Merge 5.10-rc4 into char-misc-next
[linux-2.6-microblaze.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  * Copyright 2020 NXP
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *     * Redistributions of source code must retain the above copyright
7  *       notice, this list of conditions and the following disclaimer.
8  *     * Redistributions in binary form must reproduce the above copyright
9  *       notice, this list of conditions and the following disclaimer in the
10  *       documentation and/or other materials provided with the distribution.
11  *     * Neither the name of Freescale Semiconductor nor the
12  *       names of its contributors may be used to endorse or promote products
13  *       derived from this software without specific prior written permission.
14  *
15  * ALTERNATIVELY, this software may be distributed under the terms of the
16  * GNU General Public License ("GPL") as published by the Free Software
17  * Foundation, either version 2 of that License or (at your option) any
18  * later version.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
21  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
24  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/of_platform.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/io.h>
40 #include <linux/if_arp.h>
41 #include <linux/if_vlan.h>
42 #include <linux/icmp.h>
43 #include <linux/ip.h>
44 #include <linux/ipv6.h>
45 #include <linux/udp.h>
46 #include <linux/tcp.h>
47 #include <linux/net.h>
48 #include <linux/skbuff.h>
49 #include <linux/etherdevice.h>
50 #include <linux/if_ether.h>
51 #include <linux/highmem.h>
52 #include <linux/percpu.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/sort.h>
55 #include <linux/phy_fixed.h>
56 #include <soc/fsl/bman.h>
57 #include <soc/fsl/qman.h>
58 #include "fman.h"
59 #include "fman_port.h"
60 #include "mac.h"
61 #include "dpaa_eth.h"
62
63 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
64  * using trace events only need to #include <trace/events/sched.h>
65  */
66 #define CREATE_TRACE_POINTS
67 #include "dpaa_eth_trace.h"
68
69 static int debug = -1;
70 module_param(debug, int, 0444);
71 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
72
73 static u16 tx_timeout = 1000;
74 module_param(tx_timeout, ushort, 0444);
75 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
76
77 #define FM_FD_STAT_RX_ERRORS                                            \
78         (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL     | \
79          FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
80          FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME     | \
81          FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
82          FM_FD_ERR_PRS_HDR_ERR)
83
84 #define FM_FD_STAT_TX_ERRORS \
85         (FM_FD_ERR_UNSUPPORTED_FORMAT | \
86          FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
87
88 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
89                           NETIF_MSG_LINK | NETIF_MSG_IFUP | \
90                           NETIF_MSG_IFDOWN | NETIF_MSG_HW)
91
92 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
93 /* Ingress congestion threshold on FMan ports
94  * The size in bytes of the ingress tail-drop threshold on FMan ports.
95  * Traffic piling up above this value will be rejected by QMan and discarded
96  * by FMan.
97  */
98
99 /* Size in bytes of the FQ taildrop threshold */
100 #define DPAA_FQ_TD 0x200000
101
102 #define DPAA_CS_THRESHOLD_1G 0x06000000
103 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
104  * The size in bytes of the egress Congestion State notification threshold on
105  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
106  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
107  * and the larger the frame size, the more acute the problem.
108  * So we have to find a balance between these factors:
109  * - avoiding the device staying congested for a prolonged time (risking
110  *   the netdev watchdog to fire - see also the tx_timeout module param);
111  * - affecting performance of protocols such as TCP, which otherwise
112  *   behave well under the congestion notification mechanism;
113  * - preventing the Tx cores from tightly-looping (as if the congestion
114  *   threshold was too low to be effective);
115  * - running out of memory if the CS threshold is set too high.
116  */
117
118 #define DPAA_CS_THRESHOLD_10G 0x10000000
119 /* The size in bytes of the egress Congestion State notification threshold on
120  * 10G ports, range 0x1000 .. 0x10000000
121  */
122
123 /* Largest value that the FQD's OAL field can hold */
124 #define FSL_QMAN_MAX_OAL        127
125
126 /* Default alignment for start of data in an Rx FD */
127 #ifdef CONFIG_DPAA_ERRATUM_A050385
128 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
129  * is crossing a 4k page boundary
130  */
131 #define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
132 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
133  * crossings; also, all SG fragments except the last must have a size multiple
134  * of 256 to avoid DMA transaction splits
135  */
136 #define DPAA_A050385_ALIGN 256
137 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
138                                    DPAA_A050385_ALIGN : 16)
139 #else
140 #define DPAA_FD_DATA_ALIGNMENT  16
141 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
142 #endif
143
144 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
145 #define DPAA_SGT_SIZE 256
146
147 /* Values for the L3R field of the FM Parse Results
148  */
149 /* L3 Type field: First IP Present IPv4 */
150 #define FM_L3_PARSE_RESULT_IPV4 0x8000
151 /* L3 Type field: First IP Present IPv6 */
152 #define FM_L3_PARSE_RESULT_IPV6 0x4000
153 /* Values for the L4R field of the FM Parse Results */
154 /* L4 Type field: UDP */
155 #define FM_L4_PARSE_RESULT_UDP  0x40
156 /* L4 Type field: TCP */
157 #define FM_L4_PARSE_RESULT_TCP  0x20
158
159 /* FD status field indicating whether the FM Parser has attempted to validate
160  * the L4 csum of the frame.
161  * Note that having this bit set doesn't necessarily imply that the checksum
162  * is valid. One would have to check the parse results to find that out.
163  */
164 #define FM_FD_STAT_L4CV         0x00000004
165
166 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
167 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
168
169 #define FSL_DPAA_BPID_INV               0xff
170 #define FSL_DPAA_ETH_MAX_BUF_COUNT      128
171 #define FSL_DPAA_ETH_REFILL_THRESHOLD   80
172
173 #define DPAA_TX_PRIV_DATA_SIZE  16
174 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
175 #define DPAA_TIME_STAMP_SIZE 8
176 #define DPAA_HASH_RESULTS_SIZE 8
177 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
178                        + DPAA_HASH_RESULTS_SIZE)
179 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
180                                         dpaa_rx_extra_headroom)
181 #ifdef CONFIG_DPAA_ERRATUM_A050385
182 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
183 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
184                                 DPAA_RX_PRIV_DATA_A050385_SIZE : \
185                                 DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
186 #else
187 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
188 #endif
189
190 #define DPAA_ETH_PCD_RXQ_NUM    128
191
192 #define DPAA_ENQUEUE_RETRIES    100000
193
194 enum port_type {RX, TX};
195
196 struct fm_port_fqs {
197         struct dpaa_fq *tx_defq;
198         struct dpaa_fq *tx_errq;
199         struct dpaa_fq *rx_defq;
200         struct dpaa_fq *rx_errq;
201         struct dpaa_fq *rx_pcdq;
202 };
203
204 /* All the dpa bps in use at any moment */
205 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
206
207 #define DPAA_BP_RAW_SIZE 4096
208
209 #ifdef CONFIG_DPAA_ERRATUM_A050385
210 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
211                                 ~(DPAA_A050385_ALIGN - 1))
212 #else
213 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
214 #endif
215
216 static int dpaa_max_frm;
217
218 static int dpaa_rx_extra_headroom;
219
220 #define dpaa_get_max_mtu()      \
221         (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
222
223 static int dpaa_netdev_init(struct net_device *net_dev,
224                             const struct net_device_ops *dpaa_ops,
225                             u16 tx_timeout)
226 {
227         struct dpaa_priv *priv = netdev_priv(net_dev);
228         struct device *dev = net_dev->dev.parent;
229         struct dpaa_percpu_priv *percpu_priv;
230         const u8 *mac_addr;
231         int i, err;
232
233         /* Although we access another CPU's private data here
234          * we do it at initialization so it is safe
235          */
236         for_each_possible_cpu(i) {
237                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
238                 percpu_priv->net_dev = net_dev;
239         }
240
241         net_dev->netdev_ops = dpaa_ops;
242         mac_addr = priv->mac_dev->addr;
243
244         net_dev->mem_start = priv->mac_dev->res->start;
245         net_dev->mem_end = priv->mac_dev->res->end;
246
247         net_dev->min_mtu = ETH_MIN_MTU;
248         net_dev->max_mtu = dpaa_get_max_mtu();
249
250         net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
251                                  NETIF_F_LLTX | NETIF_F_RXHASH);
252
253         net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
254         /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
255          * For conformity, we'll still declare GSO explicitly.
256          */
257         net_dev->features |= NETIF_F_GSO;
258         net_dev->features |= NETIF_F_RXCSUM;
259
260         net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
261         /* we do not want shared skbs on TX */
262         net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
263
264         net_dev->features |= net_dev->hw_features;
265         net_dev->vlan_features = net_dev->features;
266
267         if (is_valid_ether_addr(mac_addr)) {
268                 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
269                 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
270         } else {
271                 eth_hw_addr_random(net_dev);
272                 err = priv->mac_dev->change_addr(priv->mac_dev->fman_mac,
273                         (enet_addr_t *)net_dev->dev_addr);
274                 if (err) {
275                         dev_err(dev, "Failed to set random MAC address\n");
276                         return -EINVAL;
277                 }
278                 dev_info(dev, "Using random MAC address: %pM\n",
279                          net_dev->dev_addr);
280         }
281
282         net_dev->ethtool_ops = &dpaa_ethtool_ops;
283
284         net_dev->needed_headroom = priv->tx_headroom;
285         net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
286
287         /* start without the RUNNING flag, phylib controls it later */
288         netif_carrier_off(net_dev);
289
290         err = register_netdev(net_dev);
291         if (err < 0) {
292                 dev_err(dev, "register_netdev() = %d\n", err);
293                 return err;
294         }
295
296         return 0;
297 }
298
299 static int dpaa_stop(struct net_device *net_dev)
300 {
301         struct mac_device *mac_dev;
302         struct dpaa_priv *priv;
303         int i, err, error;
304
305         priv = netdev_priv(net_dev);
306         mac_dev = priv->mac_dev;
307
308         netif_tx_stop_all_queues(net_dev);
309         /* Allow the Fman (Tx) port to process in-flight frames before we
310          * try switching it off.
311          */
312         msleep(200);
313
314         err = mac_dev->stop(mac_dev);
315         if (err < 0)
316                 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
317                           err);
318
319         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
320                 error = fman_port_disable(mac_dev->port[i]);
321                 if (error)
322                         err = error;
323         }
324
325         if (net_dev->phydev)
326                 phy_disconnect(net_dev->phydev);
327         net_dev->phydev = NULL;
328
329         msleep(200);
330
331         return err;
332 }
333
334 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
335 {
336         struct dpaa_percpu_priv *percpu_priv;
337         const struct dpaa_priv  *priv;
338
339         priv = netdev_priv(net_dev);
340         percpu_priv = this_cpu_ptr(priv->percpu_priv);
341
342         netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
343                    jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
344
345         percpu_priv->stats.tx_errors++;
346 }
347
348 /* Calculates the statistics for the given device by adding the statistics
349  * collected by each CPU.
350  */
351 static void dpaa_get_stats64(struct net_device *net_dev,
352                              struct rtnl_link_stats64 *s)
353 {
354         int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
355         struct dpaa_priv *priv = netdev_priv(net_dev);
356         struct dpaa_percpu_priv *percpu_priv;
357         u64 *netstats = (u64 *)s;
358         u64 *cpustats;
359         int i, j;
360
361         for_each_possible_cpu(i) {
362                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
363
364                 cpustats = (u64 *)&percpu_priv->stats;
365
366                 /* add stats from all CPUs */
367                 for (j = 0; j < numstats; j++)
368                         netstats[j] += cpustats[j];
369         }
370 }
371
372 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
373                          void *type_data)
374 {
375         struct dpaa_priv *priv = netdev_priv(net_dev);
376         struct tc_mqprio_qopt *mqprio = type_data;
377         u8 num_tc;
378         int i;
379
380         if (type != TC_SETUP_QDISC_MQPRIO)
381                 return -EOPNOTSUPP;
382
383         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
384         num_tc = mqprio->num_tc;
385
386         if (num_tc == priv->num_tc)
387                 return 0;
388
389         if (!num_tc) {
390                 netdev_reset_tc(net_dev);
391                 goto out;
392         }
393
394         if (num_tc > DPAA_TC_NUM) {
395                 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
396                            DPAA_TC_NUM);
397                 return -EINVAL;
398         }
399
400         netdev_set_num_tc(net_dev, num_tc);
401
402         for (i = 0; i < num_tc; i++)
403                 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
404                                     i * DPAA_TC_TXQ_NUM);
405
406 out:
407         priv->num_tc = num_tc ? : 1;
408         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
409         return 0;
410 }
411
412 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
413 {
414         struct dpaa_eth_data *eth_data;
415         struct device *dpaa_dev;
416         struct mac_device *mac_dev;
417
418         dpaa_dev = &pdev->dev;
419         eth_data = dpaa_dev->platform_data;
420         if (!eth_data) {
421                 dev_err(dpaa_dev, "eth_data missing\n");
422                 return ERR_PTR(-ENODEV);
423         }
424         mac_dev = eth_data->mac_dev;
425         if (!mac_dev) {
426                 dev_err(dpaa_dev, "mac_dev missing\n");
427                 return ERR_PTR(-EINVAL);
428         }
429
430         return mac_dev;
431 }
432
433 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
434 {
435         const struct dpaa_priv *priv;
436         struct mac_device *mac_dev;
437         struct sockaddr old_addr;
438         int err;
439
440         priv = netdev_priv(net_dev);
441
442         memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
443
444         err = eth_mac_addr(net_dev, addr);
445         if (err < 0) {
446                 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
447                 return err;
448         }
449
450         mac_dev = priv->mac_dev;
451
452         err = mac_dev->change_addr(mac_dev->fman_mac,
453                                    (enet_addr_t *)net_dev->dev_addr);
454         if (err < 0) {
455                 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
456                           err);
457                 /* reverting to previous address */
458                 eth_mac_addr(net_dev, &old_addr);
459
460                 return err;
461         }
462
463         return 0;
464 }
465
466 static void dpaa_set_rx_mode(struct net_device *net_dev)
467 {
468         const struct dpaa_priv  *priv;
469         int err;
470
471         priv = netdev_priv(net_dev);
472
473         if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
474                 priv->mac_dev->promisc = !priv->mac_dev->promisc;
475                 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
476                                                  priv->mac_dev->promisc);
477                 if (err < 0)
478                         netif_err(priv, drv, net_dev,
479                                   "mac_dev->set_promisc() = %d\n",
480                                   err);
481         }
482
483         if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
484                 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
485                 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
486                                                   priv->mac_dev->allmulti);
487                 if (err < 0)
488                         netif_err(priv, drv, net_dev,
489                                   "mac_dev->set_allmulti() = %d\n",
490                                   err);
491         }
492
493         err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
494         if (err < 0)
495                 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
496                           err);
497 }
498
499 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
500 {
501         if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
502                 return NULL;
503
504         return dpaa_bp_array[bpid];
505 }
506
507 /* checks if this bpool is already allocated */
508 static bool dpaa_bpid2pool_use(int bpid)
509 {
510         if (dpaa_bpid2pool(bpid)) {
511                 refcount_inc(&dpaa_bp_array[bpid]->refs);
512                 return true;
513         }
514
515         return false;
516 }
517
518 /* called only once per bpid by dpaa_bp_alloc_pool() */
519 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
520 {
521         dpaa_bp_array[bpid] = dpaa_bp;
522         refcount_set(&dpaa_bp->refs, 1);
523 }
524
525 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
526 {
527         int err;
528
529         if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
530                 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
531                        __func__);
532                 return -EINVAL;
533         }
534
535         /* If the pool is already specified, we only create one per bpid */
536         if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
537             dpaa_bpid2pool_use(dpaa_bp->bpid))
538                 return 0;
539
540         if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
541                 dpaa_bp->pool = bman_new_pool();
542                 if (!dpaa_bp->pool) {
543                         pr_err("%s: bman_new_pool() failed\n",
544                                __func__);
545                         return -ENODEV;
546                 }
547
548                 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
549         }
550
551         if (dpaa_bp->seed_cb) {
552                 err = dpaa_bp->seed_cb(dpaa_bp);
553                 if (err)
554                         goto pool_seed_failed;
555         }
556
557         dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
558
559         return 0;
560
561 pool_seed_failed:
562         pr_err("%s: pool seeding failed\n", __func__);
563         bman_free_pool(dpaa_bp->pool);
564
565         return err;
566 }
567
568 /* remove and free all the buffers from the given buffer pool */
569 static void dpaa_bp_drain(struct dpaa_bp *bp)
570 {
571         u8 num = 8;
572         int ret;
573
574         do {
575                 struct bm_buffer bmb[8];
576                 int i;
577
578                 ret = bman_acquire(bp->pool, bmb, num);
579                 if (ret < 0) {
580                         if (num == 8) {
581                                 /* we have less than 8 buffers left;
582                                  * drain them one by one
583                                  */
584                                 num = 1;
585                                 ret = 1;
586                                 continue;
587                         } else {
588                                 /* Pool is fully drained */
589                                 break;
590                         }
591                 }
592
593                 if (bp->free_buf_cb)
594                         for (i = 0; i < num; i++)
595                                 bp->free_buf_cb(bp, &bmb[i]);
596         } while (ret > 0);
597 }
598
599 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
600 {
601         struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
602
603         /* the mapping between bpid and dpaa_bp is done very late in the
604          * allocation procedure; if something failed before the mapping, the bp
605          * was not configured, therefore we don't need the below instructions
606          */
607         if (!bp)
608                 return;
609
610         if (!refcount_dec_and_test(&bp->refs))
611                 return;
612
613         if (bp->free_buf_cb)
614                 dpaa_bp_drain(bp);
615
616         dpaa_bp_array[bp->bpid] = NULL;
617         bman_free_pool(bp->pool);
618 }
619
620 static void dpaa_bps_free(struct dpaa_priv *priv)
621 {
622         dpaa_bp_free(priv->dpaa_bp);
623 }
624
625 /* Use multiple WQs for FQ assignment:
626  *      - Tx Confirmation queues go to WQ1.
627  *      - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
628  *        to be scheduled, in case there are many more FQs in WQ6).
629  *      - Rx Default goes to WQ6.
630  *      - Tx queues go to different WQs depending on their priority. Equal
631  *        chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
632  *        WQ0 (highest priority).
633  * This ensures that Tx-confirmed buffers are timely released. In particular,
634  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
635  * are greatly outnumbered by other FQs in the system, while
636  * dequeue scheduling is round-robin.
637  */
638 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
639 {
640         switch (fq->fq_type) {
641         case FQ_TYPE_TX_CONFIRM:
642         case FQ_TYPE_TX_CONF_MQ:
643                 fq->wq = 1;
644                 break;
645         case FQ_TYPE_RX_ERROR:
646         case FQ_TYPE_TX_ERROR:
647                 fq->wq = 5;
648                 break;
649         case FQ_TYPE_RX_DEFAULT:
650         case FQ_TYPE_RX_PCD:
651                 fq->wq = 6;
652                 break;
653         case FQ_TYPE_TX:
654                 switch (idx / DPAA_TC_TXQ_NUM) {
655                 case 0:
656                         /* Low priority (best effort) */
657                         fq->wq = 6;
658                         break;
659                 case 1:
660                         /* Medium priority */
661                         fq->wq = 2;
662                         break;
663                 case 2:
664                         /* High priority */
665                         fq->wq = 1;
666                         break;
667                 case 3:
668                         /* Very high priority */
669                         fq->wq = 0;
670                         break;
671                 default:
672                         WARN(1, "Too many TX FQs: more than %d!\n",
673                              DPAA_ETH_TXQ_NUM);
674                 }
675                 break;
676         default:
677                 WARN(1, "Invalid FQ type %d for FQID %d!\n",
678                      fq->fq_type, fq->fqid);
679         }
680 }
681
682 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
683                                      u32 start, u32 count,
684                                      struct list_head *list,
685                                      enum dpaa_fq_type fq_type)
686 {
687         struct dpaa_fq *dpaa_fq;
688         int i;
689
690         dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
691                                GFP_KERNEL);
692         if (!dpaa_fq)
693                 return NULL;
694
695         for (i = 0; i < count; i++) {
696                 dpaa_fq[i].fq_type = fq_type;
697                 dpaa_fq[i].fqid = start ? start + i : 0;
698                 list_add_tail(&dpaa_fq[i].list, list);
699         }
700
701         for (i = 0; i < count; i++)
702                 dpaa_assign_wq(dpaa_fq + i, i);
703
704         return dpaa_fq;
705 }
706
707 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
708                               struct fm_port_fqs *port_fqs)
709 {
710         struct dpaa_fq *dpaa_fq;
711         u32 fq_base, fq_base_aligned, i;
712
713         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
714         if (!dpaa_fq)
715                 goto fq_alloc_failed;
716
717         port_fqs->rx_errq = &dpaa_fq[0];
718
719         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
720         if (!dpaa_fq)
721                 goto fq_alloc_failed;
722
723         port_fqs->rx_defq = &dpaa_fq[0];
724
725         /* the PCD FQIDs range needs to be aligned for correct operation */
726         if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
727                 goto fq_alloc_failed;
728
729         fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
730
731         for (i = fq_base; i < fq_base_aligned; i++)
732                 qman_release_fqid(i);
733
734         for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
735              i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
736                 qman_release_fqid(i);
737
738         dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
739                                 list, FQ_TYPE_RX_PCD);
740         if (!dpaa_fq)
741                 goto fq_alloc_failed;
742
743         port_fqs->rx_pcdq = &dpaa_fq[0];
744
745         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
746                 goto fq_alloc_failed;
747
748         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
749         if (!dpaa_fq)
750                 goto fq_alloc_failed;
751
752         port_fqs->tx_errq = &dpaa_fq[0];
753
754         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
755         if (!dpaa_fq)
756                 goto fq_alloc_failed;
757
758         port_fqs->tx_defq = &dpaa_fq[0];
759
760         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
761                 goto fq_alloc_failed;
762
763         return 0;
764
765 fq_alloc_failed:
766         dev_err(dev, "dpaa_fq_alloc() failed\n");
767         return -ENOMEM;
768 }
769
770 static u32 rx_pool_channel;
771 static DEFINE_SPINLOCK(rx_pool_channel_init);
772
773 static int dpaa_get_channel(void)
774 {
775         spin_lock(&rx_pool_channel_init);
776         if (!rx_pool_channel) {
777                 u32 pool;
778                 int ret;
779
780                 ret = qman_alloc_pool(&pool);
781
782                 if (!ret)
783                         rx_pool_channel = pool;
784         }
785         spin_unlock(&rx_pool_channel_init);
786         if (!rx_pool_channel)
787                 return -ENOMEM;
788         return rx_pool_channel;
789 }
790
791 static void dpaa_release_channel(void)
792 {
793         qman_release_pool(rx_pool_channel);
794 }
795
796 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
797 {
798         u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
799         const cpumask_t *cpus = qman_affine_cpus();
800         struct qman_portal *portal;
801         int cpu;
802
803         for_each_cpu_and(cpu, cpus, cpu_online_mask) {
804                 portal = qman_get_affine_portal(cpu);
805                 qman_p_static_dequeue_add(portal, pool);
806                 qman_start_using_portal(portal, dev);
807         }
808 }
809
810 /* Congestion group state change notification callback.
811  * Stops the device's egress queues while they are congested and
812  * wakes them upon exiting congested state.
813  * Also updates some CGR-related stats.
814  */
815 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
816                            int congested)
817 {
818         struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
819                 struct dpaa_priv, cgr_data.cgr);
820
821         if (congested) {
822                 priv->cgr_data.congestion_start_jiffies = jiffies;
823                 netif_tx_stop_all_queues(priv->net_dev);
824                 priv->cgr_data.cgr_congested_count++;
825         } else {
826                 priv->cgr_data.congested_jiffies +=
827                         (jiffies - priv->cgr_data.congestion_start_jiffies);
828                 netif_tx_wake_all_queues(priv->net_dev);
829         }
830 }
831
832 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
833 {
834         struct qm_mcc_initcgr initcgr;
835         u32 cs_th;
836         int err;
837
838         err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
839         if (err < 0) {
840                 if (netif_msg_drv(priv))
841                         pr_err("%s: Error %d allocating CGR ID\n",
842                                __func__, err);
843                 goto out_error;
844         }
845         priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
846
847         /* Enable Congestion State Change Notifications and CS taildrop */
848         memset(&initcgr, 0, sizeof(initcgr));
849         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
850         initcgr.cgr.cscn_en = QM_CGR_EN;
851
852         /* Set different thresholds based on the MAC speed.
853          * This may turn suboptimal if the MAC is reconfigured at a speed
854          * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
855          * In such cases, we ought to reconfigure the threshold, too.
856          */
857         if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
858                 cs_th = DPAA_CS_THRESHOLD_10G;
859         else
860                 cs_th = DPAA_CS_THRESHOLD_1G;
861         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
862
863         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
864         initcgr.cgr.cstd_en = QM_CGR_EN;
865
866         err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
867                               &initcgr);
868         if (err < 0) {
869                 if (netif_msg_drv(priv))
870                         pr_err("%s: Error %d creating CGR with ID %d\n",
871                                __func__, err, priv->cgr_data.cgr.cgrid);
872                 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
873                 goto out_error;
874         }
875         if (netif_msg_drv(priv))
876                 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
877                          priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
878                          priv->cgr_data.cgr.chan);
879
880 out_error:
881         return err;
882 }
883
884 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
885                                       struct dpaa_fq *fq,
886                                       const struct qman_fq *template)
887 {
888         fq->fq_base = *template;
889         fq->net_dev = priv->net_dev;
890
891         fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
892         fq->channel = priv->channel;
893 }
894
895 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
896                                      struct dpaa_fq *fq,
897                                      struct fman_port *port,
898                                      const struct qman_fq *template)
899 {
900         fq->fq_base = *template;
901         fq->net_dev = priv->net_dev;
902
903         if (port) {
904                 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
905                 fq->channel = (u16)fman_port_get_qman_channel_id(port);
906         } else {
907                 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
908         }
909 }
910
911 static void dpaa_fq_setup(struct dpaa_priv *priv,
912                           const struct dpaa_fq_cbs *fq_cbs,
913                           struct fman_port *tx_port)
914 {
915         int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
916         const cpumask_t *affine_cpus = qman_affine_cpus();
917         u16 channels[NR_CPUS];
918         struct dpaa_fq *fq;
919
920         for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
921                 channels[num_portals++] = qman_affine_channel(cpu);
922
923         if (num_portals == 0)
924                 dev_err(priv->net_dev->dev.parent,
925                         "No Qman software (affine) channels found\n");
926
927         /* Initialize each FQ in the list */
928         list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
929                 switch (fq->fq_type) {
930                 case FQ_TYPE_RX_DEFAULT:
931                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
932                         break;
933                 case FQ_TYPE_RX_ERROR:
934                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
935                         break;
936                 case FQ_TYPE_RX_PCD:
937                         if (!num_portals)
938                                 continue;
939                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
940                         fq->channel = channels[portal_cnt++ % num_portals];
941                         break;
942                 case FQ_TYPE_TX:
943                         dpaa_setup_egress(priv, fq, tx_port,
944                                           &fq_cbs->egress_ern);
945                         /* If we have more Tx queues than the number of cores,
946                          * just ignore the extra ones.
947                          */
948                         if (egress_cnt < DPAA_ETH_TXQ_NUM)
949                                 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
950                         break;
951                 case FQ_TYPE_TX_CONF_MQ:
952                         priv->conf_fqs[conf_cnt++] = &fq->fq_base;
953                         fallthrough;
954                 case FQ_TYPE_TX_CONFIRM:
955                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
956                         break;
957                 case FQ_TYPE_TX_ERROR:
958                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
959                         break;
960                 default:
961                         dev_warn(priv->net_dev->dev.parent,
962                                  "Unknown FQ type detected!\n");
963                         break;
964                 }
965         }
966
967          /* Make sure all CPUs receive a corresponding Tx queue. */
968         while (egress_cnt < DPAA_ETH_TXQ_NUM) {
969                 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
970                         if (fq->fq_type != FQ_TYPE_TX)
971                                 continue;
972                         priv->egress_fqs[egress_cnt++] = &fq->fq_base;
973                         if (egress_cnt == DPAA_ETH_TXQ_NUM)
974                                 break;
975                 }
976         }
977 }
978
979 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
980                                    struct qman_fq *tx_fq)
981 {
982         int i;
983
984         for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
985                 if (priv->egress_fqs[i] == tx_fq)
986                         return i;
987
988         return -EINVAL;
989 }
990
991 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
992 {
993         const struct dpaa_priv  *priv;
994         struct qman_fq *confq = NULL;
995         struct qm_mcc_initfq initfq;
996         struct device *dev;
997         struct qman_fq *fq;
998         int queue_id;
999         int err;
1000
1001         priv = netdev_priv(dpaa_fq->net_dev);
1002         dev = dpaa_fq->net_dev->dev.parent;
1003
1004         if (dpaa_fq->fqid == 0)
1005                 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1006
1007         dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1008
1009         err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1010         if (err) {
1011                 dev_err(dev, "qman_create_fq() failed\n");
1012                 return err;
1013         }
1014         fq = &dpaa_fq->fq_base;
1015
1016         if (dpaa_fq->init) {
1017                 memset(&initfq, 0, sizeof(initfq));
1018
1019                 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1020                 /* Note: we may get to keep an empty FQ in cache */
1021                 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1022
1023                 /* Try to reduce the number of portal interrupts for
1024                  * Tx Confirmation FQs.
1025                  */
1026                 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1027                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1028
1029                 /* FQ placement */
1030                 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1031
1032                 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1033
1034                 /* Put all egress queues in a congestion group of their own.
1035                  * Sensu stricto, the Tx confirmation queues are Rx FQs,
1036                  * rather than Tx - but they nonetheless account for the
1037                  * memory footprint on behalf of egress traffic. We therefore
1038                  * place them in the netdev's CGR, along with the Tx FQs.
1039                  */
1040                 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1041                     dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1042                     dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1043                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1044                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1045                         initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1046                         /* Set a fixed overhead accounting, in an attempt to
1047                          * reduce the impact of fixed-size skb shells and the
1048                          * driver's needed headroom on system memory. This is
1049                          * especially the case when the egress traffic is
1050                          * composed of small datagrams.
1051                          * Unfortunately, QMan's OAL value is capped to an
1052                          * insufficient value, but even that is better than
1053                          * no overhead accounting at all.
1054                          */
1055                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1056                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1057                         qm_fqd_set_oal(&initfq.fqd,
1058                                        min(sizeof(struct sk_buff) +
1059                                        priv->tx_headroom,
1060                                        (size_t)FSL_QMAN_MAX_OAL));
1061                 }
1062
1063                 if (td_enable) {
1064                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1065                         qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1066                         initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1067                 }
1068
1069                 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1070                         queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1071                         if (queue_id >= 0)
1072                                 confq = priv->conf_fqs[queue_id];
1073                         if (confq) {
1074                                 initfq.we_mask |=
1075                                         cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1076                         /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1077                          *           A2V=1 (contextA A2 field is valid)
1078                          *           A0V=1 (contextA A0 field is valid)
1079                          *           B0V=1 (contextB field is valid)
1080                          * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1081                          * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1082                          */
1083                                 qm_fqd_context_a_set64(&initfq.fqd,
1084                                                        0x1e00000080000000ULL);
1085                         }
1086                 }
1087
1088                 /* Put all the ingress queues in our "ingress CGR". */
1089                 if (priv->use_ingress_cgr &&
1090                     (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1091                      dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1092                      dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1093                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1094                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1095                         initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1096                         /* Set a fixed overhead accounting, just like for the
1097                          * egress CGR.
1098                          */
1099                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1100                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1101                         qm_fqd_set_oal(&initfq.fqd,
1102                                        min(sizeof(struct sk_buff) +
1103                                        priv->tx_headroom,
1104                                        (size_t)FSL_QMAN_MAX_OAL));
1105                 }
1106
1107                 /* Initialization common to all ingress queues */
1108                 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1109                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1110                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1111                                                 QM_FQCTRL_CTXASTASHING);
1112                         initfq.fqd.context_a.stashing.exclusive =
1113                                 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1114                                 QM_STASHING_EXCL_ANNOTATION;
1115                         qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1116                                             DIV_ROUND_UP(sizeof(struct qman_fq),
1117                                                          64));
1118                 }
1119
1120                 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1121                 if (err < 0) {
1122                         dev_err(dev, "qman_init_fq(%u) = %d\n",
1123                                 qman_fq_fqid(fq), err);
1124                         qman_destroy_fq(fq);
1125                         return err;
1126                 }
1127         }
1128
1129         dpaa_fq->fqid = qman_fq_fqid(fq);
1130
1131         return 0;
1132 }
1133
1134 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1135 {
1136         const struct dpaa_priv  *priv;
1137         struct dpaa_fq *dpaa_fq;
1138         int err, error;
1139
1140         err = 0;
1141
1142         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1143         priv = netdev_priv(dpaa_fq->net_dev);
1144
1145         if (dpaa_fq->init) {
1146                 err = qman_retire_fq(fq, NULL);
1147                 if (err < 0 && netif_msg_drv(priv))
1148                         dev_err(dev, "qman_retire_fq(%u) = %d\n",
1149                                 qman_fq_fqid(fq), err);
1150
1151                 error = qman_oos_fq(fq);
1152                 if (error < 0 && netif_msg_drv(priv)) {
1153                         dev_err(dev, "qman_oos_fq(%u) = %d\n",
1154                                 qman_fq_fqid(fq), error);
1155                         if (err >= 0)
1156                                 err = error;
1157                 }
1158         }
1159
1160         qman_destroy_fq(fq);
1161         list_del(&dpaa_fq->list);
1162
1163         return err;
1164 }
1165
1166 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1167 {
1168         struct dpaa_fq *dpaa_fq, *tmp;
1169         int err, error;
1170
1171         err = 0;
1172         list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1173                 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1174                 if (error < 0 && err >= 0)
1175                         err = error;
1176         }
1177
1178         return err;
1179 }
1180
1181 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1182                                  struct dpaa_fq *defq,
1183                                  struct dpaa_buffer_layout *buf_layout)
1184 {
1185         struct fman_buffer_prefix_content buf_prefix_content;
1186         struct fman_port_params params;
1187         int err;
1188
1189         memset(&params, 0, sizeof(params));
1190         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1191
1192         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1193         buf_prefix_content.pass_prs_result = true;
1194         buf_prefix_content.pass_hash_result = true;
1195         buf_prefix_content.pass_time_stamp = true;
1196         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1197
1198         params.specific_params.non_rx_params.err_fqid = errq->fqid;
1199         params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1200
1201         err = fman_port_config(port, &params);
1202         if (err) {
1203                 pr_err("%s: fman_port_config failed\n", __func__);
1204                 return err;
1205         }
1206
1207         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1208         if (err) {
1209                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1210                        __func__);
1211                 return err;
1212         }
1213
1214         err = fman_port_init(port);
1215         if (err)
1216                 pr_err("%s: fm_port_init failed\n", __func__);
1217
1218         return err;
1219 }
1220
1221 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1222                                  struct dpaa_fq *errq,
1223                                  struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1224                                  struct dpaa_buffer_layout *buf_layout)
1225 {
1226         struct fman_buffer_prefix_content buf_prefix_content;
1227         struct fman_port_rx_params *rx_p;
1228         struct fman_port_params params;
1229         int err;
1230
1231         memset(&params, 0, sizeof(params));
1232         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1233
1234         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1235         buf_prefix_content.pass_prs_result = true;
1236         buf_prefix_content.pass_hash_result = true;
1237         buf_prefix_content.pass_time_stamp = true;
1238         buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1239
1240         rx_p = &params.specific_params.rx_params;
1241         rx_p->err_fqid = errq->fqid;
1242         rx_p->dflt_fqid = defq->fqid;
1243         if (pcdq) {
1244                 rx_p->pcd_base_fqid = pcdq->fqid;
1245                 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1246         }
1247
1248         rx_p->ext_buf_pools.num_of_pools_used = 1;
1249         rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1250         rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1251
1252         err = fman_port_config(port, &params);
1253         if (err) {
1254                 pr_err("%s: fman_port_config failed\n", __func__);
1255                 return err;
1256         }
1257
1258         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1259         if (err) {
1260                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1261                        __func__);
1262                 return err;
1263         }
1264
1265         err = fman_port_init(port);
1266         if (err)
1267                 pr_err("%s: fm_port_init failed\n", __func__);
1268
1269         return err;
1270 }
1271
1272 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1273                                struct dpaa_bp *bp,
1274                                struct fm_port_fqs *port_fqs,
1275                                struct dpaa_buffer_layout *buf_layout,
1276                                struct device *dev)
1277 {
1278         struct fman_port *rxport = mac_dev->port[RX];
1279         struct fman_port *txport = mac_dev->port[TX];
1280         int err;
1281
1282         err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1283                                     port_fqs->tx_defq, &buf_layout[TX]);
1284         if (err)
1285                 return err;
1286
1287         err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1288                                     port_fqs->rx_defq, port_fqs->rx_pcdq,
1289                                     &buf_layout[RX]);
1290
1291         return err;
1292 }
1293
1294 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1295                              struct bm_buffer *bmb, int cnt)
1296 {
1297         int err;
1298
1299         err = bman_release(dpaa_bp->pool, bmb, cnt);
1300         /* Should never occur, address anyway to avoid leaking the buffers */
1301         if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1302                 while (cnt-- > 0)
1303                         dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1304
1305         return cnt;
1306 }
1307
1308 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1309 {
1310         struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1311         struct dpaa_bp *dpaa_bp;
1312         int i = 0, j;
1313
1314         memset(bmb, 0, sizeof(bmb));
1315
1316         do {
1317                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1318                 if (!dpaa_bp)
1319                         return;
1320
1321                 j = 0;
1322                 do {
1323                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1324
1325                         bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1326
1327                         j++; i++;
1328                 } while (j < ARRAY_SIZE(bmb) &&
1329                                 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1330                                 sgt[i - 1].bpid == sgt[i].bpid);
1331
1332                 dpaa_bman_release(dpaa_bp, bmb, j);
1333         } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1334 }
1335
1336 static void dpaa_fd_release(const struct net_device *net_dev,
1337                             const struct qm_fd *fd)
1338 {
1339         struct qm_sg_entry *sgt;
1340         struct dpaa_bp *dpaa_bp;
1341         struct bm_buffer bmb;
1342         dma_addr_t addr;
1343         void *vaddr;
1344
1345         bmb.data = 0;
1346         bm_buffer_set64(&bmb, qm_fd_addr(fd));
1347
1348         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1349         if (!dpaa_bp)
1350                 return;
1351
1352         if (qm_fd_get_format(fd) == qm_fd_sg) {
1353                 vaddr = phys_to_virt(qm_fd_addr(fd));
1354                 sgt = vaddr + qm_fd_get_offset(fd);
1355
1356                 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1357                                DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1358
1359                 dpaa_release_sgt_members(sgt);
1360
1361                 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1362                                     virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1363                                     DMA_FROM_DEVICE);
1364                 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1365                         netdev_err(net_dev, "DMA mapping failed\n");
1366                         return;
1367                 }
1368                 bm_buffer_set64(&bmb, addr);
1369         }
1370
1371         dpaa_bman_release(dpaa_bp, &bmb, 1);
1372 }
1373
1374 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1375                       const union qm_mr_entry *msg)
1376 {
1377         switch (msg->ern.rc & QM_MR_RC_MASK) {
1378         case QM_MR_RC_CGR_TAILDROP:
1379                 percpu_priv->ern_cnt.cg_tdrop++;
1380                 break;
1381         case QM_MR_RC_WRED:
1382                 percpu_priv->ern_cnt.wred++;
1383                 break;
1384         case QM_MR_RC_ERROR:
1385                 percpu_priv->ern_cnt.err_cond++;
1386                 break;
1387         case QM_MR_RC_ORPWINDOW_EARLY:
1388                 percpu_priv->ern_cnt.early_window++;
1389                 break;
1390         case QM_MR_RC_ORPWINDOW_LATE:
1391                 percpu_priv->ern_cnt.late_window++;
1392                 break;
1393         case QM_MR_RC_FQ_TAILDROP:
1394                 percpu_priv->ern_cnt.fq_tdrop++;
1395                 break;
1396         case QM_MR_RC_ORPWINDOW_RETIRED:
1397                 percpu_priv->ern_cnt.fq_retired++;
1398                 break;
1399         case QM_MR_RC_ORP_ZERO:
1400                 percpu_priv->ern_cnt.orp_zero++;
1401                 break;
1402         }
1403 }
1404
1405 /* Turn on HW checksum computation for this outgoing frame.
1406  * If the current protocol is not something we support in this regard
1407  * (or if the stack has already computed the SW checksum), we do nothing.
1408  *
1409  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1410  * otherwise.
1411  *
1412  * Note that this function may modify the fd->cmd field and the skb data buffer
1413  * (the Parse Results area).
1414  */
1415 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1416                                struct sk_buff *skb,
1417                                struct qm_fd *fd,
1418                                void *parse_results)
1419 {
1420         struct fman_prs_result *parse_result;
1421         u16 ethertype = ntohs(skb->protocol);
1422         struct ipv6hdr *ipv6h = NULL;
1423         struct iphdr *iph;
1424         int retval = 0;
1425         u8 l4_proto;
1426
1427         if (skb->ip_summed != CHECKSUM_PARTIAL)
1428                 return 0;
1429
1430         /* Note: L3 csum seems to be already computed in sw, but we can't choose
1431          * L4 alone from the FM configuration anyway.
1432          */
1433
1434         /* Fill in some fields of the Parse Results array, so the FMan
1435          * can find them as if they came from the FMan Parser.
1436          */
1437         parse_result = (struct fman_prs_result *)parse_results;
1438
1439         /* If we're dealing with VLAN, get the real Ethernet type */
1440         if (ethertype == ETH_P_8021Q) {
1441                 /* We can't always assume the MAC header is set correctly
1442                  * by the stack, so reset to beginning of skb->data
1443                  */
1444                 skb_reset_mac_header(skb);
1445                 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1446         }
1447
1448         /* Fill in the relevant L3 parse result fields
1449          * and read the L4 protocol type
1450          */
1451         switch (ethertype) {
1452         case ETH_P_IP:
1453                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1454                 iph = ip_hdr(skb);
1455                 WARN_ON(!iph);
1456                 l4_proto = iph->protocol;
1457                 break;
1458         case ETH_P_IPV6:
1459                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1460                 ipv6h = ipv6_hdr(skb);
1461                 WARN_ON(!ipv6h);
1462                 l4_proto = ipv6h->nexthdr;
1463                 break;
1464         default:
1465                 /* We shouldn't even be here */
1466                 if (net_ratelimit())
1467                         netif_alert(priv, tx_err, priv->net_dev,
1468                                     "Can't compute HW csum for L3 proto 0x%x\n",
1469                                     ntohs(skb->protocol));
1470                 retval = -EIO;
1471                 goto return_error;
1472         }
1473
1474         /* Fill in the relevant L4 parse result fields */
1475         switch (l4_proto) {
1476         case IPPROTO_UDP:
1477                 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1478                 break;
1479         case IPPROTO_TCP:
1480                 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1481                 break;
1482         default:
1483                 if (net_ratelimit())
1484                         netif_alert(priv, tx_err, priv->net_dev,
1485                                     "Can't compute HW csum for L4 proto 0x%x\n",
1486                                     l4_proto);
1487                 retval = -EIO;
1488                 goto return_error;
1489         }
1490
1491         /* At index 0 is IPOffset_1 as defined in the Parse Results */
1492         parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1493         parse_result->l4_off = (u8)skb_transport_offset(skb);
1494
1495         /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1496         fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1497
1498         /* On P1023 and similar platforms fd->cmd interpretation could
1499          * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1500          * is not set so we do not need to check; in the future, if/when
1501          * using context_a we need to check this bit
1502          */
1503
1504 return_error:
1505         return retval;
1506 }
1507
1508 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1509 {
1510         struct net_device *net_dev = dpaa_bp->priv->net_dev;
1511         struct bm_buffer bmb[8];
1512         dma_addr_t addr;
1513         struct page *p;
1514         u8 i;
1515
1516         for (i = 0; i < 8; i++) {
1517                 p = dev_alloc_pages(0);
1518                 if (unlikely(!p)) {
1519                         netdev_err(net_dev, "dev_alloc_pages() failed\n");
1520                         goto release_previous_buffs;
1521                 }
1522
1523                 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1524                                     DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1525                 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1526                                                addr))) {
1527                         netdev_err(net_dev, "DMA map failed\n");
1528                         goto release_previous_buffs;
1529                 }
1530
1531                 bmb[i].data = 0;
1532                 bm_buffer_set64(&bmb[i], addr);
1533         }
1534
1535 release_bufs:
1536         return dpaa_bman_release(dpaa_bp, bmb, i);
1537
1538 release_previous_buffs:
1539         WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1540
1541         bm_buffer_set64(&bmb[i], 0);
1542         /* Avoid releasing a completely null buffer; bman_release() requires
1543          * at least one buffer.
1544          */
1545         if (likely(i))
1546                 goto release_bufs;
1547
1548         return 0;
1549 }
1550
1551 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1552 {
1553         int i;
1554
1555         /* Give each CPU an allotment of "config_count" buffers */
1556         for_each_possible_cpu(i) {
1557                 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1558                 int j;
1559
1560                 /* Although we access another CPU's counters here
1561                  * we do it at boot time so it is safe
1562                  */
1563                 for (j = 0; j < dpaa_bp->config_count; j += 8)
1564                         *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1565         }
1566         return 0;
1567 }
1568
1569 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1570  * REFILL_THRESHOLD.
1571  */
1572 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1573 {
1574         int count = *countptr;
1575         int new_bufs;
1576
1577         if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1578                 do {
1579                         new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1580                         if (unlikely(!new_bufs)) {
1581                                 /* Avoid looping forever if we've temporarily
1582                                  * run out of memory. We'll try again at the
1583                                  * next NAPI cycle.
1584                                  */
1585                                 break;
1586                         }
1587                         count += new_bufs;
1588                 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1589
1590                 *countptr = count;
1591                 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1592                         return -ENOMEM;
1593         }
1594
1595         return 0;
1596 }
1597
1598 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1599 {
1600         struct dpaa_bp *dpaa_bp;
1601         int *countptr;
1602         int res;
1603
1604         dpaa_bp = priv->dpaa_bp;
1605         if (!dpaa_bp)
1606                 return -EINVAL;
1607         countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1608         res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1609         if (res)
1610                 return res;
1611
1612         return 0;
1613 }
1614
1615 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1616  * either contiguous frames or scatter/gather ones.
1617  * Skb freeing is not handled here.
1618  *
1619  * This function may be called on error paths in the Tx function, so guard
1620  * against cases when not all fd relevant fields were filled in. To avoid
1621  * reading the invalid transmission timestamp for the error paths set ts to
1622  * false.
1623  *
1624  * Return the skb backpointer, since for S/G frames the buffer containing it
1625  * gets freed here.
1626  */
1627 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1628                                           const struct qm_fd *fd, bool ts)
1629 {
1630         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1631         struct device *dev = priv->net_dev->dev.parent;
1632         struct skb_shared_hwtstamps shhwtstamps;
1633         dma_addr_t addr = qm_fd_addr(fd);
1634         void *vaddr = phys_to_virt(addr);
1635         const struct qm_sg_entry *sgt;
1636         struct sk_buff *skb;
1637         u64 ns;
1638         int i;
1639
1640         if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1641                 dma_unmap_page(priv->tx_dma_dev, addr,
1642                                qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1643                                dma_dir);
1644
1645                 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1646                  * it's from lowmem.
1647                  */
1648                 sgt = vaddr + qm_fd_get_offset(fd);
1649
1650                 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1651                 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1652                                  qm_sg_entry_get_len(&sgt[0]), dma_dir);
1653
1654                 /* remaining pages were mapped with skb_frag_dma_map() */
1655                 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1656                      !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1657                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1658
1659                         dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1660                                        qm_sg_entry_get_len(&sgt[i]), dma_dir);
1661                 }
1662         } else {
1663                 dma_unmap_single(priv->tx_dma_dev, addr,
1664                                  priv->tx_headroom + qm_fd_get_length(fd),
1665                                  dma_dir);
1666         }
1667
1668         skb = *(struct sk_buff **)vaddr;
1669
1670         /* DMA unmapping is required before accessing the HW provided info */
1671         if (ts && priv->tx_tstamp &&
1672             skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1673                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1674
1675                 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1676                                           &ns)) {
1677                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
1678                         skb_tstamp_tx(skb, &shhwtstamps);
1679                 } else {
1680                         dev_warn(dev, "fman_port_get_tstamp failed!\n");
1681                 }
1682         }
1683
1684         if (qm_fd_get_format(fd) == qm_fd_sg)
1685                 /* Free the page that we allocated on Tx for the SGT */
1686                 free_pages((unsigned long)vaddr, 0);
1687
1688         return skb;
1689 }
1690
1691 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1692 {
1693         /* The parser has run and performed L4 checksum validation.
1694          * We know there were no parser errors (and implicitly no
1695          * L4 csum error), otherwise we wouldn't be here.
1696          */
1697         if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1698             (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1699                 return CHECKSUM_UNNECESSARY;
1700
1701         /* We're here because either the parser didn't run or the L4 checksum
1702          * was not verified. This may include the case of a UDP frame with
1703          * checksum zero or an L4 proto other than TCP/UDP
1704          */
1705         return CHECKSUM_NONE;
1706 }
1707
1708 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1709
1710 /* Build a linear skb around the received buffer.
1711  * We are guaranteed there is enough room at the end of the data buffer to
1712  * accommodate the shared info area of the skb.
1713  */
1714 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1715                                         const struct qm_fd *fd)
1716 {
1717         ssize_t fd_off = qm_fd_get_offset(fd);
1718         dma_addr_t addr = qm_fd_addr(fd);
1719         struct dpaa_bp *dpaa_bp;
1720         struct sk_buff *skb;
1721         void *vaddr;
1722
1723         vaddr = phys_to_virt(addr);
1724         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1725
1726         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1727         if (!dpaa_bp)
1728                 goto free_buffer;
1729
1730         skb = build_skb(vaddr, dpaa_bp->size +
1731                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1732         if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1733                 goto free_buffer;
1734         WARN_ON(fd_off != priv->rx_headroom);
1735         skb_reserve(skb, fd_off);
1736         skb_put(skb, qm_fd_get_length(fd));
1737
1738         skb->ip_summed = rx_csum_offload(priv, fd);
1739
1740         return skb;
1741
1742 free_buffer:
1743         free_pages((unsigned long)vaddr, 0);
1744         return NULL;
1745 }
1746
1747 /* Build an skb with the data of the first S/G entry in the linear portion and
1748  * the rest of the frame as skb fragments.
1749  *
1750  * The page fragment holding the S/G Table is recycled here.
1751  */
1752 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1753                                     const struct qm_fd *fd)
1754 {
1755         ssize_t fd_off = qm_fd_get_offset(fd);
1756         dma_addr_t addr = qm_fd_addr(fd);
1757         const struct qm_sg_entry *sgt;
1758         struct page *page, *head_page;
1759         struct dpaa_bp *dpaa_bp;
1760         void *vaddr, *sg_vaddr;
1761         int frag_off, frag_len;
1762         struct sk_buff *skb;
1763         dma_addr_t sg_addr;
1764         int page_offset;
1765         unsigned int sz;
1766         int *count_ptr;
1767         int i, j;
1768
1769         vaddr = phys_to_virt(addr);
1770         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1771
1772         /* Iterate through the SGT entries and add data buffers to the skb */
1773         sgt = vaddr + fd_off;
1774         skb = NULL;
1775         for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1776                 /* Extension bit is not supported */
1777                 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1778
1779                 sg_addr = qm_sg_addr(&sgt[i]);
1780                 sg_vaddr = phys_to_virt(sg_addr);
1781                 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1782
1783                 dma_unmap_page(priv->rx_dma_dev, sg_addr,
1784                                DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1785
1786                 /* We may use multiple Rx pools */
1787                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1788                 if (!dpaa_bp)
1789                         goto free_buffers;
1790
1791                 if (!skb) {
1792                         sz = dpaa_bp->size +
1793                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1794                         skb = build_skb(sg_vaddr, sz);
1795                         if (WARN_ON(!skb))
1796                                 goto free_buffers;
1797
1798                         skb->ip_summed = rx_csum_offload(priv, fd);
1799
1800                         /* Make sure forwarded skbs will have enough space
1801                          * on Tx, if extra headers are added.
1802                          */
1803                         WARN_ON(fd_off != priv->rx_headroom);
1804                         skb_reserve(skb, fd_off);
1805                         skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1806                 } else {
1807                         /* Not the first S/G entry; all data from buffer will
1808                          * be added in an skb fragment; fragment index is offset
1809                          * by one since first S/G entry was incorporated in the
1810                          * linear part of the skb.
1811                          *
1812                          * Caution: 'page' may be a tail page.
1813                          */
1814                         page = virt_to_page(sg_vaddr);
1815                         head_page = virt_to_head_page(sg_vaddr);
1816
1817                         /* Compute offset in (possibly tail) page */
1818                         page_offset = ((unsigned long)sg_vaddr &
1819                                         (PAGE_SIZE - 1)) +
1820                                 (page_address(page) - page_address(head_page));
1821                         /* page_offset only refers to the beginning of sgt[i];
1822                          * but the buffer itself may have an internal offset.
1823                          */
1824                         frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1825                         frag_len = qm_sg_entry_get_len(&sgt[i]);
1826                         /* skb_add_rx_frag() does no checking on the page; if
1827                          * we pass it a tail page, we'll end up with
1828                          * bad page accounting and eventually with segafults.
1829                          */
1830                         skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1831                                         frag_len, dpaa_bp->size);
1832                 }
1833
1834                 /* Update the pool count for the current {cpu x bpool} */
1835                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1836                 (*count_ptr)--;
1837
1838                 if (qm_sg_entry_is_final(&sgt[i]))
1839                         break;
1840         }
1841         WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1842
1843         /* free the SG table buffer */
1844         free_pages((unsigned long)vaddr, 0);
1845
1846         return skb;
1847
1848 free_buffers:
1849         /* free all the SG entries */
1850         for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1851                 sg_addr = qm_sg_addr(&sgt[j]);
1852                 sg_vaddr = phys_to_virt(sg_addr);
1853                 /* all pages 0..i were unmaped */
1854                 if (j > i)
1855                         dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1856                                        DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1857                 free_pages((unsigned long)sg_vaddr, 0);
1858                 /* counters 0..i-1 were decremented */
1859                 if (j >= i) {
1860                         dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1861                         if (dpaa_bp) {
1862                                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1863                                 (*count_ptr)--;
1864                         }
1865                 }
1866
1867                 if (qm_sg_entry_is_final(&sgt[j]))
1868                         break;
1869         }
1870         /* free the SGT fragment */
1871         free_pages((unsigned long)vaddr, 0);
1872
1873         return NULL;
1874 }
1875
1876 static int skb_to_contig_fd(struct dpaa_priv *priv,
1877                             struct sk_buff *skb, struct qm_fd *fd,
1878                             int *offset)
1879 {
1880         struct net_device *net_dev = priv->net_dev;
1881         enum dma_data_direction dma_dir;
1882         unsigned char *buff_start;
1883         struct sk_buff **skbh;
1884         dma_addr_t addr;
1885         int err;
1886
1887         /* We are guaranteed to have at least tx_headroom bytes
1888          * available, so just use that for offset.
1889          */
1890         fd->bpid = FSL_DPAA_BPID_INV;
1891         buff_start = skb->data - priv->tx_headroom;
1892         dma_dir = DMA_TO_DEVICE;
1893
1894         skbh = (struct sk_buff **)buff_start;
1895         *skbh = skb;
1896
1897         /* Enable L3/L4 hardware checksum computation.
1898          *
1899          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1900          * need to write into the skb.
1901          */
1902         err = dpaa_enable_tx_csum(priv, skb, fd,
1903                                   buff_start + DPAA_TX_PRIV_DATA_SIZE);
1904         if (unlikely(err < 0)) {
1905                 if (net_ratelimit())
1906                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1907                                   err);
1908                 return err;
1909         }
1910
1911         /* Fill in the rest of the FD fields */
1912         qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1913         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1914
1915         /* Map the entire buffer size that may be seen by FMan, but no more */
1916         addr = dma_map_single(priv->tx_dma_dev, buff_start,
1917                               priv->tx_headroom + skb->len, dma_dir);
1918         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1919                 if (net_ratelimit())
1920                         netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1921                 return -EINVAL;
1922         }
1923         qm_fd_addr_set64(fd, addr);
1924
1925         return 0;
1926 }
1927
1928 static int skb_to_sg_fd(struct dpaa_priv *priv,
1929                         struct sk_buff *skb, struct qm_fd *fd)
1930 {
1931         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1932         const int nr_frags = skb_shinfo(skb)->nr_frags;
1933         struct net_device *net_dev = priv->net_dev;
1934         struct qm_sg_entry *sgt;
1935         struct sk_buff **skbh;
1936         void *buff_start;
1937         skb_frag_t *frag;
1938         dma_addr_t addr;
1939         size_t frag_len;
1940         struct page *p;
1941         int i, j, err;
1942
1943         /* get a page to store the SGTable */
1944         p = dev_alloc_pages(0);
1945         if (unlikely(!p)) {
1946                 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1947                 return -ENOMEM;
1948         }
1949         buff_start = page_address(p);
1950
1951         /* Enable L3/L4 hardware checksum computation.
1952          *
1953          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1954          * need to write into the skb.
1955          */
1956         err = dpaa_enable_tx_csum(priv, skb, fd,
1957                                   buff_start + DPAA_TX_PRIV_DATA_SIZE);
1958         if (unlikely(err < 0)) {
1959                 if (net_ratelimit())
1960                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1961                                   err);
1962                 goto csum_failed;
1963         }
1964
1965         /* SGT[0] is used by the linear part */
1966         sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
1967         frag_len = skb_headlen(skb);
1968         qm_sg_entry_set_len(&sgt[0], frag_len);
1969         sgt[0].bpid = FSL_DPAA_BPID_INV;
1970         sgt[0].offset = 0;
1971         addr = dma_map_single(priv->tx_dma_dev, skb->data,
1972                               skb_headlen(skb), dma_dir);
1973         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1974                 netdev_err(priv->net_dev, "DMA mapping failed\n");
1975                 err = -EINVAL;
1976                 goto sg0_map_failed;
1977         }
1978         qm_sg_entry_set64(&sgt[0], addr);
1979
1980         /* populate the rest of SGT entries */
1981         for (i = 0; i < nr_frags; i++) {
1982                 frag = &skb_shinfo(skb)->frags[i];
1983                 frag_len = skb_frag_size(frag);
1984                 WARN_ON(!skb_frag_page(frag));
1985                 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
1986                                         frag_len, dma_dir);
1987                 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1988                         netdev_err(priv->net_dev, "DMA mapping failed\n");
1989                         err = -EINVAL;
1990                         goto sg_map_failed;
1991                 }
1992
1993                 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
1994                 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
1995                 sgt[i + 1].offset = 0;
1996
1997                 /* keep the offset in the address */
1998                 qm_sg_entry_set64(&sgt[i + 1], addr);
1999         }
2000
2001         /* Set the final bit in the last used entry of the SGT */
2002         qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2003
2004         /* set fd offset to priv->tx_headroom */
2005         qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2006
2007         /* DMA map the SGT page */
2008         skbh = (struct sk_buff **)buff_start;
2009         *skbh = skb;
2010
2011         addr = dma_map_page(priv->tx_dma_dev, p, 0,
2012                             priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2013         if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2014                 netdev_err(priv->net_dev, "DMA mapping failed\n");
2015                 err = -EINVAL;
2016                 goto sgt_map_failed;
2017         }
2018
2019         fd->bpid = FSL_DPAA_BPID_INV;
2020         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2021         qm_fd_addr_set64(fd, addr);
2022
2023         return 0;
2024
2025 sgt_map_failed:
2026 sg_map_failed:
2027         for (j = 0; j < i; j++)
2028                 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2029                                qm_sg_entry_get_len(&sgt[j]), dma_dir);
2030 sg0_map_failed:
2031 csum_failed:
2032         free_pages((unsigned long)buff_start, 0);
2033
2034         return err;
2035 }
2036
2037 static inline int dpaa_xmit(struct dpaa_priv *priv,
2038                             struct rtnl_link_stats64 *percpu_stats,
2039                             int queue,
2040                             struct qm_fd *fd)
2041 {
2042         struct qman_fq *egress_fq;
2043         int err, i;
2044
2045         egress_fq = priv->egress_fqs[queue];
2046         if (fd->bpid == FSL_DPAA_BPID_INV)
2047                 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2048
2049         /* Trace this Tx fd */
2050         trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2051
2052         for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2053                 err = qman_enqueue(egress_fq, fd);
2054                 if (err != -EBUSY)
2055                         break;
2056         }
2057
2058         if (unlikely(err < 0)) {
2059                 percpu_stats->tx_fifo_errors++;
2060                 return err;
2061         }
2062
2063         percpu_stats->tx_packets++;
2064         percpu_stats->tx_bytes += qm_fd_get_length(fd);
2065
2066         return 0;
2067 }
2068
2069 #ifdef CONFIG_DPAA_ERRATUM_A050385
2070 static int dpaa_a050385_wa(struct net_device *net_dev, struct sk_buff **s)
2071 {
2072         struct dpaa_priv *priv = netdev_priv(net_dev);
2073         struct sk_buff *new_skb, *skb = *s;
2074         unsigned char *start, i;
2075
2076         /* check linear buffer alignment */
2077         if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2078                 goto workaround;
2079
2080         /* linear buffers just need to have an aligned start */
2081         if (!skb_is_nonlinear(skb))
2082                 return 0;
2083
2084         /* linear data size for nonlinear skbs needs to be aligned */
2085         if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2086                 goto workaround;
2087
2088         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2089                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2090
2091                 /* all fragments need to have aligned start addresses */
2092                 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2093                         goto workaround;
2094
2095                 /* all but last fragment need to have aligned sizes */
2096                 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2097                     (i < skb_shinfo(skb)->nr_frags - 1))
2098                         goto workaround;
2099         }
2100
2101         return 0;
2102
2103 workaround:
2104         /* copy all the skb content into a new linear buffer */
2105         new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2106                                                 priv->tx_headroom);
2107         if (!new_skb)
2108                 return -ENOMEM;
2109
2110         /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2111         skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2112
2113         /* Workaround for DPAA_A050385 requires data start to be aligned */
2114         start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2115         if (start - new_skb->data)
2116                 skb_reserve(new_skb, start - new_skb->data);
2117
2118         skb_put(new_skb, skb->len);
2119         skb_copy_bits(skb, 0, new_skb->data, skb->len);
2120         skb_copy_header(new_skb, skb);
2121         new_skb->dev = skb->dev;
2122
2123         /* We move the headroom when we align it so we have to reset the
2124          * network and transport header offsets relative to the new data
2125          * pointer. The checksum offload relies on these offsets.
2126          */
2127         skb_set_network_header(new_skb, skb_network_offset(skb));
2128         skb_set_transport_header(new_skb, skb_transport_offset(skb));
2129
2130         /* TODO: does timestamping need the result in the old skb? */
2131         dev_kfree_skb(skb);
2132         *s = new_skb;
2133
2134         return 0;
2135 }
2136 #endif
2137
2138 static netdev_tx_t
2139 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2140 {
2141         const int queue_mapping = skb_get_queue_mapping(skb);
2142         bool nonlinear = skb_is_nonlinear(skb);
2143         struct rtnl_link_stats64 *percpu_stats;
2144         struct dpaa_percpu_priv *percpu_priv;
2145         struct netdev_queue *txq;
2146         struct dpaa_priv *priv;
2147         struct qm_fd fd;
2148         int offset = 0;
2149         int err = 0;
2150
2151         priv = netdev_priv(net_dev);
2152         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2153         percpu_stats = &percpu_priv->stats;
2154
2155         qm_fd_clear_fd(&fd);
2156
2157         if (!nonlinear) {
2158                 /* We're going to store the skb backpointer at the beginning
2159                  * of the data buffer, so we need a privately owned skb
2160                  *
2161                  * We've made sure skb is not shared in dev->priv_flags,
2162                  * we need to verify the skb head is not cloned
2163                  */
2164                 if (skb_cow_head(skb, priv->tx_headroom))
2165                         goto enomem;
2166
2167                 WARN_ON(skb_is_nonlinear(skb));
2168         }
2169
2170         /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2171          * make sure we don't feed FMan with more fragments than it supports.
2172          */
2173         if (unlikely(nonlinear &&
2174                      (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2175                 /* If the egress skb contains more fragments than we support
2176                  * we have no choice but to linearize it ourselves.
2177                  */
2178                 if (__skb_linearize(skb))
2179                         goto enomem;
2180
2181                 nonlinear = skb_is_nonlinear(skb);
2182         }
2183
2184 #ifdef CONFIG_DPAA_ERRATUM_A050385
2185         if (unlikely(fman_has_errata_a050385())) {
2186                 if (dpaa_a050385_wa(net_dev, &skb))
2187                         goto enomem;
2188                 nonlinear = skb_is_nonlinear(skb);
2189         }
2190 #endif
2191
2192         if (nonlinear) {
2193                 /* Just create a S/G fd based on the skb */
2194                 err = skb_to_sg_fd(priv, skb, &fd);
2195                 percpu_priv->tx_frag_skbuffs++;
2196         } else {
2197                 /* Create a contig FD from this skb */
2198                 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2199         }
2200         if (unlikely(err < 0))
2201                 goto skb_to_fd_failed;
2202
2203         txq = netdev_get_tx_queue(net_dev, queue_mapping);
2204
2205         /* LLTX requires to do our own update of trans_start */
2206         txq->trans_start = jiffies;
2207
2208         if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2209                 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2210                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2211         }
2212
2213         if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2214                 return NETDEV_TX_OK;
2215
2216         dpaa_cleanup_tx_fd(priv, &fd, false);
2217 skb_to_fd_failed:
2218 enomem:
2219         percpu_stats->tx_errors++;
2220         dev_kfree_skb(skb);
2221         return NETDEV_TX_OK;
2222 }
2223
2224 static void dpaa_rx_error(struct net_device *net_dev,
2225                           const struct dpaa_priv *priv,
2226                           struct dpaa_percpu_priv *percpu_priv,
2227                           const struct qm_fd *fd,
2228                           u32 fqid)
2229 {
2230         if (net_ratelimit())
2231                 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2232                           be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2233
2234         percpu_priv->stats.rx_errors++;
2235
2236         if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2237                 percpu_priv->rx_errors.dme++;
2238         if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2239                 percpu_priv->rx_errors.fpe++;
2240         if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2241                 percpu_priv->rx_errors.fse++;
2242         if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2243                 percpu_priv->rx_errors.phe++;
2244
2245         dpaa_fd_release(net_dev, fd);
2246 }
2247
2248 static void dpaa_tx_error(struct net_device *net_dev,
2249                           const struct dpaa_priv *priv,
2250                           struct dpaa_percpu_priv *percpu_priv,
2251                           const struct qm_fd *fd,
2252                           u32 fqid)
2253 {
2254         struct sk_buff *skb;
2255
2256         if (net_ratelimit())
2257                 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2258                            be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2259
2260         percpu_priv->stats.tx_errors++;
2261
2262         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2263         dev_kfree_skb(skb);
2264 }
2265
2266 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2267 {
2268         struct dpaa_napi_portal *np =
2269                         container_of(napi, struct dpaa_napi_portal, napi);
2270
2271         int cleaned = qman_p_poll_dqrr(np->p, budget);
2272
2273         if (cleaned < budget) {
2274                 napi_complete_done(napi, cleaned);
2275                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2276         } else if (np->down) {
2277                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2278         }
2279
2280         return cleaned;
2281 }
2282
2283 static void dpaa_tx_conf(struct net_device *net_dev,
2284                          const struct dpaa_priv *priv,
2285                          struct dpaa_percpu_priv *percpu_priv,
2286                          const struct qm_fd *fd,
2287                          u32 fqid)
2288 {
2289         struct sk_buff  *skb;
2290
2291         if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2292                 if (net_ratelimit())
2293                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2294                                    be32_to_cpu(fd->status) &
2295                                    FM_FD_STAT_TX_ERRORS);
2296
2297                 percpu_priv->stats.tx_errors++;
2298         }
2299
2300         percpu_priv->tx_confirm++;
2301
2302         skb = dpaa_cleanup_tx_fd(priv, fd, true);
2303
2304         consume_skb(skb);
2305 }
2306
2307 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2308                                          struct qman_portal *portal)
2309 {
2310         if (unlikely(in_irq() || !in_serving_softirq())) {
2311                 /* Disable QMan IRQ and invoke NAPI */
2312                 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2313
2314                 percpu_priv->np.p = portal;
2315                 napi_schedule(&percpu_priv->np.napi);
2316                 percpu_priv->in_interrupt++;
2317                 return 1;
2318         }
2319         return 0;
2320 }
2321
2322 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2323                                               struct qman_fq *fq,
2324                                               const struct qm_dqrr_entry *dq)
2325 {
2326         struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2327         struct dpaa_percpu_priv *percpu_priv;
2328         struct net_device *net_dev;
2329         struct dpaa_bp *dpaa_bp;
2330         struct dpaa_priv *priv;
2331
2332         net_dev = dpaa_fq->net_dev;
2333         priv = netdev_priv(net_dev);
2334         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2335         if (!dpaa_bp)
2336                 return qman_cb_dqrr_consume;
2337
2338         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2339
2340         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2341                 return qman_cb_dqrr_stop;
2342
2343         dpaa_eth_refill_bpools(priv);
2344         dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2345
2346         return qman_cb_dqrr_consume;
2347 }
2348
2349 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2350                                                 struct qman_fq *fq,
2351                                                 const struct qm_dqrr_entry *dq)
2352 {
2353         struct skb_shared_hwtstamps *shhwtstamps;
2354         struct rtnl_link_stats64 *percpu_stats;
2355         struct dpaa_percpu_priv *percpu_priv;
2356         const struct qm_fd *fd = &dq->fd;
2357         dma_addr_t addr = qm_fd_addr(fd);
2358         enum qm_fd_format fd_format;
2359         struct net_device *net_dev;
2360         u32 fd_status, hash_offset;
2361         struct dpaa_bp *dpaa_bp;
2362         struct dpaa_priv *priv;
2363         unsigned int skb_len;
2364         struct sk_buff *skb;
2365         int *count_ptr;
2366         void *vaddr;
2367         u64 ns;
2368
2369         fd_status = be32_to_cpu(fd->status);
2370         fd_format = qm_fd_get_format(fd);
2371         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2372         priv = netdev_priv(net_dev);
2373         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2374         if (!dpaa_bp)
2375                 return qman_cb_dqrr_consume;
2376
2377         /* Trace the Rx fd */
2378         trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2379
2380         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2381         percpu_stats = &percpu_priv->stats;
2382
2383         if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2384                 return qman_cb_dqrr_stop;
2385
2386         /* Make sure we didn't run out of buffers */
2387         if (unlikely(dpaa_eth_refill_bpools(priv))) {
2388                 /* Unable to refill the buffer pool due to insufficient
2389                  * system memory. Just release the frame back into the pool,
2390                  * otherwise we'll soon end up with an empty buffer pool.
2391                  */
2392                 dpaa_fd_release(net_dev, &dq->fd);
2393                 return qman_cb_dqrr_consume;
2394         }
2395
2396         if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2397                 if (net_ratelimit())
2398                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2399                                    fd_status & FM_FD_STAT_RX_ERRORS);
2400
2401                 percpu_stats->rx_errors++;
2402                 dpaa_fd_release(net_dev, fd);
2403                 return qman_cb_dqrr_consume;
2404         }
2405
2406         dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2407                        DMA_FROM_DEVICE);
2408
2409         /* prefetch the first 64 bytes of the frame or the SGT start */
2410         vaddr = phys_to_virt(addr);
2411         prefetch(vaddr + qm_fd_get_offset(fd));
2412
2413         /* The only FD types that we may receive are contig and S/G */
2414         WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2415
2416         /* Account for either the contig buffer or the SGT buffer (depending on
2417          * which case we were in) having been removed from the pool.
2418          */
2419         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2420         (*count_ptr)--;
2421
2422         if (likely(fd_format == qm_fd_contig))
2423                 skb = contig_fd_to_skb(priv, fd);
2424         else
2425                 skb = sg_fd_to_skb(priv, fd);
2426         if (!skb)
2427                 return qman_cb_dqrr_consume;
2428
2429         if (priv->rx_tstamp) {
2430                 shhwtstamps = skb_hwtstamps(skb);
2431                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2432
2433                 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2434                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
2435                 else
2436                         dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
2437         }
2438
2439         skb->protocol = eth_type_trans(skb, net_dev);
2440
2441         if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2442             !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2443                                               &hash_offset)) {
2444                 enum pkt_hash_types type;
2445
2446                 /* if L4 exists, it was used in the hash generation */
2447                 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2448                         PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2449                 skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2450                              type);
2451         }
2452
2453         skb_len = skb->len;
2454
2455         if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2456                 percpu_stats->rx_dropped++;
2457                 return qman_cb_dqrr_consume;
2458         }
2459
2460         percpu_stats->rx_packets++;
2461         percpu_stats->rx_bytes += skb_len;
2462
2463         return qman_cb_dqrr_consume;
2464 }
2465
2466 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2467                                                 struct qman_fq *fq,
2468                                                 const struct qm_dqrr_entry *dq)
2469 {
2470         struct dpaa_percpu_priv *percpu_priv;
2471         struct net_device *net_dev;
2472         struct dpaa_priv *priv;
2473
2474         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2475         priv = netdev_priv(net_dev);
2476
2477         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2478
2479         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2480                 return qman_cb_dqrr_stop;
2481
2482         dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2483
2484         return qman_cb_dqrr_consume;
2485 }
2486
2487 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2488                                                struct qman_fq *fq,
2489                                                const struct qm_dqrr_entry *dq)
2490 {
2491         struct dpaa_percpu_priv *percpu_priv;
2492         struct net_device *net_dev;
2493         struct dpaa_priv *priv;
2494
2495         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2496         priv = netdev_priv(net_dev);
2497
2498         /* Trace the fd */
2499         trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2500
2501         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2502
2503         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2504                 return qman_cb_dqrr_stop;
2505
2506         dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2507
2508         return qman_cb_dqrr_consume;
2509 }
2510
2511 static void egress_ern(struct qman_portal *portal,
2512                        struct qman_fq *fq,
2513                        const union qm_mr_entry *msg)
2514 {
2515         const struct qm_fd *fd = &msg->ern.fd;
2516         struct dpaa_percpu_priv *percpu_priv;
2517         const struct dpaa_priv *priv;
2518         struct net_device *net_dev;
2519         struct sk_buff *skb;
2520
2521         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2522         priv = netdev_priv(net_dev);
2523         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2524
2525         percpu_priv->stats.tx_dropped++;
2526         percpu_priv->stats.tx_fifo_errors++;
2527         count_ern(percpu_priv, msg);
2528
2529         skb = dpaa_cleanup_tx_fd(priv, fd, false);
2530         dev_kfree_skb_any(skb);
2531 }
2532
2533 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2534         .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2535         .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2536         .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2537         .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2538         .egress_ern = { .cb = { .ern = egress_ern } }
2539 };
2540
2541 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2542 {
2543         struct dpaa_percpu_priv *percpu_priv;
2544         int i;
2545
2546         for_each_online_cpu(i) {
2547                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2548
2549                 percpu_priv->np.down = 0;
2550                 napi_enable(&percpu_priv->np.napi);
2551         }
2552 }
2553
2554 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2555 {
2556         struct dpaa_percpu_priv *percpu_priv;
2557         int i;
2558
2559         for_each_online_cpu(i) {
2560                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2561
2562                 percpu_priv->np.down = 1;
2563                 napi_disable(&percpu_priv->np.napi);
2564         }
2565 }
2566
2567 static void dpaa_adjust_link(struct net_device *net_dev)
2568 {
2569         struct mac_device *mac_dev;
2570         struct dpaa_priv *priv;
2571
2572         priv = netdev_priv(net_dev);
2573         mac_dev = priv->mac_dev;
2574         mac_dev->adjust_link(mac_dev);
2575 }
2576
2577 /* The Aquantia PHYs are capable of performing rate adaptation */
2578 #define PHY_VEND_AQUANTIA       0x03a1b400
2579
2580 static int dpaa_phy_init(struct net_device *net_dev)
2581 {
2582         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2583         struct mac_device *mac_dev;
2584         struct phy_device *phy_dev;
2585         struct dpaa_priv *priv;
2586
2587         priv = netdev_priv(net_dev);
2588         mac_dev = priv->mac_dev;
2589
2590         phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2591                                  &dpaa_adjust_link, 0,
2592                                  mac_dev->phy_if);
2593         if (!phy_dev) {
2594                 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2595                 return -ENODEV;
2596         }
2597
2598         /* Unless the PHY is capable of rate adaptation */
2599         if (mac_dev->phy_if != PHY_INTERFACE_MODE_XGMII ||
2600             ((phy_dev->drv->phy_id & GENMASK(31, 10)) != PHY_VEND_AQUANTIA)) {
2601                 /* remove any features not supported by the controller */
2602                 ethtool_convert_legacy_u32_to_link_mode(mask,
2603                                                         mac_dev->if_support);
2604                 linkmode_and(phy_dev->supported, phy_dev->supported, mask);
2605         }
2606
2607         phy_support_asym_pause(phy_dev);
2608
2609         mac_dev->phy_dev = phy_dev;
2610         net_dev->phydev = phy_dev;
2611
2612         return 0;
2613 }
2614
2615 static int dpaa_open(struct net_device *net_dev)
2616 {
2617         struct mac_device *mac_dev;
2618         struct dpaa_priv *priv;
2619         int err, i;
2620
2621         priv = netdev_priv(net_dev);
2622         mac_dev = priv->mac_dev;
2623         dpaa_eth_napi_enable(priv);
2624
2625         err = dpaa_phy_init(net_dev);
2626         if (err)
2627                 goto phy_init_failed;
2628
2629         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2630                 err = fman_port_enable(mac_dev->port[i]);
2631                 if (err)
2632                         goto mac_start_failed;
2633         }
2634
2635         err = priv->mac_dev->start(mac_dev);
2636         if (err < 0) {
2637                 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2638                 goto mac_start_failed;
2639         }
2640
2641         netif_tx_start_all_queues(net_dev);
2642
2643         return 0;
2644
2645 mac_start_failed:
2646         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2647                 fman_port_disable(mac_dev->port[i]);
2648
2649 phy_init_failed:
2650         dpaa_eth_napi_disable(priv);
2651
2652         return err;
2653 }
2654
2655 static int dpaa_eth_stop(struct net_device *net_dev)
2656 {
2657         struct dpaa_priv *priv;
2658         int err;
2659
2660         err = dpaa_stop(net_dev);
2661
2662         priv = netdev_priv(net_dev);
2663         dpaa_eth_napi_disable(priv);
2664
2665         return err;
2666 }
2667
2668 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2669 {
2670         struct dpaa_priv *priv = netdev_priv(dev);
2671         struct hwtstamp_config config;
2672
2673         if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
2674                 return -EFAULT;
2675
2676         switch (config.tx_type) {
2677         case HWTSTAMP_TX_OFF:
2678                 /* Couldn't disable rx/tx timestamping separately.
2679                  * Do nothing here.
2680                  */
2681                 priv->tx_tstamp = false;
2682                 break;
2683         case HWTSTAMP_TX_ON:
2684                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2685                 priv->tx_tstamp = true;
2686                 break;
2687         default:
2688                 return -ERANGE;
2689         }
2690
2691         if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
2692                 /* Couldn't disable rx/tx timestamping separately.
2693                  * Do nothing here.
2694                  */
2695                 priv->rx_tstamp = false;
2696         } else {
2697                 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2698                 priv->rx_tstamp = true;
2699                 /* TS is set for all frame types, not only those requested */
2700                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2701         }
2702
2703         return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
2704                         -EFAULT : 0;
2705 }
2706
2707 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2708 {
2709         int ret = -EINVAL;
2710
2711         if (cmd == SIOCGMIIREG) {
2712                 if (net_dev->phydev)
2713                         return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2714         }
2715
2716         if (cmd == SIOCSHWTSTAMP)
2717                 return dpaa_ts_ioctl(net_dev, rq, cmd);
2718
2719         return ret;
2720 }
2721
2722 static const struct net_device_ops dpaa_ops = {
2723         .ndo_open = dpaa_open,
2724         .ndo_start_xmit = dpaa_start_xmit,
2725         .ndo_stop = dpaa_eth_stop,
2726         .ndo_tx_timeout = dpaa_tx_timeout,
2727         .ndo_get_stats64 = dpaa_get_stats64,
2728         .ndo_change_carrier = fixed_phy_change_carrier,
2729         .ndo_set_mac_address = dpaa_set_mac_address,
2730         .ndo_validate_addr = eth_validate_addr,
2731         .ndo_set_rx_mode = dpaa_set_rx_mode,
2732         .ndo_do_ioctl = dpaa_ioctl,
2733         .ndo_setup_tc = dpaa_setup_tc,
2734 };
2735
2736 static int dpaa_napi_add(struct net_device *net_dev)
2737 {
2738         struct dpaa_priv *priv = netdev_priv(net_dev);
2739         struct dpaa_percpu_priv *percpu_priv;
2740         int cpu;
2741
2742         for_each_possible_cpu(cpu) {
2743                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2744
2745                 netif_napi_add(net_dev, &percpu_priv->np.napi,
2746                                dpaa_eth_poll, NAPI_POLL_WEIGHT);
2747         }
2748
2749         return 0;
2750 }
2751
2752 static void dpaa_napi_del(struct net_device *net_dev)
2753 {
2754         struct dpaa_priv *priv = netdev_priv(net_dev);
2755         struct dpaa_percpu_priv *percpu_priv;
2756         int cpu;
2757
2758         for_each_possible_cpu(cpu) {
2759                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2760
2761                 netif_napi_del(&percpu_priv->np.napi);
2762         }
2763 }
2764
2765 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2766                                    struct bm_buffer *bmb)
2767 {
2768         dma_addr_t addr = bm_buf_addr(bmb);
2769
2770         dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2771                        DMA_FROM_DEVICE);
2772
2773         skb_free_frag(phys_to_virt(addr));
2774 }
2775
2776 /* Alloc the dpaa_bp struct and configure default values */
2777 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2778 {
2779         struct dpaa_bp *dpaa_bp;
2780
2781         dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2782         if (!dpaa_bp)
2783                 return ERR_PTR(-ENOMEM);
2784
2785         dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2786         dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2787         if (!dpaa_bp->percpu_count)
2788                 return ERR_PTR(-ENOMEM);
2789
2790         dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2791
2792         dpaa_bp->seed_cb = dpaa_bp_seed;
2793         dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2794
2795         return dpaa_bp;
2796 }
2797
2798 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2799  * We won't be sending congestion notifications to FMan; for now, we just use
2800  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2801  * before they reach our ingress queues and eat up memory.
2802  */
2803 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2804 {
2805         struct qm_mcc_initcgr initcgr;
2806         u32 cs_th;
2807         int err;
2808
2809         err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2810         if (err < 0) {
2811                 if (netif_msg_drv(priv))
2812                         pr_err("Error %d allocating CGR ID\n", err);
2813                 goto out_error;
2814         }
2815
2816         /* Enable CS TD, but disable Congestion State Change Notifications. */
2817         memset(&initcgr, 0, sizeof(initcgr));
2818         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2819         initcgr.cgr.cscn_en = QM_CGR_EN;
2820         cs_th = DPAA_INGRESS_CS_THRESHOLD;
2821         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2822
2823         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2824         initcgr.cgr.cstd_en = QM_CGR_EN;
2825
2826         /* This CGR will be associated with the SWP affined to the current CPU.
2827          * However, we'll place all our ingress FQs in it.
2828          */
2829         err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2830                               &initcgr);
2831         if (err < 0) {
2832                 if (netif_msg_drv(priv))
2833                         pr_err("Error %d creating ingress CGR with ID %d\n",
2834                                err, priv->ingress_cgr.cgrid);
2835                 qman_release_cgrid(priv->ingress_cgr.cgrid);
2836                 goto out_error;
2837         }
2838         if (netif_msg_drv(priv))
2839                 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2840                          priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2841
2842         priv->use_ingress_cgr = true;
2843
2844 out_error:
2845         return err;
2846 }
2847
2848 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
2849                              enum port_type port)
2850 {
2851         u16 headroom;
2852
2853         /* The frame headroom must accommodate:
2854          * - the driver private data area
2855          * - parse results, hash results, timestamp if selected
2856          * If either hash results or time stamp are selected, both will
2857          * be copied to/from the frame headroom, as TS is located between PR and
2858          * HR in the IC and IC copy size has a granularity of 16bytes
2859          * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2860          *
2861          * Also make sure the headroom is a multiple of data_align bytes
2862          */
2863         headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
2864
2865         if (port == RX)
2866                 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
2867         else
2868                 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
2869 }
2870
2871 static int dpaa_eth_probe(struct platform_device *pdev)
2872 {
2873         struct net_device *net_dev = NULL;
2874         struct dpaa_bp *dpaa_bp = NULL;
2875         struct dpaa_fq *dpaa_fq, *tmp;
2876         struct dpaa_priv *priv = NULL;
2877         struct fm_port_fqs port_fqs;
2878         struct mac_device *mac_dev;
2879         int err = 0, channel;
2880         struct device *dev;
2881
2882         dev = &pdev->dev;
2883
2884         err = bman_is_probed();
2885         if (!err)
2886                 return -EPROBE_DEFER;
2887         if (err < 0) {
2888                 dev_err(dev, "failing probe due to bman probe error\n");
2889                 return -ENODEV;
2890         }
2891         err = qman_is_probed();
2892         if (!err)
2893                 return -EPROBE_DEFER;
2894         if (err < 0) {
2895                 dev_err(dev, "failing probe due to qman probe error\n");
2896                 return -ENODEV;
2897         }
2898         err = bman_portals_probed();
2899         if (!err)
2900                 return -EPROBE_DEFER;
2901         if (err < 0) {
2902                 dev_err(dev,
2903                         "failing probe due to bman portals probe error\n");
2904                 return -ENODEV;
2905         }
2906         err = qman_portals_probed();
2907         if (!err)
2908                 return -EPROBE_DEFER;
2909         if (err < 0) {
2910                 dev_err(dev,
2911                         "failing probe due to qman portals probe error\n");
2912                 return -ENODEV;
2913         }
2914
2915         /* Allocate this early, so we can store relevant information in
2916          * the private area
2917          */
2918         net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2919         if (!net_dev) {
2920                 dev_err(dev, "alloc_etherdev_mq() failed\n");
2921                 return -ENOMEM;
2922         }
2923
2924         /* Do this here, so we can be verbose early */
2925         SET_NETDEV_DEV(net_dev, dev->parent);
2926         dev_set_drvdata(dev, net_dev);
2927
2928         priv = netdev_priv(net_dev);
2929         priv->net_dev = net_dev;
2930
2931         priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2932
2933         mac_dev = dpaa_mac_dev_get(pdev);
2934         if (IS_ERR(mac_dev)) {
2935                 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
2936                 err = PTR_ERR(mac_dev);
2937                 goto free_netdev;
2938         }
2939
2940         /* Devices used for DMA mapping */
2941         priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
2942         priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
2943         err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
2944         if (!err)
2945                 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
2946                                                    DMA_BIT_MASK(40));
2947         if (err) {
2948                 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
2949                 goto free_netdev;
2950         }
2951
2952         /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2953          * we choose conservatively and let the user explicitly set a higher
2954          * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2955          * in the same LAN.
2956          * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2957          * start with the maximum allowed.
2958          */
2959         net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2960
2961         netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2962                    net_dev->mtu);
2963
2964         priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2965         priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2966
2967         /* bp init */
2968         dpaa_bp = dpaa_bp_alloc(dev);
2969         if (IS_ERR(dpaa_bp)) {
2970                 err = PTR_ERR(dpaa_bp);
2971                 goto free_dpaa_bps;
2972         }
2973         /* the raw size of the buffers used for reception */
2974         dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
2975         /* avoid runtime computations by keeping the usable size here */
2976         dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
2977         dpaa_bp->priv = priv;
2978
2979         err = dpaa_bp_alloc_pool(dpaa_bp);
2980         if (err < 0)
2981                 goto free_dpaa_bps;
2982         priv->dpaa_bp = dpaa_bp;
2983
2984         INIT_LIST_HEAD(&priv->dpaa_fq_list);
2985
2986         memset(&port_fqs, 0, sizeof(port_fqs));
2987
2988         err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2989         if (err < 0) {
2990                 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2991                 goto free_dpaa_bps;
2992         }
2993
2994         priv->mac_dev = mac_dev;
2995
2996         channel = dpaa_get_channel();
2997         if (channel < 0) {
2998                 dev_err(dev, "dpaa_get_channel() failed\n");
2999                 err = channel;
3000                 goto free_dpaa_bps;
3001         }
3002
3003         priv->channel = (u16)channel;
3004
3005         /* Walk the CPUs with affine portals
3006          * and add this pool channel to each's dequeue mask.
3007          */
3008         dpaa_eth_add_channel(priv->channel, &pdev->dev);
3009
3010         dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3011
3012         /* Create a congestion group for this netdev, with
3013          * dynamically-allocated CGR ID.
3014          * Must be executed after probing the MAC, but before
3015          * assigning the egress FQs to the CGRs.
3016          */
3017         err = dpaa_eth_cgr_init(priv);
3018         if (err < 0) {
3019                 dev_err(dev, "Error initializing CGR\n");
3020                 goto free_dpaa_bps;
3021         }
3022
3023         err = dpaa_ingress_cgr_init(priv);
3024         if (err < 0) {
3025                 dev_err(dev, "Error initializing ingress CGR\n");
3026                 goto delete_egress_cgr;
3027         }
3028
3029         /* Add the FQs to the interface, and make them active */
3030         list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3031                 err = dpaa_fq_init(dpaa_fq, false);
3032                 if (err < 0)
3033                         goto free_dpaa_fqs;
3034         }
3035
3036         priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3037         priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3038
3039         /* All real interfaces need their ports initialized */
3040         err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3041                                   &priv->buf_layout[0], dev);
3042         if (err)
3043                 goto free_dpaa_fqs;
3044
3045         /* Rx traffic distribution based on keygen hashing defaults to on */
3046         priv->keygen_in_use = true;
3047
3048         priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3049         if (!priv->percpu_priv) {
3050                 dev_err(dev, "devm_alloc_percpu() failed\n");
3051                 err = -ENOMEM;
3052                 goto free_dpaa_fqs;
3053         }
3054
3055         priv->num_tc = 1;
3056         netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
3057
3058         /* Initialize NAPI */
3059         err = dpaa_napi_add(net_dev);
3060         if (err < 0)
3061                 goto delete_dpaa_napi;
3062
3063         err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3064         if (err < 0)
3065                 goto delete_dpaa_napi;
3066
3067         dpaa_eth_sysfs_init(&net_dev->dev);
3068
3069         netif_info(priv, probe, net_dev, "Probed interface %s\n",
3070                    net_dev->name);
3071
3072         return 0;
3073
3074 delete_dpaa_napi:
3075         dpaa_napi_del(net_dev);
3076 free_dpaa_fqs:
3077         dpaa_fq_free(dev, &priv->dpaa_fq_list);
3078         qman_delete_cgr_safe(&priv->ingress_cgr);
3079         qman_release_cgrid(priv->ingress_cgr.cgrid);
3080 delete_egress_cgr:
3081         qman_delete_cgr_safe(&priv->cgr_data.cgr);
3082         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3083 free_dpaa_bps:
3084         dpaa_bps_free(priv);
3085 free_netdev:
3086         dev_set_drvdata(dev, NULL);
3087         free_netdev(net_dev);
3088
3089         return err;
3090 }
3091
3092 static int dpaa_remove(struct platform_device *pdev)
3093 {
3094         struct net_device *net_dev;
3095         struct dpaa_priv *priv;
3096         struct device *dev;
3097         int err;
3098
3099         dev = &pdev->dev;
3100         net_dev = dev_get_drvdata(dev);
3101
3102         priv = netdev_priv(net_dev);
3103
3104         dpaa_eth_sysfs_remove(dev);
3105
3106         dev_set_drvdata(dev, NULL);
3107         unregister_netdev(net_dev);
3108
3109         err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3110
3111         qman_delete_cgr_safe(&priv->ingress_cgr);
3112         qman_release_cgrid(priv->ingress_cgr.cgrid);
3113         qman_delete_cgr_safe(&priv->cgr_data.cgr);
3114         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3115
3116         dpaa_napi_del(net_dev);
3117
3118         dpaa_bps_free(priv);
3119
3120         free_netdev(net_dev);
3121
3122         return err;
3123 }
3124
3125 static const struct platform_device_id dpaa_devtype[] = {
3126         {
3127                 .name = "dpaa-ethernet",
3128                 .driver_data = 0,
3129         }, {
3130         }
3131 };
3132 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3133
3134 static struct platform_driver dpaa_driver = {
3135         .driver = {
3136                 .name = KBUILD_MODNAME,
3137         },
3138         .id_table = dpaa_devtype,
3139         .probe = dpaa_eth_probe,
3140         .remove = dpaa_remove
3141 };
3142
3143 static int __init dpaa_load(void)
3144 {
3145         int err;
3146
3147         pr_debug("FSL DPAA Ethernet driver\n");
3148
3149         /* initialize dpaa_eth mirror values */
3150         dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3151         dpaa_max_frm = fman_get_max_frm();
3152
3153         err = platform_driver_register(&dpaa_driver);
3154         if (err < 0)
3155                 pr_err("Error, platform_driver_register() = %d\n", err);
3156
3157         return err;
3158 }
3159 module_init(dpaa_load);
3160
3161 static void __exit dpaa_unload(void)
3162 {
3163         platform_driver_unregister(&dpaa_driver);
3164
3165         /* Only one channel is used and needs to be released after all
3166          * interfaces are removed
3167          */
3168         dpaa_release_channel();
3169 }
3170 module_exit(dpaa_unload);
3171
3172 MODULE_LICENSE("Dual BSD/GPL");
3173 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");