cxgb4: Remove unused vpd_param member ec
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F) {
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201                 adap->flags &= ~CXGB4_FW_OK;
202         }
203 }
204
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209                          u32 mbox_addr)
210 {
211         for ( ; nflit; nflit--, mbox_addr += 8)
212                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220         struct fw_debug_cmd asrt;
221
222         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223         dev_alert(adap->pdev_dev,
224                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228
229 /**
230  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *      @adapter: the adapter
232  *      @cmd: the Firmware Mailbox Command or Reply
233  *      @size: command length in bytes
234  *      @access: the time (ms) needed to access the Firmware Mailbox
235  *      @execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238                            const __be64 *cmd, unsigned int size,
239                            int access, int execute)
240 {
241         struct mbox_cmd_log *log = adapter->mbox_log;
242         struct mbox_cmd *entry;
243         int i;
244
245         entry = mbox_cmd_log_entry(log, log->cursor++);
246         if (log->cursor == log->size)
247                 log->cursor = 0;
248
249         for (i = 0; i < size / 8; i++)
250                 entry->cmd[i] = be64_to_cpu(cmd[i]);
251         while (i < MBOX_LEN / 8)
252                 entry->cmd[i++] = 0;
253         entry->timestamp = jiffies;
254         entry->seqno = log->seqno++;
255         entry->access = access;
256         entry->execute = execute;
257 }
258
259 /**
260  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *      @adap: the adapter
262  *      @mbox: index of the mailbox to use
263  *      @cmd: the command to write
264  *      @size: command length in bytes
265  *      @rpl: where to optionally store the reply
266  *      @sleep_ok: if true we may sleep while awaiting command completion
267  *      @timeout: time to wait for command to finish before timing out
268  *
269  *      Sends the given command to FW through the selected mailbox and waits
270  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *      store the FW's reply to the command.  The command and its optional
272  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *      the response.  If sleeping is allowed we use progressive backoff
275  *      otherwise we spin.
276  *
277  *      The return value is 0 on success or a negative errno on failure.  A
278  *      failure can happen either because we are not able to execute the
279  *      command or FW executes it but signals an error.  In the latter case
280  *      the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283                             int size, void *rpl, bool sleep_ok, int timeout)
284 {
285         static const int delay[] = {
286                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287         };
288
289         struct mbox_list entry;
290         u16 access = 0;
291         u16 execute = 0;
292         u32 v;
293         u64 res;
294         int i, ms, delay_idx, ret;
295         const __be64 *p = cmd;
296         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298         __be64 cmd_rpl[MBOX_LEN / 8];
299         u32 pcie_fw;
300
301         if ((size & 15) || size > MBOX_LEN)
302                 return -EINVAL;
303
304         /*
305          * If the device is off-line, as in EEH, commands will time out.
306          * Fail them early so we don't waste time waiting.
307          */
308         if (adap->pdev->error_state != pci_channel_io_normal)
309                 return -EIO;
310
311         /* If we have a negative timeout, that implies that we can't sleep. */
312         if (timeout < 0) {
313                 sleep_ok = false;
314                 timeout = -timeout;
315         }
316
317         /* Queue ourselves onto the mailbox access list.  When our entry is at
318          * the front of the list, we have rights to access the mailbox.  So we
319          * wait [for a while] till we're at the front [or bail out with an
320          * EBUSY] ...
321          */
322         spin_lock_bh(&adap->mbox_lock);
323         list_add_tail(&entry.list, &adap->mlist.list);
324         spin_unlock_bh(&adap->mbox_lock);
325
326         delay_idx = 0;
327         ms = delay[0];
328
329         for (i = 0; ; i += ms) {
330                 /* If we've waited too long, return a busy indication.  This
331                  * really ought to be based on our initial position in the
332                  * mailbox access list but this is a start.  We very rarely
333                  * contend on access to the mailbox ...
334                  */
335                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337                         spin_lock_bh(&adap->mbox_lock);
338                         list_del(&entry.list);
339                         spin_unlock_bh(&adap->mbox_lock);
340                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341                         t4_record_mbox(adap, cmd, size, access, ret);
342                         return ret;
343                 }
344
345                 /* If we're at the head, break out and start the mailbox
346                  * protocol.
347                  */
348                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349                                      list) == &entry)
350                         break;
351
352                 /* Delay for a bit before checking again ... */
353                 if (sleep_ok) {
354                         ms = delay[delay_idx];  /* last element may repeat */
355                         if (delay_idx < ARRAY_SIZE(delay) - 1)
356                                 delay_idx++;
357                         msleep(ms);
358                 } else {
359                         mdelay(ms);
360                 }
361         }
362
363         /* Loop trying to get ownership of the mailbox.  Return an error
364          * if we can't gain ownership.
365          */
366         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369         if (v != MBOX_OWNER_DRV) {
370                 spin_lock_bh(&adap->mbox_lock);
371                 list_del(&entry.list);
372                 spin_unlock_bh(&adap->mbox_lock);
373                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374                 t4_record_mbox(adap, cmd, size, access, ret);
375                 return ret;
376         }
377
378         /* Copy in the new mailbox command and send it on its way ... */
379         t4_record_mbox(adap, cmd, size, access, 0);
380         for (i = 0; i < size; i += 8)
381                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382
383         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384         t4_read_reg(adap, ctl_reg);          /* flush write */
385
386         delay_idx = 0;
387         ms = delay[0];
388
389         for (i = 0;
390              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391              i < timeout;
392              i += ms) {
393                 if (sleep_ok) {
394                         ms = delay[delay_idx];  /* last element may repeat */
395                         if (delay_idx < ARRAY_SIZE(delay) - 1)
396                                 delay_idx++;
397                         msleep(ms);
398                 } else
399                         mdelay(ms);
400
401                 v = t4_read_reg(adap, ctl_reg);
402                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403                         if (!(v & MBMSGVALID_F)) {
404                                 t4_write_reg(adap, ctl_reg, 0);
405                                 continue;
406                         }
407
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409                         res = be64_to_cpu(cmd_rpl[0]);
410
411                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412                                 fw_asrt(adap, data_reg);
413                                 res = FW_CMD_RETVAL_V(EIO);
414                         } else if (rpl) {
415                                 memcpy(rpl, cmd_rpl, size);
416                         }
417
418                         t4_write_reg(adap, ctl_reg, 0);
419
420                         execute = i + ms;
421                         t4_record_mbox(adap, cmd_rpl,
422                                        MBOX_LEN, access, execute);
423                         spin_lock_bh(&adap->mbox_lock);
424                         list_del(&entry.list);
425                         spin_unlock_bh(&adap->mbox_lock);
426                         return -FW_CMD_RETVAL_G((int)res);
427                 }
428         }
429
430         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431         t4_record_mbox(adap, cmd, size, access, ret);
432         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433                 *(const u8 *)cmd, mbox);
434         t4_report_fw_error(adap);
435         spin_lock_bh(&adap->mbox_lock);
436         list_del(&entry.list);
437         spin_unlock_bh(&adap->mbox_lock);
438         t4_fatal_err(adap);
439         return ret;
440 }
441
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443                     void *rpl, bool sleep_ok)
444 {
445         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446                                        FW_CMD_MAX_TIMEOUT);
447 }
448
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451         u32 edc_ecc_err_addr_reg;
452         u32 rdata_reg;
453
454         if (is_t4(adap->params.chip)) {
455                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456                 return 0;
457         }
458         if (idx != 0 && idx != 1) {
459                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460                 return 0;
461         }
462
463         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465
466         CH_WARN(adap,
467                 "edc%d err addr 0x%x: 0x%x.\n",
468                 idx, edc_ecc_err_addr_reg,
469                 t4_read_reg(adap, edc_ecc_err_addr_reg));
470         CH_WARN(adap,
471                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472                 rdata_reg,
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482
483         return 0;
484 }
485
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498                       u32 *mem_base, u32 *mem_aperture)
499 {
500         u32 edc_size, mc_size, mem_reg;
501
502         /* Offset into the region of memory which is being accessed
503          * MEM_EDC0 = 0
504          * MEM_EDC1 = 1
505          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507          * MEM_HMA  = 4
508          */
509         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510         if (mtype == MEM_HMA) {
511                 *mem_off = 2 * (edc_size * 1024 * 1024);
512         } else if (mtype != MEM_MC1) {
513                 *mem_off = (mtype * (edc_size * 1024 * 1024));
514         } else {
515                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516                                                       MA_EXT_MEMORY0_BAR_A));
517                 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518         }
519
520         /* Each PCI-E Memory Window is programmed with a window size -- or
521          * "aperture" -- which controls the granularity of its mapping onto
522          * adapter memory.  We need to grab that aperture in order to know
523          * how to use the specified window.  The window is also programmed
524          * with the base address of the Memory Window in BAR0's address
525          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526          * the address is relative to BAR0.
527          */
528         mem_reg = t4_read_reg(adap,
529                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530                                                   win));
531         /* a dead adapter will return 0xffffffff for PIO reads */
532         if (mem_reg == 0xffffffff)
533                 return -ENXIO;
534
535         *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536         *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537         if (is_t4(adap->params.chip))
538                 *mem_base -= adap->t4_bar0;
539
540         return 0;
541 }
542
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553         t4_write_reg(adap,
554                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555                      addr);
556         /* Read it back to ensure that changes propagate before we
557          * attempt to use the new value.
558          */
559         t4_read_reg(adap,
560                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574                            int dir)
575 {
576         union {
577                 u32 word;
578                 char byte[4];
579         } last;
580         unsigned char *bp;
581         int i;
582
583         if (dir == T4_MEMORY_READ) {
584                 last.word = le32_to_cpu((__force __le32)
585                                         t4_read_reg(adap, addr));
586                 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587                         bp[i] = last.byte[i];
588         } else {
589                 last.word = *buf;
590                 for (i = off; i < 4; i++)
591                         last.byte[i] = 0;
592                 t4_write_reg(adap, addr,
593                              (__force u32)cpu_to_le32(last.word));
594         }
595 }
596
597 /**
598  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *      @adap: the adapter
600  *      @win: PCI-E Memory Window to use
601  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *      @addr: address within indicated memory type
603  *      @len: amount of memory to transfer
604  *      @hbuf: host memory buffer
605  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *      firmware memory address and host buffer must be aligned on 32-bit
609  *      boundaries; the length may be arbitrary.  The memory is transferred as
610  *      a raw byte sequence from/to the firmware's memory.  If this memory
611  *      contains data structures which contain multi-byte integers, it's the
612  *      caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615                  u32 len, void *hbuf, int dir)
616 {
617         u32 pos, offset, resid, memoffset;
618         u32 win_pf, mem_aperture, mem_base;
619         u32 *buf;
620         int ret;
621
622         /* Argument sanity checks ...
623          */
624         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625                 return -EINVAL;
626         buf = (u32 *)hbuf;
627
628         /* It's convenient to be able to handle lengths which aren't a
629          * multiple of 32-bits because we often end up transferring files to
630          * the firmware.  So we'll handle that by normalizing the length here
631          * and then handling any residual transfer at the end.
632          */
633         resid = len & 0x3;
634         len -= resid;
635
636         ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637                                 &mem_aperture);
638         if (ret)
639                 return ret;
640
641         /* Determine the PCIE_MEM_ACCESS_OFFSET */
642         addr = addr + memoffset;
643
644         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645
646         /* Calculate our initial PCI-E Memory Window Position and Offset into
647          * that Window.
648          */
649         pos = addr & ~(mem_aperture - 1);
650         offset = addr - pos;
651
652         /* Set up initial PCI-E Memory Window to cover the start of our
653          * transfer.
654          */
655         t4_memory_update_win(adap, win, pos | win_pf);
656
657         /* Transfer data to/from the adapter as long as there's an integral
658          * number of 32-bit transfers to complete.
659          *
660          * A note on Endianness issues:
661          *
662          * The "register" reads and writes below from/to the PCI-E Memory
663          * Window invoke the standard adapter Big-Endian to PCI-E Link
664          * Little-Endian "swizzel."  As a result, if we have the following
665          * data in adapter memory:
666          *
667          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668          *     Address:      i+0  i+1  i+2  i+3
669          *
670          * Then a read of the adapter memory via the PCI-E Memory Window
671          * will yield:
672          *
673          *     x = readl(i)
674          *         31                  0
675          *         [ b3 | b2 | b1 | b0 ]
676          *
677          * If this value is stored into local memory on a Little-Endian system
678          * it will show up correctly in local memory as:
679          *
680          *     ( ..., b0, b1, b2, b3, ... )
681          *
682          * But on a Big-Endian system, the store will show up in memory
683          * incorrectly swizzled as:
684          *
685          *     ( ..., b3, b2, b1, b0, ... )
686          *
687          * So we need to account for this in the reads and writes to the
688          * PCI-E Memory Window below by undoing the register read/write
689          * swizzels.
690          */
691         while (len > 0) {
692                 if (dir == T4_MEMORY_READ)
693                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694                                                 mem_base + offset));
695                 else
696                         t4_write_reg(adap, mem_base + offset,
697                                      (__force u32)cpu_to_le32(*buf++));
698                 offset += sizeof(__be32);
699                 len -= sizeof(__be32);
700
701                 /* If we've reached the end of our current window aperture,
702                  * move the PCI-E Memory Window on to the next.  Note that
703                  * doing this here after "len" may be 0 allows us to set up
704                  * the PCI-E Memory Window for a possible final residual
705                  * transfer below ...
706                  */
707                 if (offset == mem_aperture) {
708                         pos += mem_aperture;
709                         offset = 0;
710                         t4_memory_update_win(adap, win, pos | win_pf);
711                 }
712         }
713
714         /* If the original transfer had a length which wasn't a multiple of
715          * 32-bits, now's where we need to finish off the transfer of the
716          * residual amount.  The PCI-E Memory Window has already been moved
717          * above (if necessary) to cover this final transfer.
718          */
719         if (resid)
720                 t4_memory_rw_residual(adap, resid, mem_base + offset,
721                                       (u8 *)buf, dir);
722
723         return 0;
724 }
725
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733         u32 val, ldst_addrspace;
734
735         /* If fw_attach != 0, construct and send the Firmware LDST Command to
736          * retrieve the specified PCI-E Configuration Space register.
737          */
738         struct fw_ldst_cmd ldst_cmd;
739         int ret;
740
741         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744                                                FW_CMD_REQUEST_F |
745                                                FW_CMD_READ_F |
746                                                ldst_addrspace);
747         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749         ldst_cmd.u.pcie.ctrl_to_fn =
750                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751         ldst_cmd.u.pcie.r = reg;
752
753         /* If the LDST Command succeeds, return the result, otherwise
754          * fall through to reading it directly ourselves ...
755          */
756         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757                          &ldst_cmd);
758         if (ret == 0)
759                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760         else
761                 /* Read the desired Configuration Space register via the PCI-E
762                  * Backdoor mechanism.
763                  */
764                 t4_hw_pci_read_cfg4(adap, reg, &val);
765         return val;
766 }
767
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773                          u32 memwin_base)
774 {
775         u32 ret;
776
777         if (is_t4(adap->params.chip)) {
778                 u32 bar0;
779
780                 /* Truncation intentional: we only read the bottom 32-bits of
781                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782                  * mechanism to read BAR0 instead of using
783                  * pci_resource_start() because we could be operating from
784                  * within a Virtual Machine which is trapping our accesses to
785                  * our Configuration Space and we need to set up the PCI-E
786                  * Memory Window decoders with the actual addresses which will
787                  * be coming across the PCI-E link.
788                  */
789                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790                 bar0 &= pci_mask;
791                 adap->t4_bar0 = bar0;
792
793                 ret = bar0 + memwin_base;
794         } else {
795                 /* For T5, only relative offset inside the PCIe BAR is passed */
796                 ret = memwin_base;
797         }
798         return ret;
799 }
800
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814         t4_write_reg(adap,
815                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816                      memwin_base | BIR_V(0) |
817                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818         t4_read_reg(adap,
819                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821
822 /**
823  *      t4_get_regs_len - return the size of the chips register set
824  *      @adapter: the adapter
825  *
826  *      Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831
832         switch (chip_version) {
833         case CHELSIO_T4:
834                 return T4_REGMAP_SIZE;
835
836         case CHELSIO_T5:
837         case CHELSIO_T6:
838                 return T5_REGMAP_SIZE;
839         }
840
841         dev_err(adapter->pdev_dev,
842                 "Unsupported chip version %d\n", chip_version);
843         return 0;
844 }
845
846 /**
847  *      t4_get_regs - read chip registers into provided buffer
848  *      @adap: the adapter
849  *      @buf: register buffer
850  *      @buf_size: size (in bytes) of register buffer
851  *
852  *      If the provided register buffer isn't large enough for the chip's
853  *      full register range, the register dump will be truncated to the
854  *      register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858         static const unsigned int t4_reg_ranges[] = {
859                 0x1008, 0x1108,
860                 0x1180, 0x1184,
861                 0x1190, 0x1194,
862                 0x11a0, 0x11a4,
863                 0x11b0, 0x11b4,
864                 0x11fc, 0x123c,
865                 0x1300, 0x173c,
866                 0x1800, 0x18fc,
867                 0x3000, 0x30d8,
868                 0x30e0, 0x30e4,
869                 0x30ec, 0x5910,
870                 0x5920, 0x5924,
871                 0x5960, 0x5960,
872                 0x5968, 0x5968,
873                 0x5970, 0x5970,
874                 0x5978, 0x5978,
875                 0x5980, 0x5980,
876                 0x5988, 0x5988,
877                 0x5990, 0x5990,
878                 0x5998, 0x5998,
879                 0x59a0, 0x59d4,
880                 0x5a00, 0x5ae0,
881                 0x5ae8, 0x5ae8,
882                 0x5af0, 0x5af0,
883                 0x5af8, 0x5af8,
884                 0x6000, 0x6098,
885                 0x6100, 0x6150,
886                 0x6200, 0x6208,
887                 0x6240, 0x6248,
888                 0x6280, 0x62b0,
889                 0x62c0, 0x6338,
890                 0x6370, 0x638c,
891                 0x6400, 0x643c,
892                 0x6500, 0x6524,
893                 0x6a00, 0x6a04,
894                 0x6a14, 0x6a38,
895                 0x6a60, 0x6a70,
896                 0x6a78, 0x6a78,
897                 0x6b00, 0x6b0c,
898                 0x6b1c, 0x6b84,
899                 0x6bf0, 0x6bf8,
900                 0x6c00, 0x6c0c,
901                 0x6c1c, 0x6c84,
902                 0x6cf0, 0x6cf8,
903                 0x6d00, 0x6d0c,
904                 0x6d1c, 0x6d84,
905                 0x6df0, 0x6df8,
906                 0x6e00, 0x6e0c,
907                 0x6e1c, 0x6e84,
908                 0x6ef0, 0x6ef8,
909                 0x6f00, 0x6f0c,
910                 0x6f1c, 0x6f84,
911                 0x6ff0, 0x6ff8,
912                 0x7000, 0x700c,
913                 0x701c, 0x7084,
914                 0x70f0, 0x70f8,
915                 0x7100, 0x710c,
916                 0x711c, 0x7184,
917                 0x71f0, 0x71f8,
918                 0x7200, 0x720c,
919                 0x721c, 0x7284,
920                 0x72f0, 0x72f8,
921                 0x7300, 0x730c,
922                 0x731c, 0x7384,
923                 0x73f0, 0x73f8,
924                 0x7400, 0x7450,
925                 0x7500, 0x7530,
926                 0x7600, 0x760c,
927                 0x7614, 0x761c,
928                 0x7680, 0x76cc,
929                 0x7700, 0x7798,
930                 0x77c0, 0x77fc,
931                 0x7900, 0x79fc,
932                 0x7b00, 0x7b58,
933                 0x7b60, 0x7b84,
934                 0x7b8c, 0x7c38,
935                 0x7d00, 0x7d38,
936                 0x7d40, 0x7d80,
937                 0x7d8c, 0x7ddc,
938                 0x7de4, 0x7e04,
939                 0x7e10, 0x7e1c,
940                 0x7e24, 0x7e38,
941                 0x7e40, 0x7e44,
942                 0x7e4c, 0x7e78,
943                 0x7e80, 0x7ea4,
944                 0x7eac, 0x7edc,
945                 0x7ee8, 0x7efc,
946                 0x8dc0, 0x8e04,
947                 0x8e10, 0x8e1c,
948                 0x8e30, 0x8e78,
949                 0x8ea0, 0x8eb8,
950                 0x8ec0, 0x8f6c,
951                 0x8fc0, 0x9008,
952                 0x9010, 0x9058,
953                 0x9060, 0x9060,
954                 0x9068, 0x9074,
955                 0x90fc, 0x90fc,
956                 0x9400, 0x9408,
957                 0x9410, 0x9458,
958                 0x9600, 0x9600,
959                 0x9608, 0x9638,
960                 0x9640, 0x96bc,
961                 0x9800, 0x9808,
962                 0x9820, 0x983c,
963                 0x9850, 0x9864,
964                 0x9c00, 0x9c6c,
965                 0x9c80, 0x9cec,
966                 0x9d00, 0x9d6c,
967                 0x9d80, 0x9dec,
968                 0x9e00, 0x9e6c,
969                 0x9e80, 0x9eec,
970                 0x9f00, 0x9f6c,
971                 0x9f80, 0x9fec,
972                 0xd004, 0xd004,
973                 0xd010, 0xd03c,
974                 0xdfc0, 0xdfe0,
975                 0xe000, 0xea7c,
976                 0xf000, 0x11110,
977                 0x11118, 0x11190,
978                 0x19040, 0x1906c,
979                 0x19078, 0x19080,
980                 0x1908c, 0x190e4,
981                 0x190f0, 0x190f8,
982                 0x19100, 0x19110,
983                 0x19120, 0x19124,
984                 0x19150, 0x19194,
985                 0x1919c, 0x191b0,
986                 0x191d0, 0x191e8,
987                 0x19238, 0x1924c,
988                 0x193f8, 0x1943c,
989                 0x1944c, 0x19474,
990                 0x19490, 0x194e0,
991                 0x194f0, 0x194f8,
992                 0x19800, 0x19c08,
993                 0x19c10, 0x19c90,
994                 0x19ca0, 0x19ce4,
995                 0x19cf0, 0x19d40,
996                 0x19d50, 0x19d94,
997                 0x19da0, 0x19de8,
998                 0x19df0, 0x19e40,
999                 0x19e50, 0x19e90,
1000                 0x19ea0, 0x19f4c,
1001                 0x1a000, 0x1a004,
1002                 0x1a010, 0x1a06c,
1003                 0x1a0b0, 0x1a0e4,
1004                 0x1a0ec, 0x1a0f4,
1005                 0x1a100, 0x1a108,
1006                 0x1a114, 0x1a120,
1007                 0x1a128, 0x1a130,
1008                 0x1a138, 0x1a138,
1009                 0x1a190, 0x1a1c4,
1010                 0x1a1fc, 0x1a1fc,
1011                 0x1e040, 0x1e04c,
1012                 0x1e284, 0x1e28c,
1013                 0x1e2c0, 0x1e2c0,
1014                 0x1e2e0, 0x1e2e0,
1015                 0x1e300, 0x1e384,
1016                 0x1e3c0, 0x1e3c8,
1017                 0x1e440, 0x1e44c,
1018                 0x1e684, 0x1e68c,
1019                 0x1e6c0, 0x1e6c0,
1020                 0x1e6e0, 0x1e6e0,
1021                 0x1e700, 0x1e784,
1022                 0x1e7c0, 0x1e7c8,
1023                 0x1e840, 0x1e84c,
1024                 0x1ea84, 0x1ea8c,
1025                 0x1eac0, 0x1eac0,
1026                 0x1eae0, 0x1eae0,
1027                 0x1eb00, 0x1eb84,
1028                 0x1ebc0, 0x1ebc8,
1029                 0x1ec40, 0x1ec4c,
1030                 0x1ee84, 0x1ee8c,
1031                 0x1eec0, 0x1eec0,
1032                 0x1eee0, 0x1eee0,
1033                 0x1ef00, 0x1ef84,
1034                 0x1efc0, 0x1efc8,
1035                 0x1f040, 0x1f04c,
1036                 0x1f284, 0x1f28c,
1037                 0x1f2c0, 0x1f2c0,
1038                 0x1f2e0, 0x1f2e0,
1039                 0x1f300, 0x1f384,
1040                 0x1f3c0, 0x1f3c8,
1041                 0x1f440, 0x1f44c,
1042                 0x1f684, 0x1f68c,
1043                 0x1f6c0, 0x1f6c0,
1044                 0x1f6e0, 0x1f6e0,
1045                 0x1f700, 0x1f784,
1046                 0x1f7c0, 0x1f7c8,
1047                 0x1f840, 0x1f84c,
1048                 0x1fa84, 0x1fa8c,
1049                 0x1fac0, 0x1fac0,
1050                 0x1fae0, 0x1fae0,
1051                 0x1fb00, 0x1fb84,
1052                 0x1fbc0, 0x1fbc8,
1053                 0x1fc40, 0x1fc4c,
1054                 0x1fe84, 0x1fe8c,
1055                 0x1fec0, 0x1fec0,
1056                 0x1fee0, 0x1fee0,
1057                 0x1ff00, 0x1ff84,
1058                 0x1ffc0, 0x1ffc8,
1059                 0x20000, 0x2002c,
1060                 0x20100, 0x2013c,
1061                 0x20190, 0x201a0,
1062                 0x201a8, 0x201b8,
1063                 0x201c4, 0x201c8,
1064                 0x20200, 0x20318,
1065                 0x20400, 0x204b4,
1066                 0x204c0, 0x20528,
1067                 0x20540, 0x20614,
1068                 0x21000, 0x21040,
1069                 0x2104c, 0x21060,
1070                 0x210c0, 0x210ec,
1071                 0x21200, 0x21268,
1072                 0x21270, 0x21284,
1073                 0x212fc, 0x21388,
1074                 0x21400, 0x21404,
1075                 0x21500, 0x21500,
1076                 0x21510, 0x21518,
1077                 0x2152c, 0x21530,
1078                 0x2153c, 0x2153c,
1079                 0x21550, 0x21554,
1080                 0x21600, 0x21600,
1081                 0x21608, 0x2161c,
1082                 0x21624, 0x21628,
1083                 0x21630, 0x21634,
1084                 0x2163c, 0x2163c,
1085                 0x21700, 0x2171c,
1086                 0x21780, 0x2178c,
1087                 0x21800, 0x21818,
1088                 0x21820, 0x21828,
1089                 0x21830, 0x21848,
1090                 0x21850, 0x21854,
1091                 0x21860, 0x21868,
1092                 0x21870, 0x21870,
1093                 0x21878, 0x21898,
1094                 0x218a0, 0x218a8,
1095                 0x218b0, 0x218c8,
1096                 0x218d0, 0x218d4,
1097                 0x218e0, 0x218e8,
1098                 0x218f0, 0x218f0,
1099                 0x218f8, 0x21a18,
1100                 0x21a20, 0x21a28,
1101                 0x21a30, 0x21a48,
1102                 0x21a50, 0x21a54,
1103                 0x21a60, 0x21a68,
1104                 0x21a70, 0x21a70,
1105                 0x21a78, 0x21a98,
1106                 0x21aa0, 0x21aa8,
1107                 0x21ab0, 0x21ac8,
1108                 0x21ad0, 0x21ad4,
1109                 0x21ae0, 0x21ae8,
1110                 0x21af0, 0x21af0,
1111                 0x21af8, 0x21c18,
1112                 0x21c20, 0x21c20,
1113                 0x21c28, 0x21c30,
1114                 0x21c38, 0x21c38,
1115                 0x21c80, 0x21c98,
1116                 0x21ca0, 0x21ca8,
1117                 0x21cb0, 0x21cc8,
1118                 0x21cd0, 0x21cd4,
1119                 0x21ce0, 0x21ce8,
1120                 0x21cf0, 0x21cf0,
1121                 0x21cf8, 0x21d7c,
1122                 0x21e00, 0x21e04,
1123                 0x22000, 0x2202c,
1124                 0x22100, 0x2213c,
1125                 0x22190, 0x221a0,
1126                 0x221a8, 0x221b8,
1127                 0x221c4, 0x221c8,
1128                 0x22200, 0x22318,
1129                 0x22400, 0x224b4,
1130                 0x224c0, 0x22528,
1131                 0x22540, 0x22614,
1132                 0x23000, 0x23040,
1133                 0x2304c, 0x23060,
1134                 0x230c0, 0x230ec,
1135                 0x23200, 0x23268,
1136                 0x23270, 0x23284,
1137                 0x232fc, 0x23388,
1138                 0x23400, 0x23404,
1139                 0x23500, 0x23500,
1140                 0x23510, 0x23518,
1141                 0x2352c, 0x23530,
1142                 0x2353c, 0x2353c,
1143                 0x23550, 0x23554,
1144                 0x23600, 0x23600,
1145                 0x23608, 0x2361c,
1146                 0x23624, 0x23628,
1147                 0x23630, 0x23634,
1148                 0x2363c, 0x2363c,
1149                 0x23700, 0x2371c,
1150                 0x23780, 0x2378c,
1151                 0x23800, 0x23818,
1152                 0x23820, 0x23828,
1153                 0x23830, 0x23848,
1154                 0x23850, 0x23854,
1155                 0x23860, 0x23868,
1156                 0x23870, 0x23870,
1157                 0x23878, 0x23898,
1158                 0x238a0, 0x238a8,
1159                 0x238b0, 0x238c8,
1160                 0x238d0, 0x238d4,
1161                 0x238e0, 0x238e8,
1162                 0x238f0, 0x238f0,
1163                 0x238f8, 0x23a18,
1164                 0x23a20, 0x23a28,
1165                 0x23a30, 0x23a48,
1166                 0x23a50, 0x23a54,
1167                 0x23a60, 0x23a68,
1168                 0x23a70, 0x23a70,
1169                 0x23a78, 0x23a98,
1170                 0x23aa0, 0x23aa8,
1171                 0x23ab0, 0x23ac8,
1172                 0x23ad0, 0x23ad4,
1173                 0x23ae0, 0x23ae8,
1174                 0x23af0, 0x23af0,
1175                 0x23af8, 0x23c18,
1176                 0x23c20, 0x23c20,
1177                 0x23c28, 0x23c30,
1178                 0x23c38, 0x23c38,
1179                 0x23c80, 0x23c98,
1180                 0x23ca0, 0x23ca8,
1181                 0x23cb0, 0x23cc8,
1182                 0x23cd0, 0x23cd4,
1183                 0x23ce0, 0x23ce8,
1184                 0x23cf0, 0x23cf0,
1185                 0x23cf8, 0x23d7c,
1186                 0x23e00, 0x23e04,
1187                 0x24000, 0x2402c,
1188                 0x24100, 0x2413c,
1189                 0x24190, 0x241a0,
1190                 0x241a8, 0x241b8,
1191                 0x241c4, 0x241c8,
1192                 0x24200, 0x24318,
1193                 0x24400, 0x244b4,
1194                 0x244c0, 0x24528,
1195                 0x24540, 0x24614,
1196                 0x25000, 0x25040,
1197                 0x2504c, 0x25060,
1198                 0x250c0, 0x250ec,
1199                 0x25200, 0x25268,
1200                 0x25270, 0x25284,
1201                 0x252fc, 0x25388,
1202                 0x25400, 0x25404,
1203                 0x25500, 0x25500,
1204                 0x25510, 0x25518,
1205                 0x2552c, 0x25530,
1206                 0x2553c, 0x2553c,
1207                 0x25550, 0x25554,
1208                 0x25600, 0x25600,
1209                 0x25608, 0x2561c,
1210                 0x25624, 0x25628,
1211                 0x25630, 0x25634,
1212                 0x2563c, 0x2563c,
1213                 0x25700, 0x2571c,
1214                 0x25780, 0x2578c,
1215                 0x25800, 0x25818,
1216                 0x25820, 0x25828,
1217                 0x25830, 0x25848,
1218                 0x25850, 0x25854,
1219                 0x25860, 0x25868,
1220                 0x25870, 0x25870,
1221                 0x25878, 0x25898,
1222                 0x258a0, 0x258a8,
1223                 0x258b0, 0x258c8,
1224                 0x258d0, 0x258d4,
1225                 0x258e0, 0x258e8,
1226                 0x258f0, 0x258f0,
1227                 0x258f8, 0x25a18,
1228                 0x25a20, 0x25a28,
1229                 0x25a30, 0x25a48,
1230                 0x25a50, 0x25a54,
1231                 0x25a60, 0x25a68,
1232                 0x25a70, 0x25a70,
1233                 0x25a78, 0x25a98,
1234                 0x25aa0, 0x25aa8,
1235                 0x25ab0, 0x25ac8,
1236                 0x25ad0, 0x25ad4,
1237                 0x25ae0, 0x25ae8,
1238                 0x25af0, 0x25af0,
1239                 0x25af8, 0x25c18,
1240                 0x25c20, 0x25c20,
1241                 0x25c28, 0x25c30,
1242                 0x25c38, 0x25c38,
1243                 0x25c80, 0x25c98,
1244                 0x25ca0, 0x25ca8,
1245                 0x25cb0, 0x25cc8,
1246                 0x25cd0, 0x25cd4,
1247                 0x25ce0, 0x25ce8,
1248                 0x25cf0, 0x25cf0,
1249                 0x25cf8, 0x25d7c,
1250                 0x25e00, 0x25e04,
1251                 0x26000, 0x2602c,
1252                 0x26100, 0x2613c,
1253                 0x26190, 0x261a0,
1254                 0x261a8, 0x261b8,
1255                 0x261c4, 0x261c8,
1256                 0x26200, 0x26318,
1257                 0x26400, 0x264b4,
1258                 0x264c0, 0x26528,
1259                 0x26540, 0x26614,
1260                 0x27000, 0x27040,
1261                 0x2704c, 0x27060,
1262                 0x270c0, 0x270ec,
1263                 0x27200, 0x27268,
1264                 0x27270, 0x27284,
1265                 0x272fc, 0x27388,
1266                 0x27400, 0x27404,
1267                 0x27500, 0x27500,
1268                 0x27510, 0x27518,
1269                 0x2752c, 0x27530,
1270                 0x2753c, 0x2753c,
1271                 0x27550, 0x27554,
1272                 0x27600, 0x27600,
1273                 0x27608, 0x2761c,
1274                 0x27624, 0x27628,
1275                 0x27630, 0x27634,
1276                 0x2763c, 0x2763c,
1277                 0x27700, 0x2771c,
1278                 0x27780, 0x2778c,
1279                 0x27800, 0x27818,
1280                 0x27820, 0x27828,
1281                 0x27830, 0x27848,
1282                 0x27850, 0x27854,
1283                 0x27860, 0x27868,
1284                 0x27870, 0x27870,
1285                 0x27878, 0x27898,
1286                 0x278a0, 0x278a8,
1287                 0x278b0, 0x278c8,
1288                 0x278d0, 0x278d4,
1289                 0x278e0, 0x278e8,
1290                 0x278f0, 0x278f0,
1291                 0x278f8, 0x27a18,
1292                 0x27a20, 0x27a28,
1293                 0x27a30, 0x27a48,
1294                 0x27a50, 0x27a54,
1295                 0x27a60, 0x27a68,
1296                 0x27a70, 0x27a70,
1297                 0x27a78, 0x27a98,
1298                 0x27aa0, 0x27aa8,
1299                 0x27ab0, 0x27ac8,
1300                 0x27ad0, 0x27ad4,
1301                 0x27ae0, 0x27ae8,
1302                 0x27af0, 0x27af0,
1303                 0x27af8, 0x27c18,
1304                 0x27c20, 0x27c20,
1305                 0x27c28, 0x27c30,
1306                 0x27c38, 0x27c38,
1307                 0x27c80, 0x27c98,
1308                 0x27ca0, 0x27ca8,
1309                 0x27cb0, 0x27cc8,
1310                 0x27cd0, 0x27cd4,
1311                 0x27ce0, 0x27ce8,
1312                 0x27cf0, 0x27cf0,
1313                 0x27cf8, 0x27d7c,
1314                 0x27e00, 0x27e04,
1315         };
1316
1317         static const unsigned int t5_reg_ranges[] = {
1318                 0x1008, 0x10c0,
1319                 0x10cc, 0x10f8,
1320                 0x1100, 0x1100,
1321                 0x110c, 0x1148,
1322                 0x1180, 0x1184,
1323                 0x1190, 0x1194,
1324                 0x11a0, 0x11a4,
1325                 0x11b0, 0x11b4,
1326                 0x11fc, 0x123c,
1327                 0x1280, 0x173c,
1328                 0x1800, 0x18fc,
1329                 0x3000, 0x3028,
1330                 0x3060, 0x30b0,
1331                 0x30b8, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x56ec,
1338                 0x56f4, 0x5720,
1339                 0x5728, 0x575c,
1340                 0x580c, 0x5814,
1341                 0x5890, 0x589c,
1342                 0x58a4, 0x58ac,
1343                 0x58b8, 0x58bc,
1344                 0x5940, 0x59c8,
1345                 0x59d0, 0x59dc,
1346                 0x59fc, 0x5a18,
1347                 0x5a60, 0x5a70,
1348                 0x5a80, 0x5a9c,
1349                 0x5b94, 0x5bfc,
1350                 0x6000, 0x6020,
1351                 0x6028, 0x6040,
1352                 0x6058, 0x609c,
1353                 0x60a8, 0x614c,
1354                 0x7700, 0x7798,
1355                 0x77c0, 0x78fc,
1356                 0x7b00, 0x7b58,
1357                 0x7b60, 0x7b84,
1358                 0x7b8c, 0x7c54,
1359                 0x7d00, 0x7d38,
1360                 0x7d40, 0x7d80,
1361                 0x7d8c, 0x7ddc,
1362                 0x7de4, 0x7e04,
1363                 0x7e10, 0x7e1c,
1364                 0x7e24, 0x7e38,
1365                 0x7e40, 0x7e44,
1366                 0x7e4c, 0x7e78,
1367                 0x7e80, 0x7edc,
1368                 0x7ee8, 0x7efc,
1369                 0x8dc0, 0x8de0,
1370                 0x8df8, 0x8e04,
1371                 0x8e10, 0x8e84,
1372                 0x8ea0, 0x8f84,
1373                 0x8fc0, 0x9058,
1374                 0x9060, 0x9060,
1375                 0x9068, 0x90f8,
1376                 0x9400, 0x9408,
1377                 0x9410, 0x9470,
1378                 0x9600, 0x9600,
1379                 0x9608, 0x9638,
1380                 0x9640, 0x96f4,
1381                 0x9800, 0x9808,
1382                 0x9810, 0x9864,
1383                 0x9c00, 0x9c6c,
1384                 0x9c80, 0x9cec,
1385                 0x9d00, 0x9d6c,
1386                 0x9d80, 0x9dec,
1387                 0x9e00, 0x9e6c,
1388                 0x9e80, 0x9eec,
1389                 0x9f00, 0x9f6c,
1390                 0x9f80, 0xa020,
1391                 0xd000, 0xd004,
1392                 0xd010, 0xd03c,
1393                 0xdfc0, 0xdfe0,
1394                 0xe000, 0x1106c,
1395                 0x11074, 0x11088,
1396                 0x1109c, 0x1117c,
1397                 0x11190, 0x11204,
1398                 0x19040, 0x1906c,
1399                 0x19078, 0x19080,
1400                 0x1908c, 0x190e8,
1401                 0x190f0, 0x190f8,
1402                 0x19100, 0x19110,
1403                 0x19120, 0x19124,
1404                 0x19150, 0x19194,
1405                 0x1919c, 0x191b0,
1406                 0x191d0, 0x191e8,
1407                 0x19238, 0x19290,
1408                 0x193f8, 0x19428,
1409                 0x19430, 0x19444,
1410                 0x1944c, 0x1946c,
1411                 0x19474, 0x19474,
1412                 0x19490, 0x194cc,
1413                 0x194f0, 0x194f8,
1414                 0x19c00, 0x19c08,
1415                 0x19c10, 0x19c60,
1416                 0x19c94, 0x19ce4,
1417                 0x19cf0, 0x19d40,
1418                 0x19d50, 0x19d94,
1419                 0x19da0, 0x19de8,
1420                 0x19df0, 0x19e10,
1421                 0x19e50, 0x19e90,
1422                 0x19ea0, 0x19f24,
1423                 0x19f34, 0x19f34,
1424                 0x19f40, 0x19f50,
1425                 0x19f90, 0x19fb4,
1426                 0x19fc4, 0x19fe4,
1427                 0x1a000, 0x1a004,
1428                 0x1a010, 0x1a06c,
1429                 0x1a0b0, 0x1a0e4,
1430                 0x1a0ec, 0x1a0f8,
1431                 0x1a100, 0x1a108,
1432                 0x1a114, 0x1a130,
1433                 0x1a138, 0x1a1c4,
1434                 0x1a1fc, 0x1a1fc,
1435                 0x1e008, 0x1e00c,
1436                 0x1e040, 0x1e044,
1437                 0x1e04c, 0x1e04c,
1438                 0x1e284, 0x1e290,
1439                 0x1e2c0, 0x1e2c0,
1440                 0x1e2e0, 0x1e2e0,
1441                 0x1e300, 0x1e384,
1442                 0x1e3c0, 0x1e3c8,
1443                 0x1e408, 0x1e40c,
1444                 0x1e440, 0x1e444,
1445                 0x1e44c, 0x1e44c,
1446                 0x1e684, 0x1e690,
1447                 0x1e6c0, 0x1e6c0,
1448                 0x1e6e0, 0x1e6e0,
1449                 0x1e700, 0x1e784,
1450                 0x1e7c0, 0x1e7c8,
1451                 0x1e808, 0x1e80c,
1452                 0x1e840, 0x1e844,
1453                 0x1e84c, 0x1e84c,
1454                 0x1ea84, 0x1ea90,
1455                 0x1eac0, 0x1eac0,
1456                 0x1eae0, 0x1eae0,
1457                 0x1eb00, 0x1eb84,
1458                 0x1ebc0, 0x1ebc8,
1459                 0x1ec08, 0x1ec0c,
1460                 0x1ec40, 0x1ec44,
1461                 0x1ec4c, 0x1ec4c,
1462                 0x1ee84, 0x1ee90,
1463                 0x1eec0, 0x1eec0,
1464                 0x1eee0, 0x1eee0,
1465                 0x1ef00, 0x1ef84,
1466                 0x1efc0, 0x1efc8,
1467                 0x1f008, 0x1f00c,
1468                 0x1f040, 0x1f044,
1469                 0x1f04c, 0x1f04c,
1470                 0x1f284, 0x1f290,
1471                 0x1f2c0, 0x1f2c0,
1472                 0x1f2e0, 0x1f2e0,
1473                 0x1f300, 0x1f384,
1474                 0x1f3c0, 0x1f3c8,
1475                 0x1f408, 0x1f40c,
1476                 0x1f440, 0x1f444,
1477                 0x1f44c, 0x1f44c,
1478                 0x1f684, 0x1f690,
1479                 0x1f6c0, 0x1f6c0,
1480                 0x1f6e0, 0x1f6e0,
1481                 0x1f700, 0x1f784,
1482                 0x1f7c0, 0x1f7c8,
1483                 0x1f808, 0x1f80c,
1484                 0x1f840, 0x1f844,
1485                 0x1f84c, 0x1f84c,
1486                 0x1fa84, 0x1fa90,
1487                 0x1fac0, 0x1fac0,
1488                 0x1fae0, 0x1fae0,
1489                 0x1fb00, 0x1fb84,
1490                 0x1fbc0, 0x1fbc8,
1491                 0x1fc08, 0x1fc0c,
1492                 0x1fc40, 0x1fc44,
1493                 0x1fc4c, 0x1fc4c,
1494                 0x1fe84, 0x1fe90,
1495                 0x1fec0, 0x1fec0,
1496                 0x1fee0, 0x1fee0,
1497                 0x1ff00, 0x1ff84,
1498                 0x1ffc0, 0x1ffc8,
1499                 0x30000, 0x30030,
1500                 0x30100, 0x30144,
1501                 0x30190, 0x301a0,
1502                 0x301a8, 0x301b8,
1503                 0x301c4, 0x301c8,
1504                 0x301d0, 0x301d0,
1505                 0x30200, 0x30318,
1506                 0x30400, 0x304b4,
1507                 0x304c0, 0x3052c,
1508                 0x30540, 0x3061c,
1509                 0x30800, 0x30828,
1510                 0x30834, 0x30834,
1511                 0x308c0, 0x30908,
1512                 0x30910, 0x309ac,
1513                 0x30a00, 0x30a14,
1514                 0x30a1c, 0x30a2c,
1515                 0x30a44, 0x30a50,
1516                 0x30a74, 0x30a74,
1517                 0x30a7c, 0x30afc,
1518                 0x30b08, 0x30c24,
1519                 0x30d00, 0x30d00,
1520                 0x30d08, 0x30d14,
1521                 0x30d1c, 0x30d20,
1522                 0x30d3c, 0x30d3c,
1523                 0x30d48, 0x30d50,
1524                 0x31200, 0x3120c,
1525                 0x31220, 0x31220,
1526                 0x31240, 0x31240,
1527                 0x31600, 0x3160c,
1528                 0x31a00, 0x31a1c,
1529                 0x31e00, 0x31e20,
1530                 0x31e38, 0x31e3c,
1531                 0x31e80, 0x31e80,
1532                 0x31e88, 0x31ea8,
1533                 0x31eb0, 0x31eb4,
1534                 0x31ec8, 0x31ed4,
1535                 0x31fb8, 0x32004,
1536                 0x32200, 0x32200,
1537                 0x32208, 0x32240,
1538                 0x32248, 0x32280,
1539                 0x32288, 0x322c0,
1540                 0x322c8, 0x322fc,
1541                 0x32600, 0x32630,
1542                 0x32a00, 0x32abc,
1543                 0x32b00, 0x32b10,
1544                 0x32b20, 0x32b30,
1545                 0x32b40, 0x32b50,
1546                 0x32b60, 0x32b70,
1547                 0x33000, 0x33028,
1548                 0x33030, 0x33048,
1549                 0x33060, 0x33068,
1550                 0x33070, 0x3309c,
1551                 0x330f0, 0x33128,
1552                 0x33130, 0x33148,
1553                 0x33160, 0x33168,
1554                 0x33170, 0x3319c,
1555                 0x331f0, 0x33238,
1556                 0x33240, 0x33240,
1557                 0x33248, 0x33250,
1558                 0x3325c, 0x33264,
1559                 0x33270, 0x332b8,
1560                 0x332c0, 0x332e4,
1561                 0x332f8, 0x33338,
1562                 0x33340, 0x33340,
1563                 0x33348, 0x33350,
1564                 0x3335c, 0x33364,
1565                 0x33370, 0x333b8,
1566                 0x333c0, 0x333e4,
1567                 0x333f8, 0x33428,
1568                 0x33430, 0x33448,
1569                 0x33460, 0x33468,
1570                 0x33470, 0x3349c,
1571                 0x334f0, 0x33528,
1572                 0x33530, 0x33548,
1573                 0x33560, 0x33568,
1574                 0x33570, 0x3359c,
1575                 0x335f0, 0x33638,
1576                 0x33640, 0x33640,
1577                 0x33648, 0x33650,
1578                 0x3365c, 0x33664,
1579                 0x33670, 0x336b8,
1580                 0x336c0, 0x336e4,
1581                 0x336f8, 0x33738,
1582                 0x33740, 0x33740,
1583                 0x33748, 0x33750,
1584                 0x3375c, 0x33764,
1585                 0x33770, 0x337b8,
1586                 0x337c0, 0x337e4,
1587                 0x337f8, 0x337fc,
1588                 0x33814, 0x33814,
1589                 0x3382c, 0x3382c,
1590                 0x33880, 0x3388c,
1591                 0x338e8, 0x338ec,
1592                 0x33900, 0x33928,
1593                 0x33930, 0x33948,
1594                 0x33960, 0x33968,
1595                 0x33970, 0x3399c,
1596                 0x339f0, 0x33a38,
1597                 0x33a40, 0x33a40,
1598                 0x33a48, 0x33a50,
1599                 0x33a5c, 0x33a64,
1600                 0x33a70, 0x33ab8,
1601                 0x33ac0, 0x33ae4,
1602                 0x33af8, 0x33b10,
1603                 0x33b28, 0x33b28,
1604                 0x33b3c, 0x33b50,
1605                 0x33bf0, 0x33c10,
1606                 0x33c28, 0x33c28,
1607                 0x33c3c, 0x33c50,
1608                 0x33cf0, 0x33cfc,
1609                 0x34000, 0x34030,
1610                 0x34100, 0x34144,
1611                 0x34190, 0x341a0,
1612                 0x341a8, 0x341b8,
1613                 0x341c4, 0x341c8,
1614                 0x341d0, 0x341d0,
1615                 0x34200, 0x34318,
1616                 0x34400, 0x344b4,
1617                 0x344c0, 0x3452c,
1618                 0x34540, 0x3461c,
1619                 0x34800, 0x34828,
1620                 0x34834, 0x34834,
1621                 0x348c0, 0x34908,
1622                 0x34910, 0x349ac,
1623                 0x34a00, 0x34a14,
1624                 0x34a1c, 0x34a2c,
1625                 0x34a44, 0x34a50,
1626                 0x34a74, 0x34a74,
1627                 0x34a7c, 0x34afc,
1628                 0x34b08, 0x34c24,
1629                 0x34d00, 0x34d00,
1630                 0x34d08, 0x34d14,
1631                 0x34d1c, 0x34d20,
1632                 0x34d3c, 0x34d3c,
1633                 0x34d48, 0x34d50,
1634                 0x35200, 0x3520c,
1635                 0x35220, 0x35220,
1636                 0x35240, 0x35240,
1637                 0x35600, 0x3560c,
1638                 0x35a00, 0x35a1c,
1639                 0x35e00, 0x35e20,
1640                 0x35e38, 0x35e3c,
1641                 0x35e80, 0x35e80,
1642                 0x35e88, 0x35ea8,
1643                 0x35eb0, 0x35eb4,
1644                 0x35ec8, 0x35ed4,
1645                 0x35fb8, 0x36004,
1646                 0x36200, 0x36200,
1647                 0x36208, 0x36240,
1648                 0x36248, 0x36280,
1649                 0x36288, 0x362c0,
1650                 0x362c8, 0x362fc,
1651                 0x36600, 0x36630,
1652                 0x36a00, 0x36abc,
1653                 0x36b00, 0x36b10,
1654                 0x36b20, 0x36b30,
1655                 0x36b40, 0x36b50,
1656                 0x36b60, 0x36b70,
1657                 0x37000, 0x37028,
1658                 0x37030, 0x37048,
1659                 0x37060, 0x37068,
1660                 0x37070, 0x3709c,
1661                 0x370f0, 0x37128,
1662                 0x37130, 0x37148,
1663                 0x37160, 0x37168,
1664                 0x37170, 0x3719c,
1665                 0x371f0, 0x37238,
1666                 0x37240, 0x37240,
1667                 0x37248, 0x37250,
1668                 0x3725c, 0x37264,
1669                 0x37270, 0x372b8,
1670                 0x372c0, 0x372e4,
1671                 0x372f8, 0x37338,
1672                 0x37340, 0x37340,
1673                 0x37348, 0x37350,
1674                 0x3735c, 0x37364,
1675                 0x37370, 0x373b8,
1676                 0x373c0, 0x373e4,
1677                 0x373f8, 0x37428,
1678                 0x37430, 0x37448,
1679                 0x37460, 0x37468,
1680                 0x37470, 0x3749c,
1681                 0x374f0, 0x37528,
1682                 0x37530, 0x37548,
1683                 0x37560, 0x37568,
1684                 0x37570, 0x3759c,
1685                 0x375f0, 0x37638,
1686                 0x37640, 0x37640,
1687                 0x37648, 0x37650,
1688                 0x3765c, 0x37664,
1689                 0x37670, 0x376b8,
1690                 0x376c0, 0x376e4,
1691                 0x376f8, 0x37738,
1692                 0x37740, 0x37740,
1693                 0x37748, 0x37750,
1694                 0x3775c, 0x37764,
1695                 0x37770, 0x377b8,
1696                 0x377c0, 0x377e4,
1697                 0x377f8, 0x377fc,
1698                 0x37814, 0x37814,
1699                 0x3782c, 0x3782c,
1700                 0x37880, 0x3788c,
1701                 0x378e8, 0x378ec,
1702                 0x37900, 0x37928,
1703                 0x37930, 0x37948,
1704                 0x37960, 0x37968,
1705                 0x37970, 0x3799c,
1706                 0x379f0, 0x37a38,
1707                 0x37a40, 0x37a40,
1708                 0x37a48, 0x37a50,
1709                 0x37a5c, 0x37a64,
1710                 0x37a70, 0x37ab8,
1711                 0x37ac0, 0x37ae4,
1712                 0x37af8, 0x37b10,
1713                 0x37b28, 0x37b28,
1714                 0x37b3c, 0x37b50,
1715                 0x37bf0, 0x37c10,
1716                 0x37c28, 0x37c28,
1717                 0x37c3c, 0x37c50,
1718                 0x37cf0, 0x37cfc,
1719                 0x38000, 0x38030,
1720                 0x38100, 0x38144,
1721                 0x38190, 0x381a0,
1722                 0x381a8, 0x381b8,
1723                 0x381c4, 0x381c8,
1724                 0x381d0, 0x381d0,
1725                 0x38200, 0x38318,
1726                 0x38400, 0x384b4,
1727                 0x384c0, 0x3852c,
1728                 0x38540, 0x3861c,
1729                 0x38800, 0x38828,
1730                 0x38834, 0x38834,
1731                 0x388c0, 0x38908,
1732                 0x38910, 0x389ac,
1733                 0x38a00, 0x38a14,
1734                 0x38a1c, 0x38a2c,
1735                 0x38a44, 0x38a50,
1736                 0x38a74, 0x38a74,
1737                 0x38a7c, 0x38afc,
1738                 0x38b08, 0x38c24,
1739                 0x38d00, 0x38d00,
1740                 0x38d08, 0x38d14,
1741                 0x38d1c, 0x38d20,
1742                 0x38d3c, 0x38d3c,
1743                 0x38d48, 0x38d50,
1744                 0x39200, 0x3920c,
1745                 0x39220, 0x39220,
1746                 0x39240, 0x39240,
1747                 0x39600, 0x3960c,
1748                 0x39a00, 0x39a1c,
1749                 0x39e00, 0x39e20,
1750                 0x39e38, 0x39e3c,
1751                 0x39e80, 0x39e80,
1752                 0x39e88, 0x39ea8,
1753                 0x39eb0, 0x39eb4,
1754                 0x39ec8, 0x39ed4,
1755                 0x39fb8, 0x3a004,
1756                 0x3a200, 0x3a200,
1757                 0x3a208, 0x3a240,
1758                 0x3a248, 0x3a280,
1759                 0x3a288, 0x3a2c0,
1760                 0x3a2c8, 0x3a2fc,
1761                 0x3a600, 0x3a630,
1762                 0x3aa00, 0x3aabc,
1763                 0x3ab00, 0x3ab10,
1764                 0x3ab20, 0x3ab30,
1765                 0x3ab40, 0x3ab50,
1766                 0x3ab60, 0x3ab70,
1767                 0x3b000, 0x3b028,
1768                 0x3b030, 0x3b048,
1769                 0x3b060, 0x3b068,
1770                 0x3b070, 0x3b09c,
1771                 0x3b0f0, 0x3b128,
1772                 0x3b130, 0x3b148,
1773                 0x3b160, 0x3b168,
1774                 0x3b170, 0x3b19c,
1775                 0x3b1f0, 0x3b238,
1776                 0x3b240, 0x3b240,
1777                 0x3b248, 0x3b250,
1778                 0x3b25c, 0x3b264,
1779                 0x3b270, 0x3b2b8,
1780                 0x3b2c0, 0x3b2e4,
1781                 0x3b2f8, 0x3b338,
1782                 0x3b340, 0x3b340,
1783                 0x3b348, 0x3b350,
1784                 0x3b35c, 0x3b364,
1785                 0x3b370, 0x3b3b8,
1786                 0x3b3c0, 0x3b3e4,
1787                 0x3b3f8, 0x3b428,
1788                 0x3b430, 0x3b448,
1789                 0x3b460, 0x3b468,
1790                 0x3b470, 0x3b49c,
1791                 0x3b4f0, 0x3b528,
1792                 0x3b530, 0x3b548,
1793                 0x3b560, 0x3b568,
1794                 0x3b570, 0x3b59c,
1795                 0x3b5f0, 0x3b638,
1796                 0x3b640, 0x3b640,
1797                 0x3b648, 0x3b650,
1798                 0x3b65c, 0x3b664,
1799                 0x3b670, 0x3b6b8,
1800                 0x3b6c0, 0x3b6e4,
1801                 0x3b6f8, 0x3b738,
1802                 0x3b740, 0x3b740,
1803                 0x3b748, 0x3b750,
1804                 0x3b75c, 0x3b764,
1805                 0x3b770, 0x3b7b8,
1806                 0x3b7c0, 0x3b7e4,
1807                 0x3b7f8, 0x3b7fc,
1808                 0x3b814, 0x3b814,
1809                 0x3b82c, 0x3b82c,
1810                 0x3b880, 0x3b88c,
1811                 0x3b8e8, 0x3b8ec,
1812                 0x3b900, 0x3b928,
1813                 0x3b930, 0x3b948,
1814                 0x3b960, 0x3b968,
1815                 0x3b970, 0x3b99c,
1816                 0x3b9f0, 0x3ba38,
1817                 0x3ba40, 0x3ba40,
1818                 0x3ba48, 0x3ba50,
1819                 0x3ba5c, 0x3ba64,
1820                 0x3ba70, 0x3bab8,
1821                 0x3bac0, 0x3bae4,
1822                 0x3baf8, 0x3bb10,
1823                 0x3bb28, 0x3bb28,
1824                 0x3bb3c, 0x3bb50,
1825                 0x3bbf0, 0x3bc10,
1826                 0x3bc28, 0x3bc28,
1827                 0x3bc3c, 0x3bc50,
1828                 0x3bcf0, 0x3bcfc,
1829                 0x3c000, 0x3c030,
1830                 0x3c100, 0x3c144,
1831                 0x3c190, 0x3c1a0,
1832                 0x3c1a8, 0x3c1b8,
1833                 0x3c1c4, 0x3c1c8,
1834                 0x3c1d0, 0x3c1d0,
1835                 0x3c200, 0x3c318,
1836                 0x3c400, 0x3c4b4,
1837                 0x3c4c0, 0x3c52c,
1838                 0x3c540, 0x3c61c,
1839                 0x3c800, 0x3c828,
1840                 0x3c834, 0x3c834,
1841                 0x3c8c0, 0x3c908,
1842                 0x3c910, 0x3c9ac,
1843                 0x3ca00, 0x3ca14,
1844                 0x3ca1c, 0x3ca2c,
1845                 0x3ca44, 0x3ca50,
1846                 0x3ca74, 0x3ca74,
1847                 0x3ca7c, 0x3cafc,
1848                 0x3cb08, 0x3cc24,
1849                 0x3cd00, 0x3cd00,
1850                 0x3cd08, 0x3cd14,
1851                 0x3cd1c, 0x3cd20,
1852                 0x3cd3c, 0x3cd3c,
1853                 0x3cd48, 0x3cd50,
1854                 0x3d200, 0x3d20c,
1855                 0x3d220, 0x3d220,
1856                 0x3d240, 0x3d240,
1857                 0x3d600, 0x3d60c,
1858                 0x3da00, 0x3da1c,
1859                 0x3de00, 0x3de20,
1860                 0x3de38, 0x3de3c,
1861                 0x3de80, 0x3de80,
1862                 0x3de88, 0x3dea8,
1863                 0x3deb0, 0x3deb4,
1864                 0x3dec8, 0x3ded4,
1865                 0x3dfb8, 0x3e004,
1866                 0x3e200, 0x3e200,
1867                 0x3e208, 0x3e240,
1868                 0x3e248, 0x3e280,
1869                 0x3e288, 0x3e2c0,
1870                 0x3e2c8, 0x3e2fc,
1871                 0x3e600, 0x3e630,
1872                 0x3ea00, 0x3eabc,
1873                 0x3eb00, 0x3eb10,
1874                 0x3eb20, 0x3eb30,
1875                 0x3eb40, 0x3eb50,
1876                 0x3eb60, 0x3eb70,
1877                 0x3f000, 0x3f028,
1878                 0x3f030, 0x3f048,
1879                 0x3f060, 0x3f068,
1880                 0x3f070, 0x3f09c,
1881                 0x3f0f0, 0x3f128,
1882                 0x3f130, 0x3f148,
1883                 0x3f160, 0x3f168,
1884                 0x3f170, 0x3f19c,
1885                 0x3f1f0, 0x3f238,
1886                 0x3f240, 0x3f240,
1887                 0x3f248, 0x3f250,
1888                 0x3f25c, 0x3f264,
1889                 0x3f270, 0x3f2b8,
1890                 0x3f2c0, 0x3f2e4,
1891                 0x3f2f8, 0x3f338,
1892                 0x3f340, 0x3f340,
1893                 0x3f348, 0x3f350,
1894                 0x3f35c, 0x3f364,
1895                 0x3f370, 0x3f3b8,
1896                 0x3f3c0, 0x3f3e4,
1897                 0x3f3f8, 0x3f428,
1898                 0x3f430, 0x3f448,
1899                 0x3f460, 0x3f468,
1900                 0x3f470, 0x3f49c,
1901                 0x3f4f0, 0x3f528,
1902                 0x3f530, 0x3f548,
1903                 0x3f560, 0x3f568,
1904                 0x3f570, 0x3f59c,
1905                 0x3f5f0, 0x3f638,
1906                 0x3f640, 0x3f640,
1907                 0x3f648, 0x3f650,
1908                 0x3f65c, 0x3f664,
1909                 0x3f670, 0x3f6b8,
1910                 0x3f6c0, 0x3f6e4,
1911                 0x3f6f8, 0x3f738,
1912                 0x3f740, 0x3f740,
1913                 0x3f748, 0x3f750,
1914                 0x3f75c, 0x3f764,
1915                 0x3f770, 0x3f7b8,
1916                 0x3f7c0, 0x3f7e4,
1917                 0x3f7f8, 0x3f7fc,
1918                 0x3f814, 0x3f814,
1919                 0x3f82c, 0x3f82c,
1920                 0x3f880, 0x3f88c,
1921                 0x3f8e8, 0x3f8ec,
1922                 0x3f900, 0x3f928,
1923                 0x3f930, 0x3f948,
1924                 0x3f960, 0x3f968,
1925                 0x3f970, 0x3f99c,
1926                 0x3f9f0, 0x3fa38,
1927                 0x3fa40, 0x3fa40,
1928                 0x3fa48, 0x3fa50,
1929                 0x3fa5c, 0x3fa64,
1930                 0x3fa70, 0x3fab8,
1931                 0x3fac0, 0x3fae4,
1932                 0x3faf8, 0x3fb10,
1933                 0x3fb28, 0x3fb28,
1934                 0x3fb3c, 0x3fb50,
1935                 0x3fbf0, 0x3fc10,
1936                 0x3fc28, 0x3fc28,
1937                 0x3fc3c, 0x3fc50,
1938                 0x3fcf0, 0x3fcfc,
1939                 0x40000, 0x4000c,
1940                 0x40040, 0x40050,
1941                 0x40060, 0x40068,
1942                 0x4007c, 0x4008c,
1943                 0x40094, 0x400b0,
1944                 0x400c0, 0x40144,
1945                 0x40180, 0x4018c,
1946                 0x40200, 0x40254,
1947                 0x40260, 0x40264,
1948                 0x40270, 0x40288,
1949                 0x40290, 0x40298,
1950                 0x402ac, 0x402c8,
1951                 0x402d0, 0x402e0,
1952                 0x402f0, 0x402f0,
1953                 0x40300, 0x4033c,
1954                 0x403f8, 0x403fc,
1955                 0x41304, 0x413c4,
1956                 0x41400, 0x4140c,
1957                 0x41414, 0x4141c,
1958                 0x41480, 0x414d0,
1959                 0x44000, 0x44054,
1960                 0x4405c, 0x44078,
1961                 0x440c0, 0x44174,
1962                 0x44180, 0x441ac,
1963                 0x441b4, 0x441b8,
1964                 0x441c0, 0x44254,
1965                 0x4425c, 0x44278,
1966                 0x442c0, 0x44374,
1967                 0x44380, 0x443ac,
1968                 0x443b4, 0x443b8,
1969                 0x443c0, 0x44454,
1970                 0x4445c, 0x44478,
1971                 0x444c0, 0x44574,
1972                 0x44580, 0x445ac,
1973                 0x445b4, 0x445b8,
1974                 0x445c0, 0x44654,
1975                 0x4465c, 0x44678,
1976                 0x446c0, 0x44774,
1977                 0x44780, 0x447ac,
1978                 0x447b4, 0x447b8,
1979                 0x447c0, 0x44854,
1980                 0x4485c, 0x44878,
1981                 0x448c0, 0x44974,
1982                 0x44980, 0x449ac,
1983                 0x449b4, 0x449b8,
1984                 0x449c0, 0x449fc,
1985                 0x45000, 0x45004,
1986                 0x45010, 0x45030,
1987                 0x45040, 0x45060,
1988                 0x45068, 0x45068,
1989                 0x45080, 0x45084,
1990                 0x450a0, 0x450b0,
1991                 0x45200, 0x45204,
1992                 0x45210, 0x45230,
1993                 0x45240, 0x45260,
1994                 0x45268, 0x45268,
1995                 0x45280, 0x45284,
1996                 0x452a0, 0x452b0,
1997                 0x460c0, 0x460e4,
1998                 0x47000, 0x4703c,
1999                 0x47044, 0x4708c,
2000                 0x47200, 0x47250,
2001                 0x47400, 0x47408,
2002                 0x47414, 0x47420,
2003                 0x47600, 0x47618,
2004                 0x47800, 0x47814,
2005                 0x48000, 0x4800c,
2006                 0x48040, 0x48050,
2007                 0x48060, 0x48068,
2008                 0x4807c, 0x4808c,
2009                 0x48094, 0x480b0,
2010                 0x480c0, 0x48144,
2011                 0x48180, 0x4818c,
2012                 0x48200, 0x48254,
2013                 0x48260, 0x48264,
2014                 0x48270, 0x48288,
2015                 0x48290, 0x48298,
2016                 0x482ac, 0x482c8,
2017                 0x482d0, 0x482e0,
2018                 0x482f0, 0x482f0,
2019                 0x48300, 0x4833c,
2020                 0x483f8, 0x483fc,
2021                 0x49304, 0x493c4,
2022                 0x49400, 0x4940c,
2023                 0x49414, 0x4941c,
2024                 0x49480, 0x494d0,
2025                 0x4c000, 0x4c054,
2026                 0x4c05c, 0x4c078,
2027                 0x4c0c0, 0x4c174,
2028                 0x4c180, 0x4c1ac,
2029                 0x4c1b4, 0x4c1b8,
2030                 0x4c1c0, 0x4c254,
2031                 0x4c25c, 0x4c278,
2032                 0x4c2c0, 0x4c374,
2033                 0x4c380, 0x4c3ac,
2034                 0x4c3b4, 0x4c3b8,
2035                 0x4c3c0, 0x4c454,
2036                 0x4c45c, 0x4c478,
2037                 0x4c4c0, 0x4c574,
2038                 0x4c580, 0x4c5ac,
2039                 0x4c5b4, 0x4c5b8,
2040                 0x4c5c0, 0x4c654,
2041                 0x4c65c, 0x4c678,
2042                 0x4c6c0, 0x4c774,
2043                 0x4c780, 0x4c7ac,
2044                 0x4c7b4, 0x4c7b8,
2045                 0x4c7c0, 0x4c854,
2046                 0x4c85c, 0x4c878,
2047                 0x4c8c0, 0x4c974,
2048                 0x4c980, 0x4c9ac,
2049                 0x4c9b4, 0x4c9b8,
2050                 0x4c9c0, 0x4c9fc,
2051                 0x4d000, 0x4d004,
2052                 0x4d010, 0x4d030,
2053                 0x4d040, 0x4d060,
2054                 0x4d068, 0x4d068,
2055                 0x4d080, 0x4d084,
2056                 0x4d0a0, 0x4d0b0,
2057                 0x4d200, 0x4d204,
2058                 0x4d210, 0x4d230,
2059                 0x4d240, 0x4d260,
2060                 0x4d268, 0x4d268,
2061                 0x4d280, 0x4d284,
2062                 0x4d2a0, 0x4d2b0,
2063                 0x4e0c0, 0x4e0e4,
2064                 0x4f000, 0x4f03c,
2065                 0x4f044, 0x4f08c,
2066                 0x4f200, 0x4f250,
2067                 0x4f400, 0x4f408,
2068                 0x4f414, 0x4f420,
2069                 0x4f600, 0x4f618,
2070                 0x4f800, 0x4f814,
2071                 0x50000, 0x50084,
2072                 0x50090, 0x500cc,
2073                 0x50400, 0x50400,
2074                 0x50800, 0x50884,
2075                 0x50890, 0x508cc,
2076                 0x50c00, 0x50c00,
2077                 0x51000, 0x5101c,
2078                 0x51300, 0x51308,
2079         };
2080
2081         static const unsigned int t6_reg_ranges[] = {
2082                 0x1008, 0x101c,
2083                 0x1024, 0x10a8,
2084                 0x10b4, 0x10f8,
2085                 0x1100, 0x1114,
2086                 0x111c, 0x112c,
2087                 0x1138, 0x113c,
2088                 0x1144, 0x114c,
2089                 0x1180, 0x1184,
2090                 0x1190, 0x1194,
2091                 0x11a0, 0x11a4,
2092                 0x11b0, 0x11b4,
2093                 0x11fc, 0x123c,
2094                 0x1254, 0x1274,
2095                 0x1280, 0x133c,
2096                 0x1800, 0x18fc,
2097                 0x3000, 0x302c,
2098                 0x3060, 0x30b0,
2099                 0x30b8, 0x30d8,
2100                 0x30e0, 0x30fc,
2101                 0x3140, 0x357c,
2102                 0x35a8, 0x35cc,
2103                 0x35ec, 0x35ec,
2104                 0x3600, 0x5624,
2105                 0x56cc, 0x56ec,
2106                 0x56f4, 0x5720,
2107                 0x5728, 0x575c,
2108                 0x580c, 0x5814,
2109                 0x5890, 0x589c,
2110                 0x58a4, 0x58ac,
2111                 0x58b8, 0x58bc,
2112                 0x5940, 0x595c,
2113                 0x5980, 0x598c,
2114                 0x59b0, 0x59c8,
2115                 0x59d0, 0x59dc,
2116                 0x59fc, 0x5a18,
2117                 0x5a60, 0x5a6c,
2118                 0x5a80, 0x5a8c,
2119                 0x5a94, 0x5a9c,
2120                 0x5b94, 0x5bfc,
2121                 0x5c10, 0x5e48,
2122                 0x5e50, 0x5e94,
2123                 0x5ea0, 0x5eb0,
2124                 0x5ec0, 0x5ec0,
2125                 0x5ec8, 0x5ed0,
2126                 0x5ee0, 0x5ee0,
2127                 0x5ef0, 0x5ef0,
2128                 0x5f00, 0x5f00,
2129                 0x6000, 0x6020,
2130                 0x6028, 0x6040,
2131                 0x6058, 0x609c,
2132                 0x60a8, 0x619c,
2133                 0x7700, 0x7798,
2134                 0x77c0, 0x7880,
2135                 0x78cc, 0x78fc,
2136                 0x7b00, 0x7b58,
2137                 0x7b60, 0x7b84,
2138                 0x7b8c, 0x7c54,
2139                 0x7d00, 0x7d38,
2140                 0x7d40, 0x7d84,
2141                 0x7d8c, 0x7ddc,
2142                 0x7de4, 0x7e04,
2143                 0x7e10, 0x7e1c,
2144                 0x7e24, 0x7e38,
2145                 0x7e40, 0x7e44,
2146                 0x7e4c, 0x7e78,
2147                 0x7e80, 0x7edc,
2148                 0x7ee8, 0x7efc,
2149                 0x8dc0, 0x8de4,
2150                 0x8df8, 0x8e04,
2151                 0x8e10, 0x8e84,
2152                 0x8ea0, 0x8f88,
2153                 0x8fb8, 0x9058,
2154                 0x9060, 0x9060,
2155                 0x9068, 0x90f8,
2156                 0x9100, 0x9124,
2157                 0x9400, 0x9470,
2158                 0x9600, 0x9600,
2159                 0x9608, 0x9638,
2160                 0x9640, 0x9704,
2161                 0x9710, 0x971c,
2162                 0x9800, 0x9808,
2163                 0x9810, 0x9864,
2164                 0x9c00, 0x9c6c,
2165                 0x9c80, 0x9cec,
2166                 0x9d00, 0x9d6c,
2167                 0x9d80, 0x9dec,
2168                 0x9e00, 0x9e6c,
2169                 0x9e80, 0x9eec,
2170                 0x9f00, 0x9f6c,
2171                 0x9f80, 0xa020,
2172                 0xd000, 0xd03c,
2173                 0xd100, 0xd118,
2174                 0xd200, 0xd214,
2175                 0xd220, 0xd234,
2176                 0xd240, 0xd254,
2177                 0xd260, 0xd274,
2178                 0xd280, 0xd294,
2179                 0xd2a0, 0xd2b4,
2180                 0xd2c0, 0xd2d4,
2181                 0xd2e0, 0xd2f4,
2182                 0xd300, 0xd31c,
2183                 0xdfc0, 0xdfe0,
2184                 0xe000, 0xf008,
2185                 0xf010, 0xf018,
2186                 0xf020, 0xf028,
2187                 0x11000, 0x11014,
2188                 0x11048, 0x1106c,
2189                 0x11074, 0x11088,
2190                 0x11098, 0x11120,
2191                 0x1112c, 0x1117c,
2192                 0x11190, 0x112e0,
2193                 0x11300, 0x1130c,
2194                 0x12000, 0x1206c,
2195                 0x19040, 0x1906c,
2196                 0x19078, 0x19080,
2197                 0x1908c, 0x190e8,
2198                 0x190f0, 0x190f8,
2199                 0x19100, 0x19110,
2200                 0x19120, 0x19124,
2201                 0x19150, 0x19194,
2202                 0x1919c, 0x191b0,
2203                 0x191d0, 0x191e8,
2204                 0x19238, 0x19290,
2205                 0x192a4, 0x192b0,
2206                 0x192bc, 0x192bc,
2207                 0x19348, 0x1934c,
2208                 0x193f8, 0x19418,
2209                 0x19420, 0x19428,
2210                 0x19430, 0x19444,
2211                 0x1944c, 0x1946c,
2212                 0x19474, 0x19474,
2213                 0x19490, 0x194cc,
2214                 0x194f0, 0x194f8,
2215                 0x19c00, 0x19c48,
2216                 0x19c50, 0x19c80,
2217                 0x19c94, 0x19c98,
2218                 0x19ca0, 0x19cbc,
2219                 0x19ce4, 0x19ce4,
2220                 0x19cf0, 0x19cf8,
2221                 0x19d00, 0x19d28,
2222                 0x19d50, 0x19d78,
2223                 0x19d94, 0x19d98,
2224                 0x19da0, 0x19dc8,
2225                 0x19df0, 0x19e10,
2226                 0x19e50, 0x19e6c,
2227                 0x19ea0, 0x19ebc,
2228                 0x19ec4, 0x19ef4,
2229                 0x19f04, 0x19f2c,
2230                 0x19f34, 0x19f34,
2231                 0x19f40, 0x19f50,
2232                 0x19f90, 0x19fac,
2233                 0x19fc4, 0x19fc8,
2234                 0x19fd0, 0x19fe4,
2235                 0x1a000, 0x1a004,
2236                 0x1a010, 0x1a06c,
2237                 0x1a0b0, 0x1a0e4,
2238                 0x1a0ec, 0x1a0f8,
2239                 0x1a100, 0x1a108,
2240                 0x1a114, 0x1a130,
2241                 0x1a138, 0x1a1c4,
2242                 0x1a1fc, 0x1a1fc,
2243                 0x1e008, 0x1e00c,
2244                 0x1e040, 0x1e044,
2245                 0x1e04c, 0x1e04c,
2246                 0x1e284, 0x1e290,
2247                 0x1e2c0, 0x1e2c0,
2248                 0x1e2e0, 0x1e2e0,
2249                 0x1e300, 0x1e384,
2250                 0x1e3c0, 0x1e3c8,
2251                 0x1e408, 0x1e40c,
2252                 0x1e440, 0x1e444,
2253                 0x1e44c, 0x1e44c,
2254                 0x1e684, 0x1e690,
2255                 0x1e6c0, 0x1e6c0,
2256                 0x1e6e0, 0x1e6e0,
2257                 0x1e700, 0x1e784,
2258                 0x1e7c0, 0x1e7c8,
2259                 0x1e808, 0x1e80c,
2260                 0x1e840, 0x1e844,
2261                 0x1e84c, 0x1e84c,
2262                 0x1ea84, 0x1ea90,
2263                 0x1eac0, 0x1eac0,
2264                 0x1eae0, 0x1eae0,
2265                 0x1eb00, 0x1eb84,
2266                 0x1ebc0, 0x1ebc8,
2267                 0x1ec08, 0x1ec0c,
2268                 0x1ec40, 0x1ec44,
2269                 0x1ec4c, 0x1ec4c,
2270                 0x1ee84, 0x1ee90,
2271                 0x1eec0, 0x1eec0,
2272                 0x1eee0, 0x1eee0,
2273                 0x1ef00, 0x1ef84,
2274                 0x1efc0, 0x1efc8,
2275                 0x1f008, 0x1f00c,
2276                 0x1f040, 0x1f044,
2277                 0x1f04c, 0x1f04c,
2278                 0x1f284, 0x1f290,
2279                 0x1f2c0, 0x1f2c0,
2280                 0x1f2e0, 0x1f2e0,
2281                 0x1f300, 0x1f384,
2282                 0x1f3c0, 0x1f3c8,
2283                 0x1f408, 0x1f40c,
2284                 0x1f440, 0x1f444,
2285                 0x1f44c, 0x1f44c,
2286                 0x1f684, 0x1f690,
2287                 0x1f6c0, 0x1f6c0,
2288                 0x1f6e0, 0x1f6e0,
2289                 0x1f700, 0x1f784,
2290                 0x1f7c0, 0x1f7c8,
2291                 0x1f808, 0x1f80c,
2292                 0x1f840, 0x1f844,
2293                 0x1f84c, 0x1f84c,
2294                 0x1fa84, 0x1fa90,
2295                 0x1fac0, 0x1fac0,
2296                 0x1fae0, 0x1fae0,
2297                 0x1fb00, 0x1fb84,
2298                 0x1fbc0, 0x1fbc8,
2299                 0x1fc08, 0x1fc0c,
2300                 0x1fc40, 0x1fc44,
2301                 0x1fc4c, 0x1fc4c,
2302                 0x1fe84, 0x1fe90,
2303                 0x1fec0, 0x1fec0,
2304                 0x1fee0, 0x1fee0,
2305                 0x1ff00, 0x1ff84,
2306                 0x1ffc0, 0x1ffc8,
2307                 0x30000, 0x30030,
2308                 0x30100, 0x30168,
2309                 0x30190, 0x301a0,
2310                 0x301a8, 0x301b8,
2311                 0x301c4, 0x301c8,
2312                 0x301d0, 0x301d0,
2313                 0x30200, 0x30320,
2314                 0x30400, 0x304b4,
2315                 0x304c0, 0x3052c,
2316                 0x30540, 0x3061c,
2317                 0x30800, 0x308a0,
2318                 0x308c0, 0x30908,
2319                 0x30910, 0x309b8,
2320                 0x30a00, 0x30a04,
2321                 0x30a0c, 0x30a14,
2322                 0x30a1c, 0x30a2c,
2323                 0x30a44, 0x30a50,
2324                 0x30a74, 0x30a74,
2325                 0x30a7c, 0x30afc,
2326                 0x30b08, 0x30c24,
2327                 0x30d00, 0x30d14,
2328                 0x30d1c, 0x30d3c,
2329                 0x30d44, 0x30d4c,
2330                 0x30d54, 0x30d74,
2331                 0x30d7c, 0x30d7c,
2332                 0x30de0, 0x30de0,
2333                 0x30e00, 0x30ed4,
2334                 0x30f00, 0x30fa4,
2335                 0x30fc0, 0x30fc4,
2336                 0x31000, 0x31004,
2337                 0x31080, 0x310fc,
2338                 0x31208, 0x31220,
2339                 0x3123c, 0x31254,
2340                 0x31300, 0x31300,
2341                 0x31308, 0x3131c,
2342                 0x31338, 0x3133c,
2343                 0x31380, 0x31380,
2344                 0x31388, 0x313a8,
2345                 0x313b4, 0x313b4,
2346                 0x31400, 0x31420,
2347                 0x31438, 0x3143c,
2348                 0x31480, 0x31480,
2349                 0x314a8, 0x314a8,
2350                 0x314b0, 0x314b4,
2351                 0x314c8, 0x314d4,
2352                 0x31a40, 0x31a4c,
2353                 0x31af0, 0x31b20,
2354                 0x31b38, 0x31b3c,
2355                 0x31b80, 0x31b80,
2356                 0x31ba8, 0x31ba8,
2357                 0x31bb0, 0x31bb4,
2358                 0x31bc8, 0x31bd4,
2359                 0x32140, 0x3218c,
2360                 0x321f0, 0x321f4,
2361                 0x32200, 0x32200,
2362                 0x32218, 0x32218,
2363                 0x32400, 0x32400,
2364                 0x32408, 0x3241c,
2365                 0x32618, 0x32620,
2366                 0x32664, 0x32664,
2367                 0x326a8, 0x326a8,
2368                 0x326ec, 0x326ec,
2369                 0x32a00, 0x32abc,
2370                 0x32b00, 0x32b18,
2371                 0x32b20, 0x32b38,
2372                 0x32b40, 0x32b58,
2373                 0x32b60, 0x32b78,
2374                 0x32c00, 0x32c00,
2375                 0x32c08, 0x32c3c,
2376                 0x33000, 0x3302c,
2377                 0x33034, 0x33050,
2378                 0x33058, 0x33058,
2379                 0x33060, 0x3308c,
2380                 0x3309c, 0x330ac,
2381                 0x330c0, 0x330c0,
2382                 0x330c8, 0x330d0,
2383                 0x330d8, 0x330e0,
2384                 0x330ec, 0x3312c,
2385                 0x33134, 0x33150,
2386                 0x33158, 0x33158,
2387                 0x33160, 0x3318c,
2388                 0x3319c, 0x331ac,
2389                 0x331c0, 0x331c0,
2390                 0x331c8, 0x331d0,
2391                 0x331d8, 0x331e0,
2392                 0x331ec, 0x33290,
2393                 0x33298, 0x332c4,
2394                 0x332e4, 0x33390,
2395                 0x33398, 0x333c4,
2396                 0x333e4, 0x3342c,
2397                 0x33434, 0x33450,
2398                 0x33458, 0x33458,
2399                 0x33460, 0x3348c,
2400                 0x3349c, 0x334ac,
2401                 0x334c0, 0x334c0,
2402                 0x334c8, 0x334d0,
2403                 0x334d8, 0x334e0,
2404                 0x334ec, 0x3352c,
2405                 0x33534, 0x33550,
2406                 0x33558, 0x33558,
2407                 0x33560, 0x3358c,
2408                 0x3359c, 0x335ac,
2409                 0x335c0, 0x335c0,
2410                 0x335c8, 0x335d0,
2411                 0x335d8, 0x335e0,
2412                 0x335ec, 0x33690,
2413                 0x33698, 0x336c4,
2414                 0x336e4, 0x33790,
2415                 0x33798, 0x337c4,
2416                 0x337e4, 0x337fc,
2417                 0x33814, 0x33814,
2418                 0x33854, 0x33868,
2419                 0x33880, 0x3388c,
2420                 0x338c0, 0x338d0,
2421                 0x338e8, 0x338ec,
2422                 0x33900, 0x3392c,
2423                 0x33934, 0x33950,
2424                 0x33958, 0x33958,
2425                 0x33960, 0x3398c,
2426                 0x3399c, 0x339ac,
2427                 0x339c0, 0x339c0,
2428                 0x339c8, 0x339d0,
2429                 0x339d8, 0x339e0,
2430                 0x339ec, 0x33a90,
2431                 0x33a98, 0x33ac4,
2432                 0x33ae4, 0x33b10,
2433                 0x33b24, 0x33b28,
2434                 0x33b38, 0x33b50,
2435                 0x33bf0, 0x33c10,
2436                 0x33c24, 0x33c28,
2437                 0x33c38, 0x33c50,
2438                 0x33cf0, 0x33cfc,
2439                 0x34000, 0x34030,
2440                 0x34100, 0x34168,
2441                 0x34190, 0x341a0,
2442                 0x341a8, 0x341b8,
2443                 0x341c4, 0x341c8,
2444                 0x341d0, 0x341d0,
2445                 0x34200, 0x34320,
2446                 0x34400, 0x344b4,
2447                 0x344c0, 0x3452c,
2448                 0x34540, 0x3461c,
2449                 0x34800, 0x348a0,
2450                 0x348c0, 0x34908,
2451                 0x34910, 0x349b8,
2452                 0x34a00, 0x34a04,
2453                 0x34a0c, 0x34a14,
2454                 0x34a1c, 0x34a2c,
2455                 0x34a44, 0x34a50,
2456                 0x34a74, 0x34a74,
2457                 0x34a7c, 0x34afc,
2458                 0x34b08, 0x34c24,
2459                 0x34d00, 0x34d14,
2460                 0x34d1c, 0x34d3c,
2461                 0x34d44, 0x34d4c,
2462                 0x34d54, 0x34d74,
2463                 0x34d7c, 0x34d7c,
2464                 0x34de0, 0x34de0,
2465                 0x34e00, 0x34ed4,
2466                 0x34f00, 0x34fa4,
2467                 0x34fc0, 0x34fc4,
2468                 0x35000, 0x35004,
2469                 0x35080, 0x350fc,
2470                 0x35208, 0x35220,
2471                 0x3523c, 0x35254,
2472                 0x35300, 0x35300,
2473                 0x35308, 0x3531c,
2474                 0x35338, 0x3533c,
2475                 0x35380, 0x35380,
2476                 0x35388, 0x353a8,
2477                 0x353b4, 0x353b4,
2478                 0x35400, 0x35420,
2479                 0x35438, 0x3543c,
2480                 0x35480, 0x35480,
2481                 0x354a8, 0x354a8,
2482                 0x354b0, 0x354b4,
2483                 0x354c8, 0x354d4,
2484                 0x35a40, 0x35a4c,
2485                 0x35af0, 0x35b20,
2486                 0x35b38, 0x35b3c,
2487                 0x35b80, 0x35b80,
2488                 0x35ba8, 0x35ba8,
2489                 0x35bb0, 0x35bb4,
2490                 0x35bc8, 0x35bd4,
2491                 0x36140, 0x3618c,
2492                 0x361f0, 0x361f4,
2493                 0x36200, 0x36200,
2494                 0x36218, 0x36218,
2495                 0x36400, 0x36400,
2496                 0x36408, 0x3641c,
2497                 0x36618, 0x36620,
2498                 0x36664, 0x36664,
2499                 0x366a8, 0x366a8,
2500                 0x366ec, 0x366ec,
2501                 0x36a00, 0x36abc,
2502                 0x36b00, 0x36b18,
2503                 0x36b20, 0x36b38,
2504                 0x36b40, 0x36b58,
2505                 0x36b60, 0x36b78,
2506                 0x36c00, 0x36c00,
2507                 0x36c08, 0x36c3c,
2508                 0x37000, 0x3702c,
2509                 0x37034, 0x37050,
2510                 0x37058, 0x37058,
2511                 0x37060, 0x3708c,
2512                 0x3709c, 0x370ac,
2513                 0x370c0, 0x370c0,
2514                 0x370c8, 0x370d0,
2515                 0x370d8, 0x370e0,
2516                 0x370ec, 0x3712c,
2517                 0x37134, 0x37150,
2518                 0x37158, 0x37158,
2519                 0x37160, 0x3718c,
2520                 0x3719c, 0x371ac,
2521                 0x371c0, 0x371c0,
2522                 0x371c8, 0x371d0,
2523                 0x371d8, 0x371e0,
2524                 0x371ec, 0x37290,
2525                 0x37298, 0x372c4,
2526                 0x372e4, 0x37390,
2527                 0x37398, 0x373c4,
2528                 0x373e4, 0x3742c,
2529                 0x37434, 0x37450,
2530                 0x37458, 0x37458,
2531                 0x37460, 0x3748c,
2532                 0x3749c, 0x374ac,
2533                 0x374c0, 0x374c0,
2534                 0x374c8, 0x374d0,
2535                 0x374d8, 0x374e0,
2536                 0x374ec, 0x3752c,
2537                 0x37534, 0x37550,
2538                 0x37558, 0x37558,
2539                 0x37560, 0x3758c,
2540                 0x3759c, 0x375ac,
2541                 0x375c0, 0x375c0,
2542                 0x375c8, 0x375d0,
2543                 0x375d8, 0x375e0,
2544                 0x375ec, 0x37690,
2545                 0x37698, 0x376c4,
2546                 0x376e4, 0x37790,
2547                 0x37798, 0x377c4,
2548                 0x377e4, 0x377fc,
2549                 0x37814, 0x37814,
2550                 0x37854, 0x37868,
2551                 0x37880, 0x3788c,
2552                 0x378c0, 0x378d0,
2553                 0x378e8, 0x378ec,
2554                 0x37900, 0x3792c,
2555                 0x37934, 0x37950,
2556                 0x37958, 0x37958,
2557                 0x37960, 0x3798c,
2558                 0x3799c, 0x379ac,
2559                 0x379c0, 0x379c0,
2560                 0x379c8, 0x379d0,
2561                 0x379d8, 0x379e0,
2562                 0x379ec, 0x37a90,
2563                 0x37a98, 0x37ac4,
2564                 0x37ae4, 0x37b10,
2565                 0x37b24, 0x37b28,
2566                 0x37b38, 0x37b50,
2567                 0x37bf0, 0x37c10,
2568                 0x37c24, 0x37c28,
2569                 0x37c38, 0x37c50,
2570                 0x37cf0, 0x37cfc,
2571                 0x40040, 0x40040,
2572                 0x40080, 0x40084,
2573                 0x40100, 0x40100,
2574                 0x40140, 0x401bc,
2575                 0x40200, 0x40214,
2576                 0x40228, 0x40228,
2577                 0x40240, 0x40258,
2578                 0x40280, 0x40280,
2579                 0x40304, 0x40304,
2580                 0x40330, 0x4033c,
2581                 0x41304, 0x413c8,
2582                 0x413d0, 0x413dc,
2583                 0x413f0, 0x413f0,
2584                 0x41400, 0x4140c,
2585                 0x41414, 0x4141c,
2586                 0x41480, 0x414d0,
2587                 0x44000, 0x4407c,
2588                 0x440c0, 0x441ac,
2589                 0x441b4, 0x4427c,
2590                 0x442c0, 0x443ac,
2591                 0x443b4, 0x4447c,
2592                 0x444c0, 0x445ac,
2593                 0x445b4, 0x4467c,
2594                 0x446c0, 0x447ac,
2595                 0x447b4, 0x4487c,
2596                 0x448c0, 0x449ac,
2597                 0x449b4, 0x44a7c,
2598                 0x44ac0, 0x44bac,
2599                 0x44bb4, 0x44c7c,
2600                 0x44cc0, 0x44dac,
2601                 0x44db4, 0x44e7c,
2602                 0x44ec0, 0x44fac,
2603                 0x44fb4, 0x4507c,
2604                 0x450c0, 0x451ac,
2605                 0x451b4, 0x451fc,
2606                 0x45800, 0x45804,
2607                 0x45810, 0x45830,
2608                 0x45840, 0x45860,
2609                 0x45868, 0x45868,
2610                 0x45880, 0x45884,
2611                 0x458a0, 0x458b0,
2612                 0x45a00, 0x45a04,
2613                 0x45a10, 0x45a30,
2614                 0x45a40, 0x45a60,
2615                 0x45a68, 0x45a68,
2616                 0x45a80, 0x45a84,
2617                 0x45aa0, 0x45ab0,
2618                 0x460c0, 0x460e4,
2619                 0x47000, 0x4703c,
2620                 0x47044, 0x4708c,
2621                 0x47200, 0x47250,
2622                 0x47400, 0x47408,
2623                 0x47414, 0x47420,
2624                 0x47600, 0x47618,
2625                 0x47800, 0x47814,
2626                 0x47820, 0x4782c,
2627                 0x50000, 0x50084,
2628                 0x50090, 0x500cc,
2629                 0x50300, 0x50384,
2630                 0x50400, 0x50400,
2631                 0x50800, 0x50884,
2632                 0x50890, 0x508cc,
2633                 0x50b00, 0x50b84,
2634                 0x50c00, 0x50c00,
2635                 0x51000, 0x51020,
2636                 0x51028, 0x510b0,
2637                 0x51300, 0x51324,
2638         };
2639
2640         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641         const unsigned int *reg_ranges;
2642         int reg_ranges_size, range;
2643         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644
2645         /* Select the right set of register ranges to dump depending on the
2646          * adapter chip type.
2647          */
2648         switch (chip_version) {
2649         case CHELSIO_T4:
2650                 reg_ranges = t4_reg_ranges;
2651                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652                 break;
2653
2654         case CHELSIO_T5:
2655                 reg_ranges = t5_reg_ranges;
2656                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657                 break;
2658
2659         case CHELSIO_T6:
2660                 reg_ranges = t6_reg_ranges;
2661                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662                 break;
2663
2664         default:
2665                 dev_err(adap->pdev_dev,
2666                         "Unsupported chip version %d\n", chip_version);
2667                 return;
2668         }
2669
2670         /* Clear the register buffer and insert the appropriate register
2671          * values selected by the above register ranges.
2672          */
2673         memset(buf, 0, buf_size);
2674         for (range = 0; range < reg_ranges_size; range += 2) {
2675                 unsigned int reg = reg_ranges[range];
2676                 unsigned int last_reg = reg_ranges[range + 1];
2677                 u32 *bufp = (u32 *)((char *)buf + reg);
2678
2679                 /* Iterate across the register range filling in the register
2680                  * buffer but don't write past the end of the register buffer.
2681                  */
2682                 while (reg <= last_reg && bufp < buf_end) {
2683                         *bufp++ = t4_read_reg(adap, reg);
2684                         reg += sizeof(u32);
2685                 }
2686         }
2687 }
2688
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713         fn *= sz;
2714         if (phys_addr < 1024)
2715                 return phys_addr + (31 << 10);
2716         if (phys_addr < 1024 + fn)
2717                 return 31744 - fn + phys_addr - 1024;
2718         if (phys_addr < EEPROMSIZE)
2719                 return phys_addr - 1024 - fn;
2720         return -EINVAL;
2721 }
2722
2723 /**
2724  *      t4_seeprom_wp - enable/disable EEPROM write protection
2725  *      @adapter: the adapter
2726  *      @enable: whether to enable or disable write protection
2727  *
2728  *      Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732         unsigned int v = enable ? 0xc : 0;
2733         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734         return ret < 0 ? ret : 0;
2735 }
2736
2737 /**
2738  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *      @adapter: adapter to read
2740  *      @p: where to store the parameters
2741  *
2742  *      Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746         int i, ret = 0, addr;
2747         int sn, pn, na;
2748         u8 *vpd, base_val = 0;
2749         unsigned int vpdr_len, kw_offset, id_len;
2750
2751         vpd = vmalloc(VPD_LEN);
2752         if (!vpd)
2753                 return -ENOMEM;
2754
2755         /* Card information normally starts at VPD_BASE but early cards had
2756          * it at 0.
2757          */
2758         ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2759         if (ret < 0)
2760                 goto out;
2761
2762         addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2763
2764         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2765         if (ret < 0)
2766                 goto out;
2767
2768         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2769                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2770                 ret = -EINVAL;
2771                 goto out;
2772         }
2773
2774         id_len = pci_vpd_lrdt_size(vpd);
2775         if (id_len > ID_LEN)
2776                 id_len = ID_LEN;
2777
2778         i = pci_vpd_find_tag(vpd, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2779         if (i < 0) {
2780                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2781                 ret = -EINVAL;
2782                 goto out;
2783         }
2784
2785         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2786         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2787         if (vpdr_len + kw_offset > VPD_LEN) {
2788                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2789                 ret = -EINVAL;
2790                 goto out;
2791         }
2792
2793 #define FIND_VPD_KW(var, name) do { \
2794         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2795         if (var < 0) { \
2796                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2797                 ret = -EINVAL; \
2798                 goto out; \
2799         } \
2800         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2801 } while (0)
2802
2803         ret = pci_vpd_check_csum(vpd, VPD_LEN);
2804         if (ret) {
2805                 dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n");
2806                 ret = -EINVAL;
2807                 goto out;
2808         }
2809
2810         FIND_VPD_KW(sn, "SN");
2811         FIND_VPD_KW(pn, "PN");
2812         FIND_VPD_KW(na, "NA");
2813 #undef FIND_VPD_KW
2814
2815         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2816         strim(p->id);
2817         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2818         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2819         strim(p->sn);
2820         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2821         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2822         strim(p->pn);
2823         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2824         strim((char *)p->na);
2825
2826 out:
2827         vfree(vpd);
2828         return ret < 0 ? ret : 0;
2829 }
2830
2831 /**
2832  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2833  *      @adapter: adapter to read
2834  *      @p: where to store the parameters
2835  *
2836  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2837  *      Clock.  This can only be called after a connection to the firmware
2838  *      is established.
2839  */
2840 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2841 {
2842         u32 cclk_param, cclk_val;
2843         int ret;
2844
2845         /* Grab the raw VPD parameters.
2846          */
2847         ret = t4_get_raw_vpd_params(adapter, p);
2848         if (ret)
2849                 return ret;
2850
2851         /* Ask firmware for the Core Clock since it knows how to translate the
2852          * Reference Clock ('V2') VPD field into a Core Clock value ...
2853          */
2854         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2855                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2856         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2857                               1, &cclk_param, &cclk_val);
2858
2859         if (ret)
2860                 return ret;
2861         p->cclk = cclk_val;
2862
2863         return 0;
2864 }
2865
2866 /**
2867  *      t4_get_pfres - retrieve VF resource limits
2868  *      @adapter: the adapter
2869  *
2870  *      Retrieves configured resource limits and capabilities for a physical
2871  *      function.  The results are stored in @adapter->pfres.
2872  */
2873 int t4_get_pfres(struct adapter *adapter)
2874 {
2875         struct pf_resources *pfres = &adapter->params.pfres;
2876         struct fw_pfvf_cmd cmd, rpl;
2877         int v;
2878         u32 word;
2879
2880         /* Execute PFVF Read command to get VF resource limits; bail out early
2881          * with error on command failure.
2882          */
2883         memset(&cmd, 0, sizeof(cmd));
2884         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2885                                     FW_CMD_REQUEST_F |
2886                                     FW_CMD_READ_F |
2887                                     FW_PFVF_CMD_PFN_V(adapter->pf) |
2888                                     FW_PFVF_CMD_VFN_V(0));
2889         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2890         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2891         if (v != FW_SUCCESS)
2892                 return v;
2893
2894         /* Extract PF resource limits and return success.
2895          */
2896         word = be32_to_cpu(rpl.niqflint_niq);
2897         pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2898         pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2899
2900         word = be32_to_cpu(rpl.type_to_neq);
2901         pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2902         pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2903
2904         word = be32_to_cpu(rpl.tc_to_nexactf);
2905         pfres->tc = FW_PFVF_CMD_TC_G(word);
2906         pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2907         pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2908
2909         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2910         pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2911         pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2912         pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2913
2914         return 0;
2915 }
2916
2917 /* serial flash and firmware constants */
2918 enum {
2919         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2920
2921         /* flash command opcodes */
2922         SF_PROG_PAGE    = 2,          /* program page */
2923         SF_WR_DISABLE   = 4,          /* disable writes */
2924         SF_RD_STATUS    = 5,          /* read status register */
2925         SF_WR_ENABLE    = 6,          /* enable writes */
2926         SF_RD_DATA_FAST = 0xb,        /* read flash */
2927         SF_RD_ID        = 0x9f,       /* read ID */
2928         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2929 };
2930
2931 /**
2932  *      sf1_read - read data from the serial flash
2933  *      @adapter: the adapter
2934  *      @byte_cnt: number of bytes to read
2935  *      @cont: whether another operation will be chained
2936  *      @lock: whether to lock SF for PL access only
2937  *      @valp: where to store the read data
2938  *
2939  *      Reads up to 4 bytes of data from the serial flash.  The location of
2940  *      the read needs to be specified prior to calling this by issuing the
2941  *      appropriate commands to the serial flash.
2942  */
2943 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2944                     int lock, u32 *valp)
2945 {
2946         int ret;
2947
2948         if (!byte_cnt || byte_cnt > 4)
2949                 return -EINVAL;
2950         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2951                 return -EBUSY;
2952         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2953                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2954         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2955         if (!ret)
2956                 *valp = t4_read_reg(adapter, SF_DATA_A);
2957         return ret;
2958 }
2959
2960 /**
2961  *      sf1_write - write data to the serial flash
2962  *      @adapter: the adapter
2963  *      @byte_cnt: number of bytes to write
2964  *      @cont: whether another operation will be chained
2965  *      @lock: whether to lock SF for PL access only
2966  *      @val: value to write
2967  *
2968  *      Writes up to 4 bytes of data to the serial flash.  The location of
2969  *      the write needs to be specified prior to calling this by issuing the
2970  *      appropriate commands to the serial flash.
2971  */
2972 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2973                      int lock, u32 val)
2974 {
2975         if (!byte_cnt || byte_cnt > 4)
2976                 return -EINVAL;
2977         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2978                 return -EBUSY;
2979         t4_write_reg(adapter, SF_DATA_A, val);
2980         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2981                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2982         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2983 }
2984
2985 /**
2986  *      flash_wait_op - wait for a flash operation to complete
2987  *      @adapter: the adapter
2988  *      @attempts: max number of polls of the status register
2989  *      @delay: delay between polls in ms
2990  *
2991  *      Wait for a flash operation to complete by polling the status register.
2992  */
2993 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2994 {
2995         int ret;
2996         u32 status;
2997
2998         while (1) {
2999                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3000                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3001                         return ret;
3002                 if (!(status & 1))
3003                         return 0;
3004                 if (--attempts == 0)
3005                         return -EAGAIN;
3006                 if (delay)
3007                         msleep(delay);
3008         }
3009 }
3010
3011 /**
3012  *      t4_read_flash - read words from serial flash
3013  *      @adapter: the adapter
3014  *      @addr: the start address for the read
3015  *      @nwords: how many 32-bit words to read
3016  *      @data: where to store the read data
3017  *      @byte_oriented: whether to store data as bytes or as words
3018  *
3019  *      Read the specified number of 32-bit words from the serial flash.
3020  *      If @byte_oriented is set the read data is stored as a byte array
3021  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3022  *      natural endianness.
3023  */
3024 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3025                   unsigned int nwords, u32 *data, int byte_oriented)
3026 {
3027         int ret;
3028
3029         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3030                 return -EINVAL;
3031
3032         addr = swab32(addr) | SF_RD_DATA_FAST;
3033
3034         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3035             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3036                 return ret;
3037
3038         for ( ; nwords; nwords--, data++) {
3039                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3040                 if (nwords == 1)
3041                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3042                 if (ret)
3043                         return ret;
3044                 if (byte_oriented)
3045                         *data = (__force __u32)(cpu_to_be32(*data));
3046         }
3047         return 0;
3048 }
3049
3050 /**
3051  *      t4_write_flash - write up to a page of data to the serial flash
3052  *      @adapter: the adapter
3053  *      @addr: the start address to write
3054  *      @n: length of data to write in bytes
3055  *      @data: the data to write
3056  *      @byte_oriented: whether to store data as bytes or as words
3057  *
3058  *      Writes up to a page of data (256 bytes) to the serial flash starting
3059  *      at the given address.  All the data must be written to the same page.
3060  *      If @byte_oriented is set the write data is stored as byte stream
3061  *      (i.e. matches what on disk), otherwise in big-endian.
3062  */
3063 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3064                           unsigned int n, const u8 *data, bool byte_oriented)
3065 {
3066         unsigned int i, c, left, val, offset = addr & 0xff;
3067         u32 buf[64];
3068         int ret;
3069
3070         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3071                 return -EINVAL;
3072
3073         val = swab32(addr) | SF_PROG_PAGE;
3074
3075         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3076             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3077                 goto unlock;
3078
3079         for (left = n; left; left -= c, data += c) {
3080                 c = min(left, 4U);
3081                 for (val = 0, i = 0; i < c; ++i) {
3082                         if (byte_oriented)
3083                                 val = (val << 8) + data[i];
3084                         else
3085                                 val = (val << 8) + data[c - i - 1];
3086                 }
3087
3088                 ret = sf1_write(adapter, c, c != left, 1, val);
3089                 if (ret)
3090                         goto unlock;
3091         }
3092         ret = flash_wait_op(adapter, 8, 1);
3093         if (ret)
3094                 goto unlock;
3095
3096         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3097
3098         /* Read the page to verify the write succeeded */
3099         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3100                             byte_oriented);
3101         if (ret)
3102                 return ret;
3103
3104         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3105                 dev_err(adapter->pdev_dev,
3106                         "failed to correctly write the flash page at %#x\n",
3107                         addr);
3108                 return -EIO;
3109         }
3110         return 0;
3111
3112 unlock:
3113         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3114         return ret;
3115 }
3116
3117 /**
3118  *      t4_get_fw_version - read the firmware version
3119  *      @adapter: the adapter
3120  *      @vers: where to place the version
3121  *
3122  *      Reads the FW version from flash.
3123  */
3124 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3125 {
3126         return t4_read_flash(adapter, FLASH_FW_START +
3127                              offsetof(struct fw_hdr, fw_ver), 1,
3128                              vers, 0);
3129 }
3130
3131 /**
3132  *      t4_get_bs_version - read the firmware bootstrap version
3133  *      @adapter: the adapter
3134  *      @vers: where to place the version
3135  *
3136  *      Reads the FW Bootstrap version from flash.
3137  */
3138 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3139 {
3140         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3141                              offsetof(struct fw_hdr, fw_ver), 1,
3142                              vers, 0);
3143 }
3144
3145 /**
3146  *      t4_get_tp_version - read the TP microcode version
3147  *      @adapter: the adapter
3148  *      @vers: where to place the version
3149  *
3150  *      Reads the TP microcode version from flash.
3151  */
3152 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3153 {
3154         return t4_read_flash(adapter, FLASH_FW_START +
3155                              offsetof(struct fw_hdr, tp_microcode_ver),
3156                              1, vers, 0);
3157 }
3158
3159 /**
3160  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3161  *      @adap: the adapter
3162  *      @vers: where to place the version
3163  *
3164  *      Reads the Expansion ROM header from FLASH and returns the version
3165  *      number (if present) through the @vers return value pointer.  We return
3166  *      this in the Firmware Version Format since it's convenient.  Return
3167  *      0 on success, -ENOENT if no Expansion ROM is present.
3168  */
3169 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3170 {
3171         struct exprom_header {
3172                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3173                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3174         } *hdr;
3175         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3176                                            sizeof(u32))];
3177         int ret;
3178
3179         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3180                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3181                             0);
3182         if (ret)
3183                 return ret;
3184
3185         hdr = (struct exprom_header *)exprom_header_buf;
3186         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3187                 return -ENOENT;
3188
3189         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3190                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3191                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3192                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3193         return 0;
3194 }
3195
3196 /**
3197  *      t4_get_vpd_version - return the VPD version
3198  *      @adapter: the adapter
3199  *      @vers: where to place the version
3200  *
3201  *      Reads the VPD via the Firmware interface (thus this can only be called
3202  *      once we're ready to issue Firmware commands).  The format of the
3203  *      VPD version is adapter specific.  Returns 0 on success, an error on
3204  *      failure.
3205  *
3206  *      Note that early versions of the Firmware didn't include the ability
3207  *      to retrieve the VPD version, so we zero-out the return-value parameter
3208  *      in that case to avoid leaving it with garbage in it.
3209  *
3210  *      Also note that the Firmware will return its cached copy of the VPD
3211  *      Revision ID, not the actual Revision ID as written in the Serial
3212  *      EEPROM.  This is only an issue if a new VPD has been written and the
3213  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3214  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3215  *      if the Host Driver will be performing a full adapter initialization.
3216  */
3217 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3218 {
3219         u32 vpdrev_param;
3220         int ret;
3221
3222         vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3223                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3224         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3225                               1, &vpdrev_param, vers);
3226         if (ret)
3227                 *vers = 0;
3228         return ret;
3229 }
3230
3231 /**
3232  *      t4_get_scfg_version - return the Serial Configuration version
3233  *      @adapter: the adapter
3234  *      @vers: where to place the version
3235  *
3236  *      Reads the Serial Configuration Version via the Firmware interface
3237  *      (thus this can only be called once we're ready to issue Firmware
3238  *      commands).  The format of the Serial Configuration version is
3239  *      adapter specific.  Returns 0 on success, an error on failure.
3240  *
3241  *      Note that early versions of the Firmware didn't include the ability
3242  *      to retrieve the Serial Configuration version, so we zero-out the
3243  *      return-value parameter in that case to avoid leaving it with
3244  *      garbage in it.
3245  *
3246  *      Also note that the Firmware will return its cached copy of the Serial
3247  *      Initialization Revision ID, not the actual Revision ID as written in
3248  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3249  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3250  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3251  *      been issued if the Host Driver will be performing a full adapter
3252  *      initialization.
3253  */
3254 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3255 {
3256         u32 scfgrev_param;
3257         int ret;
3258
3259         scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3260                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3261         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3262                               1, &scfgrev_param, vers);
3263         if (ret)
3264                 *vers = 0;
3265         return ret;
3266 }
3267
3268 /**
3269  *      t4_get_version_info - extract various chip/firmware version information
3270  *      @adapter: the adapter
3271  *
3272  *      Reads various chip/firmware version numbers and stores them into the
3273  *      adapter Adapter Parameters structure.  If any of the efforts fails
3274  *      the first failure will be returned, but all of the version numbers
3275  *      will be read.
3276  */
3277 int t4_get_version_info(struct adapter *adapter)
3278 {
3279         int ret = 0;
3280
3281         #define FIRST_RET(__getvinfo) \
3282         do { \
3283                 int __ret = __getvinfo; \
3284                 if (__ret && !ret) \
3285                         ret = __ret; \
3286         } while (0)
3287
3288         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3289         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3290         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3291         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3292         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3293         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3294
3295         #undef FIRST_RET
3296         return ret;
3297 }
3298
3299 /**
3300  *      t4_dump_version_info - dump all of the adapter configuration IDs
3301  *      @adapter: the adapter
3302  *
3303  *      Dumps all of the various bits of adapter configuration version/revision
3304  *      IDs information.  This is typically called at some point after
3305  *      t4_get_version_info() has been called.
3306  */
3307 void t4_dump_version_info(struct adapter *adapter)
3308 {
3309         /* Device information */
3310         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3311                  adapter->params.vpd.id,
3312                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
3313         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3314                  adapter->params.vpd.sn, adapter->params.vpd.pn);
3315
3316         /* Firmware Version */
3317         if (!adapter->params.fw_vers)
3318                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3319         else
3320                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3321                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3322                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3323                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3324                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3325
3326         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3327          * Firmware, so dev_info() is more appropriate here.)
3328          */
3329         if (!adapter->params.bs_vers)
3330                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3331         else
3332                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3333                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3334                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3335                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3336                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3337
3338         /* TP Microcode Version */
3339         if (!adapter->params.tp_vers)
3340                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3341         else
3342                 dev_info(adapter->pdev_dev,
3343                          "TP Microcode version: %u.%u.%u.%u\n",
3344                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3345                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3346                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3347                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3348
3349         /* Expansion ROM version */
3350         if (!adapter->params.er_vers)
3351                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3352         else
3353                 dev_info(adapter->pdev_dev,
3354                          "Expansion ROM version: %u.%u.%u.%u\n",
3355                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3356                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3357                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3358                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3359
3360         /* Serial Configuration version */
3361         dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3362                  adapter->params.scfg_vers);
3363
3364         /* VPD Version */
3365         dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3366                  adapter->params.vpd_vers);
3367 }
3368
3369 /**
3370  *      t4_check_fw_version - check if the FW is supported with this driver
3371  *      @adap: the adapter
3372  *
3373  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3374  *      if there's exact match, a negative error if the version could not be
3375  *      read or there's a major version mismatch
3376  */
3377 int t4_check_fw_version(struct adapter *adap)
3378 {
3379         int i, ret, major, minor, micro;
3380         int exp_major, exp_minor, exp_micro;
3381         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3382
3383         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3384         /* Try multiple times before returning error */
3385         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3386                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3387
3388         if (ret)
3389                 return ret;
3390
3391         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3392         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3393         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3394
3395         switch (chip_version) {
3396         case CHELSIO_T4:
3397                 exp_major = T4FW_MIN_VERSION_MAJOR;
3398                 exp_minor = T4FW_MIN_VERSION_MINOR;
3399                 exp_micro = T4FW_MIN_VERSION_MICRO;
3400                 break;
3401         case CHELSIO_T5:
3402                 exp_major = T5FW_MIN_VERSION_MAJOR;
3403                 exp_minor = T5FW_MIN_VERSION_MINOR;
3404                 exp_micro = T5FW_MIN_VERSION_MICRO;
3405                 break;
3406         case CHELSIO_T6:
3407                 exp_major = T6FW_MIN_VERSION_MAJOR;
3408                 exp_minor = T6FW_MIN_VERSION_MINOR;
3409                 exp_micro = T6FW_MIN_VERSION_MICRO;
3410                 break;
3411         default:
3412                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3413                         adap->chip);
3414                 return -EINVAL;
3415         }
3416
3417         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3418             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3419                 dev_err(adap->pdev_dev,
3420                         "Card has firmware version %u.%u.%u, minimum "
3421                         "supported firmware is %u.%u.%u.\n", major, minor,
3422                         micro, exp_major, exp_minor, exp_micro);
3423                 return -EFAULT;
3424         }
3425         return 0;
3426 }
3427
3428 /* Is the given firmware API compatible with the one the driver was compiled
3429  * with?
3430  */
3431 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3432 {
3433
3434         /* short circuit if it's the exact same firmware version */
3435         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3436                 return 1;
3437
3438 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3439         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3440             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3441                 return 1;
3442 #undef SAME_INTF
3443
3444         return 0;
3445 }
3446
3447 /* The firmware in the filesystem is usable, but should it be installed?
3448  * This routine explains itself in detail if it indicates the filesystem
3449  * firmware should be installed.
3450  */
3451 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3452                                 int k, int c)
3453 {
3454         const char *reason;
3455
3456         if (!card_fw_usable) {
3457                 reason = "incompatible or unusable";
3458                 goto install;
3459         }
3460
3461         if (k > c) {
3462                 reason = "older than the version supported with this driver";
3463                 goto install;
3464         }
3465
3466         return 0;
3467
3468 install:
3469         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3470                 "installing firmware %u.%u.%u.%u on card.\n",
3471                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3472                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3473                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3474                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3475
3476         return 1;
3477 }
3478
3479 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3480                const u8 *fw_data, unsigned int fw_size,
3481                struct fw_hdr *card_fw, enum dev_state state,
3482                int *reset)
3483 {
3484         int ret, card_fw_usable, fs_fw_usable;
3485         const struct fw_hdr *fs_fw;
3486         const struct fw_hdr *drv_fw;
3487
3488         drv_fw = &fw_info->fw_hdr;
3489
3490         /* Read the header of the firmware on the card */
3491         ret = t4_read_flash(adap, FLASH_FW_START,
3492                             sizeof(*card_fw) / sizeof(uint32_t),
3493                             (uint32_t *)card_fw, 1);
3494         if (ret == 0) {
3495                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3496         } else {
3497                 dev_err(adap->pdev_dev,
3498                         "Unable to read card's firmware header: %d\n", ret);
3499                 card_fw_usable = 0;
3500         }
3501
3502         if (fw_data != NULL) {
3503                 fs_fw = (const void *)fw_data;
3504                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3505         } else {
3506                 fs_fw = NULL;
3507                 fs_fw_usable = 0;
3508         }
3509
3510         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3511             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3512                 /* Common case: the firmware on the card is an exact match and
3513                  * the filesystem one is an exact match too, or the filesystem
3514                  * one is absent/incompatible.
3515                  */
3516         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3517                    should_install_fs_fw(adap, card_fw_usable,
3518                                         be32_to_cpu(fs_fw->fw_ver),
3519                                         be32_to_cpu(card_fw->fw_ver))) {
3520                 ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3521                                     fw_size, 0);
3522                 if (ret != 0) {
3523                         dev_err(adap->pdev_dev,
3524                                 "failed to install firmware: %d\n", ret);
3525                         goto bye;
3526                 }
3527
3528                 /* Installed successfully, update the cached header too. */
3529                 *card_fw = *fs_fw;
3530                 card_fw_usable = 1;
3531                 *reset = 0;     /* already reset as part of load_fw */
3532         }
3533
3534         if (!card_fw_usable) {
3535                 uint32_t d, c, k;
3536
3537                 d = be32_to_cpu(drv_fw->fw_ver);
3538                 c = be32_to_cpu(card_fw->fw_ver);
3539                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3540
3541                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3542                         "chip state %d, "
3543                         "driver compiled with %d.%d.%d.%d, "
3544                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3545                         state,
3546                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3547                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3548                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3549                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3550                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3551                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3552                 ret = -EINVAL;
3553                 goto bye;
3554         }
3555
3556         /* We're using whatever's on the card and it's known to be good. */
3557         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3558         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3559
3560 bye:
3561         return ret;
3562 }
3563
3564 /**
3565  *      t4_flash_erase_sectors - erase a range of flash sectors
3566  *      @adapter: the adapter
3567  *      @start: the first sector to erase
3568  *      @end: the last sector to erase
3569  *
3570  *      Erases the sectors in the given inclusive range.
3571  */
3572 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3573 {
3574         int ret = 0;
3575
3576         if (end >= adapter->params.sf_nsec)
3577                 return -EINVAL;
3578
3579         while (start <= end) {
3580                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3581                     (ret = sf1_write(adapter, 4, 0, 1,
3582                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3583                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3584                         dev_err(adapter->pdev_dev,
3585                                 "erase of flash sector %d failed, error %d\n",
3586                                 start, ret);
3587                         break;
3588                 }
3589                 start++;
3590         }
3591         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3592         return ret;
3593 }
3594
3595 /**
3596  *      t4_flash_cfg_addr - return the address of the flash configuration file
3597  *      @adapter: the adapter
3598  *
3599  *      Return the address within the flash where the Firmware Configuration
3600  *      File is stored.
3601  */
3602 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3603 {
3604         if (adapter->params.sf_size == 0x100000)
3605                 return FLASH_FPGA_CFG_START;
3606         else
3607                 return FLASH_CFG_START;
3608 }
3609
3610 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3611  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3612  * and emit an error message for mismatched firmware to save our caller the
3613  * effort ...
3614  */
3615 static bool t4_fw_matches_chip(const struct adapter *adap,
3616                                const struct fw_hdr *hdr)
3617 {
3618         /* The expression below will return FALSE for any unsupported adapter
3619          * which will keep us "honest" in the future ...
3620          */
3621         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3622             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3623             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3624                 return true;
3625
3626         dev_err(adap->pdev_dev,
3627                 "FW image (%d) is not suitable for this adapter (%d)\n",
3628                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3629         return false;
3630 }
3631
3632 /**
3633  *      t4_load_fw - download firmware
3634  *      @adap: the adapter
3635  *      @fw_data: the firmware image to write
3636  *      @size: image size
3637  *
3638  *      Write the supplied firmware image to the card's serial flash.
3639  */
3640 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3641 {
3642         u32 csum;
3643         int ret, addr;
3644         unsigned int i;
3645         u8 first_page[SF_PAGE_SIZE];
3646         const __be32 *p = (const __be32 *)fw_data;
3647         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3648         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3649         unsigned int fw_start_sec = FLASH_FW_START_SEC;
3650         unsigned int fw_size = FLASH_FW_MAX_SIZE;
3651         unsigned int fw_start = FLASH_FW_START;
3652
3653         if (!size) {
3654                 dev_err(adap->pdev_dev, "FW image has no data\n");
3655                 return -EINVAL;
3656         }
3657         if (size & 511) {
3658                 dev_err(adap->pdev_dev,
3659                         "FW image size not multiple of 512 bytes\n");
3660                 return -EINVAL;
3661         }
3662         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3663                 dev_err(adap->pdev_dev,
3664                         "FW image size differs from size in FW header\n");
3665                 return -EINVAL;
3666         }
3667         if (size > fw_size) {
3668                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3669                         fw_size);
3670                 return -EFBIG;
3671         }
3672         if (!t4_fw_matches_chip(adap, hdr))
3673                 return -EINVAL;
3674
3675         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3676                 csum += be32_to_cpu(p[i]);
3677
3678         if (csum != 0xffffffff) {
3679                 dev_err(adap->pdev_dev,
3680                         "corrupted firmware image, checksum %#x\n", csum);
3681                 return -EINVAL;
3682         }
3683
3684         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3685         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3686         if (ret)
3687                 goto out;
3688
3689         /*
3690          * We write the correct version at the end so the driver can see a bad
3691          * version if the FW write fails.  Start by writing a copy of the
3692          * first page with a bad version.
3693          */
3694         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3695         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3696         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3697         if (ret)
3698                 goto out;
3699
3700         addr = fw_start;
3701         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3702                 addr += SF_PAGE_SIZE;
3703                 fw_data += SF_PAGE_SIZE;
3704                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3705                 if (ret)
3706                         goto out;
3707         }
3708
3709         ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3710                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3711                              true);
3712 out:
3713         if (ret)
3714                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3715                         ret);
3716         else
3717                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3718         return ret;
3719 }
3720
3721 /**
3722  *      t4_phy_fw_ver - return current PHY firmware version
3723  *      @adap: the adapter
3724  *      @phy_fw_ver: return value buffer for PHY firmware version
3725  *
3726  *      Returns the current version of external PHY firmware on the
3727  *      adapter.
3728  */
3729 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3730 {
3731         u32 param, val;
3732         int ret;
3733
3734         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3735                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3736                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3737                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3738         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3739                               &param, &val);
3740         if (ret)
3741                 return ret;
3742         *phy_fw_ver = val;
3743         return 0;
3744 }
3745
3746 /**
3747  *      t4_load_phy_fw - download port PHY firmware
3748  *      @adap: the adapter
3749  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3750  *      @phy_fw_version: function to check PHY firmware versions
3751  *      @phy_fw_data: the PHY firmware image to write
3752  *      @phy_fw_size: image size
3753  *
3754  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3755  *      @phy_fw_version is supplied, then it will be used to determine if
3756  *      it's necessary to perform the transfer by comparing the version
3757  *      of any existing adapter PHY firmware with that of the passed in
3758  *      PHY firmware image.
3759  *
3760  *      A negative error number will be returned if an error occurs.  If
3761  *      version number support is available and there's no need to upgrade
3762  *      the firmware, 0 will be returned.  If firmware is successfully
3763  *      transferred to the adapter, 1 will be returned.
3764  *
3765  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3766  *      a result, a RESET of the adapter would cause that RAM to lose its
3767  *      contents.  Thus, loading PHY firmware on such adapters must happen
3768  *      after any FW_RESET_CMDs ...
3769  */
3770 int t4_load_phy_fw(struct adapter *adap, int win,
3771                    int (*phy_fw_version)(const u8 *, size_t),
3772                    const u8 *phy_fw_data, size_t phy_fw_size)
3773 {
3774         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3775         unsigned long mtype = 0, maddr = 0;
3776         u32 param, val;
3777         int ret;
3778
3779         /* If we have version number support, then check to see if the adapter
3780          * already has up-to-date PHY firmware loaded.
3781          */
3782         if (phy_fw_version) {
3783                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3784                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3785                 if (ret < 0)
3786                         return ret;
3787
3788                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3789                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3790                                 "version %#x\n", cur_phy_fw_ver);
3791                         return 0;
3792                 }
3793         }
3794
3795         /* Ask the firmware where it wants us to copy the PHY firmware image.
3796          * The size of the file requires a special version of the READ command
3797          * which will pass the file size via the values field in PARAMS_CMD and
3798          * retrieve the return value from firmware and place it in the same
3799          * buffer values
3800          */
3801         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3802                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3803                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3804                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3805         val = phy_fw_size;
3806         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3807                                  &param, &val, 1, true);
3808         if (ret < 0)
3809                 return ret;
3810         mtype = val >> 8;
3811         maddr = (val & 0xff) << 16;
3812
3813         /* Copy the supplied PHY Firmware image to the adapter memory location
3814          * allocated by the adapter firmware.
3815          */
3816         spin_lock_bh(&adap->win0_lock);
3817         ret = t4_memory_rw(adap, win, mtype, maddr,
3818                            phy_fw_size, (__be32 *)phy_fw_data,
3819                            T4_MEMORY_WRITE);
3820         spin_unlock_bh(&adap->win0_lock);
3821         if (ret)
3822                 return ret;
3823
3824         /* Tell the firmware that the PHY firmware image has been written to
3825          * RAM and it can now start copying it over to the PHYs.  The chip
3826          * firmware will RESET the affected PHYs as part of this operation
3827          * leaving them running the new PHY firmware image.
3828          */
3829         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3830                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3831                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3832                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3833         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3834                                     &param, &val, 30000);
3835
3836         /* If we have version number support, then check to see that the new
3837          * firmware got loaded properly.
3838          */
3839         if (phy_fw_version) {
3840                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3841                 if (ret < 0)
3842                         return ret;
3843
3844                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3845                         CH_WARN(adap, "PHY Firmware did not update: "
3846                                 "version on adapter %#x, "
3847                                 "version flashed %#x\n",
3848                                 cur_phy_fw_ver, new_phy_fw_vers);
3849                         return -ENXIO;
3850                 }
3851         }
3852
3853         return 1;
3854 }
3855
3856 /**
3857  *      t4_fwcache - firmware cache operation
3858  *      @adap: the adapter
3859  *      @op  : the operation (flush or flush and invalidate)
3860  */
3861 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3862 {
3863         struct fw_params_cmd c;
3864
3865         memset(&c, 0, sizeof(c));
3866         c.op_to_vfn =
3867                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3868                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3869                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3870                             FW_PARAMS_CMD_VFN_V(0));
3871         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3872         c.param[0].mnem =
3873                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3874                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3875         c.param[0].val = cpu_to_be32(op);
3876
3877         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3878 }
3879
3880 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3881                         unsigned int *pif_req_wrptr,
3882                         unsigned int *pif_rsp_wrptr)
3883 {
3884         int i, j;
3885         u32 cfg, val, req, rsp;
3886
3887         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3888         if (cfg & LADBGEN_F)
3889                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3890
3891         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3892         req = POLADBGWRPTR_G(val);
3893         rsp = PILADBGWRPTR_G(val);
3894         if (pif_req_wrptr)
3895                 *pif_req_wrptr = req;
3896         if (pif_rsp_wrptr)
3897                 *pif_rsp_wrptr = rsp;
3898
3899         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3900                 for (j = 0; j < 6; j++) {
3901                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3902                                      PILADBGRDPTR_V(rsp));
3903                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3904                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3905                         req++;
3906                         rsp++;
3907                 }
3908                 req = (req + 2) & POLADBGRDPTR_M;
3909                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3910         }
3911         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3912 }
3913
3914 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3915 {
3916         u32 cfg;
3917         int i, j, idx;
3918
3919         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3920         if (cfg & LADBGEN_F)
3921                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3922
3923         for (i = 0; i < CIM_MALA_SIZE; i++) {
3924                 for (j = 0; j < 5; j++) {
3925                         idx = 8 * i + j;
3926                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3927                                      PILADBGRDPTR_V(idx));
3928                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3929                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3930                 }
3931         }
3932         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3933 }
3934
3935 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3936 {
3937         unsigned int i, j;
3938
3939         for (i = 0; i < 8; i++) {
3940                 u32 *p = la_buf + i;
3941
3942                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3943                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3944                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3945                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3946                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3947         }
3948 }
3949
3950 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3951  * Capabilities which we control with separate controls -- see, for instance,
3952  * Pause Frames and Forward Error Correction.  In order to determine what the
3953  * full set of Advertised Port Capabilities are, the base Advertised Port
3954  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3955  * Port Capabilities associated with those other controls.  See
3956  * t4_link_acaps() for how this is done.
3957  */
3958 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3959                      FW_PORT_CAP32_ANEG)
3960
3961 /**
3962  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3963  *      @caps16: a 16-bit Port Capabilities value
3964  *
3965  *      Returns the equivalent 32-bit Port Capabilities value.
3966  */
3967 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3968 {
3969         fw_port_cap32_t caps32 = 0;
3970
3971         #define CAP16_TO_CAP32(__cap) \
3972                 do { \
3973                         if (caps16 & FW_PORT_CAP_##__cap) \
3974                                 caps32 |= FW_PORT_CAP32_##__cap; \
3975                 } while (0)
3976
3977         CAP16_TO_CAP32(SPEED_100M);
3978         CAP16_TO_CAP32(SPEED_1G);
3979         CAP16_TO_CAP32(SPEED_25G);
3980         CAP16_TO_CAP32(SPEED_10G);
3981         CAP16_TO_CAP32(SPEED_40G);
3982         CAP16_TO_CAP32(SPEED_100G);
3983         CAP16_TO_CAP32(FC_RX);
3984         CAP16_TO_CAP32(FC_TX);
3985         CAP16_TO_CAP32(ANEG);
3986         CAP16_TO_CAP32(FORCE_PAUSE);
3987         CAP16_TO_CAP32(MDIAUTO);
3988         CAP16_TO_CAP32(MDISTRAIGHT);
3989         CAP16_TO_CAP32(FEC_RS);
3990         CAP16_TO_CAP32(FEC_BASER_RS);
3991         CAP16_TO_CAP32(802_3_PAUSE);
3992         CAP16_TO_CAP32(802_3_ASM_DIR);
3993
3994         #undef CAP16_TO_CAP32
3995
3996         return caps32;
3997 }
3998
3999 /**
4000  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4001  *      @caps32: a 32-bit Port Capabilities value
4002  *
4003  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
4004  *      not all 32-bit Port Capabilities can be represented in the 16-bit
4005  *      Port Capabilities and some fields/values may not make it.
4006  */
4007 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4008 {
4009         fw_port_cap16_t caps16 = 0;
4010
4011         #define CAP32_TO_CAP16(__cap) \
4012                 do { \
4013                         if (caps32 & FW_PORT_CAP32_##__cap) \
4014                                 caps16 |= FW_PORT_CAP_##__cap; \
4015                 } while (0)
4016
4017         CAP32_TO_CAP16(SPEED_100M);
4018         CAP32_TO_CAP16(SPEED_1G);
4019         CAP32_TO_CAP16(SPEED_10G);
4020         CAP32_TO_CAP16(SPEED_25G);
4021         CAP32_TO_CAP16(SPEED_40G);
4022         CAP32_TO_CAP16(SPEED_100G);
4023         CAP32_TO_CAP16(FC_RX);
4024         CAP32_TO_CAP16(FC_TX);
4025         CAP32_TO_CAP16(802_3_PAUSE);
4026         CAP32_TO_CAP16(802_3_ASM_DIR);
4027         CAP32_TO_CAP16(ANEG);
4028         CAP32_TO_CAP16(FORCE_PAUSE);
4029         CAP32_TO_CAP16(MDIAUTO);
4030         CAP32_TO_CAP16(MDISTRAIGHT);
4031         CAP32_TO_CAP16(FEC_RS);
4032         CAP32_TO_CAP16(FEC_BASER_RS);
4033
4034         #undef CAP32_TO_CAP16
4035
4036         return caps16;
4037 }
4038
4039 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4040 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4041 {
4042         enum cc_pause cc_pause = 0;
4043
4044         if (fw_pause & FW_PORT_CAP32_FC_RX)
4045                 cc_pause |= PAUSE_RX;
4046         if (fw_pause & FW_PORT_CAP32_FC_TX)
4047                 cc_pause |= PAUSE_TX;
4048
4049         return cc_pause;
4050 }
4051
4052 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4053 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4054 {
4055         /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4056          * commands, etc.
4057          */
4058         fw_port_cap32_t fw_pause = 0;
4059
4060         if (cc_pause & PAUSE_RX)
4061                 fw_pause |= FW_PORT_CAP32_FC_RX;
4062         if (cc_pause & PAUSE_TX)
4063                 fw_pause |= FW_PORT_CAP32_FC_TX;
4064         if (!(cc_pause & PAUSE_AUTONEG))
4065                 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4066
4067         /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4068          * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4069          * Note that these bits are ignored in L1 Configure commands.
4070          */
4071         if (cc_pause & PAUSE_RX) {
4072                 if (cc_pause & PAUSE_TX)
4073                         fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4074                 else
4075                         fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4076                                     FW_PORT_CAP32_802_3_PAUSE;
4077         } else if (cc_pause & PAUSE_TX) {
4078                 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4079         }
4080
4081         return fw_pause;
4082 }
4083
4084 /* Translate Firmware Forward Error Correction specification to Common Code */
4085 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4086 {
4087         enum cc_fec cc_fec = 0;
4088
4089         if (fw_fec & FW_PORT_CAP32_FEC_RS)
4090                 cc_fec |= FEC_RS;
4091         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4092                 cc_fec |= FEC_BASER_RS;
4093
4094         return cc_fec;
4095 }
4096
4097 /* Translate Common Code Forward Error Correction specification to Firmware */
4098 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4099 {
4100         fw_port_cap32_t fw_fec = 0;
4101
4102         if (cc_fec & FEC_RS)
4103                 fw_fec |= FW_PORT_CAP32_FEC_RS;
4104         if (cc_fec & FEC_BASER_RS)
4105                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4106
4107         return fw_fec;
4108 }
4109
4110 /**
4111  *      t4_link_acaps - compute Link Advertised Port Capabilities
4112  *      @adapter: the adapter
4113  *      @port: the Port ID
4114  *      @lc: the Port's Link Configuration
4115  *
4116  *      Synthesize the Advertised Port Capabilities we'll be using based on
4117  *      the base Advertised Port Capabilities (which have been filtered by
4118  *      ADVERT_MASK) plus the individual controls for things like Pause
4119  *      Frames, Forward Error Correction, MDI, etc.
4120  */
4121 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4122                               struct link_config *lc)
4123 {
4124         fw_port_cap32_t fw_fc, fw_fec, acaps;
4125         unsigned int fw_mdi;
4126         char cc_fec;
4127
4128         fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4129
4130         /* Convert driver coding of Pause Frame Flow Control settings into the
4131          * Firmware's API.
4132          */
4133         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4134
4135         /* Convert Common Code Forward Error Control settings into the
4136          * Firmware's API.  If the current Requested FEC has "Automatic"
4137          * (IEEE 802.3) specified, then we use whatever the Firmware
4138          * sent us as part of its IEEE 802.3-based interpretation of
4139          * the Transceiver Module EPROM FEC parameters.  Otherwise we
4140          * use whatever is in the current Requested FEC settings.
4141          */
4142         if (lc->requested_fec & FEC_AUTO)
4143                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4144         else
4145                 cc_fec = lc->requested_fec;
4146         fw_fec = cc_to_fwcap_fec(cc_fec);
4147
4148         /* Figure out what our Requested Port Capabilities are going to be.
4149          * Note parallel structure in t4_handle_get_port_info() and
4150          * init_link_config().
4151          */
4152         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4153                 acaps = lc->acaps | fw_fc | fw_fec;
4154                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4155                 lc->fec = cc_fec;
4156         } else if (lc->autoneg == AUTONEG_DISABLE) {
4157                 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4158                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4159                 lc->fec = cc_fec;
4160         } else {
4161                 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4162         }
4163
4164         /* Some Requested Port Capabilities are trivially wrong if they exceed
4165          * the Physical Port Capabilities.  We can check that here and provide
4166          * moderately useful feedback in the system log.
4167          *
4168          * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4169          * we need to exclude this from this check in order to maintain
4170          * compatibility ...
4171          */
4172         if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4173                 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4174                         acaps, lc->pcaps);
4175                 return -EINVAL;
4176         }
4177
4178         return acaps;
4179 }
4180
4181 /**
4182  *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4183  *      @adapter: the adapter
4184  *      @mbox: the Firmware Mailbox to use
4185  *      @port: the Port ID
4186  *      @lc: the Port's Link Configuration
4187  *      @sleep_ok: if true we may sleep while awaiting command completion
4188  *      @timeout: time to wait for command to finish before timing out
4189  *              (negative implies @sleep_ok=false)
4190  *
4191  *      Set up a port's MAC and PHY according to a desired link configuration.
4192  *      - If the PHY can auto-negotiate first decide what to advertise, then
4193  *        enable/disable auto-negotiation as desired, and reset.
4194  *      - If the PHY does not auto-negotiate just reset it.
4195  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4196  *        otherwise do it later based on the outcome of auto-negotiation.
4197  */
4198 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4199                        unsigned int port, struct link_config *lc,
4200                        u8 sleep_ok, int timeout)
4201 {
4202         unsigned int fw_caps = adapter->params.fw_caps_support;
4203         struct fw_port_cmd cmd;
4204         fw_port_cap32_t rcap;
4205         int ret;
4206
4207         if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4208             lc->autoneg == AUTONEG_ENABLE) {
4209                 return -EINVAL;
4210         }
4211
4212         /* Compute our Requested Port Capabilities and send that on to the
4213          * Firmware.
4214          */
4215         rcap = t4_link_acaps(adapter, port, lc);
4216         memset(&cmd, 0, sizeof(cmd));
4217         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4218                                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4219                                        FW_PORT_CMD_PORTID_V(port));
4220         cmd.action_to_len16 =
4221                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4222                                                  ? FW_PORT_ACTION_L1_CFG
4223                                                  : FW_PORT_ACTION_L1_CFG32) |
4224                                                  FW_LEN16(cmd));
4225         if (fw_caps == FW_CAPS16)
4226                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4227         else
4228                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4229
4230         ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4231                                       sleep_ok, timeout);
4232
4233         /* Unfortunately, even if the Requested Port Capabilities "fit" within
4234          * the Physical Port Capabilities, some combinations of features may
4235          * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4236          * Error Correction.  So if the Firmware rejects the L1 Configure
4237          * request, flag that here.
4238          */
4239         if (ret) {
4240                 dev_err(adapter->pdev_dev,
4241                         "Requested Port Capabilities %#x rejected, error %d\n",
4242                         rcap, -ret);
4243                 return ret;
4244         }
4245         return 0;
4246 }
4247
4248 /**
4249  *      t4_restart_aneg - restart autonegotiation
4250  *      @adap: the adapter
4251  *      @mbox: mbox to use for the FW command
4252  *      @port: the port id
4253  *
4254  *      Restarts autonegotiation for the selected port.
4255  */
4256 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4257 {
4258         unsigned int fw_caps = adap->params.fw_caps_support;
4259         struct fw_port_cmd c;
4260
4261         memset(&c, 0, sizeof(c));
4262         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4263                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4264                                      FW_PORT_CMD_PORTID_V(port));
4265         c.action_to_len16 =
4266                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4267                                                  ? FW_PORT_ACTION_L1_CFG
4268                                                  : FW_PORT_ACTION_L1_CFG32) |
4269                             FW_LEN16(c));
4270         if (fw_caps == FW_CAPS16)
4271                 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4272         else
4273                 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4274         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4275 }
4276
4277 typedef void (*int_handler_t)(struct adapter *adap);
4278
4279 struct intr_info {
4280         unsigned int mask;       /* bits to check in interrupt status */
4281         const char *msg;         /* message to print or NULL */
4282         short stat_idx;          /* stat counter to increment or -1 */
4283         unsigned short fatal;    /* whether the condition reported is fatal */
4284         int_handler_t int_handler; /* platform-specific int handler */
4285 };
4286
4287 /**
4288  *      t4_handle_intr_status - table driven interrupt handler
4289  *      @adapter: the adapter that generated the interrupt
4290  *      @reg: the interrupt status register to process
4291  *      @acts: table of interrupt actions
4292  *
4293  *      A table driven interrupt handler that applies a set of masks to an
4294  *      interrupt status word and performs the corresponding actions if the
4295  *      interrupts described by the mask have occurred.  The actions include
4296  *      optionally emitting a warning or alert message.  The table is terminated
4297  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4298  *      conditions.
4299  */
4300 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4301                                  const struct intr_info *acts)
4302 {
4303         int fatal = 0;
4304         unsigned int mask = 0;
4305         unsigned int status = t4_read_reg(adapter, reg);
4306
4307         for ( ; acts->mask; ++acts) {
4308                 if (!(status & acts->mask))
4309                         continue;
4310                 if (acts->fatal) {
4311                         fatal++;
4312                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4313                                   status & acts->mask);
4314                 } else if (acts->msg && printk_ratelimit())
4315                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4316                                  status & acts->mask);
4317                 if (acts->int_handler)
4318                         acts->int_handler(adapter);
4319                 mask |= acts->mask;
4320         }
4321         status &= mask;
4322         if (status)                           /* clear processed interrupts */
4323                 t4_write_reg(adapter, reg, status);
4324         return fatal;
4325 }
4326
4327 /*
4328  * Interrupt handler for the PCIE module.
4329  */
4330 static void pcie_intr_handler(struct adapter *adapter)
4331 {
4332         static const struct intr_info sysbus_intr_info[] = {
4333                 { RNPP_F, "RXNP array parity error", -1, 1 },
4334                 { RPCP_F, "RXPC array parity error", -1, 1 },
4335                 { RCIP_F, "RXCIF array parity error", -1, 1 },
4336                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4337                 { RFTP_F, "RXFT array parity error", -1, 1 },
4338                 { 0 }
4339         };
4340         static const struct intr_info pcie_port_intr_info[] = {
4341                 { TPCP_F, "TXPC array parity error", -1, 1 },
4342                 { TNPP_F, "TXNP array parity error", -1, 1 },
4343                 { TFTP_F, "TXFT array parity error", -1, 1 },
4344                 { TCAP_F, "TXCA array parity error", -1, 1 },
4345                 { TCIP_F, "TXCIF array parity error", -1, 1 },
4346                 { RCAP_F, "RXCA array parity error", -1, 1 },
4347                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4348                 { RDPE_F, "Rx data parity error", -1, 1 },
4349                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4350                 { 0 }
4351         };
4352         static const struct intr_info pcie_intr_info[] = {
4353                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4354                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4355                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4356                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4357                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4358                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4359                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4360                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4361                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4362                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4363                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4364                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4365                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4366                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4367                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4368                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4369                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4370                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4371                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4372                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4373                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4374                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4375                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4376                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4377                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4378                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4379                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4380                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4381                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4382                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4383                   -1, 0 },
4384                 { 0 }
4385         };
4386
4387         static struct intr_info t5_pcie_intr_info[] = {
4388                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4389                   -1, 1 },
4390                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4391                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4392                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4393                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4394                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4395                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4396                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4397                   -1, 1 },
4398                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4399                   -1, 1 },
4400                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4401                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4402                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4403                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4404                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4405                   -1, 1 },
4406                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4407                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4408                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4409                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4410                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4411                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4412                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4413                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4414                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4415                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4416                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4417                   -1, 1 },
4418                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4419                   -1, 1 },
4420                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4421                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4422                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4423                 { READRSPERR_F, "Outbound read error", -1, 0 },
4424                 { 0 }
4425         };
4426
4427         int fat;
4428
4429         if (is_t4(adapter->params.chip))
4430                 fat = t4_handle_intr_status(adapter,
4431                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4432                                 sysbus_intr_info) +
4433                         t4_handle_intr_status(adapter,
4434                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4435                                         pcie_port_intr_info) +
4436                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4437                                               pcie_intr_info);
4438         else
4439                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4440                                             t5_pcie_intr_info);
4441
4442         if (fat)
4443                 t4_fatal_err(adapter);
4444 }
4445
4446 /*
4447  * TP interrupt handler.
4448  */
4449 static void tp_intr_handler(struct adapter *adapter)
4450 {
4451         static const struct intr_info tp_intr_info[] = {
4452                 { 0x3fffffff, "TP parity error", -1, 1 },
4453                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4454                 { 0 }
4455         };
4456
4457         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4458                 t4_fatal_err(adapter);
4459 }
4460
4461 /*
4462  * SGE interrupt handler.
4463  */
4464 static void sge_intr_handler(struct adapter *adapter)
4465 {
4466         u32 v = 0, perr;
4467         u32 err;
4468
4469         static const struct intr_info sge_intr_info[] = {
4470                 { ERR_CPL_EXCEED_IQE_SIZE_F,
4471                   "SGE received CPL exceeding IQE size", -1, 1 },
4472                 { ERR_INVALID_CIDX_INC_F,
4473                   "SGE GTS CIDX increment too large", -1, 0 },
4474                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4475                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4476                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4477                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4478                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4479                   0 },
4480                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4481                   0 },
4482                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4483                   0 },
4484                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4485                   0 },
4486                 { ERR_ING_CTXT_PRIO_F,
4487                   "SGE too many priority ingress contexts", -1, 0 },
4488                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4489                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4490                 { 0 }
4491         };
4492
4493         static struct intr_info t4t5_sge_intr_info[] = {
4494                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4495                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4496                 { ERR_EGR_CTXT_PRIO_F,
4497                   "SGE too many priority egress contexts", -1, 0 },
4498                 { 0 }
4499         };
4500
4501         perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4502         if (perr) {
4503                 v |= perr;
4504                 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4505                           perr);
4506         }
4507
4508         perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4509         if (perr) {
4510                 v |= perr;
4511                 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4512                           perr);
4513         }
4514
4515         if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4516                 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4517                 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4518                 perr &= ~ERR_T_RXCRC_F;
4519                 if (perr) {
4520                         v |= perr;
4521                         dev_alert(adapter->pdev_dev,
4522                                   "SGE Cause5 Parity Error %#x\n", perr);
4523                 }
4524         }
4525
4526         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4527         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4528                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4529                                            t4t5_sge_intr_info);
4530
4531         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4532         if (err & ERROR_QID_VALID_F) {
4533                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4534                         ERROR_QID_G(err));
4535                 if (err & UNCAPTURED_ERROR_F)
4536                         dev_err(adapter->pdev_dev,
4537                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4538                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4539                              UNCAPTURED_ERROR_F);
4540         }
4541
4542         if (v != 0)
4543                 t4_fatal_err(adapter);
4544 }
4545
4546 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4547                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4548 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4549                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4550
4551 /*
4552  * CIM interrupt handler.
4553  */
4554 static void cim_intr_handler(struct adapter *adapter)
4555 {
4556         static const struct intr_info cim_intr_info[] = {
4557                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4558                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4559                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4560                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4561                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4562                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4563                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4564                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4565                 { 0 }
4566         };
4567         static const struct intr_info cim_upintr_info[] = {
4568                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4569                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4570                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4571                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4572                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4573                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4574                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4575                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4576                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4577                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4578                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4579                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4580                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4581                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4582                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4583                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4584                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4585                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4586                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4587                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4588                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4589                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4590                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4591                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4592                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4593                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4594                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4595                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4596                 { 0 }
4597         };
4598
4599         u32 val, fw_err;
4600         int fat;
4601
4602         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4603         if (fw_err & PCIE_FW_ERR_F)
4604                 t4_report_fw_error(adapter);
4605
4606         /* When the Firmware detects an internal error which normally
4607          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4608          * in order to make sure the Host sees the Firmware Crash.  So
4609          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4610          * ignore the Timer0 interrupt.
4611          */
4612
4613         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4614         if (val & TIMER0INT_F)
4615                 if (!(fw_err & PCIE_FW_ERR_F) ||
4616                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4617                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4618                                      TIMER0INT_F);
4619
4620         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4621                                     cim_intr_info) +
4622               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4623                                     cim_upintr_info);
4624         if (fat)
4625                 t4_fatal_err(adapter);
4626 }
4627
4628 /*
4629  * ULP RX interrupt handler.
4630  */
4631 static void ulprx_intr_handler(struct adapter *adapter)
4632 {
4633         static const struct intr_info ulprx_intr_info[] = {
4634                 { 0x1800000, "ULPRX context error", -1, 1 },
4635                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4636                 { 0 }
4637         };
4638
4639         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4640                 t4_fatal_err(adapter);
4641 }
4642
4643 /*
4644  * ULP TX interrupt handler.
4645  */
4646 static void ulptx_intr_handler(struct adapter *adapter)
4647 {
4648         static const struct intr_info ulptx_intr_info[] = {
4649                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4650                   0 },
4651                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4652                   0 },
4653                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4654                   0 },
4655                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4656                   0 },
4657                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4658                 { 0 }
4659         };
4660
4661         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4662                 t4_fatal_err(adapter);
4663 }
4664
4665 /*
4666  * PM TX interrupt handler.
4667  */
4668 static void pmtx_intr_handler(struct adapter *adapter)
4669 {
4670         static const struct intr_info pmtx_intr_info[] = {
4671                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4672                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4673                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4674                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4675                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4676                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4677                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4678                   -1, 1 },
4679                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4680                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4681                 { 0 }
4682         };
4683
4684         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4685                 t4_fatal_err(adapter);
4686 }
4687
4688 /*
4689  * PM RX interrupt handler.
4690  */
4691 static void pmrx_intr_handler(struct adapter *adapter)
4692 {
4693         static const struct intr_info pmrx_intr_info[] = {
4694                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4695                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4696                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4697                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4698                   -1, 1 },
4699                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4700                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4701                 { 0 }
4702         };
4703
4704         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4705                 t4_fatal_err(adapter);
4706 }
4707
4708 /*
4709  * CPL switch interrupt handler.
4710  */
4711 static void cplsw_intr_handler(struct adapter *adapter)
4712 {
4713         static const struct intr_info cplsw_intr_info[] = {
4714                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4715                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4716                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4717                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4718                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4719                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4720                 { 0 }
4721         };
4722
4723         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4724                 t4_fatal_err(adapter);
4725 }
4726
4727 /*
4728  * LE interrupt handler.
4729  */
4730 static void le_intr_handler(struct adapter *adap)
4731 {
4732         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4733         static const struct intr_info le_intr_info[] = {
4734                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4735                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4736                 { PARITYERR_F, "LE parity error", -1, 1 },
4737                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4738                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4739                 { 0 }
4740         };
4741
4742         static struct intr_info t6_le_intr_info[] = {
4743                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4744                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4745                 { CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4746                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4747                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4748                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4749                 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4750                 { 0 }
4751         };
4752
4753         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4754                                   (chip <= CHELSIO_T5) ?
4755                                   le_intr_info : t6_le_intr_info))
4756                 t4_fatal_err(adap);
4757 }
4758
4759 /*
4760  * MPS interrupt handler.
4761  */
4762 static void mps_intr_handler(struct adapter *adapter)
4763 {
4764         static const struct intr_info mps_rx_intr_info[] = {
4765                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4766                 { 0 }
4767         };
4768         static const struct intr_info mps_tx_intr_info[] = {
4769                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4770                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4771                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4772                   -1, 1 },
4773                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4774                   -1, 1 },
4775                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4776                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4777                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4778                 { 0 }
4779         };
4780         static const struct intr_info t6_mps_tx_intr_info[] = {
4781                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4782                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4783                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4784                   -1, 1 },
4785                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4786                   -1, 1 },
4787                 /* MPS Tx Bubble is normal for T6 */
4788                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4789                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4790                 { 0 }
4791         };
4792         static const struct intr_info mps_trc_intr_info[] = {
4793                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4794                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4795                   -1, 1 },
4796                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4797                 { 0 }
4798         };
4799         static const struct intr_info mps_stat_sram_intr_info[] = {
4800                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4801                 { 0 }
4802         };
4803         static const struct intr_info mps_stat_tx_intr_info[] = {
4804                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4805                 { 0 }
4806         };
4807         static const struct intr_info mps_stat_rx_intr_info[] = {
4808                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4809                 { 0 }
4810         };
4811         static const struct intr_info mps_cls_intr_info[] = {
4812                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4813                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4814                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4815                 { 0 }
4816         };
4817
4818         int fat;
4819
4820         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4821                                     mps_rx_intr_info) +
4822               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4823                                     is_t6(adapter->params.chip)
4824                                     ? t6_mps_tx_intr_info
4825                                     : mps_tx_intr_info) +
4826               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4827                                     mps_trc_intr_info) +
4828               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4829                                     mps_stat_sram_intr_info) +
4830               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4831                                     mps_stat_tx_intr_info) +
4832               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4833                                     mps_stat_rx_intr_info) +
4834               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4835                                     mps_cls_intr_info);
4836
4837         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4838         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4839         if (fat)
4840                 t4_fatal_err(adapter);
4841 }
4842
4843 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4844                       ECC_UE_INT_CAUSE_F)
4845
4846 /*
4847  * EDC/MC interrupt handler.
4848  */
4849 static void mem_intr_handler(struct adapter *adapter, int idx)
4850 {
4851         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4852
4853         unsigned int addr, cnt_addr, v;
4854
4855         if (idx <= MEM_EDC1) {
4856                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4857                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4858         } else if (idx == MEM_MC) {
4859                 if (is_t4(adapter->params.chip)) {
4860                         addr = MC_INT_CAUSE_A;
4861                         cnt_addr = MC_ECC_STATUS_A;
4862                 } else {
4863                         addr = MC_P_INT_CAUSE_A;
4864                         cnt_addr = MC_P_ECC_STATUS_A;
4865                 }
4866         } else {
4867                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4868                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4869         }
4870
4871         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4872         if (v & PERR_INT_CAUSE_F)
4873                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4874                           name[idx]);
4875         if (v & ECC_CE_INT_CAUSE_F) {
4876                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4877
4878                 t4_edc_err_read(adapter, idx);
4879
4880                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4881                 if (printk_ratelimit())
4882                         dev_warn(adapter->pdev_dev,
4883                                  "%u %s correctable ECC data error%s\n",
4884                                  cnt, name[idx], cnt > 1 ? "s" : "");
4885         }
4886         if (v & ECC_UE_INT_CAUSE_F)
4887                 dev_alert(adapter->pdev_dev,
4888                           "%s uncorrectable ECC data error\n", name[idx]);
4889
4890         t4_write_reg(adapter, addr, v);
4891         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4892                 t4_fatal_err(adapter);
4893 }
4894
4895 /*
4896  * MA interrupt handler.
4897  */
4898 static void ma_intr_handler(struct adapter *adap)
4899 {
4900         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4901
4902         if (status & MEM_PERR_INT_CAUSE_F) {
4903                 dev_alert(adap->pdev_dev,
4904                           "MA parity error, parity status %#x\n",
4905                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4906                 if (is_t5(adap->params.chip))
4907                         dev_alert(adap->pdev_dev,
4908                                   "MA parity error, parity status %#x\n",
4909                                   t4_read_reg(adap,
4910                                               MA_PARITY_ERROR_STATUS2_A));
4911         }
4912         if (status & MEM_WRAP_INT_CAUSE_F) {
4913                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4914                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4915                           "client %u to address %#x\n",
4916                           MEM_WRAP_CLIENT_NUM_G(v),
4917                           MEM_WRAP_ADDRESS_G(v) << 4);
4918         }
4919         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4920         t4_fatal_err(adap);
4921 }
4922
4923 /*
4924  * SMB interrupt handler.
4925  */
4926 static void smb_intr_handler(struct adapter *adap)
4927 {
4928         static const struct intr_info smb_intr_info[] = {
4929                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4930                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4931                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4932                 { 0 }
4933         };
4934
4935         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4936                 t4_fatal_err(adap);
4937 }
4938
4939 /*
4940  * NC-SI interrupt handler.
4941  */
4942 static void ncsi_intr_handler(struct adapter *adap)
4943 {
4944         static const struct intr_info ncsi_intr_info[] = {
4945                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4946                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4947                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4948                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4949                 { 0 }
4950         };
4951
4952         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4953                 t4_fatal_err(adap);
4954 }
4955
4956 /*
4957  * XGMAC interrupt handler.
4958  */
4959 static void xgmac_intr_handler(struct adapter *adap, int port)
4960 {
4961         u32 v, int_cause_reg;
4962
4963         if (is_t4(adap->params.chip))
4964                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4965         else
4966                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4967
4968         v = t4_read_reg(adap, int_cause_reg);
4969
4970         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4971         if (!v)
4972                 return;
4973
4974         if (v & TXFIFO_PRTY_ERR_F)
4975                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4976                           port);
4977         if (v & RXFIFO_PRTY_ERR_F)
4978                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4979                           port);
4980         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4981         t4_fatal_err(adap);
4982 }
4983
4984 /*
4985  * PL interrupt handler.
4986  */
4987 static void pl_intr_handler(struct adapter *adap)
4988 {
4989         static const struct intr_info pl_intr_info[] = {
4990                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4991                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4992                 { 0 }
4993         };
4994
4995         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4996                 t4_fatal_err(adap);
4997 }
4998
4999 #define PF_INTR_MASK (PFSW_F)
5000 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5001                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5002                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5003
5004 /**
5005  *      t4_slow_intr_handler - control path interrupt handler
5006  *      @adapter: the adapter
5007  *
5008  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5009  *      The designation 'slow' is because it involves register reads, while
5010  *      data interrupts typically don't involve any MMIOs.
5011  */
5012 int t4_slow_intr_handler(struct adapter *adapter)
5013 {
5014         /* There are rare cases where a PL_INT_CAUSE bit may end up getting
5015          * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5016          * easiest just to mask that case here.
5017          */
5018         u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5019         u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5020         u32 cause = raw_cause & enable;
5021
5022         if (!(cause & GLBL_INTR_MASK))
5023                 return 0;
5024         if (cause & CIM_F)
5025                 cim_intr_handler(adapter);
5026         if (cause & MPS_F)
5027                 mps_intr_handler(adapter);
5028         if (cause & NCSI_F)
5029                 ncsi_intr_handler(adapter);
5030         if (cause & PL_F)
5031                 pl_intr_handler(adapter);
5032         if (cause & SMB_F)
5033                 smb_intr_handler(adapter);
5034         if (cause & XGMAC0_F)
5035                 xgmac_intr_handler(adapter, 0);
5036         if (cause & XGMAC1_F)
5037                 xgmac_intr_handler(adapter, 1);
5038         if (cause & XGMAC_KR0_F)
5039                 xgmac_intr_handler(adapter, 2);
5040         if (cause & XGMAC_KR1_F)
5041                 xgmac_intr_handler(adapter, 3);
5042         if (cause & PCIE_F)
5043                 pcie_intr_handler(adapter);
5044         if (cause & MC_F)
5045                 mem_intr_handler(adapter, MEM_MC);
5046         if (is_t5(adapter->params.chip) && (cause & MC1_F))
5047                 mem_intr_handler(adapter, MEM_MC1);
5048         if (cause & EDC0_F)
5049                 mem_intr_handler(adapter, MEM_EDC0);
5050         if (cause & EDC1_F)
5051                 mem_intr_handler(adapter, MEM_EDC1);
5052         if (cause & LE_F)
5053                 le_intr_handler(adapter);
5054         if (cause & TP_F)
5055                 tp_intr_handler(adapter);
5056         if (cause & MA_F)
5057                 ma_intr_handler(adapter);
5058         if (cause & PM_TX_F)
5059                 pmtx_intr_handler(adapter);
5060         if (cause & PM_RX_F)
5061                 pmrx_intr_handler(adapter);
5062         if (cause & ULP_RX_F)
5063                 ulprx_intr_handler(adapter);
5064         if (cause & CPL_SWITCH_F)
5065                 cplsw_intr_handler(adapter);
5066         if (cause & SGE_F)
5067                 sge_intr_handler(adapter);
5068         if (cause & ULP_TX_F)
5069                 ulptx_intr_handler(adapter);
5070
5071         /* Clear the interrupts just processed for which we are the master. */
5072         t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5073         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5074         return 1;
5075 }
5076
5077 /**
5078  *      t4_intr_enable - enable interrupts
5079  *      @adapter: the adapter whose interrupts should be enabled
5080  *
5081  *      Enable PF-specific interrupts for the calling function and the top-level
5082  *      interrupt concentrator for global interrupts.  Interrupts are already
5083  *      enabled at each module, here we just enable the roots of the interrupt
5084  *      hierarchies.
5085  *
5086  *      Note: this function should be called only when the driver manages
5087  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5088  *      function at a time should be doing this.
5089  */
5090 void t4_intr_enable(struct adapter *adapter)
5091 {
5092         u32 val = 0;
5093         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5094         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5095                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5096
5097         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5098                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5099         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5100                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5101                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5102                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5103                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5104                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5105                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5106         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5107         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5108 }
5109
5110 /**
5111  *      t4_intr_disable - disable interrupts
5112  *      @adapter: the adapter whose interrupts should be disabled
5113  *
5114  *      Disable interrupts.  We only disable the top-level interrupt
5115  *      concentrators.  The caller must be a PCI function managing global
5116  *      interrupts.
5117  */
5118 void t4_intr_disable(struct adapter *adapter)
5119 {
5120         u32 whoami, pf;
5121
5122         if (pci_channel_offline(adapter->pdev))
5123                 return;
5124
5125         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5126         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5127                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5128
5129         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5130         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5131 }
5132
5133 unsigned int t4_chip_rss_size(struct adapter *adap)
5134 {
5135         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5136                 return RSS_NENTRIES;
5137         else
5138                 return T6_RSS_NENTRIES;
5139 }
5140
5141 /**
5142  *      t4_config_rss_range - configure a portion of the RSS mapping table
5143  *      @adapter: the adapter
5144  *      @mbox: mbox to use for the FW command
5145  *      @viid: virtual interface whose RSS subtable is to be written
5146  *      @start: start entry in the table to write
5147  *      @n: how many table entries to write
5148  *      @rspq: values for the response queue lookup table
5149  *      @nrspq: number of values in @rspq
5150  *
5151  *      Programs the selected part of the VI's RSS mapping table with the
5152  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5153  *      until the full table range is populated.
5154  *
5155  *      The caller must ensure the values in @rspq are in the range allowed for
5156  *      @viid.
5157  */
5158 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5159                         int start, int n, const u16 *rspq, unsigned int nrspq)
5160 {
5161         int ret;
5162         const u16 *rsp = rspq;
5163         const u16 *rsp_end = rspq + nrspq;
5164         struct fw_rss_ind_tbl_cmd cmd;
5165
5166         memset(&cmd, 0, sizeof(cmd));
5167         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5168                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5169                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
5170         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5171
5172         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5173         while (n > 0) {
5174                 int nq = min(n, 32);
5175                 __be32 *qp = &cmd.iq0_to_iq2;
5176
5177                 cmd.niqid = cpu_to_be16(nq);
5178                 cmd.startidx = cpu_to_be16(start);
5179
5180                 start += nq;
5181                 n -= nq;
5182
5183                 while (nq > 0) {
5184                         unsigned int v;
5185
5186                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5187                         if (++rsp >= rsp_end)
5188                                 rsp = rspq;
5189                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5190                         if (++rsp >= rsp_end)
5191                                 rsp = rspq;
5192                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5193                         if (++rsp >= rsp_end)
5194                                 rsp = rspq;
5195
5196                         *qp++ = cpu_to_be32(v);
5197                         nq -= 3;
5198                 }
5199
5200                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5201                 if (ret)
5202                         return ret;
5203         }
5204         return 0;
5205 }
5206
5207 /**
5208  *      t4_config_glbl_rss - configure the global RSS mode
5209  *      @adapter: the adapter
5210  *      @mbox: mbox to use for the FW command
5211  *      @mode: global RSS mode
5212  *      @flags: mode-specific flags
5213  *
5214  *      Sets the global RSS mode.
5215  */
5216 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5217                        unsigned int flags)
5218 {
5219         struct fw_rss_glb_config_cmd c;
5220
5221         memset(&c, 0, sizeof(c));
5222         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5223                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5224         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5225         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5226                 c.u.manual.mode_pkd =
5227                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5228         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5229                 c.u.basicvirtual.mode_pkd =
5230                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5231                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5232         } else
5233                 return -EINVAL;
5234         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5235 }
5236
5237 /**
5238  *      t4_config_vi_rss - configure per VI RSS settings
5239  *      @adapter: the adapter
5240  *      @mbox: mbox to use for the FW command
5241  *      @viid: the VI id
5242  *      @flags: RSS flags
5243  *      @defq: id of the default RSS queue for the VI.
5244  *
5245  *      Configures VI-specific RSS properties.
5246  */
5247 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5248                      unsigned int flags, unsigned int defq)
5249 {
5250         struct fw_rss_vi_config_cmd c;
5251
5252         memset(&c, 0, sizeof(c));
5253         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5254                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5255                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5256         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5257         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5258                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5259         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5260 }
5261
5262 /* Read an RSS table row */
5263 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5264 {
5265         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5266         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5267                                    5, 0, val);
5268 }
5269
5270 /**
5271  *      t4_read_rss - read the contents of the RSS mapping table
5272  *      @adapter: the adapter
5273  *      @map: holds the contents of the RSS mapping table
5274  *
5275  *      Reads the contents of the RSS hash->queue mapping table.
5276  */
5277 int t4_read_rss(struct adapter *adapter, u16 *map)
5278 {
5279         int i, ret, nentries;
5280         u32 val;
5281
5282         nentries = t4_chip_rss_size(adapter);
5283         for (i = 0; i < nentries / 2; ++i) {
5284                 ret = rd_rss_row(adapter, i, &val);
5285                 if (ret)
5286                         return ret;
5287                 *map++ = LKPTBLQUEUE0_G(val);
5288                 *map++ = LKPTBLQUEUE1_G(val);
5289         }
5290         return 0;
5291 }
5292
5293 static unsigned int t4_use_ldst(struct adapter *adap)
5294 {
5295         return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5296 }
5297
5298 /**
5299  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5300  * @adap: the adapter
5301  * @cmd: TP fw ldst address space type
5302  * @vals: where the indirect register values are stored/written
5303  * @nregs: how many indirect registers to read/write
5304  * @start_index: index of first indirect register to read/write
5305  * @rw: Read (1) or Write (0)
5306  * @sleep_ok: if true we may sleep while awaiting command completion
5307  *
5308  * Access TP indirect registers through LDST
5309  */
5310 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5311                             unsigned int nregs, unsigned int start_index,
5312                             unsigned int rw, bool sleep_ok)
5313 {
5314         int ret = 0;
5315         unsigned int i;
5316         struct fw_ldst_cmd c;
5317
5318         for (i = 0; i < nregs; i++) {
5319                 memset(&c, 0, sizeof(c));
5320                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5321                                                 FW_CMD_REQUEST_F |
5322                                                 (rw ? FW_CMD_READ_F :
5323                                                       FW_CMD_WRITE_F) |
5324                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
5325                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5326
5327                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5328                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5329                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5330                                       sleep_ok);
5331                 if (ret)
5332                         return ret;
5333
5334                 if (rw)
5335                         vals[i] = be32_to_cpu(c.u.addrval.val);
5336         }
5337         return 0;
5338 }
5339
5340 /**
5341  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5342  * @adap: the adapter
5343  * @reg_addr: Address Register
5344  * @reg_data: Data register
5345  * @buff: where the indirect register values are stored/written
5346  * @nregs: how many indirect registers to read/write
5347  * @start_index: index of first indirect register to read/write
5348  * @rw: READ(1) or WRITE(0)
5349  * @sleep_ok: if true we may sleep while awaiting command completion
5350  *
5351  * Read/Write TP indirect registers through LDST if possible.
5352  * Else, use backdoor access
5353  **/
5354 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5355                               u32 *buff, u32 nregs, u32 start_index, int rw,
5356                               bool sleep_ok)
5357 {
5358         int rc = -EINVAL;
5359         int cmd;
5360
5361         switch (reg_addr) {
5362         case TP_PIO_ADDR_A:
5363                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5364                 break;
5365         case TP_TM_PIO_ADDR_A:
5366                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5367                 break;
5368         case TP_MIB_INDEX_A:
5369                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5370                 break;
5371         default:
5372                 goto indirect_access;
5373         }
5374
5375         if (t4_use_ldst(adap))
5376                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5377                                       sleep_ok);
5378
5379 indirect_access:
5380
5381         if (rc) {
5382                 if (rw)
5383                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5384                                          start_index);
5385                 else
5386                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5387                                           start_index);
5388         }
5389 }
5390
5391 /**
5392  * t4_tp_pio_read - Read TP PIO registers
5393  * @adap: the adapter
5394  * @buff: where the indirect register values are written
5395  * @nregs: how many indirect registers to read
5396  * @start_index: index of first indirect register to read
5397  * @sleep_ok: if true we may sleep while awaiting command completion
5398  *
5399  * Read TP PIO Registers
5400  **/
5401 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5402                     u32 start_index, bool sleep_ok)
5403 {
5404         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5405                           start_index, 1, sleep_ok);
5406 }
5407
5408 /**
5409  * t4_tp_pio_write - Write TP PIO registers
5410  * @adap: the adapter
5411  * @buff: where the indirect register values are stored
5412  * @nregs: how many indirect registers to write
5413  * @start_index: index of first indirect register to write
5414  * @sleep_ok: if true we may sleep while awaiting command completion
5415  *
5416  * Write TP PIO Registers
5417  **/
5418 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5419                             u32 start_index, bool sleep_ok)
5420 {
5421         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5422                           start_index, 0, sleep_ok);
5423 }
5424
5425 /**
5426  * t4_tp_tm_pio_read - Read TP TM PIO registers
5427  * @adap: the adapter
5428  * @buff: where the indirect register values are written
5429  * @nregs: how many indirect registers to read
5430  * @start_index: index of first indirect register to read
5431  * @sleep_ok: if true we may sleep while awaiting command completion
5432  *
5433  * Read TP TM PIO Registers
5434  **/
5435 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5436                        u32 start_index, bool sleep_ok)
5437 {
5438         t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5439                           nregs, start_index, 1, sleep_ok);
5440 }
5441
5442 /**
5443  * t4_tp_mib_read - Read TP MIB registers
5444  * @adap: the adapter
5445  * @buff: where the indirect register values are written
5446  * @nregs: how many indirect registers to read
5447  * @start_index: index of first indirect register to read
5448  * @sleep_ok: if true we may sleep while awaiting command completion
5449  *
5450  * Read TP MIB Registers
5451  **/
5452 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5453                     bool sleep_ok)
5454 {
5455         t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5456                           start_index, 1, sleep_ok);
5457 }
5458
5459 /**
5460  *      t4_read_rss_key - read the global RSS key
5461  *      @adap: the adapter
5462  *      @key: 10-entry array holding the 320-bit RSS key
5463  *      @sleep_ok: if true we may sleep while awaiting command completion
5464  *
5465  *      Reads the global 320-bit RSS key.
5466  */
5467 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5468 {
5469         t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5470 }
5471
5472 /**
5473  *      t4_write_rss_key - program one of the RSS keys
5474  *      @adap: the adapter
5475  *      @key: 10-entry array holding the 320-bit RSS key
5476  *      @idx: which RSS key to write
5477  *      @sleep_ok: if true we may sleep while awaiting command completion
5478  *
5479  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5480  *      0..15 the corresponding entry in the RSS key table is written,
5481  *      otherwise the global RSS key is written.
5482  */
5483 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5484                       bool sleep_ok)
5485 {
5486         u8 rss_key_addr_cnt = 16;
5487         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5488
5489         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5490          * allows access to key addresses 16-63 by using KeyWrAddrX
5491          * as index[5:4](upper 2) into key table
5492          */
5493         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5494             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5495                 rss_key_addr_cnt = 32;
5496
5497         t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5498
5499         if (idx >= 0 && idx < rss_key_addr_cnt) {
5500                 if (rss_key_addr_cnt > 16)
5501                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5502                                      KEYWRADDRX_V(idx >> 4) |
5503                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5504                 else
5505                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5506                                      KEYWRADDR_V(idx) | KEYWREN_F);
5507         }
5508 }
5509
5510 /**
5511  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5512  *      @adapter: the adapter
5513  *      @index: the entry in the PF RSS table to read
5514  *      @valp: where to store the returned value
5515  *      @sleep_ok: if true we may sleep while awaiting command completion
5516  *
5517  *      Reads the PF RSS Configuration Table at the specified index and returns
5518  *      the value found there.
5519  */
5520 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5521                            u32 *valp, bool sleep_ok)
5522 {
5523         t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5524 }
5525
5526 /**
5527  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5528  *      @adapter: the adapter
5529  *      @index: the entry in the VF RSS table to read
5530  *      @vfl: where to store the returned VFL
5531  *      @vfh: where to store the returned VFH
5532  *      @sleep_ok: if true we may sleep while awaiting command completion
5533  *
5534  *      Reads the VF RSS Configuration Table at the specified index and returns
5535  *      the (VFL, VFH) values found there.
5536  */
5537 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5538                            u32 *vfl, u32 *vfh, bool sleep_ok)
5539 {
5540         u32 vrt, mask, data;
5541
5542         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5543                 mask = VFWRADDR_V(VFWRADDR_M);
5544                 data = VFWRADDR_V(index);
5545         } else {
5546                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5547                  data = T6_VFWRADDR_V(index);
5548         }
5549
5550         /* Request that the index'th VF Table values be read into VFL/VFH.
5551          */
5552         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5553         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5554         vrt |= data | VFRDEN_F;
5555         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5556
5557         /* Grab the VFL/VFH values ...
5558          */
5559         t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5560         t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5561 }
5562
5563 /**
5564  *      t4_read_rss_pf_map - read PF RSS Map
5565  *      @adapter: the adapter
5566  *      @sleep_ok: if true we may sleep while awaiting command completion
5567  *
5568  *      Reads the PF RSS Map register and returns its value.
5569  */
5570 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5571 {
5572         u32 pfmap;
5573
5574         t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5575         return pfmap;
5576 }
5577
5578 /**
5579  *      t4_read_rss_pf_mask - read PF RSS Mask
5580  *      @adapter: the adapter
5581  *      @sleep_ok: if true we may sleep while awaiting command completion
5582  *
5583  *      Reads the PF RSS Mask register and returns its value.
5584  */
5585 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5586 {
5587         u32 pfmask;
5588
5589         t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5590         return pfmask;
5591 }
5592
5593 /**
5594  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5595  *      @adap: the adapter
5596  *      @v4: holds the TCP/IP counter values
5597  *      @v6: holds the TCP/IPv6 counter values
5598  *      @sleep_ok: if true we may sleep while awaiting command completion
5599  *
5600  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5601  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5602  */
5603 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5604                          struct tp_tcp_stats *v6, bool sleep_ok)
5605 {
5606         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5607
5608 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5609 #define STAT(x)     val[STAT_IDX(x)]
5610 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5611
5612         if (v4) {
5613                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5614                                TP_MIB_TCP_OUT_RST_A, sleep_ok);
5615                 v4->tcp_out_rsts = STAT(OUT_RST);
5616                 v4->tcp_in_segs  = STAT64(IN_SEG);
5617                 v4->tcp_out_segs = STAT64(OUT_SEG);
5618                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5619         }
5620         if (v6) {
5621                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5622                                TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5623                 v6->tcp_out_rsts = STAT(OUT_RST);
5624                 v6->tcp_in_segs  = STAT64(IN_SEG);
5625                 v6->tcp_out_segs = STAT64(OUT_SEG);
5626                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5627         }
5628 #undef STAT64
5629 #undef STAT
5630 #undef STAT_IDX
5631 }
5632
5633 /**
5634  *      t4_tp_get_err_stats - read TP's error MIB counters
5635  *      @adap: the adapter
5636  *      @st: holds the counter values
5637  *      @sleep_ok: if true we may sleep while awaiting command completion
5638  *
5639  *      Returns the values of TP's error counters.
5640  */
5641 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5642                          bool sleep_ok)
5643 {
5644         int nchan = adap->params.arch.nchan;
5645
5646         t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5647                        sleep_ok);
5648         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5649                        sleep_ok);
5650         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5651                        sleep_ok);
5652         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5653                        TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5654         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5655                        TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5656         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5657                        sleep_ok);
5658         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5659                        TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5660         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5661                        TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5662         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5663                        sleep_ok);
5664 }
5665
5666 /**
5667  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5668  *      @adap: the adapter
5669  *      @st: holds the counter values
5670  *      @sleep_ok: if true we may sleep while awaiting command completion
5671  *
5672  *      Returns the values of TP's CPL counters.
5673  */
5674 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5675                          bool sleep_ok)
5676 {
5677         int nchan = adap->params.arch.nchan;
5678
5679         t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5680
5681         t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5682 }
5683
5684 /**
5685  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5686  *      @adap: the adapter
5687  *      @st: holds the counter values
5688  *      @sleep_ok: if true we may sleep while awaiting command completion
5689  *
5690  *      Returns the values of TP's RDMA counters.
5691  */
5692 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5693                           bool sleep_ok)
5694 {
5695         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5696                        sleep_ok);
5697 }
5698
5699 /**
5700  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5701  *      @adap: the adapter
5702  *      @idx: the port index
5703  *      @st: holds the counter values
5704  *      @sleep_ok: if true we may sleep while awaiting command completion
5705  *
5706  *      Returns the values of TP's FCoE counters for the selected port.
5707  */
5708 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5709                        struct tp_fcoe_stats *st, bool sleep_ok)
5710 {
5711         u32 val[2];
5712
5713         t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5714                        sleep_ok);
5715
5716         t4_tp_mib_read(adap, &st->frames_drop, 1,
5717                        TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5718
5719         t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5720                        sleep_ok);
5721
5722         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5723 }
5724
5725 /**
5726  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5727  *      @adap: the adapter
5728  *      @st: holds the counter values
5729  *      @sleep_ok: if true we may sleep while awaiting command completion
5730  *
5731  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5732  */
5733 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5734                       bool sleep_ok)
5735 {
5736         u32 val[4];
5737
5738         t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5739         st->frames = val[0];
5740         st->drops = val[1];
5741         st->octets = ((u64)val[2] << 32) | val[3];
5742 }
5743
5744 /**
5745  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5746  *      @adap: the adapter
5747  *      @mtus: where to store the MTU values
5748  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5749  *
5750  *      Reads the HW path MTU table.
5751  */
5752 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5753 {
5754         u32 v;
5755         int i;
5756
5757         for (i = 0; i < NMTUS; ++i) {
5758                 t4_write_reg(adap, TP_MTU_TABLE_A,
5759                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5760                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5761                 mtus[i] = MTUVALUE_G(v);
5762                 if (mtu_log)
5763                         mtu_log[i] = MTUWIDTH_G(v);
5764         }
5765 }
5766
5767 /**
5768  *      t4_read_cong_tbl - reads the congestion control table
5769  *      @adap: the adapter
5770  *      @incr: where to store the alpha values
5771  *
5772  *      Reads the additive increments programmed into the HW congestion
5773  *      control table.
5774  */
5775 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5776 {
5777         unsigned int mtu, w;
5778
5779         for (mtu = 0; mtu < NMTUS; ++mtu)
5780                 for (w = 0; w < NCCTRL_WIN; ++w) {
5781                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5782                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5783                         incr[mtu][w] = (u16)t4_read_reg(adap,
5784                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5785                 }
5786 }
5787
5788 /**
5789  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5790  *      @adap: the adapter
5791  *      @addr: the indirect TP register address
5792  *      @mask: specifies the field within the register to modify
5793  *      @val: new value for the field
5794  *
5795  *      Sets a field of an indirect TP register to the given value.
5796  */
5797 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5798                             unsigned int mask, unsigned int val)
5799 {
5800         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5801         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5802         t4_write_reg(adap, TP_PIO_DATA_A, val);
5803 }
5804
5805 /**
5806  *      init_cong_ctrl - initialize congestion control parameters
5807  *      @a: the alpha values for congestion control
5808  *      @b: the beta values for congestion control
5809  *
5810  *      Initialize the congestion control parameters.
5811  */
5812 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5813 {
5814         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5815         a[9] = 2;
5816         a[10] = 3;
5817         a[11] = 4;
5818         a[12] = 5;
5819         a[13] = 6;
5820         a[14] = 7;
5821         a[15] = 8;
5822         a[16] = 9;
5823         a[17] = 10;
5824         a[18] = 14;
5825         a[19] = 17;
5826         a[20] = 21;
5827         a[21] = 25;
5828         a[22] = 30;
5829         a[23] = 35;
5830         a[24] = 45;
5831         a[25] = 60;
5832         a[26] = 80;
5833         a[27] = 100;
5834         a[28] = 200;
5835         a[29] = 300;
5836         a[30] = 400;
5837         a[31] = 500;
5838
5839         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5840         b[9] = b[10] = 1;
5841         b[11] = b[12] = 2;
5842         b[13] = b[14] = b[15] = b[16] = 3;
5843         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5844         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5845         b[28] = b[29] = 6;
5846         b[30] = b[31] = 7;
5847 }
5848
5849 /* The minimum additive increment value for the congestion control table */
5850 #define CC_MIN_INCR 2U
5851
5852 /**
5853  *      t4_load_mtus - write the MTU and congestion control HW tables
5854  *      @adap: the adapter
5855  *      @mtus: the values for the MTU table
5856  *      @alpha: the values for the congestion control alpha parameter
5857  *      @beta: the values for the congestion control beta parameter
5858  *
5859  *      Write the HW MTU table with the supplied MTUs and the high-speed
5860  *      congestion control table with the supplied alpha, beta, and MTUs.
5861  *      We write the two tables together because the additive increments
5862  *      depend on the MTUs.
5863  */
5864 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5865                   const unsigned short *alpha, const unsigned short *beta)
5866 {
5867         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5868                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5869                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5870                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5871         };
5872
5873         unsigned int i, w;
5874
5875         for (i = 0; i < NMTUS; ++i) {
5876                 unsigned int mtu = mtus[i];
5877                 unsigned int log2 = fls(mtu);
5878
5879                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5880                         log2--;
5881                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5882                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5883
5884                 for (w = 0; w < NCCTRL_WIN; ++w) {
5885                         unsigned int inc;
5886
5887                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5888                                   CC_MIN_INCR);
5889
5890                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5891                                      (w << 16) | (beta[w] << 13) | inc);
5892                 }
5893         }
5894 }
5895
5896 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5897  * clocks.  The formula is
5898  *
5899  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5900  *
5901  * which is equivalent to
5902  *
5903  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5904  */
5905 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5906 {
5907         u64 v = bytes256 * adap->params.vpd.cclk;
5908
5909         return v * 62 + v / 2;
5910 }
5911
5912 /**
5913  *      t4_get_chan_txrate - get the current per channel Tx rates
5914  *      @adap: the adapter
5915  *      @nic_rate: rates for NIC traffic
5916  *      @ofld_rate: rates for offloaded traffic
5917  *
5918  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5919  *      for each channel.
5920  */
5921 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5922 {
5923         u32 v;
5924
5925         v = t4_read_reg(adap, TP_TX_TRATE_A);
5926         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5927         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5928         if (adap->params.arch.nchan == NCHAN) {
5929                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5930                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5931         }
5932
5933         v = t4_read_reg(adap, TP_TX_ORATE_A);
5934         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5935         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5936         if (adap->params.arch.nchan == NCHAN) {
5937                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5938                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5939         }
5940 }
5941
5942 /**
5943  *      t4_set_trace_filter - configure one of the tracing filters
5944  *      @adap: the adapter
5945  *      @tp: the desired trace filter parameters
5946  *      @idx: which filter to configure
5947  *      @enable: whether to enable or disable the filter
5948  *
5949  *      Configures one of the tracing filters available in HW.  If @enable is
5950  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5951  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5952  */
5953 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5954                         int idx, int enable)
5955 {
5956         int i, ofst = idx * 4;
5957         u32 data_reg, mask_reg, cfg;
5958
5959         if (!enable) {
5960                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5961                 return 0;
5962         }
5963
5964         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5965         if (cfg & TRCMULTIFILTER_F) {
5966                 /* If multiple tracers are enabled, then maximum
5967                  * capture size is 2.5KB (FIFO size of a single channel)
5968                  * minus 2 flits for CPL_TRACE_PKT header.
5969                  */
5970                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5971                         return -EINVAL;
5972         } else {
5973                 /* If multiple tracers are disabled, to avoid deadlocks
5974                  * maximum packet capture size of 9600 bytes is recommended.
5975                  * Also in this mode, only trace0 can be enabled and running.
5976                  */
5977                 if (tp->snap_len > 9600 || idx)
5978                         return -EINVAL;
5979         }
5980
5981         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5982             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5983             tp->min_len > TFMINPKTSIZE_M)
5984                 return -EINVAL;
5985
5986         /* stop the tracer we'll be changing */
5987         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5988
5989         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5990         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5991         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5992
5993         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5994                 t4_write_reg(adap, data_reg, tp->data[i]);
5995                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5996         }
5997         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5998                      TFCAPTUREMAX_V(tp->snap_len) |
5999                      TFMINPKTSIZE_V(tp->min_len));
6000         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6001                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6002                      (is_t4(adap->params.chip) ?
6003                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6004                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
6005                      T5_TFINVERTMATCH_V(tp->invert)));
6006
6007         return 0;
6008 }
6009
6010 /**
6011  *      t4_get_trace_filter - query one of the tracing filters
6012  *      @adap: the adapter
6013  *      @tp: the current trace filter parameters
6014  *      @idx: which trace filter to query
6015  *      @enabled: non-zero if the filter is enabled
6016  *
6017  *      Returns the current settings of one of the HW tracing filters.
6018  */
6019 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6020                          int *enabled)
6021 {
6022         u32 ctla, ctlb;
6023         int i, ofst = idx * 4;
6024         u32 data_reg, mask_reg;
6025
6026         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6027         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6028
6029         if (is_t4(adap->params.chip)) {
6030                 *enabled = !!(ctla & TFEN_F);
6031                 tp->port =  TFPORT_G(ctla);
6032                 tp->invert = !!(ctla & TFINVERTMATCH_F);
6033         } else {
6034                 *enabled = !!(ctla & T5_TFEN_F);
6035                 tp->port = T5_TFPORT_G(ctla);
6036                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6037         }
6038         tp->snap_len = TFCAPTUREMAX_G(ctlb);
6039         tp->min_len = TFMINPKTSIZE_G(ctlb);
6040         tp->skip_ofst = TFOFFSET_G(ctla);
6041         tp->skip_len = TFLENGTH_G(ctla);
6042
6043         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6044         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6045         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6046
6047         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6048                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6049                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6050         }
6051 }
6052
6053 /**
6054  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6055  *      @adap: the adapter
6056  *      @cnt: where to store the count statistics
6057  *      @cycles: where to store the cycle statistics
6058  *
6059  *      Returns performance statistics from PMTX.
6060  */
6061 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6062 {
6063         int i;
6064         u32 data[2];
6065
6066         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6067                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6068                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6069                 if (is_t4(adap->params.chip)) {
6070                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6071                 } else {
6072                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6073                                          PM_TX_DBG_DATA_A, data, 2,
6074                                          PM_TX_DBG_STAT_MSB_A);
6075                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6076                 }
6077         }
6078 }
6079
6080 /**
6081  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6082  *      @adap: the adapter
6083  *      @cnt: where to store the count statistics
6084  *      @cycles: where to store the cycle statistics
6085  *
6086  *      Returns performance statistics from PMRX.
6087  */
6088 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6089 {
6090         int i;
6091         u32 data[2];
6092
6093         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6094                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6095                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6096                 if (is_t4(adap->params.chip)) {
6097                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6098                 } else {
6099                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6100                                          PM_RX_DBG_DATA_A, data, 2,
6101                                          PM_RX_DBG_STAT_MSB_A);
6102                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6103                 }
6104         }
6105 }
6106
6107 /**
6108  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6109  *      @adapter: the adapter
6110  *      @pidx: the port index
6111  *
6112  *      Computes and returns a bitmap indicating which MPS buffer groups are
6113  *      associated with the given Port.  Bit i is set if buffer group i is
6114  *      used by the Port.
6115  */
6116 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6117                                               int pidx)
6118 {
6119         unsigned int chip_version, nports;
6120
6121         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6122         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6123
6124         switch (chip_version) {
6125         case CHELSIO_T4:
6126         case CHELSIO_T5:
6127                 switch (nports) {
6128                 case 1: return 0xf;
6129                 case 2: return 3 << (2 * pidx);
6130                 case 4: return 1 << pidx;
6131                 }
6132                 break;
6133
6134         case CHELSIO_T6:
6135                 switch (nports) {
6136                 case 2: return 1 << (2 * pidx);
6137                 }
6138                 break;
6139         }
6140
6141         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6142                 chip_version, nports);
6143
6144         return 0;
6145 }
6146
6147 /**
6148  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6149  *      @adapter: the adapter
6150  *      @pidx: the port index
6151  *
6152  *      Returns a bitmap indicating which MPS buffer groups are associated
6153  *      with the given Port.  Bit i is set if buffer group i is used by the
6154  *      Port.
6155  */
6156 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6157 {
6158         u8 *mps_bg_map;
6159         unsigned int nports;
6160
6161         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6162         if (pidx >= nports) {
6163                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6164                         pidx, nports);
6165                 return 0;
6166         }
6167
6168         /* If we've already retrieved/computed this, just return the result.
6169          */
6170         mps_bg_map = adapter->params.mps_bg_map;
6171         if (mps_bg_map[pidx])
6172                 return mps_bg_map[pidx];
6173
6174         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6175          * If we're talking to such Firmware, let it tell us.  If the new
6176          * API isn't supported, revert back to old hardcoded way.  The value
6177          * obtained from Firmware is encoded in below format:
6178          *
6179          * val = (( MPSBGMAP[Port 3] << 24 ) |
6180          *        ( MPSBGMAP[Port 2] << 16 ) |
6181          *        ( MPSBGMAP[Port 1] <<  8 ) |
6182          *        ( MPSBGMAP[Port 0] <<  0 ))
6183          */
6184         if (adapter->flags & CXGB4_FW_OK) {
6185                 u32 param, val;
6186                 int ret;
6187
6188                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6189                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6190                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6191                                          0, 1, &param, &val);
6192                 if (!ret) {
6193                         int p;
6194
6195                         /* Store the BG Map for all of the Ports in order to
6196                          * avoid more calls to the Firmware in the future.
6197                          */
6198                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6199                                 mps_bg_map[p] = val & 0xff;
6200
6201                         return mps_bg_map[pidx];
6202                 }
6203         }
6204
6205         /* Either we're not talking to the Firmware or we're dealing with
6206          * older Firmware which doesn't support the new API to get the MPS
6207          * Buffer Group Map.  Fall back to computing it ourselves.
6208          */
6209         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6210         return mps_bg_map[pidx];
6211 }
6212
6213 /**
6214  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6215  *      @adapter: the adapter
6216  *      @pidx: the port index
6217  */
6218 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6219 {
6220         unsigned int nports;
6221         u32 param, val = 0;
6222         int ret;
6223
6224         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6225         if (pidx >= nports) {
6226                 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6227                         pidx, nports);
6228                 return 0;
6229         }
6230
6231         /* FW version >= 1.16.44.0 can determine E2C channel map using
6232          * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6233          */
6234         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6235                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6236         ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6237                                  0, 1, &param, &val);
6238         if (!ret)
6239                 return (val >> (8 * pidx)) & 0xff;
6240
6241         return 0;
6242 }
6243
6244 /**
6245  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6246  *      @adap: the adapter
6247  *      @pidx: the port index
6248  *
6249  *      Returns a bitmap indicating which TP Ingress Channels are associated
6250  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6251  *      the Port.
6252  */
6253 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6254 {
6255         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6256         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6257
6258         if (pidx >= nports) {
6259                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6260                          pidx, nports);
6261                 return 0;
6262         }
6263
6264         switch (chip_version) {
6265         case CHELSIO_T4:
6266         case CHELSIO_T5:
6267                 /* Note that this happens to be the same values as the MPS
6268                  * Buffer Group Map for these Chips.  But we replicate the code
6269                  * here because they're really separate concepts.
6270                  */
6271                 switch (nports) {
6272                 case 1: return 0xf;
6273                 case 2: return 3 << (2 * pidx);
6274                 case 4: return 1 << pidx;
6275                 }
6276                 break;
6277
6278         case CHELSIO_T6:
6279                 switch (nports) {
6280                 case 1:
6281                 case 2: return 1 << pidx;
6282                 }
6283                 break;
6284         }
6285
6286         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6287                 chip_version, nports);
6288         return 0;
6289 }
6290
6291 /**
6292  *      t4_get_port_type_description - return Port Type string description
6293  *      @port_type: firmware Port Type enumeration
6294  */
6295 const char *t4_get_port_type_description(enum fw_port_type port_type)
6296 {
6297         static const char *const port_type_description[] = {
6298                 "Fiber_XFI",
6299                 "Fiber_XAUI",
6300                 "BT_SGMII",
6301                 "BT_XFI",
6302                 "BT_XAUI",
6303                 "KX4",
6304                 "CX4",
6305                 "KX",
6306                 "KR",
6307                 "SFP",
6308                 "BP_AP",
6309                 "BP4_AP",
6310                 "QSFP_10G",
6311                 "QSA",
6312                 "QSFP",
6313                 "BP40_BA",
6314                 "KR4_100G",
6315                 "CR4_QSFP",
6316                 "CR_QSFP",
6317                 "CR2_QSFP",
6318                 "SFP28",
6319                 "KR_SFP28",
6320                 "KR_XLAUI"
6321         };
6322
6323         if (port_type < ARRAY_SIZE(port_type_description))
6324                 return port_type_description[port_type];
6325         return "UNKNOWN";
6326 }
6327
6328 /**
6329  *      t4_get_port_stats_offset - collect port stats relative to a previous
6330  *                                 snapshot
6331  *      @adap: The adapter
6332  *      @idx: The port
6333  *      @stats: Current stats to fill
6334  *      @offset: Previous stats snapshot
6335  */
6336 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6337                               struct port_stats *stats,
6338                               struct port_stats *offset)
6339 {
6340         u64 *s, *o;
6341         int i;
6342
6343         t4_get_port_stats(adap, idx, stats);
6344         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6345                         i < (sizeof(struct port_stats) / sizeof(u64));
6346                         i++, s++, o++)
6347                 *s -= *o;
6348 }
6349
6350 /**
6351  *      t4_get_port_stats - collect port statistics
6352  *      @adap: the adapter
6353  *      @idx: the port index
6354  *      @p: the stats structure to fill
6355  *
6356  *      Collect statistics related to the given port from HW.
6357  */
6358 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6359 {
6360         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6361         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6362
6363 #define GET_STAT(name) \
6364         t4_read_reg64(adap, \
6365         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6366         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6367 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6368
6369         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6370         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6371         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6372         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6373         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6374         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6375         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6376         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6377         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6378         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6379         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6380         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6381         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6382         p->tx_drop             = GET_STAT(TX_PORT_DROP);
6383         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6384         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6385         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6386         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6387         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6388         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6389         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6390         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6391         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6392
6393         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6394                 if (stat_ctl & COUNTPAUSESTATTX_F)
6395                         p->tx_frames_64 -= p->tx_pause;
6396                 if (stat_ctl & COUNTPAUSEMCTX_F)
6397                         p->tx_mcast_frames -= p->tx_pause;
6398         }
6399         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6400         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6401         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6402         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6403         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6404         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6405         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6406         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6407         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6408         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6409         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6410         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6411         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6412         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6413         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6414         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6415         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6416         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6417         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6418         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6419         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6420         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6421         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6422         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6423         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6424         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6425         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6426
6427         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6428                 if (stat_ctl & COUNTPAUSESTATRX_F)
6429                         p->rx_frames_64 -= p->rx_pause;
6430                 if (stat_ctl & COUNTPAUSEMCRX_F)
6431                         p->rx_mcast_frames -= p->rx_pause;
6432         }
6433
6434         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6435         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6436         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6437         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6438         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6439         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6440         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6441         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6442
6443 #undef GET_STAT
6444 #undef GET_STAT_COM
6445 }
6446
6447 /**
6448  *      t4_get_lb_stats - collect loopback port statistics
6449  *      @adap: the adapter
6450  *      @idx: the loopback port index
6451  *      @p: the stats structure to fill
6452  *
6453  *      Return HW statistics for the given loopback port.
6454  */
6455 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6456 {
6457         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6458
6459 #define GET_STAT(name) \
6460         t4_read_reg64(adap, \
6461         (is_t4(adap->params.chip) ? \
6462         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6463         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6464 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6465
6466         p->octets           = GET_STAT(BYTES);
6467         p->frames           = GET_STAT(FRAMES);
6468         p->bcast_frames     = GET_STAT(BCAST);
6469         p->mcast_frames     = GET_STAT(MCAST);
6470         p->ucast_frames     = GET_STAT(UCAST);
6471         p->error_frames     = GET_STAT(ERROR);
6472
6473         p->frames_64        = GET_STAT(64B);
6474         p->frames_65_127    = GET_STAT(65B_127B);
6475         p->frames_128_255   = GET_STAT(128B_255B);
6476         p->frames_256_511   = GET_STAT(256B_511B);
6477         p->frames_512_1023  = GET_STAT(512B_1023B);
6478         p->frames_1024_1518 = GET_STAT(1024B_1518B);
6479         p->frames_1519_max  = GET_STAT(1519B_MAX);
6480         p->drop             = GET_STAT(DROP_FRAMES);
6481
6482         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6483         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6484         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6485         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6486         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6487         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6488         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6489         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6490
6491 #undef GET_STAT
6492 #undef GET_STAT_COM
6493 }
6494
6495 /*     t4_mk_filtdelwr - create a delete filter WR
6496  *     @ftid: the filter ID
6497  *     @wr: the filter work request to populate
6498  *     @qid: ingress queue to receive the delete notification
6499  *
6500  *     Creates a filter work request to delete the supplied filter.  If @qid is
6501  *     negative the delete notification is suppressed.
6502  */
6503 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6504 {
6505         memset(wr, 0, sizeof(*wr));
6506         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6507         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6508         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6509                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6510         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6511         if (qid >= 0)
6512                 wr->rx_chan_rx_rpl_iq =
6513                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6514 }
6515
6516 #define INIT_CMD(var, cmd, rd_wr) do { \
6517         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6518                                         FW_CMD_REQUEST_F | \
6519                                         FW_CMD_##rd_wr##_F); \
6520         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6521 } while (0)
6522
6523 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6524                           u32 addr, u32 val)
6525 {
6526         u32 ldst_addrspace;
6527         struct fw_ldst_cmd c;
6528
6529         memset(&c, 0, sizeof(c));
6530         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6531         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6532                                         FW_CMD_REQUEST_F |
6533                                         FW_CMD_WRITE_F |
6534                                         ldst_addrspace);
6535         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6536         c.u.addrval.addr = cpu_to_be32(addr);
6537         c.u.addrval.val = cpu_to_be32(val);
6538
6539         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6540 }
6541
6542 /**
6543  *      t4_mdio_rd - read a PHY register through MDIO
6544  *      @adap: the adapter
6545  *      @mbox: mailbox to use for the FW command
6546  *      @phy_addr: the PHY address
6547  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6548  *      @reg: the register to read
6549  *      @valp: where to store the value
6550  *
6551  *      Issues a FW command through the given mailbox to read a PHY register.
6552  */
6553 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6554                unsigned int mmd, unsigned int reg, u16 *valp)
6555 {
6556         int ret;
6557         u32 ldst_addrspace;
6558         struct fw_ldst_cmd c;
6559
6560         memset(&c, 0, sizeof(c));
6561         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6562         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6563                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6564                                         ldst_addrspace);
6565         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6566         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6567                                          FW_LDST_CMD_MMD_V(mmd));
6568         c.u.mdio.raddr = cpu_to_be16(reg);
6569
6570         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6571         if (ret == 0)
6572                 *valp = be16_to_cpu(c.u.mdio.rval);
6573         return ret;
6574 }
6575
6576 /**
6577  *      t4_mdio_wr - write a PHY register through MDIO
6578  *      @adap: the adapter
6579  *      @mbox: mailbox to use for the FW command
6580  *      @phy_addr: the PHY address
6581  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6582  *      @reg: the register to write
6583  *      @val: value to write
6584  *
6585  *      Issues a FW command through the given mailbox to write a PHY register.
6586  */
6587 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6588                unsigned int mmd, unsigned int reg, u16 val)
6589 {
6590         u32 ldst_addrspace;
6591         struct fw_ldst_cmd c;
6592
6593         memset(&c, 0, sizeof(c));
6594         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6595         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6596                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6597                                         ldst_addrspace);
6598         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6599         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6600                                          FW_LDST_CMD_MMD_V(mmd));
6601         c.u.mdio.raddr = cpu_to_be16(reg);
6602         c.u.mdio.rval = cpu_to_be16(val);
6603
6604         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6605 }
6606
6607 /**
6608  *      t4_sge_decode_idma_state - decode the idma state
6609  *      @adapter: the adapter
6610  *      @state: the state idma is stuck in
6611  */
6612 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6613 {
6614         static const char * const t4_decode[] = {
6615                 "IDMA_IDLE",
6616                 "IDMA_PUSH_MORE_CPL_FIFO",
6617                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6618                 "Not used",
6619                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6620                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6621                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6622                 "IDMA_SEND_FIFO_TO_IMSG",
6623                 "IDMA_FL_REQ_DATA_FL_PREP",
6624                 "IDMA_FL_REQ_DATA_FL",
6625                 "IDMA_FL_DROP",
6626                 "IDMA_FL_H_REQ_HEADER_FL",
6627                 "IDMA_FL_H_SEND_PCIEHDR",
6628                 "IDMA_FL_H_PUSH_CPL_FIFO",
6629                 "IDMA_FL_H_SEND_CPL",
6630                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6631                 "IDMA_FL_H_SEND_IP_HDR",
6632                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6633                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6634                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6635                 "IDMA_FL_D_SEND_PCIEHDR",
6636                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6637                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6638                 "IDMA_FL_SEND_PCIEHDR",
6639                 "IDMA_FL_PUSH_CPL_FIFO",
6640                 "IDMA_FL_SEND_CPL",
6641                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6642                 "IDMA_FL_SEND_PAYLOAD",
6643                 "IDMA_FL_REQ_NEXT_DATA_FL",
6644                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6645                 "IDMA_FL_SEND_PADDING",
6646                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6647                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6648                 "IDMA_FL_REQ_DATAFL_DONE",
6649                 "IDMA_FL_REQ_HEADERFL_DONE",
6650         };
6651         static const char * const t5_decode[] = {
6652                 "IDMA_IDLE",
6653                 "IDMA_ALMOST_IDLE",
6654                 "IDMA_PUSH_MORE_CPL_FIFO",
6655                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6656                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6657                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6658                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6659                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6660                 "IDMA_SEND_FIFO_TO_IMSG",
6661                 "IDMA_FL_REQ_DATA_FL",
6662                 "IDMA_FL_DROP",
6663                 "IDMA_FL_DROP_SEND_INC",
6664                 "IDMA_FL_H_REQ_HEADER_FL",
6665                 "IDMA_FL_H_SEND_PCIEHDR",
6666                 "IDMA_FL_H_PUSH_CPL_FIFO",
6667                 "IDMA_FL_H_SEND_CPL",
6668                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6669                 "IDMA_FL_H_SEND_IP_HDR",
6670                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6671                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6672                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6673                 "IDMA_FL_D_SEND_PCIEHDR",
6674                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6675                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6676                 "IDMA_FL_SEND_PCIEHDR",
6677                 "IDMA_FL_PUSH_CPL_FIFO",
6678                 "IDMA_FL_SEND_CPL",
6679                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6680                 "IDMA_FL_SEND_PAYLOAD",
6681                 "IDMA_FL_REQ_NEXT_DATA_FL",
6682                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6683                 "IDMA_FL_SEND_PADDING",
6684                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6685         };
6686         static const char * const t6_decode[] = {
6687                 "IDMA_IDLE",
6688                 "IDMA_PUSH_MORE_CPL_FIFO",
6689                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6690                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6691                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6692                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6693                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6694                 "IDMA_FL_REQ_DATA_FL",
6695                 "IDMA_FL_DROP",
6696                 "IDMA_FL_DROP_SEND_INC",
6697                 "IDMA_FL_H_REQ_HEADER_FL",
6698                 "IDMA_FL_H_SEND_PCIEHDR",
6699                 "IDMA_FL_H_PUSH_CPL_FIFO",
6700                 "IDMA_FL_H_SEND_CPL",
6701                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6702                 "IDMA_FL_H_SEND_IP_HDR",
6703                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6704                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6705                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6706                 "IDMA_FL_D_SEND_PCIEHDR",
6707                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6708                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6709                 "IDMA_FL_SEND_PCIEHDR",
6710                 "IDMA_FL_PUSH_CPL_FIFO",
6711                 "IDMA_FL_SEND_CPL",
6712                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6713                 "IDMA_FL_SEND_PAYLOAD",
6714                 "IDMA_FL_REQ_NEXT_DATA_FL",
6715                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6716                 "IDMA_FL_SEND_PADDING",
6717                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6718         };
6719         static const u32 sge_regs[] = {
6720                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6721                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6722                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6723         };
6724         const char **sge_idma_decode;
6725         int sge_idma_decode_nstates;
6726         int i;
6727         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6728
6729         /* Select the right set of decode strings to dump depending on the
6730          * adapter chip type.
6731          */
6732         switch (chip_version) {
6733         case CHELSIO_T4:
6734                 sge_idma_decode = (const char **)t4_decode;
6735                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6736                 break;
6737
6738         case CHELSIO_T5:
6739                 sge_idma_decode = (const char **)t5_decode;
6740                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6741                 break;
6742
6743         case CHELSIO_T6:
6744                 sge_idma_decode = (const char **)t6_decode;
6745                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6746                 break;
6747
6748         default:
6749                 dev_err(adapter->pdev_dev,
6750                         "Unsupported chip version %d\n", chip_version);
6751                 return;
6752         }
6753
6754         if (is_t4(adapter->params.chip)) {
6755                 sge_idma_decode = (const char **)t4_decode;
6756                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6757         } else {
6758                 sge_idma_decode = (const char **)t5_decode;
6759                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6760         }
6761
6762         if (state < sge_idma_decode_nstates)
6763                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6764         else
6765                 CH_WARN(adapter, "idma state %d unknown\n", state);
6766
6767         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6768                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6769                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6770 }
6771
6772 /**
6773  *      t4_sge_ctxt_flush - flush the SGE context cache
6774  *      @adap: the adapter
6775  *      @mbox: mailbox to use for the FW command
6776  *      @ctxt_type: Egress or Ingress
6777  *
6778  *      Issues a FW command through the given mailbox to flush the
6779  *      SGE context cache.
6780  */
6781 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6782 {
6783         int ret;
6784         u32 ldst_addrspace;
6785         struct fw_ldst_cmd c;
6786
6787         memset(&c, 0, sizeof(c));
6788         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6789                                                  FW_LDST_ADDRSPC_SGE_EGRC :
6790                                                  FW_LDST_ADDRSPC_SGE_INGC);
6791         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6792                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6793                                         ldst_addrspace);
6794         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6795         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6796
6797         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6798         return ret;
6799 }
6800
6801 /**
6802  *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6803  *      @adap: the adapter
6804  *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6805  *      @dbqtimers: SGE Doorbell Queue Timer table
6806  *
6807  *      Reads the SGE Doorbell Queue Timer values into the provided table.
6808  *      Returns 0 on success (Firmware and Hardware support this feature),
6809  *      an error on failure.
6810  */
6811 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6812                           u16 *dbqtimers)
6813 {
6814         int ret, dbqtimerix;
6815
6816         ret = 0;
6817         dbqtimerix = 0;
6818         while (dbqtimerix < ndbqtimers) {
6819                 int nparams, param;
6820                 u32 params[7], vals[7];
6821
6822                 nparams = ndbqtimers - dbqtimerix;
6823                 if (nparams > ARRAY_SIZE(params))
6824                         nparams = ARRAY_SIZE(params);
6825
6826                 for (param = 0; param < nparams; param++)
6827                         params[param] =
6828                           (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6829                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6830                            FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6831                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6832                                       nparams, params, vals);
6833                 if (ret)
6834                         break;
6835
6836                 for (param = 0; param < nparams; param++)
6837                         dbqtimers[dbqtimerix++] = vals[param];
6838         }
6839         return ret;
6840 }
6841
6842 /**
6843  *      t4_fw_hello - establish communication with FW
6844  *      @adap: the adapter
6845  *      @mbox: mailbox to use for the FW command
6846  *      @evt_mbox: mailbox to receive async FW events
6847  *      @master: specifies the caller's willingness to be the device master
6848  *      @state: returns the current device state (if non-NULL)
6849  *
6850  *      Issues a command to establish communication with FW.  Returns either
6851  *      an error (negative integer) or the mailbox of the Master PF.
6852  */
6853 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6854                 enum dev_master master, enum dev_state *state)
6855 {
6856         int ret;
6857         struct fw_hello_cmd c;
6858         u32 v;
6859         unsigned int master_mbox;
6860         int retries = FW_CMD_HELLO_RETRIES;
6861
6862 retry:
6863         memset(&c, 0, sizeof(c));
6864         INIT_CMD(c, HELLO, WRITE);
6865         c.err_to_clearinit = cpu_to_be32(
6866                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6867                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6868                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6869                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6870                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6871                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6872                 FW_HELLO_CMD_CLEARINIT_F);
6873
6874         /*
6875          * Issue the HELLO command to the firmware.  If it's not successful
6876          * but indicates that we got a "busy" or "timeout" condition, retry
6877          * the HELLO until we exhaust our retry limit.  If we do exceed our
6878          * retry limit, check to see if the firmware left us any error
6879          * information and report that if so.
6880          */
6881         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6882         if (ret < 0) {
6883                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6884                         goto retry;
6885                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6886                         t4_report_fw_error(adap);
6887                 return ret;
6888         }
6889
6890         v = be32_to_cpu(c.err_to_clearinit);
6891         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6892         if (state) {
6893                 if (v & FW_HELLO_CMD_ERR_F)
6894                         *state = DEV_STATE_ERR;
6895                 else if (v & FW_HELLO_CMD_INIT_F)
6896                         *state = DEV_STATE_INIT;
6897                 else
6898                         *state = DEV_STATE_UNINIT;
6899         }
6900
6901         /*
6902          * If we're not the Master PF then we need to wait around for the
6903          * Master PF Driver to finish setting up the adapter.
6904          *
6905          * Note that we also do this wait if we're a non-Master-capable PF and
6906          * there is no current Master PF; a Master PF may show up momentarily
6907          * and we wouldn't want to fail pointlessly.  (This can happen when an
6908          * OS loads lots of different drivers rapidly at the same time).  In
6909          * this case, the Master PF returned by the firmware will be
6910          * PCIE_FW_MASTER_M so the test below will work ...
6911          */
6912         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6913             master_mbox != mbox) {
6914                 int waiting = FW_CMD_HELLO_TIMEOUT;
6915
6916                 /*
6917                  * Wait for the firmware to either indicate an error or
6918                  * initialized state.  If we see either of these we bail out
6919                  * and report the issue to the caller.  If we exhaust the
6920                  * "hello timeout" and we haven't exhausted our retries, try
6921                  * again.  Otherwise bail with a timeout error.
6922                  */
6923                 for (;;) {
6924                         u32 pcie_fw;
6925
6926                         msleep(50);
6927                         waiting -= 50;
6928
6929                         /*
6930                          * If neither Error nor Initialized are indicated
6931                          * by the firmware keep waiting till we exhaust our
6932                          * timeout ... and then retry if we haven't exhausted
6933                          * our retries ...
6934                          */
6935                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6936                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6937                                 if (waiting <= 0) {
6938                                         if (retries-- > 0)
6939                                                 goto retry;
6940
6941                                         return -ETIMEDOUT;
6942                                 }
6943                                 continue;
6944                         }
6945
6946                         /*
6947                          * We either have an Error or Initialized condition
6948                          * report errors preferentially.
6949                          */
6950                         if (state) {
6951                                 if (pcie_fw & PCIE_FW_ERR_F)
6952                                         *state = DEV_STATE_ERR;
6953                                 else if (pcie_fw & PCIE_FW_INIT_F)
6954                                         *state = DEV_STATE_INIT;
6955                         }
6956
6957                         /*
6958                          * If we arrived before a Master PF was selected and
6959                          * there's not a valid Master PF, grab its identity
6960                          * for our caller.
6961                          */
6962                         if (master_mbox == PCIE_FW_MASTER_M &&
6963                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6964                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6965                         break;
6966                 }
6967         }
6968
6969         return master_mbox;
6970 }
6971
6972 /**
6973  *      t4_fw_bye - end communication with FW
6974  *      @adap: the adapter
6975  *      @mbox: mailbox to use for the FW command
6976  *
6977  *      Issues a command to terminate communication with FW.
6978  */
6979 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6980 {
6981         struct fw_bye_cmd c;
6982
6983         memset(&c, 0, sizeof(c));
6984         INIT_CMD(c, BYE, WRITE);
6985         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6986 }
6987
6988 /**
6989  *      t4_early_init - ask FW to initialize the device
6990  *      @adap: the adapter
6991  *      @mbox: mailbox to use for the FW command
6992  *
6993  *      Issues a command to FW to partially initialize the device.  This
6994  *      performs initialization that generally doesn't depend on user input.
6995  */
6996 int t4_early_init(struct adapter *adap, unsigned int mbox)
6997 {
6998         struct fw_initialize_cmd c;
6999
7000         memset(&c, 0, sizeof(c));
7001         INIT_CMD(c, INITIALIZE, WRITE);
7002         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7003 }
7004
7005 /**
7006  *      t4_fw_reset - issue a reset to FW
7007  *      @adap: the adapter
7008  *      @mbox: mailbox to use for the FW command
7009  *      @reset: specifies the type of reset to perform
7010  *
7011  *      Issues a reset command of the specified type to FW.
7012  */
7013 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7014 {
7015         struct fw_reset_cmd c;
7016
7017         memset(&c, 0, sizeof(c));
7018         INIT_CMD(c, RESET, WRITE);
7019         c.val = cpu_to_be32(reset);
7020         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7021 }
7022
7023 /**
7024  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7025  *      @adap: the adapter
7026  *      @mbox: mailbox to use for the FW RESET command (if desired)
7027  *      @force: force uP into RESET even if FW RESET command fails
7028  *
7029  *      Issues a RESET command to firmware (if desired) with a HALT indication
7030  *      and then puts the microprocessor into RESET state.  The RESET command
7031  *      will only be issued if a legitimate mailbox is provided (mbox <=
7032  *      PCIE_FW_MASTER_M).
7033  *
7034  *      This is generally used in order for the host to safely manipulate the
7035  *      adapter without fear of conflicting with whatever the firmware might
7036  *      be doing.  The only way out of this state is to RESTART the firmware
7037  *      ...
7038  */
7039 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7040 {
7041         int ret = 0;
7042
7043         /*
7044          * If a legitimate mailbox is provided, issue a RESET command
7045          * with a HALT indication.
7046          */
7047         if (mbox <= PCIE_FW_MASTER_M) {
7048                 struct fw_reset_cmd c;
7049
7050                 memset(&c, 0, sizeof(c));
7051                 INIT_CMD(c, RESET, WRITE);
7052                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7053                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7054                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7055         }
7056
7057         /*
7058          * Normally we won't complete the operation if the firmware RESET
7059          * command fails but if our caller insists we'll go ahead and put the
7060          * uP into RESET.  This can be useful if the firmware is hung or even
7061          * missing ...  We'll have to take the risk of putting the uP into
7062          * RESET without the cooperation of firmware in that case.
7063          *
7064          * We also force the firmware's HALT flag to be on in case we bypassed
7065          * the firmware RESET command above or we're dealing with old firmware
7066          * which doesn't have the HALT capability.  This will serve as a flag
7067          * for the incoming firmware to know that it's coming out of a HALT
7068          * rather than a RESET ... if it's new enough to understand that ...
7069          */
7070         if (ret == 0 || force) {
7071                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7072                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7073                                  PCIE_FW_HALT_F);
7074         }
7075
7076         /*
7077          * And we always return the result of the firmware RESET command
7078          * even when we force the uP into RESET ...
7079          */
7080         return ret;
7081 }
7082
7083 /**
7084  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7085  *      @adap: the adapter
7086  *      @mbox: mailbox to use for the FW command
7087  *      @reset: if we want to do a RESET to restart things
7088  *
7089  *      Restart firmware previously halted by t4_fw_halt().  On successful
7090  *      return the previous PF Master remains as the new PF Master and there
7091  *      is no need to issue a new HELLO command, etc.
7092  *
7093  *      We do this in two ways:
7094  *
7095  *       1. If we're dealing with newer firmware we'll simply want to take
7096  *          the chip's microprocessor out of RESET.  This will cause the
7097  *          firmware to start up from its start vector.  And then we'll loop
7098  *          until the firmware indicates it's started again (PCIE_FW.HALT
7099  *          reset to 0) or we timeout.
7100  *
7101  *       2. If we're dealing with older firmware then we'll need to RESET
7102  *          the chip since older firmware won't recognize the PCIE_FW.HALT
7103  *          flag and automatically RESET itself on startup.
7104  */
7105 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7106 {
7107         if (reset) {
7108                 /*
7109                  * Since we're directing the RESET instead of the firmware
7110                  * doing it automatically, we need to clear the PCIE_FW.HALT
7111                  * bit.
7112                  */
7113                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7114
7115                 /*
7116                  * If we've been given a valid mailbox, first try to get the
7117                  * firmware to do the RESET.  If that works, great and we can
7118                  * return success.  Otherwise, if we haven't been given a
7119                  * valid mailbox or the RESET command failed, fall back to
7120                  * hitting the chip with a hammer.
7121                  */
7122                 if (mbox <= PCIE_FW_MASTER_M) {
7123                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7124                         msleep(100);
7125                         if (t4_fw_reset(adap, mbox,
7126                                         PIORST_F | PIORSTMODE_F) == 0)
7127                                 return 0;
7128                 }
7129
7130                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7131                 msleep(2000);
7132         } else {
7133                 int ms;
7134
7135                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7136                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7137                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7138                                 return 0;
7139                         msleep(100);
7140                         ms += 100;
7141                 }
7142                 return -ETIMEDOUT;
7143         }
7144         return 0;
7145 }
7146
7147 /**
7148  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7149  *      @adap: the adapter
7150  *      @mbox: mailbox to use for the FW RESET command (if desired)
7151  *      @fw_data: the firmware image to write
7152  *      @size: image size
7153  *      @force: force upgrade even if firmware doesn't cooperate
7154  *
7155  *      Perform all of the steps necessary for upgrading an adapter's
7156  *      firmware image.  Normally this requires the cooperation of the
7157  *      existing firmware in order to halt all existing activities
7158  *      but if an invalid mailbox token is passed in we skip that step
7159  *      (though we'll still put the adapter microprocessor into RESET in
7160  *      that case).
7161  *
7162  *      On successful return the new firmware will have been loaded and
7163  *      the adapter will have been fully RESET losing all previous setup
7164  *      state.  On unsuccessful return the adapter may be completely hosed ...
7165  *      positive errno indicates that the adapter is ~probably~ intact, a
7166  *      negative errno indicates that things are looking bad ...
7167  */
7168 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7169                   const u8 *fw_data, unsigned int size, int force)
7170 {
7171         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7172         int reset, ret;
7173
7174         if (!t4_fw_matches_chip(adap, fw_hdr))
7175                 return -EINVAL;
7176
7177         /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7178          * set wont be sent when we are flashing FW.
7179          */
7180         adap->flags &= ~CXGB4_FW_OK;
7181
7182         ret = t4_fw_halt(adap, mbox, force);
7183         if (ret < 0 && !force)
7184                 goto out;
7185
7186         ret = t4_load_fw(adap, fw_data, size);
7187         if (ret < 0)
7188                 goto out;
7189
7190         /*
7191          * If there was a Firmware Configuration File stored in FLASH,
7192          * there's a good chance that it won't be compatible with the new
7193          * Firmware.  In order to prevent difficult to diagnose adapter
7194          * initialization issues, we clear out the Firmware Configuration File
7195          * portion of the FLASH .  The user will need to re-FLASH a new
7196          * Firmware Configuration File which is compatible with the new
7197          * Firmware if that's desired.
7198          */
7199         (void)t4_load_cfg(adap, NULL, 0);
7200
7201         /*
7202          * Older versions of the firmware don't understand the new
7203          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7204          * restart.  So for newly loaded older firmware we'll have to do the
7205          * RESET for it so it starts up on a clean slate.  We can tell if
7206          * the newly loaded firmware will handle this right by checking
7207          * its header flags to see if it advertises the capability.
7208          */
7209         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7210         ret = t4_fw_restart(adap, mbox, reset);
7211
7212         /* Grab potentially new Firmware Device Log parameters so we can see
7213          * how healthy the new Firmware is.  It's okay to contact the new
7214          * Firmware for these parameters even though, as far as it's
7215          * concerned, we've never said "HELLO" to it ...
7216          */
7217         (void)t4_init_devlog_params(adap);
7218 out:
7219         adap->flags |= CXGB4_FW_OK;
7220         return ret;
7221 }
7222
7223 /**
7224  *      t4_fl_pkt_align - return the fl packet alignment
7225  *      @adap: the adapter
7226  *
7227  *      T4 has a single field to specify the packing and padding boundary.
7228  *      T5 onwards has separate fields for this and hence the alignment for
7229  *      next packet offset is maximum of these two.
7230  *
7231  */
7232 int t4_fl_pkt_align(struct adapter *adap)
7233 {
7234         u32 sge_control, sge_control2;
7235         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7236
7237         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7238
7239         /* T4 uses a single control field to specify both the PCIe Padding and
7240          * Packing Boundary.  T5 introduced the ability to specify these
7241          * separately.  The actual Ingress Packet Data alignment boundary
7242          * within Packed Buffer Mode is the maximum of these two
7243          * specifications.  (Note that it makes no real practical sense to
7244          * have the Padding Boundary be larger than the Packing Boundary but you
7245          * could set the chip up that way and, in fact, legacy T4 code would
7246          * end doing this because it would initialize the Padding Boundary and
7247          * leave the Packing Boundary initialized to 0 (16 bytes).)
7248          * Padding Boundary values in T6 starts from 8B,
7249          * where as it is 32B for T4 and T5.
7250          */
7251         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7252                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7253         else
7254                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7255
7256         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7257
7258         fl_align = ingpadboundary;
7259         if (!is_t4(adap->params.chip)) {
7260                 /* T5 has a weird interpretation of one of the PCIe Packing
7261                  * Boundary values.  No idea why ...
7262                  */
7263                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7264                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7265                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7266                         ingpackboundary = 16;
7267                 else
7268                         ingpackboundary = 1 << (ingpackboundary +
7269                                                 INGPACKBOUNDARY_SHIFT_X);
7270
7271                 fl_align = max(ingpadboundary, ingpackboundary);
7272         }
7273         return fl_align;
7274 }
7275
7276 /**
7277  *      t4_fixup_host_params - fix up host-dependent parameters
7278  *      @adap: the adapter
7279  *      @page_size: the host's Base Page Size
7280  *      @cache_line_size: the host's Cache Line Size
7281  *
7282  *      Various registers in T4 contain values which are dependent on the
7283  *      host's Base Page and Cache Line Sizes.  This function will fix all of
7284  *      those registers with the appropriate values as passed in ...
7285  */
7286 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7287                          unsigned int cache_line_size)
7288 {
7289         unsigned int page_shift = fls(page_size) - 1;
7290         unsigned int sge_hps = page_shift - 10;
7291         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7292         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7293         unsigned int fl_align_log = fls(fl_align) - 1;
7294
7295         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7296                      HOSTPAGESIZEPF0_V(sge_hps) |
7297                      HOSTPAGESIZEPF1_V(sge_hps) |
7298                      HOSTPAGESIZEPF2_V(sge_hps) |
7299                      HOSTPAGESIZEPF3_V(sge_hps) |
7300                      HOSTPAGESIZEPF4_V(sge_hps) |
7301                      HOSTPAGESIZEPF5_V(sge_hps) |
7302                      HOSTPAGESIZEPF6_V(sge_hps) |
7303                      HOSTPAGESIZEPF7_V(sge_hps));
7304
7305         if (is_t4(adap->params.chip)) {
7306                 t4_set_reg_field(adap, SGE_CONTROL_A,
7307                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7308                                  EGRSTATUSPAGESIZE_F,
7309                                  INGPADBOUNDARY_V(fl_align_log -
7310                                                   INGPADBOUNDARY_SHIFT_X) |
7311                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7312         } else {
7313                 unsigned int pack_align;
7314                 unsigned int ingpad, ingpack;
7315
7316                 /* T5 introduced the separation of the Free List Padding and
7317                  * Packing Boundaries.  Thus, we can select a smaller Padding
7318                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
7319                  * Bandwidth, and use a Packing Boundary which is large enough
7320                  * to avoid false sharing between CPUs, etc.
7321                  *
7322                  * For the PCI Link, the smaller the Padding Boundary the
7323                  * better.  For the Memory Controller, a smaller Padding
7324                  * Boundary is better until we cross under the Memory Line
7325                  * Size (the minimum unit of transfer to/from Memory).  If we
7326                  * have a Padding Boundary which is smaller than the Memory
7327                  * Line Size, that'll involve a Read-Modify-Write cycle on the
7328                  * Memory Controller which is never good.
7329                  */
7330
7331                 /* We want the Packing Boundary to be based on the Cache Line
7332                  * Size in order to help avoid False Sharing performance
7333                  * issues between CPUs, etc.  We also want the Packing
7334                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7335                  * get best performance when the Packing Boundary is a
7336                  * multiple of the Maximum Payload Size.
7337                  */
7338                 pack_align = fl_align;
7339                 if (pci_is_pcie(adap->pdev)) {
7340                         unsigned int mps, mps_log;
7341                         u16 devctl;
7342
7343                         /* The PCIe Device Control Maximum Payload Size field
7344                          * [bits 7:5] encodes sizes as powers of 2 starting at
7345                          * 128 bytes.
7346                          */
7347                         pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7348                                                   &devctl);
7349                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7350                         mps = 1 << mps_log;
7351                         if (mps > pack_align)
7352                                 pack_align = mps;
7353                 }
7354
7355                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7356                  * value for the Packing Boundary.  This corresponds to 16
7357                  * bytes instead of the expected 32 bytes.  So if we want 32
7358                  * bytes, the best we can really do is 64 bytes ...
7359                  */
7360                 if (pack_align <= 16) {
7361                         ingpack = INGPACKBOUNDARY_16B_X;
7362                         fl_align = 16;
7363                 } else if (pack_align == 32) {
7364                         ingpack = INGPACKBOUNDARY_64B_X;
7365                         fl_align = 64;
7366                 } else {
7367                         unsigned int pack_align_log = fls(pack_align) - 1;
7368
7369                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7370                         fl_align = pack_align;
7371                 }
7372
7373                 /* Use the smallest Ingress Padding which isn't smaller than
7374                  * the Memory Controller Read/Write Size.  We'll take that as
7375                  * being 8 bytes since we don't know of any system with a
7376                  * wider Memory Controller Bus Width.
7377                  */
7378                 if (is_t5(adap->params.chip))
7379                         ingpad = INGPADBOUNDARY_32B_X;
7380                 else
7381                         ingpad = T6_INGPADBOUNDARY_8B_X;
7382
7383                 t4_set_reg_field(adap, SGE_CONTROL_A,
7384                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7385                                  EGRSTATUSPAGESIZE_F,
7386                                  INGPADBOUNDARY_V(ingpad) |
7387                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7388                 t4_set_reg_field(adap, SGE_CONTROL2_A,
7389                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7390                                  INGPACKBOUNDARY_V(ingpack));
7391         }
7392         /*
7393          * Adjust various SGE Free List Host Buffer Sizes.
7394          *
7395          * This is something of a crock since we're using fixed indices into
7396          * the array which are also known by the sge.c code and the T4
7397          * Firmware Configuration File.  We need to come up with a much better
7398          * approach to managing this array.  For now, the first four entries
7399          * are:
7400          *
7401          *   0: Host Page Size
7402          *   1: 64KB
7403          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7404          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7405          *
7406          * For the single-MTU buffers in unpacked mode we need to include
7407          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7408          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7409          * Padding boundary.  All of these are accommodated in the Factory
7410          * Default Firmware Configuration File but we need to adjust it for
7411          * this host's cache line size.
7412          */
7413         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7414         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7415                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7416                      & ~(fl_align-1));
7417         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7418                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7419                      & ~(fl_align-1));
7420
7421         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7422
7423         return 0;
7424 }
7425
7426 /**
7427  *      t4_fw_initialize - ask FW to initialize the device
7428  *      @adap: the adapter
7429  *      @mbox: mailbox to use for the FW command
7430  *
7431  *      Issues a command to FW to partially initialize the device.  This
7432  *      performs initialization that generally doesn't depend on user input.
7433  */
7434 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7435 {
7436         struct fw_initialize_cmd c;
7437
7438         memset(&c, 0, sizeof(c));
7439         INIT_CMD(c, INITIALIZE, WRITE);
7440         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7441 }
7442
7443 /**
7444  *      t4_query_params_rw - query FW or device parameters
7445  *      @adap: the adapter
7446  *      @mbox: mailbox to use for the FW command
7447  *      @pf: the PF
7448  *      @vf: the VF
7449  *      @nparams: the number of parameters
7450  *      @params: the parameter names
7451  *      @val: the parameter values
7452  *      @rw: Write and read flag
7453  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7454  *
7455  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7456  *      queried at once.
7457  */
7458 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7459                        unsigned int vf, unsigned int nparams, const u32 *params,
7460                        u32 *val, int rw, bool sleep_ok)
7461 {
7462         int i, ret;
7463         struct fw_params_cmd c;
7464         __be32 *p = &c.param[0].mnem;
7465
7466         if (nparams > 7)
7467                 return -EINVAL;
7468
7469         memset(&c, 0, sizeof(c));
7470         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7471                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7472                                   FW_PARAMS_CMD_PFN_V(pf) |
7473                                   FW_PARAMS_CMD_VFN_V(vf));
7474         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7475
7476         for (i = 0; i < nparams; i++) {
7477                 *p++ = cpu_to_be32(*params++);
7478                 if (rw)
7479                         *p = cpu_to_be32(*(val + i));
7480                 p++;
7481         }
7482
7483         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7484         if (ret == 0)
7485                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7486                         *val++ = be32_to_cpu(*p);
7487         return ret;
7488 }
7489
7490 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7491                     unsigned int vf, unsigned int nparams, const u32 *params,
7492                     u32 *val)
7493 {
7494         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7495                                   true);
7496 }
7497
7498 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7499                        unsigned int vf, unsigned int nparams, const u32 *params,
7500                        u32 *val)
7501 {
7502         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7503                                   false);
7504 }
7505
7506 /**
7507  *      t4_set_params_timeout - sets FW or device parameters
7508  *      @adap: the adapter
7509  *      @mbox: mailbox to use for the FW command
7510  *      @pf: the PF
7511  *      @vf: the VF
7512  *      @nparams: the number of parameters
7513  *      @params: the parameter names
7514  *      @val: the parameter values
7515  *      @timeout: the timeout time
7516  *
7517  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7518  *      specified at once.
7519  */
7520 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7521                           unsigned int pf, unsigned int vf,
7522                           unsigned int nparams, const u32 *params,
7523                           const u32 *val, int timeout)
7524 {
7525         struct fw_params_cmd c;
7526         __be32 *p = &c.param[0].mnem;
7527
7528         if (nparams > 7)
7529                 return -EINVAL;
7530
7531         memset(&c, 0, sizeof(c));
7532         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7533                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7534                                   FW_PARAMS_CMD_PFN_V(pf) |
7535                                   FW_PARAMS_CMD_VFN_V(vf));
7536         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7537
7538         while (nparams--) {
7539                 *p++ = cpu_to_be32(*params++);
7540                 *p++ = cpu_to_be32(*val++);
7541         }
7542
7543         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7544 }
7545
7546 /**
7547  *      t4_set_params - sets FW or device parameters
7548  *      @adap: the adapter
7549  *      @mbox: mailbox to use for the FW command
7550  *      @pf: the PF
7551  *      @vf: the VF
7552  *      @nparams: the number of parameters
7553  *      @params: the parameter names
7554  *      @val: the parameter values
7555  *
7556  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7557  *      specified at once.
7558  */
7559 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7560                   unsigned int vf, unsigned int nparams, const u32 *params,
7561                   const u32 *val)
7562 {
7563         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7564                                      FW_CMD_MAX_TIMEOUT);
7565 }
7566
7567 /**
7568  *      t4_cfg_pfvf - configure PF/VF resource limits
7569  *      @adap: the adapter
7570  *      @mbox: mailbox to use for the FW command
7571  *      @pf: the PF being configured
7572  *      @vf: the VF being configured
7573  *      @txq: the max number of egress queues
7574  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7575  *      @rxqi: the max number of interrupt-capable ingress queues
7576  *      @rxq: the max number of interruptless ingress queues
7577  *      @tc: the PCI traffic class
7578  *      @vi: the max number of virtual interfaces
7579  *      @cmask: the channel access rights mask for the PF/VF
7580  *      @pmask: the port access rights mask for the PF/VF
7581  *      @nexact: the maximum number of exact MPS filters
7582  *      @rcaps: read capabilities
7583  *      @wxcaps: write/execute capabilities
7584  *
7585  *      Configures resource limits and capabilities for a physical or virtual
7586  *      function.
7587  */
7588 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7589                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7590                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7591                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7592                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7593 {
7594         struct fw_pfvf_cmd c;
7595
7596         memset(&c, 0, sizeof(c));
7597         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7598                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7599                                   FW_PFVF_CMD_VFN_V(vf));
7600         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7601         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7602                                      FW_PFVF_CMD_NIQ_V(rxq));
7603         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7604                                     FW_PFVF_CMD_PMASK_V(pmask) |
7605                                     FW_PFVF_CMD_NEQ_V(txq));
7606         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7607                                       FW_PFVF_CMD_NVI_V(vi) |
7608                                       FW_PFVF_CMD_NEXACTF_V(nexact));
7609         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7610                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7611                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7612         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7613 }
7614
7615 /**
7616  *      t4_alloc_vi - allocate a virtual interface
7617  *      @adap: the adapter
7618  *      @mbox: mailbox to use for the FW command
7619  *      @port: physical port associated with the VI
7620  *      @pf: the PF owning the VI
7621  *      @vf: the VF owning the VI
7622  *      @nmac: number of MAC addresses needed (1 to 5)
7623  *      @mac: the MAC addresses of the VI
7624  *      @rss_size: size of RSS table slice associated with this VI
7625  *      @vivld: the destination to store the VI Valid value.
7626  *      @vin: the destination to store the VIN value.
7627  *
7628  *      Allocates a virtual interface for the given physical port.  If @mac is
7629  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7630  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7631  *      stored consecutively so the space needed is @nmac * 6 bytes.
7632  *      Returns a negative error number or the non-negative VI id.
7633  */
7634 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7635                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7636                 unsigned int *rss_size, u8 *vivld, u8 *vin)
7637 {
7638         int ret;
7639         struct fw_vi_cmd c;
7640
7641         memset(&c, 0, sizeof(c));
7642         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7643                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7644                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7645         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7646         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7647         c.nmac = nmac - 1;
7648
7649         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7650         if (ret)
7651                 return ret;
7652
7653         if (mac) {
7654                 memcpy(mac, c.mac, sizeof(c.mac));
7655                 switch (nmac) {
7656                 case 5:
7657                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7658                         fallthrough;
7659                 case 4:
7660                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7661                         fallthrough;
7662                 case 3:
7663                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7664                         fallthrough;
7665                 case 2:
7666                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7667                 }
7668         }
7669         if (rss_size)
7670                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7671
7672         if (vivld)
7673                 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7674
7675         if (vin)
7676                 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7677
7678         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7679 }
7680
7681 /**
7682  *      t4_free_vi - free a virtual interface
7683  *      @adap: the adapter
7684  *      @mbox: mailbox to use for the FW command
7685  *      @pf: the PF owning the VI
7686  *      @vf: the VF owning the VI
7687  *      @viid: virtual interface identifiler
7688  *
7689  *      Free a previously allocated virtual interface.
7690  */
7691 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7692                unsigned int vf, unsigned int viid)
7693 {
7694         struct fw_vi_cmd c;
7695
7696         memset(&c, 0, sizeof(c));
7697         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7698                                   FW_CMD_REQUEST_F |
7699                                   FW_CMD_EXEC_F |
7700                                   FW_VI_CMD_PFN_V(pf) |
7701                                   FW_VI_CMD_VFN_V(vf));
7702         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7703         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7704
7705         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7706 }
7707
7708 /**
7709  *      t4_set_rxmode - set Rx properties of a virtual interface
7710  *      @adap: the adapter
7711  *      @mbox: mailbox to use for the FW command
7712  *      @viid: the VI id
7713  *      @viid_mirror: the mirror VI id
7714  *      @mtu: the new MTU or -1
7715  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7716  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7717  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7718  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7719  *      @sleep_ok: if true we may sleep while awaiting command completion
7720  *
7721  *      Sets Rx properties of a virtual interface.
7722  */
7723 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7724                   unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7725                   int bcast, int vlanex, bool sleep_ok)
7726 {
7727         struct fw_vi_rxmode_cmd c, c_mirror;
7728         int ret;
7729
7730         /* convert to FW values */
7731         if (mtu < 0)
7732                 mtu = FW_RXMODE_MTU_NO_CHG;
7733         if (promisc < 0)
7734                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7735         if (all_multi < 0)
7736                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7737         if (bcast < 0)
7738                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7739         if (vlanex < 0)
7740                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7741
7742         memset(&c, 0, sizeof(c));
7743         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7744                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7745                                    FW_VI_RXMODE_CMD_VIID_V(viid));
7746         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7747         c.mtu_to_vlanexen =
7748                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7749                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7750                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7751                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7752                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7753
7754         if (viid_mirror) {
7755                 memcpy(&c_mirror, &c, sizeof(c_mirror));
7756                 c_mirror.op_to_viid =
7757                         cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7758                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7759                                     FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7760         }
7761
7762         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7763         if (ret)
7764                 return ret;
7765
7766         if (viid_mirror)
7767                 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7768                                       NULL, sleep_ok);
7769
7770         return ret;
7771 }
7772
7773 /**
7774  *      t4_free_encap_mac_filt - frees MPS entry at given index
7775  *      @adap: the adapter
7776  *      @viid: the VI id
7777  *      @idx: index of MPS entry to be freed
7778  *      @sleep_ok: call is allowed to sleep
7779  *
7780  *      Frees the MPS entry at supplied index
7781  *
7782  *      Returns a negative error number or zero on success
7783  */
7784 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7785                            int idx, bool sleep_ok)
7786 {
7787         struct fw_vi_mac_exact *p;
7788         struct fw_vi_mac_cmd c;
7789         int ret = 0;
7790         u32 exact;
7791
7792         memset(&c, 0, sizeof(c));
7793         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7794                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7795                                    FW_CMD_EXEC_V(0) |
7796                                    FW_VI_MAC_CMD_VIID_V(viid));
7797         exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7798         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7799                                           exact |
7800                                           FW_CMD_LEN16_V(1));
7801         p = c.u.exact;
7802         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7803                                       FW_VI_MAC_CMD_IDX_V(idx));
7804         eth_zero_addr(p->macaddr);
7805         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7806         return ret;
7807 }
7808
7809 /**
7810  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7811  *      @adap: the adapter
7812  *      @viid: the VI id
7813  *      @addr: the MAC address
7814  *      @mask: the mask
7815  *      @idx: index of the entry in mps tcam
7816  *      @lookup_type: MAC address for inner (1) or outer (0) header
7817  *      @port_id: the port index
7818  *      @sleep_ok: call is allowed to sleep
7819  *
7820  *      Removes the mac entry at the specified index using raw mac interface.
7821  *
7822  *      Returns a negative error number on failure.
7823  */
7824 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7825                          const u8 *addr, const u8 *mask, unsigned int idx,
7826                          u8 lookup_type, u8 port_id, bool sleep_ok)
7827 {
7828         struct fw_vi_mac_cmd c;
7829         struct fw_vi_mac_raw *p = &c.u.raw;
7830         u32 val;
7831
7832         memset(&c, 0, sizeof(c));
7833         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7834                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7835                                    FW_CMD_EXEC_V(0) |
7836                                    FW_VI_MAC_CMD_VIID_V(viid));
7837         val = FW_CMD_LEN16_V(1) |
7838               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7839         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7840                                           FW_CMD_LEN16_V(val));
7841
7842         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7843                                      FW_VI_MAC_ID_BASED_FREE);
7844
7845         /* Lookup Type. Outer header: 0, Inner header: 1 */
7846         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7847                                    DATAPORTNUM_V(port_id));
7848         /* Lookup mask and port mask */
7849         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7850                                     DATAPORTNUM_V(DATAPORTNUM_M));
7851
7852         /* Copy the address and the mask */
7853         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7854         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7855
7856         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7857 }
7858
7859 /**
7860  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7861  *      @adap: the adapter
7862  *      @viid: the VI id
7863  *      @addr: the MAC address
7864  *      @mask: the mask
7865  *      @vni: the VNI id for the tunnel protocol
7866  *      @vni_mask: mask for the VNI id
7867  *      @dip_hit: to enable DIP match for the MPS entry
7868  *      @lookup_type: MAC address for inner (1) or outer (0) header
7869  *      @sleep_ok: call is allowed to sleep
7870  *
7871  *      Allocates an MPS entry with specified MAC address and VNI value.
7872  *
7873  *      Returns a negative error number or the allocated index for this mac.
7874  */
7875 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7876                             const u8 *addr, const u8 *mask, unsigned int vni,
7877                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7878                             bool sleep_ok)
7879 {
7880         struct fw_vi_mac_cmd c;
7881         struct fw_vi_mac_vni *p = c.u.exact_vni;
7882         int ret = 0;
7883         u32 val;
7884
7885         memset(&c, 0, sizeof(c));
7886         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7887                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7888                                    FW_VI_MAC_CMD_VIID_V(viid));
7889         val = FW_CMD_LEN16_V(1) |
7890               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7891         c.freemacs_to_len16 = cpu_to_be32(val);
7892         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7893                                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7894         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7895         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7896
7897         p->lookup_type_to_vni =
7898                 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7899                             FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7900                             FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7901         p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7902         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7903         if (ret == 0)
7904                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7905         return ret;
7906 }
7907
7908 /**
7909  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7910  *      @adap: the adapter
7911  *      @viid: the VI id
7912  *      @addr: the MAC address
7913  *      @mask: the mask
7914  *      @idx: index at which to add this entry
7915  *      @lookup_type: MAC address for inner (1) or outer (0) header
7916  *      @port_id: the port index
7917  *      @sleep_ok: call is allowed to sleep
7918  *
7919  *      Adds the mac entry at the specified index using raw mac interface.
7920  *
7921  *      Returns a negative error number or the allocated index for this mac.
7922  */
7923 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7924                           const u8 *addr, const u8 *mask, unsigned int idx,
7925                           u8 lookup_type, u8 port_id, bool sleep_ok)
7926 {
7927         int ret = 0;
7928         struct fw_vi_mac_cmd c;
7929         struct fw_vi_mac_raw *p = &c.u.raw;
7930         u32 val;
7931
7932         memset(&c, 0, sizeof(c));
7933         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7934                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7935                                    FW_VI_MAC_CMD_VIID_V(viid));
7936         val = FW_CMD_LEN16_V(1) |
7937               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7938         c.freemacs_to_len16 = cpu_to_be32(val);
7939
7940         /* Specify that this is an inner mac address */
7941         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7942
7943         /* Lookup Type. Outer header: 0, Inner header: 1 */
7944         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7945                                    DATAPORTNUM_V(port_id));
7946         /* Lookup mask and port mask */
7947         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7948                                     DATAPORTNUM_V(DATAPORTNUM_M));
7949
7950         /* Copy the address and the mask */
7951         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7952         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7953
7954         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7955         if (ret == 0) {
7956                 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7957                 if (ret != idx)
7958                         ret = -ENOMEM;
7959         }
7960
7961         return ret;
7962 }
7963
7964 /**
7965  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7966  *      @adap: the adapter
7967  *      @mbox: mailbox to use for the FW command
7968  *      @viid: the VI id
7969  *      @free: if true any existing filters for this VI id are first removed
7970  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7971  *      @addr: the MAC address(es)
7972  *      @idx: where to store the index of each allocated filter
7973  *      @hash: pointer to hash address filter bitmap
7974  *      @sleep_ok: call is allowed to sleep
7975  *
7976  *      Allocates an exact-match filter for each of the supplied addresses and
7977  *      sets it to the corresponding address.  If @idx is not %NULL it should
7978  *      have at least @naddr entries, each of which will be set to the index of
7979  *      the filter allocated for the corresponding MAC address.  If a filter
7980  *      could not be allocated for an address its index is set to 0xffff.
7981  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7982  *      are hashed and update the hash filter bitmap pointed at by @hash.
7983  *
7984  *      Returns a negative error number or the number of filters allocated.
7985  */
7986 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7987                       unsigned int viid, bool free, unsigned int naddr,
7988                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7989 {
7990         int offset, ret = 0;
7991         struct fw_vi_mac_cmd c;
7992         unsigned int nfilters = 0;
7993         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7994         unsigned int rem = naddr;
7995
7996         if (naddr > max_naddr)
7997                 return -EINVAL;
7998
7999         for (offset = 0; offset < naddr ; /**/) {
8000                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
8001                                          rem : ARRAY_SIZE(c.u.exact));
8002                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8003                                                      u.exact[fw_naddr]), 16);
8004                 struct fw_vi_mac_exact *p;
8005                 int i;
8006
8007                 memset(&c, 0, sizeof(c));
8008                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8009                                            FW_CMD_REQUEST_F |
8010                                            FW_CMD_WRITE_F |
8011                                            FW_CMD_EXEC_V(free) |
8012                                            FW_VI_MAC_CMD_VIID_V(viid));
8013                 c.freemacs_to_len16 =
8014                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8015                                     FW_CMD_LEN16_V(len16));
8016
8017                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8018                         p->valid_to_idx =
8019                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8020                                             FW_VI_MAC_CMD_IDX_V(
8021                                                     FW_VI_MAC_ADD_MAC));
8022                         memcpy(p->macaddr, addr[offset + i],
8023                                sizeof(p->macaddr));
8024                 }
8025
8026                 /* It's okay if we run out of space in our MAC address arena.
8027                  * Some of the addresses we submit may get stored so we need
8028                  * to run through the reply to see what the results were ...
8029                  */
8030                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8031                 if (ret && ret != -FW_ENOMEM)
8032                         break;
8033
8034                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8035                         u16 index = FW_VI_MAC_CMD_IDX_G(
8036                                         be16_to_cpu(p->valid_to_idx));
8037
8038                         if (idx)
8039                                 idx[offset + i] = (index >= max_naddr ?
8040                                                    0xffff : index);
8041                         if (index < max_naddr)
8042                                 nfilters++;
8043                         else if (hash)
8044                                 *hash |= (1ULL <<
8045                                           hash_mac_addr(addr[offset + i]));
8046                 }
8047
8048                 free = false;
8049                 offset += fw_naddr;
8050                 rem -= fw_naddr;
8051         }
8052
8053         if (ret == 0 || ret == -FW_ENOMEM)
8054                 ret = nfilters;
8055         return ret;
8056 }
8057
8058 /**
8059  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8060  *      @adap: the adapter
8061  *      @mbox: mailbox to use for the FW command
8062  *      @viid: the VI id
8063  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8064  *      @addr: the MAC address(es)
8065  *      @sleep_ok: call is allowed to sleep
8066  *
8067  *      Frees the exact-match filter for each of the supplied addresses
8068  *
8069  *      Returns a negative error number or the number of filters freed.
8070  */
8071 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8072                      unsigned int viid, unsigned int naddr,
8073                      const u8 **addr, bool sleep_ok)
8074 {
8075         int offset, ret = 0;
8076         struct fw_vi_mac_cmd c;
8077         unsigned int nfilters = 0;
8078         unsigned int max_naddr = is_t4(adap->params.chip) ?
8079                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
8080                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8081         unsigned int rem = naddr;
8082
8083         if (naddr > max_naddr)
8084                 return -EINVAL;
8085
8086         for (offset = 0; offset < (int)naddr ; /**/) {
8087                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8088                                          ? rem
8089                                          : ARRAY_SIZE(c.u.exact));
8090                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8091                                                      u.exact[fw_naddr]), 16);
8092                 struct fw_vi_mac_exact *p;
8093                 int i;
8094
8095                 memset(&c, 0, sizeof(c));
8096                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8097                                      FW_CMD_REQUEST_F |
8098                                      FW_CMD_WRITE_F |
8099                                      FW_CMD_EXEC_V(0) |
8100                                      FW_VI_MAC_CMD_VIID_V(viid));
8101                 c.freemacs_to_len16 =
8102                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8103                                             FW_CMD_LEN16_V(len16));
8104
8105                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8106                         p->valid_to_idx = cpu_to_be16(
8107                                 FW_VI_MAC_CMD_VALID_F |
8108                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8109                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8110                 }
8111
8112                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8113                 if (ret)
8114                         break;
8115
8116                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8117                         u16 index = FW_VI_MAC_CMD_IDX_G(
8118                                                 be16_to_cpu(p->valid_to_idx));
8119
8120                         if (index < max_naddr)
8121                                 nfilters++;
8122                 }
8123
8124                 offset += fw_naddr;
8125                 rem -= fw_naddr;
8126         }
8127
8128         if (ret == 0)
8129                 ret = nfilters;
8130         return ret;
8131 }
8132
8133 /**
8134  *      t4_change_mac - modifies the exact-match filter for a MAC address
8135  *      @adap: the adapter
8136  *      @mbox: mailbox to use for the FW command
8137  *      @viid: the VI id
8138  *      @idx: index of existing filter for old value of MAC address, or -1
8139  *      @addr: the new MAC address value
8140  *      @persist: whether a new MAC allocation should be persistent
8141  *      @smt_idx: the destination to store the new SMT index.
8142  *
8143  *      Modifies an exact-match filter and sets it to the new MAC address.
8144  *      Note that in general it is not possible to modify the value of a given
8145  *      filter so the generic way to modify an address filter is to free the one
8146  *      being used by the old address value and allocate a new filter for the
8147  *      new address value.  @idx can be -1 if the address is a new addition.
8148  *
8149  *      Returns a negative error number or the index of the filter with the new
8150  *      MAC value.
8151  */
8152 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8153                   int idx, const u8 *addr, bool persist, u8 *smt_idx)
8154 {
8155         int ret, mode;
8156         struct fw_vi_mac_cmd c;
8157         struct fw_vi_mac_exact *p = c.u.exact;
8158         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8159
8160         if (idx < 0)                             /* new allocation */
8161                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8162         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8163
8164         memset(&c, 0, sizeof(c));
8165         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8166                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8167                                    FW_VI_MAC_CMD_VIID_V(viid));
8168         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8169         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8170                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8171                                       FW_VI_MAC_CMD_IDX_V(idx));
8172         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8173
8174         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8175         if (ret == 0) {
8176                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8177                 if (ret >= max_mac_addr)
8178                         ret = -ENOMEM;
8179                 if (smt_idx) {
8180                         if (adap->params.viid_smt_extn_support) {
8181                                 *smt_idx = FW_VI_MAC_CMD_SMTID_G
8182                                                     (be32_to_cpu(c.op_to_viid));
8183                         } else {
8184                                 /* In T4/T5, SMT contains 256 SMAC entries
8185                                  * organized in 128 rows of 2 entries each.
8186                                  * In T6, SMT contains 256 SMAC entries in
8187                                  * 256 rows.
8188                                  */
8189                                 if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8190                                                                      CHELSIO_T5)
8191                                         *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8192                                 else
8193                                         *smt_idx = (viid & FW_VIID_VIN_M);
8194                         }
8195                 }
8196         }
8197         return ret;
8198 }
8199
8200 /**
8201  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8202  *      @adap: the adapter
8203  *      @mbox: mailbox to use for the FW command
8204  *      @viid: the VI id
8205  *      @ucast: whether the hash filter should also match unicast addresses
8206  *      @vec: the value to be written to the hash filter
8207  *      @sleep_ok: call is allowed to sleep
8208  *
8209  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8210  */
8211 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8212                      bool ucast, u64 vec, bool sleep_ok)
8213 {
8214         struct fw_vi_mac_cmd c;
8215
8216         memset(&c, 0, sizeof(c));
8217         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8218                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8219                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8220         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8221                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8222                                           FW_CMD_LEN16_V(1));
8223         c.u.hash.hashvec = cpu_to_be64(vec);
8224         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8225 }
8226
8227 /**
8228  *      t4_enable_vi_params - enable/disable a virtual interface
8229  *      @adap: the adapter
8230  *      @mbox: mailbox to use for the FW command
8231  *      @viid: the VI id
8232  *      @rx_en: 1=enable Rx, 0=disable Rx
8233  *      @tx_en: 1=enable Tx, 0=disable Tx
8234  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8235  *
8236  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8237  *      only makes sense when enabling a Virtual Interface ...
8238  */
8239 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8240                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8241 {
8242         struct fw_vi_enable_cmd c;
8243
8244         memset(&c, 0, sizeof(c));
8245         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8246                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8247                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8248         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8249                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8250                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8251                                      FW_LEN16(c));
8252         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8253 }
8254
8255 /**
8256  *      t4_enable_vi - enable/disable a virtual interface
8257  *      @adap: the adapter
8258  *      @mbox: mailbox to use for the FW command
8259  *      @viid: the VI id
8260  *      @rx_en: 1=enable Rx, 0=disable Rx
8261  *      @tx_en: 1=enable Tx, 0=disable Tx
8262  *
8263  *      Enables/disables a virtual interface.
8264  */
8265 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8266                  bool rx_en, bool tx_en)
8267 {
8268         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8269 }
8270
8271 /**
8272  *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8273  *      @adap: the adapter
8274  *      @mbox: mailbox to use for the FW command
8275  *      @pi: the Port Information structure
8276  *      @rx_en: 1=enable Rx, 0=disable Rx
8277  *      @tx_en: 1=enable Tx, 0=disable Tx
8278  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8279  *
8280  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8281  *      Enable only makes sense when enabling a Virtual Interface ...
8282  *      If the Virtual Interface enable/disable operation is successful,
8283  *      we notify the OS-specific code of a potential Link Status change
8284  *      via the OS Contract API t4_os_link_changed().
8285  */
8286 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8287                         struct port_info *pi,
8288                         bool rx_en, bool tx_en, bool dcb_en)
8289 {
8290         int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8291                                       rx_en, tx_en, dcb_en);
8292         if (ret)
8293                 return ret;
8294         t4_os_link_changed(adap, pi->port_id,
8295                            rx_en && tx_en && pi->link_cfg.link_ok);
8296         return 0;
8297 }
8298
8299 /**
8300  *      t4_identify_port - identify a VI's port by blinking its LED
8301  *      @adap: the adapter
8302  *      @mbox: mailbox to use for the FW command
8303  *      @viid: the VI id
8304  *      @nblinks: how many times to blink LED at 2.5 Hz
8305  *
8306  *      Identifies a VI's port by blinking its LED.
8307  */
8308 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8309                      unsigned int nblinks)
8310 {
8311         struct fw_vi_enable_cmd c;
8312
8313         memset(&c, 0, sizeof(c));
8314         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8315                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8316                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8317         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8318         c.blinkdur = cpu_to_be16(nblinks);
8319         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8320 }
8321
8322 /**
8323  *      t4_iq_stop - stop an ingress queue and its FLs
8324  *      @adap: the adapter
8325  *      @mbox: mailbox to use for the FW command
8326  *      @pf: the PF owning the queues
8327  *      @vf: the VF owning the queues
8328  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8329  *      @iqid: ingress queue id
8330  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8331  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8332  *
8333  *      Stops an ingress queue and its associated FLs, if any.  This causes
8334  *      any current or future data/messages destined for these queues to be
8335  *      tossed.
8336  */
8337 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8338                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8339                unsigned int fl0id, unsigned int fl1id)
8340 {
8341         struct fw_iq_cmd c;
8342
8343         memset(&c, 0, sizeof(c));
8344         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8345                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8346                                   FW_IQ_CMD_VFN_V(vf));
8347         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8348         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8349         c.iqid = cpu_to_be16(iqid);
8350         c.fl0id = cpu_to_be16(fl0id);
8351         c.fl1id = cpu_to_be16(fl1id);
8352         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8353 }
8354
8355 /**
8356  *      t4_iq_free - free an ingress queue and its FLs
8357  *      @adap: the adapter
8358  *      @mbox: mailbox to use for the FW command
8359  *      @pf: the PF owning the queues
8360  *      @vf: the VF owning the queues
8361  *      @iqtype: the ingress queue type
8362  *      @iqid: ingress queue id
8363  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8364  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8365  *
8366  *      Frees an ingress queue and its associated FLs, if any.
8367  */
8368 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8369                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8370                unsigned int fl0id, unsigned int fl1id)
8371 {
8372         struct fw_iq_cmd c;
8373
8374         memset(&c, 0, sizeof(c));
8375         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8376                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8377                                   FW_IQ_CMD_VFN_V(vf));
8378         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8379         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8380         c.iqid = cpu_to_be16(iqid);
8381         c.fl0id = cpu_to_be16(fl0id);
8382         c.fl1id = cpu_to_be16(fl1id);
8383         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8384 }
8385
8386 /**
8387  *      t4_eth_eq_free - free an Ethernet egress queue
8388  *      @adap: the adapter
8389  *      @mbox: mailbox to use for the FW command
8390  *      @pf: the PF owning the queue
8391  *      @vf: the VF owning the queue
8392  *      @eqid: egress queue id
8393  *
8394  *      Frees an Ethernet egress queue.
8395  */
8396 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8397                    unsigned int vf, unsigned int eqid)
8398 {
8399         struct fw_eq_eth_cmd c;
8400
8401         memset(&c, 0, sizeof(c));
8402         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8403                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8404                                   FW_EQ_ETH_CMD_PFN_V(pf) |
8405                                   FW_EQ_ETH_CMD_VFN_V(vf));
8406         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8407         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8408         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8409 }
8410
8411 /**
8412  *      t4_ctrl_eq_free - free a control egress queue
8413  *      @adap: the adapter
8414  *      @mbox: mailbox to use for the FW command
8415  *      @pf: the PF owning the queue
8416  *      @vf: the VF owning the queue
8417  *      @eqid: egress queue id
8418  *
8419  *      Frees a control egress queue.
8420  */
8421 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8422                     unsigned int vf, unsigned int eqid)
8423 {
8424         struct fw_eq_ctrl_cmd c;
8425
8426         memset(&c, 0, sizeof(c));
8427         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8428                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8429                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8430                                   FW_EQ_CTRL_CMD_VFN_V(vf));
8431         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8432         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8433         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8434 }
8435
8436 /**
8437  *      t4_ofld_eq_free - free an offload egress queue
8438  *      @adap: the adapter
8439  *      @mbox: mailbox to use for the FW command
8440  *      @pf: the PF owning the queue
8441  *      @vf: the VF owning the queue
8442  *      @eqid: egress queue id
8443  *
8444  *      Frees a control egress queue.
8445  */
8446 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8447                     unsigned int vf, unsigned int eqid)
8448 {
8449         struct fw_eq_ofld_cmd c;
8450
8451         memset(&c, 0, sizeof(c));
8452         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8453                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8454                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8455                                   FW_EQ_OFLD_CMD_VFN_V(vf));
8456         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8457         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8458         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8459 }
8460
8461 /**
8462  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8463  *      @link_down_rc: Link Down Reason Code
8464  *
8465  *      Returns a string representation of the Link Down Reason Code.
8466  */
8467 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8468 {
8469         static const char * const reason[] = {
8470                 "Link Down",
8471                 "Remote Fault",
8472                 "Auto-negotiation Failure",
8473                 "Reserved",
8474                 "Insufficient Airflow",
8475                 "Unable To Determine Reason",
8476                 "No RX Signal Detected",
8477                 "Reserved",
8478         };
8479
8480         if (link_down_rc >= ARRAY_SIZE(reason))
8481                 return "Bad Reason Code";
8482
8483         return reason[link_down_rc];
8484 }
8485
8486 /* Return the highest speed set in the port capabilities, in Mb/s. */
8487 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8488 {
8489         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8490                 do { \
8491                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8492                                 return __speed; \
8493                 } while (0)
8494
8495         TEST_SPEED_RETURN(400G, 400000);
8496         TEST_SPEED_RETURN(200G, 200000);
8497         TEST_SPEED_RETURN(100G, 100000);
8498         TEST_SPEED_RETURN(50G,   50000);
8499         TEST_SPEED_RETURN(40G,   40000);
8500         TEST_SPEED_RETURN(25G,   25000);
8501         TEST_SPEED_RETURN(10G,   10000);
8502         TEST_SPEED_RETURN(1G,     1000);
8503         TEST_SPEED_RETURN(100M,    100);
8504
8505         #undef TEST_SPEED_RETURN
8506
8507         return 0;
8508 }
8509
8510 /**
8511  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8512  *      @acaps: advertised Port Capabilities
8513  *
8514  *      Get the highest speed for the port from the advertised Port
8515  *      Capabilities.  It will be either the highest speed from the list of
8516  *      speeds or whatever user has set using ethtool.
8517  */
8518 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8519 {
8520         #define TEST_SPEED_RETURN(__caps_speed) \
8521                 do { \
8522                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8523                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8524                 } while (0)
8525
8526         TEST_SPEED_RETURN(400G);
8527         TEST_SPEED_RETURN(200G);
8528         TEST_SPEED_RETURN(100G);
8529         TEST_SPEED_RETURN(50G);
8530         TEST_SPEED_RETURN(40G);
8531         TEST_SPEED_RETURN(25G);
8532         TEST_SPEED_RETURN(10G);
8533         TEST_SPEED_RETURN(1G);
8534         TEST_SPEED_RETURN(100M);
8535
8536         #undef TEST_SPEED_RETURN
8537
8538         return 0;
8539 }
8540
8541 /**
8542  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8543  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8544  *
8545  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8546  *      32-bit Port Capabilities value.
8547  */
8548 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8549 {
8550         fw_port_cap32_t linkattr = 0;
8551
8552         /* Unfortunately the format of the Link Status in the old
8553          * 16-bit Port Information message isn't the same as the
8554          * 16-bit Port Capabilities bitfield used everywhere else ...
8555          */
8556         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8557                 linkattr |= FW_PORT_CAP32_FC_RX;
8558         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8559                 linkattr |= FW_PORT_CAP32_FC_TX;
8560         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8561                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8562         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8563                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8564         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8565                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8566         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8567                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8568         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8569                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8570         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8571                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8572
8573         return linkattr;
8574 }
8575
8576 /**
8577  *      t4_handle_get_port_info - process a FW reply message
8578  *      @pi: the port info
8579  *      @rpl: start of the FW message
8580  *
8581  *      Processes a GET_PORT_INFO FW reply message.
8582  */
8583 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8584 {
8585         const struct fw_port_cmd *cmd = (const void *)rpl;
8586         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8587         struct link_config *lc = &pi->link_cfg;
8588         struct adapter *adapter = pi->adapter;
8589         unsigned int speed, fc, fec, adv_fc;
8590         enum fw_port_module_type mod_type;
8591         int action, link_ok, linkdnrc;
8592         enum fw_port_type port_type;
8593
8594         /* Extract the various fields from the Port Information message.
8595          */
8596         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8597         switch (action) {
8598         case FW_PORT_ACTION_GET_PORT_INFO: {
8599                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8600
8601                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8602                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8603                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8604                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8605                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8606                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8607                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8608                 linkattr = lstatus_to_fwcap(lstatus);
8609                 break;
8610         }
8611
8612         case FW_PORT_ACTION_GET_PORT_INFO32: {
8613                 u32 lstatus32;
8614
8615                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8616                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8617                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8618                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8619                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8620                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8621                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8622                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8623                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8624                 break;
8625         }
8626
8627         default:
8628                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8629                         be32_to_cpu(cmd->action_to_len16));
8630                 return;
8631         }
8632
8633         fec = fwcap_to_cc_fec(acaps);
8634         adv_fc = fwcap_to_cc_pause(acaps);
8635         fc = fwcap_to_cc_pause(linkattr);
8636         speed = fwcap_to_speed(linkattr);
8637
8638         /* Reset state for communicating new Transceiver Module status and
8639          * whether the OS-dependent layer wants us to redo the current
8640          * "sticky" L1 Configure Link Parameters.
8641          */
8642         lc->new_module = false;
8643         lc->redo_l1cfg = false;
8644
8645         if (mod_type != pi->mod_type) {
8646                 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8647                  * various fundamental Port Capabilities which used to be
8648                  * immutable can now change radically.  We can now have
8649                  * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8650                  * all change based on what Transceiver Module is inserted.
8651                  * So we need to record the Physical "Port" Capabilities on
8652                  * every Transceiver Module change.
8653                  */
8654                 lc->pcaps = pcaps;
8655
8656                 /* When a new Transceiver Module is inserted, the Firmware
8657                  * will examine its i2c EPROM to determine its type and
8658                  * general operating parameters including things like Forward
8659                  * Error Control, etc.  Various IEEE 802.3 standards dictate
8660                  * how to interpret these i2c values to determine default
8661                  * "sutomatic" settings.  We record these for future use when
8662                  * the user explicitly requests these standards-based values.
8663                  */
8664                 lc->def_acaps = acaps;
8665
8666                 /* Some versions of the early T6 Firmware "cheated" when
8667                  * handling different Transceiver Modules by changing the
8668                  * underlaying Port Type reported to the Host Drivers.  As
8669                  * such we need to capture whatever Port Type the Firmware
8670                  * sends us and record it in case it's different from what we
8671                  * were told earlier.  Unfortunately, since Firmware is
8672                  * forever, we'll need to keep this code here forever, but in
8673                  * later T6 Firmware it should just be an assignment of the
8674                  * same value already recorded.
8675                  */
8676                 pi->port_type = port_type;
8677
8678                 /* Record new Module Type information.
8679                  */
8680                 pi->mod_type = mod_type;
8681
8682                 /* Let the OS-dependent layer know if we have a new
8683                  * Transceiver Module inserted.
8684                  */
8685                 lc->new_module = t4_is_inserted_mod_type(mod_type);
8686
8687                 t4_os_portmod_changed(adapter, pi->port_id);
8688         }
8689
8690         if (link_ok != lc->link_ok || speed != lc->speed ||
8691             fc != lc->fc || adv_fc != lc->advertised_fc ||
8692             fec != lc->fec) {
8693                 /* something changed */
8694                 if (!link_ok && lc->link_ok) {
8695                         lc->link_down_rc = linkdnrc;
8696                         dev_warn_ratelimited(adapter->pdev_dev,
8697                                              "Port %d link down, reason: %s\n",
8698                                              pi->tx_chan,
8699                                              t4_link_down_rc_str(linkdnrc));
8700                 }
8701                 lc->link_ok = link_ok;
8702                 lc->speed = speed;
8703                 lc->advertised_fc = adv_fc;
8704                 lc->fc = fc;
8705                 lc->fec = fec;
8706
8707                 lc->lpacaps = lpacaps;
8708                 lc->acaps = acaps & ADVERT_MASK;
8709
8710                 /* If we're not physically capable of Auto-Negotiation, note
8711                  * this as Auto-Negotiation disabled.  Otherwise, we track
8712                  * what Auto-Negotiation settings we have.  Note parallel
8713                  * structure in t4_link_l1cfg_core() and init_link_config().
8714                  */
8715                 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8716                         lc->autoneg = AUTONEG_DISABLE;
8717                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8718                         lc->autoneg = AUTONEG_ENABLE;
8719                 } else {
8720                         /* When Autoneg is disabled, user needs to set
8721                          * single speed.
8722                          * Similar to cxgb4_ethtool.c: set_link_ksettings
8723                          */
8724                         lc->acaps = 0;
8725                         lc->speed_caps = fwcap_to_fwspeed(acaps);
8726                         lc->autoneg = AUTONEG_DISABLE;
8727                 }
8728
8729                 t4_os_link_changed(adapter, pi->port_id, link_ok);
8730         }
8731
8732         /* If we have a new Transceiver Module and the OS-dependent code has
8733          * told us that it wants us to redo whatever "sticky" L1 Configuration
8734          * Link Parameters are set, do that now.
8735          */
8736         if (lc->new_module && lc->redo_l1cfg) {
8737                 struct link_config old_lc;
8738                 int ret;
8739
8740                 /* Save the current L1 Configuration and restore it if an
8741                  * error occurs.  We probably should fix the l1_cfg*()
8742                  * routines not to change the link_config when an error
8743                  * occurs ...
8744                  */
8745                 old_lc = *lc;
8746                 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8747                 if (ret) {
8748                         *lc = old_lc;
8749                         dev_warn(adapter->pdev_dev,
8750                                  "Attempt to update new Transceiver Module settings failed\n");
8751                 }
8752         }
8753         lc->new_module = false;
8754         lc->redo_l1cfg = false;
8755 }
8756
8757 /**
8758  *      t4_update_port_info - retrieve and update port information if changed
8759  *      @pi: the port_info
8760  *
8761  *      We issue a Get Port Information Command to the Firmware and, if
8762  *      successful, we check to see if anything is different from what we
8763  *      last recorded and update things accordingly.
8764  */
8765 int t4_update_port_info(struct port_info *pi)
8766 {
8767         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8768         struct fw_port_cmd port_cmd;
8769         int ret;
8770
8771         memset(&port_cmd, 0, sizeof(port_cmd));
8772         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8773                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8774                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8775         port_cmd.action_to_len16 = cpu_to_be32(
8776                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8777                                      ? FW_PORT_ACTION_GET_PORT_INFO
8778                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8779                 FW_LEN16(port_cmd));
8780         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8781                          &port_cmd, sizeof(port_cmd), &port_cmd);
8782         if (ret)
8783                 return ret;
8784
8785         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8786         return 0;
8787 }
8788
8789 /**
8790  *      t4_get_link_params - retrieve basic link parameters for given port
8791  *      @pi: the port
8792  *      @link_okp: value return pointer for link up/down
8793  *      @speedp: value return pointer for speed (Mb/s)
8794  *      @mtup: value return pointer for mtu
8795  *
8796  *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8797  *      and MTU for a specified port.  A negative error is returned on
8798  *      failure; 0 on success.
8799  */
8800 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8801                        unsigned int *speedp, unsigned int *mtup)
8802 {
8803         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8804         unsigned int action, link_ok, mtu;
8805         struct fw_port_cmd port_cmd;
8806         fw_port_cap32_t linkattr;
8807         int ret;
8808
8809         memset(&port_cmd, 0, sizeof(port_cmd));
8810         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8811                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8812                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8813         action = (fw_caps == FW_CAPS16
8814                   ? FW_PORT_ACTION_GET_PORT_INFO
8815                   : FW_PORT_ACTION_GET_PORT_INFO32);
8816         port_cmd.action_to_len16 = cpu_to_be32(
8817                 FW_PORT_CMD_ACTION_V(action) |
8818                 FW_LEN16(port_cmd));
8819         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8820                          &port_cmd, sizeof(port_cmd), &port_cmd);
8821         if (ret)
8822                 return ret;
8823
8824         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8825                 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8826
8827                 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8828                 linkattr = lstatus_to_fwcap(lstatus);
8829                 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8830         } else {
8831                 u32 lstatus32 =
8832                            be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8833
8834                 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8835                 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8836                 mtu = FW_PORT_CMD_MTU32_G(
8837                         be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8838         }
8839
8840         if (link_okp)
8841                 *link_okp = link_ok;
8842         if (speedp)
8843                 *speedp = fwcap_to_speed(linkattr);
8844         if (mtup)
8845                 *mtup = mtu;
8846
8847         return 0;
8848 }
8849
8850 /**
8851  *      t4_handle_fw_rpl - process a FW reply message
8852  *      @adap: the adapter
8853  *      @rpl: start of the FW message
8854  *
8855  *      Processes a FW message, such as link state change messages.
8856  */
8857 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8858 {
8859         u8 opcode = *(const u8 *)rpl;
8860
8861         /* This might be a port command ... this simplifies the following
8862          * conditionals ...  We can get away with pre-dereferencing
8863          * action_to_len16 because it's in the first 16 bytes and all messages
8864          * will be at least that long.
8865          */
8866         const struct fw_port_cmd *p = (const void *)rpl;
8867         unsigned int action =
8868                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8869
8870         if (opcode == FW_PORT_CMD &&
8871             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8872              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8873                 int i;
8874                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8875                 struct port_info *pi = NULL;
8876
8877                 for_each_port(adap, i) {
8878                         pi = adap2pinfo(adap, i);
8879                         if (pi->tx_chan == chan)
8880                                 break;
8881                 }
8882
8883                 t4_handle_get_port_info(pi, rpl);
8884         } else {
8885                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8886                          opcode);
8887                 return -EINVAL;
8888         }
8889         return 0;
8890 }
8891
8892 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8893 {
8894         u16 val;
8895
8896         if (pci_is_pcie(adapter->pdev)) {
8897                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8898                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8899                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8900         }
8901 }
8902
8903 /**
8904  *      init_link_config - initialize a link's SW state
8905  *      @lc: pointer to structure holding the link state
8906  *      @pcaps: link Port Capabilities
8907  *      @acaps: link current Advertised Port Capabilities
8908  *
8909  *      Initializes the SW state maintained for each link, including the link's
8910  *      capabilities and default speed/flow-control/autonegotiation settings.
8911  */
8912 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8913                              fw_port_cap32_t acaps)
8914 {
8915         lc->pcaps = pcaps;
8916         lc->def_acaps = acaps;
8917         lc->lpacaps = 0;
8918         lc->speed_caps = 0;
8919         lc->speed = 0;
8920         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8921
8922         /* For Forward Error Control, we default to whatever the Firmware
8923          * tells us the Link is currently advertising.
8924          */
8925         lc->requested_fec = FEC_AUTO;
8926         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8927
8928         /* If the Port is capable of Auto-Negtotiation, initialize it as
8929          * "enabled" and copy over all of the Physical Port Capabilities
8930          * to the Advertised Port Capabilities.  Otherwise mark it as
8931          * Auto-Negotiate disabled and select the highest supported speed
8932          * for the link.  Note parallel structure in t4_link_l1cfg_core()
8933          * and t4_handle_get_port_info().
8934          */
8935         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8936                 lc->acaps = lc->pcaps & ADVERT_MASK;
8937                 lc->autoneg = AUTONEG_ENABLE;
8938                 lc->requested_fc |= PAUSE_AUTONEG;
8939         } else {
8940                 lc->acaps = 0;
8941                 lc->autoneg = AUTONEG_DISABLE;
8942                 lc->speed_caps = fwcap_to_fwspeed(acaps);
8943         }
8944 }
8945
8946 #define CIM_PF_NOACCESS 0xeeeeeeee
8947
8948 int t4_wait_dev_ready(void __iomem *regs)
8949 {
8950         u32 whoami;
8951
8952         whoami = readl(regs + PL_WHOAMI_A);
8953         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8954                 return 0;
8955
8956         msleep(500);
8957         whoami = readl(regs + PL_WHOAMI_A);
8958         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8959 }
8960
8961 struct flash_desc {
8962         u32 vendor_and_model_id;
8963         u32 size_mb;
8964 };
8965
8966 static int t4_get_flash_params(struct adapter *adap)
8967 {
8968         /* Table for non-Numonix supported flash parts.  Numonix parts are left
8969          * to the preexisting code.  All flash parts have 64KB sectors.
8970          */
8971         static struct flash_desc supported_flash[] = {
8972                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8973         };
8974
8975         unsigned int part, manufacturer;
8976         unsigned int density, size = 0;
8977         u32 flashid = 0;
8978         int ret;
8979
8980         /* Issue a Read ID Command to the Flash part.  We decode supported
8981          * Flash parts and their sizes from this.  There's a newer Query
8982          * Command which can retrieve detailed geometry information but many
8983          * Flash parts don't support it.
8984          */
8985
8986         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8987         if (!ret)
8988                 ret = sf1_read(adap, 3, 0, 1, &flashid);
8989         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8990         if (ret)
8991                 return ret;
8992
8993         /* Check to see if it's one of our non-standard supported Flash parts.
8994          */
8995         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8996                 if (supported_flash[part].vendor_and_model_id == flashid) {
8997                         adap->params.sf_size = supported_flash[part].size_mb;
8998                         adap->params.sf_nsec =
8999                                 adap->params.sf_size / SF_SEC_SIZE;
9000                         goto found;
9001                 }
9002
9003         /* Decode Flash part size.  The code below looks repetitive with
9004          * common encodings, but that's not guaranteed in the JEDEC
9005          * specification for the Read JEDEC ID command.  The only thing that
9006          * we're guaranteed by the JEDEC specification is where the
9007          * Manufacturer ID is in the returned result.  After that each
9008          * Manufacturer ~could~ encode things completely differently.
9009          * Note, all Flash parts must have 64KB sectors.
9010          */
9011         manufacturer = flashid & 0xff;
9012         switch (manufacturer) {
9013         case 0x20: { /* Micron/Numonix */
9014                 /* This Density -> Size decoding table is taken from Micron
9015                  * Data Sheets.
9016                  */
9017                 density = (flashid >> 16) & 0xff;
9018                 switch (density) {
9019                 case 0x14: /* 1MB */
9020                         size = 1 << 20;
9021                         break;
9022                 case 0x15: /* 2MB */
9023                         size = 1 << 21;
9024                         break;
9025                 case 0x16: /* 4MB */
9026                         size = 1 << 22;
9027                         break;
9028                 case 0x17: /* 8MB */
9029                         size = 1 << 23;
9030                         break;
9031                 case 0x18: /* 16MB */
9032                         size = 1 << 24;
9033                         break;
9034                 case 0x19: /* 32MB */
9035                         size = 1 << 25;
9036                         break;
9037                 case 0x20: /* 64MB */
9038                         size = 1 << 26;
9039                         break;
9040                 case 0x21: /* 128MB */
9041                         size = 1 << 27;
9042                         break;
9043                 case 0x22: /* 256MB */
9044                         size = 1 << 28;
9045                         break;
9046                 }
9047                 break;
9048         }
9049         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9050                 /* This Density -> Size decoding table is taken from ISSI
9051                  * Data Sheets.
9052                  */
9053                 density = (flashid >> 16) & 0xff;
9054                 switch (density) {
9055                 case 0x16: /* 32 MB */
9056                         size = 1 << 25;
9057                         break;
9058                 case 0x17: /* 64MB */
9059                         size = 1 << 26;
9060                         break;
9061                 }
9062                 break;
9063         }
9064         case 0xc2: { /* Macronix */
9065                 /* This Density -> Size decoding table is taken from Macronix
9066                  * Data Sheets.
9067                  */
9068                 density = (flashid >> 16) & 0xff;
9069                 switch (density) {
9070                 case 0x17: /* 8MB */
9071                         size = 1 << 23;
9072                         break;
9073                 case 0x18: /* 16MB */
9074                         size = 1 << 24;
9075                         break;
9076                 }
9077                 break;
9078         }
9079         case 0xef: { /* Winbond */
9080                 /* This Density -> Size decoding table is taken from Winbond
9081                  * Data Sheets.
9082                  */
9083                 density = (flashid >> 16) & 0xff;
9084                 switch (density) {
9085                 case 0x17: /* 8MB */
9086                         size = 1 << 23;
9087                         break;
9088                 case 0x18: /* 16MB */
9089                         size = 1 << 24;
9090                         break;
9091                 }
9092                 break;
9093         }
9094         }
9095
9096         /* If we didn't recognize the FLASH part, that's no real issue: the
9097          * Hardware/Software contract says that Hardware will _*ALWAYS*_
9098          * use a FLASH part which is at least 4MB in size and has 64KB
9099          * sectors.  The unrecognized FLASH part is likely to be much larger
9100          * than 4MB, but that's all we really need.
9101          */
9102         if (size == 0) {
9103                 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9104                          flashid);
9105                 size = 1 << 22;
9106         }
9107
9108         /* Store decoded Flash size and fall through into vetting code. */
9109         adap->params.sf_size = size;
9110         adap->params.sf_nsec = size / SF_SEC_SIZE;
9111
9112 found:
9113         if (adap->params.sf_size < FLASH_MIN_SIZE)
9114                 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9115                          flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9116         return 0;
9117 }
9118
9119 /**
9120  *      t4_prep_adapter - prepare SW and HW for operation
9121  *      @adapter: the adapter
9122  *
9123  *      Initialize adapter SW state for the various HW modules, set initial
9124  *      values for some adapter tunables, take PHYs out of reset, and
9125  *      initialize the MDIO interface.
9126  */
9127 int t4_prep_adapter(struct adapter *adapter)
9128 {
9129         int ret, ver;
9130         uint16_t device_id;
9131         u32 pl_rev;
9132
9133         get_pci_mode(adapter, &adapter->params.pci);
9134         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9135
9136         ret = t4_get_flash_params(adapter);
9137         if (ret < 0) {
9138                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9139                 return ret;
9140         }
9141
9142         /* Retrieve adapter's device ID
9143          */
9144         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9145         ver = device_id >> 12;
9146         adapter->params.chip = 0;
9147         switch (ver) {
9148         case CHELSIO_T4:
9149                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9150                 adapter->params.arch.sge_fl_db = DBPRIO_F;
9151                 adapter->params.arch.mps_tcam_size =
9152                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
9153                 adapter->params.arch.mps_rplc_size = 128;
9154                 adapter->params.arch.nchan = NCHAN;
9155                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9156                 adapter->params.arch.vfcount = 128;
9157                 /* Congestion map is for 4 channels so that
9158                  * MPS can have 4 priority per port.
9159                  */
9160                 adapter->params.arch.cng_ch_bits_log = 2;
9161                 break;
9162         case CHELSIO_T5:
9163                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9164                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9165                 adapter->params.arch.mps_tcam_size =
9166                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9167                 adapter->params.arch.mps_rplc_size = 128;
9168                 adapter->params.arch.nchan = NCHAN;
9169                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9170                 adapter->params.arch.vfcount = 128;
9171                 adapter->params.arch.cng_ch_bits_log = 2;
9172                 break;
9173         case CHELSIO_T6:
9174                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9175                 adapter->params.arch.sge_fl_db = 0;
9176                 adapter->params.arch.mps_tcam_size =
9177                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9178                 adapter->params.arch.mps_rplc_size = 256;
9179                 adapter->params.arch.nchan = 2;
9180                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9181                 adapter->params.arch.vfcount = 256;
9182                 /* Congestion map will be for 2 channels so that
9183                  * MPS can have 8 priority per port.
9184                  */
9185                 adapter->params.arch.cng_ch_bits_log = 3;
9186                 break;
9187         default:
9188                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9189                         device_id);
9190                 return -EINVAL;
9191         }
9192
9193         adapter->params.cim_la_size = CIMLA_SIZE;
9194         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9195
9196         /*
9197          * Default port for debugging in case we can't reach FW.
9198          */
9199         adapter->params.nports = 1;
9200         adapter->params.portvec = 1;
9201         adapter->params.vpd.cclk = 50000;
9202
9203         /* Set PCIe completion timeout to 4 seconds. */
9204         pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9205                                            PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9206         return 0;
9207 }
9208
9209 /**
9210  *      t4_shutdown_adapter - shut down adapter, host & wire
9211  *      @adapter: the adapter
9212  *
9213  *      Perform an emergency shutdown of the adapter and stop it from
9214  *      continuing any further communication on the ports or DMA to the
9215  *      host.  This is typically used when the adapter and/or firmware
9216  *      have crashed and we want to prevent any further accidental
9217  *      communication with the rest of the world.  This will also force
9218  *      the port Link Status to go down -- if register writes work --
9219  *      which should help our peers figure out that we're down.
9220  */
9221 int t4_shutdown_adapter(struct adapter *adapter)
9222 {
9223         int port;
9224
9225         t4_intr_disable(adapter);
9226         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9227         for_each_port(adapter, port) {
9228                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
9229                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
9230                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
9231
9232                 t4_write_reg(adapter, a_port_cfg,
9233                              t4_read_reg(adapter, a_port_cfg)
9234                              & ~SIGNAL_DET_V(1));
9235         }
9236         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9237
9238         return 0;
9239 }
9240
9241 /**
9242  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9243  *      @adapter: the adapter
9244  *      @qid: the Queue ID
9245  *      @qtype: the Ingress or Egress type for @qid
9246  *      @user: true if this request is for a user mode queue
9247  *      @pbar2_qoffset: BAR2 Queue Offset
9248  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9249  *
9250  *      Returns the BAR2 SGE Queue Registers information associated with the
9251  *      indicated Absolute Queue ID.  These are passed back in return value
9252  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9253  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9254  *
9255  *      This may return an error which indicates that BAR2 SGE Queue
9256  *      registers aren't available.  If an error is not returned, then the
9257  *      following values are returned:
9258  *
9259  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9260  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9261  *
9262  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9263  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9264  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9265  *      then these "Inferred Queue ID" register may not be used.
9266  */
9267 int t4_bar2_sge_qregs(struct adapter *adapter,
9268                       unsigned int qid,
9269                       enum t4_bar2_qtype qtype,
9270                       int user,
9271                       u64 *pbar2_qoffset,
9272                       unsigned int *pbar2_qid)
9273 {
9274         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9275         u64 bar2_page_offset, bar2_qoffset;
9276         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9277
9278         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9279         if (!user && is_t4(adapter->params.chip))
9280                 return -EINVAL;
9281
9282         /* Get our SGE Page Size parameters.
9283          */
9284         page_shift = adapter->params.sge.hps + 10;
9285         page_size = 1 << page_shift;
9286
9287         /* Get the right Queues per Page parameters for our Queue.
9288          */
9289         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9290                      ? adapter->params.sge.eq_qpp
9291                      : adapter->params.sge.iq_qpp);
9292         qpp_mask = (1 << qpp_shift) - 1;
9293
9294         /*  Calculate the basics of the BAR2 SGE Queue register area:
9295          *  o The BAR2 page the Queue registers will be in.
9296          *  o The BAR2 Queue ID.
9297          *  o The BAR2 Queue ID Offset into the BAR2 page.
9298          */
9299         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9300         bar2_qid = qid & qpp_mask;
9301         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9302
9303         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9304          * hardware will infer the Absolute Queue ID simply from the writes to
9305          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9306          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9307          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9308          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9309          * from the BAR2 Page and BAR2 Queue ID.
9310          *
9311          * One important censequence of this is that some BAR2 SGE registers
9312          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9313          * there.  But other registers synthesize the SGE Queue ID purely
9314          * from the writes to the registers -- the Write Combined Doorbell
9315          * Buffer is a good example.  These BAR2 SGE Registers are only
9316          * available for those BAR2 SGE Register areas where the SGE Absolute
9317          * Queue ID can be inferred from simple writes.
9318          */
9319         bar2_qoffset = bar2_page_offset;
9320         bar2_qinferred = (bar2_qid_offset < page_size);
9321         if (bar2_qinferred) {
9322                 bar2_qoffset += bar2_qid_offset;
9323                 bar2_qid = 0;
9324         }
9325
9326         *pbar2_qoffset = bar2_qoffset;
9327         *pbar2_qid = bar2_qid;
9328         return 0;
9329 }
9330
9331 /**
9332  *      t4_init_devlog_params - initialize adapter->params.devlog
9333  *      @adap: the adapter
9334  *
9335  *      Initialize various fields of the adapter's Firmware Device Log
9336  *      Parameters structure.
9337  */
9338 int t4_init_devlog_params(struct adapter *adap)
9339 {
9340         struct devlog_params *dparams = &adap->params.devlog;
9341         u32 pf_dparams;
9342         unsigned int devlog_meminfo;
9343         struct fw_devlog_cmd devlog_cmd;
9344         int ret;
9345
9346         /* If we're dealing with newer firmware, the Device Log Parameters
9347          * are stored in a designated register which allows us to access the
9348          * Device Log even if we can't talk to the firmware.
9349          */
9350         pf_dparams =
9351                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9352         if (pf_dparams) {
9353                 unsigned int nentries, nentries128;
9354
9355                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9356                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9357
9358                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9359                 nentries = (nentries128 + 1) * 128;
9360                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9361
9362                 return 0;
9363         }
9364
9365         /* Otherwise, ask the firmware for it's Device Log Parameters.
9366          */
9367         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9368         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9369                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
9370         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9371         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9372                          &devlog_cmd);
9373         if (ret)
9374                 return ret;
9375
9376         devlog_meminfo =
9377                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9378         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9379         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9380         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9381
9382         return 0;
9383 }
9384
9385 /**
9386  *      t4_init_sge_params - initialize adap->params.sge
9387  *      @adapter: the adapter
9388  *
9389  *      Initialize various fields of the adapter's SGE Parameters structure.
9390  */
9391 int t4_init_sge_params(struct adapter *adapter)
9392 {
9393         struct sge_params *sge_params = &adapter->params.sge;
9394         u32 hps, qpp;
9395         unsigned int s_hps, s_qpp;
9396
9397         /* Extract the SGE Page Size for our PF.
9398          */
9399         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9400         s_hps = (HOSTPAGESIZEPF0_S +
9401                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9402         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9403
9404         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9405          */
9406         s_qpp = (QUEUESPERPAGEPF0_S +
9407                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9408         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9409         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9410         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9411         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9412
9413         return 0;
9414 }
9415
9416 /**
9417  *      t4_init_tp_params - initialize adap->params.tp
9418  *      @adap: the adapter
9419  *      @sleep_ok: if true we may sleep while awaiting command completion
9420  *
9421  *      Initialize various fields of the adapter's TP Parameters structure.
9422  */
9423 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9424 {
9425         u32 param, val, v;
9426         int chan, ret;
9427
9428
9429         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9430         adap->params.tp.tre = TIMERRESOLUTION_G(v);
9431         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9432
9433         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9434         for (chan = 0; chan < NCHAN; chan++)
9435                 adap->params.tp.tx_modq[chan] = chan;
9436
9437         /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9438          * Configuration.
9439          */
9440         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9441                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9442                  FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9443
9444         /* Read current value */
9445         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9446                               &param, &val);
9447         if (ret == 0) {
9448                 dev_info(adap->pdev_dev,
9449                          "Current filter mode/mask 0x%x:0x%x\n",
9450                          FW_PARAMS_PARAM_FILTER_MODE_G(val),
9451                          FW_PARAMS_PARAM_FILTER_MASK_G(val));
9452                 adap->params.tp.vlan_pri_map =
9453                         FW_PARAMS_PARAM_FILTER_MODE_G(val);
9454                 adap->params.tp.filter_mask =
9455                         FW_PARAMS_PARAM_FILTER_MASK_G(val);
9456         } else {
9457                 dev_info(adap->pdev_dev,
9458                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9459
9460                 /* Incase of older-fw (which doesn't expose the api
9461                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9462                  * the fw api) combination, fall-back to older method of reading
9463                  * the filter mode from indirect-register
9464                  */
9465                 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9466                                TP_VLAN_PRI_MAP_A, sleep_ok);
9467
9468                 /* With the older-fw and newer-driver combination we might run
9469                  * into an issue when user wants to use hash filter region but
9470                  * the filter_mask is zero, in this case filter_mask validation
9471                  * is tough. To avoid that we set the filter_mask same as filter
9472                  * mode, which will behave exactly as the older way of ignoring
9473                  * the filter mask validation.
9474                  */
9475                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9476         }
9477
9478         t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9479                        TP_INGRESS_CONFIG_A, sleep_ok);
9480
9481         /* For T6, cache the adapter's compressed error vector
9482          * and passing outer header info for encapsulated packets.
9483          */
9484         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9485                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9486                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9487         }
9488
9489         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9490          * shift positions of several elements of the Compressed Filter Tuple
9491          * for this adapter which we need frequently ...
9492          */
9493         adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9494         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9495         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9496         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9497         adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9498         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9499                                                                PROTOCOL_F);
9500         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9501                                                                 ETHERTYPE_F);
9502         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9503                                                                MACMATCH_F);
9504         adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9505                                                                 MPSHITTYPE_F);
9506         adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9507                                                            FRAGMENTATION_F);
9508
9509         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9510          * represents the presence of an Outer VLAN instead of a VNIC ID.
9511          */
9512         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9513                 adap->params.tp.vnic_shift = -1;
9514
9515         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9516         adap->params.tp.hash_filter_mask = v;
9517         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9518         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9519         return 0;
9520 }
9521
9522 /**
9523  *      t4_filter_field_shift - calculate filter field shift
9524  *      @adap: the adapter
9525  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9526  *
9527  *      Return the shift position of a filter field within the Compressed
9528  *      Filter Tuple.  The filter field is specified via its selection bit
9529  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9530  */
9531 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9532 {
9533         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9534         unsigned int sel;
9535         int field_shift;
9536
9537         if ((filter_mode & filter_sel) == 0)
9538                 return -1;
9539
9540         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9541                 switch (filter_mode & sel) {
9542                 case FCOE_F:
9543                         field_shift += FT_FCOE_W;
9544                         break;
9545                 case PORT_F:
9546                         field_shift += FT_PORT_W;
9547                         break;
9548                 case VNIC_ID_F:
9549                         field_shift += FT_VNIC_ID_W;
9550                         break;
9551                 case VLAN_F:
9552                         field_shift += FT_VLAN_W;
9553                         break;
9554                 case TOS_F:
9555                         field_shift += FT_TOS_W;
9556                         break;
9557                 case PROTOCOL_F:
9558                         field_shift += FT_PROTOCOL_W;
9559                         break;
9560                 case ETHERTYPE_F:
9561                         field_shift += FT_ETHERTYPE_W;
9562                         break;
9563                 case MACMATCH_F:
9564                         field_shift += FT_MACMATCH_W;
9565                         break;
9566                 case MPSHITTYPE_F:
9567                         field_shift += FT_MPSHITTYPE_W;
9568                         break;
9569                 case FRAGMENTATION_F:
9570                         field_shift += FT_FRAGMENTATION_W;
9571                         break;
9572                 }
9573         }
9574         return field_shift;
9575 }
9576
9577 int t4_init_rss_mode(struct adapter *adap, int mbox)
9578 {
9579         int i, ret;
9580         struct fw_rss_vi_config_cmd rvc;
9581
9582         memset(&rvc, 0, sizeof(rvc));
9583
9584         for_each_port(adap, i) {
9585                 struct port_info *p = adap2pinfo(adap, i);
9586
9587                 rvc.op_to_viid =
9588                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9589                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9590                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9591                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9592                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9593                 if (ret)
9594                         return ret;
9595                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9596         }
9597         return 0;
9598 }
9599
9600 /**
9601  *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9602  *      @pi: the port_info
9603  *      @mbox: mailbox to use for the FW command
9604  *      @port: physical port associated with the VI
9605  *      @pf: the PF owning the VI
9606  *      @vf: the VF owning the VI
9607  *      @mac: the MAC address of the VI
9608  *
9609  *      Allocates a virtual interface for the given physical port.  If @mac is
9610  *      not %NULL it contains the MAC address of the VI as assigned by FW.
9611  *      @mac should be large enough to hold an Ethernet address.
9612  *      Returns < 0 on error.
9613  */
9614 int t4_init_portinfo(struct port_info *pi, int mbox,
9615                      int port, int pf, int vf, u8 mac[])
9616 {
9617         struct adapter *adapter = pi->adapter;
9618         unsigned int fw_caps = adapter->params.fw_caps_support;
9619         struct fw_port_cmd cmd;
9620         unsigned int rss_size;
9621         enum fw_port_type port_type;
9622         int mdio_addr;
9623         fw_port_cap32_t pcaps, acaps;
9624         u8 vivld = 0, vin = 0;
9625         int ret;
9626
9627         /* If we haven't yet determined whether we're talking to Firmware
9628          * which knows the new 32-bit Port Capabilities, it's time to find
9629          * out now.  This will also tell new Firmware to send us Port Status
9630          * Updates using the new 32-bit Port Capabilities version of the
9631          * Port Information message.
9632          */
9633         if (fw_caps == FW_CAPS_UNKNOWN) {
9634                 u32 param, val;
9635
9636                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9637                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9638                 val = 1;
9639                 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9640                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9641                 adapter->params.fw_caps_support = fw_caps;
9642         }
9643
9644         memset(&cmd, 0, sizeof(cmd));
9645         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9646                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9647                                        FW_PORT_CMD_PORTID_V(port));
9648         cmd.action_to_len16 = cpu_to_be32(
9649                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9650                                      ? FW_PORT_ACTION_GET_PORT_INFO
9651                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9652                 FW_LEN16(cmd));
9653         ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9654         if (ret)
9655                 return ret;
9656
9657         /* Extract the various fields from the Port Information message.
9658          */
9659         if (fw_caps == FW_CAPS16) {
9660                 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9661
9662                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9663                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9664                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9665                              : -1);
9666                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9667                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9668         } else {
9669                 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9670
9671                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9672                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9673                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9674                              : -1);
9675                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9676                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9677         }
9678
9679         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9680                           &vivld, &vin);
9681         if (ret < 0)
9682                 return ret;
9683
9684         pi->viid = ret;
9685         pi->tx_chan = port;
9686         pi->lport = port;
9687         pi->rss_size = rss_size;
9688         pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9689
9690         /* If fw supports returning the VIN as part of FW_VI_CMD,
9691          * save the returned values.
9692          */
9693         if (adapter->params.viid_smt_extn_support) {
9694                 pi->vivld = vivld;
9695                 pi->vin = vin;
9696         } else {
9697                 /* Retrieve the values from VIID */
9698                 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9699                 pi->vin =  FW_VIID_VIN_G(pi->viid);
9700         }
9701
9702         pi->port_type = port_type;
9703         pi->mdio_addr = mdio_addr;
9704         pi->mod_type = FW_PORT_MOD_TYPE_NA;
9705
9706         init_link_config(&pi->link_cfg, pcaps, acaps);
9707         return 0;
9708 }
9709
9710 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9711 {
9712         u8 addr[6];
9713         int ret, i, j = 0;
9714
9715         for_each_port(adap, i) {
9716                 struct port_info *pi = adap2pinfo(adap, i);
9717
9718                 while ((adap->params.portvec & (1 << j)) == 0)
9719                         j++;
9720
9721                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9722                 if (ret)
9723                         return ret;
9724
9725                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9726                 j++;
9727         }
9728         return 0;
9729 }
9730
9731 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9732                         u16 *mirror_viid)
9733 {
9734         int ret;
9735
9736         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9737                           NULL, NULL);
9738         if (ret < 0)
9739                 return ret;
9740
9741         if (mirror_viid)
9742                 *mirror_viid = ret;
9743
9744         return 0;
9745 }
9746
9747 /**
9748  *      t4_read_cimq_cfg - read CIM queue configuration
9749  *      @adap: the adapter
9750  *      @base: holds the queue base addresses in bytes
9751  *      @size: holds the queue sizes in bytes
9752  *      @thres: holds the queue full thresholds in bytes
9753  *
9754  *      Returns the current configuration of the CIM queues, starting with
9755  *      the IBQs, then the OBQs.
9756  */
9757 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9758 {
9759         unsigned int i, v;
9760         int cim_num_obq = is_t4(adap->params.chip) ?
9761                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9762
9763         for (i = 0; i < CIM_NUM_IBQ; i++) {
9764                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9765                              QUENUMSELECT_V(i));
9766                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9767                 /* value is in 256-byte units */
9768                 *base++ = CIMQBASE_G(v) * 256;
9769                 *size++ = CIMQSIZE_G(v) * 256;
9770                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9771         }
9772         for (i = 0; i < cim_num_obq; i++) {
9773                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9774                              QUENUMSELECT_V(i));
9775                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9776                 /* value is in 256-byte units */
9777                 *base++ = CIMQBASE_G(v) * 256;
9778                 *size++ = CIMQSIZE_G(v) * 256;
9779         }
9780 }
9781
9782 /**
9783  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9784  *      @adap: the adapter
9785  *      @qid: the queue index
9786  *      @data: where to store the queue contents
9787  *      @n: capacity of @data in 32-bit words
9788  *
9789  *      Reads the contents of the selected CIM queue starting at address 0 up
9790  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9791  *      error and the number of 32-bit words actually read on success.
9792  */
9793 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9794 {
9795         int i, err, attempts;
9796         unsigned int addr;
9797         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9798
9799         if (qid > 5 || (n & 3))
9800                 return -EINVAL;
9801
9802         addr = qid * nwords;
9803         if (n > nwords)
9804                 n = nwords;
9805
9806         /* It might take 3-10ms before the IBQ debug read access is allowed.
9807          * Wait for 1 Sec with a delay of 1 usec.
9808          */
9809         attempts = 1000000;
9810
9811         for (i = 0; i < n; i++, addr++) {
9812                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9813                              IBQDBGEN_F);
9814                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9815                                       attempts, 1);
9816                 if (err)
9817                         return err;
9818                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9819         }
9820         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9821         return i;
9822 }
9823
9824 /**
9825  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9826  *      @adap: the adapter
9827  *      @qid: the queue index
9828  *      @data: where to store the queue contents
9829  *      @n: capacity of @data in 32-bit words
9830  *
9831  *      Reads the contents of the selected CIM queue starting at address 0 up
9832  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9833  *      error and the number of 32-bit words actually read on success.
9834  */
9835 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9836 {
9837         int i, err;
9838         unsigned int addr, v, nwords;
9839         int cim_num_obq = is_t4(adap->params.chip) ?
9840                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9841
9842         if ((qid > (cim_num_obq - 1)) || (n & 3))
9843                 return -EINVAL;
9844
9845         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9846                      QUENUMSELECT_V(qid));
9847         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9848
9849         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9850         nwords = CIMQSIZE_G(v) * 64;  /* same */
9851         if (n > nwords)
9852                 n = nwords;
9853
9854         for (i = 0; i < n; i++, addr++) {
9855                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9856                              OBQDBGEN_F);
9857                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9858                                       2, 1);
9859                 if (err)
9860                         return err;
9861                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9862         }
9863         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9864         return i;
9865 }
9866
9867 /**
9868  *      t4_cim_read - read a block from CIM internal address space
9869  *      @adap: the adapter
9870  *      @addr: the start address within the CIM address space
9871  *      @n: number of words to read
9872  *      @valp: where to store the result
9873  *
9874  *      Reads a block of 4-byte words from the CIM intenal address space.
9875  */
9876 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9877                 unsigned int *valp)
9878 {
9879         int ret = 0;
9880
9881         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9882                 return -EBUSY;
9883
9884         for ( ; !ret && n--; addr += 4) {
9885                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9886                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9887                                       0, 5, 2);
9888                 if (!ret)
9889                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9890         }
9891         return ret;
9892 }
9893
9894 /**
9895  *      t4_cim_write - write a block into CIM internal address space
9896  *      @adap: the adapter
9897  *      @addr: the start address within the CIM address space
9898  *      @n: number of words to write
9899  *      @valp: set of values to write
9900  *
9901  *      Writes a block of 4-byte words into the CIM intenal address space.
9902  */
9903 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9904                  const unsigned int *valp)
9905 {
9906         int ret = 0;
9907
9908         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9909                 return -EBUSY;
9910
9911         for ( ; !ret && n--; addr += 4) {
9912                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9913                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9914                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9915                                       0, 5, 2);
9916         }
9917         return ret;
9918 }
9919
9920 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9921                          unsigned int val)
9922 {
9923         return t4_cim_write(adap, addr, 1, &val);
9924 }
9925
9926 /**
9927  *      t4_cim_read_la - read CIM LA capture buffer
9928  *      @adap: the adapter
9929  *      @la_buf: where to store the LA data
9930  *      @wrptr: the HW write pointer within the capture buffer
9931  *
9932  *      Reads the contents of the CIM LA buffer with the most recent entry at
9933  *      the end of the returned data and with the entry at @wrptr first.
9934  *      We try to leave the LA in the running state we find it in.
9935  */
9936 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9937 {
9938         int i, ret;
9939         unsigned int cfg, val, idx;
9940
9941         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9942         if (ret)
9943                 return ret;
9944
9945         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9946                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9947                 if (ret)
9948                         return ret;
9949         }
9950
9951         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9952         if (ret)
9953                 goto restart;
9954
9955         idx = UPDBGLAWRPTR_G(val);
9956         if (wrptr)
9957                 *wrptr = idx;
9958
9959         for (i = 0; i < adap->params.cim_la_size; i++) {
9960                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9961                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9962                 if (ret)
9963                         break;
9964                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9965                 if (ret)
9966                         break;
9967                 if (val & UPDBGLARDEN_F) {
9968                         ret = -ETIMEDOUT;
9969                         break;
9970                 }
9971                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9972                 if (ret)
9973                         break;
9974
9975                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9976                  * identify the 32-bit portion of the full 312-bit data
9977                  */
9978                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9979                         idx = (idx & 0xff0) + 0x10;
9980                 else
9981                         idx++;
9982                 /* address can't exceed 0xfff */
9983                 idx &= UPDBGLARDPTR_M;
9984         }
9985 restart:
9986         if (cfg & UPDBGLAEN_F) {
9987                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9988                                       cfg & ~UPDBGLARDEN_F);
9989                 if (!ret)
9990                         ret = r;
9991         }
9992         return ret;
9993 }
9994
9995 /**
9996  *      t4_tp_read_la - read TP LA capture buffer
9997  *      @adap: the adapter
9998  *      @la_buf: where to store the LA data
9999  *      @wrptr: the HW write pointer within the capture buffer
10000  *
10001  *      Reads the contents of the TP LA buffer with the most recent entry at
10002  *      the end of the returned data and with the entry at @wrptr first.
10003  *      We leave the LA in the running state we find it in.
10004  */
10005 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10006 {
10007         bool last_incomplete;
10008         unsigned int i, cfg, val, idx;
10009
10010         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
10011         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
10012                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10013                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10014
10015         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10016         idx = DBGLAWPTR_G(val);
10017         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10018         if (last_incomplete)
10019                 idx = (idx + 1) & DBGLARPTR_M;
10020         if (wrptr)
10021                 *wrptr = idx;
10022
10023         val &= 0xffff;
10024         val &= ~DBGLARPTR_V(DBGLARPTR_M);
10025         val |= adap->params.tp.la_mask;
10026
10027         for (i = 0; i < TPLA_SIZE; i++) {
10028                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10029                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10030                 idx = (idx + 1) & DBGLARPTR_M;
10031         }
10032
10033         /* Wipe out last entry if it isn't valid */
10034         if (last_incomplete)
10035                 la_buf[TPLA_SIZE - 1] = ~0ULL;
10036
10037         if (cfg & DBGLAENABLE_F)                    /* restore running state */
10038                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10039                              cfg | adap->params.tp.la_mask);
10040 }
10041
10042 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10043  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10044  * state for more than the Warning Threshold then we'll issue a warning about
10045  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10046  * appears to be hung every Warning Repeat second till the situation clears.
10047  * If the situation clears, we'll note that as well.
10048  */
10049 #define SGE_IDMA_WARN_THRESH 1
10050 #define SGE_IDMA_WARN_REPEAT 300
10051
10052 /**
10053  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10054  *      @adapter: the adapter
10055  *      @idma: the adapter IDMA Monitor state
10056  *
10057  *      Initialize the state of an SGE Ingress DMA Monitor.
10058  */
10059 void t4_idma_monitor_init(struct adapter *adapter,
10060                           struct sge_idma_monitor_state *idma)
10061 {
10062         /* Initialize the state variables for detecting an SGE Ingress DMA
10063          * hang.  The SGE has internal counters which count up on each clock
10064          * tick whenever the SGE finds its Ingress DMA State Engines in the
10065          * same state they were on the previous clock tick.  The clock used is
10066          * the Core Clock so we have a limit on the maximum "time" they can
10067          * record; typically a very small number of seconds.  For instance,
10068          * with a 600MHz Core Clock, we can only count up to a bit more than
10069          * 7s.  So we'll synthesize a larger counter in order to not run the
10070          * risk of having the "timers" overflow and give us the flexibility to
10071          * maintain a Hung SGE State Machine of our own which operates across
10072          * a longer time frame.
10073          */
10074         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10075         idma->idma_stalled[0] = 0;
10076         idma->idma_stalled[1] = 0;
10077 }
10078
10079 /**
10080  *      t4_idma_monitor - monitor SGE Ingress DMA state
10081  *      @adapter: the adapter
10082  *      @idma: the adapter IDMA Monitor state
10083  *      @hz: number of ticks/second
10084  *      @ticks: number of ticks since the last IDMA Monitor call
10085  */
10086 void t4_idma_monitor(struct adapter *adapter,
10087                      struct sge_idma_monitor_state *idma,
10088                      int hz, int ticks)
10089 {
10090         int i, idma_same_state_cnt[2];
10091
10092          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10093           * are counters inside the SGE which count up on each clock when the
10094           * SGE finds its Ingress DMA State Engines in the same states they
10095           * were in the previous clock.  The counters will peg out at
10096           * 0xffffffff without wrapping around so once they pass the 1s
10097           * threshold they'll stay above that till the IDMA state changes.
10098           */
10099         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10100         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10101         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10102
10103         for (i = 0; i < 2; i++) {
10104                 u32 debug0, debug11;
10105
10106                 /* If the Ingress DMA Same State Counter ("timer") is less
10107                  * than 1s, then we can reset our synthesized Stall Timer and
10108                  * continue.  If we have previously emitted warnings about a
10109                  * potential stalled Ingress Queue, issue a note indicating
10110                  * that the Ingress Queue has resumed forward progress.
10111                  */
10112                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10113                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10114                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10115                                          "resumed after %d seconds\n",
10116                                          i, idma->idma_qid[i],
10117                                          idma->idma_stalled[i] / hz);
10118                         idma->idma_stalled[i] = 0;
10119                         continue;
10120                 }
10121
10122                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10123                  * domain.  The first time we get here it'll be because we
10124                  * passed the 1s Threshold; each additional time it'll be
10125                  * because the RX Timer Callback is being fired on its regular
10126                  * schedule.
10127                  *
10128                  * If the stall is below our Potential Hung Ingress Queue
10129                  * Warning Threshold, continue.
10130                  */
10131                 if (idma->idma_stalled[i] == 0) {
10132                         idma->idma_stalled[i] = hz;
10133                         idma->idma_warn[i] = 0;
10134                 } else {
10135                         idma->idma_stalled[i] += ticks;
10136                         idma->idma_warn[i] -= ticks;
10137                 }
10138
10139                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10140                         continue;
10141
10142                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10143                  */
10144                 if (idma->idma_warn[i] > 0)
10145                         continue;
10146                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10147
10148                 /* Read and save the SGE IDMA State and Queue ID information.
10149                  * We do this every time in case it changes across time ...
10150                  * can't be too careful ...
10151                  */
10152                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10153                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10154                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10155
10156                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10157                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10158                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10159
10160                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10161                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10162                          i, idma->idma_qid[i], idma->idma_state[i],
10163                          idma->idma_stalled[i] / hz,
10164                          debug0, debug11);
10165                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10166         }
10167 }
10168
10169 /**
10170  *      t4_load_cfg - download config file
10171  *      @adap: the adapter
10172  *      @cfg_data: the cfg text file to write
10173  *      @size: text file size
10174  *
10175  *      Write the supplied config text file to the card's serial flash.
10176  */
10177 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10178 {
10179         int ret, i, n, cfg_addr;
10180         unsigned int addr;
10181         unsigned int flash_cfg_start_sec;
10182         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10183
10184         cfg_addr = t4_flash_cfg_addr(adap);
10185         if (cfg_addr < 0)
10186                 return cfg_addr;
10187
10188         addr = cfg_addr;
10189         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10190
10191         if (size > FLASH_CFG_MAX_SIZE) {
10192                 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10193                         FLASH_CFG_MAX_SIZE);
10194                 return -EFBIG;
10195         }
10196
10197         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10198                          sf_sec_size);
10199         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10200                                      flash_cfg_start_sec + i - 1);
10201         /* If size == 0 then we're simply erasing the FLASH sectors associated
10202          * with the on-adapter Firmware Configuration File.
10203          */
10204         if (ret || size == 0)
10205                 goto out;
10206
10207         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10208         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10209                 if ((size - i) <  SF_PAGE_SIZE)
10210                         n = size - i;
10211                 else
10212                         n = SF_PAGE_SIZE;
10213                 ret = t4_write_flash(adap, addr, n, cfg_data, true);
10214                 if (ret)
10215                         goto out;
10216
10217                 addr += SF_PAGE_SIZE;
10218                 cfg_data += SF_PAGE_SIZE;
10219         }
10220
10221 out:
10222         if (ret)
10223                 dev_err(adap->pdev_dev, "config file %s failed %d\n",
10224                         (size == 0 ? "clear" : "download"), ret);
10225         return ret;
10226 }
10227
10228 /**
10229  *      t4_set_vf_mac_acl - Set MAC address for the specified VF
10230  *      @adapter: The adapter
10231  *      @vf: one of the VFs instantiated by the specified PF
10232  *      @naddr: the number of MAC addresses
10233  *      @addr: the MAC address(es) to be set to the specified VF
10234  */
10235 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10236                       unsigned int naddr, u8 *addr)
10237 {
10238         struct fw_acl_mac_cmd cmd;
10239
10240         memset(&cmd, 0, sizeof(cmd));
10241         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10242                                     FW_CMD_REQUEST_F |
10243                                     FW_CMD_WRITE_F |
10244                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10245                                     FW_ACL_MAC_CMD_VFN_V(vf));
10246
10247         /* Note: Do not enable the ACL */
10248         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10249         cmd.nmac = naddr;
10250
10251         switch (adapter->pf) {
10252         case 3:
10253                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10254                 break;
10255         case 2:
10256                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10257                 break;
10258         case 1:
10259                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10260                 break;
10261         case 0:
10262                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10263                 break;
10264         }
10265
10266         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10267 }
10268
10269 /**
10270  * t4_read_pace_tbl - read the pace table
10271  * @adap: the adapter
10272  * @pace_vals: holds the returned values
10273  *
10274  * Returns the values of TP's pace table in microseconds.
10275  */
10276 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10277 {
10278         unsigned int i, v;
10279
10280         for (i = 0; i < NTX_SCHED; i++) {
10281                 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10282                 v = t4_read_reg(adap, TP_PACE_TABLE_A);
10283                 pace_vals[i] = dack_ticks_to_usec(adap, v);
10284         }
10285 }
10286
10287 /**
10288  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10289  * @adap: the adapter
10290  * @sched: the scheduler index
10291  * @kbps: the byte rate in Kbps
10292  * @ipg: the interpacket delay in tenths of nanoseconds
10293  * @sleep_ok: if true we may sleep while awaiting command completion
10294  *
10295  * Return the current configuration of a HW Tx scheduler.
10296  */
10297 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10298                      unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10299 {
10300         unsigned int v, addr, bpt, cpt;
10301
10302         if (kbps) {
10303                 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10304                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10305                 if (sched & 1)
10306                         v >>= 16;
10307                 bpt = (v >> 8) & 0xff;
10308                 cpt = v & 0xff;
10309                 if (!cpt) {
10310                         *kbps = 0;      /* scheduler disabled */
10311                 } else {
10312                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10313                         *kbps = (v * bpt) / 125;
10314                 }
10315         }
10316         if (ipg) {
10317                 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10318                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10319                 if (sched & 1)
10320                         v >>= 16;
10321                 v &= 0xffff;
10322                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
10323         }
10324 }
10325
10326 /* t4_sge_ctxt_rd - read an SGE context through FW
10327  * @adap: the adapter
10328  * @mbox: mailbox to use for the FW command
10329  * @cid: the context id
10330  * @ctype: the context type
10331  * @data: where to store the context data
10332  *
10333  * Issues a FW command through the given mailbox to read an SGE context.
10334  */
10335 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10336                    enum ctxt_type ctype, u32 *data)
10337 {
10338         struct fw_ldst_cmd c;
10339         int ret;
10340
10341         if (ctype == CTXT_FLM)
10342                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10343         else
10344                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10345
10346         memset(&c, 0, sizeof(c));
10347         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10348                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
10349                                         FW_LDST_CMD_ADDRSPACE_V(ret));
10350         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10351         c.u.idctxt.physid = cpu_to_be32(cid);
10352
10353         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10354         if (ret == 0) {
10355                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10356                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10357                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10358                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10359                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10360                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10361         }
10362         return ret;
10363 }
10364
10365 /**
10366  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10367  * @adap: the adapter
10368  * @cid: the context id
10369  * @ctype: the context type
10370  * @data: where to store the context data
10371  *
10372  * Reads an SGE context directly, bypassing FW.  This is only for
10373  * debugging when FW is unavailable.
10374  */
10375 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10376                       enum ctxt_type ctype, u32 *data)
10377 {
10378         int i, ret;
10379
10380         t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10381         ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10382         if (!ret)
10383                 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10384                         *data++ = t4_read_reg(adap, i);
10385         return ret;
10386 }
10387
10388 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10389                     u8 rateunit, u8 ratemode, u8 channel, u8 class,
10390                     u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10391                     u16 burstsize)
10392 {
10393         struct fw_sched_cmd cmd;
10394
10395         memset(&cmd, 0, sizeof(cmd));
10396         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10397                                       FW_CMD_REQUEST_F |
10398                                       FW_CMD_WRITE_F);
10399         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10400
10401         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10402         cmd.u.params.type = type;
10403         cmd.u.params.level = level;
10404         cmd.u.params.mode = mode;
10405         cmd.u.params.ch = channel;
10406         cmd.u.params.cl = class;
10407         cmd.u.params.unit = rateunit;
10408         cmd.u.params.rate = ratemode;
10409         cmd.u.params.min = cpu_to_be32(minrate);
10410         cmd.u.params.max = cpu_to_be32(maxrate);
10411         cmd.u.params.weight = cpu_to_be16(weight);
10412         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10413         cmd.u.params.burstsize = cpu_to_be16(burstsize);
10414
10415         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10416                                NULL, 1);
10417 }
10418
10419 /**
10420  *      t4_i2c_rd - read I2C data from adapter
10421  *      @adap: the adapter
10422  *      @mbox: mailbox to use for the FW command
10423  *      @port: Port number if per-port device; <0 if not
10424  *      @devid: per-port device ID or absolute device ID
10425  *      @offset: byte offset into device I2C space
10426  *      @len: byte length of I2C space data
10427  *      @buf: buffer in which to return I2C data
10428  *
10429  *      Reads the I2C data from the indicated device and location.
10430  */
10431 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10432               unsigned int devid, unsigned int offset,
10433               unsigned int len, u8 *buf)
10434 {
10435         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10436         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10437         int ret = 0;
10438
10439         if (len > I2C_PAGE_SIZE)
10440                 return -EINVAL;
10441
10442         /* Dont allow reads that spans multiple pages */
10443         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10444                 return -EINVAL;
10445
10446         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10447         ldst_cmd.op_to_addrspace =
10448                 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10449                             FW_CMD_REQUEST_F |
10450                             FW_CMD_READ_F |
10451                             FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10452         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10453         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10454         ldst_cmd.u.i2c.did = devid;
10455
10456         while (len > 0) {
10457                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10458
10459                 ldst_cmd.u.i2c.boffset = offset;
10460                 ldst_cmd.u.i2c.blen = i2c_len;
10461
10462                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10463                                  &ldst_rpl);
10464                 if (ret)
10465                         break;
10466
10467                 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10468                 offset += i2c_len;
10469                 buf += i2c_len;
10470                 len -= i2c_len;
10471         }
10472
10473         return ret;
10474 }
10475
10476 /**
10477  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10478  *      @adap: the adapter
10479  *      @mbox: mailbox to use for the FW command
10480  *      @vf: one of the VFs instantiated by the specified PF
10481  *      @vlan: The vlanid to be set
10482  */
10483 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10484                     u16 vlan)
10485 {
10486         struct fw_acl_vlan_cmd vlan_cmd;
10487         unsigned int enable;
10488
10489         enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10490         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10491         vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10492                                          FW_CMD_REQUEST_F |
10493                                          FW_CMD_WRITE_F |
10494                                          FW_CMD_EXEC_F |
10495                                          FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10496                                          FW_ACL_VLAN_CMD_VFN_V(vf));
10497         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10498         /* Drop all packets that donot match vlan id */
10499         vlan_cmd.dropnovlan_fm = (enable
10500                                   ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10501                                      FW_ACL_VLAN_CMD_FM_F) : 0);
10502         if (enable != 0) {
10503                 vlan_cmd.nvlan = 1;
10504                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10505         }
10506
10507         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10508 }
10509
10510 /**
10511  *      modify_device_id - Modifies the device ID of the Boot BIOS image
10512  *      @device_id: the device ID to write.
10513  *      @boot_data: the boot image to modify.
10514  *
10515  *      Write the supplied device ID to the boot BIOS image.
10516  */
10517 static void modify_device_id(int device_id, u8 *boot_data)
10518 {
10519         struct cxgb4_pcir_data *pcir_header;
10520         struct legacy_pci_rom_hdr *header;
10521         u8 *cur_header = boot_data;
10522         u16 pcir_offset;
10523
10524          /* Loop through all chained images and change the device ID's */
10525         do {
10526                 header = (struct legacy_pci_rom_hdr *)cur_header;
10527                 pcir_offset = le16_to_cpu(header->pcir_offset);
10528                 pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10529                               pcir_offset);
10530
10531                 /**
10532                  * Only modify the Device ID if code type is Legacy or HP.
10533                  * 0x00: Okay to modify
10534                  * 0x01: FCODE. Do not modify
10535                  * 0x03: Okay to modify
10536                  * 0x04-0xFF: Do not modify
10537                  */
10538                 if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10539                         u8 csum = 0;
10540                         int i;
10541
10542                         /**
10543                          * Modify Device ID to match current adatper
10544                          */
10545                         pcir_header->device_id = cpu_to_le16(device_id);
10546
10547                         /**
10548                          * Set checksum temporarily to 0.
10549                          * We will recalculate it later.
10550                          */
10551                         header->cksum = 0x0;
10552
10553                         /**
10554                          * Calculate and update checksum
10555                          */
10556                         for (i = 0; i < (header->size512 * 512); i++)
10557                                 csum += cur_header[i];
10558
10559                         /**
10560                          * Invert summed value to create the checksum
10561                          * Writing new checksum value directly to the boot data
10562                          */
10563                         cur_header[7] = -csum;
10564
10565                 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10566                         /**
10567                          * Modify Device ID to match current adatper
10568                          */
10569                         pcir_header->device_id = cpu_to_le16(device_id);
10570                 }
10571
10572                 /**
10573                  * Move header pointer up to the next image in the ROM.
10574                  */
10575                 cur_header += header->size512 * 512;
10576         } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10577 }
10578
10579 /**
10580  *      t4_load_boot - download boot flash
10581  *      @adap: the adapter
10582  *      @boot_data: the boot image to write
10583  *      @boot_addr: offset in flash to write boot_data
10584  *      @size: image size
10585  *
10586  *      Write the supplied boot image to the card's serial flash.
10587  *      The boot image has the following sections: a 28-byte header and the
10588  *      boot image.
10589  */
10590 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10591                  unsigned int boot_addr, unsigned int size)
10592 {
10593         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10594         unsigned int boot_sector = (boot_addr * 1024);
10595         struct cxgb4_pci_exp_rom_header *header;
10596         struct cxgb4_pcir_data *pcir_header;
10597         int pcir_offset;
10598         unsigned int i;
10599         u16 device_id;
10600         int ret, addr;
10601
10602         /**
10603          * Make sure the boot image does not encroach on the firmware region
10604          */
10605         if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10606                 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10607                 return -EFBIG;
10608         }
10609
10610         /* Get boot header */
10611         header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10612         pcir_offset = le16_to_cpu(header->pcir_offset);
10613         /* PCIR Data Structure */
10614         pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10615
10616         /**
10617          * Perform some primitive sanity testing to avoid accidentally
10618          * writing garbage over the boot sectors.  We ought to check for
10619          * more but it's not worth it for now ...
10620          */
10621         if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10622                 dev_err(adap->pdev_dev, "boot image too small/large\n");
10623                 return -EFBIG;
10624         }
10625
10626         if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10627                 dev_err(adap->pdev_dev, "Boot image missing signature\n");
10628                 return -EINVAL;
10629         }
10630
10631         /* Check PCI header signature */
10632         if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10633                 dev_err(adap->pdev_dev, "PCI header missing signature\n");
10634                 return -EINVAL;
10635         }
10636
10637         /* Check Vendor ID matches Chelsio ID*/
10638         if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10639                 dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10640                 return -EINVAL;
10641         }
10642
10643         /**
10644          * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10645          * and Boot configuration data sections. These 3 boot sections span
10646          * sectors 0 to 7 in flash and live right before the FW image location.
10647          */
10648         i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10649         ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10650                                      (boot_sector >> 16) + i - 1);
10651
10652         /**
10653          * If size == 0 then we're simply erasing the FLASH sectors associated
10654          * with the on-adapter option ROM file
10655          */
10656         if (ret || size == 0)
10657                 goto out;
10658         /* Retrieve adapter's device ID */
10659         pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10660        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10661         device_id = device_id & 0xf0ff;
10662
10663          /* Check PCIE Device ID */
10664         if (le16_to_cpu(pcir_header->device_id) != device_id) {
10665                 /**
10666                  * Change the device ID in the Boot BIOS image to match
10667                  * the Device ID of the current adapter.
10668                  */
10669                 modify_device_id(device_id, boot_data);
10670         }
10671
10672         /**
10673          * Skip over the first SF_PAGE_SIZE worth of data and write it after
10674          * we finish copying the rest of the boot image. This will ensure
10675          * that the BIOS boot header will only be written if the boot image
10676          * was written in full.
10677          */
10678         addr = boot_sector;
10679         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10680                 addr += SF_PAGE_SIZE;
10681                 boot_data += SF_PAGE_SIZE;
10682                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10683                                      false);
10684                 if (ret)
10685                         goto out;
10686         }
10687
10688         ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10689                              (const u8 *)header, false);
10690
10691 out:
10692         if (ret)
10693                 dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10694                         ret);
10695         return ret;
10696 }
10697
10698 /**
10699  *      t4_flash_bootcfg_addr - return the address of the flash
10700  *      optionrom configuration
10701  *      @adapter: the adapter
10702  *
10703  *      Return the address within the flash where the OptionROM Configuration
10704  *      is stored, or an error if the device FLASH is too small to contain
10705  *      a OptionROM Configuration.
10706  */
10707 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10708 {
10709         /**
10710          * If the device FLASH isn't large enough to hold a Firmware
10711          * Configuration File, return an error.
10712          */
10713         if (adapter->params.sf_size <
10714             FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10715                 return -ENOSPC;
10716
10717         return FLASH_BOOTCFG_START;
10718 }
10719
10720 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10721 {
10722         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10723         struct cxgb4_bootcfg_data *header;
10724         unsigned int flash_cfg_start_sec;
10725         unsigned int addr, npad;
10726         int ret, i, n, cfg_addr;
10727
10728         cfg_addr = t4_flash_bootcfg_addr(adap);
10729         if (cfg_addr < 0)
10730                 return cfg_addr;
10731
10732         addr = cfg_addr;
10733         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10734
10735         if (size > FLASH_BOOTCFG_MAX_SIZE) {
10736                 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10737                         FLASH_BOOTCFG_MAX_SIZE);
10738                 return -EFBIG;
10739         }
10740
10741         header = (struct cxgb4_bootcfg_data *)cfg_data;
10742         if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10743                 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10744                 ret = -EINVAL;
10745                 goto out;
10746         }
10747
10748         i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10749                          sf_sec_size);
10750         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10751                                      flash_cfg_start_sec + i - 1);
10752
10753         /**
10754          * If size == 0 then we're simply erasing the FLASH sectors associated
10755          * with the on-adapter OptionROM Configuration File.
10756          */
10757         if (ret || size == 0)
10758                 goto out;
10759
10760         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10761         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10762                 n = min_t(u32, size - i, SF_PAGE_SIZE);
10763
10764                 ret = t4_write_flash(adap, addr, n, cfg_data, false);
10765                 if (ret)
10766                         goto out;
10767
10768                 addr += SF_PAGE_SIZE;
10769                 cfg_data += SF_PAGE_SIZE;
10770         }
10771
10772         npad = ((size + 4 - 1) & ~3) - size;
10773         for (i = 0; i < npad; i++) {
10774                 u8 data = 0;
10775
10776                 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10777                                      false);
10778                 if (ret)
10779                         goto out;
10780         }
10781
10782 out:
10783         if (ret)
10784                 dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10785                         (size == 0 ? "clear" : "download"), ret);
10786         return ret;
10787 }