx_cpu_rmap(netdev);
5135         if (ret)
5136                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5137
5138         ret = hns3_nic_init_irq(priv);
5139         if (ret) {
5140                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5141                 hns3_free_rx_cpu_rmap(netdev);
5142                 goto out_init_irq_fail;
5143         }
5144
5145         ret = hns3_client_start(handle);
5146         if (ret) {
5147                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5148                 goto out_client_start;
5149         }
5150
5151         hns3_dcbnl_setup(handle);
5152
5153         ret = hns3_dbg_init(handle);
5154         if (ret) {
5155                 dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5156                         ret);
5157                 goto out_client_start;
5158         }
5159
5160         netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5161
5162         hns3_state_init(handle);
5163
5164         ret = register_netdev(netdev);
5165         if (ret) {
5166                 dev_err(priv->dev, "probe register netdev fail!\n");
5167                 goto out_reg_netdev_fail;
5168         }
5169
5170         if (netif_msg_drv(handle))
5171                 hns3_info_show(priv);
5172
5173         return ret;
5174
5175 out_reg_netdev_fail:
5176         hns3_dbg_uninit(handle);
5177 out_client_start:
5178         hns3_free_rx_cpu_rmap(netdev);
5179         hns3_nic_uninit_irq(priv);
5180 out_init_irq_fail:
5181         hns3_uninit_phy(netdev);
5182 out_init_phy:
5183         hns3_uninit_all_ring(priv);
5184 out_init_ring:
5185         hns3_nic_uninit_vector_data(priv);
5186 out_init_vector_data:
5187         hns3_nic_dealloc_vector_data(priv);
5188 out_alloc_vector_data:
5189         priv->ring = NULL;
5190 out_get_ring_cfg:
5191         priv->ae_handle = NULL;
5192         free_netdev(netdev);
5193         return ret;
5194 }
5195
5196 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5197 {
5198         struct net_device *netdev = handle->kinfo.netdev;
5199         struct hns3_nic_priv *priv = netdev_priv(netdev);
5200
5201         if (netdev->reg_state != NETREG_UNINITIALIZED)
5202                 unregister_netdev(netdev);
5203
5204         hns3_client_stop(handle);
5205
5206         hns3_uninit_phy(netdev);
5207
5208         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5209                 netdev_warn(netdev, "already uninitialized\n");
5210                 goto out_netdev_free;
5211         }
5212
5213         hns3_free_rx_cpu_rmap(netdev);
5214
5215         hns3_nic_uninit_irq(priv);
5216
5217         hns3_clear_all_ring(handle, true);
5218
5219         hns3_nic_uninit_vector_data(priv);
5220
5221         hns3_nic_dealloc_vector_data(priv);
5222
5223         hns3_uninit_all_ring(priv);
5224
5225         hns3_put_ring_config(priv);
5226
5227 out_netdev_free:
5228         hns3_dbg_uninit(handle);
5229         free_netdev(netdev);
5230 }
5231
5232 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5233 {
5234         struct net_device *netdev = handle->kinfo.netdev;
5235
5236         if (!netdev)
5237                 return;
5238
5239         if (linkup) {
5240                 netif_tx_wake_all_queues(netdev);
5241                 netif_carrier_on(netdev);
5242                 if (netif_msg_link(handle))
5243                         netdev_info(netdev, "link up\n");
5244         } else {
5245                 netif_carrier_off(netdev);
5246                 netif_tx_stop_all_queues(netdev);
5247                 if (netif_msg_link(handle))
5248                         netdev_info(netdev, "link down\n");
5249         }
5250 }
5251
5252 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5253 {
5254         while (ring->next_to_clean != ring->next_to_use) {
5255                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5256                 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5257                 ring_ptr_move_fw(ring, next_to_clean);
5258         }
5259
5260         ring->pending_buf = 0;
5261 }
5262
5263 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5264 {
5265         struct hns3_desc_cb res_cbs;
5266         int ret;
5267
5268         while (ring->next_to_use != ring->next_to_clean) {
5269                 /* When a buffer is not reused, it's memory has been
5270                  * freed in hns3_handle_rx_bd or will be freed by
5271                  * stack, so we need to replace the buffer here.
5272                  */
5273                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5274                         ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5275                         if (ret) {
5276                                 u64_stats_update_begin(&ring->syncp);
5277                                 ring->stats.sw_err_cnt++;
5278                                 u64_stats_update_end(&ring->syncp);
5279                                 /* if alloc new buffer fail, exit directly
5280                                  * and reclear in up flow.
5281                                  */
5282                                 netdev_warn(ring_to_netdev(ring),
5283                                             "reserve buffer map failed, ret = %d\n",
5284                                             ret);
5285                                 return ret;
5286                         }
5287                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5288                 }
5289                 ring_ptr_move_fw(ring, next_to_use);
5290         }
5291
5292         /* Free the pending skb in rx ring */
5293         if (ring->skb) {
5294                 dev_kfree_skb_any(ring->skb);
5295                 ring->skb = NULL;
5296                 ring->pending_buf = 0;
5297         }
5298
5299         return 0;
5300 }
5301
5302 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5303 {
5304         while (ring->next_to_use != ring->next_to_clean) {
5305                 /* When a buffer is not reused, it's memory has been
5306                  * freed in hns3_handle_rx_bd or will be freed by
5307                  * stack, so only need to unmap the buffer here.
5308                  */
5309                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5310                         hns3_unmap_buffer(ring,
5311                                           &ring->desc_cb[ring->next_to_use]);
5312                         ring->desc_cb[ring->next_to_use].dma = 0;
5313                 }
5314
5315                 ring_ptr_move_fw(ring, next_to_use);
5316         }
5317 }
5318
5319 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5320 {
5321         struct net_device *ndev = h->kinfo.netdev;
5322         struct hns3_nic_priv *priv = netdev_priv(ndev);
5323         u32 i;
5324
5325         for (i = 0; i < h->kinfo.num_tqps; i++) {
5326                 struct hns3_enet_ring *ring;
5327
5328                 ring = &priv->ring[i];
5329                 hns3_clear_tx_ring(ring);
5330
5331                 ring = &priv->ring[i + h->kinfo.num_tqps];
5332                 /* Continue to clear other rings even if clearing some
5333                  * rings failed.
5334                  */
5335                 if (force)
5336                         hns3_force_clear_rx_ring(ring);
5337                 else
5338                         hns3_clear_rx_ring(ring);
5339         }
5340 }
5341
5342 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5343 {
5344         struct net_device *ndev = h->kinfo.netdev;
5345         struct hns3_nic_priv *priv = netdev_priv(ndev);
5346         struct hns3_enet_ring *rx_ring;
5347         int i, j;
5348         int ret;
5349
5350         ret = h->ae_algo->ops->reset_queue(h);
5351         if (ret)
5352                 return ret;
5353
5354         for (i = 0; i < h->kinfo.num_tqps; i++) {
5355                 hns3_init_ring_hw(&priv->ring[i]);
5356
5357                 /* We need to clear tx ring here because self test will
5358                  * use the ring and will not run down before up
5359                  */
5360                 hns3_clear_tx_ring(&priv->ring[i]);
5361                 priv->ring[i].next_to_clean = 0;
5362                 priv->ring[i].next_to_use = 0;
5363                 priv->ring[i].last_to_use = 0;
5364
5365                 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5366                 hns3_init_ring_hw(rx_ring);
5367                 ret = hns3_clear_rx_ring(rx_ring);
5368                 if (ret)
5369                         return ret;
5370
5371                 /* We can not know the hardware head and tail when this
5372                  * function is called in reset flow, so we reuse all desc.
5373                  */
5374                 for (j = 0; j < rx_ring->desc_num; j++)
5375                         hns3_reuse_buffer(rx_ring, j);
5376
5377                 rx_ring->next_to_clean = 0;
5378                 rx_ring->next_to_use = 0;
5379         }
5380
5381         hns3_init_tx_ring_tc(priv);
5382
5383         return 0;
5384 }
5385
5386 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5387 {
5388         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5389         struct net_device *ndev = kinfo->netdev;
5390         struct hns3_nic_priv *priv = netdev_priv(ndev);
5391
5392         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5393                 return 0;
5394
5395         if (!netif_running(ndev))
5396                 return 0;
5397
5398         return hns3_nic_net_stop(ndev);
5399 }
5400
5401 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5402 {
5403         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5404         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5405         int ret = 0;
5406
5407         if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5408                 netdev_err(kinfo->netdev, "device is not initialized yet\n");
5409                 return -EFAULT;
5410         }
5411
5412         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5413
5414         if (netif_running(kinfo->netdev)) {
5415                 ret = hns3_nic_net_open(kinfo->netdev);
5416                 if (ret) {
5417                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5418                         netdev_err(kinfo->netdev,
5419                                    "net up fail, ret=%d!\n", ret);
5420                         return ret;
5421                 }
5422         }
5423
5424         return ret;
5425 }
5426
5427 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5428 {
5429         struct net_device *netdev = handle->kinfo.netdev;
5430         struct hns3_nic_priv *priv = netdev_priv(netdev);
5431         int ret;
5432
5433         /* Carrier off reporting is important to ethtool even BEFORE open */
5434         netif_carrier_off(netdev);
5435
5436         ret = hns3_get_ring_config(priv);
5437         if (ret)
5438                 return ret;
5439
5440         ret = hns3_nic_alloc_vector_data(priv);
5441         if (ret)
5442                 goto err_put_ring;
5443
5444         ret = hns3_nic_init_vector_data(priv);
5445         if (ret)
5446                 goto err_dealloc_vector;
5447
5448         ret = hns3_init_all_ring(priv);
5449         if (ret)
5450                 goto err_uninit_vector;
5451
5452         hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5453
5454         /* the device can work without cpu rmap, only aRFS needs it */
5455         ret = hns3_set_rx_cpu_rmap(netdev);
5456         if (ret)
5457                 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5458
5459         ret = hns3_nic_init_irq(priv);
5460         if (ret) {
5461                 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5462                 hns3_free_rx_cpu_rmap(netdev);
5463                 goto err_init_irq_fail;
5464         }
5465
5466         if (!hns3_is_phys_func(handle->pdev))
5467                 hns3_init_mac_addr(netdev);
5468
5469         ret = hns3_client_start(handle);
5470         if (ret) {
5471                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5472                 goto err_client_start_fail;
5473         }
5474
5475         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5476
5477         return ret;
5478
5479 err_client_start_fail:
5480         hns3_free_rx_cpu_rmap(netdev);
5481         hns3_nic_uninit_irq(priv);
5482 err_init_irq_fail:
5483         hns3_uninit_all_ring(priv);
5484 err_uninit_vector:
5485         hns3_nic_uninit_vector_data(priv);
5486 err_dealloc_vector:
5487         hns3_nic_dealloc_vector_data(priv);
5488 err_put_ring:
5489         hns3_put_ring_config(priv);
5490
5491         return ret;
5492 }
5493
5494 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5495 {
5496         struct net_device *netdev = handle->kinfo.netdev;
5497         struct hns3_nic_priv *priv = netdev_priv(netdev);
5498
5499         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5500                 netdev_warn(netdev, "already uninitialized\n");
5501                 return 0;
5502         }
5503
5504         hns3_free_rx_cpu_rmap(netdev);
5505         hns3_nic_uninit_irq(priv);
5506         hns3_clear_all_ring(handle, true);
5507         hns3_reset_tx_queue(priv->ae_handle);
5508
5509         hns3_nic_uninit_vector_data(priv);
5510
5511         hns3_nic_dealloc_vector_data(priv);
5512
5513         hns3_uninit_all_ring(priv);
5514
5515         hns3_put_ring_config(priv);
5516
5517         return 0;
5518 }
5519
5520 static int hns3_reset_notify(struct hnae3_handle *handle,
5521                              enum hnae3_reset_notify_type type)
5522 {
5523         int ret = 0;
5524
5525         switch (type) {
5526         case HNAE3_UP_CLIENT:
5527                 ret = hns3_reset_notify_up_enet(handle);
5528                 break;
5529         case HNAE3_DOWN_CLIENT:
5530                 ret = hns3_reset_notify_down_enet(handle);
5531                 break;
5532         case HNAE3_INIT_CLIENT:
5533                 ret = hns3_reset_notify_init_enet(handle);
5534                 break;
5535         case HNAE3_UNINIT_CLIENT:
5536                 ret = hns3_reset_notify_uninit_enet(handle);
5537                 break;
5538         default:
5539                 break;
5540         }
5541
5542         return ret;
5543 }
5544
5545 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5546                                 bool rxfh_configured)
5547 {
5548         int ret;
5549
5550         ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5551                                                  rxfh_configured);
5552         if (ret) {
5553                 dev_err(&handle->pdev->dev,
5554                         "Change tqp num(%u) fail.\n", new_tqp_num);
5555                 return ret;
5556         }
5557
5558         ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5559         if (ret)
5560                 return ret;
5561
5562         ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5563         if (ret)
5564                 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5565
5566         return ret;
5567 }
5568
5569 int hns3_set_channels(struct net_device *netdev,
5570                       struct ethtool_channels *ch)
5571 {
5572         struct hnae3_handle *h = hns3_get_handle(netdev);
5573         struct hnae3_knic_private_info *kinfo = &h->kinfo;
5574         bool rxfh_configured = netif_is_rxfh_configured(netdev);
5575         u32 new_tqp_num = ch->combined_count;
5576         u16 org_tqp_num;
5577         int ret;
5578
5579         if (hns3_nic_resetting(netdev))
5580                 return -EBUSY;
5581
5582         if (ch->rx_count || ch->tx_count)
5583                 return -EINVAL;
5584
5585         if (kinfo->tc_info.mqprio_active) {
5586                 dev_err(&netdev->dev,
5587                         "it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5588                 return -EINVAL;
5589         }
5590
5591         if (new_tqp_num > hns3_get_max_available_channels(h) ||
5592             new_tqp_num < 1) {
5593                 dev_err(&netdev->dev,
5594                         "Change tqps fail, the tqp range is from 1 to %u",
5595                         hns3_get_max_available_channels(h));
5596                 return -EINVAL;
5597         }
5598
5599         if (kinfo->rss_size == new_tqp_num)
5600                 return 0;
5601
5602         netif_dbg(h, drv, netdev,
5603                   "set channels: tqp_num=%u, rxfh=%d\n",
5604                   new_tqp_num, rxfh_configured);
5605
5606         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5607         if (ret)
5608                 return ret;
5609
5610         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5611         if (ret)
5612                 return ret;
5613
5614         org_tqp_num = h->kinfo.num_tqps;
5615         ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5616         if (ret) {
5617                 int ret1;
5618
5619                 netdev_warn(netdev,
5620                             "Change channels fail, revert to old value\n");
5621                 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5622                 if (ret1) {
5623                         netdev_err(netdev,
5624                                    "revert to old channel fail\n");
5625                         return ret1;
5626                 }
5627
5628                 return ret;
5629         }
5630
5631         return 0;
5632 }
5633
5634 static const struct hns3_hw_error_info hns3_hw_err[] = {
5635         { .type = HNAE3_PPU_POISON_ERROR,
5636           .msg = "PPU poison" },
5637         { .type = HNAE3_CMDQ_ECC_ERROR,
5638           .msg = "IMP CMDQ error" },
5639         { .type = HNAE3_IMP_RD_POISON_ERROR,
5640           .msg = "IMP RD poison" },
5641         { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5642           .msg = "ROCEE AXI RESP error" },
5643 };
5644
5645 static void hns3_process_hw_error(struct hnae3_handle *handle,
5646                                   enum hnae3_hw_error_type type)
5647 {
5648         int i;
5649
5650         for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5651                 if (hns3_hw_err[i].type == type) {
5652                         dev_err(&handle->pdev->dev, "Detected %s!\n",
5653                                 hns3_hw_err[i].msg);
5654                         break;
5655                 }
5656         }
5657 }
5658
5659 static const struct hnae3_client_ops client_ops = {
5660         .init_instance = hns3_client_init,
5661         .uninit_instance = hns3_client_uninit,
5662         .link_status_change = hns3_link_status_change,
5663         .reset_notify = hns3_reset_notify,
5664         .process_hw_error = hns3_process_hw_error,
5665 };
5666
5667 /* hns3_init_module - Driver registration routine
5668  * hns3_init_module is the first routine called when the driver is
5669  * loaded. All it does is register with the PCI subsystem.
5670  */
5671 static int __init hns3_init_module(void)
5672 {
5673         int ret;
5674
5675         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5676         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5677
5678         client.type = HNAE3_CLIENT_KNIC;
5679         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5680                  hns3_driver_name);
5681
5682         client.ops = &client_ops;
5683
5684         INIT_LIST_HEAD(&client.node);
5685
5686         hns3_dbg_register_debugfs(hns3_driver_name);
5687
5688         ret = hnae3_register_client(&client);
5689         if (ret)
5690                 goto err_reg_client;
5691
5692         ret = pci_register_driver(&hns3_driver);
5693         if (ret)
5694                 goto err_reg_driver;
5695
5696         return ret;
5697
5698 err_reg_driver:
5699         hnae3_unregister_client(&client);
5700 err_reg_client:
5701         hns3_dbg_unregister_debugfs();
5702         return ret;
5703 }
5704 module_init(hns3_init_module);
5705
5706 /* hns3_exit_module - Driver exit cleanup routine
5707  * hns3_exit_module is called just before the driver is removed
5708  * from memory.
5709  */
5710 static void __exit hns3_exit_module(void)
5711 {
5712         pci_unregister_driver(&hns3_driver);
5713         hnae3_unregister_client(&client);
5714         hns3_dbg_unregister_debugfs();
5715 }
5716 module_exit(hns3_exit_module);
5717
5718 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
5719 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
5720 MODULE_LICENSE("GPL");
5721 MODULE_ALIAS("pci:hns-nic");