Merge tag 'leds_for_4.10_email_update' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42
43 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
44                          int size, dma_addr_t dma, int frag_end,
45                          int buf_num, enum hns_desc_type type, int mtu)
46 {
47         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49         struct iphdr *iphdr;
50         struct ipv6hdr *ipv6hdr;
51         struct sk_buff *skb;
52         __be16 protocol;
53         u8 bn_pid = 0;
54         u8 rrcfv = 0;
55         u8 ip_offset = 0;
56         u8 tvsvsn = 0;
57         u16 mss = 0;
58         u8 l4_len = 0;
59         u16 paylen = 0;
60
61         desc_cb->priv = priv;
62         desc_cb->length = size;
63         desc_cb->dma = dma;
64         desc_cb->type = type;
65
66         desc->addr = cpu_to_le64(dma);
67         desc->tx.send_size = cpu_to_le16((u16)size);
68
69         /* config bd buffer end */
70         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72
73         /* fill port_id in the tx bd for sending management pkts */
74         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76
77         if (type == DESC_TYPE_SKB) {
78                 skb = (struct sk_buff *)priv;
79
80                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
81                         skb_reset_mac_len(skb);
82                         protocol = skb->protocol;
83                         ip_offset = ETH_HLEN;
84
85                         if (protocol == htons(ETH_P_8021Q)) {
86                                 ip_offset += VLAN_HLEN;
87                                 protocol = vlan_get_protocol(skb);
88                                 skb->protocol = protocol;
89                         }
90
91                         if (skb->protocol == htons(ETH_P_IP)) {
92                                 iphdr = ip_hdr(skb);
93                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95
96                                 /* check for tcp/udp header */
97                                 if (iphdr->protocol == IPPROTO_TCP &&
98                                     skb_is_gso(skb)) {
99                                         hnae_set_bit(tvsvsn,
100                                                      HNSV2_TXD_TSE_B, 1);
101                                         l4_len = tcp_hdrlen(skb);
102                                         mss = skb_shinfo(skb)->gso_size;
103                                         paylen = skb->len - SKB_TMP_LEN(skb);
104                                 }
105                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
106                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107                                 ipv6hdr = ipv6_hdr(skb);
108                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109
110                                 /* check for tcp/udp header */
111                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113                                         hnae_set_bit(tvsvsn,
114                                                      HNSV2_TXD_TSE_B, 1);
115                                         l4_len = tcp_hdrlen(skb);
116                                         mss = skb_shinfo(skb)->gso_size;
117                                         paylen = skb->len - SKB_TMP_LEN(skb);
118                                 }
119                         }
120                         desc->tx.ip_offset = ip_offset;
121                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122                         desc->tx.mss = cpu_to_le16(mss);
123                         desc->tx.l4_len = l4_len;
124                         desc->tx.paylen = cpu_to_le16(paylen);
125                 }
126         }
127
128         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129
130         desc->tx.bn_pid = bn_pid;
131         desc->tx.ra_ri_cs_fe_vld = rrcfv;
132
133         ring_ptr_move_fw(ring, next_to_use);
134 }
135
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137         { "HISI00C1", 0 },
138         { "HISI00C2", 0 },
139         { },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144                       int size, dma_addr_t dma, int frag_end,
145                       int buf_num, enum hns_desc_type type, int mtu)
146 {
147         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149         struct sk_buff *skb;
150         __be16 protocol;
151         u32 ip_offset;
152         u32 asid_bufnum_pid = 0;
153         u32 flag_ipoffset = 0;
154
155         desc_cb->priv = priv;
156         desc_cb->length = size;
157         desc_cb->dma = dma;
158         desc_cb->type = type;
159
160         desc->addr = cpu_to_le64(dma);
161         desc->tx.send_size = cpu_to_le16((u16)size);
162
163         /*config bd buffer end */
164         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165
166         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167
168         if (type == DESC_TYPE_SKB) {
169                 skb = (struct sk_buff *)priv;
170
171                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
172                         protocol = skb->protocol;
173                         ip_offset = ETH_HLEN;
174
175                         /*if it is a SW VLAN check the next protocol*/
176                         if (protocol == htons(ETH_P_8021Q)) {
177                                 ip_offset += VLAN_HLEN;
178                                 protocol = vlan_get_protocol(skb);
179                                 skb->protocol = protocol;
180                         }
181
182                         if (skb->protocol == htons(ETH_P_IP)) {
183                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184                                 /* check for tcp/udp header */
185                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186
187                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
188                                 /* ipv6 has not l3 cs, check for L4 header */
189                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190                         }
191
192                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193                 }
194         }
195
196         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197
198         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200
201         ring_ptr_move_fw(ring, next_to_use);
202 }
203
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206         ring_ptr_move_bw(ring, next_to_use);
207 }
208
209 static int hns_nic_maybe_stop_tx(
210         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212         struct sk_buff *skb = *out_skb;
213         struct sk_buff *new_skb = NULL;
214         int buf_num;
215
216         /* no. of segments (plus a header) */
217         buf_num = skb_shinfo(skb)->nr_frags + 1;
218
219         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220                 if (ring_space(ring) < 1)
221                         return -EBUSY;
222
223                 new_skb = skb_copy(skb, GFP_ATOMIC);
224                 if (!new_skb)
225                         return -ENOMEM;
226
227                 dev_kfree_skb_any(skb);
228                 *out_skb = new_skb;
229                 buf_num = 1;
230         } else if (buf_num > ring_space(ring)) {
231                 return -EBUSY;
232         }
233
234         *bnum = buf_num;
235         return 0;
236 }
237
238 static int hns_nic_maybe_stop_tso(
239         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241         int i;
242         int size;
243         int buf_num;
244         int frag_num;
245         struct sk_buff *skb = *out_skb;
246         struct sk_buff *new_skb = NULL;
247         struct skb_frag_struct *frag;
248
249         size = skb_headlen(skb);
250         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251
252         frag_num = skb_shinfo(skb)->nr_frags;
253         for (i = 0; i < frag_num; i++) {
254                 frag = &skb_shinfo(skb)->frags[i];
255                 size = skb_frag_size(frag);
256                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257         }
258
259         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261                 if (ring_space(ring) < buf_num)
262                         return -EBUSY;
263                 /* manual split the send packet */
264                 new_skb = skb_copy(skb, GFP_ATOMIC);
265                 if (!new_skb)
266                         return -ENOMEM;
267                 dev_kfree_skb_any(skb);
268                 *out_skb = new_skb;
269
270         } else if (ring_space(ring) < buf_num) {
271                 return -EBUSY;
272         }
273
274         *bnum = buf_num;
275         return 0;
276 }
277
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279                           int size, dma_addr_t dma, int frag_end,
280                           int buf_num, enum hns_desc_type type, int mtu)
281 {
282         int frag_buf_num;
283         int sizeoflast;
284         int k;
285
286         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287         sizeoflast = size % BD_MAX_SEND_SIZE;
288         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289
290         /* when the frag size is bigger than hardware, split this frag */
291         for (k = 0; k < frag_buf_num; k++)
292                 fill_v2_desc(ring, priv,
293                              (k == frag_buf_num - 1) ?
294                                         sizeoflast : BD_MAX_SEND_SIZE,
295                              dma + BD_MAX_SEND_SIZE * k,
296                              frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297                              buf_num,
298                              (type == DESC_TYPE_SKB && !k) ?
299                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
300                              mtu);
301 }
302
303 int hns_nic_net_xmit_hw(struct net_device *ndev,
304                         struct sk_buff *skb,
305                         struct hns_nic_ring_data *ring_data)
306 {
307         struct hns_nic_priv *priv = netdev_priv(ndev);
308         struct device *dev = priv->dev;
309         struct hnae_ring *ring = ring_data->ring;
310         struct netdev_queue *dev_queue;
311         struct skb_frag_struct *frag;
312         int buf_num;
313         int seg_num;
314         dma_addr_t dma;
315         int size, next_to_use;
316         int i;
317
318         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319         case -EBUSY:
320                 ring->stats.tx_busy++;
321                 goto out_net_tx_busy;
322         case -ENOMEM:
323                 ring->stats.sw_err_cnt++;
324                 netdev_err(ndev, "no memory to xmit!\n");
325                 goto out_err_tx_ok;
326         default:
327                 break;
328         }
329
330         /* no. of segments (plus a header) */
331         seg_num = skb_shinfo(skb)->nr_frags + 1;
332         next_to_use = ring->next_to_use;
333
334         /* fill the first part */
335         size = skb_headlen(skb);
336         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337         if (dma_mapping_error(dev, dma)) {
338                 netdev_err(ndev, "TX head DMA map failed\n");
339                 ring->stats.sw_err_cnt++;
340                 goto out_err_tx_ok;
341         }
342         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343                             buf_num, DESC_TYPE_SKB, ndev->mtu);
344
345         /* fill the fragments */
346         for (i = 1; i < seg_num; i++) {
347                 frag = &skb_shinfo(skb)->frags[i - 1];
348                 size = skb_frag_size(frag);
349                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350                 if (dma_mapping_error(dev, dma)) {
351                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352                         ring->stats.sw_err_cnt++;
353                         goto out_map_frag_fail;
354                 }
355                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356                                     seg_num - 1 == i ? 1 : 0, buf_num,
357                                     DESC_TYPE_PAGE, ndev->mtu);
358         }
359
360         /*complete translate all packets*/
361         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362         netdev_tx_sent_queue(dev_queue, skb->len);
363
364         wmb(); /* commit all data before submit */
365         assert(skb->queue_mapping < priv->ae_handle->q_num);
366         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
367         ring->stats.tx_pkts++;
368         ring->stats.tx_bytes += skb->len;
369
370         return NETDEV_TX_OK;
371
372 out_map_frag_fail:
373
374         while (ring->next_to_use != next_to_use) {
375                 unfill_desc(ring);
376                 if (ring->next_to_use != next_to_use)
377                         dma_unmap_page(dev,
378                                        ring->desc_cb[ring->next_to_use].dma,
379                                        ring->desc_cb[ring->next_to_use].length,
380                                        DMA_TO_DEVICE);
381                 else
382                         dma_unmap_single(dev,
383                                          ring->desc_cb[next_to_use].dma,
384                                          ring->desc_cb[next_to_use].length,
385                                          DMA_TO_DEVICE);
386         }
387
388 out_err_tx_ok:
389
390         dev_kfree_skb_any(skb);
391         return NETDEV_TX_OK;
392
393 out_net_tx_busy:
394
395         netif_stop_subqueue(ndev, skb->queue_mapping);
396
397         /* Herbert's original patch had:
398          *  smp_mb__after_netif_stop_queue();
399          * but since that doesn't exist yet, just open code it.
400          */
401         smp_mb();
402         return NETDEV_TX_BUSY;
403 }
404
405 /**
406  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
407  * @data: pointer to the start of the headers
408  * @max: total length of section to find headers in
409  *
410  * This function is meant to determine the length of headers that will
411  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
412  * motivation of doing this is to only perform one pull for IPv4 TCP
413  * packets so that we can do basic things like calculating the gso_size
414  * based on the average data per packet.
415  **/
416 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
417                                         unsigned int max_size)
418 {
419         unsigned char *network;
420         u8 hlen;
421
422         /* this should never happen, but better safe than sorry */
423         if (max_size < ETH_HLEN)
424                 return max_size;
425
426         /* initialize network frame pointer */
427         network = data;
428
429         /* set first protocol and move network header forward */
430         network += ETH_HLEN;
431
432         /* handle any vlan tag if present */
433         if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
434                 == HNS_RX_FLAG_VLAN_PRESENT) {
435                 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
436                         return max_size;
437
438                 network += VLAN_HLEN;
439         }
440
441         /* handle L3 protocols */
442         if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
443                 == HNS_RX_FLAG_L3ID_IPV4) {
444                 if ((typeof(max_size))(network - data) >
445                     (max_size - sizeof(struct iphdr)))
446                         return max_size;
447
448                 /* access ihl as a u8 to avoid unaligned access on ia64 */
449                 hlen = (network[0] & 0x0F) << 2;
450
451                 /* verify hlen meets minimum size requirements */
452                 if (hlen < sizeof(struct iphdr))
453                         return network - data;
454
455                 /* record next protocol if header is present */
456         } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
457                 == HNS_RX_FLAG_L3ID_IPV6) {
458                 if ((typeof(max_size))(network - data) >
459                     (max_size - sizeof(struct ipv6hdr)))
460                         return max_size;
461
462                 /* record next protocol */
463                 hlen = sizeof(struct ipv6hdr);
464         } else {
465                 return network - data;
466         }
467
468         /* relocate pointer to start of L4 header */
469         network += hlen;
470
471         /* finally sort out TCP/UDP */
472         if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
473                 == HNS_RX_FLAG_L4ID_TCP) {
474                 if ((typeof(max_size))(network - data) >
475                     (max_size - sizeof(struct tcphdr)))
476                         return max_size;
477
478                 /* access doff as a u8 to avoid unaligned access on ia64 */
479                 hlen = (network[12] & 0xF0) >> 2;
480
481                 /* verify hlen meets minimum size requirements */
482                 if (hlen < sizeof(struct tcphdr))
483                         return network - data;
484
485                 network += hlen;
486         } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
487                 == HNS_RX_FLAG_L4ID_UDP) {
488                 if ((typeof(max_size))(network - data) >
489                     (max_size - sizeof(struct udphdr)))
490                         return max_size;
491
492                 network += sizeof(struct udphdr);
493         }
494
495         /* If everything has gone correctly network should be the
496          * data section of the packet and will be the end of the header.
497          * If not then it probably represents the end of the last recognized
498          * header.
499          */
500         if ((typeof(max_size))(network - data) < max_size)
501                 return network - data;
502         else
503                 return max_size;
504 }
505
506 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
507                                struct hnae_ring *ring, int pull_len,
508                                struct hnae_desc_cb *desc_cb)
509 {
510         struct hnae_desc *desc;
511         int truesize, size;
512         int last_offset;
513         bool twobufs;
514
515         twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
516
517         desc = &ring->desc[ring->next_to_clean];
518         size = le16_to_cpu(desc->rx.size);
519
520         if (twobufs) {
521                 truesize = hnae_buf_size(ring);
522         } else {
523                 truesize = ALIGN(size, L1_CACHE_BYTES);
524                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
525         }
526
527         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
528                         size - pull_len, truesize - pull_len);
529
530          /* avoid re-using remote pages,flag default unreuse */
531         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
532                 return;
533
534         if (twobufs) {
535                 /* if we are only owner of page we can reuse it */
536                 if (likely(page_count(desc_cb->priv) == 1)) {
537                         /* flip page offset to other buffer */
538                         desc_cb->page_offset ^= truesize;
539
540                         desc_cb->reuse_flag = 1;
541                         /* bump ref count on page before it is given*/
542                         get_page(desc_cb->priv);
543                 }
544                 return;
545         }
546
547         /* move offset up to the next cache line */
548         desc_cb->page_offset += truesize;
549
550         if (desc_cb->page_offset <= last_offset) {
551                 desc_cb->reuse_flag = 1;
552                 /* bump ref count on page before it is given*/
553                 get_page(desc_cb->priv);
554         }
555 }
556
557 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
558 {
559         *out_bnum = hnae_get_field(bnum_flag,
560                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
561 }
562
563 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
564 {
565         *out_bnum = hnae_get_field(bnum_flag,
566                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
567 }
568
569 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
570                                 struct sk_buff *skb, u32 flag)
571 {
572         struct net_device *netdev = ring_data->napi.dev;
573         u32 l3id;
574         u32 l4id;
575
576         /* check if RX checksum offload is enabled */
577         if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
578                 return;
579
580         /* In hardware, we only support checksum for the following protocols:
581          * 1) IPv4,
582          * 2) TCP(over IPv4 or IPv6),
583          * 3) UDP(over IPv4 or IPv6),
584          * 4) SCTP(over IPv4 or IPv6)
585          * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
586          * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
587          *
588          * Hardware limitation:
589          * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
590          * Error" bit (which usually can be used to indicate whether checksum
591          * was calculated by the hardware and if there was any error encountered
592          * during checksum calculation).
593          *
594          * Software workaround:
595          * We do get info within the RX descriptor about the kind of L3/L4
596          * protocol coming in the packet and the error status. These errors
597          * might not just be checksum errors but could be related to version,
598          * length of IPv4, UDP, TCP etc.
599          * Because there is no-way of knowing if it is a L3/L4 error due to bad
600          * checksum or any other L3/L4 error, we will not (cannot) convey
601          * checksum status for such cases to upper stack and will not maintain
602          * the RX L3/L4 checksum counters as well.
603          */
604
605         l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
606         l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
607
608         /*  check L3 protocol for which checksum is supported */
609         if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
610                 return;
611
612         /* check for any(not just checksum)flagged L3 protocol errors */
613         if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
614                 return;
615
616         /* we do not support checksum of fragmented packets */
617         if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
618                 return;
619
620         /*  check L4 protocol for which checksum is supported */
621         if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
622             (l4id != HNS_RX_FLAG_L4ID_UDP) &&
623             (l4id != HNS_RX_FLAG_L4ID_SCTP))
624                 return;
625
626         /* check for any(not just checksum)flagged L4 protocol errors */
627         if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
628                 return;
629
630         /* now, this has to be a packet with valid RX checksum */
631         skb->ip_summed = CHECKSUM_UNNECESSARY;
632 }
633
634 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
635                                struct sk_buff **out_skb, int *out_bnum)
636 {
637         struct hnae_ring *ring = ring_data->ring;
638         struct net_device *ndev = ring_data->napi.dev;
639         struct hns_nic_priv *priv = netdev_priv(ndev);
640         struct sk_buff *skb;
641         struct hnae_desc *desc;
642         struct hnae_desc_cb *desc_cb;
643         unsigned char *va;
644         int bnum, length, i;
645         int pull_len;
646         u32 bnum_flag;
647
648         desc = &ring->desc[ring->next_to_clean];
649         desc_cb = &ring->desc_cb[ring->next_to_clean];
650
651         prefetch(desc);
652
653         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
654
655         /* prefetch first cache line of first page */
656         prefetch(va);
657 #if L1_CACHE_BYTES < 128
658         prefetch(va + L1_CACHE_BYTES);
659 #endif
660
661         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
662                                         HNS_RX_HEAD_SIZE);
663         if (unlikely(!skb)) {
664                 netdev_err(ndev, "alloc rx skb fail\n");
665                 ring->stats.sw_err_cnt++;
666                 return -ENOMEM;
667         }
668
669         prefetchw(skb->data);
670         length = le16_to_cpu(desc->rx.pkt_len);
671         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
672         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
673         *out_bnum = bnum;
674
675         if (length <= HNS_RX_HEAD_SIZE) {
676                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
677
678                 /* we can reuse buffer as-is, just make sure it is local */
679                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
680                         desc_cb->reuse_flag = 1;
681                 else /* this page cannot be reused so discard it */
682                         put_page(desc_cb->priv);
683
684                 ring_ptr_move_fw(ring, next_to_clean);
685
686                 if (unlikely(bnum != 1)) { /* check err*/
687                         *out_bnum = 1;
688                         goto out_bnum_err;
689                 }
690         } else {
691                 ring->stats.seg_pkt_cnt++;
692
693                 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
694                 memcpy(__skb_put(skb, pull_len), va,
695                        ALIGN(pull_len, sizeof(long)));
696
697                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
698                 ring_ptr_move_fw(ring, next_to_clean);
699
700                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
701                         *out_bnum = 1;
702                         goto out_bnum_err;
703                 }
704                 for (i = 1; i < bnum; i++) {
705                         desc = &ring->desc[ring->next_to_clean];
706                         desc_cb = &ring->desc_cb[ring->next_to_clean];
707
708                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
709                         ring_ptr_move_fw(ring, next_to_clean);
710                 }
711         }
712
713         /* check except process, free skb and jump the desc */
714         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
715 out_bnum_err:
716                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
717                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
718                            bnum, ring->max_desc_num_per_pkt,
719                            length, (int)MAX_SKB_FRAGS,
720                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
721                 ring->stats.err_bd_num++;
722                 dev_kfree_skb_any(skb);
723                 return -EDOM;
724         }
725
726         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
727
728         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
729                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
730                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
731                 ring->stats.non_vld_descs++;
732                 dev_kfree_skb_any(skb);
733                 return -EINVAL;
734         }
735
736         if (unlikely((!desc->rx.pkt_len) ||
737                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
738                 ring->stats.err_pkt_len++;
739                 dev_kfree_skb_any(skb);
740                 return -EFAULT;
741         }
742
743         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
744                 ring->stats.l2_err++;
745                 dev_kfree_skb_any(skb);
746                 return -EFAULT;
747         }
748
749         ring->stats.rx_pkts++;
750         ring->stats.rx_bytes += skb->len;
751
752         /* indicate to upper stack if our hardware has already calculated
753          * the RX checksum
754          */
755         hns_nic_rx_checksum(ring_data, skb, bnum_flag);
756
757         return 0;
758 }
759
760 static void
761 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
762 {
763         int i, ret;
764         struct hnae_desc_cb res_cbs;
765         struct hnae_desc_cb *desc_cb;
766         struct hnae_ring *ring = ring_data->ring;
767         struct net_device *ndev = ring_data->napi.dev;
768
769         for (i = 0; i < cleand_count; i++) {
770                 desc_cb = &ring->desc_cb[ring->next_to_use];
771                 if (desc_cb->reuse_flag) {
772                         ring->stats.reuse_pg_cnt++;
773                         hnae_reuse_buffer(ring, ring->next_to_use);
774                 } else {
775                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
776                         if (ret) {
777                                 ring->stats.sw_err_cnt++;
778                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
779                                 break;
780                         }
781                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
782                 }
783
784                 ring_ptr_move_fw(ring, next_to_use);
785         }
786
787         wmb(); /* make all data has been write before submit */
788         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
789 }
790
791 /* return error number for error or number of desc left to take
792  */
793 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
794                               struct sk_buff *skb)
795 {
796         struct net_device *ndev = ring_data->napi.dev;
797
798         skb->protocol = eth_type_trans(skb, ndev);
799         (void)napi_gro_receive(&ring_data->napi, skb);
800         ndev->last_rx = jiffies;
801 }
802
803 static int hns_desc_unused(struct hnae_ring *ring)
804 {
805         int ntc = ring->next_to_clean;
806         int ntu = ring->next_to_use;
807
808         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
809 }
810
811 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
812                                int budget, void *v)
813 {
814         struct hnae_ring *ring = ring_data->ring;
815         struct sk_buff *skb;
816         int num, bnum;
817 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
818         int recv_pkts, recv_bds, clean_count, err;
819         int unused_count = hns_desc_unused(ring);
820
821         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
822         rmb(); /* make sure num taken effect before the other data is touched */
823
824         recv_pkts = 0, recv_bds = 0, clean_count = 0;
825         num -= unused_count;
826
827         while (recv_pkts < budget && recv_bds < num) {
828                 /* reuse or realloc buffers */
829                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
830                         hns_nic_alloc_rx_buffers(ring_data,
831                                                  clean_count + unused_count);
832                         clean_count = 0;
833                         unused_count = hns_desc_unused(ring);
834                 }
835
836                 /* poll one pkt */
837                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
838                 if (unlikely(!skb)) /* this fault cannot be repaired */
839                         goto out;
840
841                 recv_bds += bnum;
842                 clean_count += bnum;
843                 if (unlikely(err)) {  /* do jump the err */
844                         recv_pkts++;
845                         continue;
846                 }
847
848                 /* do update ip stack process*/
849                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
850                                                         ring_data, skb);
851                 recv_pkts++;
852         }
853
854 out:
855         /* make all data has been write before submit */
856         if (clean_count + unused_count > 0)
857                 hns_nic_alloc_rx_buffers(ring_data,
858                                          clean_count + unused_count);
859
860         return recv_pkts;
861 }
862
863 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
864 {
865         struct hnae_ring *ring = ring_data->ring;
866         int num = 0;
867
868         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
869
870         /* for hardware bug fixed */
871         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
872
873         if (num > 0) {
874                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
875                         ring_data->ring, 1);
876
877                 napi_schedule(&ring_data->napi);
878         }
879 }
880
881 static void hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
882 {
883         struct hnae_ring *ring = ring_data->ring;
884         int num = 0;
885
886         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
887
888         if (num == 0)
889                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
890                         ring, 0);
891         else
892                 napi_schedule(&ring_data->napi);
893 }
894
895 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
896                                             int *bytes, int *pkts)
897 {
898         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
899
900         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
901         (*bytes) += desc_cb->length;
902         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
903         hnae_free_buffer_detach(ring, ring->next_to_clean);
904
905         ring_ptr_move_fw(ring, next_to_clean);
906 }
907
908 static int is_valid_clean_head(struct hnae_ring *ring, int h)
909 {
910         int u = ring->next_to_use;
911         int c = ring->next_to_clean;
912
913         if (unlikely(h > ring->desc_num))
914                 return 0;
915
916         assert(u > 0 && u < ring->desc_num);
917         assert(c > 0 && c < ring->desc_num);
918         assert(u != c && h != c); /* must be checked before call this func */
919
920         return u > c ? (h > c && h <= u) : (h > c || h <= u);
921 }
922
923 /* netif_tx_lock will turn down the performance, set only when necessary */
924 #ifdef CONFIG_NET_POLL_CONTROLLER
925 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
926 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
927 #else
928 #define NETIF_TX_LOCK(ndev)
929 #define NETIF_TX_UNLOCK(ndev)
930 #endif
931 /* reclaim all desc in one budget
932  * return error or number of desc left
933  */
934 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
935                                int budget, void *v)
936 {
937         struct hnae_ring *ring = ring_data->ring;
938         struct net_device *ndev = ring_data->napi.dev;
939         struct netdev_queue *dev_queue;
940         struct hns_nic_priv *priv = netdev_priv(ndev);
941         int head;
942         int bytes, pkts;
943
944         NETIF_TX_LOCK(ndev);
945
946         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
947         rmb(); /* make sure head is ready before touch any data */
948
949         if (is_ring_empty(ring) || head == ring->next_to_clean) {
950                 NETIF_TX_UNLOCK(ndev);
951                 return 0; /* no data to poll */
952         }
953
954         if (!is_valid_clean_head(ring, head)) {
955                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
956                            ring->next_to_use, ring->next_to_clean);
957                 ring->stats.io_err_cnt++;
958                 NETIF_TX_UNLOCK(ndev);
959                 return -EIO;
960         }
961
962         bytes = 0;
963         pkts = 0;
964         while (head != ring->next_to_clean) {
965                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
966                 /* issue prefetch for next Tx descriptor */
967                 prefetch(&ring->desc_cb[ring->next_to_clean]);
968         }
969
970         NETIF_TX_UNLOCK(ndev);
971
972         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
973         netdev_tx_completed_queue(dev_queue, pkts, bytes);
974
975         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
976                 netif_carrier_on(ndev);
977
978         if (unlikely(pkts && netif_carrier_ok(ndev) &&
979                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
980                 /* Make sure that anybody stopping the queue after this
981                  * sees the new next_to_clean.
982                  */
983                 smp_mb();
984                 if (netif_tx_queue_stopped(dev_queue) &&
985                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
986                         netif_tx_wake_queue(dev_queue);
987                         ring->stats.restart_queue++;
988                 }
989         }
990         return 0;
991 }
992
993 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
994 {
995         struct hnae_ring *ring = ring_data->ring;
996         int head;
997
998         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
999
1000         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1001
1002         if (head != ring->next_to_clean) {
1003                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1004                         ring_data->ring, 1);
1005
1006                 napi_schedule(&ring_data->napi);
1007         }
1008 }
1009
1010 static void hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1011 {
1012         struct hnae_ring *ring = ring_data->ring;
1013         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1014
1015         if (head == ring->next_to_clean)
1016                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1017                         ring, 0);
1018         else
1019                 napi_schedule(&ring_data->napi);
1020 }
1021
1022 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1023 {
1024         struct hnae_ring *ring = ring_data->ring;
1025         struct net_device *ndev = ring_data->napi.dev;
1026         struct netdev_queue *dev_queue;
1027         int head;
1028         int bytes, pkts;
1029
1030         NETIF_TX_LOCK(ndev);
1031
1032         head = ring->next_to_use; /* ntu :soft setted ring position*/
1033         bytes = 0;
1034         pkts = 0;
1035         while (head != ring->next_to_clean)
1036                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1037
1038         NETIF_TX_UNLOCK(ndev);
1039
1040         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1041         netdev_tx_reset_queue(dev_queue);
1042 }
1043
1044 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1045 {
1046         struct hns_nic_ring_data *ring_data =
1047                 container_of(napi, struct hns_nic_ring_data, napi);
1048         int clean_complete = ring_data->poll_one(
1049                                 ring_data, budget, ring_data->ex_process);
1050
1051         if (clean_complete >= 0 && clean_complete < budget) {
1052                 napi_complete(napi);
1053                 ring_data->fini_process(ring_data);
1054                 return 0;
1055         }
1056
1057         return clean_complete;
1058 }
1059
1060 static irqreturn_t hns_irq_handle(int irq, void *dev)
1061 {
1062         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1063
1064         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1065                 ring_data->ring, 1);
1066         napi_schedule(&ring_data->napi);
1067
1068         return IRQ_HANDLED;
1069 }
1070
1071 /**
1072  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1073  *@ndev: net device
1074  */
1075 static void hns_nic_adjust_link(struct net_device *ndev)
1076 {
1077         struct hns_nic_priv *priv = netdev_priv(ndev);
1078         struct hnae_handle *h = priv->ae_handle;
1079         int state = 1;
1080
1081         if (ndev->phydev) {
1082                 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1083                                          ndev->phydev->duplex);
1084                 state = ndev->phydev->link;
1085         }
1086         state = state && h->dev->ops->get_status(h);
1087
1088         if (state != priv->link) {
1089                 if (state) {
1090                         netif_carrier_on(ndev);
1091                         netif_tx_wake_all_queues(ndev);
1092                         netdev_info(ndev, "link up\n");
1093                 } else {
1094                         netif_carrier_off(ndev);
1095                         netdev_info(ndev, "link down\n");
1096                 }
1097                 priv->link = state;
1098         }
1099 }
1100
1101 /**
1102  *hns_nic_init_phy - init phy
1103  *@ndev: net device
1104  *@h: ae handle
1105  * Return 0 on success, negative on failure
1106  */
1107 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1108 {
1109         struct phy_device *phy_dev = h->phy_dev;
1110         int ret;
1111
1112         if (!h->phy_dev)
1113                 return 0;
1114
1115         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1116                 phy_dev->dev_flags = 0;
1117
1118                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1119                                          h->phy_if);
1120         } else {
1121                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1122         }
1123         if (unlikely(ret))
1124                 return -ENODEV;
1125
1126         phy_dev->supported &= h->if_support;
1127         phy_dev->advertising = phy_dev->supported;
1128
1129         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1130                 phy_dev->autoneg = false;
1131
1132         return 0;
1133 }
1134
1135 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1136 {
1137         struct hns_nic_priv *priv = netdev_priv(netdev);
1138         struct hnae_handle *h = priv->ae_handle;
1139
1140         napi_enable(&priv->ring_data[idx].napi);
1141
1142         enable_irq(priv->ring_data[idx].ring->irq);
1143         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1144
1145         return 0;
1146 }
1147
1148 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1149 {
1150         struct hns_nic_priv *priv = netdev_priv(ndev);
1151         struct hnae_handle *h = priv->ae_handle;
1152         struct sockaddr *mac_addr = p;
1153         int ret;
1154
1155         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1156                 return -EADDRNOTAVAIL;
1157
1158         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1159         if (ret) {
1160                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1161                 return ret;
1162         }
1163
1164         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1165
1166         return 0;
1167 }
1168
1169 void hns_nic_update_stats(struct net_device *netdev)
1170 {
1171         struct hns_nic_priv *priv = netdev_priv(netdev);
1172         struct hnae_handle *h = priv->ae_handle;
1173
1174         h->dev->ops->update_stats(h, &netdev->stats);
1175 }
1176
1177 /* set mac addr if it is configed. or leave it to the AE driver */
1178 static void hns_init_mac_addr(struct net_device *ndev)
1179 {
1180         struct hns_nic_priv *priv = netdev_priv(ndev);
1181
1182         if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1183                 eth_hw_addr_random(ndev);
1184                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1185                          ndev->dev_addr);
1186         }
1187 }
1188
1189 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1190 {
1191         struct hns_nic_priv *priv = netdev_priv(netdev);
1192         struct hnae_handle *h = priv->ae_handle;
1193
1194         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1195         disable_irq(priv->ring_data[idx].ring->irq);
1196
1197         napi_disable(&priv->ring_data[idx].napi);
1198 }
1199
1200 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1201 {
1202         struct hnae_handle *h = priv->ae_handle;
1203         struct hns_nic_ring_data *rd;
1204         int i;
1205         int cpu;
1206         cpumask_t mask;
1207
1208         /*diffrent irq banlance for 16core and 32core*/
1209         if (h->q_num == num_possible_cpus()) {
1210                 for (i = 0; i < h->q_num * 2; i++) {
1211                         rd = &priv->ring_data[i];
1212                         if (cpu_online(rd->queue_index)) {
1213                                 cpumask_clear(&mask);
1214                                 cpu = rd->queue_index;
1215                                 cpumask_set_cpu(cpu, &mask);
1216                                 (void)irq_set_affinity_hint(rd->ring->irq,
1217                                                             &mask);
1218                         }
1219                 }
1220         } else {
1221                 for (i = 0; i < h->q_num; i++) {
1222                         rd = &priv->ring_data[i];
1223                         if (cpu_online(rd->queue_index * 2)) {
1224                                 cpumask_clear(&mask);
1225                                 cpu = rd->queue_index * 2;
1226                                 cpumask_set_cpu(cpu, &mask);
1227                                 (void)irq_set_affinity_hint(rd->ring->irq,
1228                                                             &mask);
1229                         }
1230                 }
1231
1232                 for (i = h->q_num; i < h->q_num * 2; i++) {
1233                         rd = &priv->ring_data[i];
1234                         if (cpu_online(rd->queue_index * 2 + 1)) {
1235                                 cpumask_clear(&mask);
1236                                 cpu = rd->queue_index * 2 + 1;
1237                                 cpumask_set_cpu(cpu, &mask);
1238                                 (void)irq_set_affinity_hint(rd->ring->irq,
1239                                                             &mask);
1240                         }
1241                 }
1242         }
1243 }
1244
1245 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1246 {
1247         struct hnae_handle *h = priv->ae_handle;
1248         struct hns_nic_ring_data *rd;
1249         int i;
1250         int ret;
1251
1252         for (i = 0; i < h->q_num * 2; i++) {
1253                 rd = &priv->ring_data[i];
1254
1255                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1256                         break;
1257
1258                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1259                          "%s-%s%d", priv->netdev->name,
1260                          (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1261
1262                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1263
1264                 ret = request_irq(rd->ring->irq,
1265                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1266                 if (ret) {
1267                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1268                                    rd->ring->irq);
1269                         return ret;
1270                 }
1271                 disable_irq(rd->ring->irq);
1272                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1273         }
1274
1275         /*set cpu affinity*/
1276         hns_set_irq_affinity(priv);
1277
1278         return 0;
1279 }
1280
1281 static int hns_nic_net_up(struct net_device *ndev)
1282 {
1283         struct hns_nic_priv *priv = netdev_priv(ndev);
1284         struct hnae_handle *h = priv->ae_handle;
1285         int i, j;
1286         int ret;
1287
1288         ret = hns_nic_init_irq(priv);
1289         if (ret != 0) {
1290                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1291                 return ret;
1292         }
1293
1294         for (i = 0; i < h->q_num * 2; i++) {
1295                 ret = hns_nic_ring_open(ndev, i);
1296                 if (ret)
1297                         goto out_has_some_queues;
1298         }
1299
1300         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1301         if (ret)
1302                 goto out_set_mac_addr_err;
1303
1304         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1305         if (ret)
1306                 goto out_start_err;
1307
1308         if (ndev->phydev)
1309                 phy_start(ndev->phydev);
1310
1311         clear_bit(NIC_STATE_DOWN, &priv->state);
1312         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1313
1314         return 0;
1315
1316 out_start_err:
1317         netif_stop_queue(ndev);
1318 out_set_mac_addr_err:
1319 out_has_some_queues:
1320         for (j = i - 1; j >= 0; j--)
1321                 hns_nic_ring_close(ndev, j);
1322
1323         set_bit(NIC_STATE_DOWN, &priv->state);
1324
1325         return ret;
1326 }
1327
1328 static void hns_nic_net_down(struct net_device *ndev)
1329 {
1330         int i;
1331         struct hnae_ae_ops *ops;
1332         struct hns_nic_priv *priv = netdev_priv(ndev);
1333
1334         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1335                 return;
1336
1337         (void)del_timer_sync(&priv->service_timer);
1338         netif_tx_stop_all_queues(ndev);
1339         netif_carrier_off(ndev);
1340         netif_tx_disable(ndev);
1341         priv->link = 0;
1342
1343         if (ndev->phydev)
1344                 phy_stop(ndev->phydev);
1345
1346         ops = priv->ae_handle->dev->ops;
1347
1348         if (ops->stop)
1349                 ops->stop(priv->ae_handle);
1350
1351         netif_tx_stop_all_queues(ndev);
1352
1353         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1354                 hns_nic_ring_close(ndev, i);
1355                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1356
1357                 /* clean tx buffers*/
1358                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1359         }
1360 }
1361
1362 void hns_nic_net_reset(struct net_device *ndev)
1363 {
1364         struct hns_nic_priv *priv = netdev_priv(ndev);
1365         struct hnae_handle *handle = priv->ae_handle;
1366
1367         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1368                 usleep_range(1000, 2000);
1369
1370         (void)hnae_reinit_handle(handle);
1371
1372         clear_bit(NIC_STATE_RESETTING, &priv->state);
1373 }
1374
1375 void hns_nic_net_reinit(struct net_device *netdev)
1376 {
1377         struct hns_nic_priv *priv = netdev_priv(netdev);
1378
1379         netif_trans_update(priv->netdev);
1380         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1381                 usleep_range(1000, 2000);
1382
1383         hns_nic_net_down(netdev);
1384         hns_nic_net_reset(netdev);
1385         (void)hns_nic_net_up(netdev);
1386         clear_bit(NIC_STATE_REINITING, &priv->state);
1387 }
1388
1389 static int hns_nic_net_open(struct net_device *ndev)
1390 {
1391         struct hns_nic_priv *priv = netdev_priv(ndev);
1392         struct hnae_handle *h = priv->ae_handle;
1393         int ret;
1394
1395         if (test_bit(NIC_STATE_TESTING, &priv->state))
1396                 return -EBUSY;
1397
1398         priv->link = 0;
1399         netif_carrier_off(ndev);
1400
1401         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1402         if (ret < 0) {
1403                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1404                            ret);
1405                 return ret;
1406         }
1407
1408         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1409         if (ret < 0) {
1410                 netdev_err(ndev,
1411                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1412                 return ret;
1413         }
1414
1415         ret = hns_nic_net_up(ndev);
1416         if (ret) {
1417                 netdev_err(ndev,
1418                            "hns net up fail, ret=%d!\n", ret);
1419                 return ret;
1420         }
1421
1422         return 0;
1423 }
1424
1425 static int hns_nic_net_stop(struct net_device *ndev)
1426 {
1427         hns_nic_net_down(ndev);
1428
1429         return 0;
1430 }
1431
1432 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1433 static void hns_nic_net_timeout(struct net_device *ndev)
1434 {
1435         struct hns_nic_priv *priv = netdev_priv(ndev);
1436
1437         hns_tx_timeout_reset(priv);
1438 }
1439
1440 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1441                             int cmd)
1442 {
1443         struct phy_device *phy_dev = netdev->phydev;
1444
1445         if (!netif_running(netdev))
1446                 return -EINVAL;
1447
1448         if (!phy_dev)
1449                 return -ENOTSUPP;
1450
1451         return phy_mii_ioctl(phy_dev, ifr, cmd);
1452 }
1453
1454 /* use only for netconsole to poll with the device without interrupt */
1455 #ifdef CONFIG_NET_POLL_CONTROLLER
1456 void hns_nic_poll_controller(struct net_device *ndev)
1457 {
1458         struct hns_nic_priv *priv = netdev_priv(ndev);
1459         unsigned long flags;
1460         int i;
1461
1462         local_irq_save(flags);
1463         for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1464                 napi_schedule(&priv->ring_data[i].napi);
1465         local_irq_restore(flags);
1466 }
1467 #endif
1468
1469 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1470                                     struct net_device *ndev)
1471 {
1472         struct hns_nic_priv *priv = netdev_priv(ndev);
1473         int ret;
1474
1475         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1476         ret = hns_nic_net_xmit_hw(ndev, skb,
1477                                   &tx_ring_data(priv, skb->queue_mapping));
1478         if (ret == NETDEV_TX_OK) {
1479                 netif_trans_update(ndev);
1480                 ndev->stats.tx_bytes += skb->len;
1481                 ndev->stats.tx_packets++;
1482         }
1483         return (netdev_tx_t)ret;
1484 }
1485
1486 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1487 {
1488         struct hns_nic_priv *priv = netdev_priv(ndev);
1489         struct hnae_handle *h = priv->ae_handle;
1490         int ret;
1491
1492         if (!h->dev->ops->set_mtu)
1493                 return -ENOTSUPP;
1494
1495         if (netif_running(ndev)) {
1496                 (void)hns_nic_net_stop(ndev);
1497                 msleep(100);
1498
1499                 ret = h->dev->ops->set_mtu(h, new_mtu);
1500                 if (ret)
1501                         netdev_err(ndev, "set mtu fail, return value %d\n",
1502                                    ret);
1503
1504                 if (hns_nic_net_open(ndev))
1505                         netdev_err(ndev, "hns net open fail\n");
1506         } else {
1507                 ret = h->dev->ops->set_mtu(h, new_mtu);
1508         }
1509
1510         if (!ret)
1511                 ndev->mtu = new_mtu;
1512
1513         return ret;
1514 }
1515
1516 static int hns_nic_set_features(struct net_device *netdev,
1517                                 netdev_features_t features)
1518 {
1519         struct hns_nic_priv *priv = netdev_priv(netdev);
1520
1521         switch (priv->enet_ver) {
1522         case AE_VERSION_1:
1523                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1524                         netdev_info(netdev, "enet v1 do not support tso!\n");
1525                 break;
1526         default:
1527                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1528                         priv->ops.fill_desc = fill_tso_desc;
1529                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1530                         /* The chip only support 7*4096 */
1531                         netif_set_gso_max_size(netdev, 7 * 4096);
1532                 } else {
1533                         priv->ops.fill_desc = fill_v2_desc;
1534                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1535                 }
1536                 break;
1537         }
1538         netdev->features = features;
1539         return 0;
1540 }
1541
1542 static netdev_features_t hns_nic_fix_features(
1543                 struct net_device *netdev, netdev_features_t features)
1544 {
1545         struct hns_nic_priv *priv = netdev_priv(netdev);
1546
1547         switch (priv->enet_ver) {
1548         case AE_VERSION_1:
1549                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1550                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1551                 break;
1552         default:
1553                 break;
1554         }
1555         return features;
1556 }
1557
1558 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1559 {
1560         struct hns_nic_priv *priv = netdev_priv(netdev);
1561         struct hnae_handle *h = priv->ae_handle;
1562
1563         if (h->dev->ops->add_uc_addr)
1564                 return h->dev->ops->add_uc_addr(h, addr);
1565
1566         return 0;
1567 }
1568
1569 static int hns_nic_uc_unsync(struct net_device *netdev,
1570                              const unsigned char *addr)
1571 {
1572         struct hns_nic_priv *priv = netdev_priv(netdev);
1573         struct hnae_handle *h = priv->ae_handle;
1574
1575         if (h->dev->ops->rm_uc_addr)
1576                 return h->dev->ops->rm_uc_addr(h, addr);
1577
1578         return 0;
1579 }
1580
1581 /**
1582  * nic_set_multicast_list - set mutl mac address
1583  * @netdev: net device
1584  * @p: mac address
1585  *
1586  * return void
1587  */
1588 void hns_set_multicast_list(struct net_device *ndev)
1589 {
1590         struct hns_nic_priv *priv = netdev_priv(ndev);
1591         struct hnae_handle *h = priv->ae_handle;
1592         struct netdev_hw_addr *ha = NULL;
1593
1594         if (!h) {
1595                 netdev_err(ndev, "hnae handle is null\n");
1596                 return;
1597         }
1598
1599         if (h->dev->ops->clr_mc_addr)
1600                 if (h->dev->ops->clr_mc_addr(h))
1601                         netdev_err(ndev, "clear multicast address fail\n");
1602
1603         if (h->dev->ops->set_mc_addr) {
1604                 netdev_for_each_mc_addr(ha, ndev)
1605                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1606                                 netdev_err(ndev, "set multicast fail\n");
1607         }
1608 }
1609
1610 void hns_nic_set_rx_mode(struct net_device *ndev)
1611 {
1612         struct hns_nic_priv *priv = netdev_priv(ndev);
1613         struct hnae_handle *h = priv->ae_handle;
1614
1615         if (h->dev->ops->set_promisc_mode) {
1616                 if (ndev->flags & IFF_PROMISC)
1617                         h->dev->ops->set_promisc_mode(h, 1);
1618                 else
1619                         h->dev->ops->set_promisc_mode(h, 0);
1620         }
1621
1622         hns_set_multicast_list(ndev);
1623
1624         if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1625                 netdev_err(ndev, "sync uc address fail\n");
1626 }
1627
1628 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1629                                               struct rtnl_link_stats64 *stats)
1630 {
1631         int idx = 0;
1632         u64 tx_bytes = 0;
1633         u64 rx_bytes = 0;
1634         u64 tx_pkts = 0;
1635         u64 rx_pkts = 0;
1636         struct hns_nic_priv *priv = netdev_priv(ndev);
1637         struct hnae_handle *h = priv->ae_handle;
1638
1639         for (idx = 0; idx < h->q_num; idx++) {
1640                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1641                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1642                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1643                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1644         }
1645
1646         stats->tx_bytes = tx_bytes;
1647         stats->tx_packets = tx_pkts;
1648         stats->rx_bytes = rx_bytes;
1649         stats->rx_packets = rx_pkts;
1650
1651         stats->rx_errors = ndev->stats.rx_errors;
1652         stats->multicast = ndev->stats.multicast;
1653         stats->rx_length_errors = ndev->stats.rx_length_errors;
1654         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1655         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1656
1657         stats->tx_errors = ndev->stats.tx_errors;
1658         stats->rx_dropped = ndev->stats.rx_dropped;
1659         stats->tx_dropped = ndev->stats.tx_dropped;
1660         stats->collisions = ndev->stats.collisions;
1661         stats->rx_over_errors = ndev->stats.rx_over_errors;
1662         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1663         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1664         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1665         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1666         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1667         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1668         stats->tx_window_errors = ndev->stats.tx_window_errors;
1669         stats->rx_compressed = ndev->stats.rx_compressed;
1670         stats->tx_compressed = ndev->stats.tx_compressed;
1671
1672         return stats;
1673 }
1674
1675 static u16
1676 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1677                      void *accel_priv, select_queue_fallback_t fallback)
1678 {
1679         struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1680         struct hns_nic_priv *priv = netdev_priv(ndev);
1681
1682         /* fix hardware broadcast/multicast packets queue loopback */
1683         if (!AE_IS_VER1(priv->enet_ver) &&
1684             is_multicast_ether_addr(eth_hdr->h_dest))
1685                 return 0;
1686         else
1687                 return fallback(ndev, skb);
1688 }
1689
1690 static const struct net_device_ops hns_nic_netdev_ops = {
1691         .ndo_open = hns_nic_net_open,
1692         .ndo_stop = hns_nic_net_stop,
1693         .ndo_start_xmit = hns_nic_net_xmit,
1694         .ndo_tx_timeout = hns_nic_net_timeout,
1695         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1696         .ndo_change_mtu = hns_nic_change_mtu,
1697         .ndo_do_ioctl = hns_nic_do_ioctl,
1698         .ndo_set_features = hns_nic_set_features,
1699         .ndo_fix_features = hns_nic_fix_features,
1700         .ndo_get_stats64 = hns_nic_get_stats64,
1701 #ifdef CONFIG_NET_POLL_CONTROLLER
1702         .ndo_poll_controller = hns_nic_poll_controller,
1703 #endif
1704         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1705         .ndo_select_queue = hns_nic_select_queue,
1706 };
1707
1708 static void hns_nic_update_link_status(struct net_device *netdev)
1709 {
1710         struct hns_nic_priv *priv = netdev_priv(netdev);
1711
1712         struct hnae_handle *h = priv->ae_handle;
1713
1714         if (h->phy_dev) {
1715                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1716                         return;
1717
1718                 (void)genphy_read_status(h->phy_dev);
1719         }
1720         hns_nic_adjust_link(netdev);
1721 }
1722
1723 /* for dumping key regs*/
1724 static void hns_nic_dump(struct hns_nic_priv *priv)
1725 {
1726         struct hnae_handle *h = priv->ae_handle;
1727         struct hnae_ae_ops *ops = h->dev->ops;
1728         u32 *data, reg_num, i;
1729
1730         if (ops->get_regs_len && ops->get_regs) {
1731                 reg_num = ops->get_regs_len(priv->ae_handle);
1732                 reg_num = (reg_num + 3ul) & ~3ul;
1733                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1734                 if (data) {
1735                         ops->get_regs(priv->ae_handle, data);
1736                         for (i = 0; i < reg_num; i += 4)
1737                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1738                                         i, data[i], data[i + 1],
1739                                         data[i + 2], data[i + 3]);
1740                         kfree(data);
1741                 }
1742         }
1743
1744         for (i = 0; i < h->q_num; i++) {
1745                 pr_info("tx_queue%d_next_to_clean:%d\n",
1746                         i, h->qs[i]->tx_ring.next_to_clean);
1747                 pr_info("tx_queue%d_next_to_use:%d\n",
1748                         i, h->qs[i]->tx_ring.next_to_use);
1749                 pr_info("rx_queue%d_next_to_clean:%d\n",
1750                         i, h->qs[i]->rx_ring.next_to_clean);
1751                 pr_info("rx_queue%d_next_to_use:%d\n",
1752                         i, h->qs[i]->rx_ring.next_to_use);
1753         }
1754 }
1755
1756 /* for resetting subtask */
1757 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1758 {
1759         enum hnae_port_type type = priv->ae_handle->port_type;
1760
1761         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1762                 return;
1763         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1764
1765         /* If we're already down, removing or resetting, just bail */
1766         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1767             test_bit(NIC_STATE_REMOVING, &priv->state) ||
1768             test_bit(NIC_STATE_RESETTING, &priv->state))
1769                 return;
1770
1771         hns_nic_dump(priv);
1772         netdev_info(priv->netdev, "try to reset %s port!\n",
1773                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1774
1775         rtnl_lock();
1776         /* put off any impending NetWatchDogTimeout */
1777         netif_trans_update(priv->netdev);
1778
1779         if (type == HNAE_PORT_DEBUG) {
1780                 hns_nic_net_reinit(priv->netdev);
1781         } else {
1782                 netif_carrier_off(priv->netdev);
1783                 netif_tx_disable(priv->netdev);
1784         }
1785         rtnl_unlock();
1786 }
1787
1788 /* for doing service complete*/
1789 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1790 {
1791         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1792
1793         smp_mb__before_atomic();
1794         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1795 }
1796
1797 static void hns_nic_service_task(struct work_struct *work)
1798 {
1799         struct hns_nic_priv *priv
1800                 = container_of(work, struct hns_nic_priv, service_task);
1801         struct hnae_handle *h = priv->ae_handle;
1802
1803         hns_nic_update_link_status(priv->netdev);
1804         h->dev->ops->update_led_status(h);
1805         hns_nic_update_stats(priv->netdev);
1806
1807         hns_nic_reset_subtask(priv);
1808         hns_nic_service_event_complete(priv);
1809 }
1810
1811 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1812 {
1813         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1814             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1815             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1816                 (void)schedule_work(&priv->service_task);
1817 }
1818
1819 static void hns_nic_service_timer(unsigned long data)
1820 {
1821         struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1822
1823         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1824
1825         hns_nic_task_schedule(priv);
1826 }
1827
1828 /**
1829  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1830  * @priv: driver private struct
1831  **/
1832 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1833 {
1834         /* Do the reset outside of interrupt context */
1835         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1836                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1837                 netdev_warn(priv->netdev,
1838                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
1839                             priv->tx_timeout_count, priv->state);
1840                 priv->tx_timeout_count++;
1841                 hns_nic_task_schedule(priv);
1842         }
1843 }
1844
1845 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1846 {
1847         struct hnae_handle *h = priv->ae_handle;
1848         struct hns_nic_ring_data *rd;
1849         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
1850         int i;
1851
1852         if (h->q_num > NIC_MAX_Q_PER_VF) {
1853                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1854                 return -EINVAL;
1855         }
1856
1857         priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1858                                   GFP_KERNEL);
1859         if (!priv->ring_data)
1860                 return -ENOMEM;
1861
1862         for (i = 0; i < h->q_num; i++) {
1863                 rd = &priv->ring_data[i];
1864                 rd->queue_index = i;
1865                 rd->ring = &h->qs[i]->tx_ring;
1866                 rd->poll_one = hns_nic_tx_poll_one;
1867                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
1868                         hns_nic_tx_fini_pro_v2;
1869
1870                 netif_napi_add(priv->netdev, &rd->napi,
1871                                hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1872                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1873         }
1874         for (i = h->q_num; i < h->q_num * 2; i++) {
1875                 rd = &priv->ring_data[i];
1876                 rd->queue_index = i - h->q_num;
1877                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
1878                 rd->poll_one = hns_nic_rx_poll_one;
1879                 rd->ex_process = hns_nic_rx_up_pro;
1880                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
1881                         hns_nic_rx_fini_pro_v2;
1882
1883                 netif_napi_add(priv->netdev, &rd->napi,
1884                                hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1885                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1886         }
1887
1888         return 0;
1889 }
1890
1891 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1892 {
1893         struct hnae_handle *h = priv->ae_handle;
1894         int i;
1895
1896         for (i = 0; i < h->q_num * 2; i++) {
1897                 netif_napi_del(&priv->ring_data[i].napi);
1898                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1899                         (void)irq_set_affinity_hint(
1900                                 priv->ring_data[i].ring->irq,
1901                                 NULL);
1902                         free_irq(priv->ring_data[i].ring->irq,
1903                                  &priv->ring_data[i]);
1904                 }
1905
1906                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1907         }
1908         kfree(priv->ring_data);
1909 }
1910
1911 static void hns_nic_set_priv_ops(struct net_device *netdev)
1912 {
1913         struct hns_nic_priv *priv = netdev_priv(netdev);
1914         struct hnae_handle *h = priv->ae_handle;
1915
1916         if (AE_IS_VER1(priv->enet_ver)) {
1917                 priv->ops.fill_desc = fill_desc;
1918                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1919                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1920         } else {
1921                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1922                 if ((netdev->features & NETIF_F_TSO) ||
1923                     (netdev->features & NETIF_F_TSO6)) {
1924                         priv->ops.fill_desc = fill_tso_desc;
1925                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1926                         /* This chip only support 7*4096 */
1927                         netif_set_gso_max_size(netdev, 7 * 4096);
1928                 } else {
1929                         priv->ops.fill_desc = fill_v2_desc;
1930                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1931                 }
1932                 /* enable tso when init
1933                  * control tso on/off through TSE bit in bd
1934                  */
1935                 h->dev->ops->set_tso_stats(h, 1);
1936         }
1937 }
1938
1939 static int hns_nic_try_get_ae(struct net_device *ndev)
1940 {
1941         struct hns_nic_priv *priv = netdev_priv(ndev);
1942         struct hnae_handle *h;
1943         int ret;
1944
1945         h = hnae_get_handle(&priv->netdev->dev,
1946                             priv->fwnode, priv->port_id, NULL);
1947         if (IS_ERR_OR_NULL(h)) {
1948                 ret = -ENODEV;
1949                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
1950                 goto out;
1951         }
1952         priv->ae_handle = h;
1953
1954         ret = hns_nic_init_phy(ndev, h);
1955         if (ret) {
1956                 dev_err(priv->dev, "probe phy device fail!\n");
1957                 goto out_init_phy;
1958         }
1959
1960         ret = hns_nic_init_ring_data(priv);
1961         if (ret) {
1962                 ret = -ENOMEM;
1963                 goto out_init_ring_data;
1964         }
1965
1966         hns_nic_set_priv_ops(ndev);
1967
1968         ret = register_netdev(ndev);
1969         if (ret) {
1970                 dev_err(priv->dev, "probe register netdev fail!\n");
1971                 goto out_reg_ndev_fail;
1972         }
1973         return 0;
1974
1975 out_reg_ndev_fail:
1976         hns_nic_uninit_ring_data(priv);
1977         priv->ring_data = NULL;
1978 out_init_phy:
1979 out_init_ring_data:
1980         hnae_put_handle(priv->ae_handle);
1981         priv->ae_handle = NULL;
1982 out:
1983         return ret;
1984 }
1985
1986 static int hns_nic_notifier_action(struct notifier_block *nb,
1987                                    unsigned long action, void *data)
1988 {
1989         struct hns_nic_priv *priv =
1990                 container_of(nb, struct hns_nic_priv, notifier_block);
1991
1992         assert(action == HNAE_AE_REGISTER);
1993
1994         if (!hns_nic_try_get_ae(priv->netdev)) {
1995                 hnae_unregister_notifier(&priv->notifier_block);
1996                 priv->notifier_block.notifier_call = NULL;
1997         }
1998         return 0;
1999 }
2000
2001 static int hns_nic_dev_probe(struct platform_device *pdev)
2002 {
2003         struct device *dev = &pdev->dev;
2004         struct net_device *ndev;
2005         struct hns_nic_priv *priv;
2006         u32 port_id;
2007         int ret;
2008
2009         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2010         if (!ndev)
2011                 return -ENOMEM;
2012
2013         platform_set_drvdata(pdev, ndev);
2014
2015         priv = netdev_priv(ndev);
2016         priv->dev = dev;
2017         priv->netdev = ndev;
2018
2019         if (dev_of_node(dev)) {
2020                 struct device_node *ae_node;
2021
2022                 if (of_device_is_compatible(dev->of_node,
2023                                             "hisilicon,hns-nic-v1"))
2024                         priv->enet_ver = AE_VERSION_1;
2025                 else
2026                         priv->enet_ver = AE_VERSION_2;
2027
2028                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2029                 if (IS_ERR_OR_NULL(ae_node)) {
2030                         ret = PTR_ERR(ae_node);
2031                         dev_err(dev, "not find ae-handle\n");
2032                         goto out_read_prop_fail;
2033                 }
2034                 priv->fwnode = &ae_node->fwnode;
2035         } else if (is_acpi_node(dev->fwnode)) {
2036                 struct acpi_reference_args args;
2037
2038                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2039                         priv->enet_ver = AE_VERSION_1;
2040                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2041                         priv->enet_ver = AE_VERSION_2;
2042                 else
2043                         return -ENXIO;
2044
2045                 /* try to find port-idx-in-ae first */
2046                 ret = acpi_node_get_property_reference(dev->fwnode,
2047                                                        "ae-handle", 0, &args);
2048                 if (ret) {
2049                         dev_err(dev, "not find ae-handle\n");
2050                         goto out_read_prop_fail;
2051                 }
2052                 priv->fwnode = acpi_fwnode_handle(args.adev);
2053         } else {
2054                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2055                 return -ENXIO;
2056         }
2057
2058         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2059         if (ret) {
2060                 /* only for old code compatible */
2061                 ret = device_property_read_u32(dev, "port-id", &port_id);
2062                 if (ret)
2063                         goto out_read_prop_fail;
2064                 /* for old dts, we need to caculate the port offset */
2065                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2066                         : port_id - HNS_SRV_OFFSET;
2067         }
2068         priv->port_id = port_id;
2069
2070         hns_init_mac_addr(ndev);
2071
2072         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2073         ndev->priv_flags |= IFF_UNICAST_FLT;
2074         ndev->netdev_ops = &hns_nic_netdev_ops;
2075         hns_ethtool_set_ops(ndev);
2076
2077         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2078                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2079                 NETIF_F_GRO;
2080         ndev->vlan_features |=
2081                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2082         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2083
2084         /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2085         ndev->min_mtu = MAC_MIN_MTU;
2086         switch (priv->enet_ver) {
2087         case AE_VERSION_2:
2088                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2089                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2090                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2091                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2092                 ndev->max_mtu = MAC_MAX_MTU_V2 -
2093                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2094                 break;
2095         default:
2096                 ndev->max_mtu = MAC_MAX_MTU -
2097                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2098                 break;
2099         }
2100
2101         SET_NETDEV_DEV(ndev, dev);
2102
2103         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2104                 dev_dbg(dev, "set mask to 64bit\n");
2105         else
2106                 dev_err(dev, "set mask to 64bit fail!\n");
2107
2108         /* carrier off reporting is important to ethtool even BEFORE open */
2109         netif_carrier_off(ndev);
2110
2111         setup_timer(&priv->service_timer, hns_nic_service_timer,
2112                     (unsigned long)priv);
2113         INIT_WORK(&priv->service_task, hns_nic_service_task);
2114
2115         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2116         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2117         set_bit(NIC_STATE_DOWN, &priv->state);
2118
2119         if (hns_nic_try_get_ae(priv->netdev)) {
2120                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2121                 ret = hnae_register_notifier(&priv->notifier_block);
2122                 if (ret) {
2123                         dev_err(dev, "register notifier fail!\n");
2124                         goto out_notify_fail;
2125                 }
2126                 dev_dbg(dev, "has not handle, register notifier!\n");
2127         }
2128
2129         return 0;
2130
2131 out_notify_fail:
2132         (void)cancel_work_sync(&priv->service_task);
2133 out_read_prop_fail:
2134         free_netdev(ndev);
2135         return ret;
2136 }
2137
2138 static int hns_nic_dev_remove(struct platform_device *pdev)
2139 {
2140         struct net_device *ndev = platform_get_drvdata(pdev);
2141         struct hns_nic_priv *priv = netdev_priv(ndev);
2142
2143         if (ndev->reg_state != NETREG_UNINITIALIZED)
2144                 unregister_netdev(ndev);
2145
2146         if (priv->ring_data)
2147                 hns_nic_uninit_ring_data(priv);
2148         priv->ring_data = NULL;
2149
2150         if (ndev->phydev)
2151                 phy_disconnect(ndev->phydev);
2152
2153         if (!IS_ERR_OR_NULL(priv->ae_handle))
2154                 hnae_put_handle(priv->ae_handle);
2155         priv->ae_handle = NULL;
2156         if (priv->notifier_block.notifier_call)
2157                 hnae_unregister_notifier(&priv->notifier_block);
2158         priv->notifier_block.notifier_call = NULL;
2159
2160         set_bit(NIC_STATE_REMOVING, &priv->state);
2161         (void)cancel_work_sync(&priv->service_task);
2162
2163         free_netdev(ndev);
2164         return 0;
2165 }
2166
2167 static const struct of_device_id hns_enet_of_match[] = {
2168         {.compatible = "hisilicon,hns-nic-v1",},
2169         {.compatible = "hisilicon,hns-nic-v2",},
2170         {},
2171 };
2172
2173 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2174
2175 static struct platform_driver hns_nic_dev_driver = {
2176         .driver = {
2177                 .name = "hns-nic",
2178                 .of_match_table = hns_enet_of_match,
2179                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2180         },
2181         .probe = hns_nic_dev_probe,
2182         .remove = hns_nic_dev_remove,
2183 };
2184
2185 module_platform_driver(hns_nic_dev_driver);
2186
2187 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2188 MODULE_AUTHOR("Hisilicon, Inc.");
2189 MODULE_LICENSE("GPL");
2190 MODULE_ALIAS("platform:hns-nic");