Merge branch 'for-next-merge' of git://git.kernel.org/pub/scm/linux/kernel/git/nab...
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 MODULE_FIRMWARE(FW6_FNAME);
155
156 /*
157  * Normally we're willing to become the firmware's Master PF but will be happy
158  * if another PF has already become the Master and initialized the adapter.
159  * Setting "force_init" will cause this driver to forcibly establish itself as
160  * the Master PF and initialize the adapter.
161  */
162 static uint force_init;
163
164 module_param(force_init, uint, 0644);
165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
166                  "deprecated parameter");
167
168 static int dflt_msg_enable = DFLT_MSG_ENABLE;
169
170 module_param(dflt_msg_enable, int, 0644);
171 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
172
173 /*
174  * The driver uses the best interrupt scheme available on a platform in the
175  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
176  * of these schemes the driver may consider as follows:
177  *
178  * msi = 2: choose from among all three options
179  * msi = 1: only consider MSI and INTx interrupts
180  * msi = 0: force INTx interrupts
181  */
182 static int msi = 2;
183
184 module_param(msi, int, 0644);
185 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
186
187 /*
188  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
189  * offset by 2 bytes in order to have the IP headers line up on 4-byte
190  * boundaries.  This is a requirement for many architectures which will throw
191  * a machine check fault if an attempt is made to access one of the 4-byte IP
192  * header fields on a non-4-byte boundary.  And it's a major performance issue
193  * even on some architectures which allow it like some implementations of the
194  * x86 ISA.  However, some architectures don't mind this and for some very
195  * edge-case performance sensitive applications (like forwarding large volumes
196  * of small packets), setting this DMA offset to 0 will decrease the number of
197  * PCI-E Bus transfers enough to measurably affect performance.
198  */
199 static int rx_dma_offset = 2;
200
201 #ifdef CONFIG_PCI_IOV
202 /* Configure the number of PCI-E Virtual Function which are to be instantiated
203  * on SR-IOV Capable Physical Functions.
204  */
205 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
206
207 module_param_array(num_vf, uint, NULL, 0644);
208 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
209 #endif
210
211 /* TX Queue select used to determine what algorithm to use for selecting TX
212  * queue. Select between the kernel provided function (select_queue=0) or user
213  * cxgb_select_queue function (select_queue=1)
214  *
215  * Default: select_queue=0
216  */
217 static int select_queue;
218 module_param(select_queue, int, 0644);
219 MODULE_PARM_DESC(select_queue,
220                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
221
222 static struct dentry *cxgb4_debugfs_root;
223
224 static LIST_HEAD(adapter_list);
225 static DEFINE_MUTEX(uld_mutex);
226 /* Adapter list to be accessed from atomic context */
227 static LIST_HEAD(adap_rcu_list);
228 static DEFINE_SPINLOCK(adap_rcu_lock);
229 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
230 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
231
232 static void link_report(struct net_device *dev)
233 {
234         if (!netif_carrier_ok(dev))
235                 netdev_info(dev, "link down\n");
236         else {
237                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
238
239                 const char *s;
240                 const struct port_info *p = netdev_priv(dev);
241
242                 switch (p->link_cfg.speed) {
243                 case 10000:
244                         s = "10Gbps";
245                         break;
246                 case 1000:
247                         s = "1000Mbps";
248                         break;
249                 case 100:
250                         s = "100Mbps";
251                         break;
252                 case 40000:
253                         s = "40Gbps";
254                         break;
255                 default:
256                         pr_info("%s: unsupported speed: %d\n",
257                                 dev->name, p->link_cfg.speed);
258                         return;
259                 }
260
261                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
262                             fc[p->link_cfg.fc]);
263         }
264 }
265
266 #ifdef CONFIG_CHELSIO_T4_DCB
267 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
268 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
269 {
270         struct port_info *pi = netdev_priv(dev);
271         struct adapter *adap = pi->adapter;
272         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
273         int i;
274
275         /* We use a simple mapping of Port TX Queue Index to DCB
276          * Priority when we're enabling DCB.
277          */
278         for (i = 0; i < pi->nqsets; i++, txq++) {
279                 u32 name, value;
280                 int err;
281
282                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
283                         FW_PARAMS_PARAM_X_V(
284                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
285                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
286                 value = enable ? i : 0xffffffff;
287
288                 /* Since we can be called while atomic (from "interrupt
289                  * level") we need to issue the Set Parameters Commannd
290                  * without sleeping (timeout < 0).
291                  */
292                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
293                                             &name, &value,
294                                             -FW_CMD_MAX_TIMEOUT);
295
296                 if (err)
297                         dev_err(adap->pdev_dev,
298                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
299                                 enable ? "set" : "unset", pi->port_id, i, -err);
300                 else
301                         txq->dcb_prio = value;
302         }
303 }
304 #endif /* CONFIG_CHELSIO_T4_DCB */
305
306 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
307 {
308         struct net_device *dev = adapter->port[port_id];
309
310         /* Skip changes from disabled ports. */
311         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
312                 if (link_stat)
313                         netif_carrier_on(dev);
314                 else {
315 #ifdef CONFIG_CHELSIO_T4_DCB
316                         cxgb4_dcb_state_init(dev);
317                         dcb_tx_queue_prio_enable(dev, false);
318 #endif /* CONFIG_CHELSIO_T4_DCB */
319                         netif_carrier_off(dev);
320                 }
321
322                 link_report(dev);
323         }
324 }
325
326 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
327 {
328         static const char *mod_str[] = {
329                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
330         };
331
332         const struct net_device *dev = adap->port[port_id];
333         const struct port_info *pi = netdev_priv(dev);
334
335         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
336                 netdev_info(dev, "port module unplugged\n");
337         else if (pi->mod_type < ARRAY_SIZE(mod_str))
338                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
339 }
340
341 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
342 module_param(dbfifo_int_thresh, int, 0644);
343 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
344
345 /*
346  * usecs to sleep while draining the dbfifo
347  */
348 static int dbfifo_drain_delay = 1000;
349 module_param(dbfifo_drain_delay, int, 0644);
350 MODULE_PARM_DESC(dbfifo_drain_delay,
351                  "usecs to sleep while draining the dbfifo");
352
353 static inline int cxgb4_set_addr_hash(struct port_info *pi)
354 {
355         struct adapter *adap = pi->adapter;
356         u64 vec = 0;
357         bool ucast = false;
358         struct hash_mac_addr *entry;
359
360         /* Calculate the hash vector for the updated list and program it */
361         list_for_each_entry(entry, &adap->mac_hlist, list) {
362                 ucast |= is_unicast_ether_addr(entry->addr);
363                 vec |= (1ULL << hash_mac_addr(entry->addr));
364         }
365         return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
366                                 vec, false);
367 }
368
369 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
370 {
371         struct port_info *pi = netdev_priv(netdev);
372         struct adapter *adap = pi->adapter;
373         int ret;
374         u64 mhash = 0;
375         u64 uhash = 0;
376         bool free = false;
377         bool ucast = is_unicast_ether_addr(mac_addr);
378         const u8 *maclist[1] = {mac_addr};
379         struct hash_mac_addr *new_entry;
380
381         ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
382                                 NULL, ucast ? &uhash : &mhash, false);
383         if (ret < 0)
384                 goto out;
385         /* if hash != 0, then add the addr to hash addr list
386          * so on the end we will calculate the hash for the
387          * list and program it
388          */
389         if (uhash || mhash) {
390                 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
391                 if (!new_entry)
392                         return -ENOMEM;
393                 ether_addr_copy(new_entry->addr, mac_addr);
394                 list_add_tail(&new_entry->list, &adap->mac_hlist);
395                 ret = cxgb4_set_addr_hash(pi);
396         }
397 out:
398         return ret < 0 ? ret : 0;
399 }
400
401 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
402 {
403         struct port_info *pi = netdev_priv(netdev);
404         struct adapter *adap = pi->adapter;
405         int ret;
406         const u8 *maclist[1] = {mac_addr};
407         struct hash_mac_addr *entry, *tmp;
408
409         /* If the MAC address to be removed is in the hash addr
410          * list, delete it from the list and update hash vector
411          */
412         list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
413                 if (ether_addr_equal(entry->addr, mac_addr)) {
414                         list_del(&entry->list);
415                         kfree(entry);
416                         return cxgb4_set_addr_hash(pi);
417                 }
418         }
419
420         ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
421         return ret < 0 ? -EINVAL : 0;
422 }
423
424 /*
425  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
426  * If @mtu is -1 it is left unchanged.
427  */
428 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
429 {
430         struct port_info *pi = netdev_priv(dev);
431         struct adapter *adapter = pi->adapter;
432
433         if (!(dev->flags & IFF_PROMISC)) {
434                 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435                 if (!(dev->flags & IFF_ALLMULTI))
436                         __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
437         }
438
439         return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
440                              (dev->flags & IFF_PROMISC) ? 1 : 0,
441                              (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
442                              sleep_ok);
443 }
444
445 /**
446  *      link_start - enable a port
447  *      @dev: the port to enable
448  *
449  *      Performs the MAC and PHY actions needed to enable a port.
450  */
451 static int link_start(struct net_device *dev)
452 {
453         int ret;
454         struct port_info *pi = netdev_priv(dev);
455         unsigned int mb = pi->adapter->pf;
456
457         /*
458          * We do not set address filters and promiscuity here, the stack does
459          * that step explicitly.
460          */
461         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
462                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
463         if (ret == 0) {
464                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
465                                     pi->xact_addr_filt, dev->dev_addr, true,
466                                     true);
467                 if (ret >= 0) {
468                         pi->xact_addr_filt = ret;
469                         ret = 0;
470                 }
471         }
472         if (ret == 0)
473                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
474                                     &pi->link_cfg);
475         if (ret == 0) {
476                 local_bh_disable();
477                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
478                                           true, CXGB4_DCB_ENABLED);
479                 local_bh_enable();
480         }
481
482         return ret;
483 }
484
485 int cxgb4_dcb_enabled(const struct net_device *dev)
486 {
487 #ifdef CONFIG_CHELSIO_T4_DCB
488         struct port_info *pi = netdev_priv(dev);
489
490         if (!pi->dcb.enabled)
491                 return 0;
492
493         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
494                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
495 #else
496         return 0;
497 #endif
498 }
499 EXPORT_SYMBOL(cxgb4_dcb_enabled);
500
501 #ifdef CONFIG_CHELSIO_T4_DCB
502 /* Handle a Data Center Bridging update message from the firmware. */
503 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
504 {
505         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
506         struct net_device *dev = adap->port[port];
507         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
508         int new_dcb_enabled;
509
510         cxgb4_dcb_handle_fw_update(adap, pcmd);
511         new_dcb_enabled = cxgb4_dcb_enabled(dev);
512
513         /* If the DCB has become enabled or disabled on the port then we're
514          * going to need to set up/tear down DCB Priority parameters for the
515          * TX Queues associated with the port.
516          */
517         if (new_dcb_enabled != old_dcb_enabled)
518                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
519 }
520 #endif /* CONFIG_CHELSIO_T4_DCB */
521
522 /* Clear a filter and release any of its resources that we own.  This also
523  * clears the filter's "pending" status.
524  */
525 static void clear_filter(struct adapter *adap, struct filter_entry *f)
526 {
527         /* If the new or old filter have loopback rewriteing rules then we'll
528          * need to free any existing Layer Two Table (L2T) entries of the old
529          * filter rule.  The firmware will handle freeing up any Source MAC
530          * Table (SMT) entries used for rewriting Source MAC Addresses in
531          * loopback rules.
532          */
533         if (f->l2t)
534                 cxgb4_l2t_release(f->l2t);
535
536         /* The zeroing of the filter rule below clears the filter valid,
537          * pending, locked flags, l2t pointer, etc. so it's all we need for
538          * this operation.
539          */
540         memset(f, 0, sizeof(*f));
541 }
542
543 /* Handle a filter write/deletion reply.
544  */
545 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
546 {
547         unsigned int idx = GET_TID(rpl);
548         unsigned int nidx = idx - adap->tids.ftid_base;
549         unsigned int ret;
550         struct filter_entry *f;
551
552         if (idx >= adap->tids.ftid_base && nidx <
553            (adap->tids.nftids + adap->tids.nsftids)) {
554                 idx = nidx;
555                 ret = TCB_COOKIE_G(rpl->cookie);
556                 f = &adap->tids.ftid_tab[idx];
557
558                 if (ret == FW_FILTER_WR_FLT_DELETED) {
559                         /* Clear the filter when we get confirmation from the
560                          * hardware that the filter has been deleted.
561                          */
562                         clear_filter(adap, f);
563                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
564                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
565                                 idx);
566                         clear_filter(adap, f);
567                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
568                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
569                         f->pending = 0;  /* asynchronous setup completed */
570                         f->valid = 1;
571                 } else {
572                         /* Something went wrong.  Issue a warning about the
573                          * problem and clear everything out.
574                          */
575                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
576                                 idx, ret);
577                         clear_filter(adap, f);
578                 }
579         }
580 }
581
582 /* Response queue handler for the FW event queue.
583  */
584 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
585                           const struct pkt_gl *gl)
586 {
587         u8 opcode = ((const struct rss_header *)rsp)->opcode;
588
589         rsp++;                                          /* skip RSS header */
590
591         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
592          */
593         if (unlikely(opcode == CPL_FW4_MSG &&
594            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
595                 rsp++;
596                 opcode = ((const struct rss_header *)rsp)->opcode;
597                 rsp++;
598                 if (opcode != CPL_SGE_EGR_UPDATE) {
599                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
600                                 , opcode);
601                         goto out;
602                 }
603         }
604
605         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
606                 const struct cpl_sge_egr_update *p = (void *)rsp;
607                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
608                 struct sge_txq *txq;
609
610                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
611                 txq->restarts++;
612                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
613                         struct sge_eth_txq *eq;
614
615                         eq = container_of(txq, struct sge_eth_txq, q);
616                         netif_tx_wake_queue(eq->txq);
617                 } else {
618                         struct sge_ofld_txq *oq;
619
620                         oq = container_of(txq, struct sge_ofld_txq, q);
621                         tasklet_schedule(&oq->qresume_tsk);
622                 }
623         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
624                 const struct cpl_fw6_msg *p = (void *)rsp;
625
626 #ifdef CONFIG_CHELSIO_T4_DCB
627                 const struct fw_port_cmd *pcmd = (const void *)p->data;
628                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
629                 unsigned int action =
630                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
631
632                 if (cmd == FW_PORT_CMD &&
633                     action == FW_PORT_ACTION_GET_PORT_INFO) {
634                         int port = FW_PORT_CMD_PORTID_G(
635                                         be32_to_cpu(pcmd->op_to_portid));
636                         struct net_device *dev = q->adap->port[port];
637                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
638                                             FW_PORT_CMD_DCBXDIS_F)
639                                            ? CXGB4_DCB_INPUT_FW_DISABLED
640                                            : CXGB4_DCB_INPUT_FW_ENABLED);
641
642                         cxgb4_dcb_state_fsm(dev, state_input);
643                 }
644
645                 if (cmd == FW_PORT_CMD &&
646                     action == FW_PORT_ACTION_L2_DCB_CFG)
647                         dcb_rpl(q->adap, pcmd);
648                 else
649 #endif
650                         if (p->type == 0)
651                                 t4_handle_fw_rpl(q->adap, p->data);
652         } else if (opcode == CPL_L2T_WRITE_RPL) {
653                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
654
655                 do_l2t_write_rpl(q->adap, p);
656         } else if (opcode == CPL_SET_TCB_RPL) {
657                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
658
659                 filter_rpl(q->adap, p);
660         } else
661                 dev_err(q->adap->pdev_dev,
662                         "unexpected CPL %#x on FW event queue\n", opcode);
663 out:
664         return 0;
665 }
666
667 /* Flush the aggregated lro sessions */
668 static void uldrx_flush_handler(struct sge_rspq *q)
669 {
670         if (ulds[q->uld].lro_flush)
671                 ulds[q->uld].lro_flush(&q->lro_mgr);
672 }
673
674 /**
675  *      uldrx_handler - response queue handler for ULD queues
676  *      @q: the response queue that received the packet
677  *      @rsp: the response queue descriptor holding the offload message
678  *      @gl: the gather list of packet fragments
679  *
680  *      Deliver an ingress offload packet to a ULD.  All processing is done by
681  *      the ULD, we just maintain statistics.
682  */
683 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
684                          const struct pkt_gl *gl)
685 {
686         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
687         int ret;
688
689         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
690          */
691         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
692             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
693                 rsp += 2;
694
695         if (q->flush_handler)
696                 ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
697                                                   rsp, gl, &q->lro_mgr,
698                                                   &q->napi);
699         else
700                 ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
701                                               rsp, gl);
702
703         if (ret) {
704                 rxq->stats.nomem++;
705                 return -1;
706         }
707
708         if (gl == NULL)
709                 rxq->stats.imm++;
710         else if (gl == CXGB4_MSG_AN)
711                 rxq->stats.an++;
712         else
713                 rxq->stats.pkts++;
714         return 0;
715 }
716
717 static void disable_msi(struct adapter *adapter)
718 {
719         if (adapter->flags & USING_MSIX) {
720                 pci_disable_msix(adapter->pdev);
721                 adapter->flags &= ~USING_MSIX;
722         } else if (adapter->flags & USING_MSI) {
723                 pci_disable_msi(adapter->pdev);
724                 adapter->flags &= ~USING_MSI;
725         }
726 }
727
728 /*
729  * Interrupt handler for non-data events used with MSI-X.
730  */
731 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
732 {
733         struct adapter *adap = cookie;
734         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
735
736         if (v & PFSW_F) {
737                 adap->swintr = 1;
738                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
739         }
740         if (adap->flags & MASTER_PF)
741                 t4_slow_intr_handler(adap);
742         return IRQ_HANDLED;
743 }
744
745 /*
746  * Name the MSI-X interrupts.
747  */
748 static void name_msix_vecs(struct adapter *adap)
749 {
750         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
751
752         /* non-data interrupts */
753         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
754
755         /* FW events */
756         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
757                  adap->port[0]->name);
758
759         /* Ethernet queues */
760         for_each_port(adap, j) {
761                 struct net_device *d = adap->port[j];
762                 const struct port_info *pi = netdev_priv(d);
763
764                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
765                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
766                                  d->name, i);
767         }
768
769         /* offload queues */
770         for_each_iscsirxq(&adap->sge, i)
771                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
772                          adap->port[0]->name, i);
773
774         for_each_iscsitrxq(&adap->sge, i)
775                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
776                          adap->port[0]->name, i);
777
778         for_each_rdmarxq(&adap->sge, i)
779                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
780                          adap->port[0]->name, i);
781
782         for_each_rdmaciq(&adap->sge, i)
783                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
784                          adap->port[0]->name, i);
785 }
786
787 static int request_msix_queue_irqs(struct adapter *adap)
788 {
789         struct sge *s = &adap->sge;
790         int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
791         int iscsitqidx = 0;
792         int msi_index = 2;
793
794         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
795                           adap->msix_info[1].desc, &s->fw_evtq);
796         if (err)
797                 return err;
798
799         for_each_ethrxq(s, ethqidx) {
800                 err = request_irq(adap->msix_info[msi_index].vec,
801                                   t4_sge_intr_msix, 0,
802                                   adap->msix_info[msi_index].desc,
803                                   &s->ethrxq[ethqidx].rspq);
804                 if (err)
805                         goto unwind;
806                 msi_index++;
807         }
808         for_each_iscsirxq(s, iscsiqidx) {
809                 err = request_irq(adap->msix_info[msi_index].vec,
810                                   t4_sge_intr_msix, 0,
811                                   adap->msix_info[msi_index].desc,
812                                   &s->iscsirxq[iscsiqidx].rspq);
813                 if (err)
814                         goto unwind;
815                 msi_index++;
816         }
817         for_each_iscsitrxq(s, iscsitqidx) {
818                 err = request_irq(adap->msix_info[msi_index].vec,
819                                   t4_sge_intr_msix, 0,
820                                   adap->msix_info[msi_index].desc,
821                                   &s->iscsitrxq[iscsitqidx].rspq);
822                 if (err)
823                         goto unwind;
824                 msi_index++;
825         }
826         for_each_rdmarxq(s, rdmaqidx) {
827                 err = request_irq(adap->msix_info[msi_index].vec,
828                                   t4_sge_intr_msix, 0,
829                                   adap->msix_info[msi_index].desc,
830                                   &s->rdmarxq[rdmaqidx].rspq);
831                 if (err)
832                         goto unwind;
833                 msi_index++;
834         }
835         for_each_rdmaciq(s, rdmaciqqidx) {
836                 err = request_irq(adap->msix_info[msi_index].vec,
837                                   t4_sge_intr_msix, 0,
838                                   adap->msix_info[msi_index].desc,
839                                   &s->rdmaciq[rdmaciqqidx].rspq);
840                 if (err)
841                         goto unwind;
842                 msi_index++;
843         }
844         return 0;
845
846 unwind:
847         while (--rdmaciqqidx >= 0)
848                 free_irq(adap->msix_info[--msi_index].vec,
849                          &s->rdmaciq[rdmaciqqidx].rspq);
850         while (--rdmaqidx >= 0)
851                 free_irq(adap->msix_info[--msi_index].vec,
852                          &s->rdmarxq[rdmaqidx].rspq);
853         while (--iscsitqidx >= 0)
854                 free_irq(adap->msix_info[--msi_index].vec,
855                          &s->iscsitrxq[iscsitqidx].rspq);
856         while (--iscsiqidx >= 0)
857                 free_irq(adap->msix_info[--msi_index].vec,
858                          &s->iscsirxq[iscsiqidx].rspq);
859         while (--ethqidx >= 0)
860                 free_irq(adap->msix_info[--msi_index].vec,
861                          &s->ethrxq[ethqidx].rspq);
862         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
863         return err;
864 }
865
866 static void free_msix_queue_irqs(struct adapter *adap)
867 {
868         int i, msi_index = 2;
869         struct sge *s = &adap->sge;
870
871         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
872         for_each_ethrxq(s, i)
873                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
874         for_each_iscsirxq(s, i)
875                 free_irq(adap->msix_info[msi_index++].vec,
876                          &s->iscsirxq[i].rspq);
877         for_each_iscsitrxq(s, i)
878                 free_irq(adap->msix_info[msi_index++].vec,
879                          &s->iscsitrxq[i].rspq);
880         for_each_rdmarxq(s, i)
881                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
882         for_each_rdmaciq(s, i)
883                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
884 }
885
886 /**
887  *      cxgb4_write_rss - write the RSS table for a given port
888  *      @pi: the port
889  *      @queues: array of queue indices for RSS
890  *
891  *      Sets up the portion of the HW RSS table for the port's VI to distribute
892  *      packets to the Rx queues in @queues.
893  *      Should never be called before setting up sge eth rx queues
894  */
895 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
896 {
897         u16 *rss;
898         int i, err;
899         struct adapter *adapter = pi->adapter;
900         const struct sge_eth_rxq *rxq;
901
902         rxq = &adapter->sge.ethrxq[pi->first_qset];
903         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
904         if (!rss)
905                 return -ENOMEM;
906
907         /* map the queue indices to queue ids */
908         for (i = 0; i < pi->rss_size; i++, queues++)
909                 rss[i] = rxq[*queues].rspq.abs_id;
910
911         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
912                                   pi->rss_size, rss, pi->rss_size);
913         /* If Tunnel All Lookup isn't specified in the global RSS
914          * Configuration, then we need to specify a default Ingress
915          * Queue for any ingress packets which aren't hashed.  We'll
916          * use our first ingress queue ...
917          */
918         if (!err)
919                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
920                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
921                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
922                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
923                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
924                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
925                                        rss[0]);
926         kfree(rss);
927         return err;
928 }
929
930 /**
931  *      setup_rss - configure RSS
932  *      @adap: the adapter
933  *
934  *      Sets up RSS for each port.
935  */
936 static int setup_rss(struct adapter *adap)
937 {
938         int i, j, err;
939
940         for_each_port(adap, i) {
941                 const struct port_info *pi = adap2pinfo(adap, i);
942
943                 /* Fill default values with equal distribution */
944                 for (j = 0; j < pi->rss_size; j++)
945                         pi->rss[j] = j % pi->nqsets;
946
947                 err = cxgb4_write_rss(pi, pi->rss);
948                 if (err)
949                         return err;
950         }
951         return 0;
952 }
953
954 /*
955  * Return the channel of the ingress queue with the given qid.
956  */
957 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
958 {
959         qid -= p->ingr_start;
960         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
961 }
962
963 /*
964  * Wait until all NAPI handlers are descheduled.
965  */
966 static void quiesce_rx(struct adapter *adap)
967 {
968         int i;
969
970         for (i = 0; i < adap->sge.ingr_sz; i++) {
971                 struct sge_rspq *q = adap->sge.ingr_map[i];
972
973                 if (q && q->handler) {
974                         napi_disable(&q->napi);
975                         local_bh_disable();
976                         while (!cxgb_poll_lock_napi(q))
977                                 mdelay(1);
978                         local_bh_enable();
979                 }
980
981         }
982 }
983
984 /* Disable interrupt and napi handler */
985 static void disable_interrupts(struct adapter *adap)
986 {
987         if (adap->flags & FULL_INIT_DONE) {
988                 t4_intr_disable(adap);
989                 if (adap->flags & USING_MSIX) {
990                         free_msix_queue_irqs(adap);
991                         free_irq(adap->msix_info[0].vec, adap);
992                 } else {
993                         free_irq(adap->pdev->irq, adap);
994                 }
995                 quiesce_rx(adap);
996         }
997 }
998
999 /*
1000  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1001  */
1002 static void enable_rx(struct adapter *adap)
1003 {
1004         int i;
1005
1006         for (i = 0; i < adap->sge.ingr_sz; i++) {
1007                 struct sge_rspq *q = adap->sge.ingr_map[i];
1008
1009                 if (!q)
1010                         continue;
1011                 if (q->handler) {
1012                         cxgb_busy_poll_init_lock(q);
1013                         napi_enable(&q->napi);
1014                 }
1015                 /* 0-increment GTS to start the timer and enable interrupts */
1016                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1017                              SEINTARM_V(q->intr_params) |
1018                              INGRESSQID_V(q->cntxt_id));
1019         }
1020 }
1021
1022 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1023                            unsigned int nq, unsigned int per_chan, int msi_idx,
1024                            u16 *ids, bool lro)
1025 {
1026         int i, err;
1027
1028         for (i = 0; i < nq; i++, q++) {
1029                 if (msi_idx > 0)
1030                         msi_idx++;
1031                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1032                                        adap->port[i / per_chan],
1033                                        msi_idx, q->fl.size ? &q->fl : NULL,
1034                                        uldrx_handler,
1035                                        lro ? uldrx_flush_handler : NULL,
1036                                        0);
1037                 if (err)
1038                         return err;
1039                 memset(&q->stats, 0, sizeof(q->stats));
1040                 if (ids)
1041                         ids[i] = q->rspq.abs_id;
1042         }
1043         return 0;
1044 }
1045
1046 /**
1047  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1048  *      @adap: the adapter
1049  *
1050  *      Determines how many sets of SGE queues to use and initializes them.
1051  *      We support multiple queue sets per port if we have MSI-X, otherwise
1052  *      just one queue set per port.
1053  */
1054 static int setup_sge_queues(struct adapter *adap)
1055 {
1056         int err, msi_idx, i, j;
1057         struct sge *s = &adap->sge;
1058
1059         bitmap_zero(s->starving_fl, s->egr_sz);
1060         bitmap_zero(s->txq_maperr, s->egr_sz);
1061
1062         if (adap->flags & USING_MSIX)
1063                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1064         else {
1065                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1066                                        NULL, NULL, NULL, -1);
1067                 if (err)
1068                         return err;
1069                 msi_idx = -((int)s->intrq.abs_id + 1);
1070         }
1071
1072         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1073          * don't forget to update the following which need to be
1074          * synchronized to and changes here.
1075          *
1076          * 1. The calculations of MAX_INGQ in cxgb4.h.
1077          *
1078          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1079          *    to accommodate any new/deleted Ingress Queues
1080          *    which need MSI-X Vectors.
1081          *
1082          * 3. Update sge_qinfo_show() to include information on the
1083          *    new/deleted queues.
1084          */
1085         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1086                                msi_idx, NULL, fwevtq_handler, NULL, -1);
1087         if (err) {
1088 freeout:        t4_free_sge_resources(adap);
1089                 return err;
1090         }
1091
1092         for_each_port(adap, i) {
1093                 struct net_device *dev = adap->port[i];
1094                 struct port_info *pi = netdev_priv(dev);
1095                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1096                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1097
1098                 for (j = 0; j < pi->nqsets; j++, q++) {
1099                         if (msi_idx > 0)
1100                                 msi_idx++;
1101                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1102                                                msi_idx, &q->fl,
1103                                                t4_ethrx_handler,
1104                                                NULL,
1105                                                t4_get_mps_bg_map(adap,
1106                                                                  pi->tx_chan));
1107                         if (err)
1108                                 goto freeout;
1109                         q->rspq.idx = j;
1110                         memset(&q->stats, 0, sizeof(q->stats));
1111                 }
1112                 for (j = 0; j < pi->nqsets; j++, t++) {
1113                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1114                                         netdev_get_tx_queue(dev, j),
1115                                         s->fw_evtq.cntxt_id);
1116                         if (err)
1117                                 goto freeout;
1118                 }
1119         }
1120
1121         j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1122         for_each_iscsirxq(s, i) {
1123                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1124                                             adap->port[i / j],
1125                                             s->fw_evtq.cntxt_id);
1126                 if (err)
1127                         goto freeout;
1128         }
1129
1130 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1131         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \
1132         if (err) \
1133                 goto freeout; \
1134         if (msi_idx > 0) \
1135                 msi_idx += nq; \
1136 } while (0)
1137
1138         ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1139         ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1140         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1141         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1142         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1143
1144 #undef ALLOC_OFLD_RXQS
1145
1146         for_each_port(adap, i) {
1147                 /*
1148                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1149                  * have RDMA queues, and that's the right value.
1150                  */
1151                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1152                                             s->fw_evtq.cntxt_id,
1153                                             s->rdmarxq[i].rspq.cntxt_id);
1154                 if (err)
1155                         goto freeout;
1156         }
1157
1158         t4_write_reg(adap, is_t4(adap->params.chip) ?
1159                                 MPS_TRC_RSS_CONTROL_A :
1160                                 MPS_T5_TRC_RSS_CONTROL_A,
1161                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1162                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1163         return 0;
1164 }
1165
1166 /*
1167  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1168  * The allocated memory is cleared.
1169  */
1170 void *t4_alloc_mem(size_t size)
1171 {
1172         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1173
1174         if (!p)
1175                 p = vzalloc(size);
1176         return p;
1177 }
1178
1179 /*
1180  * Free memory allocated through alloc_mem().
1181  */
1182 void t4_free_mem(void *addr)
1183 {
1184         kvfree(addr);
1185 }
1186
1187 /* Send a Work Request to write the filter at a specified index.  We construct
1188  * a Firmware Filter Work Request to have the work done and put the indicated
1189  * filter into "pending" mode which will prevent any further actions against
1190  * it till we get a reply from the firmware on the completion status of the
1191  * request.
1192  */
1193 static int set_filter_wr(struct adapter *adapter, int fidx)
1194 {
1195         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1196         struct sk_buff *skb;
1197         struct fw_filter_wr *fwr;
1198         unsigned int ftid;
1199
1200         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1201         if (!skb)
1202                 return -ENOMEM;
1203
1204         /* If the new filter requires loopback Destination MAC and/or VLAN
1205          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1206          * the filter.
1207          */
1208         if (f->fs.newdmac || f->fs.newvlan) {
1209                 /* allocate L2T entry for new filter */
1210                 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1211                                                 f->fs.eport, f->fs.dmac);
1212                 if (f->l2t == NULL) {
1213                         kfree_skb(skb);
1214                         return -ENOMEM;
1215                 }
1216         }
1217
1218         ftid = adapter->tids.ftid_base + fidx;
1219
1220         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1221         memset(fwr, 0, sizeof(*fwr));
1222
1223         /* It would be nice to put most of the following in t4_hw.c but most
1224          * of the work is translating the cxgbtool ch_filter_specification
1225          * into the Work Request and the definition of that structure is
1226          * currently in cxgbtool.h which isn't appropriate to pull into the
1227          * common code.  We may eventually try to come up with a more neutral
1228          * filter specification structure but for now it's easiest to simply
1229          * put this fairly direct code in line ...
1230          */
1231         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1232         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1233         fwr->tid_to_iq =
1234                 htonl(FW_FILTER_WR_TID_V(ftid) |
1235                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1236                       FW_FILTER_WR_NOREPLY_V(0) |
1237                       FW_FILTER_WR_IQ_V(f->fs.iq));
1238         fwr->del_filter_to_l2tix =
1239                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1240                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1241                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1242                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1243                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1244                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1245                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1246                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1247                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1248                                              f->fs.newvlan == VLAN_REWRITE) |
1249                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1250                                             f->fs.newvlan == VLAN_REWRITE) |
1251                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1252                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1253                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1254                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1255         fwr->ethtype = htons(f->fs.val.ethtype);
1256         fwr->ethtypem = htons(f->fs.mask.ethtype);
1257         fwr->frag_to_ovlan_vldm =
1258                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1259                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1260                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1261                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1262                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1263                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1264         fwr->smac_sel = 0;
1265         fwr->rx_chan_rx_rpl_iq =
1266                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1267                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1268         fwr->maci_to_matchtypem =
1269                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1270                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1271                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1272                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1273                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1274                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1275                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1276                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1277         fwr->ptcl = f->fs.val.proto;
1278         fwr->ptclm = f->fs.mask.proto;
1279         fwr->ttyp = f->fs.val.tos;
1280         fwr->ttypm = f->fs.mask.tos;
1281         fwr->ivlan = htons(f->fs.val.ivlan);
1282         fwr->ivlanm = htons(f->fs.mask.ivlan);
1283         fwr->ovlan = htons(f->fs.val.ovlan);
1284         fwr->ovlanm = htons(f->fs.mask.ovlan);
1285         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1286         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1287         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1288         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1289         fwr->lp = htons(f->fs.val.lport);
1290         fwr->lpm = htons(f->fs.mask.lport);
1291         fwr->fp = htons(f->fs.val.fport);
1292         fwr->fpm = htons(f->fs.mask.fport);
1293         if (f->fs.newsmac)
1294                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1295
1296         /* Mark the filter as "pending" and ship off the Filter Work Request.
1297          * When we get the Work Request Reply we'll clear the pending status.
1298          */
1299         f->pending = 1;
1300         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1301         t4_ofld_send(adapter, skb);
1302         return 0;
1303 }
1304
1305 /* Delete the filter at a specified index.
1306  */
1307 static int del_filter_wr(struct adapter *adapter, int fidx)
1308 {
1309         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1310         struct sk_buff *skb;
1311         struct fw_filter_wr *fwr;
1312         unsigned int len, ftid;
1313
1314         len = sizeof(*fwr);
1315         ftid = adapter->tids.ftid_base + fidx;
1316
1317         skb = alloc_skb(len, GFP_KERNEL);
1318         if (!skb)
1319                 return -ENOMEM;
1320
1321         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1322         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1323
1324         /* Mark the filter as "pending" and ship off the Filter Work Request.
1325          * When we get the Work Request Reply we'll clear the pending status.
1326          */
1327         f->pending = 1;
1328         t4_mgmt_tx(adapter, skb);
1329         return 0;
1330 }
1331
1332 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1333                              void *accel_priv, select_queue_fallback_t fallback)
1334 {
1335         int txq;
1336
1337 #ifdef CONFIG_CHELSIO_T4_DCB
1338         /* If a Data Center Bridging has been successfully negotiated on this
1339          * link then we'll use the skb's priority to map it to a TX Queue.
1340          * The skb's priority is determined via the VLAN Tag Priority Code
1341          * Point field.
1342          */
1343         if (cxgb4_dcb_enabled(dev)) {
1344                 u16 vlan_tci;
1345                 int err;
1346
1347                 err = vlan_get_tag(skb, &vlan_tci);
1348                 if (unlikely(err)) {
1349                         if (net_ratelimit())
1350                                 netdev_warn(dev,
1351                                             "TX Packet without VLAN Tag on DCB Link\n");
1352                         txq = 0;
1353                 } else {
1354                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1355 #ifdef CONFIG_CHELSIO_T4_FCOE
1356                         if (skb->protocol == htons(ETH_P_FCOE))
1357                                 txq = skb->priority & 0x7;
1358 #endif /* CONFIG_CHELSIO_T4_FCOE */
1359                 }
1360                 return txq;
1361         }
1362 #endif /* CONFIG_CHELSIO_T4_DCB */
1363
1364         if (select_queue) {
1365                 txq = (skb_rx_queue_recorded(skb)
1366                         ? skb_get_rx_queue(skb)
1367                         : smp_processor_id());
1368
1369                 while (unlikely(txq >= dev->real_num_tx_queues))
1370                         txq -= dev->real_num_tx_queues;
1371
1372                 return txq;
1373         }
1374
1375         return fallback(dev, skb) % dev->real_num_tx_queues;
1376 }
1377
1378 static int closest_timer(const struct sge *s, int time)
1379 {
1380         int i, delta, match = 0, min_delta = INT_MAX;
1381
1382         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1383                 delta = time - s->timer_val[i];
1384                 if (delta < 0)
1385                         delta = -delta;
1386                 if (delta < min_delta) {
1387                         min_delta = delta;
1388                         match = i;
1389                 }
1390         }
1391         return match;
1392 }
1393
1394 static int closest_thres(const struct sge *s, int thres)
1395 {
1396         int i, delta, match = 0, min_delta = INT_MAX;
1397
1398         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1399                 delta = thres - s->counter_val[i];
1400                 if (delta < 0)
1401                         delta = -delta;
1402                 if (delta < min_delta) {
1403                         min_delta = delta;
1404                         match = i;
1405                 }
1406         }
1407         return match;
1408 }
1409
1410 /**
1411  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1412  *      @q: the Rx queue
1413  *      @us: the hold-off time in us, or 0 to disable timer
1414  *      @cnt: the hold-off packet count, or 0 to disable counter
1415  *
1416  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1417  *      one of the two needs to be enabled for the queue to generate interrupts.
1418  */
1419 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1420                                unsigned int us, unsigned int cnt)
1421 {
1422         struct adapter *adap = q->adap;
1423
1424         if ((us | cnt) == 0)
1425                 cnt = 1;
1426
1427         if (cnt) {
1428                 int err;
1429                 u32 v, new_idx;
1430
1431                 new_idx = closest_thres(&adap->sge, cnt);
1432                 if (q->desc && q->pktcnt_idx != new_idx) {
1433                         /* the queue has already been created, update it */
1434                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1435                             FW_PARAMS_PARAM_X_V(
1436                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1437                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1438                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1439                                             &v, &new_idx);
1440                         if (err)
1441                                 return err;
1442                 }
1443                 q->pktcnt_idx = new_idx;
1444         }
1445
1446         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1447         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1448         return 0;
1449 }
1450
1451 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1452 {
1453         const struct port_info *pi = netdev_priv(dev);
1454         netdev_features_t changed = dev->features ^ features;
1455         int err;
1456
1457         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1458                 return 0;
1459
1460         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1461                             -1, -1, -1,
1462                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463         if (unlikely(err))
1464                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1465         return err;
1466 }
1467
1468 static int setup_debugfs(struct adapter *adap)
1469 {
1470         if (IS_ERR_OR_NULL(adap->debugfs_root))
1471                 return -1;
1472
1473 #ifdef CONFIG_DEBUG_FS
1474         t4_setup_debugfs(adap);
1475 #endif
1476         return 0;
1477 }
1478
1479 /*
1480  * upper-layer driver support
1481  */
1482
1483 /*
1484  * Allocate an active-open TID and set it to the supplied value.
1485  */
1486 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1487 {
1488         int atid = -1;
1489
1490         spin_lock_bh(&t->atid_lock);
1491         if (t->afree) {
1492                 union aopen_entry *p = t->afree;
1493
1494                 atid = (p - t->atid_tab) + t->atid_base;
1495                 t->afree = p->next;
1496                 p->data = data;
1497                 t->atids_in_use++;
1498         }
1499         spin_unlock_bh(&t->atid_lock);
1500         return atid;
1501 }
1502 EXPORT_SYMBOL(cxgb4_alloc_atid);
1503
1504 /*
1505  * Release an active-open TID.
1506  */
1507 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1508 {
1509         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1510
1511         spin_lock_bh(&t->atid_lock);
1512         p->next = t->afree;
1513         t->afree = p;
1514         t->atids_in_use--;
1515         spin_unlock_bh(&t->atid_lock);
1516 }
1517 EXPORT_SYMBOL(cxgb4_free_atid);
1518
1519 /*
1520  * Allocate a server TID and set it to the supplied value.
1521  */
1522 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1523 {
1524         int stid;
1525
1526         spin_lock_bh(&t->stid_lock);
1527         if (family == PF_INET) {
1528                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1529                 if (stid < t->nstids)
1530                         __set_bit(stid, t->stid_bmap);
1531                 else
1532                         stid = -1;
1533         } else {
1534                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1535                 if (stid < 0)
1536                         stid = -1;
1537         }
1538         if (stid >= 0) {
1539                 t->stid_tab[stid].data = data;
1540                 stid += t->stid_base;
1541                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1542                  * This is equivalent to 4 TIDs. With CLIP enabled it
1543                  * needs 2 TIDs.
1544                  */
1545                 if (family == PF_INET)
1546                         t->stids_in_use++;
1547                 else
1548                         t->stids_in_use += 2;
1549         }
1550         spin_unlock_bh(&t->stid_lock);
1551         return stid;
1552 }
1553 EXPORT_SYMBOL(cxgb4_alloc_stid);
1554
1555 /* Allocate a server filter TID and set it to the supplied value.
1556  */
1557 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1558 {
1559         int stid;
1560
1561         spin_lock_bh(&t->stid_lock);
1562         if (family == PF_INET) {
1563                 stid = find_next_zero_bit(t->stid_bmap,
1564                                 t->nstids + t->nsftids, t->nstids);
1565                 if (stid < (t->nstids + t->nsftids))
1566                         __set_bit(stid, t->stid_bmap);
1567                 else
1568                         stid = -1;
1569         } else {
1570                 stid = -1;
1571         }
1572         if (stid >= 0) {
1573                 t->stid_tab[stid].data = data;
1574                 stid -= t->nstids;
1575                 stid += t->sftid_base;
1576                 t->sftids_in_use++;
1577         }
1578         spin_unlock_bh(&t->stid_lock);
1579         return stid;
1580 }
1581 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1582
1583 /* Release a server TID.
1584  */
1585 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1586 {
1587         /* Is it a server filter TID? */
1588         if (t->nsftids && (stid >= t->sftid_base)) {
1589                 stid -= t->sftid_base;
1590                 stid += t->nstids;
1591         } else {
1592                 stid -= t->stid_base;
1593         }
1594
1595         spin_lock_bh(&t->stid_lock);
1596         if (family == PF_INET)
1597                 __clear_bit(stid, t->stid_bmap);
1598         else
1599                 bitmap_release_region(t->stid_bmap, stid, 1);
1600         t->stid_tab[stid].data = NULL;
1601         if (stid < t->nstids) {
1602                 if (family == PF_INET)
1603                         t->stids_in_use--;
1604                 else
1605                         t->stids_in_use -= 2;
1606         } else {
1607                 t->sftids_in_use--;
1608         }
1609         spin_unlock_bh(&t->stid_lock);
1610 }
1611 EXPORT_SYMBOL(cxgb4_free_stid);
1612
1613 /*
1614  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1615  */
1616 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1617                            unsigned int tid)
1618 {
1619         struct cpl_tid_release *req;
1620
1621         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1622         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1623         INIT_TP_WR(req, tid);
1624         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1625 }
1626
1627 /*
1628  * Queue a TID release request and if necessary schedule a work queue to
1629  * process it.
1630  */
1631 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1632                                     unsigned int tid)
1633 {
1634         void **p = &t->tid_tab[tid];
1635         struct adapter *adap = container_of(t, struct adapter, tids);
1636
1637         spin_lock_bh(&adap->tid_release_lock);
1638         *p = adap->tid_release_head;
1639         /* Low 2 bits encode the Tx channel number */
1640         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1641         if (!adap->tid_release_task_busy) {
1642                 adap->tid_release_task_busy = true;
1643                 queue_work(adap->workq, &adap->tid_release_task);
1644         }
1645         spin_unlock_bh(&adap->tid_release_lock);
1646 }
1647
1648 /*
1649  * Process the list of pending TID release requests.
1650  */
1651 static void process_tid_release_list(struct work_struct *work)
1652 {
1653         struct sk_buff *skb;
1654         struct adapter *adap;
1655
1656         adap = container_of(work, struct adapter, tid_release_task);
1657
1658         spin_lock_bh(&adap->tid_release_lock);
1659         while (adap->tid_release_head) {
1660                 void **p = adap->tid_release_head;
1661                 unsigned int chan = (uintptr_t)p & 3;
1662                 p = (void *)p - chan;
1663
1664                 adap->tid_release_head = *p;
1665                 *p = NULL;
1666                 spin_unlock_bh(&adap->tid_release_lock);
1667
1668                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1669                                          GFP_KERNEL)))
1670                         schedule_timeout_uninterruptible(1);
1671
1672                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1673                 t4_ofld_send(adap, skb);
1674                 spin_lock_bh(&adap->tid_release_lock);
1675         }
1676         adap->tid_release_task_busy = false;
1677         spin_unlock_bh(&adap->tid_release_lock);
1678 }
1679
1680 /*
1681  * Release a TID and inform HW.  If we are unable to allocate the release
1682  * message we defer to a work queue.
1683  */
1684 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1685 {
1686         struct sk_buff *skb;
1687         struct adapter *adap = container_of(t, struct adapter, tids);
1688
1689         WARN_ON(tid >= t->ntids);
1690
1691         if (t->tid_tab[tid]) {
1692                 t->tid_tab[tid] = NULL;
1693                 if (t->hash_base && (tid >= t->hash_base))
1694                         atomic_dec(&t->hash_tids_in_use);
1695                 else
1696                         atomic_dec(&t->tids_in_use);
1697         }
1698
1699         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1700         if (likely(skb)) {
1701                 mk_tid_release(skb, chan, tid);
1702                 t4_ofld_send(adap, skb);
1703         } else
1704                 cxgb4_queue_tid_release(t, chan, tid);
1705 }
1706 EXPORT_SYMBOL(cxgb4_remove_tid);
1707
1708 /*
1709  * Allocate and initialize the TID tables.  Returns 0 on success.
1710  */
1711 static int tid_init(struct tid_info *t)
1712 {
1713         size_t size;
1714         unsigned int stid_bmap_size;
1715         unsigned int natids = t->natids;
1716         struct adapter *adap = container_of(t, struct adapter, tids);
1717
1718         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1719         size = t->ntids * sizeof(*t->tid_tab) +
1720                natids * sizeof(*t->atid_tab) +
1721                t->nstids * sizeof(*t->stid_tab) +
1722                t->nsftids * sizeof(*t->stid_tab) +
1723                stid_bmap_size * sizeof(long) +
1724                t->nftids * sizeof(*t->ftid_tab) +
1725                t->nsftids * sizeof(*t->ftid_tab);
1726
1727         t->tid_tab = t4_alloc_mem(size);
1728         if (!t->tid_tab)
1729                 return -ENOMEM;
1730
1731         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1732         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1733         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1734         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1735         spin_lock_init(&t->stid_lock);
1736         spin_lock_init(&t->atid_lock);
1737
1738         t->stids_in_use = 0;
1739         t->sftids_in_use = 0;
1740         t->afree = NULL;
1741         t->atids_in_use = 0;
1742         atomic_set(&t->tids_in_use, 0);
1743         atomic_set(&t->hash_tids_in_use, 0);
1744
1745         /* Setup the free list for atid_tab and clear the stid bitmap. */
1746         if (natids) {
1747                 while (--natids)
1748                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1749                 t->afree = t->atid_tab;
1750         }
1751         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1752         /* Reserve stid 0 for T4/T5 adapters */
1753         if (!t->stid_base &&
1754             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1755                 __set_bit(0, t->stid_bmap);
1756
1757         return 0;
1758 }
1759
1760 /**
1761  *      cxgb4_create_server - create an IP server
1762  *      @dev: the device
1763  *      @stid: the server TID
1764  *      @sip: local IP address to bind server to
1765  *      @sport: the server's TCP port
1766  *      @queue: queue to direct messages from this server to
1767  *
1768  *      Create an IP server for the given port and address.
1769  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1770  */
1771 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1772                         __be32 sip, __be16 sport, __be16 vlan,
1773                         unsigned int queue)
1774 {
1775         unsigned int chan;
1776         struct sk_buff *skb;
1777         struct adapter *adap;
1778         struct cpl_pass_open_req *req;
1779         int ret;
1780
1781         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1782         if (!skb)
1783                 return -ENOMEM;
1784
1785         adap = netdev2adap(dev);
1786         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1787         INIT_TP_WR(req, 0);
1788         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1789         req->local_port = sport;
1790         req->peer_port = htons(0);
1791         req->local_ip = sip;
1792         req->peer_ip = htonl(0);
1793         chan = rxq_to_chan(&adap->sge, queue);
1794         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1795         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1796                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1797         ret = t4_mgmt_tx(adap, skb);
1798         return net_xmit_eval(ret);
1799 }
1800 EXPORT_SYMBOL(cxgb4_create_server);
1801
1802 /*      cxgb4_create_server6 - create an IPv6 server
1803  *      @dev: the device
1804  *      @stid: the server TID
1805  *      @sip: local IPv6 address to bind server to
1806  *      @sport: the server's TCP port
1807  *      @queue: queue to direct messages from this server to
1808  *
1809  *      Create an IPv6 server for the given port and address.
1810  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1811  */
1812 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1813                          const struct in6_addr *sip, __be16 sport,
1814                          unsigned int queue)
1815 {
1816         unsigned int chan;
1817         struct sk_buff *skb;
1818         struct adapter *adap;
1819         struct cpl_pass_open_req6 *req;
1820         int ret;
1821
1822         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1823         if (!skb)
1824                 return -ENOMEM;
1825
1826         adap = netdev2adap(dev);
1827         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1828         INIT_TP_WR(req, 0);
1829         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1830         req->local_port = sport;
1831         req->peer_port = htons(0);
1832         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1833         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1834         req->peer_ip_hi = cpu_to_be64(0);
1835         req->peer_ip_lo = cpu_to_be64(0);
1836         chan = rxq_to_chan(&adap->sge, queue);
1837         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1838         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1839                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1840         ret = t4_mgmt_tx(adap, skb);
1841         return net_xmit_eval(ret);
1842 }
1843 EXPORT_SYMBOL(cxgb4_create_server6);
1844
1845 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1846                         unsigned int queue, bool ipv6)
1847 {
1848         struct sk_buff *skb;
1849         struct adapter *adap;
1850         struct cpl_close_listsvr_req *req;
1851         int ret;
1852
1853         adap = netdev2adap(dev);
1854
1855         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1856         if (!skb)
1857                 return -ENOMEM;
1858
1859         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1860         INIT_TP_WR(req, 0);
1861         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1862         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1863                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1864         ret = t4_mgmt_tx(adap, skb);
1865         return net_xmit_eval(ret);
1866 }
1867 EXPORT_SYMBOL(cxgb4_remove_server);
1868
1869 /**
1870  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1871  *      @mtus: the HW MTU table
1872  *      @mtu: the target MTU
1873  *      @idx: index of selected entry in the MTU table
1874  *
1875  *      Returns the index and the value in the HW MTU table that is closest to
1876  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1877  *      table, in which case that smallest available value is selected.
1878  */
1879 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1880                             unsigned int *idx)
1881 {
1882         unsigned int i = 0;
1883
1884         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1885                 ++i;
1886         if (idx)
1887                 *idx = i;
1888         return mtus[i];
1889 }
1890 EXPORT_SYMBOL(cxgb4_best_mtu);
1891
1892 /**
1893  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1894  *     @mtus: the HW MTU table
1895  *     @header_size: Header Size
1896  *     @data_size_max: maximum Data Segment Size
1897  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1898  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1899  *
1900  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1901  *     MTU Table based solely on a Maximum MTU parameter, we break that
1902  *     parameter up into a Header Size and Maximum Data Segment Size, and
1903  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1904  *     the Hardware MTU Table which will result in a Data Segment Size with
1905  *     the requested alignment _and_ that MTU isn't "too far" from the
1906  *     closest MTU, then we'll return that rather than the closest MTU.
1907  */
1908 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1909                                     unsigned short header_size,
1910                                     unsigned short data_size_max,
1911                                     unsigned short data_size_align,
1912                                     unsigned int *mtu_idxp)
1913 {
1914         unsigned short max_mtu = header_size + data_size_max;
1915         unsigned short data_size_align_mask = data_size_align - 1;
1916         int mtu_idx, aligned_mtu_idx;
1917
1918         /* Scan the MTU Table till we find an MTU which is larger than our
1919          * Maximum MTU or we reach the end of the table.  Along the way,
1920          * record the last MTU found, if any, which will result in a Data
1921          * Segment Length matching the requested alignment.
1922          */
1923         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1924                 unsigned short data_size = mtus[mtu_idx] - header_size;
1925
1926                 /* If this MTU minus the Header Size would result in a
1927                  * Data Segment Size of the desired alignment, remember it.
1928                  */
1929                 if ((data_size & data_size_align_mask) == 0)
1930                         aligned_mtu_idx = mtu_idx;
1931
1932                 /* If we're not at the end of the Hardware MTU Table and the
1933                  * next element is larger than our Maximum MTU, drop out of
1934                  * the loop.
1935                  */
1936                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1937                         break;
1938         }
1939
1940         /* If we fell out of the loop because we ran to the end of the table,
1941          * then we just have to use the last [largest] entry.
1942          */
1943         if (mtu_idx == NMTUS)
1944                 mtu_idx--;
1945
1946         /* If we found an MTU which resulted in the requested Data Segment
1947          * Length alignment and that's "not far" from the largest MTU which is
1948          * less than or equal to the maximum MTU, then use that.
1949          */
1950         if (aligned_mtu_idx >= 0 &&
1951             mtu_idx - aligned_mtu_idx <= 1)
1952                 mtu_idx = aligned_mtu_idx;
1953
1954         /* If the caller has passed in an MTU Index pointer, pass the
1955          * MTU Index back.  Return the MTU value.
1956          */
1957         if (mtu_idxp)
1958                 *mtu_idxp = mtu_idx;
1959         return mtus[mtu_idx];
1960 }
1961 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1962
1963 /**
1964  *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1965  *      @chip: chip type
1966  *      @viid: VI id of the given port
1967  *
1968  *      Return the SMT index for this VI.
1969  */
1970 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1971 {
1972         /* In T4/T5, SMT contains 256 SMAC entries organized in
1973          * 128 rows of 2 entries each.
1974          * In T6, SMT contains 256 SMAC entries in 256 rows.
1975          * TODO: The below code needs to be updated when we add support
1976          * for 256 VFs.
1977          */
1978         if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1979                 return ((viid & 0x7f) << 1);
1980         else
1981                 return (viid & 0x7f);
1982 }
1983 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1984
1985 /**
1986  *      cxgb4_port_chan - get the HW channel of a port
1987  *      @dev: the net device for the port
1988  *
1989  *      Return the HW Tx channel of the given port.
1990  */
1991 unsigned int cxgb4_port_chan(const struct net_device *dev)
1992 {
1993         return netdev2pinfo(dev)->tx_chan;
1994 }
1995 EXPORT_SYMBOL(cxgb4_port_chan);
1996
1997 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1998 {
1999         struct adapter *adap = netdev2adap(dev);
2000         u32 v1, v2, lp_count, hp_count;
2001
2002         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2003         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2004         if (is_t4(adap->params.chip)) {
2005                 lp_count = LP_COUNT_G(v1);
2006                 hp_count = HP_COUNT_G(v1);
2007         } else {
2008                 lp_count = LP_COUNT_T5_G(v1);
2009                 hp_count = HP_COUNT_T5_G(v2);
2010         }
2011         return lpfifo ? lp_count : hp_count;
2012 }
2013 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2014
2015 /**
2016  *      cxgb4_port_viid - get the VI id of a port
2017  *      @dev: the net device for the port
2018  *
2019  *      Return the VI id of the given port.
2020  */
2021 unsigned int cxgb4_port_viid(const struct net_device *dev)
2022 {
2023         return netdev2pinfo(dev)->viid;
2024 }
2025 EXPORT_SYMBOL(cxgb4_port_viid);
2026
2027 /**
2028  *      cxgb4_port_idx - get the index of a port
2029  *      @dev: the net device for the port
2030  *
2031  *      Return the index of the given port.
2032  */
2033 unsigned int cxgb4_port_idx(const struct net_device *dev)
2034 {
2035         return netdev2pinfo(dev)->port_id;
2036 }
2037 EXPORT_SYMBOL(cxgb4_port_idx);
2038
2039 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2040                          struct tp_tcp_stats *v6)
2041 {
2042         struct adapter *adap = pci_get_drvdata(pdev);
2043
2044         spin_lock(&adap->stats_lock);
2045         t4_tp_get_tcp_stats(adap, v4, v6);
2046         spin_unlock(&adap->stats_lock);
2047 }
2048 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2049
2050 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2051                       const unsigned int *pgsz_order)
2052 {
2053         struct adapter *adap = netdev2adap(dev);
2054
2055         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2056         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2057                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2058                      HPZ3_V(pgsz_order[3]));
2059 }
2060 EXPORT_SYMBOL(cxgb4_iscsi_init);
2061
2062 int cxgb4_flush_eq_cache(struct net_device *dev)
2063 {
2064         struct adapter *adap = netdev2adap(dev);
2065
2066         return t4_sge_ctxt_flush(adap, adap->mbox);
2067 }
2068 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2069
2070 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2071 {
2072         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2073         __be64 indices;
2074         int ret;
2075
2076         spin_lock(&adap->win0_lock);
2077         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2078                            sizeof(indices), (__be32 *)&indices,
2079                            T4_MEMORY_READ);
2080         spin_unlock(&adap->win0_lock);
2081         if (!ret) {
2082                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2083                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2084         }
2085         return ret;
2086 }
2087
2088 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2089                         u16 size)
2090 {
2091         struct adapter *adap = netdev2adap(dev);
2092         u16 hw_pidx, hw_cidx;
2093         int ret;
2094
2095         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2096         if (ret)
2097                 goto out;
2098
2099         if (pidx != hw_pidx) {
2100                 u16 delta;
2101                 u32 val;
2102
2103                 if (pidx >= hw_pidx)
2104                         delta = pidx - hw_pidx;
2105                 else
2106                         delta = size - hw_pidx + pidx;
2107
2108                 if (is_t4(adap->params.chip))
2109                         val = PIDX_V(delta);
2110                 else
2111                         val = PIDX_T5_V(delta);
2112                 wmb();
2113                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2114                              QID_V(qid) | val);
2115         }
2116 out:
2117         return ret;
2118 }
2119 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2120
2121 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2122 {
2123         struct adapter *adap;
2124         u32 offset, memtype, memaddr;
2125         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2126         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2127         int ret;
2128
2129         adap = netdev2adap(dev);
2130
2131         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2132
2133         /* Figure out where the offset lands in the Memory Type/Address scheme.
2134          * This code assumes that the memory is laid out starting at offset 0
2135          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2136          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2137          * MC0, and some have both MC0 and MC1.
2138          */
2139         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2140         edc0_size = EDRAM0_SIZE_G(size) << 20;
2141         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2142         edc1_size = EDRAM1_SIZE_G(size) << 20;
2143         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2144         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2145
2146         edc0_end = edc0_size;
2147         edc1_end = edc0_end + edc1_size;
2148         mc0_end = edc1_end + mc0_size;
2149
2150         if (offset < edc0_end) {
2151                 memtype = MEM_EDC0;
2152                 memaddr = offset;
2153         } else if (offset < edc1_end) {
2154                 memtype = MEM_EDC1;
2155                 memaddr = offset - edc0_end;
2156         } else {
2157                 if (offset < mc0_end) {
2158                         memtype = MEM_MC0;
2159                         memaddr = offset - edc1_end;
2160                 } else if (is_t5(adap->params.chip)) {
2161                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2162                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2163                         mc1_end = mc0_end + mc1_size;
2164                         if (offset < mc1_end) {
2165                                 memtype = MEM_MC1;
2166                                 memaddr = offset - mc0_end;
2167                         } else {
2168                                 /* offset beyond the end of any memory */
2169                                 goto err;
2170                         }
2171                 } else {
2172                         /* T4/T6 only has a single memory channel */
2173                         goto err;
2174                 }
2175         }
2176
2177         spin_lock(&adap->win0_lock);
2178         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2179         spin_unlock(&adap->win0_lock);
2180         return ret;
2181
2182 err:
2183         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2184                 stag, offset);
2185         return -EINVAL;
2186 }
2187 EXPORT_SYMBOL(cxgb4_read_tpte);
2188
2189 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2190 {
2191         u32 hi, lo;
2192         struct adapter *adap;
2193
2194         adap = netdev2adap(dev);
2195         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2196         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2197
2198         return ((u64)hi << 32) | (u64)lo;
2199 }
2200 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2201
2202 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2203                          unsigned int qid,
2204                          enum cxgb4_bar2_qtype qtype,
2205                          int user,
2206                          u64 *pbar2_qoffset,
2207                          unsigned int *pbar2_qid)
2208 {
2209         return t4_bar2_sge_qregs(netdev2adap(dev),
2210                                  qid,
2211                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2212                                   ? T4_BAR2_QTYPE_EGRESS
2213                                   : T4_BAR2_QTYPE_INGRESS),
2214                                  user,
2215                                  pbar2_qoffset,
2216                                  pbar2_qid);
2217 }
2218 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2219
2220 static struct pci_driver cxgb4_driver;
2221
2222 static void check_neigh_update(struct neighbour *neigh)
2223 {
2224         const struct device *parent;
2225         const struct net_device *netdev = neigh->dev;
2226
2227         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2228                 netdev = vlan_dev_real_dev(netdev);
2229         parent = netdev->dev.parent;
2230         if (parent && parent->driver == &cxgb4_driver.driver)
2231                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2232 }
2233
2234 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2235                        void *data)
2236 {
2237         switch (event) {
2238         case NETEVENT_NEIGH_UPDATE:
2239                 check_neigh_update(data);
2240                 break;
2241         case NETEVENT_REDIRECT:
2242         default:
2243                 break;
2244         }
2245         return 0;
2246 }
2247
2248 static bool netevent_registered;
2249 static struct notifier_block cxgb4_netevent_nb = {
2250         .notifier_call = netevent_cb
2251 };
2252
2253 static void drain_db_fifo(struct adapter *adap, int usecs)
2254 {
2255         u32 v1, v2, lp_count, hp_count;
2256
2257         do {
2258                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2259                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2260                 if (is_t4(adap->params.chip)) {
2261                         lp_count = LP_COUNT_G(v1);
2262                         hp_count = HP_COUNT_G(v1);
2263                 } else {
2264                         lp_count = LP_COUNT_T5_G(v1);
2265                         hp_count = HP_COUNT_T5_G(v2);
2266                 }
2267
2268                 if (lp_count == 0 && hp_count == 0)
2269                         break;
2270                 set_current_state(TASK_UNINTERRUPTIBLE);
2271                 schedule_timeout(usecs_to_jiffies(usecs));
2272         } while (1);
2273 }
2274
2275 static void disable_txq_db(struct sge_txq *q)
2276 {
2277         unsigned long flags;
2278
2279         spin_lock_irqsave(&q->db_lock, flags);
2280         q->db_disabled = 1;
2281         spin_unlock_irqrestore(&q->db_lock, flags);
2282 }
2283
2284 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2285 {
2286         spin_lock_irq(&q->db_lock);
2287         if (q->db_pidx_inc) {
2288                 /* Make sure that all writes to the TX descriptors
2289                  * are committed before we tell HW about them.
2290                  */
2291                 wmb();
2292                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2293                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2294                 q->db_pidx_inc = 0;
2295         }
2296         q->db_disabled = 0;
2297         spin_unlock_irq(&q->db_lock);
2298 }
2299
2300 static void disable_dbs(struct adapter *adap)
2301 {
2302         int i;
2303
2304         for_each_ethrxq(&adap->sge, i)
2305                 disable_txq_db(&adap->sge.ethtxq[i].q);
2306         for_each_iscsirxq(&adap->sge, i)
2307                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2308         for_each_port(adap, i)
2309                 disable_txq_db(&adap->sge.ctrlq[i].q);
2310 }
2311
2312 static void enable_dbs(struct adapter *adap)
2313 {
2314         int i;
2315
2316         for_each_ethrxq(&adap->sge, i)
2317                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2318         for_each_iscsirxq(&adap->sge, i)
2319                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2320         for_each_port(adap, i)
2321                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2322 }
2323
2324 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2325 {
2326         if (adap->uld_handle[CXGB4_ULD_RDMA])
2327                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2328                                 cmd);
2329 }
2330
2331 static void process_db_full(struct work_struct *work)
2332 {
2333         struct adapter *adap;
2334
2335         adap = container_of(work, struct adapter, db_full_task);
2336
2337         drain_db_fifo(adap, dbfifo_drain_delay);
2338         enable_dbs(adap);
2339         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2340         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2341                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2342                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2343                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2344         else
2345                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2346                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2347 }
2348
2349 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2350 {
2351         u16 hw_pidx, hw_cidx;
2352         int ret;
2353
2354         spin_lock_irq(&q->db_lock);
2355         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2356         if (ret)
2357                 goto out;
2358         if (q->db_pidx != hw_pidx) {
2359                 u16 delta;
2360                 u32 val;
2361
2362                 if (q->db_pidx >= hw_pidx)
2363                         delta = q->db_pidx - hw_pidx;
2364                 else
2365                         delta = q->size - hw_pidx + q->db_pidx;
2366
2367                 if (is_t4(adap->params.chip))
2368                         val = PIDX_V(delta);
2369                 else
2370                         val = PIDX_T5_V(delta);
2371                 wmb();
2372                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2373                              QID_V(q->cntxt_id) | val);
2374         }
2375 out:
2376         q->db_disabled = 0;
2377         q->db_pidx_inc = 0;
2378         spin_unlock_irq(&q->db_lock);
2379         if (ret)
2380                 CH_WARN(adap, "DB drop recovery failed.\n");
2381 }
2382 static void recover_all_queues(struct adapter *adap)
2383 {
2384         int i;
2385
2386         for_each_ethrxq(&adap->sge, i)
2387                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2388         for_each_iscsirxq(&adap->sge, i)
2389                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2390         for_each_port(adap, i)
2391                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2392 }
2393
2394 static void process_db_drop(struct work_struct *work)
2395 {
2396         struct adapter *adap;
2397
2398         adap = container_of(work, struct adapter, db_drop_task);
2399
2400         if (is_t4(adap->params.chip)) {
2401                 drain_db_fifo(adap, dbfifo_drain_delay);
2402                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2403                 drain_db_fifo(adap, dbfifo_drain_delay);
2404                 recover_all_queues(adap);
2405                 drain_db_fifo(adap, dbfifo_drain_delay);
2406                 enable_dbs(adap);
2407                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2408         } else if (is_t5(adap->params.chip)) {
2409                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2410                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2411                 u16 pidx_inc = dropped_db & 0x1fff;
2412                 u64 bar2_qoffset;
2413                 unsigned int bar2_qid;
2414                 int ret;
2415
2416                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2417                                         0, &bar2_qoffset, &bar2_qid);
2418                 if (ret)
2419                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2420                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2421                 else
2422                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2423                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2424
2425                 /* Re-enable BAR2 WC */
2426                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2427         }
2428
2429         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2430                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2431 }
2432
2433 void t4_db_full(struct adapter *adap)
2434 {
2435         if (is_t4(adap->params.chip)) {
2436                 disable_dbs(adap);
2437                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2438                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2439                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2440                 queue_work(adap->workq, &adap->db_full_task);
2441         }
2442 }
2443
2444 void t4_db_dropped(struct adapter *adap)
2445 {
2446         if (is_t4(adap->params.chip)) {
2447                 disable_dbs(adap);
2448                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2449         }
2450         queue_work(adap->workq, &adap->db_drop_task);
2451 }
2452
2453 static void uld_attach(struct adapter *adap, unsigned int uld)
2454 {
2455         void *handle;
2456         struct cxgb4_lld_info lli;
2457         unsigned short i;
2458
2459         lli.pdev = adap->pdev;
2460         lli.pf = adap->pf;
2461         lli.l2t = adap->l2t;
2462         lli.tids = &adap->tids;
2463         lli.ports = adap->port;
2464         lli.vr = &adap->vres;
2465         lli.mtus = adap->params.mtus;
2466         if (uld == CXGB4_ULD_RDMA) {
2467                 lli.rxq_ids = adap->sge.rdma_rxq;
2468                 lli.ciq_ids = adap->sge.rdma_ciq;
2469                 lli.nrxq = adap->sge.rdmaqs;
2470                 lli.nciq = adap->sge.rdmaciqs;
2471         } else if (uld == CXGB4_ULD_ISCSI) {
2472                 lli.rxq_ids = adap->sge.iscsi_rxq;
2473                 lli.nrxq = adap->sge.iscsiqsets;
2474         } else if (uld == CXGB4_ULD_ISCSIT) {
2475                 lli.rxq_ids = adap->sge.iscsit_rxq;
2476                 lli.nrxq = adap->sge.niscsitq;
2477         }
2478         lli.ntxq = adap->sge.iscsiqsets;
2479         lli.nchan = adap->params.nports;
2480         lli.nports = adap->params.nports;
2481         lli.wr_cred = adap->params.ofldq_wr_cred;
2482         lli.adapter_type = adap->params.chip;
2483         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2484         lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2485         lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2486         lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2487         lli.iscsi_ppm = &adap->iscsi_ppm;
2488         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2489         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2490         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2491         lli.filt_mode = adap->params.tp.vlan_pri_map;
2492         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2493         for (i = 0; i < NCHAN; i++)
2494                 lli.tx_modq[i] = i;
2495         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2496         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2497         lli.fw_vers = adap->params.fw_vers;
2498         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2499         lli.sge_ingpadboundary = adap->sge.fl_align;
2500         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2501         lli.sge_pktshift = adap->sge.pktshift;
2502         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2503         lli.max_ordird_qp = adap->params.max_ordird_qp;
2504         lli.max_ird_adapter = adap->params.max_ird_adapter;
2505         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2506         lli.nodeid = dev_to_node(adap->pdev_dev);
2507
2508         handle = ulds[uld].add(&lli);
2509         if (IS_ERR(handle)) {
2510                 dev_warn(adap->pdev_dev,
2511                          "could not attach to the %s driver, error %ld\n",
2512                          uld_str[uld], PTR_ERR(handle));
2513                 return;
2514         }
2515
2516         adap->uld_handle[uld] = handle;
2517
2518         if (!netevent_registered) {
2519                 register_netevent_notifier(&cxgb4_netevent_nb);
2520                 netevent_registered = true;
2521         }
2522
2523         if (adap->flags & FULL_INIT_DONE)
2524                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2525 }
2526
2527 static void attach_ulds(struct adapter *adap)
2528 {
2529         unsigned int i;
2530
2531         spin_lock(&adap_rcu_lock);
2532         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2533         spin_unlock(&adap_rcu_lock);
2534
2535         mutex_lock(&uld_mutex);
2536         list_add_tail(&adap->list_node, &adapter_list);
2537         for (i = 0; i < CXGB4_ULD_MAX; i++)
2538                 if (ulds[i].add)
2539                         uld_attach(adap, i);
2540         mutex_unlock(&uld_mutex);
2541 }
2542
2543 static void detach_ulds(struct adapter *adap)
2544 {
2545         unsigned int i;
2546
2547         mutex_lock(&uld_mutex);
2548         list_del(&adap->list_node);
2549         for (i = 0; i < CXGB4_ULD_MAX; i++)
2550                 if (adap->uld_handle[i]) {
2551                         ulds[i].state_change(adap->uld_handle[i],
2552                                              CXGB4_STATE_DETACH);
2553                         adap->uld_handle[i] = NULL;
2554                 }
2555         if (netevent_registered && list_empty(&adapter_list)) {
2556                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2557                 netevent_registered = false;
2558         }
2559         mutex_unlock(&uld_mutex);
2560
2561         spin_lock(&adap_rcu_lock);
2562         list_del_rcu(&adap->rcu_node);
2563         spin_unlock(&adap_rcu_lock);
2564 }
2565
2566 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2567 {
2568         unsigned int i;
2569
2570         mutex_lock(&uld_mutex);
2571         for (i = 0; i < CXGB4_ULD_MAX; i++)
2572                 if (adap->uld_handle[i])
2573                         ulds[i].state_change(adap->uld_handle[i], new_state);
2574         mutex_unlock(&uld_mutex);
2575 }
2576
2577 /**
2578  *      cxgb4_register_uld - register an upper-layer driver
2579  *      @type: the ULD type
2580  *      @p: the ULD methods
2581  *
2582  *      Registers an upper-layer driver with this driver and notifies the ULD
2583  *      about any presently available devices that support its type.  Returns
2584  *      %-EBUSY if a ULD of the same type is already registered.
2585  */
2586 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2587 {
2588         int ret = 0;
2589         struct adapter *adap;
2590
2591         if (type >= CXGB4_ULD_MAX)
2592                 return -EINVAL;
2593         mutex_lock(&uld_mutex);
2594         if (ulds[type].add) {
2595                 ret = -EBUSY;
2596                 goto out;
2597         }
2598         ulds[type] = *p;
2599         list_for_each_entry(adap, &adapter_list, list_node)
2600                 uld_attach(adap, type);
2601 out:    mutex_unlock(&uld_mutex);
2602         return ret;
2603 }
2604 EXPORT_SYMBOL(cxgb4_register_uld);
2605
2606 /**
2607  *      cxgb4_unregister_uld - unregister an upper-layer driver
2608  *      @type: the ULD type
2609  *
2610  *      Unregisters an existing upper-layer driver.
2611  */
2612 int cxgb4_unregister_uld(enum cxgb4_uld type)
2613 {
2614         struct adapter *adap;
2615
2616         if (type >= CXGB4_ULD_MAX)
2617                 return -EINVAL;
2618         mutex_lock(&uld_mutex);
2619         list_for_each_entry(adap, &adapter_list, list_node)
2620                 adap->uld_handle[type] = NULL;
2621         ulds[type].add = NULL;
2622         mutex_unlock(&uld_mutex);
2623         return 0;
2624 }
2625 EXPORT_SYMBOL(cxgb4_unregister_uld);
2626
2627 #if IS_ENABLED(CONFIG_IPV6)
2628 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2629                                    unsigned long event, void *data)
2630 {
2631         struct inet6_ifaddr *ifa = data;
2632         struct net_device *event_dev = ifa->idev->dev;
2633         const struct device *parent = NULL;
2634 #if IS_ENABLED(CONFIG_BONDING)
2635         struct adapter *adap;
2636 #endif
2637         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2638                 event_dev = vlan_dev_real_dev(event_dev);
2639 #if IS_ENABLED(CONFIG_BONDING)
2640         if (event_dev->flags & IFF_MASTER) {
2641                 list_for_each_entry(adap, &adapter_list, list_node) {
2642                         switch (event) {
2643                         case NETDEV_UP:
2644                                 cxgb4_clip_get(adap->port[0],
2645                                                (const u32 *)ifa, 1);
2646                                 break;
2647                         case NETDEV_DOWN:
2648                                 cxgb4_clip_release(adap->port[0],
2649                                                    (const u32 *)ifa, 1);
2650                                 break;
2651                         default:
2652                                 break;
2653                         }
2654                 }
2655                 return NOTIFY_OK;
2656         }
2657 #endif
2658
2659         if (event_dev)
2660                 parent = event_dev->dev.parent;
2661
2662         if (parent && parent->driver == &cxgb4_driver.driver) {
2663                 switch (event) {
2664                 case NETDEV_UP:
2665                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2666                         break;
2667                 case NETDEV_DOWN:
2668                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2669                         break;
2670                 default:
2671                         break;
2672                 }
2673         }
2674         return NOTIFY_OK;
2675 }
2676
2677 static bool inet6addr_registered;
2678 static struct notifier_block cxgb4_inet6addr_notifier = {
2679         .notifier_call = cxgb4_inet6addr_handler
2680 };
2681
2682 static void update_clip(const struct adapter *adap)
2683 {
2684         int i;
2685         struct net_device *dev;
2686         int ret;
2687
2688         rcu_read_lock();
2689
2690         for (i = 0; i < MAX_NPORTS; i++) {
2691                 dev = adap->port[i];
2692                 ret = 0;
2693
2694                 if (dev)
2695                         ret = cxgb4_update_root_dev_clip(dev);
2696
2697                 if (ret < 0)
2698                         break;
2699         }
2700         rcu_read_unlock();
2701 }
2702 #endif /* IS_ENABLED(CONFIG_IPV6) */
2703
2704 /**
2705  *      cxgb_up - enable the adapter
2706  *      @adap: adapter being enabled
2707  *
2708  *      Called when the first port is enabled, this function performs the
2709  *      actions necessary to make an adapter operational, such as completing
2710  *      the initialization of HW modules, and enabling interrupts.
2711  *
2712  *      Must be called with the rtnl lock held.
2713  */
2714 static int cxgb_up(struct adapter *adap)
2715 {
2716         int err;
2717
2718         err = setup_sge_queues(adap);
2719         if (err)
2720                 goto out;
2721         err = setup_rss(adap);
2722         if (err)
2723                 goto freeq;
2724
2725         if (adap->flags & USING_MSIX) {
2726                 name_msix_vecs(adap);
2727                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2728                                   adap->msix_info[0].desc, adap);
2729                 if (err)
2730                         goto irq_err;
2731
2732                 err = request_msix_queue_irqs(adap);
2733                 if (err) {
2734                         free_irq(adap->msix_info[0].vec, adap);
2735                         goto irq_err;
2736                 }
2737         } else {
2738                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2739                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2740                                   adap->port[0]->name, adap);
2741                 if (err)
2742                         goto irq_err;
2743         }
2744         enable_rx(adap);
2745         t4_sge_start(adap);
2746         t4_intr_enable(adap);
2747         adap->flags |= FULL_INIT_DONE;
2748         notify_ulds(adap, CXGB4_STATE_UP);
2749 #if IS_ENABLED(CONFIG_IPV6)
2750         update_clip(adap);
2751 #endif
2752         /* Initialize hash mac addr list*/
2753         INIT_LIST_HEAD(&adap->mac_hlist);
2754  out:
2755         return err;
2756  irq_err:
2757         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2758  freeq:
2759         t4_free_sge_resources(adap);
2760         goto out;
2761 }
2762
2763 static void cxgb_down(struct adapter *adapter)
2764 {
2765         cancel_work_sync(&adapter->tid_release_task);
2766         cancel_work_sync(&adapter->db_full_task);
2767         cancel_work_sync(&adapter->db_drop_task);
2768         adapter->tid_release_task_busy = false;
2769         adapter->tid_release_head = NULL;
2770
2771         t4_sge_stop(adapter);
2772         t4_free_sge_resources(adapter);
2773         adapter->flags &= ~FULL_INIT_DONE;
2774 }
2775
2776 /*
2777  * net_device operations
2778  */
2779 static int cxgb_open(struct net_device *dev)
2780 {
2781         int err;
2782         struct port_info *pi = netdev_priv(dev);
2783         struct adapter *adapter = pi->adapter;
2784
2785         netif_carrier_off(dev);
2786
2787         if (!(adapter->flags & FULL_INIT_DONE)) {
2788                 err = cxgb_up(adapter);
2789                 if (err < 0)
2790                         return err;
2791         }
2792
2793         err = link_start(dev);
2794         if (!err)
2795                 netif_tx_start_all_queues(dev);
2796         return err;
2797 }
2798
2799 static int cxgb_close(struct net_device *dev)
2800 {
2801         struct port_info *pi = netdev_priv(dev);
2802         struct adapter *adapter = pi->adapter;
2803
2804         netif_tx_stop_all_queues(dev);
2805         netif_carrier_off(dev);
2806         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2807 }
2808
2809 /* Return an error number if the indicated filter isn't writable ...
2810  */
2811 static int writable_filter(struct filter_entry *f)
2812 {
2813         if (f->locked)
2814                 return -EPERM;
2815         if (f->pending)
2816                 return -EBUSY;
2817
2818         return 0;
2819 }
2820
2821 /* Delete the filter at the specified index (if valid).  The checks for all
2822  * the common problems with doing this like the filter being locked, currently
2823  * pending in another operation, etc.
2824  */
2825 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2826 {
2827         struct filter_entry *f;
2828         int ret;
2829
2830         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2831                 return -EINVAL;
2832
2833         f = &adapter->tids.ftid_tab[fidx];
2834         ret = writable_filter(f);
2835         if (ret)
2836                 return ret;
2837         if (f->valid)
2838                 return del_filter_wr(adapter, fidx);
2839
2840         return 0;
2841 }
2842
2843 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2844                 __be32 sip, __be16 sport, __be16 vlan,
2845                 unsigned int queue, unsigned char port, unsigned char mask)
2846 {
2847         int ret;
2848         struct filter_entry *f;
2849         struct adapter *adap;
2850         int i;
2851         u8 *val;
2852
2853         adap = netdev2adap(dev);
2854
2855         /* Adjust stid to correct filter index */
2856         stid -= adap->tids.sftid_base;
2857         stid += adap->tids.nftids;
2858
2859         /* Check to make sure the filter requested is writable ...
2860          */
2861         f = &adap->tids.ftid_tab[stid];
2862         ret = writable_filter(f);
2863         if (ret)
2864                 return ret;
2865
2866         /* Clear out any old resources being used by the filter before
2867          * we start constructing the new filter.
2868          */
2869         if (f->valid)
2870                 clear_filter(adap, f);
2871
2872         /* Clear out filter specifications */
2873         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2874         f->fs.val.lport = cpu_to_be16(sport);
2875         f->fs.mask.lport  = ~0;
2876         val = (u8 *)&sip;
2877         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2878                 for (i = 0; i < 4; i++) {
2879                         f->fs.val.lip[i] = val[i];
2880                         f->fs.mask.lip[i] = ~0;
2881                 }
2882                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2883                         f->fs.val.iport = port;
2884                         f->fs.mask.iport = mask;
2885                 }
2886         }
2887
2888         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2889                 f->fs.val.proto = IPPROTO_TCP;
2890                 f->fs.mask.proto = ~0;
2891         }
2892
2893         f->fs.dirsteer = 1;
2894         f->fs.iq = queue;
2895         /* Mark filter as locked */
2896         f->locked = 1;
2897         f->fs.rpttid = 1;
2898
2899         ret = set_filter_wr(adap, stid);
2900         if (ret) {
2901                 clear_filter(adap, f);
2902                 return ret;
2903         }
2904
2905         return 0;
2906 }
2907 EXPORT_SYMBOL(cxgb4_create_server_filter);
2908
2909 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2910                 unsigned int queue, bool ipv6)
2911 {
2912         int ret;
2913         struct filter_entry *f;
2914         struct adapter *adap;
2915
2916         adap = netdev2adap(dev);
2917
2918         /* Adjust stid to correct filter index */
2919         stid -= adap->tids.sftid_base;
2920         stid += adap->tids.nftids;
2921
2922         f = &adap->tids.ftid_tab[stid];
2923         /* Unlock the filter */
2924         f->locked = 0;
2925
2926         ret = delete_filter(adap, stid);
2927         if (ret)
2928                 return ret;
2929
2930         return 0;
2931 }
2932 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2933
2934 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2935                                                 struct rtnl_link_stats64 *ns)
2936 {
2937         struct port_stats stats;
2938         struct port_info *p = netdev_priv(dev);
2939         struct adapter *adapter = p->adapter;
2940
2941         /* Block retrieving statistics during EEH error
2942          * recovery. Otherwise, the recovery might fail
2943          * and the PCI device will be removed permanently
2944          */
2945         spin_lock(&adapter->stats_lock);
2946         if (!netif_device_present(dev)) {
2947                 spin_unlock(&adapter->stats_lock);
2948                 return ns;
2949         }
2950         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2951                                  &p->stats_base);
2952         spin_unlock(&adapter->stats_lock);
2953
2954         ns->tx_bytes   = stats.tx_octets;
2955         ns->tx_packets = stats.tx_frames;
2956         ns->rx_bytes   = stats.rx_octets;
2957         ns->rx_packets = stats.rx_frames;
2958         ns->multicast  = stats.rx_mcast_frames;
2959
2960         /* detailed rx_errors */
2961         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2962                                stats.rx_runt;
2963         ns->rx_over_errors   = 0;
2964         ns->rx_crc_errors    = stats.rx_fcs_err;
2965         ns->rx_frame_errors  = stats.rx_symbol_err;
2966         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2967                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2968                                stats.rx_trunc0 + stats.rx_trunc1 +
2969                                stats.rx_trunc2 + stats.rx_trunc3;
2970         ns->rx_missed_errors = 0;
2971
2972         /* detailed tx_errors */
2973         ns->tx_aborted_errors   = 0;
2974         ns->tx_carrier_errors   = 0;
2975         ns->tx_fifo_errors      = 0;
2976         ns->tx_heartbeat_errors = 0;
2977         ns->tx_window_errors    = 0;
2978
2979         ns->tx_errors = stats.tx_error_frames;
2980         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2981                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2982         return ns;
2983 }
2984
2985 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2986 {
2987         unsigned int mbox;
2988         int ret = 0, prtad, devad;
2989         struct port_info *pi = netdev_priv(dev);
2990         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2991
2992         switch (cmd) {
2993         case SIOCGMIIPHY:
2994                 if (pi->mdio_addr < 0)
2995                         return -EOPNOTSUPP;
2996                 data->phy_id = pi->mdio_addr;
2997                 break;
2998         case SIOCGMIIREG:
2999         case SIOCSMIIREG:
3000                 if (mdio_phy_id_is_c45(data->phy_id)) {
3001                         prtad = mdio_phy_id_prtad(data->phy_id);
3002                         devad = mdio_phy_id_devad(data->phy_id);
3003                 } else if (data->phy_id < 32) {
3004                         prtad = data->phy_id;
3005                         devad = 0;
3006                         data->reg_num &= 0x1f;
3007                 } else
3008                         return -EINVAL;
3009
3010                 mbox = pi->adapter->pf;
3011                 if (cmd == SIOCGMIIREG)
3012                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3013                                          data->reg_num, &data->val_out);
3014                 else
3015                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3016                                          data->reg_num, data->val_in);
3017                 break;
3018         case SIOCGHWTSTAMP:
3019                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3020                                     sizeof(pi->tstamp_config)) ?
3021                         -EFAULT : 0;
3022         case SIOCSHWTSTAMP:
3023                 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3024                                    sizeof(pi->tstamp_config)))
3025                         return -EFAULT;
3026
3027                 switch (pi->tstamp_config.rx_filter) {
3028                 case HWTSTAMP_FILTER_NONE:
3029                         pi->rxtstamp = false;
3030                         break;
3031                 case HWTSTAMP_FILTER_ALL:
3032                         pi->rxtstamp = true;
3033                         break;
3034                 default:
3035                         pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3036                         return -ERANGE;
3037                 }
3038
3039                 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3040                                     sizeof(pi->tstamp_config)) ?
3041                         -EFAULT : 0;
3042         default:
3043                 return -EOPNOTSUPP;
3044         }
3045         return ret;
3046 }
3047
3048 static void cxgb_set_rxmode(struct net_device *dev)
3049 {
3050         /* unfortunately we can't return errors to the stack */
3051         set_rxmode(dev, -1, false);
3052 }
3053
3054 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3055 {
3056         int ret;
3057         struct port_info *pi = netdev_priv(dev);
3058
3059         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3060                 return -EINVAL;
3061         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3062                             -1, -1, -1, true);
3063         if (!ret)
3064                 dev->mtu = new_mtu;
3065         return ret;
3066 }
3067
3068 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3069 {
3070         int ret;
3071         struct sockaddr *addr = p;
3072         struct port_info *pi = netdev_priv(dev);
3073
3074         if (!is_valid_ether_addr(addr->sa_data))
3075                 return -EADDRNOTAVAIL;
3076
3077         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3078                             pi->xact_addr_filt, addr->sa_data, true, true);
3079         if (ret < 0)
3080                 return ret;
3081
3082         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3083         pi->xact_addr_filt = ret;
3084         return 0;
3085 }
3086
3087 #ifdef CONFIG_NET_POLL_CONTROLLER
3088 static void cxgb_netpoll(struct net_device *dev)
3089 {
3090         struct port_info *pi = netdev_priv(dev);
3091         struct adapter *adap = pi->adapter;
3092
3093         if (adap->flags & USING_MSIX) {
3094                 int i;
3095                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3096
3097                 for (i = pi->nqsets; i; i--, rx++)
3098                         t4_sge_intr_msix(0, &rx->rspq);
3099         } else
3100                 t4_intr_handler(adap)(0, adap);
3101 }
3102 #endif
3103
3104 static const struct net_device_ops cxgb4_netdev_ops = {
3105         .ndo_open             = cxgb_open,
3106         .ndo_stop             = cxgb_close,
3107         .ndo_start_xmit       = t4_eth_xmit,
3108         .ndo_select_queue     = cxgb_select_queue,
3109         .ndo_get_stats64      = cxgb_get_stats,
3110         .ndo_set_rx_mode      = cxgb_set_rxmode,
3111         .ndo_set_mac_address  = cxgb_set_mac_addr,
3112         .ndo_set_features     = cxgb_set_features,
3113         .ndo_validate_addr    = eth_validate_addr,
3114         .ndo_do_ioctl         = cxgb_ioctl,
3115         .ndo_change_mtu       = cxgb_change_mtu,
3116 #ifdef CONFIG_NET_POLL_CONTROLLER
3117         .ndo_poll_controller  = cxgb_netpoll,
3118 #endif
3119 #ifdef CONFIG_CHELSIO_T4_FCOE
3120         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3121         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3122 #endif /* CONFIG_CHELSIO_T4_FCOE */
3123 #ifdef CONFIG_NET_RX_BUSY_POLL
3124         .ndo_busy_poll        = cxgb_busy_poll,
3125 #endif
3126
3127 };
3128
3129 void t4_fatal_err(struct adapter *adap)
3130 {
3131         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3132         t4_intr_disable(adap);
3133         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3134 }
3135
3136 static void setup_memwin(struct adapter *adap)
3137 {
3138         u32 nic_win_base = t4_get_util_window(adap);
3139
3140         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3141 }
3142
3143 static void setup_memwin_rdma(struct adapter *adap)
3144 {
3145         if (adap->vres.ocq.size) {
3146                 u32 start;
3147                 unsigned int sz_kb;
3148
3149                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3150                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3151                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3152                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3153                 t4_write_reg(adap,
3154                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3155                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3156                 t4_write_reg(adap,
3157                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3158                              adap->vres.ocq.start);
3159                 t4_read_reg(adap,
3160                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3161         }
3162 }
3163
3164 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3165 {
3166         u32 v;
3167         int ret;
3168
3169         /* get device capabilities */
3170         memset(c, 0, sizeof(*c));
3171         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3172                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3173         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3174         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3175         if (ret < 0)
3176                 return ret;
3177
3178         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3179                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3180         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3181         if (ret < 0)
3182                 return ret;
3183
3184         ret = t4_config_glbl_rss(adap, adap->pf,
3185                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3186                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3187                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3188         if (ret < 0)
3189                 return ret;
3190
3191         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3192                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3193                           FW_CMD_CAP_PF);
3194         if (ret < 0)
3195                 return ret;
3196
3197         t4_sge_init(adap);
3198
3199         /* tweak some settings */
3200         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3201         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3202         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3203         v = t4_read_reg(adap, TP_PIO_DATA_A);
3204         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3205
3206         /* first 4 Tx modulation queues point to consecutive Tx channels */
3207         adap->params.tp.tx_modq_map = 0xE4;
3208         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3209                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3210
3211         /* associate each Tx modulation queue with consecutive Tx channels */
3212         v = 0x84218421;
3213         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3214                           &v, 1, TP_TX_SCHED_HDR_A);
3215         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3216                           &v, 1, TP_TX_SCHED_FIFO_A);
3217         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3218                           &v, 1, TP_TX_SCHED_PCMD_A);
3219
3220 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3221         if (is_offload(adap)) {
3222                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3223                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3224                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3225                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3226                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3227                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3228                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3229                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3230                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3231                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3232         }
3233
3234         /* get basic stuff going */
3235         return t4_early_init(adap, adap->pf);
3236 }
3237
3238 /*
3239  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3240  */
3241 #define MAX_ATIDS 8192U
3242
3243 /*
3244  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3245  *
3246  * If the firmware we're dealing with has Configuration File support, then
3247  * we use that to perform all configuration
3248  */
3249
3250 /*
3251  * Tweak configuration based on module parameters, etc.  Most of these have
3252  * defaults assigned to them by Firmware Configuration Files (if we're using
3253  * them) but need to be explicitly set if we're using hard-coded
3254  * initialization.  But even in the case of using Firmware Configuration
3255  * Files, we'd like to expose the ability to change these via module
3256  * parameters so these are essentially common tweaks/settings for
3257  * Configuration Files and hard-coded initialization ...
3258  */
3259 static int adap_init0_tweaks(struct adapter *adapter)
3260 {
3261         /*
3262          * Fix up various Host-Dependent Parameters like Page Size, Cache
3263          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3264          * 64B Cache Line Size ...
3265          */
3266         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3267
3268         /*
3269          * Process module parameters which affect early initialization.
3270          */
3271         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3272                 dev_err(&adapter->pdev->dev,
3273                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3274                         rx_dma_offset);
3275                 rx_dma_offset = 2;
3276         }
3277         t4_set_reg_field(adapter, SGE_CONTROL_A,
3278                          PKTSHIFT_V(PKTSHIFT_M),
3279                          PKTSHIFT_V(rx_dma_offset));
3280
3281         /*
3282          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3283          * adds the pseudo header itself.
3284          */
3285         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3286                                CSUM_HAS_PSEUDO_HDR_F, 0);
3287
3288         return 0;
3289 }
3290
3291 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3292  * unto themselves and they contain their own firmware to perform their
3293  * tasks ...
3294  */
3295 static int phy_aq1202_version(const u8 *phy_fw_data,
3296                               size_t phy_fw_size)
3297 {
3298         int offset;
3299
3300         /* At offset 0x8 you're looking for the primary image's
3301          * starting offset which is 3 Bytes wide
3302          *
3303          * At offset 0xa of the primary image, you look for the offset
3304          * of the DRAM segment which is 3 Bytes wide.
3305          *
3306          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3307          * wide
3308          */
3309         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3310         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3311         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3312
3313         offset = le24(phy_fw_data + 0x8) << 12;
3314         offset = le24(phy_fw_data + offset + 0xa);
3315         return be16(phy_fw_data + offset + 0x27e);
3316
3317         #undef be16
3318         #undef le16
3319         #undef le24
3320 }
3321
3322 static struct info_10gbt_phy_fw {
3323         unsigned int phy_fw_id;         /* PCI Device ID */
3324         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3325         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3326         int phy_flash;                  /* Has FLASH for PHY Firmware */
3327 } phy_info_array[] = {
3328         {
3329                 PHY_AQ1202_DEVICEID,
3330                 PHY_AQ1202_FIRMWARE,
3331                 phy_aq1202_version,
3332                 1,
3333         },
3334         {
3335                 PHY_BCM84834_DEVICEID,
3336                 PHY_BCM84834_FIRMWARE,
3337                 NULL,
3338                 0,
3339         },
3340         { 0, NULL, NULL },
3341 };
3342
3343 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3344 {
3345         int i;
3346
3347         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3348                 if (phy_info_array[i].phy_fw_id == devid)
3349                         return &phy_info_array[i];
3350         }
3351         return NULL;
3352 }
3353
3354 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3355  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3356  * we return a negative error number.  If we transfer new firmware we return 1
3357  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3358  */
3359 static int adap_init0_phy(struct adapter *adap)
3360 {
3361         const struct firmware *phyf;
3362         int ret;
3363         struct info_10gbt_phy_fw *phy_info;
3364
3365         /* Use the device ID to determine which PHY file to flash.
3366          */
3367         phy_info = find_phy_info(adap->pdev->device);
3368         if (!phy_info) {
3369                 dev_warn(adap->pdev_dev,
3370                          "No PHY Firmware file found for this PHY\n");
3371                 return -EOPNOTSUPP;
3372         }
3373
3374         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3375          * use that. The adapter firmware provides us with a memory buffer
3376          * where we can load a PHY firmware file from the host if we want to
3377          * override the PHY firmware File in flash.
3378          */
3379         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3380                                       adap->pdev_dev);
3381         if (ret < 0) {
3382                 /* For adapters without FLASH attached to PHY for their
3383                  * firmware, it's obviously a fatal error if we can't get the
3384                  * firmware to the adapter.  For adapters with PHY firmware
3385                  * FLASH storage, it's worth a warning if we can't find the
3386                  * PHY Firmware but we'll neuter the error ...
3387                  */
3388                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3389                         "/lib/firmware/%s, error %d\n",
3390                         phy_info->phy_fw_file, -ret);
3391                 if (phy_info->phy_flash) {
3392                         int cur_phy_fw_ver = 0;
3393
3394                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3395                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3396                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3397                         ret = 0;
3398                 }
3399
3400                 return ret;
3401         }
3402
3403         /* Load PHY Firmware onto adapter.
3404          */
3405         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3406                              phy_info->phy_fw_version,
3407                              (u8 *)phyf->data, phyf->size);
3408         if (ret < 0)
3409                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3410                         -ret);
3411         else if (ret > 0) {
3412                 int new_phy_fw_ver = 0;
3413
3414                 if (phy_info->phy_fw_version)
3415                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3416                                                                   phyf->size);
3417                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3418                          "Firmware /lib/firmware/%s, version %#x\n",
3419                          phy_info->phy_fw_file, new_phy_fw_ver);
3420         }
3421
3422         release_firmware(phyf);
3423
3424         return ret;
3425 }
3426
3427 /*
3428  * Attempt to initialize the adapter via a Firmware Configuration File.
3429  */
3430 static int adap_init0_config(struct adapter *adapter, int reset)
3431 {
3432         struct fw_caps_config_cmd caps_cmd;
3433         const struct firmware *cf;
3434         unsigned long mtype = 0, maddr = 0;
3435         u32 finiver, finicsum, cfcsum;
3436         int ret;
3437         int config_issued = 0;
3438         char *fw_config_file, fw_config_file_path[256];
3439         char *config_name = NULL;
3440
3441         /*
3442          * Reset device if necessary.
3443          */
3444         if (reset) {
3445                 ret = t4_fw_reset(adapter, adapter->mbox,
3446                                   PIORSTMODE_F | PIORST_F);
3447                 if (ret < 0)
3448                         goto bye;
3449         }
3450
3451         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3452          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3453          * to be performed after any global adapter RESET above since some
3454          * PHYs only have local RAM copies of the PHY firmware.
3455          */
3456         if (is_10gbt_device(adapter->pdev->device)) {
3457                 ret = adap_init0_phy(adapter);
3458                 if (ret < 0)
3459                         goto bye;
3460         }
3461         /*
3462          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3463          * then use that.  Otherwise, use the configuration file stored
3464          * in the adapter flash ...
3465          */
3466         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3467         case CHELSIO_T4:
3468                 fw_config_file = FW4_CFNAME;
3469                 break;
3470         case CHELSIO_T5:
3471                 fw_config_file = FW5_CFNAME;
3472                 break;
3473         case CHELSIO_T6:
3474                 fw_config_file = FW6_CFNAME;
3475                 break;
3476         default:
3477                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3478                        adapter->pdev->device);
3479                 ret = -EINVAL;
3480                 goto bye;
3481         }
3482
3483         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3484         if (ret < 0) {
3485                 config_name = "On FLASH";
3486                 mtype = FW_MEMTYPE_CF_FLASH;
3487                 maddr = t4_flash_cfg_addr(adapter);
3488         } else {
3489                 u32 params[7], val[7];
3490
3491                 sprintf(fw_config_file_path,
3492                         "/lib/firmware/%s", fw_config_file);
3493                 config_name = fw_config_file_path;
3494
3495                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3496                         ret = -ENOMEM;
3497                 else {
3498                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3499                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3500                         ret = t4_query_params(adapter, adapter->mbox,
3501                                               adapter->pf, 0, 1, params, val);
3502                         if (ret == 0) {
3503                                 /*
3504                                  * For t4_memory_rw() below addresses and
3505                                  * sizes have to be in terms of multiples of 4
3506                                  * bytes.  So, if the Configuration File isn't
3507                                  * a multiple of 4 bytes in length we'll have
3508                                  * to write that out separately since we can't
3509                                  * guarantee that the bytes following the
3510                                  * residual byte in the buffer returned by
3511                                  * request_firmware() are zeroed out ...
3512                                  */
3513                                 size_t resid = cf->size & 0x3;
3514                                 size_t size = cf->size & ~0x3;
3515                                 __be32 *data = (__be32 *)cf->data;
3516
3517                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3518                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3519
3520                                 spin_lock(&adapter->win0_lock);
3521                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3522                                                    size, data, T4_MEMORY_WRITE);
3523                                 if (ret == 0 && resid != 0) {
3524                                         union {
3525                                                 __be32 word;
3526                                                 char buf[4];
3527                                         } last;
3528                                         int i;
3529
3530                                         last.word = data[size >> 2];
3531                                         for (i = resid; i < 4; i++)
3532                                                 last.buf[i] = 0;
3533                                         ret = t4_memory_rw(adapter, 0, mtype,
3534                                                            maddr + size,
3535                                                            4, &last.word,
3536                                                            T4_MEMORY_WRITE);
3537                                 }
3538                                 spin_unlock(&adapter->win0_lock);
3539                         }
3540                 }
3541
3542                 release_firmware(cf);
3543                 if (ret)
3544                         goto bye;
3545         }
3546
3547         /*
3548          * Issue a Capability Configuration command to the firmware to get it
3549          * to parse the Configuration File.  We don't use t4_fw_config_file()
3550          * because we want the ability to modify various features after we've
3551          * processed the configuration file ...
3552          */
3553         memset(&caps_cmd, 0, sizeof(caps_cmd));
3554         caps_cmd.op_to_write =
3555                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3556                       FW_CMD_REQUEST_F |
3557                       FW_CMD_READ_F);
3558         caps_cmd.cfvalid_to_len16 =
3559                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3560                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3561                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3562                       FW_LEN16(caps_cmd));
3563         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3564                          &caps_cmd);
3565
3566         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3567          * Configuration File in FLASH), our last gasp effort is to use the
3568          * Firmware Configuration File which is embedded in the firmware.  A
3569          * very few early versions of the firmware didn't have one embedded
3570          * but we can ignore those.
3571          */
3572         if (ret == -ENOENT) {
3573                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3574                 caps_cmd.op_to_write =
3575                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3576                                         FW_CMD_REQUEST_F |
3577                                         FW_CMD_READ_F);
3578                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3579                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3580                                 sizeof(caps_cmd), &caps_cmd);
3581                 config_name = "Firmware Default";
3582         }
3583
3584         config_issued = 1;
3585         if (ret < 0)
3586                 goto bye;
3587
3588         finiver = ntohl(caps_cmd.finiver);
3589         finicsum = ntohl(caps_cmd.finicsum);
3590         cfcsum = ntohl(caps_cmd.cfcsum);
3591         if (finicsum != cfcsum)
3592                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3593                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3594                          finicsum, cfcsum);
3595
3596         /*
3597          * And now tell the firmware to use the configuration we just loaded.
3598          */
3599         caps_cmd.op_to_write =
3600                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3601                       FW_CMD_REQUEST_F |
3602                       FW_CMD_WRITE_F);
3603         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3604         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3605                          NULL);
3606         if (ret < 0)
3607                 goto bye;
3608
3609         /*
3610          * Tweak configuration based on system architecture, module
3611          * parameters, etc.
3612          */
3613         ret = adap_init0_tweaks(adapter);
3614         if (ret < 0)
3615                 goto bye;
3616
3617         /*
3618          * And finally tell the firmware to initialize itself using the
3619          * parameters from the Configuration File.
3620          */
3621         ret = t4_fw_initialize(adapter, adapter->mbox);
3622         if (ret < 0)
3623                 goto bye;
3624
3625         /* Emit Firmware Configuration File information and return
3626          * successfully.
3627          */
3628         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3629                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3630                  config_name, finiver, cfcsum);
3631         return 0;
3632
3633         /*
3634          * Something bad happened.  Return the error ...  (If the "error"
3635          * is that there's no Configuration File on the adapter we don't
3636          * want to issue a warning since this is fairly common.)
3637          */
3638 bye:
3639         if (config_issued && ret != -ENOENT)
3640                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3641                          config_name, -ret);
3642         return ret;
3643 }
3644
3645 static struct fw_info fw_info_array[] = {
3646         {
3647                 .chip = CHELSIO_T4,
3648                 .fs_name = FW4_CFNAME,
3649                 .fw_mod_name = FW4_FNAME,
3650                 .fw_hdr = {
3651                         .chip = FW_HDR_CHIP_T4,
3652                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3653                         .intfver_nic = FW_INTFVER(T4, NIC),
3654                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3655                         .intfver_ri = FW_INTFVER(T4, RI),
3656                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3657                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3658                 },
3659         }, {
3660                 .chip = CHELSIO_T5,
3661                 .fs_name = FW5_CFNAME,
3662                 .fw_mod_name = FW5_FNAME,
3663                 .fw_hdr = {
3664                         .chip = FW_HDR_CHIP_T5,
3665                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3666                         .intfver_nic = FW_INTFVER(T5, NIC),
3667                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3668                         .intfver_ri = FW_INTFVER(T5, RI),
3669                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3670                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3671                 },
3672         }, {
3673                 .chip = CHELSIO_T6,
3674                 .fs_name = FW6_CFNAME,
3675                 .fw_mod_name = FW6_FNAME,
3676                 .fw_hdr = {
3677                         .chip = FW_HDR_CHIP_T6,
3678                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3679                         .intfver_nic = FW_INTFVER(T6, NIC),
3680                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3681                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3682                         .intfver_ri = FW_INTFVER(T6, RI),
3683                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3684                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3685                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3686                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3687                 },
3688         }
3689
3690 };
3691
3692 static struct fw_info *find_fw_info(int chip)
3693 {
3694         int i;
3695
3696         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3697                 if (fw_info_array[i].chip == chip)
3698                         return &fw_info_array[i];
3699         }
3700         return NULL;
3701 }
3702
3703 /*
3704  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3705  */
3706 static int adap_init0(struct adapter *adap)
3707 {
3708         int ret;
3709         u32 v, port_vec;
3710         enum dev_state state;
3711         u32 params[7], val[7];
3712         struct fw_caps_config_cmd caps_cmd;
3713         int reset = 1;
3714
3715         /* Grab Firmware Device Log parameters as early as possible so we have
3716          * access to it for debugging, etc.
3717          */
3718         ret = t4_init_devlog_params(adap);
3719         if (ret < 0)
3720                 return ret;
3721
3722         /* Contact FW, advertising Master capability */
3723         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3724         if (ret < 0) {
3725                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3726                         ret);
3727                 return ret;
3728         }
3729         if (ret == adap->mbox)
3730                 adap->flags |= MASTER_PF;
3731
3732         /*
3733          * If we're the Master PF Driver and the device is uninitialized,
3734          * then let's consider upgrading the firmware ...  (We always want
3735          * to check the firmware version number in order to A. get it for
3736          * later reporting and B. to warn if the currently loaded firmware
3737          * is excessively mismatched relative to the driver.)
3738          */
3739         t4_get_fw_version(adap, &adap->params.fw_vers);
3740         t4_get_tp_version(adap, &adap->params.tp_vers);
3741         ret = t4_check_fw_version(adap);
3742         /* If firmware is too old (not supported by driver) force an update. */
3743         if (ret)
3744                 state = DEV_STATE_UNINIT;
3745         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3746                 struct fw_info *fw_info;
3747                 struct fw_hdr *card_fw;
3748                 const struct firmware *fw;
3749                 const u8 *fw_data = NULL;
3750                 unsigned int fw_size = 0;
3751
3752                 /* This is the firmware whose headers the driver was compiled
3753                  * against
3754                  */
3755                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3756                 if (fw_info == NULL) {
3757                         dev_err(adap->pdev_dev,
3758                                 "unable to get firmware info for chip %d.\n",
3759                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3760                         return -EINVAL;
3761                 }
3762
3763                 /* allocate memory to read the header of the firmware on the
3764                  * card
3765                  */
3766                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3767
3768                 /* Get FW from from /lib/firmware/ */
3769                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3770                                        adap->pdev_dev);
3771                 if (ret < 0) {
3772                         dev_err(adap->pdev_dev,
3773                                 "unable to load firmware image %s, error %d\n",
3774                                 fw_info->fw_mod_name, ret);
3775                 } else {
3776                         fw_data = fw->data;
3777                         fw_size = fw->size;
3778                 }
3779
3780                 /* upgrade FW logic */
3781                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3782                                  state, &reset);
3783
3784                 /* Cleaning up */
3785                 release_firmware(fw);
3786                 t4_free_mem(card_fw);
3787
3788                 if (ret < 0)
3789                         goto bye;
3790         }
3791
3792         /*
3793          * Grab VPD parameters.  This should be done after we establish a
3794          * connection to the firmware since some of the VPD parameters
3795          * (notably the Core Clock frequency) are retrieved via requests to
3796          * the firmware.  On the other hand, we need these fairly early on
3797          * so we do this right after getting ahold of the firmware.
3798          */
3799         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3800         if (ret < 0)
3801                 goto bye;
3802
3803         /*
3804          * Find out what ports are available to us.  Note that we need to do
3805          * this before calling adap_init0_no_config() since it needs nports
3806          * and portvec ...
3807          */
3808         v =
3809             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3810             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3811         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3812         if (ret < 0)
3813                 goto bye;
3814
3815         adap->params.nports = hweight32(port_vec);
3816         adap->params.portvec = port_vec;
3817
3818         /* If the firmware is initialized already, emit a simply note to that
3819          * effect. Otherwise, it's time to try initializing the adapter.
3820          */
3821         if (state == DEV_STATE_INIT) {
3822                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3823                          "Adapter already initialized\n",
3824                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3825         } else {
3826                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3827                          "Initializing adapter\n");
3828
3829                 /* Find out whether we're dealing with a version of the
3830                  * firmware which has configuration file support.
3831                  */
3832                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3833                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3834                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3835                                       params, val);
3836
3837                 /* If the firmware doesn't support Configuration Files,
3838                  * return an error.
3839                  */
3840                 if (ret < 0) {
3841                         dev_err(adap->pdev_dev, "firmware doesn't support "
3842                                 "Firmware Configuration Files\n");
3843                         goto bye;
3844                 }
3845
3846                 /* The firmware provides us with a memory buffer where we can
3847                  * load a Configuration File from the host if we want to
3848                  * override the Configuration File in flash.
3849                  */
3850                 ret = adap_init0_config(adap, reset);
3851                 if (ret == -ENOENT) {
3852                         dev_err(adap->pdev_dev, "no Configuration File "
3853                                 "present on adapter.\n");
3854                         goto bye;
3855                 }
3856                 if (ret < 0) {
3857                         dev_err(adap->pdev_dev, "could not initialize "
3858                                 "adapter, error %d\n", -ret);
3859                         goto bye;
3860                 }
3861         }
3862
3863         /* Give the SGE code a chance to pull in anything that it needs ...
3864          * Note that this must be called after we retrieve our VPD parameters
3865          * in order to know how to convert core ticks to seconds, etc.
3866          */
3867         ret = t4_sge_init(adap);
3868         if (ret < 0)
3869                 goto bye;
3870
3871         if (is_bypass_device(adap->pdev->device))
3872                 adap->params.bypass = 1;
3873
3874         /*
3875          * Grab some of our basic fundamental operating parameters.
3876          */
3877 #define FW_PARAM_DEV(param) \
3878         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3879         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3880
3881 #define FW_PARAM_PFVF(param) \
3882         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3883         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3884         FW_PARAMS_PARAM_Y_V(0) | \
3885         FW_PARAMS_PARAM_Z_V(0)
3886
3887         params[0] = FW_PARAM_PFVF(EQ_START);
3888         params[1] = FW_PARAM_PFVF(L2T_START);
3889         params[2] = FW_PARAM_PFVF(L2T_END);
3890         params[3] = FW_PARAM_PFVF(FILTER_START);
3891         params[4] = FW_PARAM_PFVF(FILTER_END);
3892         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3893         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3894         if (ret < 0)
3895                 goto bye;
3896         adap->sge.egr_start = val[0];
3897         adap->l2t_start = val[1];
3898         adap->l2t_end = val[2];
3899         adap->tids.ftid_base = val[3];
3900         adap->tids.nftids = val[4] - val[3] + 1;
3901         adap->sge.ingr_start = val[5];
3902
3903         /* qids (ingress/egress) returned from firmware can be anywhere
3904          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3905          * Hence driver needs to allocate memory for this range to
3906          * store the queue info. Get the highest IQFLINT/EQ index returned
3907          * in FW_EQ_*_CMD.alloc command.
3908          */
3909         params[0] = FW_PARAM_PFVF(EQ_END);
3910         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3911         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3912         if (ret < 0)
3913                 goto bye;
3914         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3915         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3916
3917         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3918                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3919         if (!adap->sge.egr_map) {
3920                 ret = -ENOMEM;
3921                 goto bye;
3922         }
3923
3924         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3925                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3926         if (!adap->sge.ingr_map) {
3927                 ret = -ENOMEM;
3928                 goto bye;
3929         }
3930
3931         /* Allocate the memory for the vaious egress queue bitmaps
3932          * ie starving_fl, txq_maperr and blocked_fl.
3933          */
3934         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3935                                         sizeof(long), GFP_KERNEL);
3936         if (!adap->sge.starving_fl) {
3937                 ret = -ENOMEM;
3938                 goto bye;
3939         }
3940
3941         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3942                                        sizeof(long), GFP_KERNEL);
3943         if (!adap->sge.txq_maperr) {
3944                 ret = -ENOMEM;
3945                 goto bye;
3946         }
3947
3948 #ifdef CONFIG_DEBUG_FS
3949         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3950                                        sizeof(long), GFP_KERNEL);
3951         if (!adap->sge.blocked_fl) {
3952                 ret = -ENOMEM;
3953                 goto bye;
3954         }
3955 #endif
3956
3957         params[0] = FW_PARAM_PFVF(CLIP_START);
3958         params[1] = FW_PARAM_PFVF(CLIP_END);
3959         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3960         if (ret < 0)
3961                 goto bye;
3962         adap->clipt_start = val[0];
3963         adap->clipt_end = val[1];
3964
3965         /* query params related to active filter region */
3966         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3967         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3968         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3969         /* If Active filter size is set we enable establishing
3970          * offload connection through firmware work request
3971          */
3972         if ((val[0] != val[1]) && (ret >= 0)) {
3973                 adap->flags |= FW_OFLD_CONN;
3974                 adap->tids.aftid_base = val[0];
3975                 adap->tids.aftid_end = val[1];
3976         }
3977
3978         /* If we're running on newer firmware, let it know that we're
3979          * prepared to deal with encapsulated CPL messages.  Older
3980          * firmware won't understand this and we'll just get
3981          * unencapsulated messages ...
3982          */
3983         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3984         val[0] = 1;
3985         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3986
3987         /*
3988          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3989          * capability.  Earlier versions of the firmware didn't have the
3990          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3991          * permission to use ULPTX MEMWRITE DSGL.
3992          */
3993         if (is_t4(adap->params.chip)) {
3994                 adap->params.ulptx_memwrite_dsgl = false;
3995         } else {
3996                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3997                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3998                                       1, params, val);
3999                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4000         }
4001
4002         /*
4003          * Get device capabilities so we can determine what resources we need
4004          * to manage.
4005          */
4006         memset(&caps_cmd, 0, sizeof(caps_cmd));
4007         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4008                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
4009         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4010         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4011                          &caps_cmd);
4012         if (ret < 0)
4013                 goto bye;
4014
4015         if (caps_cmd.ofldcaps) {
4016                 /* query offload-related parameters */
4017                 params[0] = FW_PARAM_DEV(NTID);
4018                 params[1] = FW_PARAM_PFVF(SERVER_START);
4019                 params[2] = FW_PARAM_PFVF(SERVER_END);
4020                 params[3] = FW_PARAM_PFVF(TDDP_START);
4021                 params[4] = FW_PARAM_PFVF(TDDP_END);
4022                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4023                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4024                                       params, val);
4025                 if (ret < 0)
4026                         goto bye;
4027                 adap->tids.ntids = val[0];
4028                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4029                 adap->tids.stid_base = val[1];
4030                 adap->tids.nstids = val[2] - val[1] + 1;
4031                 /*
4032                  * Setup server filter region. Divide the available filter
4033                  * region into two parts. Regular filters get 1/3rd and server
4034                  * filters get 2/3rd part. This is only enabled if workarond
4035                  * path is enabled.
4036                  * 1. For regular filters.
4037                  * 2. Server filter: This are special filters which are used
4038                  * to redirect SYN packets to offload queue.
4039                  */
4040                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4041                         adap->tids.sftid_base = adap->tids.ftid_base +
4042                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4043                         adap->tids.nsftids = adap->tids.nftids -
4044                                          DIV_ROUND_UP(adap->tids.nftids, 3);
4045                         adap->tids.nftids = adap->tids.sftid_base -
4046                                                 adap->tids.ftid_base;
4047                 }
4048                 adap->vres.ddp.start = val[3];
4049                 adap->vres.ddp.size = val[4] - val[3] + 1;
4050                 adap->params.ofldq_wr_cred = val[5];
4051
4052                 adap->params.offload = 1;
4053         }
4054         if (caps_cmd.rdmacaps) {
4055                 params[0] = FW_PARAM_PFVF(STAG_START);
4056                 params[1] = FW_PARAM_PFVF(STAG_END);
4057                 params[2] = FW_PARAM_PFVF(RQ_START);
4058                 params[3] = FW_PARAM_PFVF(RQ_END);
4059                 params[4] = FW_PARAM_PFVF(PBL_START);
4060                 params[5] = FW_PARAM_PFVF(PBL_END);
4061                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4062                                       params, val);
4063                 if (ret < 0)
4064                         goto bye;
4065                 adap->vres.stag.start = val[0];
4066                 adap->vres.stag.size = val[1] - val[0] + 1;
4067                 adap->vres.rq.start = val[2];
4068                 adap->vres.rq.size = val[3] - val[2] + 1;
4069                 adap->vres.pbl.start = val[4];
4070                 adap->vres.pbl.size = val[5] - val[4] + 1;
4071
4072                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4073                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4074                 params[2] = FW_PARAM_PFVF(CQ_START);
4075                 params[3] = FW_PARAM_PFVF(CQ_END);
4076                 params[4] = FW_PARAM_PFVF(OCQ_START);
4077                 params[5] = FW_PARAM_PFVF(OCQ_END);
4078                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4079                                       val);
4080                 if (ret < 0)
4081                         goto bye;
4082                 adap->vres.qp.start = val[0];
4083                 adap->vres.qp.size = val[1] - val[0] + 1;
4084                 adap->vres.cq.start = val[2];
4085                 adap->vres.cq.size = val[3] - val[2] + 1;
4086                 adap->vres.ocq.start = val[4];
4087                 adap->vres.ocq.size = val[5] - val[4] + 1;
4088
4089                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4090                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4091                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4092                                       val);
4093                 if (ret < 0) {
4094                         adap->params.max_ordird_qp = 8;
4095                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4096                         ret = 0;
4097                 } else {
4098                         adap->params.max_ordird_qp = val[0];
4099                         adap->params.max_ird_adapter = val[1];
4100                 }
4101                 dev_info(adap->pdev_dev,
4102                          "max_ordird_qp %d max_ird_adapter %d\n",
4103                          adap->params.max_ordird_qp,
4104                          adap->params.max_ird_adapter);
4105         }
4106         if (caps_cmd.iscsicaps) {
4107                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4108                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4109                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4110                                       params, val);
4111                 if (ret < 0)
4112                         goto bye;
4113                 adap->vres.iscsi.start = val[0];
4114                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4115         }
4116 #undef FW_PARAM_PFVF
4117 #undef FW_PARAM_DEV
4118
4119         /* The MTU/MSS Table is initialized by now, so load their values.  If
4120          * we're initializing the adapter, then we'll make any modifications
4121          * we want to the MTU/MSS Table and also initialize the congestion
4122          * parameters.
4123          */
4124         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4125         if (state != DEV_STATE_INIT) {
4126                 int i;
4127
4128                 /* The default MTU Table contains values 1492 and 1500.
4129                  * However, for TCP, it's better to have two values which are
4130                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4131                  * This allows us to have a TCP Data Payload which is a
4132                  * multiple of 8 regardless of what combination of TCP Options
4133                  * are in use (always a multiple of 4 bytes) which is
4134                  * important for performance reasons.  For instance, if no
4135                  * options are in use, then we have a 20-byte IP header and a
4136                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4137                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4138                  * which is not a multiple of 8.  So using an MSS of 1488 in
4139                  * this case results in a TCP Data Payload of 1448 bytes which
4140                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4141                  * Stamps have been negotiated, then an MTU of 1500 bytes
4142                  * results in a TCP Data Payload of 1448 bytes which, as
4143                  * above, is a multiple of 8 bytes ...
4144                  */
4145                 for (i = 0; i < NMTUS; i++)
4146                         if (adap->params.mtus[i] == 1492) {
4147                                 adap->params.mtus[i] = 1488;
4148                                 break;
4149                         }
4150
4151                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4152                              adap->params.b_wnd);
4153         }
4154         t4_init_sge_params(adap);
4155         adap->flags |= FW_OK;
4156         t4_init_tp_params(adap);
4157         return 0;
4158
4159         /*
4160          * Something bad happened.  If a command timed out or failed with EIO
4161          * FW does not operate within its spec or something catastrophic
4162          * happened to HW/FW, stop issuing commands.
4163          */
4164 bye:
4165         kfree(adap->sge.egr_map);
4166         kfree(adap->sge.ingr_map);
4167         kfree(adap->sge.starving_fl);
4168         kfree(adap->sge.txq_maperr);
4169 #ifdef CONFIG_DEBUG_FS
4170         kfree(adap->sge.blocked_fl);
4171 #endif
4172         if (ret != -ETIMEDOUT && ret != -EIO)
4173                 t4_fw_bye(adap, adap->mbox);
4174         return ret;
4175 }
4176
4177 /* EEH callbacks */
4178
4179 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4180                                          pci_channel_state_t state)
4181 {
4182         int i;
4183         struct adapter *adap = pci_get_drvdata(pdev);
4184
4185         if (!adap)
4186                 goto out;
4187
4188         rtnl_lock();
4189         adap->flags &= ~FW_OK;
4190         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4191         spin_lock(&adap->stats_lock);
4192         for_each_port(adap, i) {
4193                 struct net_device *dev = adap->port[i];
4194
4195                 netif_device_detach(dev);
4196                 netif_carrier_off(dev);
4197         }
4198         spin_unlock(&adap->stats_lock);
4199         disable_interrupts(adap);
4200         if (adap->flags & FULL_INIT_DONE)
4201                 cxgb_down(adap);
4202         rtnl_unlock();
4203         if ((adap->flags & DEV_ENABLED)) {
4204                 pci_disable_device(pdev);
4205                 adap->flags &= ~DEV_ENABLED;
4206         }
4207 out:    return state == pci_channel_io_perm_failure ?
4208                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4209 }
4210
4211 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4212 {
4213         int i, ret;
4214         struct fw_caps_config_cmd c;
4215         struct adapter *adap = pci_get_drvdata(pdev);
4216
4217         if (!adap) {
4218                 pci_restore_state(pdev);
4219                 pci_save_state(pdev);
4220                 return PCI_ERS_RESULT_RECOVERED;
4221         }
4222
4223         if (!(adap->flags & DEV_ENABLED)) {
4224                 if (pci_enable_device(pdev)) {
4225                         dev_err(&pdev->dev, "Cannot reenable PCI "
4226                                             "device after reset\n");
4227                         return PCI_ERS_RESULT_DISCONNECT;
4228                 }
4229                 adap->flags |= DEV_ENABLED;
4230         }
4231
4232         pci_set_master(pdev);
4233         pci_restore_state(pdev);
4234         pci_save_state(pdev);
4235         pci_cleanup_aer_uncorrect_error_status(pdev);
4236
4237         if (t4_wait_dev_ready(adap->regs) < 0)
4238                 return PCI_ERS_RESULT_DISCONNECT;
4239         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4240                 return PCI_ERS_RESULT_DISCONNECT;
4241         adap->flags |= FW_OK;
4242         if (adap_init1(adap, &c))
4243                 return PCI_ERS_RESULT_DISCONNECT;
4244
4245         for_each_port(adap, i) {
4246                 struct port_info *p = adap2pinfo(adap, i);
4247
4248                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4249                                   NULL, NULL);
4250                 if (ret < 0)
4251                         return PCI_ERS_RESULT_DISCONNECT;
4252                 p->viid = ret;
4253                 p->xact_addr_filt = -1;
4254         }
4255
4256         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4257                      adap->params.b_wnd);
4258         setup_memwin(adap);
4259         if (cxgb_up(adap))
4260                 return PCI_ERS_RESULT_DISCONNECT;
4261         return PCI_ERS_RESULT_RECOVERED;
4262 }
4263
4264 static void eeh_resume(struct pci_dev *pdev)
4265 {
4266         int i;
4267         struct adapter *adap = pci_get_drvdata(pdev);
4268
4269         if (!adap)
4270                 return;
4271
4272         rtnl_lock();
4273         for_each_port(adap, i) {
4274                 struct net_device *dev = adap->port[i];
4275
4276                 if (netif_running(dev)) {
4277                         link_start(dev);
4278                         cxgb_set_rxmode(dev);
4279                 }
4280                 netif_device_attach(dev);
4281         }
4282         rtnl_unlock();
4283 }
4284
4285 static const struct pci_error_handlers cxgb4_eeh = {
4286         .error_detected = eeh_err_detected,
4287         .slot_reset     = eeh_slot_reset,
4288         .resume         = eeh_resume,
4289 };
4290
4291 static inline bool is_x_10g_port(const struct link_config *lc)
4292 {
4293         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4294                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4295 }
4296
4297 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4298                              unsigned int us, unsigned int cnt,
4299                              unsigned int size, unsigned int iqe_size)
4300 {
4301         q->adap = adap;
4302         cxgb4_set_rspq_intr_params(q, us, cnt);
4303         q->iqe_len = iqe_size;
4304         q->size = size;
4305 }
4306
4307 /*
4308  * Perform default configuration of DMA queues depending on the number and type
4309  * of ports we found and the number of available CPUs.  Most settings can be
4310  * modified by the admin prior to actual use.
4311  */
4312 static void cfg_queues(struct adapter *adap)
4313 {
4314         struct sge *s = &adap->sge;
4315         int i, n10g = 0, qidx = 0;
4316 #ifndef CONFIG_CHELSIO_T4_DCB
4317         int q10g = 0;
4318 #endif
4319         int ciq_size;
4320
4321         for_each_port(adap, i)
4322                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4323 #ifdef CONFIG_CHELSIO_T4_DCB
4324         /* For Data Center Bridging support we need to be able to support up
4325          * to 8 Traffic Priorities; each of which will be assigned to its
4326          * own TX Queue in order to prevent Head-Of-Line Blocking.
4327          */
4328         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4329                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4330                         MAX_ETH_QSETS, adap->params.nports * 8);
4331                 BUG_ON(1);
4332         }
4333
4334         for_each_port(adap, i) {
4335                 struct port_info *pi = adap2pinfo(adap, i);
4336
4337                 pi->first_qset = qidx;
4338                 pi->nqsets = 8;
4339                 qidx += pi->nqsets;
4340         }
4341 #else /* !CONFIG_CHELSIO_T4_DCB */
4342         /*
4343          * We default to 1 queue per non-10G port and up to # of cores queues
4344          * per 10G port.
4345          */
4346         if (n10g)
4347                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4348         if (q10g > netif_get_num_default_rss_queues())
4349                 q10g = netif_get_num_default_rss_queues();
4350
4351         for_each_port(adap, i) {
4352                 struct port_info *pi = adap2pinfo(adap, i);
4353
4354                 pi->first_qset = qidx;
4355                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4356                 qidx += pi->nqsets;
4357         }
4358 #endif /* !CONFIG_CHELSIO_T4_DCB */
4359
4360         s->ethqsets = qidx;
4361         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4362
4363         if (is_offload(adap)) {
4364                 /*
4365                  * For offload we use 1 queue/channel if all ports are up to 1G,
4366                  * otherwise we divide all available queues amongst the channels
4367                  * capped by the number of available cores.
4368                  */
4369                 if (n10g) {
4370                         i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4371                                   num_online_cpus());
4372                         s->iscsiqsets = roundup(i, adap->params.nports);
4373                 } else
4374                         s->iscsiqsets = adap->params.nports;
4375                 /* For RDMA one Rx queue per channel suffices */
4376                 s->rdmaqs = adap->params.nports;
4377                 /* Try and allow at least 1 CIQ per cpu rounding down
4378                  * to the number of ports, with a minimum of 1 per port.
4379                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4380                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4381                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4382                  */
4383                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4384                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4385                                 adap->params.nports;
4386                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4387
4388                 if (!is_t4(adap->params.chip))
4389                         s->niscsitq = s->iscsiqsets;
4390         }
4391
4392         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4393                 struct sge_eth_rxq *r = &s->ethrxq[i];
4394
4395                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4396                 r->fl.size = 72;
4397         }
4398
4399         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4400                 s->ethtxq[i].q.size = 1024;
4401
4402         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4403                 s->ctrlq[i].q.size = 512;
4404
4405         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4406                 s->ofldtxq[i].q.size = 1024;
4407
4408         for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4409                 struct sge_ofld_rxq *r = &s->iscsirxq[i];
4410
4411                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4412                 r->rspq.uld = CXGB4_ULD_ISCSI;
4413                 r->fl.size = 72;
4414         }
4415
4416         if (!is_t4(adap->params.chip)) {
4417                 for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4418                         struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4419
4420                         init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4421                         r->rspq.uld = CXGB4_ULD_ISCSIT;
4422                         r->fl.size = 72;
4423                 }
4424         }
4425
4426         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4427                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4428
4429                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4430                 r->rspq.uld = CXGB4_ULD_RDMA;
4431                 r->fl.size = 72;
4432         }
4433
4434         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4435         if (ciq_size > SGE_MAX_IQ_SIZE) {
4436                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4437                 ciq_size = SGE_MAX_IQ_SIZE;
4438         }
4439
4440         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4441                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4442
4443                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4444                 r->rspq.uld = CXGB4_ULD_RDMA;
4445         }
4446
4447         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4448         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4449 }
4450
4451 /*
4452  * Reduce the number of Ethernet queues across all ports to at most n.
4453  * n provides at least one queue per port.
4454  */
4455 static void reduce_ethqs(struct adapter *adap, int n)
4456 {
4457         int i;
4458         struct port_info *pi;
4459
4460         while (n < adap->sge.ethqsets)
4461                 for_each_port(adap, i) {
4462                         pi = adap2pinfo(adap, i);
4463                         if (pi->nqsets > 1) {
4464                                 pi->nqsets--;
4465                                 adap->sge.ethqsets--;
4466                                 if (adap->sge.ethqsets <= n)
4467                                         break;
4468                         }
4469                 }
4470
4471         n = 0;
4472         for_each_port(adap, i) {
4473                 pi = adap2pinfo(adap, i);
4474                 pi->first_qset = n;
4475                 n += pi->nqsets;
4476         }
4477 }
4478
4479 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4480 #define EXTRA_VECS 2
4481
4482 static int enable_msix(struct adapter *adap)
4483 {
4484         int ofld_need = 0;
4485         int i, want, need, allocated;
4486         struct sge *s = &adap->sge;
4487         unsigned int nchan = adap->params.nports;
4488         struct msix_entry *entries;
4489
4490         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4491                           GFP_KERNEL);
4492         if (!entries)
4493                 return -ENOMEM;
4494
4495         for (i = 0; i < MAX_INGQ + 1; ++i)
4496                 entries[i].entry = i;
4497
4498         want = s->max_ethqsets + EXTRA_VECS;
4499         if (is_offload(adap)) {
4500                 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets +
4501                         s->niscsitq;
4502                 /* need nchan for each possible ULD */
4503                 if (is_t4(adap->params.chip))
4504                         ofld_need = 3 * nchan;
4505                 else
4506                         ofld_need = 4 * nchan;
4507         }
4508 #ifdef CONFIG_CHELSIO_T4_DCB
4509         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4510          * each port.
4511          */
4512         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4513 #else
4514         need = adap->params.nports + EXTRA_VECS + ofld_need;
4515 #endif
4516         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4517         if (allocated < 0) {
4518                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4519                          " not using MSI-X\n");
4520                 kfree(entries);
4521                 return allocated;
4522         }
4523
4524         /* Distribute available vectors to the various queue groups.
4525          * Every group gets its minimum requirement and NIC gets top
4526          * priority for leftovers.
4527          */
4528         i = allocated - EXTRA_VECS - ofld_need;
4529         if (i < s->max_ethqsets) {
4530                 s->max_ethqsets = i;
4531                 if (i < s->ethqsets)
4532                         reduce_ethqs(adap, i);
4533         }
4534         if (is_offload(adap)) {
4535                 if (allocated < want) {
4536                         s->rdmaqs = nchan;
4537                         s->rdmaciqs = nchan;
4538
4539                         if (!is_t4(adap->params.chip))
4540                                 s->niscsitq = nchan;
4541                 }
4542
4543                 /* leftovers go to OFLD */
4544                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4545                     s->rdmaqs - s->rdmaciqs - s->niscsitq;
4546                 s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4547
4548         }
4549         for (i = 0; i < allocated; ++i)
4550                 adap->msix_info[i].vec = entries[i].vector;
4551         dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4552                  "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4553                  allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4554                  s->rdmaciqs);
4555
4556         kfree(entries);
4557         return 0;
4558 }
4559
4560 #undef EXTRA_VECS
4561
4562 static int init_rss(struct adapter *adap)
4563 {
4564         unsigned int i;
4565         int err;
4566
4567         err = t4_init_rss_mode(adap, adap->mbox);
4568         if (err)
4569                 return err;
4570
4571         for_each_port(adap, i) {
4572                 struct port_info *pi = adap2pinfo(adap, i);
4573
4574                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4575                 if (!pi->rss)
4576                         return -ENOMEM;
4577         }
4578         return 0;
4579 }
4580
4581 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4582                                         enum pci_bus_speed *speed,
4583                                         enum pcie_link_width *width)
4584 {
4585         u32 lnkcap1, lnkcap2;
4586         int err1, err2;
4587
4588 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4589
4590         *speed = PCI_SPEED_UNKNOWN;
4591         *width = PCIE_LNK_WIDTH_UNKNOWN;
4592
4593         err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4594                                           &lnkcap1);
4595         err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4596                                           &lnkcap2);
4597         if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4598                 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4599                         *speed = PCIE_SPEED_8_0GT;
4600                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4601                         *speed = PCIE_SPEED_5_0GT;
4602                 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4603                         *speed = PCIE_SPEED_2_5GT;
4604         }
4605         if (!err1) {
4606                 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4607                 if (!lnkcap2) { /* pre-r3.0 */
4608                         if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4609                                 *speed = PCIE_SPEED_5_0GT;
4610                         else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4611                                 *speed = PCIE_SPEED_2_5GT;
4612                 }
4613         }
4614
4615         if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4616                 return err1 ? err1 : err2 ? err2 : -EINVAL;
4617         return 0;
4618 }
4619
4620 static void cxgb4_check_pcie_caps(struct adapter *adap)
4621 {
4622         enum pcie_link_width width, width_cap;
4623         enum pci_bus_speed speed, speed_cap;
4624
4625 #define PCIE_SPEED_STR(speed) \
4626         (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4627          speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4628          speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4629          "Unknown")
4630
4631         if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4632                 dev_warn(adap->pdev_dev,
4633                          "Unable to determine PCIe device BW capabilities\n");
4634                 return;
4635         }
4636
4637         if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4638             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4639                 dev_warn(adap->pdev_dev,
4640                          "Unable to determine PCI Express bandwidth.\n");
4641                 return;
4642         }
4643
4644         dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4645                  PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4646         dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4647                  width, width_cap);
4648         if (speed < speed_cap || width < width_cap)
4649                 dev_info(adap->pdev_dev,
4650                          "A slot with more lanes and/or higher speed is "
4651                          "suggested for optimal performance.\n");
4652 }
4653
4654 static void print_port_info(const struct net_device *dev)
4655 {
4656         char buf[80];
4657         char *bufp = buf;
4658         const char *spd = "";
4659         const struct port_info *pi = netdev_priv(dev);
4660         const struct adapter *adap = pi->adapter;
4661
4662         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4663                 spd = " 2.5 GT/s";
4664         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4665                 spd = " 5 GT/s";
4666         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4667                 spd = " 8 GT/s";
4668
4669         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4670                 bufp += sprintf(bufp, "100/");
4671         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4672                 bufp += sprintf(bufp, "1000/");
4673         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4674                 bufp += sprintf(bufp, "10G/");
4675         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4676                 bufp += sprintf(bufp, "40G/");
4677         if (bufp != buf)
4678                 --bufp;
4679         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4680
4681         netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n",
4682                     adap->params.vpd.id,
4683                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4684                     is_offload(adap) ? "R" : "",
4685                     (adap->flags & USING_MSIX) ? " MSI-X" :
4686                     (adap->flags & USING_MSI) ? " MSI" : "");
4687         netdev_info(dev, "S/N: %s, P/N: %s\n",
4688                     adap->params.vpd.sn, adap->params.vpd.pn);
4689 }
4690
4691 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4692 {
4693         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4694 }
4695
4696 /*
4697  * Free the following resources:
4698  * - memory used for tables
4699  * - MSI/MSI-X
4700  * - net devices
4701  * - resources FW is holding for us
4702  */
4703 static void free_some_resources(struct adapter *adapter)
4704 {
4705         unsigned int i;
4706
4707         t4_free_mem(adapter->l2t);
4708         t4_free_mem(adapter->tids.tid_tab);
4709         kfree(adapter->sge.egr_map);
4710         kfree(adapter->sge.ingr_map);
4711         kfree(adapter->sge.starving_fl);
4712         kfree(adapter->sge.txq_maperr);
4713 #ifdef CONFIG_DEBUG_FS
4714         kfree(adapter->sge.blocked_fl);
4715 #endif
4716         disable_msi(adapter);
4717
4718         for_each_port(adapter, i)
4719                 if (adapter->port[i]) {
4720                         struct port_info *pi = adap2pinfo(adapter, i);
4721
4722                         if (pi->viid != 0)
4723                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4724                                            0, pi->viid);
4725                         kfree(adap2pinfo(adapter, i)->rss);
4726                         free_netdev(adapter->port[i]);
4727                 }
4728         if (adapter->flags & FW_OK)
4729                 t4_fw_bye(adapter, adapter->pf);
4730 }
4731
4732 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4733 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4734                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4735 #define SEGMENT_SIZE 128
4736
4737 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4738 {
4739         u16 device_id;
4740
4741         /* Retrieve adapter's device ID */
4742         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4743
4744         switch (device_id >> 12) {
4745         case CHELSIO_T4:
4746                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4747         case CHELSIO_T5:
4748                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4749         case CHELSIO_T6:
4750                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4751         default:
4752                 dev_err(&pdev->dev, "Device %d is not supported\n",
4753                         device_id);
4754         }
4755         return -EINVAL;
4756 }
4757
4758 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4759 {
4760         int func, i, err, s_qpp, qpp, num_seg;
4761         struct port_info *pi;
4762         bool highdma = false;
4763         struct adapter *adapter = NULL;
4764         void __iomem *regs;
4765         u32 whoami, pl_rev;
4766         enum chip_type chip;
4767
4768         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4769
4770         err = pci_request_regions(pdev, KBUILD_MODNAME);
4771         if (err) {
4772                 /* Just info, some other driver may have claimed the device. */
4773                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4774                 return err;
4775         }
4776
4777         err = pci_enable_device(pdev);
4778         if (err) {
4779                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4780                 goto out_release_regions;
4781         }
4782
4783         regs = pci_ioremap_bar(pdev, 0);
4784         if (!regs) {
4785                 dev_err(&pdev->dev, "cannot map device registers\n");
4786                 err = -ENOMEM;
4787                 goto out_disable_device;
4788         }
4789
4790         err = t4_wait_dev_ready(regs);
4791         if (err < 0)
4792                 goto out_unmap_bar0;
4793
4794         /* We control everything through one PF */
4795         whoami = readl(regs + PL_WHOAMI_A);
4796         pl_rev = REV_G(readl(regs + PL_REV_A));
4797         chip = get_chip_type(pdev, pl_rev);
4798         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4799                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4800         if (func != ent->driver_data) {
4801                 iounmap(regs);
4802                 pci_disable_device(pdev);
4803                 pci_save_state(pdev);        /* to restore SR-IOV later */
4804                 goto sriov;
4805         }
4806
4807         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4808                 highdma = true;
4809                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4810                 if (err) {
4811                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4812                                 "coherent allocations\n");
4813                         goto out_unmap_bar0;
4814                 }
4815         } else {
4816                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4817                 if (err) {
4818                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4819                         goto out_unmap_bar0;
4820                 }
4821         }
4822
4823         pci_enable_pcie_error_reporting(pdev);
4824         enable_pcie_relaxed_ordering(pdev);
4825         pci_set_master(pdev);
4826         pci_save_state(pdev);
4827
4828         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4829         if (!adapter) {
4830                 err = -ENOMEM;
4831                 goto out_unmap_bar0;
4832         }
4833
4834         adapter->workq = create_singlethread_workqueue("cxgb4");
4835         if (!adapter->workq) {
4836                 err = -ENOMEM;
4837                 goto out_free_adapter;
4838         }
4839
4840         /* PCI device has been enabled */
4841         adapter->flags |= DEV_ENABLED;
4842
4843         adapter->regs = regs;
4844         adapter->pdev = pdev;
4845         adapter->pdev_dev = &pdev->dev;
4846         adapter->mbox = func;
4847         adapter->pf = func;
4848         adapter->msg_enable = dflt_msg_enable;
4849         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4850
4851         spin_lock_init(&adapter->stats_lock);
4852         spin_lock_init(&adapter->tid_release_lock);
4853         spin_lock_init(&adapter->win0_lock);
4854
4855         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4856         INIT_WORK(&adapter->db_full_task, process_db_full);
4857         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4858
4859         err = t4_prep_adapter(adapter);
4860         if (err)
4861                 goto out_free_adapter;
4862
4863
4864         if (!is_t4(adapter->params.chip)) {
4865                 s_qpp = (QUEUESPERPAGEPF0_S +
4866                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4867                         adapter->pf);
4868                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4869                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4870                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4871
4872                 /* Each segment size is 128B. Write coalescing is enabled only
4873                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4874                  * queue is less no of segments that can be accommodated in
4875                  * a page size.
4876                  */
4877                 if (qpp > num_seg) {
4878                         dev_err(&pdev->dev,
4879                                 "Incorrect number of egress queues per page\n");
4880                         err = -EINVAL;
4881                         goto out_free_adapter;
4882                 }
4883                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4884                 pci_resource_len(pdev, 2));
4885                 if (!adapter->bar2) {
4886                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4887                         err = -ENOMEM;
4888                         goto out_free_adapter;
4889                 }
4890         }
4891
4892         setup_memwin(adapter);
4893         err = adap_init0(adapter);
4894 #ifdef CONFIG_DEBUG_FS
4895         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4896 #endif
4897         setup_memwin_rdma(adapter);
4898         if (err)
4899                 goto out_unmap_bar;
4900
4901         /* configure SGE_STAT_CFG_A to read WC stats */
4902         if (!is_t4(adapter->params.chip))
4903                 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4904                              (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4905                               T6_STATMODE_V(0)));
4906
4907         for_each_port(adapter, i) {
4908                 struct net_device *netdev;
4909
4910                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4911                                            MAX_ETH_QSETS);
4912                 if (!netdev) {
4913                         err = -ENOMEM;
4914                         goto out_free_dev;
4915                 }
4916
4917                 SET_NETDEV_DEV(netdev, &pdev->dev);
4918
4919                 adapter->port[i] = netdev;
4920                 pi = netdev_priv(netdev);
4921                 pi->adapter = adapter;
4922                 pi->xact_addr_filt = -1;
4923                 pi->port_id = i;
4924                 netdev->irq = pdev->irq;
4925
4926                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4927                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4928                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4929                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4930                 if (highdma)
4931                         netdev->hw_features |= NETIF_F_HIGHDMA;
4932                 netdev->features |= netdev->hw_features;
4933                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4934
4935                 netdev->priv_flags |= IFF_UNICAST_FLT;
4936
4937                 netdev->netdev_ops = &cxgb4_netdev_ops;
4938 #ifdef CONFIG_CHELSIO_T4_DCB
4939                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4940                 cxgb4_dcb_state_init(netdev);
4941 #endif
4942                 cxgb4_set_ethtool_ops(netdev);
4943         }
4944
4945         pci_set_drvdata(pdev, adapter);
4946
4947         if (adapter->flags & FW_OK) {
4948                 err = t4_port_init(adapter, func, func, 0);
4949                 if (err)
4950                         goto out_free_dev;
4951         } else if (adapter->params.nports == 1) {
4952                 /* If we don't have a connection to the firmware -- possibly
4953                  * because of an error -- grab the raw VPD parameters so we
4954                  * can set the proper MAC Address on the debug network
4955                  * interface that we've created.
4956                  */
4957                 u8 hw_addr[ETH_ALEN];
4958                 u8 *na = adapter->params.vpd.na;
4959
4960                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4961                 if (!err) {
4962                         for (i = 0; i < ETH_ALEN; i++)
4963                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4964                                               hex2val(na[2 * i + 1]));
4965                         t4_set_hw_addr(adapter, 0, hw_addr);
4966                 }
4967         }
4968
4969         /* Configure queues and allocate tables now, they can be needed as
4970          * soon as the first register_netdev completes.
4971          */
4972         cfg_queues(adapter);
4973
4974         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4975         if (!adapter->l2t) {
4976                 /* We tolerate a lack of L2T, giving up some functionality */
4977                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4978                 adapter->params.offload = 0;
4979         }
4980
4981 #if IS_ENABLED(CONFIG_IPV6)
4982         if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4983             (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4984                 /* CLIP functionality is not present in hardware,
4985                  * hence disable all offload features
4986                  */
4987                 dev_warn(&pdev->dev,
4988                          "CLIP not enabled in hardware, continuing\n");
4989                 adapter->params.offload = 0;
4990         } else {
4991                 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4992                                                   adapter->clipt_end);
4993                 if (!adapter->clipt) {
4994                         /* We tolerate a lack of clip_table, giving up
4995                          * some functionality
4996                          */
4997                         dev_warn(&pdev->dev,
4998                                  "could not allocate Clip table, continuing\n");
4999                         adapter->params.offload = 0;
5000                 }
5001         }
5002 #endif
5003         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5004                 dev_warn(&pdev->dev, "could not allocate TID table, "
5005                          "continuing\n");
5006                 adapter->params.offload = 0;
5007         }
5008
5009         if (is_offload(adapter)) {
5010                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5011                         u32 hash_base, hash_reg;
5012
5013                         if (chip <= CHELSIO_T5) {
5014                                 hash_reg = LE_DB_TID_HASHBASE_A;
5015                                 hash_base = t4_read_reg(adapter, hash_reg);
5016                                 adapter->tids.hash_base = hash_base / 4;
5017                         } else {
5018                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5019                                 hash_base = t4_read_reg(adapter, hash_reg);
5020                                 adapter->tids.hash_base = hash_base;
5021                         }
5022                 }
5023         }
5024
5025         /* See what interrupts we'll be using */
5026         if (msi > 1 && enable_msix(adapter) == 0)
5027                 adapter->flags |= USING_MSIX;
5028         else if (msi > 0 && pci_enable_msi(pdev) == 0)
5029                 adapter->flags |= USING_MSI;
5030
5031         /* check for PCI Express bandwidth capabiltites */
5032         cxgb4_check_pcie_caps(adapter);
5033
5034         err = init_rss(adapter);
5035         if (err)
5036                 goto out_free_dev;
5037
5038         /*
5039          * The card is now ready to go.  If any errors occur during device
5040          * registration we do not fail the whole card but rather proceed only
5041          * with the ports we manage to register successfully.  However we must
5042          * register at least one net device.
5043          */
5044         for_each_port(adapter, i) {
5045                 pi = adap2pinfo(adapter, i);
5046                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5047                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5048
5049                 err = register_netdev(adapter->port[i]);
5050                 if (err)
5051                         break;
5052                 adapter->chan_map[pi->tx_chan] = i;
5053                 print_port_info(adapter->port[i]);
5054         }
5055         if (i == 0) {
5056                 dev_err(&pdev->dev, "could not register any net devices\n");
5057                 goto out_free_dev;
5058         }
5059         if (err) {
5060                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5061                 err = 0;
5062         }
5063
5064         if (cxgb4_debugfs_root) {
5065                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5066                                                            cxgb4_debugfs_root);
5067                 setup_debugfs(adapter);
5068         }
5069
5070         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5071         pdev->needs_freset = 1;
5072
5073         if (is_offload(adapter))
5074                 attach_ulds(adapter);
5075
5076 sriov:
5077 #ifdef CONFIG_PCI_IOV
5078         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
5079                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5080                         dev_info(&pdev->dev,
5081                                  "instantiated %u virtual functions\n",
5082                                  num_vf[func]);
5083 #endif
5084         return 0;
5085
5086  out_free_dev:
5087         free_some_resources(adapter);
5088  out_unmap_bar:
5089         if (!is_t4(adapter->params.chip))
5090                 iounmap(adapter->bar2);
5091  out_free_adapter:
5092         if (adapter->workq)
5093                 destroy_workqueue(adapter->workq);
5094
5095         kfree(adapter);
5096  out_unmap_bar0:
5097         iounmap(regs);
5098  out_disable_device:
5099         pci_disable_pcie_error_reporting(pdev);
5100         pci_disable_device(pdev);
5101  out_release_regions:
5102         pci_release_regions(pdev);
5103         return err;
5104 }
5105
5106 static void remove_one(struct pci_dev *pdev)
5107 {
5108         struct adapter *adapter = pci_get_drvdata(pdev);
5109
5110 #ifdef CONFIG_PCI_IOV
5111         pci_disable_sriov(pdev);
5112
5113 #endif
5114
5115         if (adapter) {
5116                 int i;
5117
5118                 /* Tear down per-adapter Work Queue first since it can contain
5119                  * references to our adapter data structure.
5120                  */
5121                 destroy_workqueue(adapter->workq);
5122
5123                 if (is_offload(adapter))
5124                         detach_ulds(adapter);
5125
5126                 disable_interrupts(adapter);
5127
5128                 for_each_port(adapter, i)
5129                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5130                                 unregister_netdev(adapter->port[i]);
5131
5132                 debugfs_remove_recursive(adapter->debugfs_root);
5133
5134                 /* If we allocated filters, free up state associated with any
5135                  * valid filters ...
5136                  */
5137                 if (adapter->tids.ftid_tab) {
5138                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
5139                         for (i = 0; i < (adapter->tids.nftids +
5140                                         adapter->tids.nsftids); i++, f++)
5141                                 if (f->valid)
5142                                         clear_filter(adapter, f);
5143                 }
5144
5145                 if (adapter->flags & FULL_INIT_DONE)
5146                         cxgb_down(adapter);
5147
5148                 free_some_resources(adapter);
5149 #if IS_ENABLED(CONFIG_IPV6)
5150                 t4_cleanup_clip_tbl(adapter);
5151 #endif
5152                 iounmap(adapter->regs);
5153                 if (!is_t4(adapter->params.chip))
5154                         iounmap(adapter->bar2);
5155                 pci_disable_pcie_error_reporting(pdev);
5156                 if ((adapter->flags & DEV_ENABLED)) {
5157                         pci_disable_device(pdev);
5158                         adapter->flags &= ~DEV_ENABLED;
5159                 }
5160                 pci_release_regions(pdev);
5161                 synchronize_rcu();
5162                 kfree(adapter);
5163         } else
5164                 pci_release_regions(pdev);
5165 }
5166
5167 static struct pci_driver cxgb4_driver = {
5168         .name     = KBUILD_MODNAME,
5169         .id_table = cxgb4_pci_tbl,
5170         .probe    = init_one,
5171         .remove   = remove_one,
5172         .shutdown = remove_one,
5173         .err_handler = &cxgb4_eeh,
5174 };
5175
5176 static int __init cxgb4_init_module(void)
5177 {
5178         int ret;
5179
5180         /* Debugfs support is optional, just warn if this fails */
5181         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5182         if (!cxgb4_debugfs_root)
5183                 pr_warn("could not create debugfs entry, continuing\n");
5184
5185         ret = pci_register_driver(&cxgb4_driver);
5186         if (ret < 0)
5187                 debugfs_remove(cxgb4_debugfs_root);
5188
5189 #if IS_ENABLED(CONFIG_IPV6)
5190         if (!inet6addr_registered) {
5191                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5192                 inet6addr_registered = true;
5193         }
5194 #endif
5195
5196         return ret;
5197 }
5198
5199 static void __exit cxgb4_cleanup_module(void)
5200 {
5201 #if IS_ENABLED(CONFIG_IPV6)
5202         if (inet6addr_registered) {
5203                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5204                 inet6addr_registered = false;
5205         }
5206 #endif
5207         pci_unregister_driver(&cxgb4_driver);
5208         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5209 }
5210
5211 module_init(cxgb4_init_module);
5212 module_exit(cxgb4_cleanup_module);