2a3480fc1d91493dd3813b28e585ef571c942f4b
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F) {
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201                 adap->flags &= ~CXGB4_FW_OK;
202         }
203 }
204
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209                          u32 mbox_addr)
210 {
211         for ( ; nflit; nflit--, mbox_addr += 8)
212                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220         struct fw_debug_cmd asrt;
221
222         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223         dev_alert(adap->pdev_dev,
224                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228
229 /**
230  *      t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *      @adapter: the adapter
232  *      @cmd: the Firmware Mailbox Command or Reply
233  *      @size: command length in bytes
234  *      @access: the time (ms) needed to access the Firmware Mailbox
235  *      @execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238                            const __be64 *cmd, unsigned int size,
239                            int access, int execute)
240 {
241         struct mbox_cmd_log *log = adapter->mbox_log;
242         struct mbox_cmd *entry;
243         int i;
244
245         entry = mbox_cmd_log_entry(log, log->cursor++);
246         if (log->cursor == log->size)
247                 log->cursor = 0;
248
249         for (i = 0; i < size / 8; i++)
250                 entry->cmd[i] = be64_to_cpu(cmd[i]);
251         while (i < MBOX_LEN / 8)
252                 entry->cmd[i++] = 0;
253         entry->timestamp = jiffies;
254         entry->seqno = log->seqno++;
255         entry->access = access;
256         entry->execute = execute;
257 }
258
259 /**
260  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *      @adap: the adapter
262  *      @mbox: index of the mailbox to use
263  *      @cmd: the command to write
264  *      @size: command length in bytes
265  *      @rpl: where to optionally store the reply
266  *      @sleep_ok: if true we may sleep while awaiting command completion
267  *      @timeout: time to wait for command to finish before timing out
268  *
269  *      Sends the given command to FW through the selected mailbox and waits
270  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *      store the FW's reply to the command.  The command and its optional
272  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *      the response.  If sleeping is allowed we use progressive backoff
275  *      otherwise we spin.
276  *
277  *      The return value is 0 on success or a negative errno on failure.  A
278  *      failure can happen either because we are not able to execute the
279  *      command or FW executes it but signals an error.  In the latter case
280  *      the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283                             int size, void *rpl, bool sleep_ok, int timeout)
284 {
285         static const int delay[] = {
286                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287         };
288
289         struct mbox_list entry;
290         u16 access = 0;
291         u16 execute = 0;
292         u32 v;
293         u64 res;
294         int i, ms, delay_idx, ret;
295         const __be64 *p = cmd;
296         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298         __be64 cmd_rpl[MBOX_LEN / 8];
299         u32 pcie_fw;
300
301         if ((size & 15) || size > MBOX_LEN)
302                 return -EINVAL;
303
304         /*
305          * If the device is off-line, as in EEH, commands will time out.
306          * Fail them early so we don't waste time waiting.
307          */
308         if (adap->pdev->error_state != pci_channel_io_normal)
309                 return -EIO;
310
311         /* If we have a negative timeout, that implies that we can't sleep. */
312         if (timeout < 0) {
313                 sleep_ok = false;
314                 timeout = -timeout;
315         }
316
317         /* Queue ourselves onto the mailbox access list.  When our entry is at
318          * the front of the list, we have rights to access the mailbox.  So we
319          * wait [for a while] till we're at the front [or bail out with an
320          * EBUSY] ...
321          */
322         spin_lock_bh(&adap->mbox_lock);
323         list_add_tail(&entry.list, &adap->mlist.list);
324         spin_unlock_bh(&adap->mbox_lock);
325
326         delay_idx = 0;
327         ms = delay[0];
328
329         for (i = 0; ; i += ms) {
330                 /* If we've waited too long, return a busy indication.  This
331                  * really ought to be based on our initial position in the
332                  * mailbox access list but this is a start.  We very rarely
333                  * contend on access to the mailbox ...
334                  */
335                 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336                 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337                         spin_lock_bh(&adap->mbox_lock);
338                         list_del(&entry.list);
339                         spin_unlock_bh(&adap->mbox_lock);
340                         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341                         t4_record_mbox(adap, cmd, size, access, ret);
342                         return ret;
343                 }
344
345                 /* If we're at the head, break out and start the mailbox
346                  * protocol.
347                  */
348                 if (list_first_entry(&adap->mlist.list, struct mbox_list,
349                                      list) == &entry)
350                         break;
351
352                 /* Delay for a bit before checking again ... */
353                 if (sleep_ok) {
354                         ms = delay[delay_idx];  /* last element may repeat */
355                         if (delay_idx < ARRAY_SIZE(delay) - 1)
356                                 delay_idx++;
357                         msleep(ms);
358                 } else {
359                         mdelay(ms);
360                 }
361         }
362
363         /* Loop trying to get ownership of the mailbox.  Return an error
364          * if we can't gain ownership.
365          */
366         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369         if (v != MBOX_OWNER_DRV) {
370                 spin_lock_bh(&adap->mbox_lock);
371                 list_del(&entry.list);
372                 spin_unlock_bh(&adap->mbox_lock);
373                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374                 t4_record_mbox(adap, cmd, size, access, ret);
375                 return ret;
376         }
377
378         /* Copy in the new mailbox command and send it on its way ... */
379         t4_record_mbox(adap, cmd, size, access, 0);
380         for (i = 0; i < size; i += 8)
381                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382
383         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384         t4_read_reg(adap, ctl_reg);          /* flush write */
385
386         delay_idx = 0;
387         ms = delay[0];
388
389         for (i = 0;
390              !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391              i < timeout;
392              i += ms) {
393                 if (sleep_ok) {
394                         ms = delay[delay_idx];  /* last element may repeat */
395                         if (delay_idx < ARRAY_SIZE(delay) - 1)
396                                 delay_idx++;
397                         msleep(ms);
398                 } else
399                         mdelay(ms);
400
401                 v = t4_read_reg(adap, ctl_reg);
402                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403                         if (!(v & MBMSGVALID_F)) {
404                                 t4_write_reg(adap, ctl_reg, 0);
405                                 continue;
406                         }
407
408                         get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409                         res = be64_to_cpu(cmd_rpl[0]);
410
411                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412                                 fw_asrt(adap, data_reg);
413                                 res = FW_CMD_RETVAL_V(EIO);
414                         } else if (rpl) {
415                                 memcpy(rpl, cmd_rpl, size);
416                         }
417
418                         t4_write_reg(adap, ctl_reg, 0);
419
420                         execute = i + ms;
421                         t4_record_mbox(adap, cmd_rpl,
422                                        MBOX_LEN, access, execute);
423                         spin_lock_bh(&adap->mbox_lock);
424                         list_del(&entry.list);
425                         spin_unlock_bh(&adap->mbox_lock);
426                         return -FW_CMD_RETVAL_G((int)res);
427                 }
428         }
429
430         ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431         t4_record_mbox(adap, cmd, size, access, ret);
432         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433                 *(const u8 *)cmd, mbox);
434         t4_report_fw_error(adap);
435         spin_lock_bh(&adap->mbox_lock);
436         list_del(&entry.list);
437         spin_unlock_bh(&adap->mbox_lock);
438         t4_fatal_err(adap);
439         return ret;
440 }
441
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443                     void *rpl, bool sleep_ok)
444 {
445         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446                                        FW_CMD_MAX_TIMEOUT);
447 }
448
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451         u32 edc_ecc_err_addr_reg;
452         u32 rdata_reg;
453
454         if (is_t4(adap->params.chip)) {
455                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456                 return 0;
457         }
458         if (idx != 0 && idx != 1) {
459                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460                 return 0;
461         }
462
463         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465
466         CH_WARN(adap,
467                 "edc%d err addr 0x%x: 0x%x.\n",
468                 idx, edc_ecc_err_addr_reg,
469                 t4_read_reg(adap, edc_ecc_err_addr_reg));
470         CH_WARN(adap,
471                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472                 rdata_reg,
473                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
474                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482
483         return 0;
484 }
485
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498                       u32 *mem_base, u32 *mem_aperture)
499 {
500         u32 edc_size, mc_size, mem_reg;
501
502         /* Offset into the region of memory which is being accessed
503          * MEM_EDC0 = 0
504          * MEM_EDC1 = 1
505          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507          * MEM_HMA  = 4
508          */
509         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510         if (mtype == MEM_HMA) {
511                 *mem_off = 2 * (edc_size * 1024 * 1024);
512         } else if (mtype != MEM_MC1) {
513                 *mem_off = (mtype * (edc_size * 1024 * 1024));
514         } else {
515                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516                                                       MA_EXT_MEMORY0_BAR_A));
517                 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518         }
519
520         /* Each PCI-E Memory Window is programmed with a window size -- or
521          * "aperture" -- which controls the granularity of its mapping onto
522          * adapter memory.  We need to grab that aperture in order to know
523          * how to use the specified window.  The window is also programmed
524          * with the base address of the Memory Window in BAR0's address
525          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526          * the address is relative to BAR0.
527          */
528         mem_reg = t4_read_reg(adap,
529                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530                                                   win));
531         /* a dead adapter will return 0xffffffff for PIO reads */
532         if (mem_reg == 0xffffffff)
533                 return -ENXIO;
534
535         *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536         *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537         if (is_t4(adap->params.chip))
538                 *mem_base -= adap->t4_bar0;
539
540         return 0;
541 }
542
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553         t4_write_reg(adap,
554                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555                      addr);
556         /* Read it back to ensure that changes propagate before we
557          * attempt to use the new value.
558          */
559         t4_read_reg(adap,
560                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574                            int dir)
575 {
576         union {
577                 u32 word;
578                 char byte[4];
579         } last;
580         unsigned char *bp;
581         int i;
582
583         if (dir == T4_MEMORY_READ) {
584                 last.word = le32_to_cpu((__force __le32)
585                                         t4_read_reg(adap, addr));
586                 for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587                         bp[i] = last.byte[i];
588         } else {
589                 last.word = *buf;
590                 for (i = off; i < 4; i++)
591                         last.byte[i] = 0;
592                 t4_write_reg(adap, addr,
593                              (__force u32)cpu_to_le32(last.word));
594         }
595 }
596
597 /**
598  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *      @adap: the adapter
600  *      @win: PCI-E Memory Window to use
601  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *      @addr: address within indicated memory type
603  *      @len: amount of memory to transfer
604  *      @hbuf: host memory buffer
605  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *      firmware memory address and host buffer must be aligned on 32-bit
609  *      boundaries; the length may be arbitrary.  The memory is transferred as
610  *      a raw byte sequence from/to the firmware's memory.  If this memory
611  *      contains data structures which contain multi-byte integers, it's the
612  *      caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615                  u32 len, void *hbuf, int dir)
616 {
617         u32 pos, offset, resid, memoffset;
618         u32 win_pf, mem_aperture, mem_base;
619         u32 *buf;
620         int ret;
621
622         /* Argument sanity checks ...
623          */
624         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625                 return -EINVAL;
626         buf = (u32 *)hbuf;
627
628         /* It's convenient to be able to handle lengths which aren't a
629          * multiple of 32-bits because we often end up transferring files to
630          * the firmware.  So we'll handle that by normalizing the length here
631          * and then handling any residual transfer at the end.
632          */
633         resid = len & 0x3;
634         len -= resid;
635
636         ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637                                 &mem_aperture);
638         if (ret)
639                 return ret;
640
641         /* Determine the PCIE_MEM_ACCESS_OFFSET */
642         addr = addr + memoffset;
643
644         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645
646         /* Calculate our initial PCI-E Memory Window Position and Offset into
647          * that Window.
648          */
649         pos = addr & ~(mem_aperture - 1);
650         offset = addr - pos;
651
652         /* Set up initial PCI-E Memory Window to cover the start of our
653          * transfer.
654          */
655         t4_memory_update_win(adap, win, pos | win_pf);
656
657         /* Transfer data to/from the adapter as long as there's an integral
658          * number of 32-bit transfers to complete.
659          *
660          * A note on Endianness issues:
661          *
662          * The "register" reads and writes below from/to the PCI-E Memory
663          * Window invoke the standard adapter Big-Endian to PCI-E Link
664          * Little-Endian "swizzel."  As a result, if we have the following
665          * data in adapter memory:
666          *
667          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668          *     Address:      i+0  i+1  i+2  i+3
669          *
670          * Then a read of the adapter memory via the PCI-E Memory Window
671          * will yield:
672          *
673          *     x = readl(i)
674          *         31                  0
675          *         [ b3 | b2 | b1 | b0 ]
676          *
677          * If this value is stored into local memory on a Little-Endian system
678          * it will show up correctly in local memory as:
679          *
680          *     ( ..., b0, b1, b2, b3, ... )
681          *
682          * But on a Big-Endian system, the store will show up in memory
683          * incorrectly swizzled as:
684          *
685          *     ( ..., b3, b2, b1, b0, ... )
686          *
687          * So we need to account for this in the reads and writes to the
688          * PCI-E Memory Window below by undoing the register read/write
689          * swizzels.
690          */
691         while (len > 0) {
692                 if (dir == T4_MEMORY_READ)
693                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694                                                 mem_base + offset));
695                 else
696                         t4_write_reg(adap, mem_base + offset,
697                                      (__force u32)cpu_to_le32(*buf++));
698                 offset += sizeof(__be32);
699                 len -= sizeof(__be32);
700
701                 /* If we've reached the end of our current window aperture,
702                  * move the PCI-E Memory Window on to the next.  Note that
703                  * doing this here after "len" may be 0 allows us to set up
704                  * the PCI-E Memory Window for a possible final residual
705                  * transfer below ...
706                  */
707                 if (offset == mem_aperture) {
708                         pos += mem_aperture;
709                         offset = 0;
710                         t4_memory_update_win(adap, win, pos | win_pf);
711                 }
712         }
713
714         /* If the original transfer had a length which wasn't a multiple of
715          * 32-bits, now's where we need to finish off the transfer of the
716          * residual amount.  The PCI-E Memory Window has already been moved
717          * above (if necessary) to cover this final transfer.
718          */
719         if (resid)
720                 t4_memory_rw_residual(adap, resid, mem_base + offset,
721                                       (u8 *)buf, dir);
722
723         return 0;
724 }
725
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733         u32 val, ldst_addrspace;
734
735         /* If fw_attach != 0, construct and send the Firmware LDST Command to
736          * retrieve the specified PCI-E Configuration Space register.
737          */
738         struct fw_ldst_cmd ldst_cmd;
739         int ret;
740
741         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744                                                FW_CMD_REQUEST_F |
745                                                FW_CMD_READ_F |
746                                                ldst_addrspace);
747         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749         ldst_cmd.u.pcie.ctrl_to_fn =
750                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751         ldst_cmd.u.pcie.r = reg;
752
753         /* If the LDST Command succeeds, return the result, otherwise
754          * fall through to reading it directly ourselves ...
755          */
756         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757                          &ldst_cmd);
758         if (ret == 0)
759                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760         else
761                 /* Read the desired Configuration Space register via the PCI-E
762                  * Backdoor mechanism.
763                  */
764                 t4_hw_pci_read_cfg4(adap, reg, &val);
765         return val;
766 }
767
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773                          u32 memwin_base)
774 {
775         u32 ret;
776
777         if (is_t4(adap->params.chip)) {
778                 u32 bar0;
779
780                 /* Truncation intentional: we only read the bottom 32-bits of
781                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782                  * mechanism to read BAR0 instead of using
783                  * pci_resource_start() because we could be operating from
784                  * within a Virtual Machine which is trapping our accesses to
785                  * our Configuration Space and we need to set up the PCI-E
786                  * Memory Window decoders with the actual addresses which will
787                  * be coming across the PCI-E link.
788                  */
789                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
790                 bar0 &= pci_mask;
791                 adap->t4_bar0 = bar0;
792
793                 ret = bar0 + memwin_base;
794         } else {
795                 /* For T5, only relative offset inside the PCIe BAR is passed */
796                 ret = memwin_base;
797         }
798         return ret;
799 }
800
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814         t4_write_reg(adap,
815                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816                      memwin_base | BIR_V(0) |
817                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818         t4_read_reg(adap,
819                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821
822 /**
823  *      t4_get_regs_len - return the size of the chips register set
824  *      @adapter: the adapter
825  *
826  *      Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831
832         switch (chip_version) {
833         case CHELSIO_T4:
834                 return T4_REGMAP_SIZE;
835
836         case CHELSIO_T5:
837         case CHELSIO_T6:
838                 return T5_REGMAP_SIZE;
839         }
840
841         dev_err(adapter->pdev_dev,
842                 "Unsupported chip version %d\n", chip_version);
843         return 0;
844 }
845
846 /**
847  *      t4_get_regs - read chip registers into provided buffer
848  *      @adap: the adapter
849  *      @buf: register buffer
850  *      @buf_size: size (in bytes) of register buffer
851  *
852  *      If the provided register buffer isn't large enough for the chip's
853  *      full register range, the register dump will be truncated to the
854  *      register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858         static const unsigned int t4_reg_ranges[] = {
859                 0x1008, 0x1108,
860                 0x1180, 0x1184,
861                 0x1190, 0x1194,
862                 0x11a0, 0x11a4,
863                 0x11b0, 0x11b4,
864                 0x11fc, 0x123c,
865                 0x1300, 0x173c,
866                 0x1800, 0x18fc,
867                 0x3000, 0x30d8,
868                 0x30e0, 0x30e4,
869                 0x30ec, 0x5910,
870                 0x5920, 0x5924,
871                 0x5960, 0x5960,
872                 0x5968, 0x5968,
873                 0x5970, 0x5970,
874                 0x5978, 0x5978,
875                 0x5980, 0x5980,
876                 0x5988, 0x5988,
877                 0x5990, 0x5990,
878                 0x5998, 0x5998,
879                 0x59a0, 0x59d4,
880                 0x5a00, 0x5ae0,
881                 0x5ae8, 0x5ae8,
882                 0x5af0, 0x5af0,
883                 0x5af8, 0x5af8,
884                 0x6000, 0x6098,
885                 0x6100, 0x6150,
886                 0x6200, 0x6208,
887                 0x6240, 0x6248,
888                 0x6280, 0x62b0,
889                 0x62c0, 0x6338,
890                 0x6370, 0x638c,
891                 0x6400, 0x643c,
892                 0x6500, 0x6524,
893                 0x6a00, 0x6a04,
894                 0x6a14, 0x6a38,
895                 0x6a60, 0x6a70,
896                 0x6a78, 0x6a78,
897                 0x6b00, 0x6b0c,
898                 0x6b1c, 0x6b84,
899                 0x6bf0, 0x6bf8,
900                 0x6c00, 0x6c0c,
901                 0x6c1c, 0x6c84,
902                 0x6cf0, 0x6cf8,
903                 0x6d00, 0x6d0c,
904                 0x6d1c, 0x6d84,
905                 0x6df0, 0x6df8,
906                 0x6e00, 0x6e0c,
907                 0x6e1c, 0x6e84,
908                 0x6ef0, 0x6ef8,
909                 0x6f00, 0x6f0c,
910                 0x6f1c, 0x6f84,
911                 0x6ff0, 0x6ff8,
912                 0x7000, 0x700c,
913                 0x701c, 0x7084,
914                 0x70f0, 0x70f8,
915                 0x7100, 0x710c,
916                 0x711c, 0x7184,
917                 0x71f0, 0x71f8,
918                 0x7200, 0x720c,
919                 0x721c, 0x7284,
920                 0x72f0, 0x72f8,
921                 0x7300, 0x730c,
922                 0x731c, 0x7384,
923                 0x73f0, 0x73f8,
924                 0x7400, 0x7450,
925                 0x7500, 0x7530,
926                 0x7600, 0x760c,
927                 0x7614, 0x761c,
928                 0x7680, 0x76cc,
929                 0x7700, 0x7798,
930                 0x77c0, 0x77fc,
931                 0x7900, 0x79fc,
932                 0x7b00, 0x7b58,
933                 0x7b60, 0x7b84,
934                 0x7b8c, 0x7c38,
935                 0x7d00, 0x7d38,
936                 0x7d40, 0x7d80,
937                 0x7d8c, 0x7ddc,
938                 0x7de4, 0x7e04,
939                 0x7e10, 0x7e1c,
940                 0x7e24, 0x7e38,
941                 0x7e40, 0x7e44,
942                 0x7e4c, 0x7e78,
943                 0x7e80, 0x7ea4,
944                 0x7eac, 0x7edc,
945                 0x7ee8, 0x7efc,
946                 0x8dc0, 0x8e04,
947                 0x8e10, 0x8e1c,
948                 0x8e30, 0x8e78,
949                 0x8ea0, 0x8eb8,
950                 0x8ec0, 0x8f6c,
951                 0x8fc0, 0x9008,
952                 0x9010, 0x9058,
953                 0x9060, 0x9060,
954                 0x9068, 0x9074,
955                 0x90fc, 0x90fc,
956                 0x9400, 0x9408,
957                 0x9410, 0x9458,
958                 0x9600, 0x9600,
959                 0x9608, 0x9638,
960                 0x9640, 0x96bc,
961                 0x9800, 0x9808,
962                 0x9820, 0x983c,
963                 0x9850, 0x9864,
964                 0x9c00, 0x9c6c,
965                 0x9c80, 0x9cec,
966                 0x9d00, 0x9d6c,
967                 0x9d80, 0x9dec,
968                 0x9e00, 0x9e6c,
969                 0x9e80, 0x9eec,
970                 0x9f00, 0x9f6c,
971                 0x9f80, 0x9fec,
972                 0xd004, 0xd004,
973                 0xd010, 0xd03c,
974                 0xdfc0, 0xdfe0,
975                 0xe000, 0xea7c,
976                 0xf000, 0x11110,
977                 0x11118, 0x11190,
978                 0x19040, 0x1906c,
979                 0x19078, 0x19080,
980                 0x1908c, 0x190e4,
981                 0x190f0, 0x190f8,
982                 0x19100, 0x19110,
983                 0x19120, 0x19124,
984                 0x19150, 0x19194,
985                 0x1919c, 0x191b0,
986                 0x191d0, 0x191e8,
987                 0x19238, 0x1924c,
988                 0x193f8, 0x1943c,
989                 0x1944c, 0x19474,
990                 0x19490, 0x194e0,
991                 0x194f0, 0x194f8,
992                 0x19800, 0x19c08,
993                 0x19c10, 0x19c90,
994                 0x19ca0, 0x19ce4,
995                 0x19cf0, 0x19d40,
996                 0x19d50, 0x19d94,
997                 0x19da0, 0x19de8,
998                 0x19df0, 0x19e40,
999                 0x19e50, 0x19e90,
1000                 0x19ea0, 0x19f4c,
1001                 0x1a000, 0x1a004,
1002                 0x1a010, 0x1a06c,
1003                 0x1a0b0, 0x1a0e4,
1004                 0x1a0ec, 0x1a0f4,
1005                 0x1a100, 0x1a108,
1006                 0x1a114, 0x1a120,
1007                 0x1a128, 0x1a130,
1008                 0x1a138, 0x1a138,
1009                 0x1a190, 0x1a1c4,
1010                 0x1a1fc, 0x1a1fc,
1011                 0x1e040, 0x1e04c,
1012                 0x1e284, 0x1e28c,
1013                 0x1e2c0, 0x1e2c0,
1014                 0x1e2e0, 0x1e2e0,
1015                 0x1e300, 0x1e384,
1016                 0x1e3c0, 0x1e3c8,
1017                 0x1e440, 0x1e44c,
1018                 0x1e684, 0x1e68c,
1019                 0x1e6c0, 0x1e6c0,
1020                 0x1e6e0, 0x1e6e0,
1021                 0x1e700, 0x1e784,
1022                 0x1e7c0, 0x1e7c8,
1023                 0x1e840, 0x1e84c,
1024                 0x1ea84, 0x1ea8c,
1025                 0x1eac0, 0x1eac0,
1026                 0x1eae0, 0x1eae0,
1027                 0x1eb00, 0x1eb84,
1028                 0x1ebc0, 0x1ebc8,
1029                 0x1ec40, 0x1ec4c,
1030                 0x1ee84, 0x1ee8c,
1031                 0x1eec0, 0x1eec0,
1032                 0x1eee0, 0x1eee0,
1033                 0x1ef00, 0x1ef84,
1034                 0x1efc0, 0x1efc8,
1035                 0x1f040, 0x1f04c,
1036                 0x1f284, 0x1f28c,
1037                 0x1f2c0, 0x1f2c0,
1038                 0x1f2e0, 0x1f2e0,
1039                 0x1f300, 0x1f384,
1040                 0x1f3c0, 0x1f3c8,
1041                 0x1f440, 0x1f44c,
1042                 0x1f684, 0x1f68c,
1043                 0x1f6c0, 0x1f6c0,
1044                 0x1f6e0, 0x1f6e0,
1045                 0x1f700, 0x1f784,
1046                 0x1f7c0, 0x1f7c8,
1047                 0x1f840, 0x1f84c,
1048                 0x1fa84, 0x1fa8c,
1049                 0x1fac0, 0x1fac0,
1050                 0x1fae0, 0x1fae0,
1051                 0x1fb00, 0x1fb84,
1052                 0x1fbc0, 0x1fbc8,
1053                 0x1fc40, 0x1fc4c,
1054                 0x1fe84, 0x1fe8c,
1055                 0x1fec0, 0x1fec0,
1056                 0x1fee0, 0x1fee0,
1057                 0x1ff00, 0x1ff84,
1058                 0x1ffc0, 0x1ffc8,
1059                 0x20000, 0x2002c,
1060                 0x20100, 0x2013c,
1061                 0x20190, 0x201a0,
1062                 0x201a8, 0x201b8,
1063                 0x201c4, 0x201c8,
1064                 0x20200, 0x20318,
1065                 0x20400, 0x204b4,
1066                 0x204c0, 0x20528,
1067                 0x20540, 0x20614,
1068                 0x21000, 0x21040,
1069                 0x2104c, 0x21060,
1070                 0x210c0, 0x210ec,
1071                 0x21200, 0x21268,
1072                 0x21270, 0x21284,
1073                 0x212fc, 0x21388,
1074                 0x21400, 0x21404,
1075                 0x21500, 0x21500,
1076                 0x21510, 0x21518,
1077                 0x2152c, 0x21530,
1078                 0x2153c, 0x2153c,
1079                 0x21550, 0x21554,
1080                 0x21600, 0x21600,
1081                 0x21608, 0x2161c,
1082                 0x21624, 0x21628,
1083                 0x21630, 0x21634,
1084                 0x2163c, 0x2163c,
1085                 0x21700, 0x2171c,
1086                 0x21780, 0x2178c,
1087                 0x21800, 0x21818,
1088                 0x21820, 0x21828,
1089                 0x21830, 0x21848,
1090                 0x21850, 0x21854,
1091                 0x21860, 0x21868,
1092                 0x21870, 0x21870,
1093                 0x21878, 0x21898,
1094                 0x218a0, 0x218a8,
1095                 0x218b0, 0x218c8,
1096                 0x218d0, 0x218d4,
1097                 0x218e0, 0x218e8,
1098                 0x218f0, 0x218f0,
1099                 0x218f8, 0x21a18,
1100                 0x21a20, 0x21a28,
1101                 0x21a30, 0x21a48,
1102                 0x21a50, 0x21a54,
1103                 0x21a60, 0x21a68,
1104                 0x21a70, 0x21a70,
1105                 0x21a78, 0x21a98,
1106                 0x21aa0, 0x21aa8,
1107                 0x21ab0, 0x21ac8,
1108                 0x21ad0, 0x21ad4,
1109                 0x21ae0, 0x21ae8,
1110                 0x21af0, 0x21af0,
1111                 0x21af8, 0x21c18,
1112                 0x21c20, 0x21c20,
1113                 0x21c28, 0x21c30,
1114                 0x21c38, 0x21c38,
1115                 0x21c80, 0x21c98,
1116                 0x21ca0, 0x21ca8,
1117                 0x21cb0, 0x21cc8,
1118                 0x21cd0, 0x21cd4,
1119                 0x21ce0, 0x21ce8,
1120                 0x21cf0, 0x21cf0,
1121                 0x21cf8, 0x21d7c,
1122                 0x21e00, 0x21e04,
1123                 0x22000, 0x2202c,
1124                 0x22100, 0x2213c,
1125                 0x22190, 0x221a0,
1126                 0x221a8, 0x221b8,
1127                 0x221c4, 0x221c8,
1128                 0x22200, 0x22318,
1129                 0x22400, 0x224b4,
1130                 0x224c0, 0x22528,
1131                 0x22540, 0x22614,
1132                 0x23000, 0x23040,
1133                 0x2304c, 0x23060,
1134                 0x230c0, 0x230ec,
1135                 0x23200, 0x23268,
1136                 0x23270, 0x23284,
1137                 0x232fc, 0x23388,
1138                 0x23400, 0x23404,
1139                 0x23500, 0x23500,
1140                 0x23510, 0x23518,
1141                 0x2352c, 0x23530,
1142                 0x2353c, 0x2353c,
1143                 0x23550, 0x23554,
1144                 0x23600, 0x23600,
1145                 0x23608, 0x2361c,
1146                 0x23624, 0x23628,
1147                 0x23630, 0x23634,
1148                 0x2363c, 0x2363c,
1149                 0x23700, 0x2371c,
1150                 0x23780, 0x2378c,
1151                 0x23800, 0x23818,
1152                 0x23820, 0x23828,
1153                 0x23830, 0x23848,
1154                 0x23850, 0x23854,
1155                 0x23860, 0x23868,
1156                 0x23870, 0x23870,
1157                 0x23878, 0x23898,
1158                 0x238a0, 0x238a8,
1159                 0x238b0, 0x238c8,
1160                 0x238d0, 0x238d4,
1161                 0x238e0, 0x238e8,
1162                 0x238f0, 0x238f0,
1163                 0x238f8, 0x23a18,
1164                 0x23a20, 0x23a28,
1165                 0x23a30, 0x23a48,
1166                 0x23a50, 0x23a54,
1167                 0x23a60, 0x23a68,
1168                 0x23a70, 0x23a70,
1169                 0x23a78, 0x23a98,
1170                 0x23aa0, 0x23aa8,
1171                 0x23ab0, 0x23ac8,
1172                 0x23ad0, 0x23ad4,
1173                 0x23ae0, 0x23ae8,
1174                 0x23af0, 0x23af0,
1175                 0x23af8, 0x23c18,
1176                 0x23c20, 0x23c20,
1177                 0x23c28, 0x23c30,
1178                 0x23c38, 0x23c38,
1179                 0x23c80, 0x23c98,
1180                 0x23ca0, 0x23ca8,
1181                 0x23cb0, 0x23cc8,
1182                 0x23cd0, 0x23cd4,
1183                 0x23ce0, 0x23ce8,
1184                 0x23cf0, 0x23cf0,
1185                 0x23cf8, 0x23d7c,
1186                 0x23e00, 0x23e04,
1187                 0x24000, 0x2402c,
1188                 0x24100, 0x2413c,
1189                 0x24190, 0x241a0,
1190                 0x241a8, 0x241b8,
1191                 0x241c4, 0x241c8,
1192                 0x24200, 0x24318,
1193                 0x24400, 0x244b4,
1194                 0x244c0, 0x24528,
1195                 0x24540, 0x24614,
1196                 0x25000, 0x25040,
1197                 0x2504c, 0x25060,
1198                 0x250c0, 0x250ec,
1199                 0x25200, 0x25268,
1200                 0x25270, 0x25284,
1201                 0x252fc, 0x25388,
1202                 0x25400, 0x25404,
1203                 0x25500, 0x25500,
1204                 0x25510, 0x25518,
1205                 0x2552c, 0x25530,
1206                 0x2553c, 0x2553c,
1207                 0x25550, 0x25554,
1208                 0x25600, 0x25600,
1209                 0x25608, 0x2561c,
1210                 0x25624, 0x25628,
1211                 0x25630, 0x25634,
1212                 0x2563c, 0x2563c,
1213                 0x25700, 0x2571c,
1214                 0x25780, 0x2578c,
1215                 0x25800, 0x25818,
1216                 0x25820, 0x25828,
1217                 0x25830, 0x25848,
1218                 0x25850, 0x25854,
1219                 0x25860, 0x25868,
1220                 0x25870, 0x25870,
1221                 0x25878, 0x25898,
1222                 0x258a0, 0x258a8,
1223                 0x258b0, 0x258c8,
1224                 0x258d0, 0x258d4,
1225                 0x258e0, 0x258e8,
1226                 0x258f0, 0x258f0,
1227                 0x258f8, 0x25a18,
1228                 0x25a20, 0x25a28,
1229                 0x25a30, 0x25a48,
1230                 0x25a50, 0x25a54,
1231                 0x25a60, 0x25a68,
1232                 0x25a70, 0x25a70,
1233                 0x25a78, 0x25a98,
1234                 0x25aa0, 0x25aa8,
1235                 0x25ab0, 0x25ac8,
1236                 0x25ad0, 0x25ad4,
1237                 0x25ae0, 0x25ae8,
1238                 0x25af0, 0x25af0,
1239                 0x25af8, 0x25c18,
1240                 0x25c20, 0x25c20,
1241                 0x25c28, 0x25c30,
1242                 0x25c38, 0x25c38,
1243                 0x25c80, 0x25c98,
1244                 0x25ca0, 0x25ca8,
1245                 0x25cb0, 0x25cc8,
1246                 0x25cd0, 0x25cd4,
1247                 0x25ce0, 0x25ce8,
1248                 0x25cf0, 0x25cf0,
1249                 0x25cf8, 0x25d7c,
1250                 0x25e00, 0x25e04,
1251                 0x26000, 0x2602c,
1252                 0x26100, 0x2613c,
1253                 0x26190, 0x261a0,
1254                 0x261a8, 0x261b8,
1255                 0x261c4, 0x261c8,
1256                 0x26200, 0x26318,
1257                 0x26400, 0x264b4,
1258                 0x264c0, 0x26528,
1259                 0x26540, 0x26614,
1260                 0x27000, 0x27040,
1261                 0x2704c, 0x27060,
1262                 0x270c0, 0x270ec,
1263                 0x27200, 0x27268,
1264                 0x27270, 0x27284,
1265                 0x272fc, 0x27388,
1266                 0x27400, 0x27404,
1267                 0x27500, 0x27500,
1268                 0x27510, 0x27518,
1269                 0x2752c, 0x27530,
1270                 0x2753c, 0x2753c,
1271                 0x27550, 0x27554,
1272                 0x27600, 0x27600,
1273                 0x27608, 0x2761c,
1274                 0x27624, 0x27628,
1275                 0x27630, 0x27634,
1276                 0x2763c, 0x2763c,
1277                 0x27700, 0x2771c,
1278                 0x27780, 0x2778c,
1279                 0x27800, 0x27818,
1280                 0x27820, 0x27828,
1281                 0x27830, 0x27848,
1282                 0x27850, 0x27854,
1283                 0x27860, 0x27868,
1284                 0x27870, 0x27870,
1285                 0x27878, 0x27898,
1286                 0x278a0, 0x278a8,
1287                 0x278b0, 0x278c8,
1288                 0x278d0, 0x278d4,
1289                 0x278e0, 0x278e8,
1290                 0x278f0, 0x278f0,
1291                 0x278f8, 0x27a18,
1292                 0x27a20, 0x27a28,
1293                 0x27a30, 0x27a48,
1294                 0x27a50, 0x27a54,
1295                 0x27a60, 0x27a68,
1296                 0x27a70, 0x27a70,
1297                 0x27a78, 0x27a98,
1298                 0x27aa0, 0x27aa8,
1299                 0x27ab0, 0x27ac8,
1300                 0x27ad0, 0x27ad4,
1301                 0x27ae0, 0x27ae8,
1302                 0x27af0, 0x27af0,
1303                 0x27af8, 0x27c18,
1304                 0x27c20, 0x27c20,
1305                 0x27c28, 0x27c30,
1306                 0x27c38, 0x27c38,
1307                 0x27c80, 0x27c98,
1308                 0x27ca0, 0x27ca8,
1309                 0x27cb0, 0x27cc8,
1310                 0x27cd0, 0x27cd4,
1311                 0x27ce0, 0x27ce8,
1312                 0x27cf0, 0x27cf0,
1313                 0x27cf8, 0x27d7c,
1314                 0x27e00, 0x27e04,
1315         };
1316
1317         static const unsigned int t5_reg_ranges[] = {
1318                 0x1008, 0x10c0,
1319                 0x10cc, 0x10f8,
1320                 0x1100, 0x1100,
1321                 0x110c, 0x1148,
1322                 0x1180, 0x1184,
1323                 0x1190, 0x1194,
1324                 0x11a0, 0x11a4,
1325                 0x11b0, 0x11b4,
1326                 0x11fc, 0x123c,
1327                 0x1280, 0x173c,
1328                 0x1800, 0x18fc,
1329                 0x3000, 0x3028,
1330                 0x3060, 0x30b0,
1331                 0x30b8, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x56ec,
1338                 0x56f4, 0x5720,
1339                 0x5728, 0x575c,
1340                 0x580c, 0x5814,
1341                 0x5890, 0x589c,
1342                 0x58a4, 0x58ac,
1343                 0x58b8, 0x58bc,
1344                 0x5940, 0x59c8,
1345                 0x59d0, 0x59dc,
1346                 0x59fc, 0x5a18,
1347                 0x5a60, 0x5a70,
1348                 0x5a80, 0x5a9c,
1349                 0x5b94, 0x5bfc,
1350                 0x6000, 0x6020,
1351                 0x6028, 0x6040,
1352                 0x6058, 0x609c,
1353                 0x60a8, 0x614c,
1354                 0x7700, 0x7798,
1355                 0x77c0, 0x78fc,
1356                 0x7b00, 0x7b58,
1357                 0x7b60, 0x7b84,
1358                 0x7b8c, 0x7c54,
1359                 0x7d00, 0x7d38,
1360                 0x7d40, 0x7d80,
1361                 0x7d8c, 0x7ddc,
1362                 0x7de4, 0x7e04,
1363                 0x7e10, 0x7e1c,
1364                 0x7e24, 0x7e38,
1365                 0x7e40, 0x7e44,
1366                 0x7e4c, 0x7e78,
1367                 0x7e80, 0x7edc,
1368                 0x7ee8, 0x7efc,
1369                 0x8dc0, 0x8de0,
1370                 0x8df8, 0x8e04,
1371                 0x8e10, 0x8e84,
1372                 0x8ea0, 0x8f84,
1373                 0x8fc0, 0x9058,
1374                 0x9060, 0x9060,
1375                 0x9068, 0x90f8,
1376                 0x9400, 0x9408,
1377                 0x9410, 0x9470,
1378                 0x9600, 0x9600,
1379                 0x9608, 0x9638,
1380                 0x9640, 0x96f4,
1381                 0x9800, 0x9808,
1382                 0x9810, 0x9864,
1383                 0x9c00, 0x9c6c,
1384                 0x9c80, 0x9cec,
1385                 0x9d00, 0x9d6c,
1386                 0x9d80, 0x9dec,
1387                 0x9e00, 0x9e6c,
1388                 0x9e80, 0x9eec,
1389                 0x9f00, 0x9f6c,
1390                 0x9f80, 0xa020,
1391                 0xd000, 0xd004,
1392                 0xd010, 0xd03c,
1393                 0xdfc0, 0xdfe0,
1394                 0xe000, 0x1106c,
1395                 0x11074, 0x11088,
1396                 0x1109c, 0x1117c,
1397                 0x11190, 0x11204,
1398                 0x19040, 0x1906c,
1399                 0x19078, 0x19080,
1400                 0x1908c, 0x190e8,
1401                 0x190f0, 0x190f8,
1402                 0x19100, 0x19110,
1403                 0x19120, 0x19124,
1404                 0x19150, 0x19194,
1405                 0x1919c, 0x191b0,
1406                 0x191d0, 0x191e8,
1407                 0x19238, 0x19290,
1408                 0x193f8, 0x19428,
1409                 0x19430, 0x19444,
1410                 0x1944c, 0x1946c,
1411                 0x19474, 0x19474,
1412                 0x19490, 0x194cc,
1413                 0x194f0, 0x194f8,
1414                 0x19c00, 0x19c08,
1415                 0x19c10, 0x19c60,
1416                 0x19c94, 0x19ce4,
1417                 0x19cf0, 0x19d40,
1418                 0x19d50, 0x19d94,
1419                 0x19da0, 0x19de8,
1420                 0x19df0, 0x19e10,
1421                 0x19e50, 0x19e90,
1422                 0x19ea0, 0x19f24,
1423                 0x19f34, 0x19f34,
1424                 0x19f40, 0x19f50,
1425                 0x19f90, 0x19fb4,
1426                 0x19fc4, 0x19fe4,
1427                 0x1a000, 0x1a004,
1428                 0x1a010, 0x1a06c,
1429                 0x1a0b0, 0x1a0e4,
1430                 0x1a0ec, 0x1a0f8,
1431                 0x1a100, 0x1a108,
1432                 0x1a114, 0x1a130,
1433                 0x1a138, 0x1a1c4,
1434                 0x1a1fc, 0x1a1fc,
1435                 0x1e008, 0x1e00c,
1436                 0x1e040, 0x1e044,
1437                 0x1e04c, 0x1e04c,
1438                 0x1e284, 0x1e290,
1439                 0x1e2c0, 0x1e2c0,
1440                 0x1e2e0, 0x1e2e0,
1441                 0x1e300, 0x1e384,
1442                 0x1e3c0, 0x1e3c8,
1443                 0x1e408, 0x1e40c,
1444                 0x1e440, 0x1e444,
1445                 0x1e44c, 0x1e44c,
1446                 0x1e684, 0x1e690,
1447                 0x1e6c0, 0x1e6c0,
1448                 0x1e6e0, 0x1e6e0,
1449                 0x1e700, 0x1e784,
1450                 0x1e7c0, 0x1e7c8,
1451                 0x1e808, 0x1e80c,
1452                 0x1e840, 0x1e844,
1453                 0x1e84c, 0x1e84c,
1454                 0x1ea84, 0x1ea90,
1455                 0x1eac0, 0x1eac0,
1456                 0x1eae0, 0x1eae0,
1457                 0x1eb00, 0x1eb84,
1458                 0x1ebc0, 0x1ebc8,
1459                 0x1ec08, 0x1ec0c,
1460                 0x1ec40, 0x1ec44,
1461                 0x1ec4c, 0x1ec4c,
1462                 0x1ee84, 0x1ee90,
1463                 0x1eec0, 0x1eec0,
1464                 0x1eee0, 0x1eee0,
1465                 0x1ef00, 0x1ef84,
1466                 0x1efc0, 0x1efc8,
1467                 0x1f008, 0x1f00c,
1468                 0x1f040, 0x1f044,
1469                 0x1f04c, 0x1f04c,
1470                 0x1f284, 0x1f290,
1471                 0x1f2c0, 0x1f2c0,
1472                 0x1f2e0, 0x1f2e0,
1473                 0x1f300, 0x1f384,
1474                 0x1f3c0, 0x1f3c8,
1475                 0x1f408, 0x1f40c,
1476                 0x1f440, 0x1f444,
1477                 0x1f44c, 0x1f44c,
1478                 0x1f684, 0x1f690,
1479                 0x1f6c0, 0x1f6c0,
1480                 0x1f6e0, 0x1f6e0,
1481                 0x1f700, 0x1f784,
1482                 0x1f7c0, 0x1f7c8,
1483                 0x1f808, 0x1f80c,
1484                 0x1f840, 0x1f844,
1485                 0x1f84c, 0x1f84c,
1486                 0x1fa84, 0x1fa90,
1487                 0x1fac0, 0x1fac0,
1488                 0x1fae0, 0x1fae0,
1489                 0x1fb00, 0x1fb84,
1490                 0x1fbc0, 0x1fbc8,
1491                 0x1fc08, 0x1fc0c,
1492                 0x1fc40, 0x1fc44,
1493                 0x1fc4c, 0x1fc4c,
1494                 0x1fe84, 0x1fe90,
1495                 0x1fec0, 0x1fec0,
1496                 0x1fee0, 0x1fee0,
1497                 0x1ff00, 0x1ff84,
1498                 0x1ffc0, 0x1ffc8,
1499                 0x30000, 0x30030,
1500                 0x30100, 0x30144,
1501                 0x30190, 0x301a0,
1502                 0x301a8, 0x301b8,
1503                 0x301c4, 0x301c8,
1504                 0x301d0, 0x301d0,
1505                 0x30200, 0x30318,
1506                 0x30400, 0x304b4,
1507                 0x304c0, 0x3052c,
1508                 0x30540, 0x3061c,
1509                 0x30800, 0x30828,
1510                 0x30834, 0x30834,
1511                 0x308c0, 0x30908,
1512                 0x30910, 0x309ac,
1513                 0x30a00, 0x30a14,
1514                 0x30a1c, 0x30a2c,
1515                 0x30a44, 0x30a50,
1516                 0x30a74, 0x30a74,
1517                 0x30a7c, 0x30afc,
1518                 0x30b08, 0x30c24,
1519                 0x30d00, 0x30d00,
1520                 0x30d08, 0x30d14,
1521                 0x30d1c, 0x30d20,
1522                 0x30d3c, 0x30d3c,
1523                 0x30d48, 0x30d50,
1524                 0x31200, 0x3120c,
1525                 0x31220, 0x31220,
1526                 0x31240, 0x31240,
1527                 0x31600, 0x3160c,
1528                 0x31a00, 0x31a1c,
1529                 0x31e00, 0x31e20,
1530                 0x31e38, 0x31e3c,
1531                 0x31e80, 0x31e80,
1532                 0x31e88, 0x31ea8,
1533                 0x31eb0, 0x31eb4,
1534                 0x31ec8, 0x31ed4,
1535                 0x31fb8, 0x32004,
1536                 0x32200, 0x32200,
1537                 0x32208, 0x32240,
1538                 0x32248, 0x32280,
1539                 0x32288, 0x322c0,
1540                 0x322c8, 0x322fc,
1541                 0x32600, 0x32630,
1542                 0x32a00, 0x32abc,
1543                 0x32b00, 0x32b10,
1544                 0x32b20, 0x32b30,
1545                 0x32b40, 0x32b50,
1546                 0x32b60, 0x32b70,
1547                 0x33000, 0x33028,
1548                 0x33030, 0x33048,
1549                 0x33060, 0x33068,
1550                 0x33070, 0x3309c,
1551                 0x330f0, 0x33128,
1552                 0x33130, 0x33148,
1553                 0x33160, 0x33168,
1554                 0x33170, 0x3319c,
1555                 0x331f0, 0x33238,
1556                 0x33240, 0x33240,
1557                 0x33248, 0x33250,
1558                 0x3325c, 0x33264,
1559                 0x33270, 0x332b8,
1560                 0x332c0, 0x332e4,
1561                 0x332f8, 0x33338,
1562                 0x33340, 0x33340,
1563                 0x33348, 0x33350,
1564                 0x3335c, 0x33364,
1565                 0x33370, 0x333b8,
1566                 0x333c0, 0x333e4,
1567                 0x333f8, 0x33428,
1568                 0x33430, 0x33448,
1569                 0x33460, 0x33468,
1570                 0x33470, 0x3349c,
1571                 0x334f0, 0x33528,
1572                 0x33530, 0x33548,
1573                 0x33560, 0x33568,
1574                 0x33570, 0x3359c,
1575                 0x335f0, 0x33638,
1576                 0x33640, 0x33640,
1577                 0x33648, 0x33650,
1578                 0x3365c, 0x33664,
1579                 0x33670, 0x336b8,
1580                 0x336c0, 0x336e4,
1581                 0x336f8, 0x33738,
1582                 0x33740, 0x33740,
1583                 0x33748, 0x33750,
1584                 0x3375c, 0x33764,
1585                 0x33770, 0x337b8,
1586                 0x337c0, 0x337e4,
1587                 0x337f8, 0x337fc,
1588                 0x33814, 0x33814,
1589                 0x3382c, 0x3382c,
1590                 0x33880, 0x3388c,
1591                 0x338e8, 0x338ec,
1592                 0x33900, 0x33928,
1593                 0x33930, 0x33948,
1594                 0x33960, 0x33968,
1595                 0x33970, 0x3399c,
1596                 0x339f0, 0x33a38,
1597                 0x33a40, 0x33a40,
1598                 0x33a48, 0x33a50,
1599                 0x33a5c, 0x33a64,
1600                 0x33a70, 0x33ab8,
1601                 0x33ac0, 0x33ae4,
1602                 0x33af8, 0x33b10,
1603                 0x33b28, 0x33b28,
1604                 0x33b3c, 0x33b50,
1605                 0x33bf0, 0x33c10,
1606                 0x33c28, 0x33c28,
1607                 0x33c3c, 0x33c50,
1608                 0x33cf0, 0x33cfc,
1609                 0x34000, 0x34030,
1610                 0x34100, 0x34144,
1611                 0x34190, 0x341a0,
1612                 0x341a8, 0x341b8,
1613                 0x341c4, 0x341c8,
1614                 0x341d0, 0x341d0,
1615                 0x34200, 0x34318,
1616                 0x34400, 0x344b4,
1617                 0x344c0, 0x3452c,
1618                 0x34540, 0x3461c,
1619                 0x34800, 0x34828,
1620                 0x34834, 0x34834,
1621                 0x348c0, 0x34908,
1622                 0x34910, 0x349ac,
1623                 0x34a00, 0x34a14,
1624                 0x34a1c, 0x34a2c,
1625                 0x34a44, 0x34a50,
1626                 0x34a74, 0x34a74,
1627                 0x34a7c, 0x34afc,
1628                 0x34b08, 0x34c24,
1629                 0x34d00, 0x34d00,
1630                 0x34d08, 0x34d14,
1631                 0x34d1c, 0x34d20,
1632                 0x34d3c, 0x34d3c,
1633                 0x34d48, 0x34d50,
1634                 0x35200, 0x3520c,
1635                 0x35220, 0x35220,
1636                 0x35240, 0x35240,
1637                 0x35600, 0x3560c,
1638                 0x35a00, 0x35a1c,
1639                 0x35e00, 0x35e20,
1640                 0x35e38, 0x35e3c,
1641                 0x35e80, 0x35e80,
1642                 0x35e88, 0x35ea8,
1643                 0x35eb0, 0x35eb4,
1644                 0x35ec8, 0x35ed4,
1645                 0x35fb8, 0x36004,
1646                 0x36200, 0x36200,
1647                 0x36208, 0x36240,
1648                 0x36248, 0x36280,
1649                 0x36288, 0x362c0,
1650                 0x362c8, 0x362fc,
1651                 0x36600, 0x36630,
1652                 0x36a00, 0x36abc,
1653                 0x36b00, 0x36b10,
1654                 0x36b20, 0x36b30,
1655                 0x36b40, 0x36b50,
1656                 0x36b60, 0x36b70,
1657                 0x37000, 0x37028,
1658                 0x37030, 0x37048,
1659                 0x37060, 0x37068,
1660                 0x37070, 0x3709c,
1661                 0x370f0, 0x37128,
1662                 0x37130, 0x37148,
1663                 0x37160, 0x37168,
1664                 0x37170, 0x3719c,
1665                 0x371f0, 0x37238,
1666                 0x37240, 0x37240,
1667                 0x37248, 0x37250,
1668                 0x3725c, 0x37264,
1669                 0x37270, 0x372b8,
1670                 0x372c0, 0x372e4,
1671                 0x372f8, 0x37338,
1672                 0x37340, 0x37340,
1673                 0x37348, 0x37350,
1674                 0x3735c, 0x37364,
1675                 0x37370, 0x373b8,
1676                 0x373c0, 0x373e4,
1677                 0x373f8, 0x37428,
1678                 0x37430, 0x37448,
1679                 0x37460, 0x37468,
1680                 0x37470, 0x3749c,
1681                 0x374f0, 0x37528,
1682                 0x37530, 0x37548,
1683                 0x37560, 0x37568,
1684                 0x37570, 0x3759c,
1685                 0x375f0, 0x37638,
1686                 0x37640, 0x37640,
1687                 0x37648, 0x37650,
1688                 0x3765c, 0x37664,
1689                 0x37670, 0x376b8,
1690                 0x376c0, 0x376e4,
1691                 0x376f8, 0x37738,
1692                 0x37740, 0x37740,
1693                 0x37748, 0x37750,
1694                 0x3775c, 0x37764,
1695                 0x37770, 0x377b8,
1696                 0x377c0, 0x377e4,
1697                 0x377f8, 0x377fc,
1698                 0x37814, 0x37814,
1699                 0x3782c, 0x3782c,
1700                 0x37880, 0x3788c,
1701                 0x378e8, 0x378ec,
1702                 0x37900, 0x37928,
1703                 0x37930, 0x37948,
1704                 0x37960, 0x37968,
1705                 0x37970, 0x3799c,
1706                 0x379f0, 0x37a38,
1707                 0x37a40, 0x37a40,
1708                 0x37a48, 0x37a50,
1709                 0x37a5c, 0x37a64,
1710                 0x37a70, 0x37ab8,
1711                 0x37ac0, 0x37ae4,
1712                 0x37af8, 0x37b10,
1713                 0x37b28, 0x37b28,
1714                 0x37b3c, 0x37b50,
1715                 0x37bf0, 0x37c10,
1716                 0x37c28, 0x37c28,
1717                 0x37c3c, 0x37c50,
1718                 0x37cf0, 0x37cfc,
1719                 0x38000, 0x38030,
1720                 0x38100, 0x38144,
1721                 0x38190, 0x381a0,
1722                 0x381a8, 0x381b8,
1723                 0x381c4, 0x381c8,
1724                 0x381d0, 0x381d0,
1725                 0x38200, 0x38318,
1726                 0x38400, 0x384b4,
1727                 0x384c0, 0x3852c,
1728                 0x38540, 0x3861c,
1729                 0x38800, 0x38828,
1730                 0x38834, 0x38834,
1731                 0x388c0, 0x38908,
1732                 0x38910, 0x389ac,
1733                 0x38a00, 0x38a14,
1734                 0x38a1c, 0x38a2c,
1735                 0x38a44, 0x38a50,
1736                 0x38a74, 0x38a74,
1737                 0x38a7c, 0x38afc,
1738                 0x38b08, 0x38c24,
1739                 0x38d00, 0x38d00,
1740                 0x38d08, 0x38d14,
1741                 0x38d1c, 0x38d20,
1742                 0x38d3c, 0x38d3c,
1743                 0x38d48, 0x38d50,
1744                 0x39200, 0x3920c,
1745                 0x39220, 0x39220,
1746                 0x39240, 0x39240,
1747                 0x39600, 0x3960c,
1748                 0x39a00, 0x39a1c,
1749                 0x39e00, 0x39e20,
1750                 0x39e38, 0x39e3c,
1751                 0x39e80, 0x39e80,
1752                 0x39e88, 0x39ea8,
1753                 0x39eb0, 0x39eb4,
1754                 0x39ec8, 0x39ed4,
1755                 0x39fb8, 0x3a004,
1756                 0x3a200, 0x3a200,
1757                 0x3a208, 0x3a240,
1758                 0x3a248, 0x3a280,
1759                 0x3a288, 0x3a2c0,
1760                 0x3a2c8, 0x3a2fc,
1761                 0x3a600, 0x3a630,
1762                 0x3aa00, 0x3aabc,
1763                 0x3ab00, 0x3ab10,
1764                 0x3ab20, 0x3ab30,
1765                 0x3ab40, 0x3ab50,
1766                 0x3ab60, 0x3ab70,
1767                 0x3b000, 0x3b028,
1768                 0x3b030, 0x3b048,
1769                 0x3b060, 0x3b068,
1770                 0x3b070, 0x3b09c,
1771                 0x3b0f0, 0x3b128,
1772                 0x3b130, 0x3b148,
1773                 0x3b160, 0x3b168,
1774                 0x3b170, 0x3b19c,
1775                 0x3b1f0, 0x3b238,
1776                 0x3b240, 0x3b240,
1777                 0x3b248, 0x3b250,
1778                 0x3b25c, 0x3b264,
1779                 0x3b270, 0x3b2b8,
1780                 0x3b2c0, 0x3b2e4,
1781                 0x3b2f8, 0x3b338,
1782                 0x3b340, 0x3b340,
1783                 0x3b348, 0x3b350,
1784                 0x3b35c, 0x3b364,
1785                 0x3b370, 0x3b3b8,
1786                 0x3b3c0, 0x3b3e4,
1787                 0x3b3f8, 0x3b428,
1788                 0x3b430, 0x3b448,
1789                 0x3b460, 0x3b468,
1790                 0x3b470, 0x3b49c,
1791                 0x3b4f0, 0x3b528,
1792                 0x3b530, 0x3b548,
1793                 0x3b560, 0x3b568,
1794                 0x3b570, 0x3b59c,
1795                 0x3b5f0, 0x3b638,
1796                 0x3b640, 0x3b640,
1797                 0x3b648, 0x3b650,
1798                 0x3b65c, 0x3b664,
1799                 0x3b670, 0x3b6b8,
1800                 0x3b6c0, 0x3b6e4,
1801                 0x3b6f8, 0x3b738,
1802                 0x3b740, 0x3b740,
1803                 0x3b748, 0x3b750,
1804                 0x3b75c, 0x3b764,
1805                 0x3b770, 0x3b7b8,
1806                 0x3b7c0, 0x3b7e4,
1807                 0x3b7f8, 0x3b7fc,
1808                 0x3b814, 0x3b814,
1809                 0x3b82c, 0x3b82c,
1810                 0x3b880, 0x3b88c,
1811                 0x3b8e8, 0x3b8ec,
1812                 0x3b900, 0x3b928,
1813                 0x3b930, 0x3b948,
1814                 0x3b960, 0x3b968,
1815                 0x3b970, 0x3b99c,
1816                 0x3b9f0, 0x3ba38,
1817                 0x3ba40, 0x3ba40,
1818                 0x3ba48, 0x3ba50,
1819                 0x3ba5c, 0x3ba64,
1820                 0x3ba70, 0x3bab8,
1821                 0x3bac0, 0x3bae4,
1822                 0x3baf8, 0x3bb10,
1823                 0x3bb28, 0x3bb28,
1824                 0x3bb3c, 0x3bb50,
1825                 0x3bbf0, 0x3bc10,
1826                 0x3bc28, 0x3bc28,
1827                 0x3bc3c, 0x3bc50,
1828                 0x3bcf0, 0x3bcfc,
1829                 0x3c000, 0x3c030,
1830                 0x3c100, 0x3c144,
1831                 0x3c190, 0x3c1a0,
1832                 0x3c1a8, 0x3c1b8,
1833                 0x3c1c4, 0x3c1c8,
1834                 0x3c1d0, 0x3c1d0,
1835                 0x3c200, 0x3c318,
1836                 0x3c400, 0x3c4b4,
1837                 0x3c4c0, 0x3c52c,
1838                 0x3c540, 0x3c61c,
1839                 0x3c800, 0x3c828,
1840                 0x3c834, 0x3c834,
1841                 0x3c8c0, 0x3c908,
1842                 0x3c910, 0x3c9ac,
1843                 0x3ca00, 0x3ca14,
1844                 0x3ca1c, 0x3ca2c,
1845                 0x3ca44, 0x3ca50,
1846                 0x3ca74, 0x3ca74,
1847                 0x3ca7c, 0x3cafc,
1848                 0x3cb08, 0x3cc24,
1849                 0x3cd00, 0x3cd00,
1850                 0x3cd08, 0x3cd14,
1851                 0x3cd1c, 0x3cd20,
1852                 0x3cd3c, 0x3cd3c,
1853                 0x3cd48, 0x3cd50,
1854                 0x3d200, 0x3d20c,
1855                 0x3d220, 0x3d220,
1856                 0x3d240, 0x3d240,
1857                 0x3d600, 0x3d60c,
1858                 0x3da00, 0x3da1c,
1859                 0x3de00, 0x3de20,
1860                 0x3de38, 0x3de3c,
1861                 0x3de80, 0x3de80,
1862                 0x3de88, 0x3dea8,
1863                 0x3deb0, 0x3deb4,
1864                 0x3dec8, 0x3ded4,
1865                 0x3dfb8, 0x3e004,
1866                 0x3e200, 0x3e200,
1867                 0x3e208, 0x3e240,
1868                 0x3e248, 0x3e280,
1869                 0x3e288, 0x3e2c0,
1870                 0x3e2c8, 0x3e2fc,
1871                 0x3e600, 0x3e630,
1872                 0x3ea00, 0x3eabc,
1873                 0x3eb00, 0x3eb10,
1874                 0x3eb20, 0x3eb30,
1875                 0x3eb40, 0x3eb50,
1876                 0x3eb60, 0x3eb70,
1877                 0x3f000, 0x3f028,
1878                 0x3f030, 0x3f048,
1879                 0x3f060, 0x3f068,
1880                 0x3f070, 0x3f09c,
1881                 0x3f0f0, 0x3f128,
1882                 0x3f130, 0x3f148,
1883                 0x3f160, 0x3f168,
1884                 0x3f170, 0x3f19c,
1885                 0x3f1f0, 0x3f238,
1886                 0x3f240, 0x3f240,
1887                 0x3f248, 0x3f250,
1888                 0x3f25c, 0x3f264,
1889                 0x3f270, 0x3f2b8,
1890                 0x3f2c0, 0x3f2e4,
1891                 0x3f2f8, 0x3f338,
1892                 0x3f340, 0x3f340,
1893                 0x3f348, 0x3f350,
1894                 0x3f35c, 0x3f364,
1895                 0x3f370, 0x3f3b8,
1896                 0x3f3c0, 0x3f3e4,
1897                 0x3f3f8, 0x3f428,
1898                 0x3f430, 0x3f448,
1899                 0x3f460, 0x3f468,
1900                 0x3f470, 0x3f49c,
1901                 0x3f4f0, 0x3f528,
1902                 0x3f530, 0x3f548,
1903                 0x3f560, 0x3f568,
1904                 0x3f570, 0x3f59c,
1905                 0x3f5f0, 0x3f638,
1906                 0x3f640, 0x3f640,
1907                 0x3f648, 0x3f650,
1908                 0x3f65c, 0x3f664,
1909                 0x3f670, 0x3f6b8,
1910                 0x3f6c0, 0x3f6e4,
1911                 0x3f6f8, 0x3f738,
1912                 0x3f740, 0x3f740,
1913                 0x3f748, 0x3f750,
1914                 0x3f75c, 0x3f764,
1915                 0x3f770, 0x3f7b8,
1916                 0x3f7c0, 0x3f7e4,
1917                 0x3f7f8, 0x3f7fc,
1918                 0x3f814, 0x3f814,
1919                 0x3f82c, 0x3f82c,
1920                 0x3f880, 0x3f88c,
1921                 0x3f8e8, 0x3f8ec,
1922                 0x3f900, 0x3f928,
1923                 0x3f930, 0x3f948,
1924                 0x3f960, 0x3f968,
1925                 0x3f970, 0x3f99c,
1926                 0x3f9f0, 0x3fa38,
1927                 0x3fa40, 0x3fa40,
1928                 0x3fa48, 0x3fa50,
1929                 0x3fa5c, 0x3fa64,
1930                 0x3fa70, 0x3fab8,
1931                 0x3fac0, 0x3fae4,
1932                 0x3faf8, 0x3fb10,
1933                 0x3fb28, 0x3fb28,
1934                 0x3fb3c, 0x3fb50,
1935                 0x3fbf0, 0x3fc10,
1936                 0x3fc28, 0x3fc28,
1937                 0x3fc3c, 0x3fc50,
1938                 0x3fcf0, 0x3fcfc,
1939                 0x40000, 0x4000c,
1940                 0x40040, 0x40050,
1941                 0x40060, 0x40068,
1942                 0x4007c, 0x4008c,
1943                 0x40094, 0x400b0,
1944                 0x400c0, 0x40144,
1945                 0x40180, 0x4018c,
1946                 0x40200, 0x40254,
1947                 0x40260, 0x40264,
1948                 0x40270, 0x40288,
1949                 0x40290, 0x40298,
1950                 0x402ac, 0x402c8,
1951                 0x402d0, 0x402e0,
1952                 0x402f0, 0x402f0,
1953                 0x40300, 0x4033c,
1954                 0x403f8, 0x403fc,
1955                 0x41304, 0x413c4,
1956                 0x41400, 0x4140c,
1957                 0x41414, 0x4141c,
1958                 0x41480, 0x414d0,
1959                 0x44000, 0x44054,
1960                 0x4405c, 0x44078,
1961                 0x440c0, 0x44174,
1962                 0x44180, 0x441ac,
1963                 0x441b4, 0x441b8,
1964                 0x441c0, 0x44254,
1965                 0x4425c, 0x44278,
1966                 0x442c0, 0x44374,
1967                 0x44380, 0x443ac,
1968                 0x443b4, 0x443b8,
1969                 0x443c0, 0x44454,
1970                 0x4445c, 0x44478,
1971                 0x444c0, 0x44574,
1972                 0x44580, 0x445ac,
1973                 0x445b4, 0x445b8,
1974                 0x445c0, 0x44654,
1975                 0x4465c, 0x44678,
1976                 0x446c0, 0x44774,
1977                 0x44780, 0x447ac,
1978                 0x447b4, 0x447b8,
1979                 0x447c0, 0x44854,
1980                 0x4485c, 0x44878,
1981                 0x448c0, 0x44974,
1982                 0x44980, 0x449ac,
1983                 0x449b4, 0x449b8,
1984                 0x449c0, 0x449fc,
1985                 0x45000, 0x45004,
1986                 0x45010, 0x45030,
1987                 0x45040, 0x45060,
1988                 0x45068, 0x45068,
1989                 0x45080, 0x45084,
1990                 0x450a0, 0x450b0,
1991                 0x45200, 0x45204,
1992                 0x45210, 0x45230,
1993                 0x45240, 0x45260,
1994                 0x45268, 0x45268,
1995                 0x45280, 0x45284,
1996                 0x452a0, 0x452b0,
1997                 0x460c0, 0x460e4,
1998                 0x47000, 0x4703c,
1999                 0x47044, 0x4708c,
2000                 0x47200, 0x47250,
2001                 0x47400, 0x47408,
2002                 0x47414, 0x47420,
2003                 0x47600, 0x47618,
2004                 0x47800, 0x47814,
2005                 0x48000, 0x4800c,
2006                 0x48040, 0x48050,
2007                 0x48060, 0x48068,
2008                 0x4807c, 0x4808c,
2009                 0x48094, 0x480b0,
2010                 0x480c0, 0x48144,
2011                 0x48180, 0x4818c,
2012                 0x48200, 0x48254,
2013                 0x48260, 0x48264,
2014                 0x48270, 0x48288,
2015                 0x48290, 0x48298,
2016                 0x482ac, 0x482c8,
2017                 0x482d0, 0x482e0,
2018                 0x482f0, 0x482f0,
2019                 0x48300, 0x4833c,
2020                 0x483f8, 0x483fc,
2021                 0x49304, 0x493c4,
2022                 0x49400, 0x4940c,
2023                 0x49414, 0x4941c,
2024                 0x49480, 0x494d0,
2025                 0x4c000, 0x4c054,
2026                 0x4c05c, 0x4c078,
2027                 0x4c0c0, 0x4c174,
2028                 0x4c180, 0x4c1ac,
2029                 0x4c1b4, 0x4c1b8,
2030                 0x4c1c0, 0x4c254,
2031                 0x4c25c, 0x4c278,
2032                 0x4c2c0, 0x4c374,
2033                 0x4c380, 0x4c3ac,
2034                 0x4c3b4, 0x4c3b8,
2035                 0x4c3c0, 0x4c454,
2036                 0x4c45c, 0x4c478,
2037                 0x4c4c0, 0x4c574,
2038                 0x4c580, 0x4c5ac,
2039                 0x4c5b4, 0x4c5b8,
2040                 0x4c5c0, 0x4c654,
2041                 0x4c65c, 0x4c678,
2042                 0x4c6c0, 0x4c774,
2043                 0x4c780, 0x4c7ac,
2044                 0x4c7b4, 0x4c7b8,
2045                 0x4c7c0, 0x4c854,
2046                 0x4c85c, 0x4c878,
2047                 0x4c8c0, 0x4c974,
2048                 0x4c980, 0x4c9ac,
2049                 0x4c9b4, 0x4c9b8,
2050                 0x4c9c0, 0x4c9fc,
2051                 0x4d000, 0x4d004,
2052                 0x4d010, 0x4d030,
2053                 0x4d040, 0x4d060,
2054                 0x4d068, 0x4d068,
2055                 0x4d080, 0x4d084,
2056                 0x4d0a0, 0x4d0b0,
2057                 0x4d200, 0x4d204,
2058                 0x4d210, 0x4d230,
2059                 0x4d240, 0x4d260,
2060                 0x4d268, 0x4d268,
2061                 0x4d280, 0x4d284,
2062                 0x4d2a0, 0x4d2b0,
2063                 0x4e0c0, 0x4e0e4,
2064                 0x4f000, 0x4f03c,
2065                 0x4f044, 0x4f08c,
2066                 0x4f200, 0x4f250,
2067                 0x4f400, 0x4f408,
2068                 0x4f414, 0x4f420,
2069                 0x4f600, 0x4f618,
2070                 0x4f800, 0x4f814,
2071                 0x50000, 0x50084,
2072                 0x50090, 0x500cc,
2073                 0x50400, 0x50400,
2074                 0x50800, 0x50884,
2075                 0x50890, 0x508cc,
2076                 0x50c00, 0x50c00,
2077                 0x51000, 0x5101c,
2078                 0x51300, 0x51308,
2079         };
2080
2081         static const unsigned int t6_reg_ranges[] = {
2082                 0x1008, 0x101c,
2083                 0x1024, 0x10a8,
2084                 0x10b4, 0x10f8,
2085                 0x1100, 0x1114,
2086                 0x111c, 0x112c,
2087                 0x1138, 0x113c,
2088                 0x1144, 0x114c,
2089                 0x1180, 0x1184,
2090                 0x1190, 0x1194,
2091                 0x11a0, 0x11a4,
2092                 0x11b0, 0x11b4,
2093                 0x11fc, 0x1274,
2094                 0x1280, 0x133c,
2095                 0x1800, 0x18fc,
2096                 0x3000, 0x302c,
2097                 0x3060, 0x30b0,
2098                 0x30b8, 0x30d8,
2099                 0x30e0, 0x30fc,
2100                 0x3140, 0x357c,
2101                 0x35a8, 0x35cc,
2102                 0x35ec, 0x35ec,
2103                 0x3600, 0x5624,
2104                 0x56cc, 0x56ec,
2105                 0x56f4, 0x5720,
2106                 0x5728, 0x575c,
2107                 0x580c, 0x5814,
2108                 0x5890, 0x589c,
2109                 0x58a4, 0x58ac,
2110                 0x58b8, 0x58bc,
2111                 0x5940, 0x595c,
2112                 0x5980, 0x598c,
2113                 0x59b0, 0x59c8,
2114                 0x59d0, 0x59dc,
2115                 0x59fc, 0x5a18,
2116                 0x5a60, 0x5a6c,
2117                 0x5a80, 0x5a8c,
2118                 0x5a94, 0x5a9c,
2119                 0x5b94, 0x5bfc,
2120                 0x5c10, 0x5e48,
2121                 0x5e50, 0x5e94,
2122                 0x5ea0, 0x5eb0,
2123                 0x5ec0, 0x5ec0,
2124                 0x5ec8, 0x5ed0,
2125                 0x5ee0, 0x5ee0,
2126                 0x5ef0, 0x5ef0,
2127                 0x5f00, 0x5f00,
2128                 0x6000, 0x6020,
2129                 0x6028, 0x6040,
2130                 0x6058, 0x609c,
2131                 0x60a8, 0x619c,
2132                 0x7700, 0x7798,
2133                 0x77c0, 0x7880,
2134                 0x78cc, 0x78fc,
2135                 0x7b00, 0x7b58,
2136                 0x7b60, 0x7b84,
2137                 0x7b8c, 0x7c54,
2138                 0x7d00, 0x7d38,
2139                 0x7d40, 0x7d84,
2140                 0x7d8c, 0x7ddc,
2141                 0x7de4, 0x7e04,
2142                 0x7e10, 0x7e1c,
2143                 0x7e24, 0x7e38,
2144                 0x7e40, 0x7e44,
2145                 0x7e4c, 0x7e78,
2146                 0x7e80, 0x7edc,
2147                 0x7ee8, 0x7efc,
2148                 0x8dc0, 0x8de4,
2149                 0x8df8, 0x8e04,
2150                 0x8e10, 0x8e84,
2151                 0x8ea0, 0x8f88,
2152                 0x8fb8, 0x9058,
2153                 0x9060, 0x9060,
2154                 0x9068, 0x90f8,
2155                 0x9100, 0x9124,
2156                 0x9400, 0x9470,
2157                 0x9600, 0x9600,
2158                 0x9608, 0x9638,
2159                 0x9640, 0x9704,
2160                 0x9710, 0x971c,
2161                 0x9800, 0x9808,
2162                 0x9810, 0x9864,
2163                 0x9c00, 0x9c6c,
2164                 0x9c80, 0x9cec,
2165                 0x9d00, 0x9d6c,
2166                 0x9d80, 0x9dec,
2167                 0x9e00, 0x9e6c,
2168                 0x9e80, 0x9eec,
2169                 0x9f00, 0x9f6c,
2170                 0x9f80, 0xa020,
2171                 0xd000, 0xd03c,
2172                 0xd100, 0xd118,
2173                 0xd200, 0xd214,
2174                 0xd220, 0xd234,
2175                 0xd240, 0xd254,
2176                 0xd260, 0xd274,
2177                 0xd280, 0xd294,
2178                 0xd2a0, 0xd2b4,
2179                 0xd2c0, 0xd2d4,
2180                 0xd2e0, 0xd2f4,
2181                 0xd300, 0xd31c,
2182                 0xdfc0, 0xdfe0,
2183                 0xe000, 0xf008,
2184                 0xf010, 0xf018,
2185                 0xf020, 0xf028,
2186                 0x11000, 0x11014,
2187                 0x11048, 0x1106c,
2188                 0x11074, 0x11088,
2189                 0x11098, 0x11120,
2190                 0x1112c, 0x1117c,
2191                 0x11190, 0x112e0,
2192                 0x11300, 0x1130c,
2193                 0x12000, 0x1206c,
2194                 0x19040, 0x1906c,
2195                 0x19078, 0x19080,
2196                 0x1908c, 0x190e8,
2197                 0x190f0, 0x190f8,
2198                 0x19100, 0x19110,
2199                 0x19120, 0x19124,
2200                 0x19150, 0x19194,
2201                 0x1919c, 0x191b0,
2202                 0x191d0, 0x191e8,
2203                 0x19238, 0x19290,
2204                 0x192a4, 0x192b0,
2205                 0x192bc, 0x192bc,
2206                 0x19348, 0x1934c,
2207                 0x193f8, 0x19418,
2208                 0x19420, 0x19428,
2209                 0x19430, 0x19444,
2210                 0x1944c, 0x1946c,
2211                 0x19474, 0x19474,
2212                 0x19490, 0x194cc,
2213                 0x194f0, 0x194f8,
2214                 0x19c00, 0x19c48,
2215                 0x19c50, 0x19c80,
2216                 0x19c94, 0x19c98,
2217                 0x19ca0, 0x19cbc,
2218                 0x19ce4, 0x19ce4,
2219                 0x19cf0, 0x19cf8,
2220                 0x19d00, 0x19d28,
2221                 0x19d50, 0x19d78,
2222                 0x19d94, 0x19d98,
2223                 0x19da0, 0x19dc8,
2224                 0x19df0, 0x19e10,
2225                 0x19e50, 0x19e6c,
2226                 0x19ea0, 0x19ebc,
2227                 0x19ec4, 0x19ef4,
2228                 0x19f04, 0x19f2c,
2229                 0x19f34, 0x19f34,
2230                 0x19f40, 0x19f50,
2231                 0x19f90, 0x19fac,
2232                 0x19fc4, 0x19fc8,
2233                 0x19fd0, 0x19fe4,
2234                 0x1a000, 0x1a004,
2235                 0x1a010, 0x1a06c,
2236                 0x1a0b0, 0x1a0e4,
2237                 0x1a0ec, 0x1a0f8,
2238                 0x1a100, 0x1a108,
2239                 0x1a114, 0x1a130,
2240                 0x1a138, 0x1a1c4,
2241                 0x1a1fc, 0x1a1fc,
2242                 0x1e008, 0x1e00c,
2243                 0x1e040, 0x1e044,
2244                 0x1e04c, 0x1e04c,
2245                 0x1e284, 0x1e290,
2246                 0x1e2c0, 0x1e2c0,
2247                 0x1e2e0, 0x1e2e0,
2248                 0x1e300, 0x1e384,
2249                 0x1e3c0, 0x1e3c8,
2250                 0x1e408, 0x1e40c,
2251                 0x1e440, 0x1e444,
2252                 0x1e44c, 0x1e44c,
2253                 0x1e684, 0x1e690,
2254                 0x1e6c0, 0x1e6c0,
2255                 0x1e6e0, 0x1e6e0,
2256                 0x1e700, 0x1e784,
2257                 0x1e7c0, 0x1e7c8,
2258                 0x1e808, 0x1e80c,
2259                 0x1e840, 0x1e844,
2260                 0x1e84c, 0x1e84c,
2261                 0x1ea84, 0x1ea90,
2262                 0x1eac0, 0x1eac0,
2263                 0x1eae0, 0x1eae0,
2264                 0x1eb00, 0x1eb84,
2265                 0x1ebc0, 0x1ebc8,
2266                 0x1ec08, 0x1ec0c,
2267                 0x1ec40, 0x1ec44,
2268                 0x1ec4c, 0x1ec4c,
2269                 0x1ee84, 0x1ee90,
2270                 0x1eec0, 0x1eec0,
2271                 0x1eee0, 0x1eee0,
2272                 0x1ef00, 0x1ef84,
2273                 0x1efc0, 0x1efc8,
2274                 0x1f008, 0x1f00c,
2275                 0x1f040, 0x1f044,
2276                 0x1f04c, 0x1f04c,
2277                 0x1f284, 0x1f290,
2278                 0x1f2c0, 0x1f2c0,
2279                 0x1f2e0, 0x1f2e0,
2280                 0x1f300, 0x1f384,
2281                 0x1f3c0, 0x1f3c8,
2282                 0x1f408, 0x1f40c,
2283                 0x1f440, 0x1f444,
2284                 0x1f44c, 0x1f44c,
2285                 0x1f684, 0x1f690,
2286                 0x1f6c0, 0x1f6c0,
2287                 0x1f6e0, 0x1f6e0,
2288                 0x1f700, 0x1f784,
2289                 0x1f7c0, 0x1f7c8,
2290                 0x1f808, 0x1f80c,
2291                 0x1f840, 0x1f844,
2292                 0x1f84c, 0x1f84c,
2293                 0x1fa84, 0x1fa90,
2294                 0x1fac0, 0x1fac0,
2295                 0x1fae0, 0x1fae0,
2296                 0x1fb00, 0x1fb84,
2297                 0x1fbc0, 0x1fbc8,
2298                 0x1fc08, 0x1fc0c,
2299                 0x1fc40, 0x1fc44,
2300                 0x1fc4c, 0x1fc4c,
2301                 0x1fe84, 0x1fe90,
2302                 0x1fec0, 0x1fec0,
2303                 0x1fee0, 0x1fee0,
2304                 0x1ff00, 0x1ff84,
2305                 0x1ffc0, 0x1ffc8,
2306                 0x30000, 0x30030,
2307                 0x30100, 0x30168,
2308                 0x30190, 0x301a0,
2309                 0x301a8, 0x301b8,
2310                 0x301c4, 0x301c8,
2311                 0x301d0, 0x301d0,
2312                 0x30200, 0x30320,
2313                 0x30400, 0x304b4,
2314                 0x304c0, 0x3052c,
2315                 0x30540, 0x3061c,
2316                 0x30800, 0x308a0,
2317                 0x308c0, 0x30908,
2318                 0x30910, 0x309b8,
2319                 0x30a00, 0x30a04,
2320                 0x30a0c, 0x30a14,
2321                 0x30a1c, 0x30a2c,
2322                 0x30a44, 0x30a50,
2323                 0x30a74, 0x30a74,
2324                 0x30a7c, 0x30afc,
2325                 0x30b08, 0x30c24,
2326                 0x30d00, 0x30d14,
2327                 0x30d1c, 0x30d3c,
2328                 0x30d44, 0x30d4c,
2329                 0x30d54, 0x30d74,
2330                 0x30d7c, 0x30d7c,
2331                 0x30de0, 0x30de0,
2332                 0x30e00, 0x30ed4,
2333                 0x30f00, 0x30fa4,
2334                 0x30fc0, 0x30fc4,
2335                 0x31000, 0x31004,
2336                 0x31080, 0x310fc,
2337                 0x31208, 0x31220,
2338                 0x3123c, 0x31254,
2339                 0x31300, 0x31300,
2340                 0x31308, 0x3131c,
2341                 0x31338, 0x3133c,
2342                 0x31380, 0x31380,
2343                 0x31388, 0x313a8,
2344                 0x313b4, 0x313b4,
2345                 0x31400, 0x31420,
2346                 0x31438, 0x3143c,
2347                 0x31480, 0x31480,
2348                 0x314a8, 0x314a8,
2349                 0x314b0, 0x314b4,
2350                 0x314c8, 0x314d4,
2351                 0x31a40, 0x31a4c,
2352                 0x31af0, 0x31b20,
2353                 0x31b38, 0x31b3c,
2354                 0x31b80, 0x31b80,
2355                 0x31ba8, 0x31ba8,
2356                 0x31bb0, 0x31bb4,
2357                 0x31bc8, 0x31bd4,
2358                 0x32140, 0x3218c,
2359                 0x321f0, 0x321f4,
2360                 0x32200, 0x32200,
2361                 0x32218, 0x32218,
2362                 0x32400, 0x32400,
2363                 0x32408, 0x3241c,
2364                 0x32618, 0x32620,
2365                 0x32664, 0x32664,
2366                 0x326a8, 0x326a8,
2367                 0x326ec, 0x326ec,
2368                 0x32a00, 0x32abc,
2369                 0x32b00, 0x32b18,
2370                 0x32b20, 0x32b38,
2371                 0x32b40, 0x32b58,
2372                 0x32b60, 0x32b78,
2373                 0x32c00, 0x32c00,
2374                 0x32c08, 0x32c3c,
2375                 0x33000, 0x3302c,
2376                 0x33034, 0x33050,
2377                 0x33058, 0x33058,
2378                 0x33060, 0x3308c,
2379                 0x3309c, 0x330ac,
2380                 0x330c0, 0x330c0,
2381                 0x330c8, 0x330d0,
2382                 0x330d8, 0x330e0,
2383                 0x330ec, 0x3312c,
2384                 0x33134, 0x33150,
2385                 0x33158, 0x33158,
2386                 0x33160, 0x3318c,
2387                 0x3319c, 0x331ac,
2388                 0x331c0, 0x331c0,
2389                 0x331c8, 0x331d0,
2390                 0x331d8, 0x331e0,
2391                 0x331ec, 0x33290,
2392                 0x33298, 0x332c4,
2393                 0x332e4, 0x33390,
2394                 0x33398, 0x333c4,
2395                 0x333e4, 0x3342c,
2396                 0x33434, 0x33450,
2397                 0x33458, 0x33458,
2398                 0x33460, 0x3348c,
2399                 0x3349c, 0x334ac,
2400                 0x334c0, 0x334c0,
2401                 0x334c8, 0x334d0,
2402                 0x334d8, 0x334e0,
2403                 0x334ec, 0x3352c,
2404                 0x33534, 0x33550,
2405                 0x33558, 0x33558,
2406                 0x33560, 0x3358c,
2407                 0x3359c, 0x335ac,
2408                 0x335c0, 0x335c0,
2409                 0x335c8, 0x335d0,
2410                 0x335d8, 0x335e0,
2411                 0x335ec, 0x33690,
2412                 0x33698, 0x336c4,
2413                 0x336e4, 0x33790,
2414                 0x33798, 0x337c4,
2415                 0x337e4, 0x337fc,
2416                 0x33814, 0x33814,
2417                 0x33854, 0x33868,
2418                 0x33880, 0x3388c,
2419                 0x338c0, 0x338d0,
2420                 0x338e8, 0x338ec,
2421                 0x33900, 0x3392c,
2422                 0x33934, 0x33950,
2423                 0x33958, 0x33958,
2424                 0x33960, 0x3398c,
2425                 0x3399c, 0x339ac,
2426                 0x339c0, 0x339c0,
2427                 0x339c8, 0x339d0,
2428                 0x339d8, 0x339e0,
2429                 0x339ec, 0x33a90,
2430                 0x33a98, 0x33ac4,
2431                 0x33ae4, 0x33b10,
2432                 0x33b24, 0x33b28,
2433                 0x33b38, 0x33b50,
2434                 0x33bf0, 0x33c10,
2435                 0x33c24, 0x33c28,
2436                 0x33c38, 0x33c50,
2437                 0x33cf0, 0x33cfc,
2438                 0x34000, 0x34030,
2439                 0x34100, 0x34168,
2440                 0x34190, 0x341a0,
2441                 0x341a8, 0x341b8,
2442                 0x341c4, 0x341c8,
2443                 0x341d0, 0x341d0,
2444                 0x34200, 0x34320,
2445                 0x34400, 0x344b4,
2446                 0x344c0, 0x3452c,
2447                 0x34540, 0x3461c,
2448                 0x34800, 0x348a0,
2449                 0x348c0, 0x34908,
2450                 0x34910, 0x349b8,
2451                 0x34a00, 0x34a04,
2452                 0x34a0c, 0x34a14,
2453                 0x34a1c, 0x34a2c,
2454                 0x34a44, 0x34a50,
2455                 0x34a74, 0x34a74,
2456                 0x34a7c, 0x34afc,
2457                 0x34b08, 0x34c24,
2458                 0x34d00, 0x34d14,
2459                 0x34d1c, 0x34d3c,
2460                 0x34d44, 0x34d4c,
2461                 0x34d54, 0x34d74,
2462                 0x34d7c, 0x34d7c,
2463                 0x34de0, 0x34de0,
2464                 0x34e00, 0x34ed4,
2465                 0x34f00, 0x34fa4,
2466                 0x34fc0, 0x34fc4,
2467                 0x35000, 0x35004,
2468                 0x35080, 0x350fc,
2469                 0x35208, 0x35220,
2470                 0x3523c, 0x35254,
2471                 0x35300, 0x35300,
2472                 0x35308, 0x3531c,
2473                 0x35338, 0x3533c,
2474                 0x35380, 0x35380,
2475                 0x35388, 0x353a8,
2476                 0x353b4, 0x353b4,
2477                 0x35400, 0x35420,
2478                 0x35438, 0x3543c,
2479                 0x35480, 0x35480,
2480                 0x354a8, 0x354a8,
2481                 0x354b0, 0x354b4,
2482                 0x354c8, 0x354d4,
2483                 0x35a40, 0x35a4c,
2484                 0x35af0, 0x35b20,
2485                 0x35b38, 0x35b3c,
2486                 0x35b80, 0x35b80,
2487                 0x35ba8, 0x35ba8,
2488                 0x35bb0, 0x35bb4,
2489                 0x35bc8, 0x35bd4,
2490                 0x36140, 0x3618c,
2491                 0x361f0, 0x361f4,
2492                 0x36200, 0x36200,
2493                 0x36218, 0x36218,
2494                 0x36400, 0x36400,
2495                 0x36408, 0x3641c,
2496                 0x36618, 0x36620,
2497                 0x36664, 0x36664,
2498                 0x366a8, 0x366a8,
2499                 0x366ec, 0x366ec,
2500                 0x36a00, 0x36abc,
2501                 0x36b00, 0x36b18,
2502                 0x36b20, 0x36b38,
2503                 0x36b40, 0x36b58,
2504                 0x36b60, 0x36b78,
2505                 0x36c00, 0x36c00,
2506                 0x36c08, 0x36c3c,
2507                 0x37000, 0x3702c,
2508                 0x37034, 0x37050,
2509                 0x37058, 0x37058,
2510                 0x37060, 0x3708c,
2511                 0x3709c, 0x370ac,
2512                 0x370c0, 0x370c0,
2513                 0x370c8, 0x370d0,
2514                 0x370d8, 0x370e0,
2515                 0x370ec, 0x3712c,
2516                 0x37134, 0x37150,
2517                 0x37158, 0x37158,
2518                 0x37160, 0x3718c,
2519                 0x3719c, 0x371ac,
2520                 0x371c0, 0x371c0,
2521                 0x371c8, 0x371d0,
2522                 0x371d8, 0x371e0,
2523                 0x371ec, 0x37290,
2524                 0x37298, 0x372c4,
2525                 0x372e4, 0x37390,
2526                 0x37398, 0x373c4,
2527                 0x373e4, 0x3742c,
2528                 0x37434, 0x37450,
2529                 0x37458, 0x37458,
2530                 0x37460, 0x3748c,
2531                 0x3749c, 0x374ac,
2532                 0x374c0, 0x374c0,
2533                 0x374c8, 0x374d0,
2534                 0x374d8, 0x374e0,
2535                 0x374ec, 0x3752c,
2536                 0x37534, 0x37550,
2537                 0x37558, 0x37558,
2538                 0x37560, 0x3758c,
2539                 0x3759c, 0x375ac,
2540                 0x375c0, 0x375c0,
2541                 0x375c8, 0x375d0,
2542                 0x375d8, 0x375e0,
2543                 0x375ec, 0x37690,
2544                 0x37698, 0x376c4,
2545                 0x376e4, 0x37790,
2546                 0x37798, 0x377c4,
2547                 0x377e4, 0x377fc,
2548                 0x37814, 0x37814,
2549                 0x37854, 0x37868,
2550                 0x37880, 0x3788c,
2551                 0x378c0, 0x378d0,
2552                 0x378e8, 0x378ec,
2553                 0x37900, 0x3792c,
2554                 0x37934, 0x37950,
2555                 0x37958, 0x37958,
2556                 0x37960, 0x3798c,
2557                 0x3799c, 0x379ac,
2558                 0x379c0, 0x379c0,
2559                 0x379c8, 0x379d0,
2560                 0x379d8, 0x379e0,
2561                 0x379ec, 0x37a90,
2562                 0x37a98, 0x37ac4,
2563                 0x37ae4, 0x37b10,
2564                 0x37b24, 0x37b28,
2565                 0x37b38, 0x37b50,
2566                 0x37bf0, 0x37c10,
2567                 0x37c24, 0x37c28,
2568                 0x37c38, 0x37c50,
2569                 0x37cf0, 0x37cfc,
2570                 0x40040, 0x40040,
2571                 0x40080, 0x40084,
2572                 0x40100, 0x40100,
2573                 0x40140, 0x401bc,
2574                 0x40200, 0x40214,
2575                 0x40228, 0x40228,
2576                 0x40240, 0x40258,
2577                 0x40280, 0x40280,
2578                 0x40304, 0x40304,
2579                 0x40330, 0x4033c,
2580                 0x41304, 0x413c8,
2581                 0x413d0, 0x413dc,
2582                 0x413f0, 0x413f0,
2583                 0x41400, 0x4140c,
2584                 0x41414, 0x4141c,
2585                 0x41480, 0x414d0,
2586                 0x44000, 0x4407c,
2587                 0x440c0, 0x441ac,
2588                 0x441b4, 0x4427c,
2589                 0x442c0, 0x443ac,
2590                 0x443b4, 0x4447c,
2591                 0x444c0, 0x445ac,
2592                 0x445b4, 0x4467c,
2593                 0x446c0, 0x447ac,
2594                 0x447b4, 0x4487c,
2595                 0x448c0, 0x449ac,
2596                 0x449b4, 0x44a7c,
2597                 0x44ac0, 0x44bac,
2598                 0x44bb4, 0x44c7c,
2599                 0x44cc0, 0x44dac,
2600                 0x44db4, 0x44e7c,
2601                 0x44ec0, 0x44fac,
2602                 0x44fb4, 0x4507c,
2603                 0x450c0, 0x451ac,
2604                 0x451b4, 0x451fc,
2605                 0x45800, 0x45804,
2606                 0x45810, 0x45830,
2607                 0x45840, 0x45860,
2608                 0x45868, 0x45868,
2609                 0x45880, 0x45884,
2610                 0x458a0, 0x458b0,
2611                 0x45a00, 0x45a04,
2612                 0x45a10, 0x45a30,
2613                 0x45a40, 0x45a60,
2614                 0x45a68, 0x45a68,
2615                 0x45a80, 0x45a84,
2616                 0x45aa0, 0x45ab0,
2617                 0x460c0, 0x460e4,
2618                 0x47000, 0x4703c,
2619                 0x47044, 0x4708c,
2620                 0x47200, 0x47250,
2621                 0x47400, 0x47408,
2622                 0x47414, 0x47420,
2623                 0x47600, 0x47618,
2624                 0x47800, 0x47814,
2625                 0x47820, 0x4782c,
2626                 0x50000, 0x50084,
2627                 0x50090, 0x500cc,
2628                 0x50300, 0x50384,
2629                 0x50400, 0x50400,
2630                 0x50800, 0x50884,
2631                 0x50890, 0x508cc,
2632                 0x50b00, 0x50b84,
2633                 0x50c00, 0x50c00,
2634                 0x51000, 0x51020,
2635                 0x51028, 0x510b0,
2636                 0x51300, 0x51324,
2637         };
2638
2639         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2640         const unsigned int *reg_ranges;
2641         int reg_ranges_size, range;
2642         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2643
2644         /* Select the right set of register ranges to dump depending on the
2645          * adapter chip type.
2646          */
2647         switch (chip_version) {
2648         case CHELSIO_T4:
2649                 reg_ranges = t4_reg_ranges;
2650                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2651                 break;
2652
2653         case CHELSIO_T5:
2654                 reg_ranges = t5_reg_ranges;
2655                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2656                 break;
2657
2658         case CHELSIO_T6:
2659                 reg_ranges = t6_reg_ranges;
2660                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2661                 break;
2662
2663         default:
2664                 dev_err(adap->pdev_dev,
2665                         "Unsupported chip version %d\n", chip_version);
2666                 return;
2667         }
2668
2669         /* Clear the register buffer and insert the appropriate register
2670          * values selected by the above register ranges.
2671          */
2672         memset(buf, 0, buf_size);
2673         for (range = 0; range < reg_ranges_size; range += 2) {
2674                 unsigned int reg = reg_ranges[range];
2675                 unsigned int last_reg = reg_ranges[range + 1];
2676                 u32 *bufp = (u32 *)((char *)buf + reg);
2677
2678                 /* Iterate across the register range filling in the register
2679                  * buffer but don't write past the end of the register buffer.
2680                  */
2681                 while (reg <= last_reg && bufp < buf_end) {
2682                         *bufp++ = t4_read_reg(adap, reg);
2683                         reg += sizeof(u32);
2684                 }
2685         }
2686 }
2687
2688 #define EEPROM_STAT_ADDR   0x7bfc
2689 #define VPD_BASE           0x400
2690 #define VPD_BASE_OLD       0
2691 #define VPD_LEN            1024
2692 #define CHELSIO_VPD_UNIQUE_ID 0x82
2693
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713         fn *= sz;
2714         if (phys_addr < 1024)
2715                 return phys_addr + (31 << 10);
2716         if (phys_addr < 1024 + fn)
2717                 return 31744 - fn + phys_addr - 1024;
2718         if (phys_addr < EEPROMSIZE)
2719                 return phys_addr - 1024 - fn;
2720         return -EINVAL;
2721 }
2722
2723 /**
2724  *      t4_seeprom_wp - enable/disable EEPROM write protection
2725  *      @adapter: the adapter
2726  *      @enable: whether to enable or disable write protection
2727  *
2728  *      Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732         unsigned int v = enable ? 0xc : 0;
2733         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734         return ret < 0 ? ret : 0;
2735 }
2736
2737 /**
2738  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *      @adapter: adapter to read
2740  *      @p: where to store the parameters
2741  *
2742  *      Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746         int i, ret = 0, addr;
2747         int ec, sn, pn, na;
2748         u8 *vpd, csum;
2749         unsigned int vpdr_len, kw_offset, id_len;
2750
2751         vpd = vmalloc(VPD_LEN);
2752         if (!vpd)
2753                 return -ENOMEM;
2754
2755         /* Card information normally starts at VPD_BASE but early cards had
2756          * it at 0.
2757          */
2758         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2759         if (ret < 0)
2760                 goto out;
2761
2762         /* The VPD shall have a unique identifier specified by the PCI SIG.
2763          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2764          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2765          * is expected to automatically put this entry at the
2766          * beginning of the VPD.
2767          */
2768         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2769
2770         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2771         if (ret < 0)
2772                 goto out;
2773
2774         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2775                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2776                 ret = -EINVAL;
2777                 goto out;
2778         }
2779
2780         id_len = pci_vpd_lrdt_size(vpd);
2781         if (id_len > ID_LEN)
2782                 id_len = ID_LEN;
2783
2784         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2785         if (i < 0) {
2786                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2787                 ret = -EINVAL;
2788                 goto out;
2789         }
2790
2791         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2792         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2793         if (vpdr_len + kw_offset > VPD_LEN) {
2794                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2795                 ret = -EINVAL;
2796                 goto out;
2797         }
2798
2799 #define FIND_VPD_KW(var, name) do { \
2800         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2801         if (var < 0) { \
2802                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2803                 ret = -EINVAL; \
2804                 goto out; \
2805         } \
2806         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2807 } while (0)
2808
2809         FIND_VPD_KW(i, "RV");
2810         for (csum = 0; i >= 0; i--)
2811                 csum += vpd[i];
2812
2813         if (csum) {
2814                 dev_err(adapter->pdev_dev,
2815                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2816                 ret = -EINVAL;
2817                 goto out;
2818         }
2819
2820         FIND_VPD_KW(ec, "EC");
2821         FIND_VPD_KW(sn, "SN");
2822         FIND_VPD_KW(pn, "PN");
2823         FIND_VPD_KW(na, "NA");
2824 #undef FIND_VPD_KW
2825
2826         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2827         strim(p->id);
2828         memcpy(p->ec, vpd + ec, EC_LEN);
2829         strim(p->ec);
2830         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2831         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2832         strim(p->sn);
2833         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2834         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2835         strim(p->pn);
2836         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2837         strim((char *)p->na);
2838
2839 out:
2840         vfree(vpd);
2841         return ret < 0 ? ret : 0;
2842 }
2843
2844 /**
2845  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2846  *      @adapter: adapter to read
2847  *      @p: where to store the parameters
2848  *
2849  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2850  *      Clock.  This can only be called after a connection to the firmware
2851  *      is established.
2852  */
2853 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2854 {
2855         u32 cclk_param, cclk_val;
2856         int ret;
2857
2858         /* Grab the raw VPD parameters.
2859          */
2860         ret = t4_get_raw_vpd_params(adapter, p);
2861         if (ret)
2862                 return ret;
2863
2864         /* Ask firmware for the Core Clock since it knows how to translate the
2865          * Reference Clock ('V2') VPD field into a Core Clock value ...
2866          */
2867         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2868                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2869         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2870                               1, &cclk_param, &cclk_val);
2871
2872         if (ret)
2873                 return ret;
2874         p->cclk = cclk_val;
2875
2876         return 0;
2877 }
2878
2879 /**
2880  *      t4_get_pfres - retrieve VF resource limits
2881  *      @adapter: the adapter
2882  *
2883  *      Retrieves configured resource limits and capabilities for a physical
2884  *      function.  The results are stored in @adapter->pfres.
2885  */
2886 int t4_get_pfres(struct adapter *adapter)
2887 {
2888         struct pf_resources *pfres = &adapter->params.pfres;
2889         struct fw_pfvf_cmd cmd, rpl;
2890         int v;
2891         u32 word;
2892
2893         /* Execute PFVF Read command to get VF resource limits; bail out early
2894          * with error on command failure.
2895          */
2896         memset(&cmd, 0, sizeof(cmd));
2897         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2898                                     FW_CMD_REQUEST_F |
2899                                     FW_CMD_READ_F |
2900                                     FW_PFVF_CMD_PFN_V(adapter->pf) |
2901                                     FW_PFVF_CMD_VFN_V(0));
2902         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2903         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2904         if (v != FW_SUCCESS)
2905                 return v;
2906
2907         /* Extract PF resource limits and return success.
2908          */
2909         word = be32_to_cpu(rpl.niqflint_niq);
2910         pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2911         pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2912
2913         word = be32_to_cpu(rpl.type_to_neq);
2914         pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2915         pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2916
2917         word = be32_to_cpu(rpl.tc_to_nexactf);
2918         pfres->tc = FW_PFVF_CMD_TC_G(word);
2919         pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2920         pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2921
2922         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2923         pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2924         pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2925         pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2926
2927         return 0;
2928 }
2929
2930 /* serial flash and firmware constants */
2931 enum {
2932         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2933
2934         /* flash command opcodes */
2935         SF_PROG_PAGE    = 2,          /* program page */
2936         SF_WR_DISABLE   = 4,          /* disable writes */
2937         SF_RD_STATUS    = 5,          /* read status register */
2938         SF_WR_ENABLE    = 6,          /* enable writes */
2939         SF_RD_DATA_FAST = 0xb,        /* read flash */
2940         SF_RD_ID        = 0x9f,       /* read ID */
2941         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2942 };
2943
2944 /**
2945  *      sf1_read - read data from the serial flash
2946  *      @adapter: the adapter
2947  *      @byte_cnt: number of bytes to read
2948  *      @cont: whether another operation will be chained
2949  *      @lock: whether to lock SF for PL access only
2950  *      @valp: where to store the read data
2951  *
2952  *      Reads up to 4 bytes of data from the serial flash.  The location of
2953  *      the read needs to be specified prior to calling this by issuing the
2954  *      appropriate commands to the serial flash.
2955  */
2956 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957                     int lock, u32 *valp)
2958 {
2959         int ret;
2960
2961         if (!byte_cnt || byte_cnt > 4)
2962                 return -EINVAL;
2963         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2964                 return -EBUSY;
2965         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2966                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2967         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2968         if (!ret)
2969                 *valp = t4_read_reg(adapter, SF_DATA_A);
2970         return ret;
2971 }
2972
2973 /**
2974  *      sf1_write - write data to the serial flash
2975  *      @adapter: the adapter
2976  *      @byte_cnt: number of bytes to write
2977  *      @cont: whether another operation will be chained
2978  *      @lock: whether to lock SF for PL access only
2979  *      @val: value to write
2980  *
2981  *      Writes up to 4 bytes of data to the serial flash.  The location of
2982  *      the write needs to be specified prior to calling this by issuing the
2983  *      appropriate commands to the serial flash.
2984  */
2985 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2986                      int lock, u32 val)
2987 {
2988         if (!byte_cnt || byte_cnt > 4)
2989                 return -EINVAL;
2990         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2991                 return -EBUSY;
2992         t4_write_reg(adapter, SF_DATA_A, val);
2993         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2994                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2995         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2996 }
2997
2998 /**
2999  *      flash_wait_op - wait for a flash operation to complete
3000  *      @adapter: the adapter
3001  *      @attempts: max number of polls of the status register
3002  *      @delay: delay between polls in ms
3003  *
3004  *      Wait for a flash operation to complete by polling the status register.
3005  */
3006 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3007 {
3008         int ret;
3009         u32 status;
3010
3011         while (1) {
3012                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3013                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3014                         return ret;
3015                 if (!(status & 1))
3016                         return 0;
3017                 if (--attempts == 0)
3018                         return -EAGAIN;
3019                 if (delay)
3020                         msleep(delay);
3021         }
3022 }
3023
3024 /**
3025  *      t4_read_flash - read words from serial flash
3026  *      @adapter: the adapter
3027  *      @addr: the start address for the read
3028  *      @nwords: how many 32-bit words to read
3029  *      @data: where to store the read data
3030  *      @byte_oriented: whether to store data as bytes or as words
3031  *
3032  *      Read the specified number of 32-bit words from the serial flash.
3033  *      If @byte_oriented is set the read data is stored as a byte array
3034  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
3035  *      natural endianness.
3036  */
3037 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3038                   unsigned int nwords, u32 *data, int byte_oriented)
3039 {
3040         int ret;
3041
3042         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3043                 return -EINVAL;
3044
3045         addr = swab32(addr) | SF_RD_DATA_FAST;
3046
3047         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3048             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3049                 return ret;
3050
3051         for ( ; nwords; nwords--, data++) {
3052                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3053                 if (nwords == 1)
3054                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3055                 if (ret)
3056                         return ret;
3057                 if (byte_oriented)
3058                         *data = (__force __u32)(cpu_to_be32(*data));
3059         }
3060         return 0;
3061 }
3062
3063 /**
3064  *      t4_write_flash - write up to a page of data to the serial flash
3065  *      @adapter: the adapter
3066  *      @addr: the start address to write
3067  *      @n: length of data to write in bytes
3068  *      @data: the data to write
3069  *
3070  *      Writes up to a page of data (256 bytes) to the serial flash starting
3071  *      at the given address.  All the data must be written to the same page.
3072  */
3073 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3074                           unsigned int n, const u8 *data)
3075 {
3076         int ret;
3077         u32 buf[64];
3078         unsigned int i, c, left, val, offset = addr & 0xff;
3079
3080         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3081                 return -EINVAL;
3082
3083         val = swab32(addr) | SF_PROG_PAGE;
3084
3085         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3086             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3087                 goto unlock;
3088
3089         for (left = n; left; left -= c) {
3090                 c = min(left, 4U);
3091                 for (val = 0, i = 0; i < c; ++i)
3092                         val = (val << 8) + *data++;
3093
3094                 ret = sf1_write(adapter, c, c != left, 1, val);
3095                 if (ret)
3096                         goto unlock;
3097         }
3098         ret = flash_wait_op(adapter, 8, 1);
3099         if (ret)
3100                 goto unlock;
3101
3102         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3103
3104         /* Read the page to verify the write succeeded */
3105         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
3106         if (ret)
3107                 return ret;
3108
3109         if (memcmp(data - n, (u8 *)buf + offset, n)) {
3110                 dev_err(adapter->pdev_dev,
3111                         "failed to correctly write the flash page at %#x\n",
3112                         addr);
3113                 return -EIO;
3114         }
3115         return 0;
3116
3117 unlock:
3118         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3119         return ret;
3120 }
3121
3122 /**
3123  *      t4_get_fw_version - read the firmware version
3124  *      @adapter: the adapter
3125  *      @vers: where to place the version
3126  *
3127  *      Reads the FW version from flash.
3128  */
3129 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3130 {
3131         return t4_read_flash(adapter, FLASH_FW_START +
3132                              offsetof(struct fw_hdr, fw_ver), 1,
3133                              vers, 0);
3134 }
3135
3136 /**
3137  *      t4_get_bs_version - read the firmware bootstrap version
3138  *      @adapter: the adapter
3139  *      @vers: where to place the version
3140  *
3141  *      Reads the FW Bootstrap version from flash.
3142  */
3143 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3144 {
3145         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3146                              offsetof(struct fw_hdr, fw_ver), 1,
3147                              vers, 0);
3148 }
3149
3150 /**
3151  *      t4_get_tp_version - read the TP microcode version
3152  *      @adapter: the adapter
3153  *      @vers: where to place the version
3154  *
3155  *      Reads the TP microcode version from flash.
3156  */
3157 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3158 {
3159         return t4_read_flash(adapter, FLASH_FW_START +
3160                              offsetof(struct fw_hdr, tp_microcode_ver),
3161                              1, vers, 0);
3162 }
3163
3164 /**
3165  *      t4_get_exprom_version - return the Expansion ROM version (if any)
3166  *      @adapter: the adapter
3167  *      @vers: where to place the version
3168  *
3169  *      Reads the Expansion ROM header from FLASH and returns the version
3170  *      number (if present) through the @vers return value pointer.  We return
3171  *      this in the Firmware Version Format since it's convenient.  Return
3172  *      0 on success, -ENOENT if no Expansion ROM is present.
3173  */
3174 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3175 {
3176         struct exprom_header {
3177                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
3178                 unsigned char hdr_ver[4];       /* Expansion ROM version */
3179         } *hdr;
3180         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3181                                            sizeof(u32))];
3182         int ret;
3183
3184         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3185                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3186                             0);
3187         if (ret)
3188                 return ret;
3189
3190         hdr = (struct exprom_header *)exprom_header_buf;
3191         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3192                 return -ENOENT;
3193
3194         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3195                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3196                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3197                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3198         return 0;
3199 }
3200
3201 /**
3202  *      t4_get_vpd_version - return the VPD version
3203  *      @adapter: the adapter
3204  *      @vers: where to place the version
3205  *
3206  *      Reads the VPD via the Firmware interface (thus this can only be called
3207  *      once we're ready to issue Firmware commands).  The format of the
3208  *      VPD version is adapter specific.  Returns 0 on success, an error on
3209  *      failure.
3210  *
3211  *      Note that early versions of the Firmware didn't include the ability
3212  *      to retrieve the VPD version, so we zero-out the return-value parameter
3213  *      in that case to avoid leaving it with garbage in it.
3214  *
3215  *      Also note that the Firmware will return its cached copy of the VPD
3216  *      Revision ID, not the actual Revision ID as written in the Serial
3217  *      EEPROM.  This is only an issue if a new VPD has been written and the
3218  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3219  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3220  *      if the Host Driver will be performing a full adapter initialization.
3221  */
3222 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3223 {
3224         u32 vpdrev_param;
3225         int ret;
3226
3227         vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3228                         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3229         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3230                               1, &vpdrev_param, vers);
3231         if (ret)
3232                 *vers = 0;
3233         return ret;
3234 }
3235
3236 /**
3237  *      t4_get_scfg_version - return the Serial Configuration version
3238  *      @adapter: the adapter
3239  *      @vers: where to place the version
3240  *
3241  *      Reads the Serial Configuration Version via the Firmware interface
3242  *      (thus this can only be called once we're ready to issue Firmware
3243  *      commands).  The format of the Serial Configuration version is
3244  *      adapter specific.  Returns 0 on success, an error on failure.
3245  *
3246  *      Note that early versions of the Firmware didn't include the ability
3247  *      to retrieve the Serial Configuration version, so we zero-out the
3248  *      return-value parameter in that case to avoid leaving it with
3249  *      garbage in it.
3250  *
3251  *      Also note that the Firmware will return its cached copy of the Serial
3252  *      Initialization Revision ID, not the actual Revision ID as written in
3253  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3254  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3255  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3256  *      been issued if the Host Driver will be performing a full adapter
3257  *      initialization.
3258  */
3259 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3260 {
3261         u32 scfgrev_param;
3262         int ret;
3263
3264         scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3265                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3266         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3267                               1, &scfgrev_param, vers);
3268         if (ret)
3269                 *vers = 0;
3270         return ret;
3271 }
3272
3273 /**
3274  *      t4_get_version_info - extract various chip/firmware version information
3275  *      @adapter: the adapter
3276  *
3277  *      Reads various chip/firmware version numbers and stores them into the
3278  *      adapter Adapter Parameters structure.  If any of the efforts fails
3279  *      the first failure will be returned, but all of the version numbers
3280  *      will be read.
3281  */
3282 int t4_get_version_info(struct adapter *adapter)
3283 {
3284         int ret = 0;
3285
3286         #define FIRST_RET(__getvinfo) \
3287         do { \
3288                 int __ret = __getvinfo; \
3289                 if (__ret && !ret) \
3290                         ret = __ret; \
3291         } while (0)
3292
3293         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3294         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3295         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3296         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3297         FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3298         FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3299
3300         #undef FIRST_RET
3301         return ret;
3302 }
3303
3304 /**
3305  *      t4_dump_version_info - dump all of the adapter configuration IDs
3306  *      @adapter: the adapter
3307  *
3308  *      Dumps all of the various bits of adapter configuration version/revision
3309  *      IDs information.  This is typically called at some point after
3310  *      t4_get_version_info() has been called.
3311  */
3312 void t4_dump_version_info(struct adapter *adapter)
3313 {
3314         /* Device information */
3315         dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3316                  adapter->params.vpd.id,
3317                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
3318         dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3319                  adapter->params.vpd.sn, adapter->params.vpd.pn);
3320
3321         /* Firmware Version */
3322         if (!adapter->params.fw_vers)
3323                 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3324         else
3325                 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3326                          FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3327                          FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3328                          FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3329                          FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3330
3331         /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3332          * Firmware, so dev_info() is more appropriate here.)
3333          */
3334         if (!adapter->params.bs_vers)
3335                 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3336         else
3337                 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3338                          FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3339                          FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3340                          FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3341                          FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3342
3343         /* TP Microcode Version */
3344         if (!adapter->params.tp_vers)
3345                 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3346         else
3347                 dev_info(adapter->pdev_dev,
3348                          "TP Microcode version: %u.%u.%u.%u\n",
3349                          FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3350                          FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3351                          FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3352                          FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3353
3354         /* Expansion ROM version */
3355         if (!adapter->params.er_vers)
3356                 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3357         else
3358                 dev_info(adapter->pdev_dev,
3359                          "Expansion ROM version: %u.%u.%u.%u\n",
3360                          FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3361                          FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3362                          FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3363                          FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3364
3365         /* Serial Configuration version */
3366         dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3367                  adapter->params.scfg_vers);
3368
3369         /* VPD Version */
3370         dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3371                  adapter->params.vpd_vers);
3372 }
3373
3374 /**
3375  *      t4_check_fw_version - check if the FW is supported with this driver
3376  *      @adap: the adapter
3377  *
3378  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
3379  *      if there's exact match, a negative error if the version could not be
3380  *      read or there's a major version mismatch
3381  */
3382 int t4_check_fw_version(struct adapter *adap)
3383 {
3384         int i, ret, major, minor, micro;
3385         int exp_major, exp_minor, exp_micro;
3386         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3387
3388         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3389         /* Try multiple times before returning error */
3390         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3391                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3392
3393         if (ret)
3394                 return ret;
3395
3396         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3397         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3398         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3399
3400         switch (chip_version) {
3401         case CHELSIO_T4:
3402                 exp_major = T4FW_MIN_VERSION_MAJOR;
3403                 exp_minor = T4FW_MIN_VERSION_MINOR;
3404                 exp_micro = T4FW_MIN_VERSION_MICRO;
3405                 break;
3406         case CHELSIO_T5:
3407                 exp_major = T5FW_MIN_VERSION_MAJOR;
3408                 exp_minor = T5FW_MIN_VERSION_MINOR;
3409                 exp_micro = T5FW_MIN_VERSION_MICRO;
3410                 break;
3411         case CHELSIO_T6:
3412                 exp_major = T6FW_MIN_VERSION_MAJOR;
3413                 exp_minor = T6FW_MIN_VERSION_MINOR;
3414                 exp_micro = T6FW_MIN_VERSION_MICRO;
3415                 break;
3416         default:
3417                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3418                         adap->chip);
3419                 return -EINVAL;
3420         }
3421
3422         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3423             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3424                 dev_err(adap->pdev_dev,
3425                         "Card has firmware version %u.%u.%u, minimum "
3426                         "supported firmware is %u.%u.%u.\n", major, minor,
3427                         micro, exp_major, exp_minor, exp_micro);
3428                 return -EFAULT;
3429         }
3430         return 0;
3431 }
3432
3433 /* Is the given firmware API compatible with the one the driver was compiled
3434  * with?
3435  */
3436 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3437 {
3438
3439         /* short circuit if it's the exact same firmware version */
3440         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3441                 return 1;
3442
3443 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3444         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3445             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3446                 return 1;
3447 #undef SAME_INTF
3448
3449         return 0;
3450 }
3451
3452 /* The firmware in the filesystem is usable, but should it be installed?
3453  * This routine explains itself in detail if it indicates the filesystem
3454  * firmware should be installed.
3455  */
3456 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3457                                 int k, int c)
3458 {
3459         const char *reason;
3460
3461         if (!card_fw_usable) {
3462                 reason = "incompatible or unusable";
3463                 goto install;
3464         }
3465
3466         if (k > c) {
3467                 reason = "older than the version supported with this driver";
3468                 goto install;
3469         }
3470
3471         return 0;
3472
3473 install:
3474         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3475                 "installing firmware %u.%u.%u.%u on card.\n",
3476                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3477                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3478                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3479                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3480
3481         return 1;
3482 }
3483
3484 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3485                const u8 *fw_data, unsigned int fw_size,
3486                struct fw_hdr *card_fw, enum dev_state state,
3487                int *reset)
3488 {
3489         int ret, card_fw_usable, fs_fw_usable;
3490         const struct fw_hdr *fs_fw;
3491         const struct fw_hdr *drv_fw;
3492
3493         drv_fw = &fw_info->fw_hdr;
3494
3495         /* Read the header of the firmware on the card */
3496         ret = -t4_read_flash(adap, FLASH_FW_START,
3497                             sizeof(*card_fw) / sizeof(uint32_t),
3498                             (uint32_t *)card_fw, 1);
3499         if (ret == 0) {
3500                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3501         } else {
3502                 dev_err(adap->pdev_dev,
3503                         "Unable to read card's firmware header: %d\n", ret);
3504                 card_fw_usable = 0;
3505         }
3506
3507         if (fw_data != NULL) {
3508                 fs_fw = (const void *)fw_data;
3509                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3510         } else {
3511                 fs_fw = NULL;
3512                 fs_fw_usable = 0;
3513         }
3514
3515         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3516             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3517                 /* Common case: the firmware on the card is an exact match and
3518                  * the filesystem one is an exact match too, or the filesystem
3519                  * one is absent/incompatible.
3520                  */
3521         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3522                    should_install_fs_fw(adap, card_fw_usable,
3523                                         be32_to_cpu(fs_fw->fw_ver),
3524                                         be32_to_cpu(card_fw->fw_ver))) {
3525                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3526                                      fw_size, 0);
3527                 if (ret != 0) {
3528                         dev_err(adap->pdev_dev,
3529                                 "failed to install firmware: %d\n", ret);
3530                         goto bye;
3531                 }
3532
3533                 /* Installed successfully, update the cached header too. */
3534                 *card_fw = *fs_fw;
3535                 card_fw_usable = 1;
3536                 *reset = 0;     /* already reset as part of load_fw */
3537         }
3538
3539         if (!card_fw_usable) {
3540                 uint32_t d, c, k;
3541
3542                 d = be32_to_cpu(drv_fw->fw_ver);
3543                 c = be32_to_cpu(card_fw->fw_ver);
3544                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3545
3546                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3547                         "chip state %d, "
3548                         "driver compiled with %d.%d.%d.%d, "
3549                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3550                         state,
3551                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3552                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3553                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3554                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3555                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3556                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3557                 ret = EINVAL;
3558                 goto bye;
3559         }
3560
3561         /* We're using whatever's on the card and it's known to be good. */
3562         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3563         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3564
3565 bye:
3566         return ret;
3567 }
3568
3569 /**
3570  *      t4_flash_erase_sectors - erase a range of flash sectors
3571  *      @adapter: the adapter
3572  *      @start: the first sector to erase
3573  *      @end: the last sector to erase
3574  *
3575  *      Erases the sectors in the given inclusive range.
3576  */
3577 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3578 {
3579         int ret = 0;
3580
3581         if (end >= adapter->params.sf_nsec)
3582                 return -EINVAL;
3583
3584         while (start <= end) {
3585                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3586                     (ret = sf1_write(adapter, 4, 0, 1,
3587                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3588                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3589                         dev_err(adapter->pdev_dev,
3590                                 "erase of flash sector %d failed, error %d\n",
3591                                 start, ret);
3592                         break;
3593                 }
3594                 start++;
3595         }
3596         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3597         return ret;
3598 }
3599
3600 /**
3601  *      t4_flash_cfg_addr - return the address of the flash configuration file
3602  *      @adapter: the adapter
3603  *
3604  *      Return the address within the flash where the Firmware Configuration
3605  *      File is stored.
3606  */
3607 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3608 {
3609         if (adapter->params.sf_size == 0x100000)
3610                 return FLASH_FPGA_CFG_START;
3611         else
3612                 return FLASH_CFG_START;
3613 }
3614
3615 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3616  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3617  * and emit an error message for mismatched firmware to save our caller the
3618  * effort ...
3619  */
3620 static bool t4_fw_matches_chip(const struct adapter *adap,
3621                                const struct fw_hdr *hdr)
3622 {
3623         /* The expression below will return FALSE for any unsupported adapter
3624          * which will keep us "honest" in the future ...
3625          */
3626         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3627             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3628             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3629                 return true;
3630
3631         dev_err(adap->pdev_dev,
3632                 "FW image (%d) is not suitable for this adapter (%d)\n",
3633                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3634         return false;
3635 }
3636
3637 /**
3638  *      t4_load_fw - download firmware
3639  *      @adap: the adapter
3640  *      @fw_data: the firmware image to write
3641  *      @size: image size
3642  *
3643  *      Write the supplied firmware image to the card's serial flash.
3644  */
3645 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3646 {
3647         u32 csum;
3648         int ret, addr;
3649         unsigned int i;
3650         u8 first_page[SF_PAGE_SIZE];
3651         const __be32 *p = (const __be32 *)fw_data;
3652         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3653         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3654         unsigned int fw_start_sec = FLASH_FW_START_SEC;
3655         unsigned int fw_size = FLASH_FW_MAX_SIZE;
3656         unsigned int fw_start = FLASH_FW_START;
3657
3658         if (!size) {
3659                 dev_err(adap->pdev_dev, "FW image has no data\n");
3660                 return -EINVAL;
3661         }
3662         if (size & 511) {
3663                 dev_err(adap->pdev_dev,
3664                         "FW image size not multiple of 512 bytes\n");
3665                 return -EINVAL;
3666         }
3667         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3668                 dev_err(adap->pdev_dev,
3669                         "FW image size differs from size in FW header\n");
3670                 return -EINVAL;
3671         }
3672         if (size > fw_size) {
3673                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3674                         fw_size);
3675                 return -EFBIG;
3676         }
3677         if (!t4_fw_matches_chip(adap, hdr))
3678                 return -EINVAL;
3679
3680         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3681                 csum += be32_to_cpu(p[i]);
3682
3683         if (csum != 0xffffffff) {
3684                 dev_err(adap->pdev_dev,
3685                         "corrupted firmware image, checksum %#x\n", csum);
3686                 return -EINVAL;
3687         }
3688
3689         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3690         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3691         if (ret)
3692                 goto out;
3693
3694         /*
3695          * We write the correct version at the end so the driver can see a bad
3696          * version if the FW write fails.  Start by writing a copy of the
3697          * first page with a bad version.
3698          */
3699         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3700         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3701         ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page);
3702         if (ret)
3703                 goto out;
3704
3705         addr = fw_start;
3706         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3707                 addr += SF_PAGE_SIZE;
3708                 fw_data += SF_PAGE_SIZE;
3709                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3710                 if (ret)
3711                         goto out;
3712         }
3713
3714         ret = t4_write_flash(adap,
3715                              fw_start + offsetof(struct fw_hdr, fw_ver),
3716                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3717 out:
3718         if (ret)
3719                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3720                         ret);
3721         else
3722                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3723         return ret;
3724 }
3725
3726 /**
3727  *      t4_phy_fw_ver - return current PHY firmware version
3728  *      @adap: the adapter
3729  *      @phy_fw_ver: return value buffer for PHY firmware version
3730  *
3731  *      Returns the current version of external PHY firmware on the
3732  *      adapter.
3733  */
3734 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3735 {
3736         u32 param, val;
3737         int ret;
3738
3739         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3740                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3741                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3742                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3743         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3744                               &param, &val);
3745         if (ret)
3746                 return ret;
3747         *phy_fw_ver = val;
3748         return 0;
3749 }
3750
3751 /**
3752  *      t4_load_phy_fw - download port PHY firmware
3753  *      @adap: the adapter
3754  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3755  *      @win_lock: the lock to use to guard the memory copy
3756  *      @phy_fw_version: function to check PHY firmware versions
3757  *      @phy_fw_data: the PHY firmware image to write
3758  *      @phy_fw_size: image size
3759  *
3760  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3761  *      @phy_fw_version is supplied, then it will be used to determine if
3762  *      it's necessary to perform the transfer by comparing the version
3763  *      of any existing adapter PHY firmware with that of the passed in
3764  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3765  *      around the call to t4_memory_rw() which transfers the PHY firmware
3766  *      to the adapter.
3767  *
3768  *      A negative error number will be returned if an error occurs.  If
3769  *      version number support is available and there's no need to upgrade
3770  *      the firmware, 0 will be returned.  If firmware is successfully
3771  *      transferred to the adapter, 1 will be returned.
3772  *
3773  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3774  *      a result, a RESET of the adapter would cause that RAM to lose its
3775  *      contents.  Thus, loading PHY firmware on such adapters must happen
3776  *      after any FW_RESET_CMDs ...
3777  */
3778 int t4_load_phy_fw(struct adapter *adap,
3779                    int win, spinlock_t *win_lock,
3780                    int (*phy_fw_version)(const u8 *, size_t),
3781                    const u8 *phy_fw_data, size_t phy_fw_size)
3782 {
3783         unsigned long mtype = 0, maddr = 0;
3784         u32 param, val;
3785         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3786         int ret;
3787
3788         /* If we have version number support, then check to see if the adapter
3789          * already has up-to-date PHY firmware loaded.
3790          */
3791         if (phy_fw_version) {
3792                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3793                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3794                 if (ret < 0)
3795                         return ret;
3796
3797                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3798                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3799                                 "version %#x\n", cur_phy_fw_ver);
3800                         return 0;
3801                 }
3802         }
3803
3804         /* Ask the firmware where it wants us to copy the PHY firmware image.
3805          * The size of the file requires a special version of the READ command
3806          * which will pass the file size via the values field in PARAMS_CMD and
3807          * retrieve the return value from firmware and place it in the same
3808          * buffer values
3809          */
3810         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3811                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3812                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3813                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3814         val = phy_fw_size;
3815         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3816                                  &param, &val, 1, true);
3817         if (ret < 0)
3818                 return ret;
3819         mtype = val >> 8;
3820         maddr = (val & 0xff) << 16;
3821
3822         /* Copy the supplied PHY Firmware image to the adapter memory location
3823          * allocated by the adapter firmware.
3824          */
3825         if (win_lock)
3826                 spin_lock_bh(win_lock);
3827         ret = t4_memory_rw(adap, win, mtype, maddr,
3828                            phy_fw_size, (__be32 *)phy_fw_data,
3829                            T4_MEMORY_WRITE);
3830         if (win_lock)
3831                 spin_unlock_bh(win_lock);
3832         if (ret)
3833                 return ret;
3834
3835         /* Tell the firmware that the PHY firmware image has been written to
3836          * RAM and it can now start copying it over to the PHYs.  The chip
3837          * firmware will RESET the affected PHYs as part of this operation
3838          * leaving them running the new PHY firmware image.
3839          */
3840         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3841                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3842                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3843                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3844         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3845                                     &param, &val, 30000);
3846
3847         /* If we have version number support, then check to see that the new
3848          * firmware got loaded properly.
3849          */
3850         if (phy_fw_version) {
3851                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3852                 if (ret < 0)
3853                         return ret;
3854
3855                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3856                         CH_WARN(adap, "PHY Firmware did not update: "
3857                                 "version on adapter %#x, "
3858                                 "version flashed %#x\n",
3859                                 cur_phy_fw_ver, new_phy_fw_vers);
3860                         return -ENXIO;
3861                 }
3862         }
3863
3864         return 1;
3865 }
3866
3867 /**
3868  *      t4_fwcache - firmware cache operation
3869  *      @adap: the adapter
3870  *      @op  : the operation (flush or flush and invalidate)
3871  */
3872 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3873 {
3874         struct fw_params_cmd c;
3875
3876         memset(&c, 0, sizeof(c));
3877         c.op_to_vfn =
3878                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3879                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3880                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3881                             FW_PARAMS_CMD_VFN_V(0));
3882         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3883         c.param[0].mnem =
3884                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3885                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3886         c.param[0].val = cpu_to_be32(op);
3887
3888         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3889 }
3890
3891 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3892                         unsigned int *pif_req_wrptr,
3893                         unsigned int *pif_rsp_wrptr)
3894 {
3895         int i, j;
3896         u32 cfg, val, req, rsp;
3897
3898         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3899         if (cfg & LADBGEN_F)
3900                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3901
3902         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3903         req = POLADBGWRPTR_G(val);
3904         rsp = PILADBGWRPTR_G(val);
3905         if (pif_req_wrptr)
3906                 *pif_req_wrptr = req;
3907         if (pif_rsp_wrptr)
3908                 *pif_rsp_wrptr = rsp;
3909
3910         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3911                 for (j = 0; j < 6; j++) {
3912                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3913                                      PILADBGRDPTR_V(rsp));
3914                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3915                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3916                         req++;
3917                         rsp++;
3918                 }
3919                 req = (req + 2) & POLADBGRDPTR_M;
3920                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3921         }
3922         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3923 }
3924
3925 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3926 {
3927         u32 cfg;
3928         int i, j, idx;
3929
3930         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3931         if (cfg & LADBGEN_F)
3932                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3933
3934         for (i = 0; i < CIM_MALA_SIZE; i++) {
3935                 for (j = 0; j < 5; j++) {
3936                         idx = 8 * i + j;
3937                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3938                                      PILADBGRDPTR_V(idx));
3939                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3940                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3941                 }
3942         }
3943         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3944 }
3945
3946 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3947 {
3948         unsigned int i, j;
3949
3950         for (i = 0; i < 8; i++) {
3951                 u32 *p = la_buf + i;
3952
3953                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3954                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3955                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3956                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3957                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3958         }
3959 }
3960
3961 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3962  * Capabilities which we control with separate controls -- see, for instance,
3963  * Pause Frames and Forward Error Correction.  In order to determine what the
3964  * full set of Advertised Port Capabilities are, the base Advertised Port
3965  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3966  * Port Capabilities associated with those other controls.  See
3967  * t4_link_acaps() for how this is done.
3968  */
3969 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3970                      FW_PORT_CAP32_ANEG)
3971
3972 /**
3973  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3974  *      @caps16: a 16-bit Port Capabilities value
3975  *
3976  *      Returns the equivalent 32-bit Port Capabilities value.
3977  */
3978 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3979 {
3980         fw_port_cap32_t caps32 = 0;
3981
3982         #define CAP16_TO_CAP32(__cap) \
3983                 do { \
3984                         if (caps16 & FW_PORT_CAP_##__cap) \
3985                                 caps32 |= FW_PORT_CAP32_##__cap; \
3986                 } while (0)
3987
3988         CAP16_TO_CAP32(SPEED_100M);
3989         CAP16_TO_CAP32(SPEED_1G);
3990         CAP16_TO_CAP32(SPEED_25G);
3991         CAP16_TO_CAP32(SPEED_10G);
3992         CAP16_TO_CAP32(SPEED_40G);
3993         CAP16_TO_CAP32(SPEED_100G);
3994         CAP16_TO_CAP32(FC_RX);
3995         CAP16_TO_CAP32(FC_TX);
3996         CAP16_TO_CAP32(ANEG);
3997         CAP16_TO_CAP32(FORCE_PAUSE);
3998         CAP16_TO_CAP32(MDIAUTO);
3999         CAP16_TO_CAP32(MDISTRAIGHT);
4000         CAP16_TO_CAP32(FEC_RS);
4001         CAP16_TO_CAP32(FEC_BASER_RS);
4002         CAP16_TO_CAP32(802_3_PAUSE);
4003         CAP16_TO_CAP32(802_3_ASM_DIR);
4004
4005         #undef CAP16_TO_CAP32
4006
4007         return caps32;
4008 }
4009
4010 /**
4011  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4012  *      @caps32: a 32-bit Port Capabilities value
4013  *
4014  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
4015  *      not all 32-bit Port Capabilities can be represented in the 16-bit
4016  *      Port Capabilities and some fields/values may not make it.
4017  */
4018 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
4019 {
4020         fw_port_cap16_t caps16 = 0;
4021
4022         #define CAP32_TO_CAP16(__cap) \
4023                 do { \
4024                         if (caps32 & FW_PORT_CAP32_##__cap) \
4025                                 caps16 |= FW_PORT_CAP_##__cap; \
4026                 } while (0)
4027
4028         CAP32_TO_CAP16(SPEED_100M);
4029         CAP32_TO_CAP16(SPEED_1G);
4030         CAP32_TO_CAP16(SPEED_10G);
4031         CAP32_TO_CAP16(SPEED_25G);
4032         CAP32_TO_CAP16(SPEED_40G);
4033         CAP32_TO_CAP16(SPEED_100G);
4034         CAP32_TO_CAP16(FC_RX);
4035         CAP32_TO_CAP16(FC_TX);
4036         CAP32_TO_CAP16(802_3_PAUSE);
4037         CAP32_TO_CAP16(802_3_ASM_DIR);
4038         CAP32_TO_CAP16(ANEG);
4039         CAP32_TO_CAP16(FORCE_PAUSE);
4040         CAP32_TO_CAP16(MDIAUTO);
4041         CAP32_TO_CAP16(MDISTRAIGHT);
4042         CAP32_TO_CAP16(FEC_RS);
4043         CAP32_TO_CAP16(FEC_BASER_RS);
4044
4045         #undef CAP32_TO_CAP16
4046
4047         return caps16;
4048 }
4049
4050 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4051 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4052 {
4053         enum cc_pause cc_pause = 0;
4054
4055         if (fw_pause & FW_PORT_CAP32_FC_RX)
4056                 cc_pause |= PAUSE_RX;
4057         if (fw_pause & FW_PORT_CAP32_FC_TX)
4058                 cc_pause |= PAUSE_TX;
4059
4060         return cc_pause;
4061 }
4062
4063 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4064 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4065 {
4066         /* Translate orthogonal RX/TX Pause Controls for L1 Configure
4067          * commands, etc.
4068          */
4069         fw_port_cap32_t fw_pause = 0;
4070
4071         if (cc_pause & PAUSE_RX)
4072                 fw_pause |= FW_PORT_CAP32_FC_RX;
4073         if (cc_pause & PAUSE_TX)
4074                 fw_pause |= FW_PORT_CAP32_FC_TX;
4075         if (!(cc_pause & PAUSE_AUTONEG))
4076                 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4077
4078         /* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4079          * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4080          * Note that these bits are ignored in L1 Configure commands.
4081          */
4082         if (cc_pause & PAUSE_RX) {
4083                 if (cc_pause & PAUSE_TX)
4084                         fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4085                 else
4086                         fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4087                                     FW_PORT_CAP32_802_3_PAUSE;
4088         } else if (cc_pause & PAUSE_TX) {
4089                 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4090         }
4091
4092         return fw_pause;
4093 }
4094
4095 /* Translate Firmware Forward Error Correction specification to Common Code */
4096 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4097 {
4098         enum cc_fec cc_fec = 0;
4099
4100         if (fw_fec & FW_PORT_CAP32_FEC_RS)
4101                 cc_fec |= FEC_RS;
4102         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4103                 cc_fec |= FEC_BASER_RS;
4104
4105         return cc_fec;
4106 }
4107
4108 /* Translate Common Code Forward Error Correction specification to Firmware */
4109 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4110 {
4111         fw_port_cap32_t fw_fec = 0;
4112
4113         if (cc_fec & FEC_RS)
4114                 fw_fec |= FW_PORT_CAP32_FEC_RS;
4115         if (cc_fec & FEC_BASER_RS)
4116                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4117
4118         return fw_fec;
4119 }
4120
4121 /**
4122  *      t4_link_acaps - compute Link Advertised Port Capabilities
4123  *      @adapter: the adapter
4124  *      @port: the Port ID
4125  *      @lc: the Port's Link Configuration
4126  *
4127  *      Synthesize the Advertised Port Capabilities we'll be using based on
4128  *      the base Advertised Port Capabilities (which have been filtered by
4129  *      ADVERT_MASK) plus the individual controls for things like Pause
4130  *      Frames, Forward Error Correction, MDI, etc.
4131  */
4132 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4133                               struct link_config *lc)
4134 {
4135         fw_port_cap32_t fw_fc, fw_fec, acaps;
4136         unsigned int fw_mdi;
4137         char cc_fec;
4138
4139         fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4140
4141         /* Convert driver coding of Pause Frame Flow Control settings into the
4142          * Firmware's API.
4143          */
4144         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4145
4146         /* Convert Common Code Forward Error Control settings into the
4147          * Firmware's API.  If the current Requested FEC has "Automatic"
4148          * (IEEE 802.3) specified, then we use whatever the Firmware
4149          * sent us as part of its IEEE 802.3-based interpretation of
4150          * the Transceiver Module EPROM FEC parameters.  Otherwise we
4151          * use whatever is in the current Requested FEC settings.
4152          */
4153         if (lc->requested_fec & FEC_AUTO)
4154                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4155         else
4156                 cc_fec = lc->requested_fec;
4157         fw_fec = cc_to_fwcap_fec(cc_fec);
4158
4159         /* Figure out what our Requested Port Capabilities are going to be.
4160          * Note parallel structure in t4_handle_get_port_info() and
4161          * init_link_config().
4162          */
4163         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4164                 acaps = lc->acaps | fw_fc | fw_fec;
4165                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4166                 lc->fec = cc_fec;
4167         } else if (lc->autoneg == AUTONEG_DISABLE) {
4168                 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4169                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4170                 lc->fec = cc_fec;
4171         } else {
4172                 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4173         }
4174
4175         /* Some Requested Port Capabilities are trivially wrong if they exceed
4176          * the Physical Port Capabilities.  We can check that here and provide
4177          * moderately useful feedback in the system log.
4178          *
4179          * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4180          * we need to exclude this from this check in order to maintain
4181          * compatibility ...
4182          */
4183         if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4184                 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4185                         acaps, lc->pcaps);
4186                 return -EINVAL;
4187         }
4188
4189         return acaps;
4190 }
4191
4192 /**
4193  *      t4_link_l1cfg_core - apply link configuration to MAC/PHY
4194  *      @adapter: the adapter
4195  *      @mbox: the Firmware Mailbox to use
4196  *      @port: the Port ID
4197  *      @lc: the Port's Link Configuration
4198  *      @sleep_ok: if true we may sleep while awaiting command completion
4199  *      @timeout: time to wait for command to finish before timing out
4200  *              (negative implies @sleep_ok=false)
4201  *
4202  *      Set up a port's MAC and PHY according to a desired link configuration.
4203  *      - If the PHY can auto-negotiate first decide what to advertise, then
4204  *        enable/disable auto-negotiation as desired, and reset.
4205  *      - If the PHY does not auto-negotiate just reset it.
4206  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4207  *        otherwise do it later based on the outcome of auto-negotiation.
4208  */
4209 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4210                        unsigned int port, struct link_config *lc,
4211                        u8 sleep_ok, int timeout)
4212 {
4213         unsigned int fw_caps = adapter->params.fw_caps_support;
4214         struct fw_port_cmd cmd;
4215         fw_port_cap32_t rcap;
4216         int ret;
4217
4218         if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4219             lc->autoneg == AUTONEG_ENABLE) {
4220                 return -EINVAL;
4221         }
4222
4223         /* Compute our Requested Port Capabilities and send that on to the
4224          * Firmware.
4225          */
4226         rcap = t4_link_acaps(adapter, port, lc);
4227         memset(&cmd, 0, sizeof(cmd));
4228         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4229                                        FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4230                                        FW_PORT_CMD_PORTID_V(port));
4231         cmd.action_to_len16 =
4232                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4233                                                  ? FW_PORT_ACTION_L1_CFG
4234                                                  : FW_PORT_ACTION_L1_CFG32) |
4235                                                  FW_LEN16(cmd));
4236         if (fw_caps == FW_CAPS16)
4237                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4238         else
4239                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4240
4241         ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4242                                       sleep_ok, timeout);
4243
4244         /* Unfortunately, even if the Requested Port Capabilities "fit" within
4245          * the Physical Port Capabilities, some combinations of features may
4246          * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4247          * Error Correction.  So if the Firmware rejects the L1 Configure
4248          * request, flag that here.
4249          */
4250         if (ret) {
4251                 dev_err(adapter->pdev_dev,
4252                         "Requested Port Capabilities %#x rejected, error %d\n",
4253                         rcap, -ret);
4254                 return ret;
4255         }
4256         return 0;
4257 }
4258
4259 /**
4260  *      t4_restart_aneg - restart autonegotiation
4261  *      @adap: the adapter
4262  *      @mbox: mbox to use for the FW command
4263  *      @port: the port id
4264  *
4265  *      Restarts autonegotiation for the selected port.
4266  */
4267 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4268 {
4269         unsigned int fw_caps = adap->params.fw_caps_support;
4270         struct fw_port_cmd c;
4271
4272         memset(&c, 0, sizeof(c));
4273         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4274                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4275                                      FW_PORT_CMD_PORTID_V(port));
4276         c.action_to_len16 =
4277                 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4278                                                  ? FW_PORT_ACTION_L1_CFG
4279                                                  : FW_PORT_ACTION_L1_CFG32) |
4280                             FW_LEN16(c));
4281         if (fw_caps == FW_CAPS16)
4282                 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4283         else
4284                 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4285         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4286 }
4287
4288 typedef void (*int_handler_t)(struct adapter *adap);
4289
4290 struct intr_info {
4291         unsigned int mask;       /* bits to check in interrupt status */
4292         const char *msg;         /* message to print or NULL */
4293         short stat_idx;          /* stat counter to increment or -1 */
4294         unsigned short fatal;    /* whether the condition reported is fatal */
4295         int_handler_t int_handler; /* platform-specific int handler */
4296 };
4297
4298 /**
4299  *      t4_handle_intr_status - table driven interrupt handler
4300  *      @adapter: the adapter that generated the interrupt
4301  *      @reg: the interrupt status register to process
4302  *      @acts: table of interrupt actions
4303  *
4304  *      A table driven interrupt handler that applies a set of masks to an
4305  *      interrupt status word and performs the corresponding actions if the
4306  *      interrupts described by the mask have occurred.  The actions include
4307  *      optionally emitting a warning or alert message.  The table is terminated
4308  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
4309  *      conditions.
4310  */
4311 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4312                                  const struct intr_info *acts)
4313 {
4314         int fatal = 0;
4315         unsigned int mask = 0;
4316         unsigned int status = t4_read_reg(adapter, reg);
4317
4318         for ( ; acts->mask; ++acts) {
4319                 if (!(status & acts->mask))
4320                         continue;
4321                 if (acts->fatal) {
4322                         fatal++;
4323                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4324                                   status & acts->mask);
4325                 } else if (acts->msg && printk_ratelimit())
4326                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4327                                  status & acts->mask);
4328                 if (acts->int_handler)
4329                         acts->int_handler(adapter);
4330                 mask |= acts->mask;
4331         }
4332         status &= mask;
4333         if (status)                           /* clear processed interrupts */
4334                 t4_write_reg(adapter, reg, status);
4335         return fatal;
4336 }
4337
4338 /*
4339  * Interrupt handler for the PCIE module.
4340  */
4341 static void pcie_intr_handler(struct adapter *adapter)
4342 {
4343         static const struct intr_info sysbus_intr_info[] = {
4344                 { RNPP_F, "RXNP array parity error", -1, 1 },
4345                 { RPCP_F, "RXPC array parity error", -1, 1 },
4346                 { RCIP_F, "RXCIF array parity error", -1, 1 },
4347                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
4348                 { RFTP_F, "RXFT array parity error", -1, 1 },
4349                 { 0 }
4350         };
4351         static const struct intr_info pcie_port_intr_info[] = {
4352                 { TPCP_F, "TXPC array parity error", -1, 1 },
4353                 { TNPP_F, "TXNP array parity error", -1, 1 },
4354                 { TFTP_F, "TXFT array parity error", -1, 1 },
4355                 { TCAP_F, "TXCA array parity error", -1, 1 },
4356                 { TCIP_F, "TXCIF array parity error", -1, 1 },
4357                 { RCAP_F, "RXCA array parity error", -1, 1 },
4358                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
4359                 { RDPE_F, "Rx data parity error", -1, 1 },
4360                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
4361                 { 0 }
4362         };
4363         static const struct intr_info pcie_intr_info[] = {
4364                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4365                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4366                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4367                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4368                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4369                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4370                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4371                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4372                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4373                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4374                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4375                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4376                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4377                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4378                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4379                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4380                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4381                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4382                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4383                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4384                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4385                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4386                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4387                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4388                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4389                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4390                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4391                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
4392                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
4393                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
4394                   -1, 0 },
4395                 { 0 }
4396         };
4397
4398         static struct intr_info t5_pcie_intr_info[] = {
4399                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
4400                   -1, 1 },
4401                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4402                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4403                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4404                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4405                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4406                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4407                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4408                   -1, 1 },
4409                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4410                   -1, 1 },
4411                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4412                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4413                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4414                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4415                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
4416                   -1, 1 },
4417                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4418                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4419                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4420                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4421                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4422                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4423                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
4424                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4425                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4426                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4427                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4428                   -1, 1 },
4429                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4430                   -1, 1 },
4431                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4432                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4433                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4434                 { READRSPERR_F, "Outbound read error", -1, 0 },
4435                 { 0 }
4436         };
4437
4438         int fat;
4439
4440         if (is_t4(adapter->params.chip))
4441                 fat = t4_handle_intr_status(adapter,
4442                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4443                                 sysbus_intr_info) +
4444                         t4_handle_intr_status(adapter,
4445                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4446                                         pcie_port_intr_info) +
4447                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4448                                               pcie_intr_info);
4449         else
4450                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4451                                             t5_pcie_intr_info);
4452
4453         if (fat)
4454                 t4_fatal_err(adapter);
4455 }
4456
4457 /*
4458  * TP interrupt handler.
4459  */
4460 static void tp_intr_handler(struct adapter *adapter)
4461 {
4462         static const struct intr_info tp_intr_info[] = {
4463                 { 0x3fffffff, "TP parity error", -1, 1 },
4464                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4465                 { 0 }
4466         };
4467
4468         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4469                 t4_fatal_err(adapter);
4470 }
4471
4472 /*
4473  * SGE interrupt handler.
4474  */
4475 static void sge_intr_handler(struct adapter *adapter)
4476 {
4477         u32 v = 0, perr;
4478         u32 err;
4479
4480         static const struct intr_info sge_intr_info[] = {
4481                 { ERR_CPL_EXCEED_IQE_SIZE_F,
4482                   "SGE received CPL exceeding IQE size", -1, 1 },
4483                 { ERR_INVALID_CIDX_INC_F,
4484                   "SGE GTS CIDX increment too large", -1, 0 },
4485                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4486                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4487                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4488                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
4489                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4490                   0 },
4491                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4492                   0 },
4493                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4494                   0 },
4495                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4496                   0 },
4497                 { ERR_ING_CTXT_PRIO_F,
4498                   "SGE too many priority ingress contexts", -1, 0 },
4499                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4500                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4501                 { 0 }
4502         };
4503
4504         static struct intr_info t4t5_sge_intr_info[] = {
4505                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4506                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4507                 { ERR_EGR_CTXT_PRIO_F,
4508                   "SGE too many priority egress contexts", -1, 0 },
4509                 { 0 }
4510         };
4511
4512         perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4513         if (perr) {
4514                 v |= perr;
4515                 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4516                           perr);
4517         }
4518
4519         perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4520         if (perr) {
4521                 v |= perr;
4522                 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4523                           perr);
4524         }
4525
4526         if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4527                 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4528                 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4529                 perr &= ~ERR_T_RXCRC_F;
4530                 if (perr) {
4531                         v |= perr;
4532                         dev_alert(adapter->pdev_dev,
4533                                   "SGE Cause5 Parity Error %#x\n", perr);
4534                 }
4535         }
4536
4537         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4538         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4539                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4540                                            t4t5_sge_intr_info);
4541
4542         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4543         if (err & ERROR_QID_VALID_F) {
4544                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4545                         ERROR_QID_G(err));
4546                 if (err & UNCAPTURED_ERROR_F)
4547                         dev_err(adapter->pdev_dev,
4548                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
4549                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4550                              UNCAPTURED_ERROR_F);
4551         }
4552
4553         if (v != 0)
4554                 t4_fatal_err(adapter);
4555 }
4556
4557 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4558                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4559 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4560                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4561
4562 /*
4563  * CIM interrupt handler.
4564  */
4565 static void cim_intr_handler(struct adapter *adapter)
4566 {
4567         static const struct intr_info cim_intr_info[] = {
4568                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4569                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4570                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4571                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4572                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4573                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4574                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4575                 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4576                 { 0 }
4577         };
4578         static const struct intr_info cim_upintr_info[] = {
4579                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4580                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4581                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
4582                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
4583                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4584                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4585                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4586                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4587                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4588                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4589                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4590                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4591                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4592                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4593                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4594                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4595                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4596                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4597                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4598                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4599                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4600                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4601                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4602                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4603                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4604                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4605                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4606                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4607                 { 0 }
4608         };
4609
4610         u32 val, fw_err;
4611         int fat;
4612
4613         fw_err = t4_read_reg(adapter, PCIE_FW_A);
4614         if (fw_err & PCIE_FW_ERR_F)
4615                 t4_report_fw_error(adapter);
4616
4617         /* When the Firmware detects an internal error which normally
4618          * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4619          * in order to make sure the Host sees the Firmware Crash.  So
4620          * if we have a Timer0 interrupt and don't see a Firmware Crash,
4621          * ignore the Timer0 interrupt.
4622          */
4623
4624         val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4625         if (val & TIMER0INT_F)
4626                 if (!(fw_err & PCIE_FW_ERR_F) ||
4627                     (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4628                         t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4629                                      TIMER0INT_F);
4630
4631         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4632                                     cim_intr_info) +
4633               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4634                                     cim_upintr_info);
4635         if (fat)
4636                 t4_fatal_err(adapter);
4637 }
4638
4639 /*
4640  * ULP RX interrupt handler.
4641  */
4642 static void ulprx_intr_handler(struct adapter *adapter)
4643 {
4644         static const struct intr_info ulprx_intr_info[] = {
4645                 { 0x1800000, "ULPRX context error", -1, 1 },
4646                 { 0x7fffff, "ULPRX parity error", -1, 1 },
4647                 { 0 }
4648         };
4649
4650         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4651                 t4_fatal_err(adapter);
4652 }
4653
4654 /*
4655  * ULP TX interrupt handler.
4656  */
4657 static void ulptx_intr_handler(struct adapter *adapter)
4658 {
4659         static const struct intr_info ulptx_intr_info[] = {
4660                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4661                   0 },
4662                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4663                   0 },
4664                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4665                   0 },
4666                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4667                   0 },
4668                 { 0xfffffff, "ULPTX parity error", -1, 1 },
4669                 { 0 }
4670         };
4671
4672         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4673                 t4_fatal_err(adapter);
4674 }
4675
4676 /*
4677  * PM TX interrupt handler.
4678  */
4679 static void pmtx_intr_handler(struct adapter *adapter)
4680 {
4681         static const struct intr_info pmtx_intr_info[] = {
4682                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4683                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4684                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4685                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4686                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4687                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4688                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4689                   -1, 1 },
4690                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4691                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4692                 { 0 }
4693         };
4694
4695         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4696                 t4_fatal_err(adapter);
4697 }
4698
4699 /*
4700  * PM RX interrupt handler.
4701  */
4702 static void pmrx_intr_handler(struct adapter *adapter)
4703 {
4704         static const struct intr_info pmrx_intr_info[] = {
4705                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4706                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4707                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4708                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4709                   -1, 1 },
4710                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4711                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4712                 { 0 }
4713         };
4714
4715         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4716                 t4_fatal_err(adapter);
4717 }
4718
4719 /*
4720  * CPL switch interrupt handler.
4721  */
4722 static void cplsw_intr_handler(struct adapter *adapter)
4723 {
4724         static const struct intr_info cplsw_intr_info[] = {
4725                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4726                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4727                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4728                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4729                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4730                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4731                 { 0 }
4732         };
4733
4734         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4735                 t4_fatal_err(adapter);
4736 }
4737
4738 /*
4739  * LE interrupt handler.
4740  */
4741 static void le_intr_handler(struct adapter *adap)
4742 {
4743         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4744         static const struct intr_info le_intr_info[] = {
4745                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4746                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4747                 { PARITYERR_F, "LE parity error", -1, 1 },
4748                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4749                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4750                 { 0 }
4751         };
4752
4753         static struct intr_info t6_le_intr_info[] = {
4754                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4755                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4756                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4757                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4758                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4759                 { 0 }
4760         };
4761
4762         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4763                                   (chip <= CHELSIO_T5) ?
4764                                   le_intr_info : t6_le_intr_info))
4765                 t4_fatal_err(adap);
4766 }
4767
4768 /*
4769  * MPS interrupt handler.
4770  */
4771 static void mps_intr_handler(struct adapter *adapter)
4772 {
4773         static const struct intr_info mps_rx_intr_info[] = {
4774                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4775                 { 0 }
4776         };
4777         static const struct intr_info mps_tx_intr_info[] = {
4778                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4779                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4780                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4781                   -1, 1 },
4782                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4783                   -1, 1 },
4784                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4785                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4786                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4787                 { 0 }
4788         };
4789         static const struct intr_info t6_mps_tx_intr_info[] = {
4790                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4791                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4792                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4793                   -1, 1 },
4794                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4795                   -1, 1 },
4796                 /* MPS Tx Bubble is normal for T6 */
4797                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4798                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4799                 { 0 }
4800         };
4801         static const struct intr_info mps_trc_intr_info[] = {
4802                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4803                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4804                   -1, 1 },
4805                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4806                 { 0 }
4807         };
4808         static const struct intr_info mps_stat_sram_intr_info[] = {
4809                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4810                 { 0 }
4811         };
4812         static const struct intr_info mps_stat_tx_intr_info[] = {
4813                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4814                 { 0 }
4815         };
4816         static const struct intr_info mps_stat_rx_intr_info[] = {
4817                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4818                 { 0 }
4819         };
4820         static const struct intr_info mps_cls_intr_info[] = {
4821                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4822                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4823                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4824                 { 0 }
4825         };
4826
4827         int fat;
4828
4829         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4830                                     mps_rx_intr_info) +
4831               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4832                                     is_t6(adapter->params.chip)
4833                                     ? t6_mps_tx_intr_info
4834                                     : mps_tx_intr_info) +
4835               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4836                                     mps_trc_intr_info) +
4837               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4838                                     mps_stat_sram_intr_info) +
4839               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4840                                     mps_stat_tx_intr_info) +
4841               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4842                                     mps_stat_rx_intr_info) +
4843               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4844                                     mps_cls_intr_info);
4845
4846         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4847         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4848         if (fat)
4849                 t4_fatal_err(adapter);
4850 }
4851
4852 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4853                       ECC_UE_INT_CAUSE_F)
4854
4855 /*
4856  * EDC/MC interrupt handler.
4857  */
4858 static void mem_intr_handler(struct adapter *adapter, int idx)
4859 {
4860         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4861
4862         unsigned int addr, cnt_addr, v;
4863
4864         if (idx <= MEM_EDC1) {
4865                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4866                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4867         } else if (idx == MEM_MC) {
4868                 if (is_t4(adapter->params.chip)) {
4869                         addr = MC_INT_CAUSE_A;
4870                         cnt_addr = MC_ECC_STATUS_A;
4871                 } else {
4872                         addr = MC_P_INT_CAUSE_A;
4873                         cnt_addr = MC_P_ECC_STATUS_A;
4874                 }
4875         } else {
4876                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4877                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4878         }
4879
4880         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4881         if (v & PERR_INT_CAUSE_F)
4882                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4883                           name[idx]);
4884         if (v & ECC_CE_INT_CAUSE_F) {
4885                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4886
4887                 t4_edc_err_read(adapter, idx);
4888
4889                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4890                 if (printk_ratelimit())
4891                         dev_warn(adapter->pdev_dev,
4892                                  "%u %s correctable ECC data error%s\n",
4893                                  cnt, name[idx], cnt > 1 ? "s" : "");
4894         }
4895         if (v & ECC_UE_INT_CAUSE_F)
4896                 dev_alert(adapter->pdev_dev,
4897                           "%s uncorrectable ECC data error\n", name[idx]);
4898
4899         t4_write_reg(adapter, addr, v);
4900         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4901                 t4_fatal_err(adapter);
4902 }
4903
4904 /*
4905  * MA interrupt handler.
4906  */
4907 static void ma_intr_handler(struct adapter *adap)
4908 {
4909         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4910
4911         if (status & MEM_PERR_INT_CAUSE_F) {
4912                 dev_alert(adap->pdev_dev,
4913                           "MA parity error, parity status %#x\n",
4914                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4915                 if (is_t5(adap->params.chip))
4916                         dev_alert(adap->pdev_dev,
4917                                   "MA parity error, parity status %#x\n",
4918                                   t4_read_reg(adap,
4919                                               MA_PARITY_ERROR_STATUS2_A));
4920         }
4921         if (status & MEM_WRAP_INT_CAUSE_F) {
4922                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4923                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4924                           "client %u to address %#x\n",
4925                           MEM_WRAP_CLIENT_NUM_G(v),
4926                           MEM_WRAP_ADDRESS_G(v) << 4);
4927         }
4928         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4929         t4_fatal_err(adap);
4930 }
4931
4932 /*
4933  * SMB interrupt handler.
4934  */
4935 static void smb_intr_handler(struct adapter *adap)
4936 {
4937         static const struct intr_info smb_intr_info[] = {
4938                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4939                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4940                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4941                 { 0 }
4942         };
4943
4944         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4945                 t4_fatal_err(adap);
4946 }
4947
4948 /*
4949  * NC-SI interrupt handler.
4950  */
4951 static void ncsi_intr_handler(struct adapter *adap)
4952 {
4953         static const struct intr_info ncsi_intr_info[] = {
4954                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4955                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4956                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4957                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4958                 { 0 }
4959         };
4960
4961         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4962                 t4_fatal_err(adap);
4963 }
4964
4965 /*
4966  * XGMAC interrupt handler.
4967  */
4968 static void xgmac_intr_handler(struct adapter *adap, int port)
4969 {
4970         u32 v, int_cause_reg;
4971
4972         if (is_t4(adap->params.chip))
4973                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4974         else
4975                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4976
4977         v = t4_read_reg(adap, int_cause_reg);
4978
4979         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4980         if (!v)
4981                 return;
4982
4983         if (v & TXFIFO_PRTY_ERR_F)
4984                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4985                           port);
4986         if (v & RXFIFO_PRTY_ERR_F)
4987                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4988                           port);
4989         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4990         t4_fatal_err(adap);
4991 }
4992
4993 /*
4994  * PL interrupt handler.
4995  */
4996 static void pl_intr_handler(struct adapter *adap)
4997 {
4998         static const struct intr_info pl_intr_info[] = {
4999                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
5000                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
5001                 { 0 }
5002         };
5003
5004         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
5005                 t4_fatal_err(adap);
5006 }
5007
5008 #define PF_INTR_MASK (PFSW_F)
5009 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
5010                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
5011                 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
5012
5013 /**
5014  *      t4_slow_intr_handler - control path interrupt handler
5015  *      @adapter: the adapter
5016  *
5017  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
5018  *      The designation 'slow' is because it involves register reads, while
5019  *      data interrupts typically don't involve any MMIOs.
5020  */
5021 int t4_slow_intr_handler(struct adapter *adapter)
5022 {
5023         /* There are rare cases where a PL_INT_CAUSE bit may end up getting
5024          * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5025          * easiest just to mask that case here.
5026          */
5027         u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5028         u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5029         u32 cause = raw_cause & enable;
5030
5031         if (!(cause & GLBL_INTR_MASK))
5032                 return 0;
5033         if (cause & CIM_F)
5034                 cim_intr_handler(adapter);
5035         if (cause & MPS_F)
5036                 mps_intr_handler(adapter);
5037         if (cause & NCSI_F)
5038                 ncsi_intr_handler(adapter);
5039         if (cause & PL_F)
5040                 pl_intr_handler(adapter);
5041         if (cause & SMB_F)
5042                 smb_intr_handler(adapter);
5043         if (cause & XGMAC0_F)
5044                 xgmac_intr_handler(adapter, 0);
5045         if (cause & XGMAC1_F)
5046                 xgmac_intr_handler(adapter, 1);
5047         if (cause & XGMAC_KR0_F)
5048                 xgmac_intr_handler(adapter, 2);
5049         if (cause & XGMAC_KR1_F)
5050                 xgmac_intr_handler(adapter, 3);
5051         if (cause & PCIE_F)
5052                 pcie_intr_handler(adapter);
5053         if (cause & MC_F)
5054                 mem_intr_handler(adapter, MEM_MC);
5055         if (is_t5(adapter->params.chip) && (cause & MC1_F))
5056                 mem_intr_handler(adapter, MEM_MC1);
5057         if (cause & EDC0_F)
5058                 mem_intr_handler(adapter, MEM_EDC0);
5059         if (cause & EDC1_F)
5060                 mem_intr_handler(adapter, MEM_EDC1);
5061         if (cause & LE_F)
5062                 le_intr_handler(adapter);
5063         if (cause & TP_F)
5064                 tp_intr_handler(adapter);
5065         if (cause & MA_F)
5066                 ma_intr_handler(adapter);
5067         if (cause & PM_TX_F)
5068                 pmtx_intr_handler(adapter);
5069         if (cause & PM_RX_F)
5070                 pmrx_intr_handler(adapter);
5071         if (cause & ULP_RX_F)
5072                 ulprx_intr_handler(adapter);
5073         if (cause & CPL_SWITCH_F)
5074                 cplsw_intr_handler(adapter);
5075         if (cause & SGE_F)
5076                 sge_intr_handler(adapter);
5077         if (cause & ULP_TX_F)
5078                 ulptx_intr_handler(adapter);
5079
5080         /* Clear the interrupts just processed for which we are the master. */
5081         t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5082         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5083         return 1;
5084 }
5085
5086 /**
5087  *      t4_intr_enable - enable interrupts
5088  *      @adapter: the adapter whose interrupts should be enabled
5089  *
5090  *      Enable PF-specific interrupts for the calling function and the top-level
5091  *      interrupt concentrator for global interrupts.  Interrupts are already
5092  *      enabled at each module, here we just enable the roots of the interrupt
5093  *      hierarchies.
5094  *
5095  *      Note: this function should be called only when the driver manages
5096  *      non PF-specific interrupts from the various HW modules.  Only one PCI
5097  *      function at a time should be doing this.
5098  */
5099 void t4_intr_enable(struct adapter *adapter)
5100 {
5101         u32 val = 0;
5102         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5103         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5104                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5105
5106         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5107                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5108         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5109                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5110                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5111                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5112                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5113                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5114                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5115         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5116         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5117 }
5118
5119 /**
5120  *      t4_intr_disable - disable interrupts
5121  *      @adapter: the adapter whose interrupts should be disabled
5122  *
5123  *      Disable interrupts.  We only disable the top-level interrupt
5124  *      concentrators.  The caller must be a PCI function managing global
5125  *      interrupts.
5126  */
5127 void t4_intr_disable(struct adapter *adapter)
5128 {
5129         u32 whoami, pf;
5130
5131         if (pci_channel_offline(adapter->pdev))
5132                 return;
5133
5134         whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5135         pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5136                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5137
5138         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5139         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5140 }
5141
5142 unsigned int t4_chip_rss_size(struct adapter *adap)
5143 {
5144         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5145                 return RSS_NENTRIES;
5146         else
5147                 return T6_RSS_NENTRIES;
5148 }
5149
5150 /**
5151  *      t4_config_rss_range - configure a portion of the RSS mapping table
5152  *      @adapter: the adapter
5153  *      @mbox: mbox to use for the FW command
5154  *      @viid: virtual interface whose RSS subtable is to be written
5155  *      @start: start entry in the table to write
5156  *      @n: how many table entries to write
5157  *      @rspq: values for the response queue lookup table
5158  *      @nrspq: number of values in @rspq
5159  *
5160  *      Programs the selected part of the VI's RSS mapping table with the
5161  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
5162  *      until the full table range is populated.
5163  *
5164  *      The caller must ensure the values in @rspq are in the range allowed for
5165  *      @viid.
5166  */
5167 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5168                         int start, int n, const u16 *rspq, unsigned int nrspq)
5169 {
5170         int ret;
5171         const u16 *rsp = rspq;
5172         const u16 *rsp_end = rspq + nrspq;
5173         struct fw_rss_ind_tbl_cmd cmd;
5174
5175         memset(&cmd, 0, sizeof(cmd));
5176         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5177                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5178                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
5179         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5180
5181         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5182         while (n > 0) {
5183                 int nq = min(n, 32);
5184                 __be32 *qp = &cmd.iq0_to_iq2;
5185
5186                 cmd.niqid = cpu_to_be16(nq);
5187                 cmd.startidx = cpu_to_be16(start);
5188
5189                 start += nq;
5190                 n -= nq;
5191
5192                 while (nq > 0) {
5193                         unsigned int v;
5194
5195                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5196                         if (++rsp >= rsp_end)
5197                                 rsp = rspq;
5198                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5199                         if (++rsp >= rsp_end)
5200                                 rsp = rspq;
5201                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5202                         if (++rsp >= rsp_end)
5203                                 rsp = rspq;
5204
5205                         *qp++ = cpu_to_be32(v);
5206                         nq -= 3;
5207                 }
5208
5209                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5210                 if (ret)
5211                         return ret;
5212         }
5213         return 0;
5214 }
5215
5216 /**
5217  *      t4_config_glbl_rss - configure the global RSS mode
5218  *      @adapter: the adapter
5219  *      @mbox: mbox to use for the FW command
5220  *      @mode: global RSS mode
5221  *      @flags: mode-specific flags
5222  *
5223  *      Sets the global RSS mode.
5224  */
5225 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5226                        unsigned int flags)
5227 {
5228         struct fw_rss_glb_config_cmd c;
5229
5230         memset(&c, 0, sizeof(c));
5231         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5232                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5233         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5234         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5235                 c.u.manual.mode_pkd =
5236                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5237         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5238                 c.u.basicvirtual.mode_pkd =
5239                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5240                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5241         } else
5242                 return -EINVAL;
5243         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5244 }
5245
5246 /**
5247  *      t4_config_vi_rss - configure per VI RSS settings
5248  *      @adapter: the adapter
5249  *      @mbox: mbox to use for the FW command
5250  *      @viid: the VI id
5251  *      @flags: RSS flags
5252  *      @defq: id of the default RSS queue for the VI.
5253  *
5254  *      Configures VI-specific RSS properties.
5255  */
5256 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5257                      unsigned int flags, unsigned int defq)
5258 {
5259         struct fw_rss_vi_config_cmd c;
5260
5261         memset(&c, 0, sizeof(c));
5262         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5263                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5264                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5265         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5266         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5267                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5268         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5269 }
5270
5271 /* Read an RSS table row */
5272 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5273 {
5274         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5275         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5276                                    5, 0, val);
5277 }
5278
5279 /**
5280  *      t4_read_rss - read the contents of the RSS mapping table
5281  *      @adapter: the adapter
5282  *      @map: holds the contents of the RSS mapping table
5283  *
5284  *      Reads the contents of the RSS hash->queue mapping table.
5285  */
5286 int t4_read_rss(struct adapter *adapter, u16 *map)
5287 {
5288         int i, ret, nentries;
5289         u32 val;
5290
5291         nentries = t4_chip_rss_size(adapter);
5292         for (i = 0; i < nentries / 2; ++i) {
5293                 ret = rd_rss_row(adapter, i, &val);
5294                 if (ret)
5295                         return ret;
5296                 *map++ = LKPTBLQUEUE0_G(val);
5297                 *map++ = LKPTBLQUEUE1_G(val);
5298         }
5299         return 0;
5300 }
5301
5302 static unsigned int t4_use_ldst(struct adapter *adap)
5303 {
5304         return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5305 }
5306
5307 /**
5308  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5309  * @adap: the adapter
5310  * @cmd: TP fw ldst address space type
5311  * @vals: where the indirect register values are stored/written
5312  * @nregs: how many indirect registers to read/write
5313  * @start_idx: index of first indirect register to read/write
5314  * @rw: Read (1) or Write (0)
5315  * @sleep_ok: if true we may sleep while awaiting command completion
5316  *
5317  * Access TP indirect registers through LDST
5318  */
5319 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5320                             unsigned int nregs, unsigned int start_index,
5321                             unsigned int rw, bool sleep_ok)
5322 {
5323         int ret = 0;
5324         unsigned int i;
5325         struct fw_ldst_cmd c;
5326
5327         for (i = 0; i < nregs; i++) {
5328                 memset(&c, 0, sizeof(c));
5329                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5330                                                 FW_CMD_REQUEST_F |
5331                                                 (rw ? FW_CMD_READ_F :
5332                                                       FW_CMD_WRITE_F) |
5333                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
5334                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5335
5336                 c.u.addrval.addr = cpu_to_be32(start_index + i);
5337                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5338                 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5339                                       sleep_ok);
5340                 if (ret)
5341                         return ret;
5342
5343                 if (rw)
5344                         vals[i] = be32_to_cpu(c.u.addrval.val);
5345         }
5346         return 0;
5347 }
5348
5349 /**
5350  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5351  * @adap: the adapter
5352  * @reg_addr: Address Register
5353  * @reg_data: Data register
5354  * @buff: where the indirect register values are stored/written
5355  * @nregs: how many indirect registers to read/write
5356  * @start_index: index of first indirect register to read/write
5357  * @rw: READ(1) or WRITE(0)
5358  * @sleep_ok: if true we may sleep while awaiting command completion
5359  *
5360  * Read/Write TP indirect registers through LDST if possible.
5361  * Else, use backdoor access
5362  **/
5363 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5364                               u32 *buff, u32 nregs, u32 start_index, int rw,
5365                               bool sleep_ok)
5366 {
5367         int rc = -EINVAL;
5368         int cmd;
5369
5370         switch (reg_addr) {
5371         case TP_PIO_ADDR_A:
5372                 cmd = FW_LDST_ADDRSPC_TP_PIO;
5373                 break;
5374         case TP_TM_PIO_ADDR_A:
5375                 cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5376                 break;
5377         case TP_MIB_INDEX_A:
5378                 cmd = FW_LDST_ADDRSPC_TP_MIB;
5379                 break;
5380         default:
5381                 goto indirect_access;
5382         }
5383
5384         if (t4_use_ldst(adap))
5385                 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5386                                       sleep_ok);
5387
5388 indirect_access:
5389
5390         if (rc) {
5391                 if (rw)
5392                         t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5393                                          start_index);
5394                 else
5395                         t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5396                                           start_index);
5397         }
5398 }
5399
5400 /**
5401  * t4_tp_pio_read - Read TP PIO registers
5402  * @adap: the adapter
5403  * @buff: where the indirect register values are written
5404  * @nregs: how many indirect registers to read
5405  * @start_index: index of first indirect register to read
5406  * @sleep_ok: if true we may sleep while awaiting command completion
5407  *
5408  * Read TP PIO Registers
5409  **/
5410 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5411                     u32 start_index, bool sleep_ok)
5412 {
5413         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5414                           start_index, 1, sleep_ok);
5415 }
5416
5417 /**
5418  * t4_tp_pio_write - Write TP PIO registers
5419  * @adap: the adapter
5420  * @buff: where the indirect register values are stored
5421  * @nregs: how many indirect registers to write
5422  * @start_index: index of first indirect register to write
5423  * @sleep_ok: if true we may sleep while awaiting command completion
5424  *
5425  * Write TP PIO Registers
5426  **/
5427 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5428                             u32 start_index, bool sleep_ok)
5429 {
5430         t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5431                           start_index, 0, sleep_ok);
5432 }
5433
5434 /**
5435  * t4_tp_tm_pio_read - Read TP TM PIO registers
5436  * @adap: the adapter
5437  * @buff: where the indirect register values are written
5438  * @nregs: how many indirect registers to read
5439  * @start_index: index of first indirect register to read
5440  * @sleep_ok: if true we may sleep while awaiting command completion
5441  *
5442  * Read TP TM PIO Registers
5443  **/
5444 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5445                        u32 start_index, bool sleep_ok)
5446 {
5447         t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5448                           nregs, start_index, 1, sleep_ok);
5449 }
5450
5451 /**
5452  * t4_tp_mib_read - Read TP MIB registers
5453  * @adap: the adapter
5454  * @buff: where the indirect register values are written
5455  * @nregs: how many indirect registers to read
5456  * @start_index: index of first indirect register to read
5457  * @sleep_ok: if true we may sleep while awaiting command completion
5458  *
5459  * Read TP MIB Registers
5460  **/
5461 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5462                     bool sleep_ok)
5463 {
5464         t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5465                           start_index, 1, sleep_ok);
5466 }
5467
5468 /**
5469  *      t4_read_rss_key - read the global RSS key
5470  *      @adap: the adapter
5471  *      @key: 10-entry array holding the 320-bit RSS key
5472  *      @sleep_ok: if true we may sleep while awaiting command completion
5473  *
5474  *      Reads the global 320-bit RSS key.
5475  */
5476 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5477 {
5478         t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5479 }
5480
5481 /**
5482  *      t4_write_rss_key - program one of the RSS keys
5483  *      @adap: the adapter
5484  *      @key: 10-entry array holding the 320-bit RSS key
5485  *      @idx: which RSS key to write
5486  *      @sleep_ok: if true we may sleep while awaiting command completion
5487  *
5488  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
5489  *      0..15 the corresponding entry in the RSS key table is written,
5490  *      otherwise the global RSS key is written.
5491  */
5492 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5493                       bool sleep_ok)
5494 {
5495         u8 rss_key_addr_cnt = 16;
5496         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5497
5498         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5499          * allows access to key addresses 16-63 by using KeyWrAddrX
5500          * as index[5:4](upper 2) into key table
5501          */
5502         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5503             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5504                 rss_key_addr_cnt = 32;
5505
5506         t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5507
5508         if (idx >= 0 && idx < rss_key_addr_cnt) {
5509                 if (rss_key_addr_cnt > 16)
5510                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5511                                      KEYWRADDRX_V(idx >> 4) |
5512                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
5513                 else
5514                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5515                                      KEYWRADDR_V(idx) | KEYWREN_F);
5516         }
5517 }
5518
5519 /**
5520  *      t4_read_rss_pf_config - read PF RSS Configuration Table
5521  *      @adapter: the adapter
5522  *      @index: the entry in the PF RSS table to read
5523  *      @valp: where to store the returned value
5524  *      @sleep_ok: if true we may sleep while awaiting command completion
5525  *
5526  *      Reads the PF RSS Configuration Table at the specified index and returns
5527  *      the value found there.
5528  */
5529 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5530                            u32 *valp, bool sleep_ok)
5531 {
5532         t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5533 }
5534
5535 /**
5536  *      t4_read_rss_vf_config - read VF RSS Configuration Table
5537  *      @adapter: the adapter
5538  *      @index: the entry in the VF RSS table to read
5539  *      @vfl: where to store the returned VFL
5540  *      @vfh: where to store the returned VFH
5541  *      @sleep_ok: if true we may sleep while awaiting command completion
5542  *
5543  *      Reads the VF RSS Configuration Table at the specified index and returns
5544  *      the (VFL, VFH) values found there.
5545  */
5546 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5547                            u32 *vfl, u32 *vfh, bool sleep_ok)
5548 {
5549         u32 vrt, mask, data;
5550
5551         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5552                 mask = VFWRADDR_V(VFWRADDR_M);
5553                 data = VFWRADDR_V(index);
5554         } else {
5555                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5556                  data = T6_VFWRADDR_V(index);
5557         }
5558
5559         /* Request that the index'th VF Table values be read into VFL/VFH.
5560          */
5561         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5562         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5563         vrt |= data | VFRDEN_F;
5564         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5565
5566         /* Grab the VFL/VFH values ...
5567          */
5568         t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5569         t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5570 }
5571
5572 /**
5573  *      t4_read_rss_pf_map - read PF RSS Map
5574  *      @adapter: the adapter
5575  *      @sleep_ok: if true we may sleep while awaiting command completion
5576  *
5577  *      Reads the PF RSS Map register and returns its value.
5578  */
5579 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5580 {
5581         u32 pfmap;
5582
5583         t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5584         return pfmap;
5585 }
5586
5587 /**
5588  *      t4_read_rss_pf_mask - read PF RSS Mask
5589  *      @adapter: the adapter
5590  *      @sleep_ok: if true we may sleep while awaiting command completion
5591  *
5592  *      Reads the PF RSS Mask register and returns its value.
5593  */
5594 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5595 {
5596         u32 pfmask;
5597
5598         t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5599         return pfmask;
5600 }
5601
5602 /**
5603  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
5604  *      @adap: the adapter
5605  *      @v4: holds the TCP/IP counter values
5606  *      @v6: holds the TCP/IPv6 counter values
5607  *      @sleep_ok: if true we may sleep while awaiting command completion
5608  *
5609  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5610  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5611  */
5612 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5613                          struct tp_tcp_stats *v6, bool sleep_ok)
5614 {
5615         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5616
5617 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5618 #define STAT(x)     val[STAT_IDX(x)]
5619 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5620
5621         if (v4) {
5622                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5623                                TP_MIB_TCP_OUT_RST_A, sleep_ok);
5624                 v4->tcp_out_rsts = STAT(OUT_RST);
5625                 v4->tcp_in_segs  = STAT64(IN_SEG);
5626                 v4->tcp_out_segs = STAT64(OUT_SEG);
5627                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
5628         }
5629         if (v6) {
5630                 t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5631                                TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5632                 v6->tcp_out_rsts = STAT(OUT_RST);
5633                 v6->tcp_in_segs  = STAT64(IN_SEG);
5634                 v6->tcp_out_segs = STAT64(OUT_SEG);
5635                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
5636         }
5637 #undef STAT64
5638 #undef STAT
5639 #undef STAT_IDX
5640 }
5641
5642 /**
5643  *      t4_tp_get_err_stats - read TP's error MIB counters
5644  *      @adap: the adapter
5645  *      @st: holds the counter values
5646  *      @sleep_ok: if true we may sleep while awaiting command completion
5647  *
5648  *      Returns the values of TP's error counters.
5649  */
5650 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5651                          bool sleep_ok)
5652 {
5653         int nchan = adap->params.arch.nchan;
5654
5655         t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5656                        sleep_ok);
5657         t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5658                        sleep_ok);
5659         t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5660                        sleep_ok);
5661         t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5662                        TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5663         t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5664                        TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5665         t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5666                        sleep_ok);
5667         t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5668                        TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5669         t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5670                        TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5671         t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5672                        sleep_ok);
5673 }
5674
5675 /**
5676  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
5677  *      @adap: the adapter
5678  *      @st: holds the counter values
5679  *      @sleep_ok: if true we may sleep while awaiting command completion
5680  *
5681  *      Returns the values of TP's CPL counters.
5682  */
5683 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5684                          bool sleep_ok)
5685 {
5686         int nchan = adap->params.arch.nchan;
5687
5688         t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5689
5690         t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5691 }
5692
5693 /**
5694  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5695  *      @adap: the adapter
5696  *      @st: holds the counter values
5697  *      @sleep_ok: if true we may sleep while awaiting command completion
5698  *
5699  *      Returns the values of TP's RDMA counters.
5700  */
5701 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5702                           bool sleep_ok)
5703 {
5704         t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5705                        sleep_ok);
5706 }
5707
5708 /**
5709  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5710  *      @adap: the adapter
5711  *      @idx: the port index
5712  *      @st: holds the counter values
5713  *      @sleep_ok: if true we may sleep while awaiting command completion
5714  *
5715  *      Returns the values of TP's FCoE counters for the selected port.
5716  */
5717 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5718                        struct tp_fcoe_stats *st, bool sleep_ok)
5719 {
5720         u32 val[2];
5721
5722         t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5723                        sleep_ok);
5724
5725         t4_tp_mib_read(adap, &st->frames_drop, 1,
5726                        TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5727
5728         t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5729                        sleep_ok);
5730
5731         st->octets_ddp = ((u64)val[0] << 32) | val[1];
5732 }
5733
5734 /**
5735  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5736  *      @adap: the adapter
5737  *      @st: holds the counter values
5738  *      @sleep_ok: if true we may sleep while awaiting command completion
5739  *
5740  *      Returns the values of TP's counters for non-TCP directly-placed packets.
5741  */
5742 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5743                       bool sleep_ok)
5744 {
5745         u32 val[4];
5746
5747         t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5748         st->frames = val[0];
5749         st->drops = val[1];
5750         st->octets = ((u64)val[2] << 32) | val[3];
5751 }
5752
5753 /**
5754  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
5755  *      @adap: the adapter
5756  *      @mtus: where to store the MTU values
5757  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
5758  *
5759  *      Reads the HW path MTU table.
5760  */
5761 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5762 {
5763         u32 v;
5764         int i;
5765
5766         for (i = 0; i < NMTUS; ++i) {
5767                 t4_write_reg(adap, TP_MTU_TABLE_A,
5768                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
5769                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5770                 mtus[i] = MTUVALUE_G(v);
5771                 if (mtu_log)
5772                         mtu_log[i] = MTUWIDTH_G(v);
5773         }
5774 }
5775
5776 /**
5777  *      t4_read_cong_tbl - reads the congestion control table
5778  *      @adap: the adapter
5779  *      @incr: where to store the alpha values
5780  *
5781  *      Reads the additive increments programmed into the HW congestion
5782  *      control table.
5783  */
5784 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5785 {
5786         unsigned int mtu, w;
5787
5788         for (mtu = 0; mtu < NMTUS; ++mtu)
5789                 for (w = 0; w < NCCTRL_WIN; ++w) {
5790                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
5791                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
5792                         incr[mtu][w] = (u16)t4_read_reg(adap,
5793                                                 TP_CCTRL_TABLE_A) & 0x1fff;
5794                 }
5795 }
5796
5797 /**
5798  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5799  *      @adap: the adapter
5800  *      @addr: the indirect TP register address
5801  *      @mask: specifies the field within the register to modify
5802  *      @val: new value for the field
5803  *
5804  *      Sets a field of an indirect TP register to the given value.
5805  */
5806 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5807                             unsigned int mask, unsigned int val)
5808 {
5809         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5810         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5811         t4_write_reg(adap, TP_PIO_DATA_A, val);
5812 }
5813
5814 /**
5815  *      init_cong_ctrl - initialize congestion control parameters
5816  *      @a: the alpha values for congestion control
5817  *      @b: the beta values for congestion control
5818  *
5819  *      Initialize the congestion control parameters.
5820  */
5821 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5822 {
5823         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5824         a[9] = 2;
5825         a[10] = 3;
5826         a[11] = 4;
5827         a[12] = 5;
5828         a[13] = 6;
5829         a[14] = 7;
5830         a[15] = 8;
5831         a[16] = 9;
5832         a[17] = 10;
5833         a[18] = 14;
5834         a[19] = 17;
5835         a[20] = 21;
5836         a[21] = 25;
5837         a[22] = 30;
5838         a[23] = 35;
5839         a[24] = 45;
5840         a[25] = 60;
5841         a[26] = 80;
5842         a[27] = 100;
5843         a[28] = 200;
5844         a[29] = 300;
5845         a[30] = 400;
5846         a[31] = 500;
5847
5848         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5849         b[9] = b[10] = 1;
5850         b[11] = b[12] = 2;
5851         b[13] = b[14] = b[15] = b[16] = 3;
5852         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5853         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5854         b[28] = b[29] = 6;
5855         b[30] = b[31] = 7;
5856 }
5857
5858 /* The minimum additive increment value for the congestion control table */
5859 #define CC_MIN_INCR 2U
5860
5861 /**
5862  *      t4_load_mtus - write the MTU and congestion control HW tables
5863  *      @adap: the adapter
5864  *      @mtus: the values for the MTU table
5865  *      @alpha: the values for the congestion control alpha parameter
5866  *      @beta: the values for the congestion control beta parameter
5867  *
5868  *      Write the HW MTU table with the supplied MTUs and the high-speed
5869  *      congestion control table with the supplied alpha, beta, and MTUs.
5870  *      We write the two tables together because the additive increments
5871  *      depend on the MTUs.
5872  */
5873 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5874                   const unsigned short *alpha, const unsigned short *beta)
5875 {
5876         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5877                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5878                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5879                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5880         };
5881
5882         unsigned int i, w;
5883
5884         for (i = 0; i < NMTUS; ++i) {
5885                 unsigned int mtu = mtus[i];
5886                 unsigned int log2 = fls(mtu);
5887
5888                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5889                         log2--;
5890                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5891                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5892
5893                 for (w = 0; w < NCCTRL_WIN; ++w) {
5894                         unsigned int inc;
5895
5896                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5897                                   CC_MIN_INCR);
5898
5899                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5900                                      (w << 16) | (beta[w] << 13) | inc);
5901                 }
5902         }
5903 }
5904
5905 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5906  * clocks.  The formula is
5907  *
5908  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5909  *
5910  * which is equivalent to
5911  *
5912  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5913  */
5914 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5915 {
5916         u64 v = bytes256 * adap->params.vpd.cclk;
5917
5918         return v * 62 + v / 2;
5919 }
5920
5921 /**
5922  *      t4_get_chan_txrate - get the current per channel Tx rates
5923  *      @adap: the adapter
5924  *      @nic_rate: rates for NIC traffic
5925  *      @ofld_rate: rates for offloaded traffic
5926  *
5927  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5928  *      for each channel.
5929  */
5930 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5931 {
5932         u32 v;
5933
5934         v = t4_read_reg(adap, TP_TX_TRATE_A);
5935         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5936         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5937         if (adap->params.arch.nchan == NCHAN) {
5938                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5939                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5940         }
5941
5942         v = t4_read_reg(adap, TP_TX_ORATE_A);
5943         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5944         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5945         if (adap->params.arch.nchan == NCHAN) {
5946                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5947                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5948         }
5949 }
5950
5951 /**
5952  *      t4_set_trace_filter - configure one of the tracing filters
5953  *      @adap: the adapter
5954  *      @tp: the desired trace filter parameters
5955  *      @idx: which filter to configure
5956  *      @enable: whether to enable or disable the filter
5957  *
5958  *      Configures one of the tracing filters available in HW.  If @enable is
5959  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5960  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5961  */
5962 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5963                         int idx, int enable)
5964 {
5965         int i, ofst = idx * 4;
5966         u32 data_reg, mask_reg, cfg;
5967
5968         if (!enable) {
5969                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5970                 return 0;
5971         }
5972
5973         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5974         if (cfg & TRCMULTIFILTER_F) {
5975                 /* If multiple tracers are enabled, then maximum
5976                  * capture size is 2.5KB (FIFO size of a single channel)
5977                  * minus 2 flits for CPL_TRACE_PKT header.
5978                  */
5979                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5980                         return -EINVAL;
5981         } else {
5982                 /* If multiple tracers are disabled, to avoid deadlocks
5983                  * maximum packet capture size of 9600 bytes is recommended.
5984                  * Also in this mode, only trace0 can be enabled and running.
5985                  */
5986                 if (tp->snap_len > 9600 || idx)
5987                         return -EINVAL;
5988         }
5989
5990         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5991             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5992             tp->min_len > TFMINPKTSIZE_M)
5993                 return -EINVAL;
5994
5995         /* stop the tracer we'll be changing */
5996         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5997
5998         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5999         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
6000         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
6001
6002         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6003                 t4_write_reg(adap, data_reg, tp->data[i]);
6004                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6005         }
6006         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
6007                      TFCAPTUREMAX_V(tp->snap_len) |
6008                      TFMINPKTSIZE_V(tp->min_len));
6009         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
6010                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
6011                      (is_t4(adap->params.chip) ?
6012                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
6013                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
6014                      T5_TFINVERTMATCH_V(tp->invert)));
6015
6016         return 0;
6017 }
6018
6019 /**
6020  *      t4_get_trace_filter - query one of the tracing filters
6021  *      @adap: the adapter
6022  *      @tp: the current trace filter parameters
6023  *      @idx: which trace filter to query
6024  *      @enabled: non-zero if the filter is enabled
6025  *
6026  *      Returns the current settings of one of the HW tracing filters.
6027  */
6028 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6029                          int *enabled)
6030 {
6031         u32 ctla, ctlb;
6032         int i, ofst = idx * 4;
6033         u32 data_reg, mask_reg;
6034
6035         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6036         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6037
6038         if (is_t4(adap->params.chip)) {
6039                 *enabled = !!(ctla & TFEN_F);
6040                 tp->port =  TFPORT_G(ctla);
6041                 tp->invert = !!(ctla & TFINVERTMATCH_F);
6042         } else {
6043                 *enabled = !!(ctla & T5_TFEN_F);
6044                 tp->port = T5_TFPORT_G(ctla);
6045                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6046         }
6047         tp->snap_len = TFCAPTUREMAX_G(ctlb);
6048         tp->min_len = TFMINPKTSIZE_G(ctlb);
6049         tp->skip_ofst = TFOFFSET_G(ctla);
6050         tp->skip_len = TFLENGTH_G(ctla);
6051
6052         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6053         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6054         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6055
6056         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6057                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6058                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6059         }
6060 }
6061
6062 /**
6063  *      t4_pmtx_get_stats - returns the HW stats from PMTX
6064  *      @adap: the adapter
6065  *      @cnt: where to store the count statistics
6066  *      @cycles: where to store the cycle statistics
6067  *
6068  *      Returns performance statistics from PMTX.
6069  */
6070 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6071 {
6072         int i;
6073         u32 data[2];
6074
6075         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6076                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6077                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6078                 if (is_t4(adap->params.chip)) {
6079                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6080                 } else {
6081                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6082                                          PM_TX_DBG_DATA_A, data, 2,
6083                                          PM_TX_DBG_STAT_MSB_A);
6084                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6085                 }
6086         }
6087 }
6088
6089 /**
6090  *      t4_pmrx_get_stats - returns the HW stats from PMRX
6091  *      @adap: the adapter
6092  *      @cnt: where to store the count statistics
6093  *      @cycles: where to store the cycle statistics
6094  *
6095  *      Returns performance statistics from PMRX.
6096  */
6097 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6098 {
6099         int i;
6100         u32 data[2];
6101
6102         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6103                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6104                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6105                 if (is_t4(adap->params.chip)) {
6106                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6107                 } else {
6108                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6109                                          PM_RX_DBG_DATA_A, data, 2,
6110                                          PM_RX_DBG_STAT_MSB_A);
6111                         cycles[i] = (((u64)data[0] << 32) | data[1]);
6112                 }
6113         }
6114 }
6115
6116 /**
6117  *      compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6118  *      @adap: the adapter
6119  *      @pidx: the port index
6120  *
6121  *      Computes and returns a bitmap indicating which MPS buffer groups are
6122  *      associated with the given Port.  Bit i is set if buffer group i is
6123  *      used by the Port.
6124  */
6125 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6126                                               int pidx)
6127 {
6128         unsigned int chip_version, nports;
6129
6130         chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6131         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6132
6133         switch (chip_version) {
6134         case CHELSIO_T4:
6135         case CHELSIO_T5:
6136                 switch (nports) {
6137                 case 1: return 0xf;
6138                 case 2: return 3 << (2 * pidx);
6139                 case 4: return 1 << pidx;
6140                 }
6141                 break;
6142
6143         case CHELSIO_T6:
6144                 switch (nports) {
6145                 case 2: return 1 << (2 * pidx);
6146                 }
6147                 break;
6148         }
6149
6150         dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6151                 chip_version, nports);
6152
6153         return 0;
6154 }
6155
6156 /**
6157  *      t4_get_mps_bg_map - return the buffer groups associated with a port
6158  *      @adapter: the adapter
6159  *      @pidx: the port index
6160  *
6161  *      Returns a bitmap indicating which MPS buffer groups are associated
6162  *      with the given Port.  Bit i is set if buffer group i is used by the
6163  *      Port.
6164  */
6165 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6166 {
6167         u8 *mps_bg_map;
6168         unsigned int nports;
6169
6170         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6171         if (pidx >= nports) {
6172                 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6173                         pidx, nports);
6174                 return 0;
6175         }
6176
6177         /* If we've already retrieved/computed this, just return the result.
6178          */
6179         mps_bg_map = adapter->params.mps_bg_map;
6180         if (mps_bg_map[pidx])
6181                 return mps_bg_map[pidx];
6182
6183         /* Newer Firmware can tell us what the MPS Buffer Group Map is.
6184          * If we're talking to such Firmware, let it tell us.  If the new
6185          * API isn't supported, revert back to old hardcoded way.  The value
6186          * obtained from Firmware is encoded in below format:
6187          *
6188          * val = (( MPSBGMAP[Port 3] << 24 ) |
6189          *        ( MPSBGMAP[Port 2] << 16 ) |
6190          *        ( MPSBGMAP[Port 1] <<  8 ) |
6191          *        ( MPSBGMAP[Port 0] <<  0 ))
6192          */
6193         if (adapter->flags & CXGB4_FW_OK) {
6194                 u32 param, val;
6195                 int ret;
6196
6197                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6198                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6199                 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6200                                          0, 1, &param, &val);
6201                 if (!ret) {
6202                         int p;
6203
6204                         /* Store the BG Map for all of the Ports in order to
6205                          * avoid more calls to the Firmware in the future.
6206                          */
6207                         for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6208                                 mps_bg_map[p] = val & 0xff;
6209
6210                         return mps_bg_map[pidx];
6211                 }
6212         }
6213
6214         /* Either we're not talking to the Firmware or we're dealing with
6215          * older Firmware which doesn't support the new API to get the MPS
6216          * Buffer Group Map.  Fall back to computing it ourselves.
6217          */
6218         mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6219         return mps_bg_map[pidx];
6220 }
6221
6222 /**
6223  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6224  *      @adapter: the adapter
6225  *      @pidx: the port index
6226  */
6227 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6228 {
6229         unsigned int nports;
6230         u32 param, val = 0;
6231         int ret;
6232
6233         nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6234         if (pidx >= nports) {
6235                 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6236                         pidx, nports);
6237                 return 0;
6238         }
6239
6240         /* FW version >= 1.16.44.0 can determine E2C channel map using
6241          * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6242          */
6243         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6244                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6245         ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6246                                  0, 1, &param, &val);
6247         if (!ret)
6248                 return (val >> (8 * pidx)) & 0xff;
6249
6250         return 0;
6251 }
6252
6253 /**
6254  *      t4_get_tp_ch_map - return TP ingress channels associated with a port
6255  *      @adapter: the adapter
6256  *      @pidx: the port index
6257  *
6258  *      Returns a bitmap indicating which TP Ingress Channels are associated
6259  *      with a given Port.  Bit i is set if TP Ingress Channel i is used by
6260  *      the Port.
6261  */
6262 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6263 {
6264         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6265         unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6266
6267         if (pidx >= nports) {
6268                 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6269                          pidx, nports);
6270                 return 0;
6271         }
6272
6273         switch (chip_version) {
6274         case CHELSIO_T4:
6275         case CHELSIO_T5:
6276                 /* Note that this happens to be the same values as the MPS
6277                  * Buffer Group Map for these Chips.  But we replicate the code
6278                  * here because they're really separate concepts.
6279                  */
6280                 switch (nports) {
6281                 case 1: return 0xf;
6282                 case 2: return 3 << (2 * pidx);
6283                 case 4: return 1 << pidx;
6284                 }
6285                 break;
6286
6287         case CHELSIO_T6:
6288                 switch (nports) {
6289                 case 1:
6290                 case 2: return 1 << pidx;
6291                 }
6292                 break;
6293         }
6294
6295         dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6296                 chip_version, nports);
6297         return 0;
6298 }
6299
6300 /**
6301  *      t4_get_port_type_description - return Port Type string description
6302  *      @port_type: firmware Port Type enumeration
6303  */
6304 const char *t4_get_port_type_description(enum fw_port_type port_type)
6305 {
6306         static const char *const port_type_description[] = {
6307                 "Fiber_XFI",
6308                 "Fiber_XAUI",
6309                 "BT_SGMII",
6310                 "BT_XFI",
6311                 "BT_XAUI",
6312                 "KX4",
6313                 "CX4",
6314                 "KX",
6315                 "KR",
6316                 "SFP",
6317                 "BP_AP",
6318                 "BP4_AP",
6319                 "QSFP_10G",
6320                 "QSA",
6321                 "QSFP",
6322                 "BP40_BA",
6323                 "KR4_100G",
6324                 "CR4_QSFP",
6325                 "CR_QSFP",
6326                 "CR2_QSFP",
6327                 "SFP28",
6328                 "KR_SFP28",
6329                 "KR_XLAUI"
6330         };
6331
6332         if (port_type < ARRAY_SIZE(port_type_description))
6333                 return port_type_description[port_type];
6334         return "UNKNOWN";
6335 }
6336
6337 /**
6338  *      t4_get_port_stats_offset - collect port stats relative to a previous
6339  *                                 snapshot
6340  *      @adap: The adapter
6341  *      @idx: The port
6342  *      @stats: Current stats to fill
6343  *      @offset: Previous stats snapshot
6344  */
6345 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6346                               struct port_stats *stats,
6347                               struct port_stats *offset)
6348 {
6349         u64 *s, *o;
6350         int i;
6351
6352         t4_get_port_stats(adap, idx, stats);
6353         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6354                         i < (sizeof(struct port_stats) / sizeof(u64));
6355                         i++, s++, o++)
6356                 *s -= *o;
6357 }
6358
6359 /**
6360  *      t4_get_port_stats - collect port statistics
6361  *      @adap: the adapter
6362  *      @idx: the port index
6363  *      @p: the stats structure to fill
6364  *
6365  *      Collect statistics related to the given port from HW.
6366  */
6367 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6368 {
6369         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6370         u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6371
6372 #define GET_STAT(name) \
6373         t4_read_reg64(adap, \
6374         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6375         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6376 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6377
6378         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6379         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6380         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6381         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6382         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6383         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6384         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6385         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6386         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6387         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6388         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6389         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6390         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6391         p->tx_drop             = GET_STAT(TX_PORT_DROP);
6392         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6393         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6394         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6395         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6396         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6397         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6398         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6399         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6400         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6401
6402         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6403                 if (stat_ctl & COUNTPAUSESTATTX_F)
6404                         p->tx_frames_64 -= p->tx_pause;
6405                 if (stat_ctl & COUNTPAUSEMCTX_F)
6406                         p->tx_mcast_frames -= p->tx_pause;
6407         }
6408         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6409         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6410         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6411         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6412         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6413         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6414         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6415         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6416         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6417         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6418         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6419         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6420         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6421         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6422         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6423         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6424         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6425         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6426         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6427         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6428         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6429         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6430         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6431         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6432         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6433         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6434         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6435
6436         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6437                 if (stat_ctl & COUNTPAUSESTATRX_F)
6438                         p->rx_frames_64 -= p->rx_pause;
6439                 if (stat_ctl & COUNTPAUSEMCRX_F)
6440                         p->rx_mcast_frames -= p->rx_pause;
6441         }
6442
6443         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6444         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6445         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6446         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6447         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6448         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6449         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6450         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6451
6452 #undef GET_STAT
6453 #undef GET_STAT_COM
6454 }
6455
6456 /**
6457  *      t4_get_lb_stats - collect loopback port statistics
6458  *      @adap: the adapter
6459  *      @idx: the loopback port index
6460  *      @p: the stats structure to fill
6461  *
6462  *      Return HW statistics for the given loopback port.
6463  */
6464 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6465 {
6466         u32 bgmap = t4_get_mps_bg_map(adap, idx);
6467
6468 #define GET_STAT(name) \
6469         t4_read_reg64(adap, \
6470         (is_t4(adap->params.chip) ? \
6471         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6472         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6473 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6474
6475         p->octets           = GET_STAT(BYTES);
6476         p->frames           = GET_STAT(FRAMES);
6477         p->bcast_frames     = GET_STAT(BCAST);
6478         p->mcast_frames     = GET_STAT(MCAST);
6479         p->ucast_frames     = GET_STAT(UCAST);
6480         p->error_frames     = GET_STAT(ERROR);
6481
6482         p->frames_64        = GET_STAT(64B);
6483         p->frames_65_127    = GET_STAT(65B_127B);
6484         p->frames_128_255   = GET_STAT(128B_255B);
6485         p->frames_256_511   = GET_STAT(256B_511B);
6486         p->frames_512_1023  = GET_STAT(512B_1023B);
6487         p->frames_1024_1518 = GET_STAT(1024B_1518B);
6488         p->frames_1519_max  = GET_STAT(1519B_MAX);
6489         p->drop             = GET_STAT(DROP_FRAMES);
6490
6491         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6492         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6493         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6494         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6495         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6496         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6497         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6498         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6499
6500 #undef GET_STAT
6501 #undef GET_STAT_COM
6502 }
6503
6504 /*     t4_mk_filtdelwr - create a delete filter WR
6505  *     @ftid: the filter ID
6506  *     @wr: the filter work request to populate
6507  *     @qid: ingress queue to receive the delete notification
6508  *
6509  *     Creates a filter work request to delete the supplied filter.  If @qid is
6510  *     negative the delete notification is suppressed.
6511  */
6512 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6513 {
6514         memset(wr, 0, sizeof(*wr));
6515         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6516         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6517         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6518                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
6519         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6520         if (qid >= 0)
6521                 wr->rx_chan_rx_rpl_iq =
6522                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6523 }
6524
6525 #define INIT_CMD(var, cmd, rd_wr) do { \
6526         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6527                                         FW_CMD_REQUEST_F | \
6528                                         FW_CMD_##rd_wr##_F); \
6529         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6530 } while (0)
6531
6532 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6533                           u32 addr, u32 val)
6534 {
6535         u32 ldst_addrspace;
6536         struct fw_ldst_cmd c;
6537
6538         memset(&c, 0, sizeof(c));
6539         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6540         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6541                                         FW_CMD_REQUEST_F |
6542                                         FW_CMD_WRITE_F |
6543                                         ldst_addrspace);
6544         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6545         c.u.addrval.addr = cpu_to_be32(addr);
6546         c.u.addrval.val = cpu_to_be32(val);
6547
6548         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6549 }
6550
6551 /**
6552  *      t4_mdio_rd - read a PHY register through MDIO
6553  *      @adap: the adapter
6554  *      @mbox: mailbox to use for the FW command
6555  *      @phy_addr: the PHY address
6556  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6557  *      @reg: the register to read
6558  *      @valp: where to store the value
6559  *
6560  *      Issues a FW command through the given mailbox to read a PHY register.
6561  */
6562 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6563                unsigned int mmd, unsigned int reg, u16 *valp)
6564 {
6565         int ret;
6566         u32 ldst_addrspace;
6567         struct fw_ldst_cmd c;
6568
6569         memset(&c, 0, sizeof(c));
6570         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6571         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6572                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6573                                         ldst_addrspace);
6574         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6575         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6576                                          FW_LDST_CMD_MMD_V(mmd));
6577         c.u.mdio.raddr = cpu_to_be16(reg);
6578
6579         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6580         if (ret == 0)
6581                 *valp = be16_to_cpu(c.u.mdio.rval);
6582         return ret;
6583 }
6584
6585 /**
6586  *      t4_mdio_wr - write a PHY register through MDIO
6587  *      @adap: the adapter
6588  *      @mbox: mailbox to use for the FW command
6589  *      @phy_addr: the PHY address
6590  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
6591  *      @reg: the register to write
6592  *      @valp: value to write
6593  *
6594  *      Issues a FW command through the given mailbox to write a PHY register.
6595  */
6596 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6597                unsigned int mmd, unsigned int reg, u16 val)
6598 {
6599         u32 ldst_addrspace;
6600         struct fw_ldst_cmd c;
6601
6602         memset(&c, 0, sizeof(c));
6603         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6604         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6605                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6606                                         ldst_addrspace);
6607         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6608         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6609                                          FW_LDST_CMD_MMD_V(mmd));
6610         c.u.mdio.raddr = cpu_to_be16(reg);
6611         c.u.mdio.rval = cpu_to_be16(val);
6612
6613         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6614 }
6615
6616 /**
6617  *      t4_sge_decode_idma_state - decode the idma state
6618  *      @adap: the adapter
6619  *      @state: the state idma is stuck in
6620  */
6621 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6622 {
6623         static const char * const t4_decode[] = {
6624                 "IDMA_IDLE",
6625                 "IDMA_PUSH_MORE_CPL_FIFO",
6626                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6627                 "Not used",
6628                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6629                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6630                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6631                 "IDMA_SEND_FIFO_TO_IMSG",
6632                 "IDMA_FL_REQ_DATA_FL_PREP",
6633                 "IDMA_FL_REQ_DATA_FL",
6634                 "IDMA_FL_DROP",
6635                 "IDMA_FL_H_REQ_HEADER_FL",
6636                 "IDMA_FL_H_SEND_PCIEHDR",
6637                 "IDMA_FL_H_PUSH_CPL_FIFO",
6638                 "IDMA_FL_H_SEND_CPL",
6639                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6640                 "IDMA_FL_H_SEND_IP_HDR",
6641                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6642                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6643                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6644                 "IDMA_FL_D_SEND_PCIEHDR",
6645                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6646                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6647                 "IDMA_FL_SEND_PCIEHDR",
6648                 "IDMA_FL_PUSH_CPL_FIFO",
6649                 "IDMA_FL_SEND_CPL",
6650                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6651                 "IDMA_FL_SEND_PAYLOAD",
6652                 "IDMA_FL_REQ_NEXT_DATA_FL",
6653                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6654                 "IDMA_FL_SEND_PADDING",
6655                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6656                 "IDMA_FL_SEND_FIFO_TO_IMSG",
6657                 "IDMA_FL_REQ_DATAFL_DONE",
6658                 "IDMA_FL_REQ_HEADERFL_DONE",
6659         };
6660         static const char * const t5_decode[] = {
6661                 "IDMA_IDLE",
6662                 "IDMA_ALMOST_IDLE",
6663                 "IDMA_PUSH_MORE_CPL_FIFO",
6664                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6665                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6666                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6667                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6668                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6669                 "IDMA_SEND_FIFO_TO_IMSG",
6670                 "IDMA_FL_REQ_DATA_FL",
6671                 "IDMA_FL_DROP",
6672                 "IDMA_FL_DROP_SEND_INC",
6673                 "IDMA_FL_H_REQ_HEADER_FL",
6674                 "IDMA_FL_H_SEND_PCIEHDR",
6675                 "IDMA_FL_H_PUSH_CPL_FIFO",
6676                 "IDMA_FL_H_SEND_CPL",
6677                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6678                 "IDMA_FL_H_SEND_IP_HDR",
6679                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6680                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6681                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6682                 "IDMA_FL_D_SEND_PCIEHDR",
6683                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6684                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6685                 "IDMA_FL_SEND_PCIEHDR",
6686                 "IDMA_FL_PUSH_CPL_FIFO",
6687                 "IDMA_FL_SEND_CPL",
6688                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6689                 "IDMA_FL_SEND_PAYLOAD",
6690                 "IDMA_FL_REQ_NEXT_DATA_FL",
6691                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6692                 "IDMA_FL_SEND_PADDING",
6693                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6694         };
6695         static const char * const t6_decode[] = {
6696                 "IDMA_IDLE",
6697                 "IDMA_PUSH_MORE_CPL_FIFO",
6698                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6699                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6700                 "IDMA_PHYSADDR_SEND_PCIEHDR",
6701                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6702                 "IDMA_PHYSADDR_SEND_PAYLOAD",
6703                 "IDMA_FL_REQ_DATA_FL",
6704                 "IDMA_FL_DROP",
6705                 "IDMA_FL_DROP_SEND_INC",
6706                 "IDMA_FL_H_REQ_HEADER_FL",
6707                 "IDMA_FL_H_SEND_PCIEHDR",
6708                 "IDMA_FL_H_PUSH_CPL_FIFO",
6709                 "IDMA_FL_H_SEND_CPL",
6710                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
6711                 "IDMA_FL_H_SEND_IP_HDR",
6712                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
6713                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
6714                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
6715                 "IDMA_FL_D_SEND_PCIEHDR",
6716                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6717                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
6718                 "IDMA_FL_SEND_PCIEHDR",
6719                 "IDMA_FL_PUSH_CPL_FIFO",
6720                 "IDMA_FL_SEND_CPL",
6721                 "IDMA_FL_SEND_PAYLOAD_FIRST",
6722                 "IDMA_FL_SEND_PAYLOAD",
6723                 "IDMA_FL_REQ_NEXT_DATA_FL",
6724                 "IDMA_FL_SEND_NEXT_PCIEHDR",
6725                 "IDMA_FL_SEND_PADDING",
6726                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
6727         };
6728         static const u32 sge_regs[] = {
6729                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
6730                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
6731                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6732         };
6733         const char **sge_idma_decode;
6734         int sge_idma_decode_nstates;
6735         int i;
6736         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6737
6738         /* Select the right set of decode strings to dump depending on the
6739          * adapter chip type.
6740          */
6741         switch (chip_version) {
6742         case CHELSIO_T4:
6743                 sge_idma_decode = (const char **)t4_decode;
6744                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6745                 break;
6746
6747         case CHELSIO_T5:
6748                 sge_idma_decode = (const char **)t5_decode;
6749                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6750                 break;
6751
6752         case CHELSIO_T6:
6753                 sge_idma_decode = (const char **)t6_decode;
6754                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6755                 break;
6756
6757         default:
6758                 dev_err(adapter->pdev_dev,
6759                         "Unsupported chip version %d\n", chip_version);
6760                 return;
6761         }
6762
6763         if (is_t4(adapter->params.chip)) {
6764                 sge_idma_decode = (const char **)t4_decode;
6765                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6766         } else {
6767                 sge_idma_decode = (const char **)t5_decode;
6768                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6769         }
6770
6771         if (state < sge_idma_decode_nstates)
6772                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6773         else
6774                 CH_WARN(adapter, "idma state %d unknown\n", state);
6775
6776         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6777                 CH_WARN(adapter, "SGE register %#x value %#x\n",
6778                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6779 }
6780
6781 /**
6782  *      t4_sge_ctxt_flush - flush the SGE context cache
6783  *      @adap: the adapter
6784  *      @mbox: mailbox to use for the FW command
6785  *      @ctx_type: Egress or Ingress
6786  *
6787  *      Issues a FW command through the given mailbox to flush the
6788  *      SGE context cache.
6789  */
6790 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6791 {
6792         int ret;
6793         u32 ldst_addrspace;
6794         struct fw_ldst_cmd c;
6795
6796         memset(&c, 0, sizeof(c));
6797         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6798                                                  FW_LDST_ADDRSPC_SGE_EGRC :
6799                                                  FW_LDST_ADDRSPC_SGE_INGC);
6800         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6801                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
6802                                         ldst_addrspace);
6803         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6804         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6805
6806         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6807         return ret;
6808 }
6809
6810 /**
6811  *      t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6812  *      @adap - the adapter
6813  *      @ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6814  *      @dbqtimers: SGE Doorbell Queue Timer table
6815  *
6816  *      Reads the SGE Doorbell Queue Timer values into the provided table.
6817  *      Returns 0 on success (Firmware and Hardware support this feature),
6818  *      an error on failure.
6819  */
6820 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6821                           u16 *dbqtimers)
6822 {
6823         int ret, dbqtimerix;
6824
6825         ret = 0;
6826         dbqtimerix = 0;
6827         while (dbqtimerix < ndbqtimers) {
6828                 int nparams, param;
6829                 u32 params[7], vals[7];
6830
6831                 nparams = ndbqtimers - dbqtimerix;
6832                 if (nparams > ARRAY_SIZE(params))
6833                         nparams = ARRAY_SIZE(params);
6834
6835                 for (param = 0; param < nparams; param++)
6836                         params[param] =
6837                           (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6838                            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6839                            FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6840                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6841                                       nparams, params, vals);
6842                 if (ret)
6843                         break;
6844
6845                 for (param = 0; param < nparams; param++)
6846                         dbqtimers[dbqtimerix++] = vals[param];
6847         }
6848         return ret;
6849 }
6850
6851 /**
6852  *      t4_fw_hello - establish communication with FW
6853  *      @adap: the adapter
6854  *      @mbox: mailbox to use for the FW command
6855  *      @evt_mbox: mailbox to receive async FW events
6856  *      @master: specifies the caller's willingness to be the device master
6857  *      @state: returns the current device state (if non-NULL)
6858  *
6859  *      Issues a command to establish communication with FW.  Returns either
6860  *      an error (negative integer) or the mailbox of the Master PF.
6861  */
6862 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6863                 enum dev_master master, enum dev_state *state)
6864 {
6865         int ret;
6866         struct fw_hello_cmd c;
6867         u32 v;
6868         unsigned int master_mbox;
6869         int retries = FW_CMD_HELLO_RETRIES;
6870
6871 retry:
6872         memset(&c, 0, sizeof(c));
6873         INIT_CMD(c, HELLO, WRITE);
6874         c.err_to_clearinit = cpu_to_be32(
6875                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6876                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6877                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6878                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
6879                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6880                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6881                 FW_HELLO_CMD_CLEARINIT_F);
6882
6883         /*
6884          * Issue the HELLO command to the firmware.  If it's not successful
6885          * but indicates that we got a "busy" or "timeout" condition, retry
6886          * the HELLO until we exhaust our retry limit.  If we do exceed our
6887          * retry limit, check to see if the firmware left us any error
6888          * information and report that if so.
6889          */
6890         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6891         if (ret < 0) {
6892                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6893                         goto retry;
6894                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6895                         t4_report_fw_error(adap);
6896                 return ret;
6897         }
6898
6899         v = be32_to_cpu(c.err_to_clearinit);
6900         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6901         if (state) {
6902                 if (v & FW_HELLO_CMD_ERR_F)
6903                         *state = DEV_STATE_ERR;
6904                 else if (v & FW_HELLO_CMD_INIT_F)
6905                         *state = DEV_STATE_INIT;
6906                 else
6907                         *state = DEV_STATE_UNINIT;
6908         }
6909
6910         /*
6911          * If we're not the Master PF then we need to wait around for the
6912          * Master PF Driver to finish setting up the adapter.
6913          *
6914          * Note that we also do this wait if we're a non-Master-capable PF and
6915          * there is no current Master PF; a Master PF may show up momentarily
6916          * and we wouldn't want to fail pointlessly.  (This can happen when an
6917          * OS loads lots of different drivers rapidly at the same time).  In
6918          * this case, the Master PF returned by the firmware will be
6919          * PCIE_FW_MASTER_M so the test below will work ...
6920          */
6921         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6922             master_mbox != mbox) {
6923                 int waiting = FW_CMD_HELLO_TIMEOUT;
6924
6925                 /*
6926                  * Wait for the firmware to either indicate an error or
6927                  * initialized state.  If we see either of these we bail out
6928                  * and report the issue to the caller.  If we exhaust the
6929                  * "hello timeout" and we haven't exhausted our retries, try
6930                  * again.  Otherwise bail with a timeout error.
6931                  */
6932                 for (;;) {
6933                         u32 pcie_fw;
6934
6935                         msleep(50);
6936                         waiting -= 50;
6937
6938                         /*
6939                          * If neither Error nor Initialized are indicated
6940                          * by the firmware keep waiting till we exhaust our
6941                          * timeout ... and then retry if we haven't exhausted
6942                          * our retries ...
6943                          */
6944                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6945                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6946                                 if (waiting <= 0) {
6947                                         if (retries-- > 0)
6948                                                 goto retry;
6949
6950                                         return -ETIMEDOUT;
6951                                 }
6952                                 continue;
6953                         }
6954
6955                         /*
6956                          * We either have an Error or Initialized condition
6957                          * report errors preferentially.
6958                          */
6959                         if (state) {
6960                                 if (pcie_fw & PCIE_FW_ERR_F)
6961                                         *state = DEV_STATE_ERR;
6962                                 else if (pcie_fw & PCIE_FW_INIT_F)
6963                                         *state = DEV_STATE_INIT;
6964                         }
6965
6966                         /*
6967                          * If we arrived before a Master PF was selected and
6968                          * there's not a valid Master PF, grab its identity
6969                          * for our caller.
6970                          */
6971                         if (master_mbox == PCIE_FW_MASTER_M &&
6972                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
6973                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6974                         break;
6975                 }
6976         }
6977
6978         return master_mbox;
6979 }
6980
6981 /**
6982  *      t4_fw_bye - end communication with FW
6983  *      @adap: the adapter
6984  *      @mbox: mailbox to use for the FW command
6985  *
6986  *      Issues a command to terminate communication with FW.
6987  */
6988 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6989 {
6990         struct fw_bye_cmd c;
6991
6992         memset(&c, 0, sizeof(c));
6993         INIT_CMD(c, BYE, WRITE);
6994         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6995 }
6996
6997 /**
6998  *      t4_init_cmd - ask FW to initialize the device
6999  *      @adap: the adapter
7000  *      @mbox: mailbox to use for the FW command
7001  *
7002  *      Issues a command to FW to partially initialize the device.  This
7003  *      performs initialization that generally doesn't depend on user input.
7004  */
7005 int t4_early_init(struct adapter *adap, unsigned int mbox)
7006 {
7007         struct fw_initialize_cmd c;
7008
7009         memset(&c, 0, sizeof(c));
7010         INIT_CMD(c, INITIALIZE, WRITE);
7011         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7012 }
7013
7014 /**
7015  *      t4_fw_reset - issue a reset to FW
7016  *      @adap: the adapter
7017  *      @mbox: mailbox to use for the FW command
7018  *      @reset: specifies the type of reset to perform
7019  *
7020  *      Issues a reset command of the specified type to FW.
7021  */
7022 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7023 {
7024         struct fw_reset_cmd c;
7025
7026         memset(&c, 0, sizeof(c));
7027         INIT_CMD(c, RESET, WRITE);
7028         c.val = cpu_to_be32(reset);
7029         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7030 }
7031
7032 /**
7033  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7034  *      @adap: the adapter
7035  *      @mbox: mailbox to use for the FW RESET command (if desired)
7036  *      @force: force uP into RESET even if FW RESET command fails
7037  *
7038  *      Issues a RESET command to firmware (if desired) with a HALT indication
7039  *      and then puts the microprocessor into RESET state.  The RESET command
7040  *      will only be issued if a legitimate mailbox is provided (mbox <=
7041  *      PCIE_FW_MASTER_M).
7042  *
7043  *      This is generally used in order for the host to safely manipulate the
7044  *      adapter without fear of conflicting with whatever the firmware might
7045  *      be doing.  The only way out of this state is to RESTART the firmware
7046  *      ...
7047  */
7048 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7049 {
7050         int ret = 0;
7051
7052         /*
7053          * If a legitimate mailbox is provided, issue a RESET command
7054          * with a HALT indication.
7055          */
7056         if (mbox <= PCIE_FW_MASTER_M) {
7057                 struct fw_reset_cmd c;
7058
7059                 memset(&c, 0, sizeof(c));
7060                 INIT_CMD(c, RESET, WRITE);
7061                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7062                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7063                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7064         }
7065
7066         /*
7067          * Normally we won't complete the operation if the firmware RESET
7068          * command fails but if our caller insists we'll go ahead and put the
7069          * uP into RESET.  This can be useful if the firmware is hung or even
7070          * missing ...  We'll have to take the risk of putting the uP into
7071          * RESET without the cooperation of firmware in that case.
7072          *
7073          * We also force the firmware's HALT flag to be on in case we bypassed
7074          * the firmware RESET command above or we're dealing with old firmware
7075          * which doesn't have the HALT capability.  This will serve as a flag
7076          * for the incoming firmware to know that it's coming out of a HALT
7077          * rather than a RESET ... if it's new enough to understand that ...
7078          */
7079         if (ret == 0 || force) {
7080                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7081                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7082                                  PCIE_FW_HALT_F);
7083         }
7084
7085         /*
7086          * And we always return the result of the firmware RESET command
7087          * even when we force the uP into RESET ...
7088          */
7089         return ret;
7090 }
7091
7092 /**
7093  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
7094  *      @adap: the adapter
7095  *      @reset: if we want to do a RESET to restart things
7096  *
7097  *      Restart firmware previously halted by t4_fw_halt().  On successful
7098  *      return the previous PF Master remains as the new PF Master and there
7099  *      is no need to issue a new HELLO command, etc.
7100  *
7101  *      We do this in two ways:
7102  *
7103  *       1. If we're dealing with newer firmware we'll simply want to take
7104  *          the chip's microprocessor out of RESET.  This will cause the
7105  *          firmware to start up from its start vector.  And then we'll loop
7106  *          until the firmware indicates it's started again (PCIE_FW.HALT
7107  *          reset to 0) or we timeout.
7108  *
7109  *       2. If we're dealing with older firmware then we'll need to RESET
7110  *          the chip since older firmware won't recognize the PCIE_FW.HALT
7111  *          flag and automatically RESET itself on startup.
7112  */
7113 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7114 {
7115         if (reset) {
7116                 /*
7117                  * Since we're directing the RESET instead of the firmware
7118                  * doing it automatically, we need to clear the PCIE_FW.HALT
7119                  * bit.
7120                  */
7121                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7122
7123                 /*
7124                  * If we've been given a valid mailbox, first try to get the
7125                  * firmware to do the RESET.  If that works, great and we can
7126                  * return success.  Otherwise, if we haven't been given a
7127                  * valid mailbox or the RESET command failed, fall back to
7128                  * hitting the chip with a hammer.
7129                  */
7130                 if (mbox <= PCIE_FW_MASTER_M) {
7131                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7132                         msleep(100);
7133                         if (t4_fw_reset(adap, mbox,
7134                                         PIORST_F | PIORSTMODE_F) == 0)
7135                                 return 0;
7136                 }
7137
7138                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7139                 msleep(2000);
7140         } else {
7141                 int ms;
7142
7143                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7144                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7145                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7146                                 return 0;
7147                         msleep(100);
7148                         ms += 100;
7149                 }
7150                 return -ETIMEDOUT;
7151         }
7152         return 0;
7153 }
7154
7155 /**
7156  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7157  *      @adap: the adapter
7158  *      @mbox: mailbox to use for the FW RESET command (if desired)
7159  *      @fw_data: the firmware image to write
7160  *      @size: image size
7161  *      @force: force upgrade even if firmware doesn't cooperate
7162  *
7163  *      Perform all of the steps necessary for upgrading an adapter's
7164  *      firmware image.  Normally this requires the cooperation of the
7165  *      existing firmware in order to halt all existing activities
7166  *      but if an invalid mailbox token is passed in we skip that step
7167  *      (though we'll still put the adapter microprocessor into RESET in
7168  *      that case).
7169  *
7170  *      On successful return the new firmware will have been loaded and
7171  *      the adapter will have been fully RESET losing all previous setup
7172  *      state.  On unsuccessful return the adapter may be completely hosed ...
7173  *      positive errno indicates that the adapter is ~probably~ intact, a
7174  *      negative errno indicates that things are looking bad ...
7175  */
7176 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7177                   const u8 *fw_data, unsigned int size, int force)
7178 {
7179         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7180         int reset, ret;
7181
7182         if (!t4_fw_matches_chip(adap, fw_hdr))
7183                 return -EINVAL;
7184
7185         /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7186          * set wont be sent when we are flashing FW.
7187          */
7188         adap->flags &= ~CXGB4_FW_OK;
7189
7190         ret = t4_fw_halt(adap, mbox, force);
7191         if (ret < 0 && !force)
7192                 goto out;
7193
7194         ret = t4_load_fw(adap, fw_data, size);
7195         if (ret < 0)
7196                 goto out;
7197
7198         /*
7199          * If there was a Firmware Configuration File stored in FLASH,
7200          * there's a good chance that it won't be compatible with the new
7201          * Firmware.  In order to prevent difficult to diagnose adapter
7202          * initialization issues, we clear out the Firmware Configuration File
7203          * portion of the FLASH .  The user will need to re-FLASH a new
7204          * Firmware Configuration File which is compatible with the new
7205          * Firmware if that's desired.
7206          */
7207         (void)t4_load_cfg(adap, NULL, 0);
7208
7209         /*
7210          * Older versions of the firmware don't understand the new
7211          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7212          * restart.  So for newly loaded older firmware we'll have to do the
7213          * RESET for it so it starts up on a clean slate.  We can tell if
7214          * the newly loaded firmware will handle this right by checking
7215          * its header flags to see if it advertises the capability.
7216          */
7217         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7218         ret = t4_fw_restart(adap, mbox, reset);
7219
7220         /* Grab potentially new Firmware Device Log parameters so we can see
7221          * how healthy the new Firmware is.  It's okay to contact the new
7222          * Firmware for these parameters even though, as far as it's
7223          * concerned, we've never said "HELLO" to it ...
7224          */
7225         (void)t4_init_devlog_params(adap);
7226 out:
7227         adap->flags |= CXGB4_FW_OK;
7228         return ret;
7229 }
7230
7231 /**
7232  *      t4_fl_pkt_align - return the fl packet alignment
7233  *      @adap: the adapter
7234  *
7235  *      T4 has a single field to specify the packing and padding boundary.
7236  *      T5 onwards has separate fields for this and hence the alignment for
7237  *      next packet offset is maximum of these two.
7238  *
7239  */
7240 int t4_fl_pkt_align(struct adapter *adap)
7241 {
7242         u32 sge_control, sge_control2;
7243         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7244
7245         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7246
7247         /* T4 uses a single control field to specify both the PCIe Padding and
7248          * Packing Boundary.  T5 introduced the ability to specify these
7249          * separately.  The actual Ingress Packet Data alignment boundary
7250          * within Packed Buffer Mode is the maximum of these two
7251          * specifications.  (Note that it makes no real practical sense to
7252          * have the Padding Boundary be larger than the Packing Boundary but you
7253          * could set the chip up that way and, in fact, legacy T4 code would
7254          * end doing this because it would initialize the Padding Boundary and
7255          * leave the Packing Boundary initialized to 0 (16 bytes).)
7256          * Padding Boundary values in T6 starts from 8B,
7257          * where as it is 32B for T4 and T5.
7258          */
7259         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7260                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7261         else
7262                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7263
7264         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7265
7266         fl_align = ingpadboundary;
7267         if (!is_t4(adap->params.chip)) {
7268                 /* T5 has a weird interpretation of one of the PCIe Packing
7269                  * Boundary values.  No idea why ...
7270                  */
7271                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7272                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7273                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7274                         ingpackboundary = 16;
7275                 else
7276                         ingpackboundary = 1 << (ingpackboundary +
7277                                                 INGPACKBOUNDARY_SHIFT_X);
7278
7279                 fl_align = max(ingpadboundary, ingpackboundary);
7280         }
7281         return fl_align;
7282 }
7283
7284 /**
7285  *      t4_fixup_host_params - fix up host-dependent parameters
7286  *      @adap: the adapter
7287  *      @page_size: the host's Base Page Size
7288  *      @cache_line_size: the host's Cache Line Size
7289  *
7290  *      Various registers in T4 contain values which are dependent on the
7291  *      host's Base Page and Cache Line Sizes.  This function will fix all of
7292  *      those registers with the appropriate values as passed in ...
7293  */
7294 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7295                          unsigned int cache_line_size)
7296 {
7297         unsigned int page_shift = fls(page_size) - 1;
7298         unsigned int sge_hps = page_shift - 10;
7299         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7300         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7301         unsigned int fl_align_log = fls(fl_align) - 1;
7302
7303         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7304                      HOSTPAGESIZEPF0_V(sge_hps) |
7305                      HOSTPAGESIZEPF1_V(sge_hps) |
7306                      HOSTPAGESIZEPF2_V(sge_hps) |
7307                      HOSTPAGESIZEPF3_V(sge_hps) |
7308                      HOSTPAGESIZEPF4_V(sge_hps) |
7309                      HOSTPAGESIZEPF5_V(sge_hps) |
7310                      HOSTPAGESIZEPF6_V(sge_hps) |
7311                      HOSTPAGESIZEPF7_V(sge_hps));
7312
7313         if (is_t4(adap->params.chip)) {
7314                 t4_set_reg_field(adap, SGE_CONTROL_A,
7315                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7316                                  EGRSTATUSPAGESIZE_F,
7317                                  INGPADBOUNDARY_V(fl_align_log -
7318                                                   INGPADBOUNDARY_SHIFT_X) |
7319                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7320         } else {
7321                 unsigned int pack_align;
7322                 unsigned int ingpad, ingpack;
7323
7324                 /* T5 introduced the separation of the Free List Padding and
7325                  * Packing Boundaries.  Thus, we can select a smaller Padding
7326                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
7327                  * Bandwidth, and use a Packing Boundary which is large enough
7328                  * to avoid false sharing between CPUs, etc.
7329                  *
7330                  * For the PCI Link, the smaller the Padding Boundary the
7331                  * better.  For the Memory Controller, a smaller Padding
7332                  * Boundary is better until we cross under the Memory Line
7333                  * Size (the minimum unit of transfer to/from Memory).  If we
7334                  * have a Padding Boundary which is smaller than the Memory
7335                  * Line Size, that'll involve a Read-Modify-Write cycle on the
7336                  * Memory Controller which is never good.
7337                  */
7338
7339                 /* We want the Packing Boundary to be based on the Cache Line
7340                  * Size in order to help avoid False Sharing performance
7341                  * issues between CPUs, etc.  We also want the Packing
7342                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7343                  * get best performance when the Packing Boundary is a
7344                  * multiple of the Maximum Payload Size.
7345                  */
7346                 pack_align = fl_align;
7347                 if (pci_is_pcie(adap->pdev)) {
7348                         unsigned int mps, mps_log;
7349                         u16 devctl;
7350
7351                         /* The PCIe Device Control Maximum Payload Size field
7352                          * [bits 7:5] encodes sizes as powers of 2 starting at
7353                          * 128 bytes.
7354                          */
7355                         pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7356                                                   &devctl);
7357                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7358                         mps = 1 << mps_log;
7359                         if (mps > pack_align)
7360                                 pack_align = mps;
7361                 }
7362
7363                 /* N.B. T5/T6 have a crazy special interpretation of the "0"
7364                  * value for the Packing Boundary.  This corresponds to 16
7365                  * bytes instead of the expected 32 bytes.  So if we want 32
7366                  * bytes, the best we can really do is 64 bytes ...
7367                  */
7368                 if (pack_align <= 16) {
7369                         ingpack = INGPACKBOUNDARY_16B_X;
7370                         fl_align = 16;
7371                 } else if (pack_align == 32) {
7372                         ingpack = INGPACKBOUNDARY_64B_X;
7373                         fl_align = 64;
7374                 } else {
7375                         unsigned int pack_align_log = fls(pack_align) - 1;
7376
7377                         ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7378                         fl_align = pack_align;
7379                 }
7380
7381                 /* Use the smallest Ingress Padding which isn't smaller than
7382                  * the Memory Controller Read/Write Size.  We'll take that as
7383                  * being 8 bytes since we don't know of any system with a
7384                  * wider Memory Controller Bus Width.
7385                  */
7386                 if (is_t5(adap->params.chip))
7387                         ingpad = INGPADBOUNDARY_32B_X;
7388                 else
7389                         ingpad = T6_INGPADBOUNDARY_8B_X;
7390
7391                 t4_set_reg_field(adap, SGE_CONTROL_A,
7392                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7393                                  EGRSTATUSPAGESIZE_F,
7394                                  INGPADBOUNDARY_V(ingpad) |
7395                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
7396                 t4_set_reg_field(adap, SGE_CONTROL2_A,
7397                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7398                                  INGPACKBOUNDARY_V(ingpack));
7399         }
7400         /*
7401          * Adjust various SGE Free List Host Buffer Sizes.
7402          *
7403          * This is something of a crock since we're using fixed indices into
7404          * the array which are also known by the sge.c code and the T4
7405          * Firmware Configuration File.  We need to come up with a much better
7406          * approach to managing this array.  For now, the first four entries
7407          * are:
7408          *
7409          *   0: Host Page Size
7410          *   1: 64KB
7411          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7412          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7413          *
7414          * For the single-MTU buffers in unpacked mode we need to include
7415          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7416          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7417          * Padding boundary.  All of these are accommodated in the Factory
7418          * Default Firmware Configuration File but we need to adjust it for
7419          * this host's cache line size.
7420          */
7421         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7422         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7423                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7424                      & ~(fl_align-1));
7425         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7426                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7427                      & ~(fl_align-1));
7428
7429         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7430
7431         return 0;
7432 }
7433
7434 /**
7435  *      t4_fw_initialize - ask FW to initialize the device
7436  *      @adap: the adapter
7437  *      @mbox: mailbox to use for the FW command
7438  *
7439  *      Issues a command to FW to partially initialize the device.  This
7440  *      performs initialization that generally doesn't depend on user input.
7441  */
7442 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7443 {
7444         struct fw_initialize_cmd c;
7445
7446         memset(&c, 0, sizeof(c));
7447         INIT_CMD(c, INITIALIZE, WRITE);
7448         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7449 }
7450
7451 /**
7452  *      t4_query_params_rw - query FW or device parameters
7453  *      @adap: the adapter
7454  *      @mbox: mailbox to use for the FW command
7455  *      @pf: the PF
7456  *      @vf: the VF
7457  *      @nparams: the number of parameters
7458  *      @params: the parameter names
7459  *      @val: the parameter values
7460  *      @rw: Write and read flag
7461  *      @sleep_ok: if true, we may sleep awaiting mbox cmd completion
7462  *
7463  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
7464  *      queried at once.
7465  */
7466 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7467                        unsigned int vf, unsigned int nparams, const u32 *params,
7468                        u32 *val, int rw, bool sleep_ok)
7469 {
7470         int i, ret;
7471         struct fw_params_cmd c;
7472         __be32 *p = &c.param[0].mnem;
7473
7474         if (nparams > 7)
7475                 return -EINVAL;
7476
7477         memset(&c, 0, sizeof(c));
7478         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7479                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
7480                                   FW_PARAMS_CMD_PFN_V(pf) |
7481                                   FW_PARAMS_CMD_VFN_V(vf));
7482         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7483
7484         for (i = 0; i < nparams; i++) {
7485                 *p++ = cpu_to_be32(*params++);
7486                 if (rw)
7487                         *p = cpu_to_be32(*(val + i));
7488                 p++;
7489         }
7490
7491         ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7492         if (ret == 0)
7493                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7494                         *val++ = be32_to_cpu(*p);
7495         return ret;
7496 }
7497
7498 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7499                     unsigned int vf, unsigned int nparams, const u32 *params,
7500                     u32 *val)
7501 {
7502         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7503                                   true);
7504 }
7505
7506 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7507                        unsigned int vf, unsigned int nparams, const u32 *params,
7508                        u32 *val)
7509 {
7510         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7511                                   false);
7512 }
7513
7514 /**
7515  *      t4_set_params_timeout - sets FW or device parameters
7516  *      @adap: the adapter
7517  *      @mbox: mailbox to use for the FW command
7518  *      @pf: the PF
7519  *      @vf: the VF
7520  *      @nparams: the number of parameters
7521  *      @params: the parameter names
7522  *      @val: the parameter values
7523  *      @timeout: the timeout time
7524  *
7525  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7526  *      specified at once.
7527  */
7528 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7529                           unsigned int pf, unsigned int vf,
7530                           unsigned int nparams, const u32 *params,
7531                           const u32 *val, int timeout)
7532 {
7533         struct fw_params_cmd c;
7534         __be32 *p = &c.param[0].mnem;
7535
7536         if (nparams > 7)
7537                 return -EINVAL;
7538
7539         memset(&c, 0, sizeof(c));
7540         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7541                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7542                                   FW_PARAMS_CMD_PFN_V(pf) |
7543                                   FW_PARAMS_CMD_VFN_V(vf));
7544         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7545
7546         while (nparams--) {
7547                 *p++ = cpu_to_be32(*params++);
7548                 *p++ = cpu_to_be32(*val++);
7549         }
7550
7551         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7552 }
7553
7554 /**
7555  *      t4_set_params - sets FW or device parameters
7556  *      @adap: the adapter
7557  *      @mbox: mailbox to use for the FW command
7558  *      @pf: the PF
7559  *      @vf: the VF
7560  *      @nparams: the number of parameters
7561  *      @params: the parameter names
7562  *      @val: the parameter values
7563  *
7564  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7565  *      specified at once.
7566  */
7567 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7568                   unsigned int vf, unsigned int nparams, const u32 *params,
7569                   const u32 *val)
7570 {
7571         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7572                                      FW_CMD_MAX_TIMEOUT);
7573 }
7574
7575 /**
7576  *      t4_cfg_pfvf - configure PF/VF resource limits
7577  *      @adap: the adapter
7578  *      @mbox: mailbox to use for the FW command
7579  *      @pf: the PF being configured
7580  *      @vf: the VF being configured
7581  *      @txq: the max number of egress queues
7582  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
7583  *      @rxqi: the max number of interrupt-capable ingress queues
7584  *      @rxq: the max number of interruptless ingress queues
7585  *      @tc: the PCI traffic class
7586  *      @vi: the max number of virtual interfaces
7587  *      @cmask: the channel access rights mask for the PF/VF
7588  *      @pmask: the port access rights mask for the PF/VF
7589  *      @nexact: the maximum number of exact MPS filters
7590  *      @rcaps: read capabilities
7591  *      @wxcaps: write/execute capabilities
7592  *
7593  *      Configures resource limits and capabilities for a physical or virtual
7594  *      function.
7595  */
7596 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7597                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7598                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
7599                 unsigned int vi, unsigned int cmask, unsigned int pmask,
7600                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7601 {
7602         struct fw_pfvf_cmd c;
7603
7604         memset(&c, 0, sizeof(c));
7605         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7606                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7607                                   FW_PFVF_CMD_VFN_V(vf));
7608         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7609         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7610                                      FW_PFVF_CMD_NIQ_V(rxq));
7611         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7612                                     FW_PFVF_CMD_PMASK_V(pmask) |
7613                                     FW_PFVF_CMD_NEQ_V(txq));
7614         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7615                                       FW_PFVF_CMD_NVI_V(vi) |
7616                                       FW_PFVF_CMD_NEXACTF_V(nexact));
7617         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7618                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7619                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7620         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7621 }
7622
7623 /**
7624  *      t4_alloc_vi - allocate a virtual interface
7625  *      @adap: the adapter
7626  *      @mbox: mailbox to use for the FW command
7627  *      @port: physical port associated with the VI
7628  *      @pf: the PF owning the VI
7629  *      @vf: the VF owning the VI
7630  *      @nmac: number of MAC addresses needed (1 to 5)
7631  *      @mac: the MAC addresses of the VI
7632  *      @rss_size: size of RSS table slice associated with this VI
7633  *
7634  *      Allocates a virtual interface for the given physical port.  If @mac is
7635  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
7636  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
7637  *      stored consecutively so the space needed is @nmac * 6 bytes.
7638  *      Returns a negative error number or the non-negative VI id.
7639  */
7640 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7641                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7642                 unsigned int *rss_size, u8 *vivld, u8 *vin)
7643 {
7644         int ret;
7645         struct fw_vi_cmd c;
7646
7647         memset(&c, 0, sizeof(c));
7648         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7649                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7650                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7651         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7652         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7653         c.nmac = nmac - 1;
7654
7655         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7656         if (ret)
7657                 return ret;
7658
7659         if (mac) {
7660                 memcpy(mac, c.mac, sizeof(c.mac));
7661                 switch (nmac) {
7662                 case 5:
7663                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7664                         /* Fall through */
7665                 case 4:
7666                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7667                         /* Fall through */
7668                 case 3:
7669                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7670                         /* Fall through */
7671                 case 2:
7672                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7673                 }
7674         }
7675         if (rss_size)
7676                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7677
7678         if (vivld)
7679                 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7680
7681         if (vin)
7682                 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7683
7684         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7685 }
7686
7687 /**
7688  *      t4_free_vi - free a virtual interface
7689  *      @adap: the adapter
7690  *      @mbox: mailbox to use for the FW command
7691  *      @pf: the PF owning the VI
7692  *      @vf: the VF owning the VI
7693  *      @viid: virtual interface identifiler
7694  *
7695  *      Free a previously allocated virtual interface.
7696  */
7697 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7698                unsigned int vf, unsigned int viid)
7699 {
7700         struct fw_vi_cmd c;
7701
7702         memset(&c, 0, sizeof(c));
7703         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7704                                   FW_CMD_REQUEST_F |
7705                                   FW_CMD_EXEC_F |
7706                                   FW_VI_CMD_PFN_V(pf) |
7707                                   FW_VI_CMD_VFN_V(vf));
7708         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7709         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7710
7711         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7712 }
7713
7714 /**
7715  *      t4_set_rxmode - set Rx properties of a virtual interface
7716  *      @adap: the adapter
7717  *      @mbox: mailbox to use for the FW command
7718  *      @viid: the VI id
7719  *      @mtu: the new MTU or -1
7720  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7721  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7722  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7723  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7724  *      @sleep_ok: if true we may sleep while awaiting command completion
7725  *
7726  *      Sets Rx properties of a virtual interface.
7727  */
7728 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7729                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
7730                   bool sleep_ok)
7731 {
7732         struct fw_vi_rxmode_cmd c;
7733
7734         /* convert to FW values */
7735         if (mtu < 0)
7736                 mtu = FW_RXMODE_MTU_NO_CHG;
7737         if (promisc < 0)
7738                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7739         if (all_multi < 0)
7740                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7741         if (bcast < 0)
7742                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7743         if (vlanex < 0)
7744                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7745
7746         memset(&c, 0, sizeof(c));
7747         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7748                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7749                                    FW_VI_RXMODE_CMD_VIID_V(viid));
7750         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7751         c.mtu_to_vlanexen =
7752                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7753                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7754                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7755                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7756                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7757         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7758 }
7759
7760 /**
7761  *      t4_free_encap_mac_filt - frees MPS entry at given index
7762  *      @adap: the adapter
7763  *      @viid: the VI id
7764  *      @idx: index of MPS entry to be freed
7765  *      @sleep_ok: call is allowed to sleep
7766  *
7767  *      Frees the MPS entry at supplied index
7768  *
7769  *      Returns a negative error number or zero on success
7770  */
7771 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7772                            int idx, bool sleep_ok)
7773 {
7774         struct fw_vi_mac_exact *p;
7775         u8 addr[] = {0, 0, 0, 0, 0, 0};
7776         struct fw_vi_mac_cmd c;
7777         int ret = 0;
7778         u32 exact;
7779
7780         memset(&c, 0, sizeof(c));
7781         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7782                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7783                                    FW_CMD_EXEC_V(0) |
7784                                    FW_VI_MAC_CMD_VIID_V(viid));
7785         exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7786         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7787                                           exact |
7788                                           FW_CMD_LEN16_V(1));
7789         p = c.u.exact;
7790         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7791                                       FW_VI_MAC_CMD_IDX_V(idx));
7792         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7793         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7794         return ret;
7795 }
7796
7797 /**
7798  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7799  *      @adap: the adapter
7800  *      @viid: the VI id
7801  *      @addr: the MAC address
7802  *      @mask: the mask
7803  *      @idx: index of the entry in mps tcam
7804  *      @lookup_type: MAC address for inner (1) or outer (0) header
7805  *      @port_id: the port index
7806  *      @sleep_ok: call is allowed to sleep
7807  *
7808  *      Removes the mac entry at the specified index using raw mac interface.
7809  *
7810  *      Returns a negative error number on failure.
7811  */
7812 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7813                          const u8 *addr, const u8 *mask, unsigned int idx,
7814                          u8 lookup_type, u8 port_id, bool sleep_ok)
7815 {
7816         struct fw_vi_mac_cmd c;
7817         struct fw_vi_mac_raw *p = &c.u.raw;
7818         u32 val;
7819
7820         memset(&c, 0, sizeof(c));
7821         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7822                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7823                                    FW_CMD_EXEC_V(0) |
7824                                    FW_VI_MAC_CMD_VIID_V(viid));
7825         val = FW_CMD_LEN16_V(1) |
7826               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7827         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7828                                           FW_CMD_LEN16_V(val));
7829
7830         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7831                                      FW_VI_MAC_ID_BASED_FREE);
7832
7833         /* Lookup Type. Outer header: 0, Inner header: 1 */
7834         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7835                                    DATAPORTNUM_V(port_id));
7836         /* Lookup mask and port mask */
7837         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7838                                     DATAPORTNUM_V(DATAPORTNUM_M));
7839
7840         /* Copy the address and the mask */
7841         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7842         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7843
7844         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7845 }
7846
7847 /**
7848  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7849  *      @adap: the adapter
7850  *      @viid: the VI id
7851  *      @mac: the MAC address
7852  *      @mask: the mask
7853  *      @vni: the VNI id for the tunnel protocol
7854  *      @vni_mask: mask for the VNI id
7855  *      @dip_hit: to enable DIP match for the MPS entry
7856  *      @lookup_type: MAC address for inner (1) or outer (0) header
7857  *      @sleep_ok: call is allowed to sleep
7858  *
7859  *      Allocates an MPS entry with specified MAC address and VNI value.
7860  *
7861  *      Returns a negative error number or the allocated index for this mac.
7862  */
7863 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7864                             const u8 *addr, const u8 *mask, unsigned int vni,
7865                             unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7866                             bool sleep_ok)
7867 {
7868         struct fw_vi_mac_cmd c;
7869         struct fw_vi_mac_vni *p = c.u.exact_vni;
7870         int ret = 0;
7871         u32 val;
7872
7873         memset(&c, 0, sizeof(c));
7874         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7875                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7876                                    FW_VI_MAC_CMD_VIID_V(viid));
7877         val = FW_CMD_LEN16_V(1) |
7878               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7879         c.freemacs_to_len16 = cpu_to_be32(val);
7880         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7881                                       FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7882         memcpy(p->macaddr, addr, sizeof(p->macaddr));
7883         memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7884
7885         p->lookup_type_to_vni =
7886                 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7887                             FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7888                             FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7889         p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7890         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7891         if (ret == 0)
7892                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7893         return ret;
7894 }
7895
7896 /**
7897  *      t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7898  *      @adap: the adapter
7899  *      @viid: the VI id
7900  *      @mac: the MAC address
7901  *      @mask: the mask
7902  *      @idx: index at which to add this entry
7903  *      @port_id: the port index
7904  *      @lookup_type: MAC address for inner (1) or outer (0) header
7905  *      @sleep_ok: call is allowed to sleep
7906  *
7907  *      Adds the mac entry at the specified index using raw mac interface.
7908  *
7909  *      Returns a negative error number or the allocated index for this mac.
7910  */
7911 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7912                           const u8 *addr, const u8 *mask, unsigned int idx,
7913                           u8 lookup_type, u8 port_id, bool sleep_ok)
7914 {
7915         int ret = 0;
7916         struct fw_vi_mac_cmd c;
7917         struct fw_vi_mac_raw *p = &c.u.raw;
7918         u32 val;
7919
7920         memset(&c, 0, sizeof(c));
7921         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7922                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7923                                    FW_VI_MAC_CMD_VIID_V(viid));
7924         val = FW_CMD_LEN16_V(1) |
7925               FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7926         c.freemacs_to_len16 = cpu_to_be32(val);
7927
7928         /* Specify that this is an inner mac address */
7929         p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7930
7931         /* Lookup Type. Outer header: 0, Inner header: 1 */
7932         p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7933                                    DATAPORTNUM_V(port_id));
7934         /* Lookup mask and port mask */
7935         p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7936                                     DATAPORTNUM_V(DATAPORTNUM_M));
7937
7938         /* Copy the address and the mask */
7939         memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7940         memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7941
7942         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7943         if (ret == 0) {
7944                 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7945                 if (ret != idx)
7946                         ret = -ENOMEM;
7947         }
7948
7949         return ret;
7950 }
7951
7952 /**
7953  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7954  *      @adap: the adapter
7955  *      @mbox: mailbox to use for the FW command
7956  *      @viid: the VI id
7957  *      @free: if true any existing filters for this VI id are first removed
7958  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
7959  *      @addr: the MAC address(es)
7960  *      @idx: where to store the index of each allocated filter
7961  *      @hash: pointer to hash address filter bitmap
7962  *      @sleep_ok: call is allowed to sleep
7963  *
7964  *      Allocates an exact-match filter for each of the supplied addresses and
7965  *      sets it to the corresponding address.  If @idx is not %NULL it should
7966  *      have at least @naddr entries, each of which will be set to the index of
7967  *      the filter allocated for the corresponding MAC address.  If a filter
7968  *      could not be allocated for an address its index is set to 0xffff.
7969  *      If @hash is not %NULL addresses that fail to allocate an exact filter
7970  *      are hashed and update the hash filter bitmap pointed at by @hash.
7971  *
7972  *      Returns a negative error number or the number of filters allocated.
7973  */
7974 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7975                       unsigned int viid, bool free, unsigned int naddr,
7976                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7977 {
7978         int offset, ret = 0;
7979         struct fw_vi_mac_cmd c;
7980         unsigned int nfilters = 0;
7981         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7982         unsigned int rem = naddr;
7983
7984         if (naddr > max_naddr)
7985                 return -EINVAL;
7986
7987         for (offset = 0; offset < naddr ; /**/) {
7988                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7989                                          rem : ARRAY_SIZE(c.u.exact));
7990                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7991                                                      u.exact[fw_naddr]), 16);
7992                 struct fw_vi_mac_exact *p;
7993                 int i;
7994
7995                 memset(&c, 0, sizeof(c));
7996                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7997                                            FW_CMD_REQUEST_F |
7998                                            FW_CMD_WRITE_F |
7999                                            FW_CMD_EXEC_V(free) |
8000                                            FW_VI_MAC_CMD_VIID_V(viid));
8001                 c.freemacs_to_len16 =
8002                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8003                                     FW_CMD_LEN16_V(len16));
8004
8005                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8006                         p->valid_to_idx =
8007                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8008                                             FW_VI_MAC_CMD_IDX_V(
8009                                                     FW_VI_MAC_ADD_MAC));
8010                         memcpy(p->macaddr, addr[offset + i],
8011                                sizeof(p->macaddr));
8012                 }
8013
8014                 /* It's okay if we run out of space in our MAC address arena.
8015                  * Some of the addresses we submit may get stored so we need
8016                  * to run through the reply to see what the results were ...
8017                  */
8018                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8019                 if (ret && ret != -FW_ENOMEM)
8020                         break;
8021
8022                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8023                         u16 index = FW_VI_MAC_CMD_IDX_G(
8024                                         be16_to_cpu(p->valid_to_idx));
8025
8026                         if (idx)
8027                                 idx[offset + i] = (index >= max_naddr ?
8028                                                    0xffff : index);
8029                         if (index < max_naddr)
8030                                 nfilters++;
8031                         else if (hash)
8032                                 *hash |= (1ULL <<
8033                                           hash_mac_addr(addr[offset + i]));
8034                 }
8035
8036                 free = false;
8037                 offset += fw_naddr;
8038                 rem -= fw_naddr;
8039         }
8040
8041         if (ret == 0 || ret == -FW_ENOMEM)
8042                 ret = nfilters;
8043         return ret;
8044 }
8045
8046 /**
8047  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
8048  *      @adap: the adapter
8049  *      @mbox: mailbox to use for the FW command
8050  *      @viid: the VI id
8051  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
8052  *      @addr: the MAC address(es)
8053  *      @sleep_ok: call is allowed to sleep
8054  *
8055  *      Frees the exact-match filter for each of the supplied addresses
8056  *
8057  *      Returns a negative error number or the number of filters freed.
8058  */
8059 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8060                      unsigned int viid, unsigned int naddr,
8061                      const u8 **addr, bool sleep_ok)
8062 {
8063         int offset, ret = 0;
8064         struct fw_vi_mac_cmd c;
8065         unsigned int nfilters = 0;
8066         unsigned int max_naddr = is_t4(adap->params.chip) ?
8067                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
8068                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8069         unsigned int rem = naddr;
8070
8071         if (naddr > max_naddr)
8072                 return -EINVAL;
8073
8074         for (offset = 0; offset < (int)naddr ; /**/) {
8075                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8076                                          ? rem
8077                                          : ARRAY_SIZE(c.u.exact));
8078                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8079                                                      u.exact[fw_naddr]), 16);
8080                 struct fw_vi_mac_exact *p;
8081                 int i;
8082
8083                 memset(&c, 0, sizeof(c));
8084                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8085                                      FW_CMD_REQUEST_F |
8086                                      FW_CMD_WRITE_F |
8087                                      FW_CMD_EXEC_V(0) |
8088                                      FW_VI_MAC_CMD_VIID_V(viid));
8089                 c.freemacs_to_len16 =
8090                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8091                                             FW_CMD_LEN16_V(len16));
8092
8093                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8094                         p->valid_to_idx = cpu_to_be16(
8095                                 FW_VI_MAC_CMD_VALID_F |
8096                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8097                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8098                 }
8099
8100                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8101                 if (ret)
8102                         break;
8103
8104                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8105                         u16 index = FW_VI_MAC_CMD_IDX_G(
8106                                                 be16_to_cpu(p->valid_to_idx));
8107
8108                         if (index < max_naddr)
8109                                 nfilters++;
8110                 }
8111
8112                 offset += fw_naddr;
8113                 rem -= fw_naddr;
8114         }
8115
8116         if (ret == 0)
8117                 ret = nfilters;
8118         return ret;
8119 }
8120
8121 /**
8122  *      t4_change_mac - modifies the exact-match filter for a MAC address
8123  *      @adap: the adapter
8124  *      @mbox: mailbox to use for the FW command
8125  *      @viid: the VI id
8126  *      @idx: index of existing filter for old value of MAC address, or -1
8127  *      @addr: the new MAC address value
8128  *      @persist: whether a new MAC allocation should be persistent
8129  *      @add_smt: if true also add the address to the HW SMT
8130  *
8131  *      Modifies an exact-match filter and sets it to the new MAC address.
8132  *      Note that in general it is not possible to modify the value of a given
8133  *      filter so the generic way to modify an address filter is to free the one
8134  *      being used by the old address value and allocate a new filter for the
8135  *      new address value.  @idx can be -1 if the address is a new addition.
8136  *
8137  *      Returns a negative error number or the index of the filter with the new
8138  *      MAC value.
8139  */
8140 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8141                   int idx, const u8 *addr, bool persist, u8 *smt_idx)
8142 {
8143         int ret, mode;
8144         struct fw_vi_mac_cmd c;
8145         struct fw_vi_mac_exact *p = c.u.exact;
8146         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8147
8148         if (idx < 0)                             /* new allocation */
8149                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8150         mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8151
8152         memset(&c, 0, sizeof(c));
8153         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8154                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8155                                    FW_VI_MAC_CMD_VIID_V(viid));
8156         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8157         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8158                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8159                                       FW_VI_MAC_CMD_IDX_V(idx));
8160         memcpy(p->macaddr, addr, sizeof(p->macaddr));
8161
8162         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8163         if (ret == 0) {
8164                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8165                 if (ret >= max_mac_addr)
8166                         ret = -ENOMEM;
8167                 if (smt_idx) {
8168                         if (adap->params.viid_smt_extn_support) {
8169                                 *smt_idx = FW_VI_MAC_CMD_SMTID_G
8170                                                     (be32_to_cpu(c.op_to_viid));
8171                         } else {
8172                                 /* In T4/T5, SMT contains 256 SMAC entries
8173                                  * organized in 128 rows of 2 entries each.
8174                                  * In T6, SMT contains 256 SMAC entries in
8175                                  * 256 rows.
8176                                  */
8177                                 if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8178                                                                      CHELSIO_T5)
8179                                         *smt_idx = (viid & FW_VIID_VIN_M) << 1;
8180                                 else
8181                                         *smt_idx = (viid & FW_VIID_VIN_M);
8182                         }
8183                 }
8184         }
8185         return ret;
8186 }
8187
8188 /**
8189  *      t4_set_addr_hash - program the MAC inexact-match hash filter
8190  *      @adap: the adapter
8191  *      @mbox: mailbox to use for the FW command
8192  *      @viid: the VI id
8193  *      @ucast: whether the hash filter should also match unicast addresses
8194  *      @vec: the value to be written to the hash filter
8195  *      @sleep_ok: call is allowed to sleep
8196  *
8197  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
8198  */
8199 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8200                      bool ucast, u64 vec, bool sleep_ok)
8201 {
8202         struct fw_vi_mac_cmd c;
8203
8204         memset(&c, 0, sizeof(c));
8205         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8206                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8207                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8208         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8209                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8210                                           FW_CMD_LEN16_V(1));
8211         c.u.hash.hashvec = cpu_to_be64(vec);
8212         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8213 }
8214
8215 /**
8216  *      t4_enable_vi_params - enable/disable a virtual interface
8217  *      @adap: the adapter
8218  *      @mbox: mailbox to use for the FW command
8219  *      @viid: the VI id
8220  *      @rx_en: 1=enable Rx, 0=disable Rx
8221  *      @tx_en: 1=enable Tx, 0=disable Tx
8222  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8223  *
8224  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8225  *      only makes sense when enabling a Virtual Interface ...
8226  */
8227 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8228                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8229 {
8230         struct fw_vi_enable_cmd c;
8231
8232         memset(&c, 0, sizeof(c));
8233         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8234                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8235                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8236         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8237                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8238                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8239                                      FW_LEN16(c));
8240         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8241 }
8242
8243 /**
8244  *      t4_enable_vi - enable/disable a virtual interface
8245  *      @adap: the adapter
8246  *      @mbox: mailbox to use for the FW command
8247  *      @viid: the VI id
8248  *      @rx_en: 1=enable Rx, 0=disable Rx
8249  *      @tx_en: 1=enable Tx, 0=disable Tx
8250  *
8251  *      Enables/disables a virtual interface.
8252  */
8253 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8254                  bool rx_en, bool tx_en)
8255 {
8256         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8257 }
8258
8259 /**
8260  *      t4_enable_pi_params - enable/disable a Port's Virtual Interface
8261  *      @adap: the adapter
8262  *      @mbox: mailbox to use for the FW command
8263  *      @pi: the Port Information structure
8264  *      @rx_en: 1=enable Rx, 0=disable Rx
8265  *      @tx_en: 1=enable Tx, 0=disable Tx
8266  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8267  *
8268  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8269  *      Enable only makes sense when enabling a Virtual Interface ...
8270  *      If the Virtual Interface enable/disable operation is successful,
8271  *      we notify the OS-specific code of a potential Link Status change
8272  *      via the OS Contract API t4_os_link_changed().
8273  */
8274 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8275                         struct port_info *pi,
8276                         bool rx_en, bool tx_en, bool dcb_en)
8277 {
8278         int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8279                                       rx_en, tx_en, dcb_en);
8280         if (ret)
8281                 return ret;
8282         t4_os_link_changed(adap, pi->port_id,
8283                            rx_en && tx_en && pi->link_cfg.link_ok);
8284         return 0;
8285 }
8286
8287 /**
8288  *      t4_identify_port - identify a VI's port by blinking its LED
8289  *      @adap: the adapter
8290  *      @mbox: mailbox to use for the FW command
8291  *      @viid: the VI id
8292  *      @nblinks: how many times to blink LED at 2.5 Hz
8293  *
8294  *      Identifies a VI's port by blinking its LED.
8295  */
8296 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8297                      unsigned int nblinks)
8298 {
8299         struct fw_vi_enable_cmd c;
8300
8301         memset(&c, 0, sizeof(c));
8302         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8303                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8304                                    FW_VI_ENABLE_CMD_VIID_V(viid));
8305         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8306         c.blinkdur = cpu_to_be16(nblinks);
8307         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8308 }
8309
8310 /**
8311  *      t4_iq_stop - stop an ingress queue and its FLs
8312  *      @adap: the adapter
8313  *      @mbox: mailbox to use for the FW command
8314  *      @pf: the PF owning the queues
8315  *      @vf: the VF owning the queues
8316  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8317  *      @iqid: ingress queue id
8318  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8319  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8320  *
8321  *      Stops an ingress queue and its associated FLs, if any.  This causes
8322  *      any current or future data/messages destined for these queues to be
8323  *      tossed.
8324  */
8325 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8326                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8327                unsigned int fl0id, unsigned int fl1id)
8328 {
8329         struct fw_iq_cmd c;
8330
8331         memset(&c, 0, sizeof(c));
8332         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8333                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8334                                   FW_IQ_CMD_VFN_V(vf));
8335         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8336         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8337         c.iqid = cpu_to_be16(iqid);
8338         c.fl0id = cpu_to_be16(fl0id);
8339         c.fl1id = cpu_to_be16(fl1id);
8340         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8341 }
8342
8343 /**
8344  *      t4_iq_free - free an ingress queue and its FLs
8345  *      @adap: the adapter
8346  *      @mbox: mailbox to use for the FW command
8347  *      @pf: the PF owning the queues
8348  *      @vf: the VF owning the queues
8349  *      @iqtype: the ingress queue type
8350  *      @iqid: ingress queue id
8351  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
8352  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
8353  *
8354  *      Frees an ingress queue and its associated FLs, if any.
8355  */
8356 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8357                unsigned int vf, unsigned int iqtype, unsigned int iqid,
8358                unsigned int fl0id, unsigned int fl1id)
8359 {
8360         struct fw_iq_cmd c;
8361
8362         memset(&c, 0, sizeof(c));
8363         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8364                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8365                                   FW_IQ_CMD_VFN_V(vf));
8366         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8367         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8368         c.iqid = cpu_to_be16(iqid);
8369         c.fl0id = cpu_to_be16(fl0id);
8370         c.fl1id = cpu_to_be16(fl1id);
8371         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8372 }
8373
8374 /**
8375  *      t4_eth_eq_free - free an Ethernet egress queue
8376  *      @adap: the adapter
8377  *      @mbox: mailbox to use for the FW command
8378  *      @pf: the PF owning the queue
8379  *      @vf: the VF owning the queue
8380  *      @eqid: egress queue id
8381  *
8382  *      Frees an Ethernet egress queue.
8383  */
8384 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8385                    unsigned int vf, unsigned int eqid)
8386 {
8387         struct fw_eq_eth_cmd c;
8388
8389         memset(&c, 0, sizeof(c));
8390         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8391                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8392                                   FW_EQ_ETH_CMD_PFN_V(pf) |
8393                                   FW_EQ_ETH_CMD_VFN_V(vf));
8394         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8395         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8396         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8397 }
8398
8399 /**
8400  *      t4_ctrl_eq_free - free a control egress queue
8401  *      @adap: the adapter
8402  *      @mbox: mailbox to use for the FW command
8403  *      @pf: the PF owning the queue
8404  *      @vf: the VF owning the queue
8405  *      @eqid: egress queue id
8406  *
8407  *      Frees a control egress queue.
8408  */
8409 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8410                     unsigned int vf, unsigned int eqid)
8411 {
8412         struct fw_eq_ctrl_cmd c;
8413
8414         memset(&c, 0, sizeof(c));
8415         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8416                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8417                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
8418                                   FW_EQ_CTRL_CMD_VFN_V(vf));
8419         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8420         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8421         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8422 }
8423
8424 /**
8425  *      t4_ofld_eq_free - free an offload egress queue
8426  *      @adap: the adapter
8427  *      @mbox: mailbox to use for the FW command
8428  *      @pf: the PF owning the queue
8429  *      @vf: the VF owning the queue
8430  *      @eqid: egress queue id
8431  *
8432  *      Frees a control egress queue.
8433  */
8434 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8435                     unsigned int vf, unsigned int eqid)
8436 {
8437         struct fw_eq_ofld_cmd c;
8438
8439         memset(&c, 0, sizeof(c));
8440         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8441                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8442                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
8443                                   FW_EQ_OFLD_CMD_VFN_V(vf));
8444         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8445         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8446         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8447 }
8448
8449 /**
8450  *      t4_link_down_rc_str - return a string for a Link Down Reason Code
8451  *      @adap: the adapter
8452  *      @link_down_rc: Link Down Reason Code
8453  *
8454  *      Returns a string representation of the Link Down Reason Code.
8455  */
8456 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8457 {
8458         static const char * const reason[] = {
8459                 "Link Down",
8460                 "Remote Fault",
8461                 "Auto-negotiation Failure",
8462                 "Reserved",
8463                 "Insufficient Airflow",
8464                 "Unable To Determine Reason",
8465                 "No RX Signal Detected",
8466                 "Reserved",
8467         };
8468
8469         if (link_down_rc >= ARRAY_SIZE(reason))
8470                 return "Bad Reason Code";
8471
8472         return reason[link_down_rc];
8473 }
8474
8475 /**
8476  * Return the highest speed set in the port capabilities, in Mb/s.
8477  */
8478 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8479 {
8480         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
8481                 do { \
8482                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8483                                 return __speed; \
8484                 } while (0)
8485
8486         TEST_SPEED_RETURN(400G, 400000);
8487         TEST_SPEED_RETURN(200G, 200000);
8488         TEST_SPEED_RETURN(100G, 100000);
8489         TEST_SPEED_RETURN(50G,   50000);
8490         TEST_SPEED_RETURN(40G,   40000);
8491         TEST_SPEED_RETURN(25G,   25000);
8492         TEST_SPEED_RETURN(10G,   10000);
8493         TEST_SPEED_RETURN(1G,     1000);
8494         TEST_SPEED_RETURN(100M,    100);
8495
8496         #undef TEST_SPEED_RETURN
8497
8498         return 0;
8499 }
8500
8501 /**
8502  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
8503  *      @acaps: advertised Port Capabilities
8504  *
8505  *      Get the highest speed for the port from the advertised Port
8506  *      Capabilities.  It will be either the highest speed from the list of
8507  *      speeds or whatever user has set using ethtool.
8508  */
8509 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8510 {
8511         #define TEST_SPEED_RETURN(__caps_speed) \
8512                 do { \
8513                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8514                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
8515                 } while (0)
8516
8517         TEST_SPEED_RETURN(400G);
8518         TEST_SPEED_RETURN(200G);
8519         TEST_SPEED_RETURN(100G);
8520         TEST_SPEED_RETURN(50G);
8521         TEST_SPEED_RETURN(40G);
8522         TEST_SPEED_RETURN(25G);
8523         TEST_SPEED_RETURN(10G);
8524         TEST_SPEED_RETURN(1G);
8525         TEST_SPEED_RETURN(100M);
8526
8527         #undef TEST_SPEED_RETURN
8528
8529         return 0;
8530 }
8531
8532 /**
8533  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8534  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8535  *
8536  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8537  *      32-bit Port Capabilities value.
8538  */
8539 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8540 {
8541         fw_port_cap32_t linkattr = 0;
8542
8543         /* Unfortunately the format of the Link Status in the old
8544          * 16-bit Port Information message isn't the same as the
8545          * 16-bit Port Capabilities bitfield used everywhere else ...
8546          */
8547         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8548                 linkattr |= FW_PORT_CAP32_FC_RX;
8549         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8550                 linkattr |= FW_PORT_CAP32_FC_TX;
8551         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8552                 linkattr |= FW_PORT_CAP32_SPEED_100M;
8553         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8554                 linkattr |= FW_PORT_CAP32_SPEED_1G;
8555         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8556                 linkattr |= FW_PORT_CAP32_SPEED_10G;
8557         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8558                 linkattr |= FW_PORT_CAP32_SPEED_25G;
8559         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8560                 linkattr |= FW_PORT_CAP32_SPEED_40G;
8561         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8562                 linkattr |= FW_PORT_CAP32_SPEED_100G;
8563
8564         return linkattr;
8565 }
8566
8567 /**
8568  *      t4_handle_get_port_info - process a FW reply message
8569  *      @pi: the port info
8570  *      @rpl: start of the FW message
8571  *
8572  *      Processes a GET_PORT_INFO FW reply message.
8573  */
8574 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8575 {
8576         const struct fw_port_cmd *cmd = (const void *)rpl;
8577         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8578         struct link_config *lc = &pi->link_cfg;
8579         struct adapter *adapter = pi->adapter;
8580         unsigned int speed, fc, fec, adv_fc;
8581         enum fw_port_module_type mod_type;
8582         int action, link_ok, linkdnrc;
8583         enum fw_port_type port_type;
8584
8585         /* Extract the various fields from the Port Information message.
8586          */
8587         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8588         switch (action) {
8589         case FW_PORT_ACTION_GET_PORT_INFO: {
8590                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8591
8592                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8593                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8594                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8595                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8596                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8597                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8598                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8599                 linkattr = lstatus_to_fwcap(lstatus);
8600                 break;
8601         }
8602
8603         case FW_PORT_ACTION_GET_PORT_INFO32: {
8604                 u32 lstatus32;
8605
8606                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8607                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8608                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8609                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8610                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8611                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8612                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
8613                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8614                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8615                 break;
8616         }
8617
8618         default:
8619                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8620                         be32_to_cpu(cmd->action_to_len16));
8621                 return;
8622         }
8623
8624         fec = fwcap_to_cc_fec(acaps);
8625         adv_fc = fwcap_to_cc_pause(acaps);
8626         fc = fwcap_to_cc_pause(linkattr);
8627         speed = fwcap_to_speed(linkattr);
8628
8629         /* Reset state for communicating new Transceiver Module status and
8630          * whether the OS-dependent layer wants us to redo the current
8631          * "sticky" L1 Configure Link Parameters.
8632          */
8633         lc->new_module = false;
8634         lc->redo_l1cfg = false;
8635
8636         if (mod_type != pi->mod_type) {
8637                 /* With the newer SFP28 and QSFP28 Transceiver Module Types,
8638                  * various fundamental Port Capabilities which used to be
8639                  * immutable can now change radically.  We can now have
8640                  * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8641                  * all change based on what Transceiver Module is inserted.
8642                  * So we need to record the Physical "Port" Capabilities on
8643                  * every Transceiver Module change.
8644                  */
8645                 lc->pcaps = pcaps;
8646
8647                 /* When a new Transceiver Module is inserted, the Firmware
8648                  * will examine its i2c EPROM to determine its type and
8649                  * general operating parameters including things like Forward
8650                  * Error Control, etc.  Various IEEE 802.3 standards dictate
8651                  * how to interpret these i2c values to determine default
8652                  * "sutomatic" settings.  We record these for future use when
8653                  * the user explicitly requests these standards-based values.
8654                  */
8655                 lc->def_acaps = acaps;
8656
8657                 /* Some versions of the early T6 Firmware "cheated" when
8658                  * handling different Transceiver Modules by changing the
8659                  * underlaying Port Type reported to the Host Drivers.  As
8660                  * such we need to capture whatever Port Type the Firmware
8661                  * sends us and record it in case it's different from what we
8662                  * were told earlier.  Unfortunately, since Firmware is
8663                  * forever, we'll need to keep this code here forever, but in
8664                  * later T6 Firmware it should just be an assignment of the
8665                  * same value already recorded.
8666                  */
8667                 pi->port_type = port_type;
8668
8669                 /* Record new Module Type information.
8670                  */
8671                 pi->mod_type = mod_type;
8672
8673                 /* Let the OS-dependent layer know if we have a new
8674                  * Transceiver Module inserted.
8675                  */
8676                 lc->new_module = t4_is_inserted_mod_type(mod_type);
8677
8678                 t4_os_portmod_changed(adapter, pi->port_id);
8679         }
8680
8681         if (link_ok != lc->link_ok || speed != lc->speed ||
8682             fc != lc->fc || adv_fc != lc->advertised_fc ||
8683             fec != lc->fec) {
8684                 /* something changed */
8685                 if (!link_ok && lc->link_ok) {
8686                         lc->link_down_rc = linkdnrc;
8687                         dev_warn_ratelimited(adapter->pdev_dev,
8688                                              "Port %d link down, reason: %s\n",
8689                                              pi->tx_chan,
8690                                              t4_link_down_rc_str(linkdnrc));
8691                 }
8692                 lc->link_ok = link_ok;
8693                 lc->speed = speed;
8694                 lc->advertised_fc = adv_fc;
8695                 lc->fc = fc;
8696                 lc->fec = fec;
8697
8698                 lc->lpacaps = lpacaps;
8699                 lc->acaps = acaps & ADVERT_MASK;
8700
8701                 /* If we're not physically capable of Auto-Negotiation, note
8702                  * this as Auto-Negotiation disabled.  Otherwise, we track
8703                  * what Auto-Negotiation settings we have.  Note parallel
8704                  * structure in t4_link_l1cfg_core() and init_link_config().
8705                  */
8706                 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8707                         lc->autoneg = AUTONEG_DISABLE;
8708                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8709                         lc->autoneg = AUTONEG_ENABLE;
8710                 } else {
8711                         /* When Autoneg is disabled, user needs to set
8712                          * single speed.
8713                          * Similar to cxgb4_ethtool.c: set_link_ksettings
8714                          */
8715                         lc->acaps = 0;
8716                         lc->speed_caps = fwcap_to_fwspeed(acaps);
8717                         lc->autoneg = AUTONEG_DISABLE;
8718                 }
8719
8720                 t4_os_link_changed(adapter, pi->port_id, link_ok);
8721         }
8722
8723         /* If we have a new Transceiver Module and the OS-dependent code has
8724          * told us that it wants us to redo whatever "sticky" L1 Configuration
8725          * Link Parameters are set, do that now.
8726          */
8727         if (lc->new_module && lc->redo_l1cfg) {
8728                 struct link_config old_lc;
8729                 int ret;
8730
8731                 /* Save the current L1 Configuration and restore it if an
8732                  * error occurs.  We probably should fix the l1_cfg*()
8733                  * routines not to change the link_config when an error
8734                  * occurs ...
8735                  */
8736                 old_lc = *lc;
8737                 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8738                 if (ret) {
8739                         *lc = old_lc;
8740                         dev_warn(adapter->pdev_dev,
8741                                  "Attempt to update new Transceiver Module settings failed\n");
8742                 }
8743         }
8744         lc->new_module = false;
8745         lc->redo_l1cfg = false;
8746 }
8747
8748 /**
8749  *      t4_update_port_info - retrieve and update port information if changed
8750  *      @pi: the port_info
8751  *
8752  *      We issue a Get Port Information Command to the Firmware and, if
8753  *      successful, we check to see if anything is different from what we
8754  *      last recorded and update things accordingly.
8755  */
8756 int t4_update_port_info(struct port_info *pi)
8757 {
8758         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8759         struct fw_port_cmd port_cmd;
8760         int ret;
8761
8762         memset(&port_cmd, 0, sizeof(port_cmd));
8763         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8764                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8765                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8766         port_cmd.action_to_len16 = cpu_to_be32(
8767                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8768                                      ? FW_PORT_ACTION_GET_PORT_INFO
8769                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
8770                 FW_LEN16(port_cmd));
8771         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8772                          &port_cmd, sizeof(port_cmd), &port_cmd);
8773         if (ret)
8774                 return ret;
8775
8776         t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8777         return 0;
8778 }
8779
8780 /**
8781  *      t4_get_link_params - retrieve basic link parameters for given port
8782  *      @pi: the port
8783  *      @link_okp: value return pointer for link up/down
8784  *      @speedp: value return pointer for speed (Mb/s)
8785  *      @mtup: value return pointer for mtu
8786  *
8787  *      Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8788  *      and MTU for a specified port.  A negative error is returned on
8789  *      failure; 0 on success.
8790  */
8791 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8792                        unsigned int *speedp, unsigned int *mtup)
8793 {
8794         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8795         unsigned int action, link_ok, mtu;
8796         struct fw_port_cmd port_cmd;
8797         fw_port_cap32_t linkattr;
8798         int ret;
8799
8800         memset(&port_cmd, 0, sizeof(port_cmd));
8801         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8802                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
8803                                             FW_PORT_CMD_PORTID_V(pi->tx_chan));
8804         action = (fw_caps == FW_CAPS16
8805                   ? FW_PORT_ACTION_GET_PORT_INFO
8806                   : FW_PORT_ACTION_GET_PORT_INFO32);
8807         port_cmd.action_to_len16 = cpu_to_be32(
8808                 FW_PORT_CMD_ACTION_V(action) |
8809                 FW_LEN16(port_cmd));
8810         ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8811                          &port_cmd, sizeof(port_cmd), &port_cmd);
8812         if (ret)
8813                 return ret;
8814
8815         if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8816                 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8817
8818                 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8819                 linkattr = lstatus_to_fwcap(lstatus);
8820                 mtu = be16_to_cpu(port_cmd.u.info.mtu);
8821         } else {
8822                 u32 lstatus32 =
8823                            be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8824
8825                 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8826                 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8827                 mtu = FW_PORT_CMD_MTU32_G(
8828                         be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8829         }
8830
8831         if (link_okp)
8832                 *link_okp = link_ok;
8833         if (speedp)
8834                 *speedp = fwcap_to_speed(linkattr);
8835         if (mtup)
8836                 *mtup = mtu;
8837
8838         return 0;
8839 }
8840
8841 /**
8842  *      t4_handle_fw_rpl - process a FW reply message
8843  *      @adap: the adapter
8844  *      @rpl: start of the FW message
8845  *
8846  *      Processes a FW message, such as link state change messages.
8847  */
8848 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8849 {
8850         u8 opcode = *(const u8 *)rpl;
8851
8852         /* This might be a port command ... this simplifies the following
8853          * conditionals ...  We can get away with pre-dereferencing
8854          * action_to_len16 because it's in the first 16 bytes and all messages
8855          * will be at least that long.
8856          */
8857         const struct fw_port_cmd *p = (const void *)rpl;
8858         unsigned int action =
8859                 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8860
8861         if (opcode == FW_PORT_CMD &&
8862             (action == FW_PORT_ACTION_GET_PORT_INFO ||
8863              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8864                 int i;
8865                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8866                 struct port_info *pi = NULL;
8867
8868                 for_each_port(adap, i) {
8869                         pi = adap2pinfo(adap, i);
8870                         if (pi->tx_chan == chan)
8871                                 break;
8872                 }
8873
8874                 t4_handle_get_port_info(pi, rpl);
8875         } else {
8876                 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8877                          opcode);
8878                 return -EINVAL;
8879         }
8880         return 0;
8881 }
8882
8883 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8884 {
8885         u16 val;
8886
8887         if (pci_is_pcie(adapter->pdev)) {
8888                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8889                 p->speed = val & PCI_EXP_LNKSTA_CLS;
8890                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8891         }
8892 }
8893
8894 /**
8895  *      init_link_config - initialize a link's SW state
8896  *      @lc: pointer to structure holding the link state
8897  *      @pcaps: link Port Capabilities
8898  *      @acaps: link current Advertised Port Capabilities
8899  *
8900  *      Initializes the SW state maintained for each link, including the link's
8901  *      capabilities and default speed/flow-control/autonegotiation settings.
8902  */
8903 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8904                              fw_port_cap32_t acaps)
8905 {
8906         lc->pcaps = pcaps;
8907         lc->def_acaps = acaps;
8908         lc->lpacaps = 0;
8909         lc->speed_caps = 0;
8910         lc->speed = 0;
8911         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8912
8913         /* For Forward Error Control, we default to whatever the Firmware
8914          * tells us the Link is currently advertising.
8915          */
8916         lc->requested_fec = FEC_AUTO;
8917         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8918
8919         /* If the Port is capable of Auto-Negtotiation, initialize it as
8920          * "enabled" and copy over all of the Physical Port Capabilities
8921          * to the Advertised Port Capabilities.  Otherwise mark it as
8922          * Auto-Negotiate disabled and select the highest supported speed
8923          * for the link.  Note parallel structure in t4_link_l1cfg_core()
8924          * and t4_handle_get_port_info().
8925          */
8926         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8927                 lc->acaps = lc->pcaps & ADVERT_MASK;
8928                 lc->autoneg = AUTONEG_ENABLE;
8929                 lc->requested_fc |= PAUSE_AUTONEG;
8930         } else {
8931                 lc->acaps = 0;
8932                 lc->autoneg = AUTONEG_DISABLE;
8933                 lc->speed_caps = fwcap_to_fwspeed(acaps);
8934         }
8935 }
8936
8937 #define CIM_PF_NOACCESS 0xeeeeeeee
8938
8939 int t4_wait_dev_ready(void __iomem *regs)
8940 {
8941         u32 whoami;
8942
8943         whoami = readl(regs + PL_WHOAMI_A);
8944         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8945                 return 0;
8946
8947         msleep(500);
8948         whoami = readl(regs + PL_WHOAMI_A);
8949         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8950 }
8951
8952 struct flash_desc {
8953         u32 vendor_and_model_id;
8954         u32 size_mb;
8955 };
8956
8957 static int t4_get_flash_params(struct adapter *adap)
8958 {
8959         /* Table for non-Numonix supported flash parts.  Numonix parts are left
8960          * to the preexisting code.  All flash parts have 64KB sectors.
8961          */
8962         static struct flash_desc supported_flash[] = {
8963                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8964         };
8965
8966         unsigned int part, manufacturer;
8967         unsigned int density, size = 0;
8968         u32 flashid = 0;
8969         int ret;
8970
8971         /* Issue a Read ID Command to the Flash part.  We decode supported
8972          * Flash parts and their sizes from this.  There's a newer Query
8973          * Command which can retrieve detailed geometry information but many
8974          * Flash parts don't support it.
8975          */
8976
8977         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8978         if (!ret)
8979                 ret = sf1_read(adap, 3, 0, 1, &flashid);
8980         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8981         if (ret)
8982                 return ret;
8983
8984         /* Check to see if it's one of our non-standard supported Flash parts.
8985          */
8986         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8987                 if (supported_flash[part].vendor_and_model_id == flashid) {
8988                         adap->params.sf_size = supported_flash[part].size_mb;
8989                         adap->params.sf_nsec =
8990                                 adap->params.sf_size / SF_SEC_SIZE;
8991                         goto found;
8992                 }
8993
8994         /* Decode Flash part size.  The code below looks repetitive with
8995          * common encodings, but that's not guaranteed in the JEDEC
8996          * specification for the Read JEDEC ID command.  The only thing that
8997          * we're guaranteed by the JEDEC specification is where the
8998          * Manufacturer ID is in the returned result.  After that each
8999          * Manufacturer ~could~ encode things completely differently.
9000          * Note, all Flash parts must have 64KB sectors.
9001          */
9002         manufacturer = flashid & 0xff;
9003         switch (manufacturer) {
9004         case 0x20: { /* Micron/Numonix */
9005                 /* This Density -> Size decoding table is taken from Micron
9006                  * Data Sheets.
9007                  */
9008                 density = (flashid >> 16) & 0xff;
9009                 switch (density) {
9010                 case 0x14: /* 1MB */
9011                         size = 1 << 20;
9012                         break;
9013                 case 0x15: /* 2MB */
9014                         size = 1 << 21;
9015                         break;
9016                 case 0x16: /* 4MB */
9017                         size = 1 << 22;
9018                         break;
9019                 case 0x17: /* 8MB */
9020                         size = 1 << 23;
9021                         break;
9022                 case 0x18: /* 16MB */
9023                         size = 1 << 24;
9024                         break;
9025                 case 0x19: /* 32MB */
9026                         size = 1 << 25;
9027                         break;
9028                 case 0x20: /* 64MB */
9029                         size = 1 << 26;
9030                         break;
9031                 case 0x21: /* 128MB */
9032                         size = 1 << 27;
9033                         break;
9034                 case 0x22: /* 256MB */
9035                         size = 1 << 28;
9036                         break;
9037                 }
9038                 break;
9039         }
9040         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9041                 /* This Density -> Size decoding table is taken from ISSI
9042                  * Data Sheets.
9043                  */
9044                 density = (flashid >> 16) & 0xff;
9045                 switch (density) {
9046                 case 0x16: /* 32 MB */
9047                         size = 1 << 25;
9048                         break;
9049                 case 0x17: /* 64MB */
9050                         size = 1 << 26;
9051                         break;
9052                 }
9053                 break;
9054         }
9055         case 0xc2: { /* Macronix */
9056                 /* This Density -> Size decoding table is taken from Macronix
9057                  * Data Sheets.
9058                  */
9059                 density = (flashid >> 16) & 0xff;
9060                 switch (density) {
9061                 case 0x17: /* 8MB */
9062                         size = 1 << 23;
9063                         break;
9064                 case 0x18: /* 16MB */
9065                         size = 1 << 24;
9066                         break;
9067                 }
9068                 break;
9069         }
9070         case 0xef: { /* Winbond */
9071                 /* This Density -> Size decoding table is taken from Winbond
9072                  * Data Sheets.
9073                  */
9074                 density = (flashid >> 16) & 0xff;
9075                 switch (density) {
9076                 case 0x17: /* 8MB */
9077                         size = 1 << 23;
9078                         break;
9079                 case 0x18: /* 16MB */
9080                         size = 1 << 24;
9081                         break;
9082                 }
9083                 break;
9084         }
9085         }
9086
9087         /* If we didn't recognize the FLASH part, that's no real issue: the
9088          * Hardware/Software contract says that Hardware will _*ALWAYS*_
9089          * use a FLASH part which is at least 4MB in size and has 64KB
9090          * sectors.  The unrecognized FLASH part is likely to be much larger
9091          * than 4MB, but that's all we really need.
9092          */
9093         if (size == 0) {
9094                 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9095                          flashid);
9096                 size = 1 << 22;
9097         }
9098
9099         /* Store decoded Flash size and fall through into vetting code. */
9100         adap->params.sf_size = size;
9101         adap->params.sf_nsec = size / SF_SEC_SIZE;
9102
9103 found:
9104         if (adap->params.sf_size < FLASH_MIN_SIZE)
9105                 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9106                          flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9107         return 0;
9108 }
9109
9110 /**
9111  *      t4_prep_adapter - prepare SW and HW for operation
9112  *      @adapter: the adapter
9113  *      @reset: if true perform a HW reset
9114  *
9115  *      Initialize adapter SW state for the various HW modules, set initial
9116  *      values for some adapter tunables, take PHYs out of reset, and
9117  *      initialize the MDIO interface.
9118  */
9119 int t4_prep_adapter(struct adapter *adapter)
9120 {
9121         int ret, ver;
9122         uint16_t device_id;
9123         u32 pl_rev;
9124
9125         get_pci_mode(adapter, &adapter->params.pci);
9126         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9127
9128         ret = t4_get_flash_params(adapter);
9129         if (ret < 0) {
9130                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9131                 return ret;
9132         }
9133
9134         /* Retrieve adapter's device ID
9135          */
9136         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9137         ver = device_id >> 12;
9138         adapter->params.chip = 0;
9139         switch (ver) {
9140         case CHELSIO_T4:
9141                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9142                 adapter->params.arch.sge_fl_db = DBPRIO_F;
9143                 adapter->params.arch.mps_tcam_size =
9144                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
9145                 adapter->params.arch.mps_rplc_size = 128;
9146                 adapter->params.arch.nchan = NCHAN;
9147                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9148                 adapter->params.arch.vfcount = 128;
9149                 /* Congestion map is for 4 channels so that
9150                  * MPS can have 4 priority per port.
9151                  */
9152                 adapter->params.arch.cng_ch_bits_log = 2;
9153                 break;
9154         case CHELSIO_T5:
9155                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9156                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9157                 adapter->params.arch.mps_tcam_size =
9158                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9159                 adapter->params.arch.mps_rplc_size = 128;
9160                 adapter->params.arch.nchan = NCHAN;
9161                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9162                 adapter->params.arch.vfcount = 128;
9163                 adapter->params.arch.cng_ch_bits_log = 2;
9164                 break;
9165         case CHELSIO_T6:
9166                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9167                 adapter->params.arch.sge_fl_db = 0;
9168                 adapter->params.arch.mps_tcam_size =
9169                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9170                 adapter->params.arch.mps_rplc_size = 256;
9171                 adapter->params.arch.nchan = 2;
9172                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9173                 adapter->params.arch.vfcount = 256;
9174                 /* Congestion map will be for 2 channels so that
9175                  * MPS can have 8 priority per port.
9176                  */
9177                 adapter->params.arch.cng_ch_bits_log = 3;
9178                 break;
9179         default:
9180                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9181                         device_id);
9182                 return -EINVAL;
9183         }
9184
9185         adapter->params.cim_la_size = CIMLA_SIZE;
9186         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9187
9188         /*
9189          * Default port for debugging in case we can't reach FW.
9190          */
9191         adapter->params.nports = 1;
9192         adapter->params.portvec = 1;
9193         adapter->params.vpd.cclk = 50000;
9194
9195         /* Set PCIe completion timeout to 4 seconds. */
9196         pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9197                                            PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9198         return 0;
9199 }
9200
9201 /**
9202  *      t4_shutdown_adapter - shut down adapter, host & wire
9203  *      @adapter: the adapter
9204  *
9205  *      Perform an emergency shutdown of the adapter and stop it from
9206  *      continuing any further communication on the ports or DMA to the
9207  *      host.  This is typically used when the adapter and/or firmware
9208  *      have crashed and we want to prevent any further accidental
9209  *      communication with the rest of the world.  This will also force
9210  *      the port Link Status to go down -- if register writes work --
9211  *      which should help our peers figure out that we're down.
9212  */
9213 int t4_shutdown_adapter(struct adapter *adapter)
9214 {
9215         int port;
9216
9217         t4_intr_disable(adapter);
9218         t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9219         for_each_port(adapter, port) {
9220                 u32 a_port_cfg = is_t4(adapter->params.chip) ?
9221                                        PORT_REG(port, XGMAC_PORT_CFG_A) :
9222                                        T5_PORT_REG(port, MAC_PORT_CFG_A);
9223
9224                 t4_write_reg(adapter, a_port_cfg,
9225                              t4_read_reg(adapter, a_port_cfg)
9226                              & ~SIGNAL_DET_V(1));
9227         }
9228         t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9229
9230         return 0;
9231 }
9232
9233 /**
9234  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9235  *      @adapter: the adapter
9236  *      @qid: the Queue ID
9237  *      @qtype: the Ingress or Egress type for @qid
9238  *      @user: true if this request is for a user mode queue
9239  *      @pbar2_qoffset: BAR2 Queue Offset
9240  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9241  *
9242  *      Returns the BAR2 SGE Queue Registers information associated with the
9243  *      indicated Absolute Queue ID.  These are passed back in return value
9244  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9245  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9246  *
9247  *      This may return an error which indicates that BAR2 SGE Queue
9248  *      registers aren't available.  If an error is not returned, then the
9249  *      following values are returned:
9250  *
9251  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9252  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9253  *
9254  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9255  *      require the "Inferred Queue ID" ability may be used.  E.g. the
9256  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9257  *      then these "Inferred Queue ID" register may not be used.
9258  */
9259 int t4_bar2_sge_qregs(struct adapter *adapter,
9260                       unsigned int qid,
9261                       enum t4_bar2_qtype qtype,
9262                       int user,
9263                       u64 *pbar2_qoffset,
9264                       unsigned int *pbar2_qid)
9265 {
9266         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9267         u64 bar2_page_offset, bar2_qoffset;
9268         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9269
9270         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9271         if (!user && is_t4(adapter->params.chip))
9272                 return -EINVAL;
9273
9274         /* Get our SGE Page Size parameters.
9275          */
9276         page_shift = adapter->params.sge.hps + 10;
9277         page_size = 1 << page_shift;
9278
9279         /* Get the right Queues per Page parameters for our Queue.
9280          */
9281         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9282                      ? adapter->params.sge.eq_qpp
9283                      : adapter->params.sge.iq_qpp);
9284         qpp_mask = (1 << qpp_shift) - 1;
9285
9286         /*  Calculate the basics of the BAR2 SGE Queue register area:
9287          *  o The BAR2 page the Queue registers will be in.
9288          *  o The BAR2 Queue ID.
9289          *  o The BAR2 Queue ID Offset into the BAR2 page.
9290          */
9291         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9292         bar2_qid = qid & qpp_mask;
9293         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9294
9295         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
9296          * hardware will infer the Absolute Queue ID simply from the writes to
9297          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9298          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9299          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9300          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9301          * from the BAR2 Page and BAR2 Queue ID.
9302          *
9303          * One important censequence of this is that some BAR2 SGE registers
9304          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9305          * there.  But other registers synthesize the SGE Queue ID purely
9306          * from the writes to the registers -- the Write Combined Doorbell
9307          * Buffer is a good example.  These BAR2 SGE Registers are only
9308          * available for those BAR2 SGE Register areas where the SGE Absolute
9309          * Queue ID can be inferred from simple writes.
9310          */
9311         bar2_qoffset = bar2_page_offset;
9312         bar2_qinferred = (bar2_qid_offset < page_size);
9313         if (bar2_qinferred) {
9314                 bar2_qoffset += bar2_qid_offset;
9315                 bar2_qid = 0;
9316         }
9317
9318         *pbar2_qoffset = bar2_qoffset;
9319         *pbar2_qid = bar2_qid;
9320         return 0;
9321 }
9322
9323 /**
9324  *      t4_init_devlog_params - initialize adapter->params.devlog
9325  *      @adap: the adapter
9326  *
9327  *      Initialize various fields of the adapter's Firmware Device Log
9328  *      Parameters structure.
9329  */
9330 int t4_init_devlog_params(struct adapter *adap)
9331 {
9332         struct devlog_params *dparams = &adap->params.devlog;
9333         u32 pf_dparams;
9334         unsigned int devlog_meminfo;
9335         struct fw_devlog_cmd devlog_cmd;
9336         int ret;
9337
9338         /* If we're dealing with newer firmware, the Device Log Parameters
9339          * are stored in a designated register which allows us to access the
9340          * Device Log even if we can't talk to the firmware.
9341          */
9342         pf_dparams =
9343                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9344         if (pf_dparams) {
9345                 unsigned int nentries, nentries128;
9346
9347                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9348                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9349
9350                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9351                 nentries = (nentries128 + 1) * 128;
9352                 dparams->size = nentries * sizeof(struct fw_devlog_e);
9353
9354                 return 0;
9355         }
9356
9357         /* Otherwise, ask the firmware for it's Device Log Parameters.
9358          */
9359         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9360         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9361                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
9362         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9363         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9364                          &devlog_cmd);
9365         if (ret)
9366                 return ret;
9367
9368         devlog_meminfo =
9369                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9370         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9371         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9372         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9373
9374         return 0;
9375 }
9376
9377 /**
9378  *      t4_init_sge_params - initialize adap->params.sge
9379  *      @adapter: the adapter
9380  *
9381  *      Initialize various fields of the adapter's SGE Parameters structure.
9382  */
9383 int t4_init_sge_params(struct adapter *adapter)
9384 {
9385         struct sge_params *sge_params = &adapter->params.sge;
9386         u32 hps, qpp;
9387         unsigned int s_hps, s_qpp;
9388
9389         /* Extract the SGE Page Size for our PF.
9390          */
9391         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9392         s_hps = (HOSTPAGESIZEPF0_S +
9393                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9394         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9395
9396         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9397          */
9398         s_qpp = (QUEUESPERPAGEPF0_S +
9399                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9400         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9401         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9402         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9403         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9404
9405         return 0;
9406 }
9407
9408 /**
9409  *      t4_init_tp_params - initialize adap->params.tp
9410  *      @adap: the adapter
9411  *      @sleep_ok: if true we may sleep while awaiting command completion
9412  *
9413  *      Initialize various fields of the adapter's TP Parameters structure.
9414  */
9415 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9416 {
9417         u32 param, val, v;
9418         int chan, ret;
9419
9420
9421         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9422         adap->params.tp.tre = TIMERRESOLUTION_G(v);
9423         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9424
9425         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9426         for (chan = 0; chan < NCHAN; chan++)
9427                 adap->params.tp.tx_modq[chan] = chan;
9428
9429         /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9430          * Configuration.
9431          */
9432         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9433                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9434                  FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9435
9436         /* Read current value */
9437         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9438                               &param, &val);
9439         if (ret == 0) {
9440                 dev_info(adap->pdev_dev,
9441                          "Current filter mode/mask 0x%x:0x%x\n",
9442                          FW_PARAMS_PARAM_FILTER_MODE_G(val),
9443                          FW_PARAMS_PARAM_FILTER_MASK_G(val));
9444                 adap->params.tp.vlan_pri_map =
9445                         FW_PARAMS_PARAM_FILTER_MODE_G(val);
9446                 adap->params.tp.filter_mask =
9447                         FW_PARAMS_PARAM_FILTER_MASK_G(val);
9448         } else {
9449                 dev_info(adap->pdev_dev,
9450                          "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9451
9452                 /* Incase of older-fw (which doesn't expose the api
9453                  * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9454                  * the fw api) combination, fall-back to older method of reading
9455                  * the filter mode from indirect-register
9456                  */
9457                 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9458                                TP_VLAN_PRI_MAP_A, sleep_ok);
9459
9460                 /* With the older-fw and newer-driver combination we might run
9461                  * into an issue when user wants to use hash filter region but
9462                  * the filter_mask is zero, in this case filter_mask validation
9463                  * is tough. To avoid that we set the filter_mask same as filter
9464                  * mode, which will behave exactly as the older way of ignoring
9465                  * the filter mask validation.
9466                  */
9467                 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9468         }
9469
9470         t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9471                        TP_INGRESS_CONFIG_A, sleep_ok);
9472
9473         /* For T6, cache the adapter's compressed error vector
9474          * and passing outer header info for encapsulated packets.
9475          */
9476         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9477                 v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9478                 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9479         }
9480
9481         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9482          * shift positions of several elements of the Compressed Filter Tuple
9483          * for this adapter which we need frequently ...
9484          */
9485         adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9486         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9487         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9488         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9489         adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9490         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9491                                                                PROTOCOL_F);
9492         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9493                                                                 ETHERTYPE_F);
9494         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9495                                                                MACMATCH_F);
9496         adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9497                                                                 MPSHITTYPE_F);
9498         adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9499                                                            FRAGMENTATION_F);
9500
9501         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9502          * represents the presence of an Outer VLAN instead of a VNIC ID.
9503          */
9504         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9505                 adap->params.tp.vnic_shift = -1;
9506
9507         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9508         adap->params.tp.hash_filter_mask = v;
9509         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9510         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9511         return 0;
9512 }
9513
9514 /**
9515  *      t4_filter_field_shift - calculate filter field shift
9516  *      @adap: the adapter
9517  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9518  *
9519  *      Return the shift position of a filter field within the Compressed
9520  *      Filter Tuple.  The filter field is specified via its selection bit
9521  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9522  */
9523 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9524 {
9525         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9526         unsigned int sel;
9527         int field_shift;
9528
9529         if ((filter_mode & filter_sel) == 0)
9530                 return -1;
9531
9532         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9533                 switch (filter_mode & sel) {
9534                 case FCOE_F:
9535                         field_shift += FT_FCOE_W;
9536                         break;
9537                 case PORT_F:
9538                         field_shift += FT_PORT_W;
9539                         break;
9540                 case VNIC_ID_F:
9541                         field_shift += FT_VNIC_ID_W;
9542                         break;
9543                 case VLAN_F:
9544                         field_shift += FT_VLAN_W;
9545                         break;
9546                 case TOS_F:
9547                         field_shift += FT_TOS_W;
9548                         break;
9549                 case PROTOCOL_F:
9550                         field_shift += FT_PROTOCOL_W;
9551                         break;
9552                 case ETHERTYPE_F:
9553                         field_shift += FT_ETHERTYPE_W;
9554                         break;
9555                 case MACMATCH_F:
9556                         field_shift += FT_MACMATCH_W;
9557                         break;
9558                 case MPSHITTYPE_F:
9559                         field_shift += FT_MPSHITTYPE_W;
9560                         break;
9561                 case FRAGMENTATION_F:
9562                         field_shift += FT_FRAGMENTATION_W;
9563                         break;
9564                 }
9565         }
9566         return field_shift;
9567 }
9568
9569 int t4_init_rss_mode(struct adapter *adap, int mbox)
9570 {
9571         int i, ret;
9572         struct fw_rss_vi_config_cmd rvc;
9573
9574         memset(&rvc, 0, sizeof(rvc));
9575
9576         for_each_port(adap, i) {
9577                 struct port_info *p = adap2pinfo(adap, i);
9578
9579                 rvc.op_to_viid =
9580                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9581                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
9582                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9583                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9584                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9585                 if (ret)
9586                         return ret;
9587                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9588         }
9589         return 0;
9590 }
9591
9592 /**
9593  *      t4_init_portinfo - allocate a virtual interface and initialize port_info
9594  *      @pi: the port_info
9595  *      @mbox: mailbox to use for the FW command
9596  *      @port: physical port associated with the VI
9597  *      @pf: the PF owning the VI
9598  *      @vf: the VF owning the VI
9599  *      @mac: the MAC address of the VI
9600  *
9601  *      Allocates a virtual interface for the given physical port.  If @mac is
9602  *      not %NULL it contains the MAC address of the VI as assigned by FW.
9603  *      @mac should be large enough to hold an Ethernet address.
9604  *      Returns < 0 on error.
9605  */
9606 int t4_init_portinfo(struct port_info *pi, int mbox,
9607                      int port, int pf, int vf, u8 mac[])
9608 {
9609         struct adapter *adapter = pi->adapter;
9610         unsigned int fw_caps = adapter->params.fw_caps_support;
9611         struct fw_port_cmd cmd;
9612         unsigned int rss_size;
9613         enum fw_port_type port_type;
9614         int mdio_addr;
9615         fw_port_cap32_t pcaps, acaps;
9616         u8 vivld = 0, vin = 0;
9617         int ret;
9618
9619         /* If we haven't yet determined whether we're talking to Firmware
9620          * which knows the new 32-bit Port Capabilities, it's time to find
9621          * out now.  This will also tell new Firmware to send us Port Status
9622          * Updates using the new 32-bit Port Capabilities version of the
9623          * Port Information message.
9624          */
9625         if (fw_caps == FW_CAPS_UNKNOWN) {
9626                 u32 param, val;
9627
9628                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9629                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9630                 val = 1;
9631                 ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9632                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9633                 adapter->params.fw_caps_support = fw_caps;
9634         }
9635
9636         memset(&cmd, 0, sizeof(cmd));
9637         cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9638                                        FW_CMD_REQUEST_F | FW_CMD_READ_F |
9639                                        FW_PORT_CMD_PORTID_V(port));
9640         cmd.action_to_len16 = cpu_to_be32(
9641                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9642                                      ? FW_PORT_ACTION_GET_PORT_INFO
9643                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
9644                 FW_LEN16(cmd));
9645         ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9646         if (ret)
9647                 return ret;
9648
9649         /* Extract the various fields from the Port Information message.
9650          */
9651         if (fw_caps == FW_CAPS16) {
9652                 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9653
9654                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9655                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9656                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9657                              : -1);
9658                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9659                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9660         } else {
9661                 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9662
9663                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9664                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9665                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9666                              : -1);
9667                 pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9668                 acaps = be32_to_cpu(cmd.u.info32.acaps32);
9669         }
9670
9671         ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9672                           &vivld, &vin);
9673         if (ret < 0)
9674                 return ret;
9675
9676         pi->viid = ret;
9677         pi->tx_chan = port;
9678         pi->lport = port;
9679         pi->rss_size = rss_size;
9680         pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9681
9682         /* If fw supports returning the VIN as part of FW_VI_CMD,
9683          * save the returned values.
9684          */
9685         if (adapter->params.viid_smt_extn_support) {
9686                 pi->vivld = vivld;
9687                 pi->vin = vin;
9688         } else {
9689                 /* Retrieve the values from VIID */
9690                 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9691                 pi->vin =  FW_VIID_VIN_G(pi->viid);
9692         }
9693
9694         pi->port_type = port_type;
9695         pi->mdio_addr = mdio_addr;
9696         pi->mod_type = FW_PORT_MOD_TYPE_NA;
9697
9698         init_link_config(&pi->link_cfg, pcaps, acaps);
9699         return 0;
9700 }
9701
9702 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9703 {
9704         u8 addr[6];
9705         int ret, i, j = 0;
9706
9707         for_each_port(adap, i) {
9708                 struct port_info *pi = adap2pinfo(adap, i);
9709
9710                 while ((adap->params.portvec & (1 << j)) == 0)
9711                         j++;
9712
9713                 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9714                 if (ret)
9715                         return ret;
9716
9717                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9718                 j++;
9719         }
9720         return 0;
9721 }
9722
9723 /**
9724  *      t4_read_cimq_cfg - read CIM queue configuration
9725  *      @adap: the adapter
9726  *      @base: holds the queue base addresses in bytes
9727  *      @size: holds the queue sizes in bytes
9728  *      @thres: holds the queue full thresholds in bytes
9729  *
9730  *      Returns the current configuration of the CIM queues, starting with
9731  *      the IBQs, then the OBQs.
9732  */
9733 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9734 {
9735         unsigned int i, v;
9736         int cim_num_obq = is_t4(adap->params.chip) ?
9737                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9738
9739         for (i = 0; i < CIM_NUM_IBQ; i++) {
9740                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9741                              QUENUMSELECT_V(i));
9742                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9743                 /* value is in 256-byte units */
9744                 *base++ = CIMQBASE_G(v) * 256;
9745                 *size++ = CIMQSIZE_G(v) * 256;
9746                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9747         }
9748         for (i = 0; i < cim_num_obq; i++) {
9749                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9750                              QUENUMSELECT_V(i));
9751                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9752                 /* value is in 256-byte units */
9753                 *base++ = CIMQBASE_G(v) * 256;
9754                 *size++ = CIMQSIZE_G(v) * 256;
9755         }
9756 }
9757
9758 /**
9759  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
9760  *      @adap: the adapter
9761  *      @qid: the queue index
9762  *      @data: where to store the queue contents
9763  *      @n: capacity of @data in 32-bit words
9764  *
9765  *      Reads the contents of the selected CIM queue starting at address 0 up
9766  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9767  *      error and the number of 32-bit words actually read on success.
9768  */
9769 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9770 {
9771         int i, err, attempts;
9772         unsigned int addr;
9773         const unsigned int nwords = CIM_IBQ_SIZE * 4;
9774
9775         if (qid > 5 || (n & 3))
9776                 return -EINVAL;
9777
9778         addr = qid * nwords;
9779         if (n > nwords)
9780                 n = nwords;
9781
9782         /* It might take 3-10ms before the IBQ debug read access is allowed.
9783          * Wait for 1 Sec with a delay of 1 usec.
9784          */
9785         attempts = 1000000;
9786
9787         for (i = 0; i < n; i++, addr++) {
9788                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9789                              IBQDBGEN_F);
9790                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9791                                       attempts, 1);
9792                 if (err)
9793                         return err;
9794                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9795         }
9796         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9797         return i;
9798 }
9799
9800 /**
9801  *      t4_read_cim_obq - read the contents of a CIM outbound queue
9802  *      @adap: the adapter
9803  *      @qid: the queue index
9804  *      @data: where to store the queue contents
9805  *      @n: capacity of @data in 32-bit words
9806  *
9807  *      Reads the contents of the selected CIM queue starting at address 0 up
9808  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9809  *      error and the number of 32-bit words actually read on success.
9810  */
9811 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9812 {
9813         int i, err;
9814         unsigned int addr, v, nwords;
9815         int cim_num_obq = is_t4(adap->params.chip) ?
9816                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9817
9818         if ((qid > (cim_num_obq - 1)) || (n & 3))
9819                 return -EINVAL;
9820
9821         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9822                      QUENUMSELECT_V(qid));
9823         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9824
9825         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9826         nwords = CIMQSIZE_G(v) * 64;  /* same */
9827         if (n > nwords)
9828                 n = nwords;
9829
9830         for (i = 0; i < n; i++, addr++) {
9831                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9832                              OBQDBGEN_F);
9833                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9834                                       2, 1);
9835                 if (err)
9836                         return err;
9837                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9838         }
9839         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9840         return i;
9841 }
9842
9843 /**
9844  *      t4_cim_read - read a block from CIM internal address space
9845  *      @adap: the adapter
9846  *      @addr: the start address within the CIM address space
9847  *      @n: number of words to read
9848  *      @valp: where to store the result
9849  *
9850  *      Reads a block of 4-byte words from the CIM intenal address space.
9851  */
9852 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9853                 unsigned int *valp)
9854 {
9855         int ret = 0;
9856
9857         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9858                 return -EBUSY;
9859
9860         for ( ; !ret && n--; addr += 4) {
9861                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9862                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9863                                       0, 5, 2);
9864                 if (!ret)
9865                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9866         }
9867         return ret;
9868 }
9869
9870 /**
9871  *      t4_cim_write - write a block into CIM internal address space
9872  *      @adap: the adapter
9873  *      @addr: the start address within the CIM address space
9874  *      @n: number of words to write
9875  *      @valp: set of values to write
9876  *
9877  *      Writes a block of 4-byte words into the CIM intenal address space.
9878  */
9879 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9880                  const unsigned int *valp)
9881 {
9882         int ret = 0;
9883
9884         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9885                 return -EBUSY;
9886
9887         for ( ; !ret && n--; addr += 4) {
9888                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9889                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9890                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9891                                       0, 5, 2);
9892         }
9893         return ret;
9894 }
9895
9896 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9897                          unsigned int val)
9898 {
9899         return t4_cim_write(adap, addr, 1, &val);
9900 }
9901
9902 /**
9903  *      t4_cim_read_la - read CIM LA capture buffer
9904  *      @adap: the adapter
9905  *      @la_buf: where to store the LA data
9906  *      @wrptr: the HW write pointer within the capture buffer
9907  *
9908  *      Reads the contents of the CIM LA buffer with the most recent entry at
9909  *      the end of the returned data and with the entry at @wrptr first.
9910  *      We try to leave the LA in the running state we find it in.
9911  */
9912 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9913 {
9914         int i, ret;
9915         unsigned int cfg, val, idx;
9916
9917         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9918         if (ret)
9919                 return ret;
9920
9921         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
9922                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9923                 if (ret)
9924                         return ret;
9925         }
9926
9927         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9928         if (ret)
9929                 goto restart;
9930
9931         idx = UPDBGLAWRPTR_G(val);
9932         if (wrptr)
9933                 *wrptr = idx;
9934
9935         for (i = 0; i < adap->params.cim_la_size; i++) {
9936                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9937                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9938                 if (ret)
9939                         break;
9940                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9941                 if (ret)
9942                         break;
9943                 if (val & UPDBGLARDEN_F) {
9944                         ret = -ETIMEDOUT;
9945                         break;
9946                 }
9947                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9948                 if (ret)
9949                         break;
9950
9951                 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9952                  * identify the 32-bit portion of the full 312-bit data
9953                  */
9954                 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9955                         idx = (idx & 0xff0) + 0x10;
9956                 else
9957                         idx++;
9958                 /* address can't exceed 0xfff */
9959                 idx &= UPDBGLARDPTR_M;
9960         }
9961 restart:
9962         if (cfg & UPDBGLAEN_F) {
9963                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9964                                       cfg & ~UPDBGLARDEN_F);
9965                 if (!ret)
9966                         ret = r;
9967         }
9968         return ret;
9969 }
9970
9971 /**
9972  *      t4_tp_read_la - read TP LA capture buffer
9973  *      @adap: the adapter
9974  *      @la_buf: where to store the LA data
9975  *      @wrptr: the HW write pointer within the capture buffer
9976  *
9977  *      Reads the contents of the TP LA buffer with the most recent entry at
9978  *      the end of the returned data and with the entry at @wrptr first.
9979  *      We leave the LA in the running state we find it in.
9980  */
9981 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9982 {
9983         bool last_incomplete;
9984         unsigned int i, cfg, val, idx;
9985
9986         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9987         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
9988                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9989                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9990
9991         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
9992         idx = DBGLAWPTR_G(val);
9993         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
9994         if (last_incomplete)
9995                 idx = (idx + 1) & DBGLARPTR_M;
9996         if (wrptr)
9997                 *wrptr = idx;
9998
9999         val &= 0xffff;
10000         val &= ~DBGLARPTR_V(DBGLARPTR_M);
10001         val |= adap->params.tp.la_mask;
10002
10003         for (i = 0; i < TPLA_SIZE; i++) {
10004                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10005                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10006                 idx = (idx + 1) & DBGLARPTR_M;
10007         }
10008
10009         /* Wipe out last entry if it isn't valid */
10010         if (last_incomplete)
10011                 la_buf[TPLA_SIZE - 1] = ~0ULL;
10012
10013         if (cfg & DBGLAENABLE_F)                    /* restore running state */
10014                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10015                              cfg | adap->params.tp.la_mask);
10016 }
10017
10018 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10019  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10020  * state for more than the Warning Threshold then we'll issue a warning about
10021  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10022  * appears to be hung every Warning Repeat second till the situation clears.
10023  * If the situation clears, we'll note that as well.
10024  */
10025 #define SGE_IDMA_WARN_THRESH 1
10026 #define SGE_IDMA_WARN_REPEAT 300
10027
10028 /**
10029  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10030  *      @adapter: the adapter
10031  *      @idma: the adapter IDMA Monitor state
10032  *
10033  *      Initialize the state of an SGE Ingress DMA Monitor.
10034  */
10035 void t4_idma_monitor_init(struct adapter *adapter,
10036                           struct sge_idma_monitor_state *idma)
10037 {
10038         /* Initialize the state variables for detecting an SGE Ingress DMA
10039          * hang.  The SGE has internal counters which count up on each clock
10040          * tick whenever the SGE finds its Ingress DMA State Engines in the
10041          * same state they were on the previous clock tick.  The clock used is
10042          * the Core Clock so we have a limit on the maximum "time" they can
10043          * record; typically a very small number of seconds.  For instance,
10044          * with a 600MHz Core Clock, we can only count up to a bit more than
10045          * 7s.  So we'll synthesize a larger counter in order to not run the
10046          * risk of having the "timers" overflow and give us the flexibility to
10047          * maintain a Hung SGE State Machine of our own which operates across
10048          * a longer time frame.
10049          */
10050         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10051         idma->idma_stalled[0] = 0;
10052         idma->idma_stalled[1] = 0;
10053 }
10054
10055 /**
10056  *      t4_idma_monitor - monitor SGE Ingress DMA state
10057  *      @adapter: the adapter
10058  *      @idma: the adapter IDMA Monitor state
10059  *      @hz: number of ticks/second
10060  *      @ticks: number of ticks since the last IDMA Monitor call
10061  */
10062 void t4_idma_monitor(struct adapter *adapter,
10063                      struct sge_idma_monitor_state *idma,
10064                      int hz, int ticks)
10065 {
10066         int i, idma_same_state_cnt[2];
10067
10068          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10069           * are counters inside the SGE which count up on each clock when the
10070           * SGE finds its Ingress DMA State Engines in the same states they
10071           * were in the previous clock.  The counters will peg out at
10072           * 0xffffffff without wrapping around so once they pass the 1s
10073           * threshold they'll stay above that till the IDMA state changes.
10074           */
10075         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10076         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10077         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10078
10079         for (i = 0; i < 2; i++) {
10080                 u32 debug0, debug11;
10081
10082                 /* If the Ingress DMA Same State Counter ("timer") is less
10083                  * than 1s, then we can reset our synthesized Stall Timer and
10084                  * continue.  If we have previously emitted warnings about a
10085                  * potential stalled Ingress Queue, issue a note indicating
10086                  * that the Ingress Queue has resumed forward progress.
10087                  */
10088                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10089                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10090                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10091                                          "resumed after %d seconds\n",
10092                                          i, idma->idma_qid[i],
10093                                          idma->idma_stalled[i] / hz);
10094                         idma->idma_stalled[i] = 0;
10095                         continue;
10096                 }
10097
10098                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10099                  * domain.  The first time we get here it'll be because we
10100                  * passed the 1s Threshold; each additional time it'll be
10101                  * because the RX Timer Callback is being fired on its regular
10102                  * schedule.
10103                  *
10104                  * If the stall is below our Potential Hung Ingress Queue
10105                  * Warning Threshold, continue.
10106                  */
10107                 if (idma->idma_stalled[i] == 0) {
10108                         idma->idma_stalled[i] = hz;
10109                         idma->idma_warn[i] = 0;
10110                 } else {
10111                         idma->idma_stalled[i] += ticks;
10112                         idma->idma_warn[i] -= ticks;
10113                 }
10114
10115                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10116                         continue;
10117
10118                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10119                  */
10120                 if (idma->idma_warn[i] > 0)
10121                         continue;
10122                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10123
10124                 /* Read and save the SGE IDMA State and Queue ID information.
10125                  * We do this every time in case it changes across time ...
10126                  * can't be too careful ...
10127                  */
10128                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10129                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10130                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10131
10132                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10133                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10134                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10135
10136                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10137                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10138                          i, idma->idma_qid[i], idma->idma_state[i],
10139                          idma->idma_stalled[i] / hz,
10140                          debug0, debug11);
10141                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10142         }
10143 }
10144
10145 /**
10146  *      t4_load_cfg - download config file
10147  *      @adap: the adapter
10148  *      @cfg_data: the cfg text file to write
10149  *      @size: text file size
10150  *
10151  *      Write the supplied config text file to the card's serial flash.
10152  */
10153 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10154 {
10155         int ret, i, n, cfg_addr;
10156         unsigned int addr;
10157         unsigned int flash_cfg_start_sec;
10158         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10159
10160         cfg_addr = t4_flash_cfg_addr(adap);
10161         if (cfg_addr < 0)
10162                 return cfg_addr;
10163
10164         addr = cfg_addr;
10165         flash_cfg_start_sec = addr / SF_SEC_SIZE;
10166
10167         if (size > FLASH_CFG_MAX_SIZE) {
10168                 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10169                         FLASH_CFG_MAX_SIZE);
10170                 return -EFBIG;
10171         }
10172
10173         i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,    /* # of sectors spanned */
10174                          sf_sec_size);
10175         ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10176                                      flash_cfg_start_sec + i - 1);
10177         /* If size == 0 then we're simply erasing the FLASH sectors associated
10178          * with the on-adapter Firmware Configuration File.
10179          */
10180         if (ret || size == 0)
10181                 goto out;
10182
10183         /* this will write to the flash up to SF_PAGE_SIZE at a time */
10184         for (i = 0; i < size; i += SF_PAGE_SIZE) {
10185                 if ((size - i) <  SF_PAGE_SIZE)
10186                         n = size - i;
10187                 else
10188                         n = SF_PAGE_SIZE;
10189                 ret = t4_write_flash(adap, addr, n, cfg_data);
10190                 if (ret)
10191                         goto out;
10192
10193                 addr += SF_PAGE_SIZE;
10194                 cfg_data += SF_PAGE_SIZE;
10195         }
10196
10197 out:
10198         if (ret)
10199                 dev_err(adap->pdev_dev, "config file %s failed %d\n",
10200                         (size == 0 ? "clear" : "download"), ret);
10201         return ret;
10202 }
10203
10204 /**
10205  *      t4_set_vf_mac - Set MAC address for the specified VF
10206  *      @adapter: The adapter
10207  *      @vf: one of the VFs instantiated by the specified PF
10208  *      @naddr: the number of MAC addresses
10209  *      @addr: the MAC address(es) to be set to the specified VF
10210  */
10211 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10212                       unsigned int naddr, u8 *addr)
10213 {
10214         struct fw_acl_mac_cmd cmd;
10215
10216         memset(&cmd, 0, sizeof(cmd));
10217         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10218                                     FW_CMD_REQUEST_F |
10219                                     FW_CMD_WRITE_F |
10220                                     FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10221                                     FW_ACL_MAC_CMD_VFN_V(vf));
10222
10223         /* Note: Do not enable the ACL */
10224         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10225         cmd.nmac = naddr;
10226
10227         switch (adapter->pf) {
10228         case 3:
10229                 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10230                 break;
10231         case 2:
10232                 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10233                 break;
10234         case 1:
10235                 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10236                 break;
10237         case 0:
10238                 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10239                 break;
10240         }
10241
10242         return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10243 }
10244
10245 /**
10246  * t4_read_pace_tbl - read the pace table
10247  * @adap: the adapter
10248  * @pace_vals: holds the returned values
10249  *
10250  * Returns the values of TP's pace table in microseconds.
10251  */
10252 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10253 {
10254         unsigned int i, v;
10255
10256         for (i = 0; i < NTX_SCHED; i++) {
10257                 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10258                 v = t4_read_reg(adap, TP_PACE_TABLE_A);
10259                 pace_vals[i] = dack_ticks_to_usec(adap, v);
10260         }
10261 }
10262
10263 /**
10264  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10265  * @adap: the adapter
10266  * @sched: the scheduler index
10267  * @kbps: the byte rate in Kbps
10268  * @ipg: the interpacket delay in tenths of nanoseconds
10269  * @sleep_ok: if true we may sleep while awaiting command completion
10270  *
10271  * Return the current configuration of a HW Tx scheduler.
10272  */
10273 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10274                      unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10275 {
10276         unsigned int v, addr, bpt, cpt;
10277
10278         if (kbps) {
10279                 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10280                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10281                 if (sched & 1)
10282                         v >>= 16;
10283                 bpt = (v >> 8) & 0xff;
10284                 cpt = v & 0xff;
10285                 if (!cpt) {
10286                         *kbps = 0;      /* scheduler disabled */
10287                 } else {
10288                         v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10289                         *kbps = (v * bpt) / 125;
10290                 }
10291         }
10292         if (ipg) {
10293                 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10294                 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10295                 if (sched & 1)
10296                         v >>= 16;
10297                 v &= 0xffff;
10298                 *ipg = (10000 * v) / core_ticks_per_usec(adap);
10299         }
10300 }
10301
10302 /* t4_sge_ctxt_rd - read an SGE context through FW
10303  * @adap: the adapter
10304  * @mbox: mailbox to use for the FW command
10305  * @cid: the context id
10306  * @ctype: the context type
10307  * @data: where to store the context data
10308  *
10309  * Issues a FW command through the given mailbox to read an SGE context.
10310  */
10311 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10312                    enum ctxt_type ctype, u32 *data)
10313 {
10314         struct fw_ldst_cmd c;
10315         int ret;
10316
10317         if (ctype == CTXT_FLM)
10318                 ret = FW_LDST_ADDRSPC_SGE_FLMC;
10319         else
10320                 ret = FW_LDST_ADDRSPC_SGE_CONMC;
10321
10322         memset(&c, 0, sizeof(c));
10323         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10324                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
10325                                         FW_LDST_CMD_ADDRSPACE_V(ret));
10326         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10327         c.u.idctxt.physid = cpu_to_be32(cid);
10328
10329         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10330         if (ret == 0) {
10331                 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10332                 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10333                 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10334                 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10335                 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10336                 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10337         }
10338         return ret;
10339 }
10340
10341 /**
10342  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10343  * @adap: the adapter
10344  * @cid: the context id
10345  * @ctype: the context type
10346  * @data: where to store the context data
10347  *
10348  * Reads an SGE context directly, bypassing FW.  This is only for
10349  * debugging when FW is unavailable.
10350  */
10351 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10352                       enum ctxt_type ctype, u32 *data)
10353 {
10354         int i, ret;
10355
10356         t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10357         ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10358         if (!ret)
10359                 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10360                         *data++ = t4_read_reg(adap, i);
10361         return ret;
10362 }
10363
10364 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10365                     int rateunit, int ratemode, int channel, int class,
10366                     int minrate, int maxrate, int weight, int pktsize)
10367 {
10368         struct fw_sched_cmd cmd;
10369
10370         memset(&cmd, 0, sizeof(cmd));
10371         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10372                                       FW_CMD_REQUEST_F |
10373                                       FW_CMD_WRITE_F);
10374         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10375
10376         cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10377         cmd.u.params.type = type;
10378         cmd.u.params.level = level;
10379         cmd.u.params.mode = mode;
10380         cmd.u.params.ch = channel;
10381         cmd.u.params.cl = class;
10382         cmd.u.params.unit = rateunit;
10383         cmd.u.params.rate = ratemode;
10384         cmd.u.params.min = cpu_to_be32(minrate);
10385         cmd.u.params.max = cpu_to_be32(maxrate);
10386         cmd.u.params.weight = cpu_to_be16(weight);
10387         cmd.u.params.pktsize = cpu_to_be16(pktsize);
10388
10389         return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10390                                NULL, 1);
10391 }
10392
10393 /**
10394  *      t4_i2c_rd - read I2C data from adapter
10395  *      @adap: the adapter
10396  *      @port: Port number if per-port device; <0 if not
10397  *      @devid: per-port device ID or absolute device ID
10398  *      @offset: byte offset into device I2C space
10399  *      @len: byte length of I2C space data
10400  *      @buf: buffer in which to return I2C data
10401  *
10402  *      Reads the I2C data from the indicated device and location.
10403  */
10404 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10405               unsigned int devid, unsigned int offset,
10406               unsigned int len, u8 *buf)
10407 {
10408         struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10409         unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10410         int ret = 0;
10411
10412         if (len > I2C_PAGE_SIZE)
10413                 return -EINVAL;
10414
10415         /* Dont allow reads that spans multiple pages */
10416         if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10417                 return -EINVAL;
10418
10419         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10420         ldst_cmd.op_to_addrspace =
10421                 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10422                             FW_CMD_REQUEST_F |
10423                             FW_CMD_READ_F |
10424                             FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10425         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10426         ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10427         ldst_cmd.u.i2c.did = devid;
10428
10429         while (len > 0) {
10430                 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10431
10432                 ldst_cmd.u.i2c.boffset = offset;
10433                 ldst_cmd.u.i2c.blen = i2c_len;
10434
10435                 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10436                                  &ldst_rpl);
10437                 if (ret)
10438                         break;
10439
10440                 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10441                 offset += i2c_len;
10442                 buf += i2c_len;
10443                 len -= i2c_len;
10444         }
10445
10446         return ret;
10447 }
10448
10449 /**
10450  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10451  *      @adapter: the adapter
10452  *      @mbox: mailbox to use for the FW command
10453  *      @vf: one of the VFs instantiated by the specified PF
10454  *      @vlan: The vlanid to be set
10455  */
10456 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10457                     u16 vlan)
10458 {
10459         struct fw_acl_vlan_cmd vlan_cmd;
10460         unsigned int enable;
10461
10462         enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10463         memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10464         vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10465                                          FW_CMD_REQUEST_F |
10466                                          FW_CMD_WRITE_F |
10467                                          FW_CMD_EXEC_F |
10468                                          FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10469                                          FW_ACL_VLAN_CMD_VFN_V(vf));
10470         vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10471         /* Drop all packets that donot match vlan id */
10472         vlan_cmd.dropnovlan_fm = (enable
10473                                   ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10474                                      FW_ACL_VLAN_CMD_FM_F) : 0);
10475         if (enable != 0) {
10476                 vlan_cmd.nvlan = 1;
10477                 vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10478         }
10479
10480         return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10481 }