thermal/core: Add NULL pointer check before using cooling device stats
[linux-2.6-microblaze.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2014-2015 Hisilicon Limited.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/irq.h>
15 #include <linux/module.h>
16 #include <linux/phy.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19
20 #include "hnae.h"
21 #include "hns_enet.h"
22 #include "hns_dsaf_mac.h"
23
24 #define NIC_MAX_Q_PER_VF 16
25 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
26
27 #define SERVICE_TIMER_HZ (1 * HZ)
28
29 #define RCB_IRQ_NOT_INITED 0
30 #define RCB_IRQ_INITED 1
31 #define HNS_BUFFER_SIZE_2048 2048
32
33 #define BD_MAX_SEND_SIZE 8191
34 #define SKB_TMP_LEN(SKB) \
35         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
36
37 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
38                             int send_sz, dma_addr_t dma, int frag_end,
39                             int buf_num, enum hns_desc_type type, int mtu)
40 {
41         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
42         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
43         struct iphdr *iphdr;
44         struct ipv6hdr *ipv6hdr;
45         struct sk_buff *skb;
46         __be16 protocol;
47         u8 bn_pid = 0;
48         u8 rrcfv = 0;
49         u8 ip_offset = 0;
50         u8 tvsvsn = 0;
51         u16 mss = 0;
52         u8 l4_len = 0;
53         u16 paylen = 0;
54
55         desc_cb->priv = priv;
56         desc_cb->length = size;
57         desc_cb->dma = dma;
58         desc_cb->type = type;
59
60         desc->addr = cpu_to_le64(dma);
61         desc->tx.send_size = cpu_to_le16((u16)send_sz);
62
63         /* config bd buffer end */
64         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
65         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
66
67         /* fill port_id in the tx bd for sending management pkts */
68         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
69                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
70
71         if (type == DESC_TYPE_SKB) {
72                 skb = (struct sk_buff *)priv;
73
74                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
75                         skb_reset_mac_len(skb);
76                         protocol = skb->protocol;
77                         ip_offset = ETH_HLEN;
78
79                         if (protocol == htons(ETH_P_8021Q)) {
80                                 ip_offset += VLAN_HLEN;
81                                 protocol = vlan_get_protocol(skb);
82                                 skb->protocol = protocol;
83                         }
84
85                         if (skb->protocol == htons(ETH_P_IP)) {
86                                 iphdr = ip_hdr(skb);
87                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
88                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
89
90                                 /* check for tcp/udp header */
91                                 if (iphdr->protocol == IPPROTO_TCP &&
92                                     skb_is_gso(skb)) {
93                                         hnae_set_bit(tvsvsn,
94                                                      HNSV2_TXD_TSE_B, 1);
95                                         l4_len = tcp_hdrlen(skb);
96                                         mss = skb_shinfo(skb)->gso_size;
97                                         paylen = skb->len - SKB_TMP_LEN(skb);
98                                 }
99                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
100                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
101                                 ipv6hdr = ipv6_hdr(skb);
102                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
103
104                                 /* check for tcp/udp header */
105                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
106                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
107                                         hnae_set_bit(tvsvsn,
108                                                      HNSV2_TXD_TSE_B, 1);
109                                         l4_len = tcp_hdrlen(skb);
110                                         mss = skb_shinfo(skb)->gso_size;
111                                         paylen = skb->len - SKB_TMP_LEN(skb);
112                                 }
113                         }
114                         desc->tx.ip_offset = ip_offset;
115                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
116                         desc->tx.mss = cpu_to_le16(mss);
117                         desc->tx.l4_len = l4_len;
118                         desc->tx.paylen = cpu_to_le16(paylen);
119                 }
120         }
121
122         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
123
124         desc->tx.bn_pid = bn_pid;
125         desc->tx.ra_ri_cs_fe_vld = rrcfv;
126
127         ring_ptr_move_fw(ring, next_to_use);
128 }
129
130 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
131                          int size, dma_addr_t dma, int frag_end,
132                          int buf_num, enum hns_desc_type type, int mtu)
133 {
134         fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
135                         buf_num, type, mtu);
136 }
137
138 static const struct acpi_device_id hns_enet_acpi_match[] = {
139         { "HISI00C1", 0 },
140         { "HISI00C2", 0 },
141         { },
142 };
143 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
144
145 static void fill_desc(struct hnae_ring *ring, void *priv,
146                       int size, dma_addr_t dma, int frag_end,
147                       int buf_num, enum hns_desc_type type, int mtu)
148 {
149         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
150         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
151         struct sk_buff *skb;
152         __be16 protocol;
153         u32 ip_offset;
154         u32 asid_bufnum_pid = 0;
155         u32 flag_ipoffset = 0;
156
157         desc_cb->priv = priv;
158         desc_cb->length = size;
159         desc_cb->dma = dma;
160         desc_cb->type = type;
161
162         desc->addr = cpu_to_le64(dma);
163         desc->tx.send_size = cpu_to_le16((u16)size);
164
165         /*config bd buffer end */
166         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
167
168         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
169
170         if (type == DESC_TYPE_SKB) {
171                 skb = (struct sk_buff *)priv;
172
173                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
174                         protocol = skb->protocol;
175                         ip_offset = ETH_HLEN;
176
177                         /*if it is a SW VLAN check the next protocol*/
178                         if (protocol == htons(ETH_P_8021Q)) {
179                                 ip_offset += VLAN_HLEN;
180                                 protocol = vlan_get_protocol(skb);
181                                 skb->protocol = protocol;
182                         }
183
184                         if (skb->protocol == htons(ETH_P_IP)) {
185                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
186                                 /* check for tcp/udp header */
187                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
188
189                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
190                                 /* ipv6 has not l3 cs, check for L4 header */
191                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
192                         }
193
194                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
195                 }
196         }
197
198         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
199
200         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
201         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
202
203         ring_ptr_move_fw(ring, next_to_use);
204 }
205
206 static void unfill_desc(struct hnae_ring *ring)
207 {
208         ring_ptr_move_bw(ring, next_to_use);
209 }
210
211 static int hns_nic_maybe_stop_tx(
212         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
213 {
214         struct sk_buff *skb = *out_skb;
215         struct sk_buff *new_skb = NULL;
216         int buf_num;
217
218         /* no. of segments (plus a header) */
219         buf_num = skb_shinfo(skb)->nr_frags + 1;
220
221         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
222                 if (ring_space(ring) < 1)
223                         return -EBUSY;
224
225                 new_skb = skb_copy(skb, GFP_ATOMIC);
226                 if (!new_skb)
227                         return -ENOMEM;
228
229                 dev_kfree_skb_any(skb);
230                 *out_skb = new_skb;
231                 buf_num = 1;
232         } else if (buf_num > ring_space(ring)) {
233                 return -EBUSY;
234         }
235
236         *bnum = buf_num;
237         return 0;
238 }
239
240 static int hns_nic_maybe_stop_tso(
241         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
242 {
243         int i;
244         int size;
245         int buf_num;
246         int frag_num;
247         struct sk_buff *skb = *out_skb;
248         struct sk_buff *new_skb = NULL;
249         skb_frag_t *frag;
250
251         size = skb_headlen(skb);
252         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
253
254         frag_num = skb_shinfo(skb)->nr_frags;
255         for (i = 0; i < frag_num; i++) {
256                 frag = &skb_shinfo(skb)->frags[i];
257                 size = skb_frag_size(frag);
258                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
259         }
260
261         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
262                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
263                 if (ring_space(ring) < buf_num)
264                         return -EBUSY;
265                 /* manual split the send packet */
266                 new_skb = skb_copy(skb, GFP_ATOMIC);
267                 if (!new_skb)
268                         return -ENOMEM;
269                 dev_kfree_skb_any(skb);
270                 *out_skb = new_skb;
271
272         } else if (ring_space(ring) < buf_num) {
273                 return -EBUSY;
274         }
275
276         *bnum = buf_num;
277         return 0;
278 }
279
280 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
281                           int size, dma_addr_t dma, int frag_end,
282                           int buf_num, enum hns_desc_type type, int mtu)
283 {
284         int frag_buf_num;
285         int sizeoflast;
286         int k;
287
288         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
289         sizeoflast = size % BD_MAX_SEND_SIZE;
290         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
291
292         /* when the frag size is bigger than hardware, split this frag */
293         for (k = 0; k < frag_buf_num; k++)
294                 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
295                                 (k == frag_buf_num - 1) ?
296                                         sizeoflast : BD_MAX_SEND_SIZE,
297                                 dma + BD_MAX_SEND_SIZE * k,
298                                 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
299                                 buf_num,
300                                 (type == DESC_TYPE_SKB && !k) ?
301                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
302                                 mtu);
303 }
304
305 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
306                                 struct sk_buff *skb,
307                                 struct hns_nic_ring_data *ring_data)
308 {
309         struct hns_nic_priv *priv = netdev_priv(ndev);
310         struct hnae_ring *ring = ring_data->ring;
311         struct device *dev = ring_to_dev(ring);
312         struct netdev_queue *dev_queue;
313         skb_frag_t *frag;
314         int buf_num;
315         int seg_num;
316         dma_addr_t dma;
317         int size, next_to_use;
318         int i;
319
320         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
321         case -EBUSY:
322                 ring->stats.tx_busy++;
323                 goto out_net_tx_busy;
324         case -ENOMEM:
325                 ring->stats.sw_err_cnt++;
326                 netdev_err(ndev, "no memory to xmit!\n");
327                 goto out_err_tx_ok;
328         default:
329                 break;
330         }
331
332         /* no. of segments (plus a header) */
333         seg_num = skb_shinfo(skb)->nr_frags + 1;
334         next_to_use = ring->next_to_use;
335
336         /* fill the first part */
337         size = skb_headlen(skb);
338         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
339         if (dma_mapping_error(dev, dma)) {
340                 netdev_err(ndev, "TX head DMA map failed\n");
341                 ring->stats.sw_err_cnt++;
342                 goto out_err_tx_ok;
343         }
344         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
345                             buf_num, DESC_TYPE_SKB, ndev->mtu);
346
347         /* fill the fragments */
348         for (i = 1; i < seg_num; i++) {
349                 frag = &skb_shinfo(skb)->frags[i - 1];
350                 size = skb_frag_size(frag);
351                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
352                 if (dma_mapping_error(dev, dma)) {
353                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
354                         ring->stats.sw_err_cnt++;
355                         goto out_map_frag_fail;
356                 }
357                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
358                                     seg_num - 1 == i ? 1 : 0, buf_num,
359                                     DESC_TYPE_PAGE, ndev->mtu);
360         }
361
362         /*complete translate all packets*/
363         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
364         netdev_tx_sent_queue(dev_queue, skb->len);
365
366         netif_trans_update(ndev);
367         ndev->stats.tx_bytes += skb->len;
368         ndev->stats.tx_packets++;
369
370         wmb(); /* commit all data before submit */
371         assert(skb->queue_mapping < priv->ae_handle->q_num);
372         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
373
374         return NETDEV_TX_OK;
375
376 out_map_frag_fail:
377
378         while (ring->next_to_use != next_to_use) {
379                 unfill_desc(ring);
380                 if (ring->next_to_use != next_to_use)
381                         dma_unmap_page(dev,
382                                        ring->desc_cb[ring->next_to_use].dma,
383                                        ring->desc_cb[ring->next_to_use].length,
384                                        DMA_TO_DEVICE);
385                 else
386                         dma_unmap_single(dev,
387                                          ring->desc_cb[next_to_use].dma,
388                                          ring->desc_cb[next_to_use].length,
389                                          DMA_TO_DEVICE);
390         }
391
392 out_err_tx_ok:
393
394         dev_kfree_skb_any(skb);
395         return NETDEV_TX_OK;
396
397 out_net_tx_busy:
398
399         netif_stop_subqueue(ndev, skb->queue_mapping);
400
401         /* Herbert's original patch had:
402          *  smp_mb__after_netif_stop_queue();
403          * but since that doesn't exist yet, just open code it.
404          */
405         smp_mb();
406         return NETDEV_TX_BUSY;
407 }
408
409 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
410                                struct hnae_ring *ring, int pull_len,
411                                struct hnae_desc_cb *desc_cb)
412 {
413         struct hnae_desc *desc;
414         u32 truesize;
415         int size;
416         int last_offset;
417         bool twobufs;
418
419         twobufs = ((PAGE_SIZE < 8192) &&
420                 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
421
422         desc = &ring->desc[ring->next_to_clean];
423         size = le16_to_cpu(desc->rx.size);
424
425         if (twobufs) {
426                 truesize = hnae_buf_size(ring);
427         } else {
428                 truesize = ALIGN(size, L1_CACHE_BYTES);
429                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
430         }
431
432         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
433                         size - pull_len, truesize);
434
435          /* avoid re-using remote pages,flag default unreuse */
436         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
437                 return;
438
439         if (twobufs) {
440                 /* if we are only owner of page we can reuse it */
441                 if (likely(page_count(desc_cb->priv) == 1)) {
442                         /* flip page offset to other buffer */
443                         desc_cb->page_offset ^= truesize;
444
445                         desc_cb->reuse_flag = 1;
446                         /* bump ref count on page before it is given*/
447                         get_page(desc_cb->priv);
448                 }
449                 return;
450         }
451
452         /* move offset up to the next cache line */
453         desc_cb->page_offset += truesize;
454
455         if (desc_cb->page_offset <= last_offset) {
456                 desc_cb->reuse_flag = 1;
457                 /* bump ref count on page before it is given*/
458                 get_page(desc_cb->priv);
459         }
460 }
461
462 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
463 {
464         *out_bnum = hnae_get_field(bnum_flag,
465                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
466 }
467
468 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
469 {
470         *out_bnum = hnae_get_field(bnum_flag,
471                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
472 }
473
474 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
475                                 struct sk_buff *skb, u32 flag)
476 {
477         struct net_device *netdev = ring_data->napi.dev;
478         u32 l3id;
479         u32 l4id;
480
481         /* check if RX checksum offload is enabled */
482         if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
483                 return;
484
485         /* In hardware, we only support checksum for the following protocols:
486          * 1) IPv4,
487          * 2) TCP(over IPv4 or IPv6),
488          * 3) UDP(over IPv4 or IPv6),
489          * 4) SCTP(over IPv4 or IPv6)
490          * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
491          * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
492          *
493          * Hardware limitation:
494          * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
495          * Error" bit (which usually can be used to indicate whether checksum
496          * was calculated by the hardware and if there was any error encountered
497          * during checksum calculation).
498          *
499          * Software workaround:
500          * We do get info within the RX descriptor about the kind of L3/L4
501          * protocol coming in the packet and the error status. These errors
502          * might not just be checksum errors but could be related to version,
503          * length of IPv4, UDP, TCP etc.
504          * Because there is no-way of knowing if it is a L3/L4 error due to bad
505          * checksum or any other L3/L4 error, we will not (cannot) convey
506          * checksum status for such cases to upper stack and will not maintain
507          * the RX L3/L4 checksum counters as well.
508          */
509
510         l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
511         l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
512
513         /*  check L3 protocol for which checksum is supported */
514         if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
515                 return;
516
517         /* check for any(not just checksum)flagged L3 protocol errors */
518         if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
519                 return;
520
521         /* we do not support checksum of fragmented packets */
522         if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
523                 return;
524
525         /*  check L4 protocol for which checksum is supported */
526         if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
527             (l4id != HNS_RX_FLAG_L4ID_UDP) &&
528             (l4id != HNS_RX_FLAG_L4ID_SCTP))
529                 return;
530
531         /* check for any(not just checksum)flagged L4 protocol errors */
532         if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
533                 return;
534
535         /* now, this has to be a packet with valid RX checksum */
536         skb->ip_summed = CHECKSUM_UNNECESSARY;
537 }
538
539 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
540                                struct sk_buff **out_skb, int *out_bnum)
541 {
542         struct hnae_ring *ring = ring_data->ring;
543         struct net_device *ndev = ring_data->napi.dev;
544         struct hns_nic_priv *priv = netdev_priv(ndev);
545         struct sk_buff *skb;
546         struct hnae_desc *desc;
547         struct hnae_desc_cb *desc_cb;
548         unsigned char *va;
549         int bnum, length, i;
550         int pull_len;
551         u32 bnum_flag;
552
553         desc = &ring->desc[ring->next_to_clean];
554         desc_cb = &ring->desc_cb[ring->next_to_clean];
555
556         prefetch(desc);
557
558         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
559
560         /* prefetch first cache line of first page */
561         net_prefetch(va);
562
563         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
564                                         HNS_RX_HEAD_SIZE);
565         if (unlikely(!skb)) {
566                 ring->stats.sw_err_cnt++;
567                 return -ENOMEM;
568         }
569
570         prefetchw(skb->data);
571         length = le16_to_cpu(desc->rx.pkt_len);
572         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
573         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
574         *out_bnum = bnum;
575
576         if (length <= HNS_RX_HEAD_SIZE) {
577                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
578
579                 /* we can reuse buffer as-is, just make sure it is local */
580                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
581                         desc_cb->reuse_flag = 1;
582                 else /* this page cannot be reused so discard it */
583                         put_page(desc_cb->priv);
584
585                 ring_ptr_move_fw(ring, next_to_clean);
586
587                 if (unlikely(bnum != 1)) { /* check err*/
588                         *out_bnum = 1;
589                         goto out_bnum_err;
590                 }
591         } else {
592                 ring->stats.seg_pkt_cnt++;
593
594                 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
595                 memcpy(__skb_put(skb, pull_len), va,
596                        ALIGN(pull_len, sizeof(long)));
597
598                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
599                 ring_ptr_move_fw(ring, next_to_clean);
600
601                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
602                         *out_bnum = 1;
603                         goto out_bnum_err;
604                 }
605                 for (i = 1; i < bnum; i++) {
606                         desc = &ring->desc[ring->next_to_clean];
607                         desc_cb = &ring->desc_cb[ring->next_to_clean];
608
609                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
610                         ring_ptr_move_fw(ring, next_to_clean);
611                 }
612         }
613
614         /* check except process, free skb and jump the desc */
615         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
616 out_bnum_err:
617                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
618                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
619                            bnum, ring->max_desc_num_per_pkt,
620                            length, (int)MAX_SKB_FRAGS,
621                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
622                 ring->stats.err_bd_num++;
623                 dev_kfree_skb_any(skb);
624                 return -EDOM;
625         }
626
627         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
628
629         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
630                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
631                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
632                 ring->stats.non_vld_descs++;
633                 dev_kfree_skb_any(skb);
634                 return -EINVAL;
635         }
636
637         if (unlikely((!desc->rx.pkt_len) ||
638                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
639                 ring->stats.err_pkt_len++;
640                 dev_kfree_skb_any(skb);
641                 return -EFAULT;
642         }
643
644         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
645                 ring->stats.l2_err++;
646                 dev_kfree_skb_any(skb);
647                 return -EFAULT;
648         }
649
650         ring->stats.rx_pkts++;
651         ring->stats.rx_bytes += skb->len;
652
653         /* indicate to upper stack if our hardware has already calculated
654          * the RX checksum
655          */
656         hns_nic_rx_checksum(ring_data, skb, bnum_flag);
657
658         return 0;
659 }
660
661 static void
662 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
663 {
664         int i, ret;
665         struct hnae_desc_cb res_cbs;
666         struct hnae_desc_cb *desc_cb;
667         struct hnae_ring *ring = ring_data->ring;
668         struct net_device *ndev = ring_data->napi.dev;
669
670         for (i = 0; i < cleand_count; i++) {
671                 desc_cb = &ring->desc_cb[ring->next_to_use];
672                 if (desc_cb->reuse_flag) {
673                         ring->stats.reuse_pg_cnt++;
674                         hnae_reuse_buffer(ring, ring->next_to_use);
675                 } else {
676                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
677                         if (ret) {
678                                 ring->stats.sw_err_cnt++;
679                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
680                                 break;
681                         }
682                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
683                 }
684
685                 ring_ptr_move_fw(ring, next_to_use);
686         }
687
688         wmb(); /* make all data has been write before submit */
689         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
690 }
691
692 /* return error number for error or number of desc left to take
693  */
694 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
695                               struct sk_buff *skb)
696 {
697         struct net_device *ndev = ring_data->napi.dev;
698
699         skb->protocol = eth_type_trans(skb, ndev);
700         napi_gro_receive(&ring_data->napi, skb);
701 }
702
703 static int hns_desc_unused(struct hnae_ring *ring)
704 {
705         int ntc = ring->next_to_clean;
706         int ntu = ring->next_to_use;
707
708         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
709 }
710
711 #define HNS_LOWEST_LATENCY_RATE         27      /* 27 MB/s */
712 #define HNS_LOW_LATENCY_RATE                    80      /* 80 MB/s */
713
714 #define HNS_COAL_BDNUM                  3
715
716 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
717 {
718         bool coal_enable = ring->q->handle->coal_adapt_en;
719
720         if (coal_enable &&
721             ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
722                 return HNS_COAL_BDNUM;
723         else
724                 return 0;
725 }
726
727 static void hns_update_rx_rate(struct hnae_ring *ring)
728 {
729         bool coal_enable = ring->q->handle->coal_adapt_en;
730         u32 time_passed_ms;
731         u64 total_bytes;
732
733         if (!coal_enable ||
734             time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
735                 return;
736
737         /* ring->stats.rx_bytes overflowed */
738         if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
739                 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
740                 ring->coal_last_jiffies = jiffies;
741                 return;
742         }
743
744         total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
745         time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
746         do_div(total_bytes, time_passed_ms);
747         ring->coal_rx_rate = total_bytes >> 10;
748
749         ring->coal_last_rx_bytes = ring->stats.rx_bytes;
750         ring->coal_last_jiffies = jiffies;
751 }
752
753 /**
754  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
755  * @new_param: new value
756  * @old_param: old value
757  **/
758 static u32 smooth_alg(u32 new_param, u32 old_param)
759 {
760         u32 gap = (new_param > old_param) ? new_param - old_param
761                                           : old_param - new_param;
762
763         if (gap > 8)
764                 gap >>= 3;
765
766         if (new_param > old_param)
767                 return old_param + gap;
768         else
769                 return old_param - gap;
770 }
771
772 /**
773  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
774  * @ring_data: pointer to hns_nic_ring_data
775  **/
776 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
777 {
778         struct hnae_ring *ring = ring_data->ring;
779         struct hnae_handle *handle = ring->q->handle;
780         u32 new_coal_param, old_coal_param = ring->coal_param;
781
782         if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
783                 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
784         else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
785                 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
786         else
787                 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
788
789         if (new_coal_param == old_coal_param &&
790             new_coal_param == handle->coal_param)
791                 return;
792
793         new_coal_param = smooth_alg(new_coal_param, old_coal_param);
794         ring->coal_param = new_coal_param;
795
796         /**
797          * Because all ring in one port has one coalesce param, when one ring
798          * calculate its own coalesce param, it cannot write to hardware at
799          * once. There are three conditions as follows:
800          *       1. current ring's coalesce param is larger than the hardware.
801          *       2. or ring which adapt last time can change again.
802          *       3. timeout.
803          */
804         if (new_coal_param == handle->coal_param) {
805                 handle->coal_last_jiffies = jiffies;
806                 handle->coal_ring_idx = ring_data->queue_index;
807         } else if (new_coal_param > handle->coal_param ||
808                    handle->coal_ring_idx == ring_data->queue_index ||
809                    time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
810                 handle->dev->ops->set_coalesce_usecs(handle,
811                                         new_coal_param);
812                 handle->dev->ops->set_coalesce_frames(handle,
813                                         1, new_coal_param);
814                 handle->coal_param = new_coal_param;
815                 handle->coal_ring_idx = ring_data->queue_index;
816                 handle->coal_last_jiffies = jiffies;
817         }
818 }
819
820 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
821                                int budget, void *v)
822 {
823         struct hnae_ring *ring = ring_data->ring;
824         struct sk_buff *skb;
825         int num, bnum;
826 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
827         int recv_pkts, recv_bds, clean_count, err;
828         int unused_count = hns_desc_unused(ring);
829
830         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
831         rmb(); /* make sure num taken effect before the other data is touched */
832
833         recv_pkts = 0, recv_bds = 0, clean_count = 0;
834         num -= unused_count;
835
836         while (recv_pkts < budget && recv_bds < num) {
837                 /* reuse or realloc buffers */
838                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
839                         hns_nic_alloc_rx_buffers(ring_data,
840                                                  clean_count + unused_count);
841                         clean_count = 0;
842                         unused_count = hns_desc_unused(ring);
843                 }
844
845                 /* poll one pkt */
846                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
847                 if (unlikely(!skb)) /* this fault cannot be repaired */
848                         goto out;
849
850                 recv_bds += bnum;
851                 clean_count += bnum;
852                 if (unlikely(err)) {  /* do jump the err */
853                         recv_pkts++;
854                         continue;
855                 }
856
857                 /* do update ip stack process*/
858                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
859                                                         ring_data, skb);
860                 recv_pkts++;
861         }
862
863 out:
864         /* make all data has been write before submit */
865         if (clean_count + unused_count > 0)
866                 hns_nic_alloc_rx_buffers(ring_data,
867                                          clean_count + unused_count);
868
869         return recv_pkts;
870 }
871
872 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
873 {
874         struct hnae_ring *ring = ring_data->ring;
875         int num = 0;
876         bool rx_stopped;
877
878         hns_update_rx_rate(ring);
879
880         /* for hardware bug fixed */
881         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
882         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
883
884         if (num <= hns_coal_rx_bdnum(ring)) {
885                 if (ring->q->handle->coal_adapt_en)
886                         hns_nic_adpt_coalesce(ring_data);
887
888                 rx_stopped = true;
889         } else {
890                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
891                         ring_data->ring, 1);
892
893                 rx_stopped = false;
894         }
895
896         return rx_stopped;
897 }
898
899 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
900 {
901         struct hnae_ring *ring = ring_data->ring;
902         int num;
903
904         hns_update_rx_rate(ring);
905         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
906
907         if (num <= hns_coal_rx_bdnum(ring)) {
908                 if (ring->q->handle->coal_adapt_en)
909                         hns_nic_adpt_coalesce(ring_data);
910
911                 return true;
912         }
913
914         return false;
915 }
916
917 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
918                                             int *bytes, int *pkts)
919 {
920         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
921
922         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
923         (*bytes) += desc_cb->length;
924         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
925         hnae_free_buffer_detach(ring, ring->next_to_clean);
926
927         ring_ptr_move_fw(ring, next_to_clean);
928 }
929
930 static int is_valid_clean_head(struct hnae_ring *ring, int h)
931 {
932         int u = ring->next_to_use;
933         int c = ring->next_to_clean;
934
935         if (unlikely(h > ring->desc_num))
936                 return 0;
937
938         assert(u > 0 && u < ring->desc_num);
939         assert(c > 0 && c < ring->desc_num);
940         assert(u != c && h != c); /* must be checked before call this func */
941
942         return u > c ? (h > c && h <= u) : (h > c || h <= u);
943 }
944
945 /* reclaim all desc in one budget
946  * return error or number of desc left
947  */
948 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
949                                int budget, void *v)
950 {
951         struct hnae_ring *ring = ring_data->ring;
952         struct net_device *ndev = ring_data->napi.dev;
953         struct netdev_queue *dev_queue;
954         struct hns_nic_priv *priv = netdev_priv(ndev);
955         int head;
956         int bytes, pkts;
957
958         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
959         rmb(); /* make sure head is ready before touch any data */
960
961         if (is_ring_empty(ring) || head == ring->next_to_clean)
962                 return 0; /* no data to poll */
963
964         if (!is_valid_clean_head(ring, head)) {
965                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
966                            ring->next_to_use, ring->next_to_clean);
967                 ring->stats.io_err_cnt++;
968                 return -EIO;
969         }
970
971         bytes = 0;
972         pkts = 0;
973         while (head != ring->next_to_clean) {
974                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
975                 /* issue prefetch for next Tx descriptor */
976                 prefetch(&ring->desc_cb[ring->next_to_clean]);
977         }
978         /* update tx ring statistics. */
979         ring->stats.tx_pkts += pkts;
980         ring->stats.tx_bytes += bytes;
981
982         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
983         netdev_tx_completed_queue(dev_queue, pkts, bytes);
984
985         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
986                 netif_carrier_on(ndev);
987
988         if (unlikely(pkts && netif_carrier_ok(ndev) &&
989                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
990                 /* Make sure that anybody stopping the queue after this
991                  * sees the new next_to_clean.
992                  */
993                 smp_mb();
994                 if (netif_tx_queue_stopped(dev_queue) &&
995                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
996                         netif_tx_wake_queue(dev_queue);
997                         ring->stats.restart_queue++;
998                 }
999         }
1000         return 0;
1001 }
1002
1003 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1004 {
1005         struct hnae_ring *ring = ring_data->ring;
1006         int head;
1007
1008         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1009
1010         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1011
1012         if (head != ring->next_to_clean) {
1013                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1014                         ring_data->ring, 1);
1015
1016                 return false;
1017         } else {
1018                 return true;
1019         }
1020 }
1021
1022 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1023 {
1024         struct hnae_ring *ring = ring_data->ring;
1025         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1026
1027         if (head == ring->next_to_clean)
1028                 return true;
1029         else
1030                 return false;
1031 }
1032
1033 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1034 {
1035         struct hnae_ring *ring = ring_data->ring;
1036         struct net_device *ndev = ring_data->napi.dev;
1037         struct netdev_queue *dev_queue;
1038         int head;
1039         int bytes, pkts;
1040
1041         head = ring->next_to_use; /* ntu :soft setted ring position*/
1042         bytes = 0;
1043         pkts = 0;
1044         while (head != ring->next_to_clean)
1045                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1046
1047         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1048         netdev_tx_reset_queue(dev_queue);
1049 }
1050
1051 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1052 {
1053         int clean_complete = 0;
1054         struct hns_nic_ring_data *ring_data =
1055                 container_of(napi, struct hns_nic_ring_data, napi);
1056         struct hnae_ring *ring = ring_data->ring;
1057
1058         clean_complete += ring_data->poll_one(
1059                                 ring_data, budget - clean_complete,
1060                                 ring_data->ex_process);
1061
1062         if (clean_complete < budget) {
1063                 if (ring_data->fini_process(ring_data)) {
1064                         napi_complete(napi);
1065                         ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1066                 } else {
1067                         return budget;
1068                 }
1069         }
1070
1071         return clean_complete;
1072 }
1073
1074 static irqreturn_t hns_irq_handle(int irq, void *dev)
1075 {
1076         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1077
1078         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1079                 ring_data->ring, 1);
1080         napi_schedule(&ring_data->napi);
1081
1082         return IRQ_HANDLED;
1083 }
1084
1085 /**
1086  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1087  *@ndev: net device
1088  */
1089 static void hns_nic_adjust_link(struct net_device *ndev)
1090 {
1091         struct hns_nic_priv *priv = netdev_priv(ndev);
1092         struct hnae_handle *h = priv->ae_handle;
1093         int state = 1;
1094
1095         /* If there is no phy, do not need adjust link */
1096         if (ndev->phydev) {
1097                 /* When phy link down, do nothing */
1098                 if (ndev->phydev->link == 0)
1099                         return;
1100
1101                 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1102                                                   ndev->phydev->duplex)) {
1103                         /* because Hi161X chip don't support to change gmac
1104                          * speed and duplex with traffic. Delay 200ms to
1105                          * make sure there is no more data in chip FIFO.
1106                          */
1107                         netif_carrier_off(ndev);
1108                         msleep(200);
1109                         h->dev->ops->adjust_link(h, ndev->phydev->speed,
1110                                                  ndev->phydev->duplex);
1111                         netif_carrier_on(ndev);
1112                 }
1113         }
1114
1115         state = state && h->dev->ops->get_status(h);
1116
1117         if (state != priv->link) {
1118                 if (state) {
1119                         netif_carrier_on(ndev);
1120                         netif_tx_wake_all_queues(ndev);
1121                         netdev_info(ndev, "link up\n");
1122                 } else {
1123                         netif_carrier_off(ndev);
1124                         netdev_info(ndev, "link down\n");
1125                 }
1126                 priv->link = state;
1127         }
1128 }
1129
1130 /**
1131  *hns_nic_init_phy - init phy
1132  *@ndev: net device
1133  *@h: ae handle
1134  * Return 0 on success, negative on failure
1135  */
1136 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1137 {
1138         __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1139         struct phy_device *phy_dev = h->phy_dev;
1140         int ret;
1141
1142         if (!h->phy_dev)
1143                 return 0;
1144
1145         ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1146         linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1147         linkmode_copy(phy_dev->advertising, phy_dev->supported);
1148
1149         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1150                 phy_dev->autoneg = false;
1151
1152         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1153                 phy_dev->dev_flags = 0;
1154
1155                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1156                                          h->phy_if);
1157         } else {
1158                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1159         }
1160         if (unlikely(ret))
1161                 return -ENODEV;
1162
1163         phy_attached_info(phy_dev);
1164
1165         return 0;
1166 }
1167
1168 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1169 {
1170         struct hns_nic_priv *priv = netdev_priv(netdev);
1171         struct hnae_handle *h = priv->ae_handle;
1172
1173         napi_enable(&priv->ring_data[idx].napi);
1174
1175         enable_irq(priv->ring_data[idx].ring->irq);
1176         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1177
1178         return 0;
1179 }
1180
1181 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1182 {
1183         struct hns_nic_priv *priv = netdev_priv(ndev);
1184         struct hnae_handle *h = priv->ae_handle;
1185         struct sockaddr *mac_addr = p;
1186         int ret;
1187
1188         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1189                 return -EADDRNOTAVAIL;
1190
1191         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1192         if (ret) {
1193                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1194                 return ret;
1195         }
1196
1197         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1198
1199         return 0;
1200 }
1201
1202 static void hns_nic_update_stats(struct net_device *netdev)
1203 {
1204         struct hns_nic_priv *priv = netdev_priv(netdev);
1205         struct hnae_handle *h = priv->ae_handle;
1206
1207         h->dev->ops->update_stats(h, &netdev->stats);
1208 }
1209
1210 /* set mac addr if it is configed. or leave it to the AE driver */
1211 static void hns_init_mac_addr(struct net_device *ndev)
1212 {
1213         struct hns_nic_priv *priv = netdev_priv(ndev);
1214
1215         if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1216                 eth_hw_addr_random(ndev);
1217                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1218                          ndev->dev_addr);
1219         }
1220 }
1221
1222 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1223 {
1224         struct hns_nic_priv *priv = netdev_priv(netdev);
1225         struct hnae_handle *h = priv->ae_handle;
1226
1227         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1228         disable_irq(priv->ring_data[idx].ring->irq);
1229
1230         napi_disable(&priv->ring_data[idx].napi);
1231 }
1232
1233 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1234                                       struct hnae_ring *ring, cpumask_t *mask)
1235 {
1236         int cpu;
1237
1238         /* Diffrent irq banlance between 16core and 32core.
1239          * The cpu mask set by ring index according to the ring flag
1240          * which indicate the ring is tx or rx.
1241          */
1242         if (q_num == num_possible_cpus()) {
1243                 if (is_tx_ring(ring))
1244                         cpu = ring_idx;
1245                 else
1246                         cpu = ring_idx - q_num;
1247         } else {
1248                 if (is_tx_ring(ring))
1249                         cpu = ring_idx * 2;
1250                 else
1251                         cpu = (ring_idx - q_num) * 2 + 1;
1252         }
1253
1254         cpumask_clear(mask);
1255         cpumask_set_cpu(cpu, mask);
1256
1257         return cpu;
1258 }
1259
1260 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1261 {
1262         int i;
1263
1264         for (i = 0; i < q_num * 2; i++) {
1265                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1266                         irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1267                                               NULL);
1268                         free_irq(priv->ring_data[i].ring->irq,
1269                                  &priv->ring_data[i]);
1270                         priv->ring_data[i].ring->irq_init_flag =
1271                                 RCB_IRQ_NOT_INITED;
1272                 }
1273         }
1274 }
1275
1276 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1277 {
1278         struct hnae_handle *h = priv->ae_handle;
1279         struct hns_nic_ring_data *rd;
1280         int i;
1281         int ret;
1282         int cpu;
1283
1284         for (i = 0; i < h->q_num * 2; i++) {
1285                 rd = &priv->ring_data[i];
1286
1287                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1288                         break;
1289
1290                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1291                          "%s-%s%d", priv->netdev->name,
1292                          (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1293
1294                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1295
1296                 irq_set_status_flags(rd->ring->irq, IRQ_NOAUTOEN);
1297                 ret = request_irq(rd->ring->irq,
1298                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1299                 if (ret) {
1300                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1301                                    rd->ring->irq);
1302                         goto out_free_irq;
1303                 }
1304
1305                 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1306                                                  rd->ring, &rd->mask);
1307
1308                 if (cpu_online(cpu))
1309                         irq_set_affinity_hint(rd->ring->irq,
1310                                               &rd->mask);
1311
1312                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1313         }
1314
1315         return 0;
1316
1317 out_free_irq:
1318         hns_nic_free_irq(h->q_num, priv);
1319         return ret;
1320 }
1321
1322 static int hns_nic_net_up(struct net_device *ndev)
1323 {
1324         struct hns_nic_priv *priv = netdev_priv(ndev);
1325         struct hnae_handle *h = priv->ae_handle;
1326         int i, j;
1327         int ret;
1328
1329         if (!test_bit(NIC_STATE_DOWN, &priv->state))
1330                 return 0;
1331
1332         ret = hns_nic_init_irq(priv);
1333         if (ret != 0) {
1334                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1335                 return ret;
1336         }
1337
1338         for (i = 0; i < h->q_num * 2; i++) {
1339                 ret = hns_nic_ring_open(ndev, i);
1340                 if (ret)
1341                         goto out_has_some_queues;
1342         }
1343
1344         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1345         if (ret)
1346                 goto out_set_mac_addr_err;
1347
1348         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1349         if (ret)
1350                 goto out_start_err;
1351
1352         if (ndev->phydev)
1353                 phy_start(ndev->phydev);
1354
1355         clear_bit(NIC_STATE_DOWN, &priv->state);
1356         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1357
1358         return 0;
1359
1360 out_start_err:
1361         netif_stop_queue(ndev);
1362 out_set_mac_addr_err:
1363 out_has_some_queues:
1364         for (j = i - 1; j >= 0; j--)
1365                 hns_nic_ring_close(ndev, j);
1366
1367         hns_nic_free_irq(h->q_num, priv);
1368         set_bit(NIC_STATE_DOWN, &priv->state);
1369
1370         return ret;
1371 }
1372
1373 static void hns_nic_net_down(struct net_device *ndev)
1374 {
1375         int i;
1376         struct hnae_ae_ops *ops;
1377         struct hns_nic_priv *priv = netdev_priv(ndev);
1378
1379         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1380                 return;
1381
1382         (void)del_timer_sync(&priv->service_timer);
1383         netif_tx_stop_all_queues(ndev);
1384         netif_carrier_off(ndev);
1385         netif_tx_disable(ndev);
1386         priv->link = 0;
1387
1388         if (ndev->phydev)
1389                 phy_stop(ndev->phydev);
1390
1391         ops = priv->ae_handle->dev->ops;
1392
1393         if (ops->stop)
1394                 ops->stop(priv->ae_handle);
1395
1396         netif_tx_stop_all_queues(ndev);
1397
1398         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1399                 hns_nic_ring_close(ndev, i);
1400                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1401
1402                 /* clean tx buffers*/
1403                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1404         }
1405 }
1406
1407 void hns_nic_net_reset(struct net_device *ndev)
1408 {
1409         struct hns_nic_priv *priv = netdev_priv(ndev);
1410         struct hnae_handle *handle = priv->ae_handle;
1411
1412         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1413                 usleep_range(1000, 2000);
1414
1415         (void)hnae_reinit_handle(handle);
1416
1417         clear_bit(NIC_STATE_RESETTING, &priv->state);
1418 }
1419
1420 void hns_nic_net_reinit(struct net_device *netdev)
1421 {
1422         struct hns_nic_priv *priv = netdev_priv(netdev);
1423         enum hnae_port_type type = priv->ae_handle->port_type;
1424
1425         netif_trans_update(priv->netdev);
1426         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1427                 usleep_range(1000, 2000);
1428
1429         hns_nic_net_down(netdev);
1430
1431         /* Only do hns_nic_net_reset in debug mode
1432          * because of hardware limitation.
1433          */
1434         if (type == HNAE_PORT_DEBUG)
1435                 hns_nic_net_reset(netdev);
1436
1437         (void)hns_nic_net_up(netdev);
1438         clear_bit(NIC_STATE_REINITING, &priv->state);
1439 }
1440
1441 static int hns_nic_net_open(struct net_device *ndev)
1442 {
1443         struct hns_nic_priv *priv = netdev_priv(ndev);
1444         struct hnae_handle *h = priv->ae_handle;
1445         int ret;
1446
1447         if (test_bit(NIC_STATE_TESTING, &priv->state))
1448                 return -EBUSY;
1449
1450         priv->link = 0;
1451         netif_carrier_off(ndev);
1452
1453         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1454         if (ret < 0) {
1455                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1456                            ret);
1457                 return ret;
1458         }
1459
1460         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1461         if (ret < 0) {
1462                 netdev_err(ndev,
1463                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1464                 return ret;
1465         }
1466
1467         ret = hns_nic_net_up(ndev);
1468         if (ret) {
1469                 netdev_err(ndev,
1470                            "hns net up fail, ret=%d!\n", ret);
1471                 return ret;
1472         }
1473
1474         return 0;
1475 }
1476
1477 static int hns_nic_net_stop(struct net_device *ndev)
1478 {
1479         hns_nic_net_down(ndev);
1480
1481         return 0;
1482 }
1483
1484 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1485 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1486 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1487 {
1488         struct hns_nic_priv *priv = netdev_priv(ndev);
1489
1490         if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1491                 ndev->watchdog_timeo *= 2;
1492                 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1493                             ndev->watchdog_timeo);
1494         } else {
1495                 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1496                 hns_tx_timeout_reset(priv);
1497         }
1498 }
1499
1500 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1501                                     struct net_device *ndev)
1502 {
1503         struct hns_nic_priv *priv = netdev_priv(ndev);
1504
1505         assert(skb->queue_mapping < priv->ae_handle->q_num);
1506
1507         return hns_nic_net_xmit_hw(ndev, skb,
1508                                    &tx_ring_data(priv, skb->queue_mapping));
1509 }
1510
1511 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1512                                   struct sk_buff *skb)
1513 {
1514         dev_kfree_skb_any(skb);
1515 }
1516
1517 #define HNS_LB_TX_RING  0
1518 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1519 {
1520         struct sk_buff *skb;
1521         struct ethhdr *ethhdr;
1522         int frame_len;
1523
1524         /* allocate test skb */
1525         skb = alloc_skb(64, GFP_KERNEL);
1526         if (!skb)
1527                 return NULL;
1528
1529         skb_put(skb, 64);
1530         skb->dev = ndev;
1531         memset(skb->data, 0xFF, skb->len);
1532
1533         /* must be tcp/ip package */
1534         ethhdr = (struct ethhdr *)skb->data;
1535         ethhdr->h_proto = htons(ETH_P_IP);
1536
1537         frame_len = skb->len & (~1ul);
1538         memset(&skb->data[frame_len / 2], 0xAA,
1539                frame_len / 2 - 1);
1540
1541         skb->queue_mapping = HNS_LB_TX_RING;
1542
1543         return skb;
1544 }
1545
1546 static int hns_enable_serdes_lb(struct net_device *ndev)
1547 {
1548         struct hns_nic_priv *priv = netdev_priv(ndev);
1549         struct hnae_handle *h = priv->ae_handle;
1550         struct hnae_ae_ops *ops = h->dev->ops;
1551         int speed, duplex;
1552         int ret;
1553
1554         ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1555         if (ret)
1556                 return ret;
1557
1558         ret = ops->start ? ops->start(h) : 0;
1559         if (ret)
1560                 return ret;
1561
1562         /* link adjust duplex*/
1563         if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1564                 speed = 1000;
1565         else
1566                 speed = 10000;
1567         duplex = 1;
1568
1569         ops->adjust_link(h, speed, duplex);
1570
1571         /* wait h/w ready */
1572         mdelay(300);
1573
1574         return 0;
1575 }
1576
1577 static void hns_disable_serdes_lb(struct net_device *ndev)
1578 {
1579         struct hns_nic_priv *priv = netdev_priv(ndev);
1580         struct hnae_handle *h = priv->ae_handle;
1581         struct hnae_ae_ops *ops = h->dev->ops;
1582
1583         ops->stop(h);
1584         ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1585 }
1586
1587 /**
1588  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1589  *function as follows:
1590  *    1. if one rx ring has found the page_offset is not equal 0 between head
1591  *       and tail, it means that the chip fetched the wrong descs for the ring
1592  *       which buffer size is 4096.
1593  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1594  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1595  *       recieving all packages and it will fetch new descriptions.
1596  *    4. recover to the original state.
1597  *
1598  *@ndev: net device
1599  */
1600 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1601 {
1602         struct hns_nic_priv *priv = netdev_priv(ndev);
1603         struct hnae_handle *h = priv->ae_handle;
1604         struct hnae_ae_ops *ops = h->dev->ops;
1605         struct hns_nic_ring_data *rd;
1606         struct hnae_ring *ring;
1607         struct sk_buff *skb;
1608         u32 *org_indir;
1609         u32 *cur_indir;
1610         int indir_size;
1611         int head, tail;
1612         int fetch_num;
1613         int i, j;
1614         bool found;
1615         int retry_times;
1616         int ret = 0;
1617
1618         /* alloc indir memory */
1619         indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1620         org_indir = kzalloc(indir_size, GFP_KERNEL);
1621         if (!org_indir)
1622                 return -ENOMEM;
1623
1624         /* store the orginal indirection */
1625         ops->get_rss(h, org_indir, NULL, NULL);
1626
1627         cur_indir = kzalloc(indir_size, GFP_KERNEL);
1628         if (!cur_indir) {
1629                 ret = -ENOMEM;
1630                 goto cur_indir_alloc_err;
1631         }
1632
1633         /* set loopback */
1634         if (hns_enable_serdes_lb(ndev)) {
1635                 ret = -EINVAL;
1636                 goto enable_serdes_lb_err;
1637         }
1638
1639         /* foreach every rx ring to clear fetch desc */
1640         for (i = 0; i < h->q_num; i++) {
1641                 ring = &h->qs[i]->rx_ring;
1642                 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1643                 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1644                 found = false;
1645                 fetch_num = ring_dist(ring, head, tail);
1646
1647                 while (head != tail) {
1648                         if (ring->desc_cb[head].page_offset != 0) {
1649                                 found = true;
1650                                 break;
1651                         }
1652
1653                         head++;
1654                         if (head == ring->desc_num)
1655                                 head = 0;
1656                 }
1657
1658                 if (found) {
1659                         for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1660                                 cur_indir[j] = i;
1661                         ops->set_rss(h, cur_indir, NULL, 0);
1662
1663                         for (j = 0; j < fetch_num; j++) {
1664                                 /* alloc one skb and init */
1665                                 skb = hns_assemble_skb(ndev);
1666                                 if (!skb)
1667                                         goto out;
1668                                 rd = &tx_ring_data(priv, skb->queue_mapping);
1669                                 hns_nic_net_xmit_hw(ndev, skb, rd);
1670
1671                                 retry_times = 0;
1672                                 while (retry_times++ < 10) {
1673                                         mdelay(10);
1674                                         /* clean rx */
1675                                         rd = &rx_ring_data(priv, i);
1676                                         if (rd->poll_one(rd, fetch_num,
1677                                                          hns_nic_drop_rx_fetch))
1678                                                 break;
1679                                 }
1680
1681                                 retry_times = 0;
1682                                 while (retry_times++ < 10) {
1683                                         mdelay(10);
1684                                         /* clean tx ring 0 send package */
1685                                         rd = &tx_ring_data(priv,
1686                                                            HNS_LB_TX_RING);
1687                                         if (rd->poll_one(rd, fetch_num, NULL))
1688                                                 break;
1689                                 }
1690                         }
1691                 }
1692         }
1693
1694 out:
1695         /* restore everything */
1696         ops->set_rss(h, org_indir, NULL, 0);
1697         hns_disable_serdes_lb(ndev);
1698 enable_serdes_lb_err:
1699         kfree(cur_indir);
1700 cur_indir_alloc_err:
1701         kfree(org_indir);
1702
1703         return ret;
1704 }
1705
1706 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1707 {
1708         struct hns_nic_priv *priv = netdev_priv(ndev);
1709         struct hnae_handle *h = priv->ae_handle;
1710         bool if_running = netif_running(ndev);
1711         int ret;
1712
1713         /* MTU < 68 is an error and causes problems on some kernels */
1714         if (new_mtu < 68)
1715                 return -EINVAL;
1716
1717         /* MTU no change */
1718         if (new_mtu == ndev->mtu)
1719                 return 0;
1720
1721         if (!h->dev->ops->set_mtu)
1722                 return -ENOTSUPP;
1723
1724         if (if_running) {
1725                 (void)hns_nic_net_stop(ndev);
1726                 msleep(100);
1727         }
1728
1729         if (priv->enet_ver != AE_VERSION_1 &&
1730             ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1731             new_mtu > BD_SIZE_2048_MAX_MTU) {
1732                 /* update desc */
1733                 hnae_reinit_all_ring_desc(h);
1734
1735                 /* clear the package which the chip has fetched */
1736                 ret = hns_nic_clear_all_rx_fetch(ndev);
1737
1738                 /* the page offset must be consist with desc */
1739                 hnae_reinit_all_ring_page_off(h);
1740
1741                 if (ret) {
1742                         netdev_err(ndev, "clear the fetched desc fail\n");
1743                         goto out;
1744                 }
1745         }
1746
1747         ret = h->dev->ops->set_mtu(h, new_mtu);
1748         if (ret) {
1749                 netdev_err(ndev, "set mtu fail, return value %d\n",
1750                            ret);
1751                 goto out;
1752         }
1753
1754         /* finally, set new mtu to netdevice */
1755         ndev->mtu = new_mtu;
1756
1757 out:
1758         if (if_running) {
1759                 if (hns_nic_net_open(ndev)) {
1760                         netdev_err(ndev, "hns net open fail\n");
1761                         ret = -EINVAL;
1762                 }
1763         }
1764
1765         return ret;
1766 }
1767
1768 static int hns_nic_set_features(struct net_device *netdev,
1769                                 netdev_features_t features)
1770 {
1771         struct hns_nic_priv *priv = netdev_priv(netdev);
1772
1773         switch (priv->enet_ver) {
1774         case AE_VERSION_1:
1775                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1776                         netdev_info(netdev, "enet v1 do not support tso!\n");
1777                 break;
1778         default:
1779                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1780                         priv->ops.fill_desc = fill_tso_desc;
1781                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1782                         /* The chip only support 7*4096 */
1783                         netif_set_gso_max_size(netdev, 7 * 4096);
1784                 } else {
1785                         priv->ops.fill_desc = fill_v2_desc;
1786                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1787                 }
1788                 break;
1789         }
1790         netdev->features = features;
1791         return 0;
1792 }
1793
1794 static netdev_features_t hns_nic_fix_features(
1795                 struct net_device *netdev, netdev_features_t features)
1796 {
1797         struct hns_nic_priv *priv = netdev_priv(netdev);
1798
1799         switch (priv->enet_ver) {
1800         case AE_VERSION_1:
1801                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1802                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1803                 break;
1804         default:
1805                 break;
1806         }
1807         return features;
1808 }
1809
1810 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1811 {
1812         struct hns_nic_priv *priv = netdev_priv(netdev);
1813         struct hnae_handle *h = priv->ae_handle;
1814
1815         if (h->dev->ops->add_uc_addr)
1816                 return h->dev->ops->add_uc_addr(h, addr);
1817
1818         return 0;
1819 }
1820
1821 static int hns_nic_uc_unsync(struct net_device *netdev,
1822                              const unsigned char *addr)
1823 {
1824         struct hns_nic_priv *priv = netdev_priv(netdev);
1825         struct hnae_handle *h = priv->ae_handle;
1826
1827         if (h->dev->ops->rm_uc_addr)
1828                 return h->dev->ops->rm_uc_addr(h, addr);
1829
1830         return 0;
1831 }
1832
1833 /**
1834  * hns_set_multicast_list - set mutl mac address
1835  * @ndev: net device
1836  *
1837  * return void
1838  */
1839 static void hns_set_multicast_list(struct net_device *ndev)
1840 {
1841         struct hns_nic_priv *priv = netdev_priv(ndev);
1842         struct hnae_handle *h = priv->ae_handle;
1843         struct netdev_hw_addr *ha = NULL;
1844
1845         if (!h) {
1846                 netdev_err(ndev, "hnae handle is null\n");
1847                 return;
1848         }
1849
1850         if (h->dev->ops->clr_mc_addr)
1851                 if (h->dev->ops->clr_mc_addr(h))
1852                         netdev_err(ndev, "clear multicast address fail\n");
1853
1854         if (h->dev->ops->set_mc_addr) {
1855                 netdev_for_each_mc_addr(ha, ndev)
1856                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1857                                 netdev_err(ndev, "set multicast fail\n");
1858         }
1859 }
1860
1861 static void hns_nic_set_rx_mode(struct net_device *ndev)
1862 {
1863         struct hns_nic_priv *priv = netdev_priv(ndev);
1864         struct hnae_handle *h = priv->ae_handle;
1865
1866         if (h->dev->ops->set_promisc_mode) {
1867                 if (ndev->flags & IFF_PROMISC)
1868                         h->dev->ops->set_promisc_mode(h, 1);
1869                 else
1870                         h->dev->ops->set_promisc_mode(h, 0);
1871         }
1872
1873         hns_set_multicast_list(ndev);
1874
1875         if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1876                 netdev_err(ndev, "sync uc address fail\n");
1877 }
1878
1879 static void hns_nic_get_stats64(struct net_device *ndev,
1880                                 struct rtnl_link_stats64 *stats)
1881 {
1882         int idx = 0;
1883         u64 tx_bytes = 0;
1884         u64 rx_bytes = 0;
1885         u64 tx_pkts = 0;
1886         u64 rx_pkts = 0;
1887         struct hns_nic_priv *priv = netdev_priv(ndev);
1888         struct hnae_handle *h = priv->ae_handle;
1889
1890         for (idx = 0; idx < h->q_num; idx++) {
1891                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1892                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1893                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1894                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1895         }
1896
1897         stats->tx_bytes = tx_bytes;
1898         stats->tx_packets = tx_pkts;
1899         stats->rx_bytes = rx_bytes;
1900         stats->rx_packets = rx_pkts;
1901
1902         stats->rx_errors = ndev->stats.rx_errors;
1903         stats->multicast = ndev->stats.multicast;
1904         stats->rx_length_errors = ndev->stats.rx_length_errors;
1905         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1906         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1907
1908         stats->tx_errors = ndev->stats.tx_errors;
1909         stats->rx_dropped = ndev->stats.rx_dropped;
1910         stats->tx_dropped = ndev->stats.tx_dropped;
1911         stats->collisions = ndev->stats.collisions;
1912         stats->rx_over_errors = ndev->stats.rx_over_errors;
1913         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1914         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1915         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1916         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1917         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1918         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1919         stats->tx_window_errors = ndev->stats.tx_window_errors;
1920         stats->rx_compressed = ndev->stats.rx_compressed;
1921         stats->tx_compressed = ndev->stats.tx_compressed;
1922 }
1923
1924 static u16
1925 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1926                      struct net_device *sb_dev)
1927 {
1928         struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1929         struct hns_nic_priv *priv = netdev_priv(ndev);
1930
1931         /* fix hardware broadcast/multicast packets queue loopback */
1932         if (!AE_IS_VER1(priv->enet_ver) &&
1933             is_multicast_ether_addr(eth_hdr->h_dest))
1934                 return 0;
1935         else
1936                 return netdev_pick_tx(ndev, skb, NULL);
1937 }
1938
1939 static const struct net_device_ops hns_nic_netdev_ops = {
1940         .ndo_open = hns_nic_net_open,
1941         .ndo_stop = hns_nic_net_stop,
1942         .ndo_start_xmit = hns_nic_net_xmit,
1943         .ndo_tx_timeout = hns_nic_net_timeout,
1944         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1945         .ndo_change_mtu = hns_nic_change_mtu,
1946         .ndo_do_ioctl = phy_do_ioctl_running,
1947         .ndo_set_features = hns_nic_set_features,
1948         .ndo_fix_features = hns_nic_fix_features,
1949         .ndo_get_stats64 = hns_nic_get_stats64,
1950         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1951         .ndo_select_queue = hns_nic_select_queue,
1952 };
1953
1954 static void hns_nic_update_link_status(struct net_device *netdev)
1955 {
1956         struct hns_nic_priv *priv = netdev_priv(netdev);
1957
1958         struct hnae_handle *h = priv->ae_handle;
1959
1960         if (h->phy_dev) {
1961                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1962                         return;
1963
1964                 (void)genphy_read_status(h->phy_dev);
1965         }
1966         hns_nic_adjust_link(netdev);
1967 }
1968
1969 /* for dumping key regs*/
1970 static void hns_nic_dump(struct hns_nic_priv *priv)
1971 {
1972         struct hnae_handle *h = priv->ae_handle;
1973         struct hnae_ae_ops *ops = h->dev->ops;
1974         u32 *data, reg_num, i;
1975
1976         if (ops->get_regs_len && ops->get_regs) {
1977                 reg_num = ops->get_regs_len(priv->ae_handle);
1978                 reg_num = (reg_num + 3ul) & ~3ul;
1979                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1980                 if (data) {
1981                         ops->get_regs(priv->ae_handle, data);
1982                         for (i = 0; i < reg_num; i += 4)
1983                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1984                                         i, data[i], data[i + 1],
1985                                         data[i + 2], data[i + 3]);
1986                         kfree(data);
1987                 }
1988         }
1989
1990         for (i = 0; i < h->q_num; i++) {
1991                 pr_info("tx_queue%d_next_to_clean:%d\n",
1992                         i, h->qs[i]->tx_ring.next_to_clean);
1993                 pr_info("tx_queue%d_next_to_use:%d\n",
1994                         i, h->qs[i]->tx_ring.next_to_use);
1995                 pr_info("rx_queue%d_next_to_clean:%d\n",
1996                         i, h->qs[i]->rx_ring.next_to_clean);
1997                 pr_info("rx_queue%d_next_to_use:%d\n",
1998                         i, h->qs[i]->rx_ring.next_to_use);
1999         }
2000 }
2001
2002 /* for resetting subtask */
2003 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2004 {
2005         enum hnae_port_type type = priv->ae_handle->port_type;
2006
2007         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2008                 return;
2009         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2010
2011         /* If we're already down, removing or resetting, just bail */
2012         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2013             test_bit(NIC_STATE_REMOVING, &priv->state) ||
2014             test_bit(NIC_STATE_RESETTING, &priv->state))
2015                 return;
2016
2017         hns_nic_dump(priv);
2018         netdev_info(priv->netdev, "try to reset %s port!\n",
2019                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2020
2021         rtnl_lock();
2022         /* put off any impending NetWatchDogTimeout */
2023         netif_trans_update(priv->netdev);
2024         hns_nic_net_reinit(priv->netdev);
2025
2026         rtnl_unlock();
2027 }
2028
2029 /* for doing service complete*/
2030 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2031 {
2032         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2033         /* make sure to commit the things */
2034         smp_mb__before_atomic();
2035         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2036 }
2037
2038 static void hns_nic_service_task(struct work_struct *work)
2039 {
2040         struct hns_nic_priv *priv
2041                 = container_of(work, struct hns_nic_priv, service_task);
2042         struct hnae_handle *h = priv->ae_handle;
2043
2044         hns_nic_reset_subtask(priv);
2045         hns_nic_update_link_status(priv->netdev);
2046         h->dev->ops->update_led_status(h);
2047         hns_nic_update_stats(priv->netdev);
2048
2049         hns_nic_service_event_complete(priv);
2050 }
2051
2052 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2053 {
2054         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2055             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2056             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2057                 (void)schedule_work(&priv->service_task);
2058 }
2059
2060 static void hns_nic_service_timer(struct timer_list *t)
2061 {
2062         struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2063
2064         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2065
2066         hns_nic_task_schedule(priv);
2067 }
2068
2069 /**
2070  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2071  * @priv: driver private struct
2072  **/
2073 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2074 {
2075         /* Do the reset outside of interrupt context */
2076         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2077                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2078                 netdev_warn(priv->netdev,
2079                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
2080                             priv->tx_timeout_count, priv->state);
2081                 priv->tx_timeout_count++;
2082                 hns_nic_task_schedule(priv);
2083         }
2084 }
2085
2086 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2087 {
2088         struct hnae_handle *h = priv->ae_handle;
2089         struct hns_nic_ring_data *rd;
2090         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2091         int i;
2092
2093         if (h->q_num > NIC_MAX_Q_PER_VF) {
2094                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2095                 return -EINVAL;
2096         }
2097
2098         priv->ring_data = kzalloc(array3_size(h->q_num,
2099                                               sizeof(*priv->ring_data), 2),
2100                                   GFP_KERNEL);
2101         if (!priv->ring_data)
2102                 return -ENOMEM;
2103
2104         for (i = 0; i < h->q_num; i++) {
2105                 rd = &priv->ring_data[i];
2106                 rd->queue_index = i;
2107                 rd->ring = &h->qs[i]->tx_ring;
2108                 rd->poll_one = hns_nic_tx_poll_one;
2109                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2110                         hns_nic_tx_fini_pro_v2;
2111
2112                 netif_napi_add(priv->netdev, &rd->napi,
2113                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2114                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2115         }
2116         for (i = h->q_num; i < h->q_num * 2; i++) {
2117                 rd = &priv->ring_data[i];
2118                 rd->queue_index = i - h->q_num;
2119                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2120                 rd->poll_one = hns_nic_rx_poll_one;
2121                 rd->ex_process = hns_nic_rx_up_pro;
2122                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2123                         hns_nic_rx_fini_pro_v2;
2124
2125                 netif_napi_add(priv->netdev, &rd->napi,
2126                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2127                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2128         }
2129
2130         return 0;
2131 }
2132
2133 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2134 {
2135         struct hnae_handle *h = priv->ae_handle;
2136         int i;
2137
2138         for (i = 0; i < h->q_num * 2; i++) {
2139                 netif_napi_del(&priv->ring_data[i].napi);
2140                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2141                         (void)irq_set_affinity_hint(
2142                                 priv->ring_data[i].ring->irq,
2143                                 NULL);
2144                         free_irq(priv->ring_data[i].ring->irq,
2145                                  &priv->ring_data[i]);
2146                 }
2147
2148                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2149         }
2150         kfree(priv->ring_data);
2151 }
2152
2153 static void hns_nic_set_priv_ops(struct net_device *netdev)
2154 {
2155         struct hns_nic_priv *priv = netdev_priv(netdev);
2156         struct hnae_handle *h = priv->ae_handle;
2157
2158         if (AE_IS_VER1(priv->enet_ver)) {
2159                 priv->ops.fill_desc = fill_desc;
2160                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2161                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2162         } else {
2163                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2164                 if ((netdev->features & NETIF_F_TSO) ||
2165                     (netdev->features & NETIF_F_TSO6)) {
2166                         priv->ops.fill_desc = fill_tso_desc;
2167                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2168                         /* This chip only support 7*4096 */
2169                         netif_set_gso_max_size(netdev, 7 * 4096);
2170                 } else {
2171                         priv->ops.fill_desc = fill_v2_desc;
2172                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2173                 }
2174                 /* enable tso when init
2175                  * control tso on/off through TSE bit in bd
2176                  */
2177                 h->dev->ops->set_tso_stats(h, 1);
2178         }
2179 }
2180
2181 static int hns_nic_try_get_ae(struct net_device *ndev)
2182 {
2183         struct hns_nic_priv *priv = netdev_priv(ndev);
2184         struct hnae_handle *h;
2185         int ret;
2186
2187         h = hnae_get_handle(&priv->netdev->dev,
2188                             priv->fwnode, priv->port_id, NULL);
2189         if (IS_ERR_OR_NULL(h)) {
2190                 ret = -ENODEV;
2191                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2192                 goto out;
2193         }
2194         priv->ae_handle = h;
2195
2196         ret = hns_nic_init_phy(ndev, h);
2197         if (ret) {
2198                 dev_err(priv->dev, "probe phy device fail!\n");
2199                 goto out_init_phy;
2200         }
2201
2202         ret = hns_nic_init_ring_data(priv);
2203         if (ret) {
2204                 ret = -ENOMEM;
2205                 goto out_init_ring_data;
2206         }
2207
2208         hns_nic_set_priv_ops(ndev);
2209
2210         ret = register_netdev(ndev);
2211         if (ret) {
2212                 dev_err(priv->dev, "probe register netdev fail!\n");
2213                 goto out_reg_ndev_fail;
2214         }
2215         return 0;
2216
2217 out_reg_ndev_fail:
2218         hns_nic_uninit_ring_data(priv);
2219         priv->ring_data = NULL;
2220 out_init_phy:
2221 out_init_ring_data:
2222         hnae_put_handle(priv->ae_handle);
2223         priv->ae_handle = NULL;
2224 out:
2225         return ret;
2226 }
2227
2228 static int hns_nic_notifier_action(struct notifier_block *nb,
2229                                    unsigned long action, void *data)
2230 {
2231         struct hns_nic_priv *priv =
2232                 container_of(nb, struct hns_nic_priv, notifier_block);
2233
2234         assert(action == HNAE_AE_REGISTER);
2235
2236         if (!hns_nic_try_get_ae(priv->netdev)) {
2237                 hnae_unregister_notifier(&priv->notifier_block);
2238                 priv->notifier_block.notifier_call = NULL;
2239         }
2240         return 0;
2241 }
2242
2243 static int hns_nic_dev_probe(struct platform_device *pdev)
2244 {
2245         struct device *dev = &pdev->dev;
2246         struct net_device *ndev;
2247         struct hns_nic_priv *priv;
2248         u32 port_id;
2249         int ret;
2250
2251         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2252         if (!ndev)
2253                 return -ENOMEM;
2254
2255         platform_set_drvdata(pdev, ndev);
2256
2257         priv = netdev_priv(ndev);
2258         priv->dev = dev;
2259         priv->netdev = ndev;
2260
2261         if (dev_of_node(dev)) {
2262                 struct device_node *ae_node;
2263
2264                 if (of_device_is_compatible(dev->of_node,
2265                                             "hisilicon,hns-nic-v1"))
2266                         priv->enet_ver = AE_VERSION_1;
2267                 else
2268                         priv->enet_ver = AE_VERSION_2;
2269
2270                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2271                 if (!ae_node) {
2272                         ret = -ENODEV;
2273                         dev_err(dev, "not find ae-handle\n");
2274                         goto out_read_prop_fail;
2275                 }
2276                 priv->fwnode = &ae_node->fwnode;
2277         } else if (is_acpi_node(dev->fwnode)) {
2278                 struct fwnode_reference_args args;
2279
2280                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2281                         priv->enet_ver = AE_VERSION_1;
2282                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2283                         priv->enet_ver = AE_VERSION_2;
2284                 else {
2285                         ret = -ENXIO;
2286                         goto out_read_prop_fail;
2287                 }
2288
2289                 /* try to find port-idx-in-ae first */
2290                 ret = acpi_node_get_property_reference(dev->fwnode,
2291                                                        "ae-handle", 0, &args);
2292                 if (ret) {
2293                         dev_err(dev, "not find ae-handle\n");
2294                         goto out_read_prop_fail;
2295                 }
2296                 if (!is_acpi_device_node(args.fwnode)) {
2297                         ret = -EINVAL;
2298                         goto out_read_prop_fail;
2299                 }
2300                 priv->fwnode = args.fwnode;
2301         } else {
2302                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2303                 ret = -ENXIO;
2304                 goto out_read_prop_fail;
2305         }
2306
2307         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2308         if (ret) {
2309                 /* only for old code compatible */
2310                 ret = device_property_read_u32(dev, "port-id", &port_id);
2311                 if (ret)
2312                         goto out_read_prop_fail;
2313                 /* for old dts, we need to caculate the port offset */
2314                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2315                         : port_id - HNS_SRV_OFFSET;
2316         }
2317         priv->port_id = port_id;
2318
2319         hns_init_mac_addr(ndev);
2320
2321         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2322         ndev->priv_flags |= IFF_UNICAST_FLT;
2323         ndev->netdev_ops = &hns_nic_netdev_ops;
2324         hns_ethtool_set_ops(ndev);
2325
2326         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2327                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2328                 NETIF_F_GRO;
2329         ndev->vlan_features |=
2330                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2331         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2332
2333         /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2334         ndev->min_mtu = MAC_MIN_MTU;
2335         switch (priv->enet_ver) {
2336         case AE_VERSION_2:
2337                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2338                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2339                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2340                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2341                 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2342                 ndev->max_mtu = MAC_MAX_MTU_V2 -
2343                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2344                 break;
2345         default:
2346                 ndev->max_mtu = MAC_MAX_MTU -
2347                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2348                 break;
2349         }
2350
2351         SET_NETDEV_DEV(ndev, dev);
2352
2353         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2354                 dev_dbg(dev, "set mask to 64bit\n");
2355         else
2356                 dev_err(dev, "set mask to 64bit fail!\n");
2357
2358         /* carrier off reporting is important to ethtool even BEFORE open */
2359         netif_carrier_off(ndev);
2360
2361         timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2362         INIT_WORK(&priv->service_task, hns_nic_service_task);
2363
2364         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2365         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2366         set_bit(NIC_STATE_DOWN, &priv->state);
2367
2368         if (hns_nic_try_get_ae(priv->netdev)) {
2369                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2370                 ret = hnae_register_notifier(&priv->notifier_block);
2371                 if (ret) {
2372                         dev_err(dev, "register notifier fail!\n");
2373                         goto out_notify_fail;
2374                 }
2375                 dev_dbg(dev, "has not handle, register notifier!\n");
2376         }
2377
2378         return 0;
2379
2380 out_notify_fail:
2381         (void)cancel_work_sync(&priv->service_task);
2382 out_read_prop_fail:
2383         /* safe for ACPI FW */
2384         of_node_put(to_of_node(priv->fwnode));
2385         free_netdev(ndev);
2386         return ret;
2387 }
2388
2389 static int hns_nic_dev_remove(struct platform_device *pdev)
2390 {
2391         struct net_device *ndev = platform_get_drvdata(pdev);
2392         struct hns_nic_priv *priv = netdev_priv(ndev);
2393
2394         if (ndev->reg_state != NETREG_UNINITIALIZED)
2395                 unregister_netdev(ndev);
2396
2397         if (priv->ring_data)
2398                 hns_nic_uninit_ring_data(priv);
2399         priv->ring_data = NULL;
2400
2401         if (ndev->phydev)
2402                 phy_disconnect(ndev->phydev);
2403
2404         if (!IS_ERR_OR_NULL(priv->ae_handle))
2405                 hnae_put_handle(priv->ae_handle);
2406         priv->ae_handle = NULL;
2407         if (priv->notifier_block.notifier_call)
2408                 hnae_unregister_notifier(&priv->notifier_block);
2409         priv->notifier_block.notifier_call = NULL;
2410
2411         set_bit(NIC_STATE_REMOVING, &priv->state);
2412         (void)cancel_work_sync(&priv->service_task);
2413
2414         /* safe for ACPI FW */
2415         of_node_put(to_of_node(priv->fwnode));
2416
2417         free_netdev(ndev);
2418         return 0;
2419 }
2420
2421 static const struct of_device_id hns_enet_of_match[] = {
2422         {.compatible = "hisilicon,hns-nic-v1",},
2423         {.compatible = "hisilicon,hns-nic-v2",},
2424         {},
2425 };
2426
2427 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2428
2429 static struct platform_driver hns_nic_dev_driver = {
2430         .driver = {
2431                 .name = "hns-nic",
2432                 .of_match_table = hns_enet_of_match,
2433                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2434         },
2435         .probe = hns_nic_dev_probe,
2436         .remove = hns_nic_dev_remove,
2437 };
2438
2439 module_platform_driver(hns_nic_dev_driver);
2440
2441 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2442 MODULE_AUTHOR("Hisilicon, Inc.");
2443 MODULE_LICENSE("GPL");
2444 MODULE_ALIAS("platform:hns-nic");