Merge tag 'rtc-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[linux-2.6-microblaze.git] / drivers / net / ethernet / chelsio / cxgb / sge.c
1 /*****************************************************************************
2  *                                                                           *
3  * File: sge.c                                                               *
4  * $Revision: 1.26 $                                                         *
5  * $Date: 2005/06/21 18:29:48 $                                              *
6  * Description:                                                              *
7  *  DMA engine.                                                              *
8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
9  *                                                                           *
10  * This program is free software; you can redistribute it and/or modify      *
11  * it under the terms of the GNU General Public License, version 2, as       *
12  * published by the Free Software Foundation.                                *
13  *                                                                           *
14  * You should have received a copy of the GNU General Public License along   *
15  * with this program; if not, see <http://www.gnu.org/licenses/>.            *
16  *                                                                           *
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
20  *                                                                           *
21  * http://www.chelsio.com                                                    *
22  *                                                                           *
23  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
24  * All rights reserved.                                                      *
25  *                                                                           *
26  * Maintainers: maintainers@chelsio.com                                      *
27  *                                                                           *
28  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
29  *          Tina Yang               <tainay@chelsio.com>                     *
30  *          Felix Marti             <felix@chelsio.com>                      *
31  *          Scott Bardone           <sbardone@chelsio.com>                   *
32  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
33  *          Frank DiMambro          <frank@chelsio.com>                      *
34  *                                                                           *
35  * History:                                                                  *
36  *                                                                           *
37  ****************************************************************************/
38
39 #include "common.h"
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/pci.h>
44 #include <linux/ktime.h>
45 #include <linux/netdevice.h>
46 #include <linux/etherdevice.h>
47 #include <linux/if_vlan.h>
48 #include <linux/skbuff.h>
49 #include <linux/mm.h>
50 #include <linux/tcp.h>
51 #include <linux/ip.h>
52 #include <linux/in.h>
53 #include <linux/if_arp.h>
54 #include <linux/slab.h>
55 #include <linux/prefetch.h>
56
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
61
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
64
65 #define SGE_CMDQ_N              2
66 #define SGE_FREELQ_N            2
67 #define SGE_CMDQ0_E_N           1024
68 #define SGE_CMDQ1_E_N           128
69 #define SGE_FREEL_SIZE          4096
70 #define SGE_JUMBO_FREEL_SIZE    512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N           1024
73 #define SGE_INTRTIMER_NRES      1000
74 #define SGE_RX_SM_BUF_SIZE      1536
75 #define SGE_TX_DESC_MAX_PLEN    16384
76
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
78
79 /*
80  * Period of the TX buffer reclaim timer.  This timer does not need to run
81  * frequently as TX buffers are usually reclaimed by new TX packets.
82  */
83 #define TX_RECLAIM_PERIOD (HZ / 4)
84
85 #define M_CMD_LEN       0x7fffffff
86 #define V_CMD_LEN(v)    (v)
87 #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v)   ((v) << 31)
89 #define V_CMD_GEN2(v)   (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP       (1 << 2)
92 #define V_CMD_EOP(v)    ((v) << 3)
93
94 /*
95  * Command queue, receive buffer list, and response queue descriptors.
96  */
97 #if defined(__BIG_ENDIAN_BITFIELD)
98 struct cmdQ_e {
99         u32 addr_lo;
100         u32 len_gen;
101         u32 flags;
102         u32 addr_hi;
103 };
104
105 struct freelQ_e {
106         u32 addr_lo;
107         u32 len_gen;
108         u32 gen2;
109         u32 addr_hi;
110 };
111
112 struct respQ_e {
113         u32 Qsleeping           : 4;
114         u32 Cmdq1CreditReturn   : 5;
115         u32 Cmdq1DmaComplete    : 5;
116         u32 Cmdq0CreditReturn   : 5;
117         u32 Cmdq0DmaComplete    : 5;
118         u32 FreelistQid         : 2;
119         u32 CreditValid         : 1;
120         u32 DataValid           : 1;
121         u32 Offload             : 1;
122         u32 Eop                 : 1;
123         u32 Sop                 : 1;
124         u32 GenerationBit       : 1;
125         u32 BufferLength;
126 };
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
128 struct cmdQ_e {
129         u32 len_gen;
130         u32 addr_lo;
131         u32 addr_hi;
132         u32 flags;
133 };
134
135 struct freelQ_e {
136         u32 len_gen;
137         u32 addr_lo;
138         u32 addr_hi;
139         u32 gen2;
140 };
141
142 struct respQ_e {
143         u32 BufferLength;
144         u32 GenerationBit       : 1;
145         u32 Sop                 : 1;
146         u32 Eop                 : 1;
147         u32 Offload             : 1;
148         u32 DataValid           : 1;
149         u32 CreditValid         : 1;
150         u32 FreelistQid         : 2;
151         u32 Cmdq0DmaComplete    : 5;
152         u32 Cmdq0CreditReturn   : 5;
153         u32 Cmdq1DmaComplete    : 5;
154         u32 Cmdq1CreditReturn   : 5;
155         u32 Qsleeping           : 4;
156 } ;
157 #endif
158
159 /*
160  * SW Context Command and Freelist Queue Descriptors
161  */
162 struct cmdQ_ce {
163         struct sk_buff *skb;
164         DEFINE_DMA_UNMAP_ADDR(dma_addr);
165         DEFINE_DMA_UNMAP_LEN(dma_len);
166 };
167
168 struct freelQ_ce {
169         struct sk_buff *skb;
170         DEFINE_DMA_UNMAP_ADDR(dma_addr);
171         DEFINE_DMA_UNMAP_LEN(dma_len);
172 };
173
174 /*
175  * SW command, freelist and response rings
176  */
177 struct cmdQ {
178         unsigned long   status;         /* HW DMA fetch status */
179         unsigned int    in_use;         /* # of in-use command descriptors */
180         unsigned int    size;           /* # of descriptors */
181         unsigned int    processed;      /* total # of descs HW has processed */
182         unsigned int    cleaned;        /* total # of descs SW has reclaimed */
183         unsigned int    stop_thres;     /* SW TX queue suspend threshold */
184         u16             pidx;           /* producer index (SW) */
185         u16             cidx;           /* consumer index (HW) */
186         u8              genbit;         /* current generation (=valid) bit */
187         u8              sop;            /* is next entry start of packet? */
188         struct cmdQ_e  *entries;        /* HW command descriptor Q */
189         struct cmdQ_ce *centries;       /* SW command context descriptor Q */
190         dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
191         spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
192 };
193
194 struct freelQ {
195         unsigned int    credits;        /* # of available RX buffers */
196         unsigned int    size;           /* free list capacity */
197         u16             pidx;           /* producer index (SW) */
198         u16             cidx;           /* consumer index (HW) */
199         u16             rx_buffer_size; /* Buffer size on this free list */
200         u16             dma_offset;     /* DMA offset to align IP headers */
201         u16             recycleq_idx;   /* skb recycle q to use */
202         u8              genbit;         /* current generation (=valid) bit */
203         struct freelQ_e *entries;       /* HW freelist descriptor Q */
204         struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
205         dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
206 };
207
208 struct respQ {
209         unsigned int    credits;        /* credits to be returned to SGE */
210         unsigned int    size;           /* # of response Q descriptors */
211         u16             cidx;           /* consumer index (SW) */
212         u8              genbit;         /* current generation(=valid) bit */
213         struct respQ_e *entries;        /* HW response descriptor Q */
214         dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
215 };
216
217 /* Bit flags for cmdQ.status */
218 enum {
219         CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
220         CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
221 };
222
223 /* T204 TX SW scheduler */
224
225 /* Per T204 TX port */
226 struct sched_port {
227         unsigned int    avail;          /* available bits - quota */
228         unsigned int    drain_bits_per_1024ns; /* drain rate */
229         unsigned int    speed;          /* drain rate, mbps */
230         unsigned int    mtu;            /* mtu size */
231         struct sk_buff_head skbq;       /* pending skbs */
232 };
233
234 /* Per T204 device */
235 struct sched {
236         ktime_t         last_updated;   /* last time quotas were computed */
237         unsigned int    max_avail;      /* max bits to be sent to any port */
238         unsigned int    port;           /* port index (round robin ports) */
239         unsigned int    num;            /* num skbs in per port queues */
240         struct sched_port p[MAX_NPORTS];
241         struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
242         struct sge *sge;
243 };
244
245 static void restart_sched(struct tasklet_struct *t);
246
247
248 /*
249  * Main SGE data structure
250  *
251  * Interrupts are handled by a single CPU and it is likely that on a MP system
252  * the application is migrated to another CPU. In that scenario, we try to
253  * separate the RX(in irq context) and TX state in order to decrease memory
254  * contention.
255  */
256 struct sge {
257         struct adapter *adapter;        /* adapter backpointer */
258         struct net_device *netdev;      /* netdevice backpointer */
259         struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
260         struct respQ    respQ;          /* response Q */
261         unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
262         unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
263         unsigned int    jumbo_fl;       /* jumbo freelist Q index */
264         unsigned int    intrtimer_nres; /* no-resource interrupt timer */
265         unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
266         struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
267         struct timer_list espibug_timer;
268         unsigned long   espibug_timeout;
269         struct sk_buff  *espibug_skb[MAX_NPORTS];
270         u32             sge_control;    /* shadow value of sge control reg */
271         struct sge_intr_counts stats;
272         struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
273         struct sched    *tx_sched;
274         struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
275 };
276
277 static const u8 ch_mac_addr[ETH_ALEN] = {
278         0x0, 0x7, 0x43, 0x0, 0x0, 0x0
279 };
280
281 /*
282  * stop tasklet and free all pending skb's
283  */
284 static void tx_sched_stop(struct sge *sge)
285 {
286         struct sched *s = sge->tx_sched;
287         int i;
288
289         tasklet_kill(&s->sched_tsk);
290
291         for (i = 0; i < MAX_NPORTS; i++)
292                 __skb_queue_purge(&s->p[s->port].skbq);
293 }
294
295 /*
296  * t1_sched_update_parms() is called when the MTU or link speed changes. It
297  * re-computes scheduler parameters to scope with the change.
298  */
299 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
300                                    unsigned int mtu, unsigned int speed)
301 {
302         struct sched *s = sge->tx_sched;
303         struct sched_port *p = &s->p[port];
304         unsigned int max_avail_segs;
305
306         pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
307         if (speed)
308                 p->speed = speed;
309         if (mtu)
310                 p->mtu = mtu;
311
312         if (speed || mtu) {
313                 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
314                 do_div(drain, (p->mtu + 50) * 1000);
315                 p->drain_bits_per_1024ns = (unsigned int) drain;
316
317                 if (p->speed < 1000)
318                         p->drain_bits_per_1024ns =
319                                 90 * p->drain_bits_per_1024ns / 100;
320         }
321
322         if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
323                 p->drain_bits_per_1024ns -= 16;
324                 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
325                 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
326         } else {
327                 s->max_avail = 16384;
328                 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
329         }
330
331         pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332                  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
333                  p->speed, s->max_avail, max_avail_segs,
334                  p->drain_bits_per_1024ns);
335
336         return max_avail_segs * (p->mtu - 40);
337 }
338
339 #if 0
340
341 /*
342  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343  * data that can be pushed per port.
344  */
345 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
346 {
347         struct sched *s = sge->tx_sched;
348         unsigned int i;
349
350         s->max_avail = val;
351         for (i = 0; i < MAX_NPORTS; i++)
352                 t1_sched_update_parms(sge, i, 0, 0);
353 }
354
355 /*
356  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
357  * is draining.
358  */
359 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
360                                          unsigned int val)
361 {
362         struct sched *s = sge->tx_sched;
363         struct sched_port *p = &s->p[port];
364         p->drain_bits_per_1024ns = val * 1024 / 1000;
365         t1_sched_update_parms(sge, port, 0, 0);
366 }
367
368 #endif  /*  0  */
369
370 /*
371  * tx_sched_init() allocates resources and does basic initialization.
372  */
373 static int tx_sched_init(struct sge *sge)
374 {
375         struct sched *s;
376         int i;
377
378         s = kzalloc(sizeof (struct sched), GFP_KERNEL);
379         if (!s)
380                 return -ENOMEM;
381
382         pr_debug("tx_sched_init\n");
383         tasklet_setup(&s->sched_tsk, restart_sched);
384         s->sge = sge;
385         sge->tx_sched = s;
386
387         for (i = 0; i < MAX_NPORTS; i++) {
388                 skb_queue_head_init(&s->p[i].skbq);
389                 t1_sched_update_parms(sge, i, 1500, 1000);
390         }
391
392         return 0;
393 }
394
395 /*
396  * sched_update_avail() computes the delta since the last time it was called
397  * and updates the per port quota (number of bits that can be sent to the any
398  * port).
399  */
400 static inline int sched_update_avail(struct sge *sge)
401 {
402         struct sched *s = sge->tx_sched;
403         ktime_t now = ktime_get();
404         unsigned int i;
405         long long delta_time_ns;
406
407         delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
408
409         pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
410         if (delta_time_ns < 15000)
411                 return 0;
412
413         for (i = 0; i < MAX_NPORTS; i++) {
414                 struct sched_port *p = &s->p[i];
415                 unsigned int delta_avail;
416
417                 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
418                 p->avail = min(p->avail + delta_avail, s->max_avail);
419         }
420
421         s->last_updated = now;
422
423         return 1;
424 }
425
426 /*
427  * sched_skb() is called from two different places. In the tx path, any
428  * packet generating load on an output port will call sched_skb()
429  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
430  * context (skb == NULL).
431  * The scheduler only returns a skb (which will then be sent) if the
432  * length of the skb is <= the current quota of the output port.
433  */
434 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
435                                 unsigned int credits)
436 {
437         struct sched *s = sge->tx_sched;
438         struct sk_buff_head *skbq;
439         unsigned int i, len, update = 1;
440
441         pr_debug("sched_skb %p\n", skb);
442         if (!skb) {
443                 if (!s->num)
444                         return NULL;
445         } else {
446                 skbq = &s->p[skb->dev->if_port].skbq;
447                 __skb_queue_tail(skbq, skb);
448                 s->num++;
449                 skb = NULL;
450         }
451
452         if (credits < MAX_SKB_FRAGS + 1)
453                 goto out;
454
455 again:
456         for (i = 0; i < MAX_NPORTS; i++) {
457                 s->port = (s->port + 1) & (MAX_NPORTS - 1);
458                 skbq = &s->p[s->port].skbq;
459
460                 skb = skb_peek(skbq);
461
462                 if (!skb)
463                         continue;
464
465                 len = skb->len;
466                 if (len <= s->p[s->port].avail) {
467                         s->p[s->port].avail -= len;
468                         s->num--;
469                         __skb_unlink(skb, skbq);
470                         goto out;
471                 }
472                 skb = NULL;
473         }
474
475         if (update-- && sched_update_avail(sge))
476                 goto again;
477
478 out:
479         /* If there are more pending skbs, we use the hardware to schedule us
480          * again.
481          */
482         if (s->num && !skb) {
483                 struct cmdQ *q = &sge->cmdQ[0];
484                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
485                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
486                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
487                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
488                 }
489         }
490         pr_debug("sched_skb ret %p\n", skb);
491
492         return skb;
493 }
494
495 /*
496  * PIO to indicate that memory mapped Q contains valid descriptor(s).
497  */
498 static inline void doorbell_pio(struct adapter *adapter, u32 val)
499 {
500         wmb();
501         writel(val, adapter->regs + A_SG_DOORBELL);
502 }
503
504 /*
505  * Frees all RX buffers on the freelist Q. The caller must make sure that
506  * the SGE is turned off before calling this function.
507  */
508 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
509 {
510         unsigned int cidx = q->cidx;
511
512         while (q->credits--) {
513                 struct freelQ_ce *ce = &q->centries[cidx];
514
515                 dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
516                                  dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
517                 dev_kfree_skb(ce->skb);
518                 ce->skb = NULL;
519                 if (++cidx == q->size)
520                         cidx = 0;
521         }
522 }
523
524 /*
525  * Free RX free list and response queue resources.
526  */
527 static void free_rx_resources(struct sge *sge)
528 {
529         struct pci_dev *pdev = sge->adapter->pdev;
530         unsigned int size, i;
531
532         if (sge->respQ.entries) {
533                 size = sizeof(struct respQ_e) * sge->respQ.size;
534                 dma_free_coherent(&pdev->dev, size, sge->respQ.entries,
535                                   sge->respQ.dma_addr);
536         }
537
538         for (i = 0; i < SGE_FREELQ_N; i++) {
539                 struct freelQ *q = &sge->freelQ[i];
540
541                 if (q->centries) {
542                         free_freelQ_buffers(pdev, q);
543                         kfree(q->centries);
544                 }
545                 if (q->entries) {
546                         size = sizeof(struct freelQ_e) * q->size;
547                         dma_free_coherent(&pdev->dev, size, q->entries,
548                                           q->dma_addr);
549                 }
550         }
551 }
552
553 /*
554  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
555  * response queue.
556  */
557 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
558 {
559         struct pci_dev *pdev = sge->adapter->pdev;
560         unsigned int size, i;
561
562         for (i = 0; i < SGE_FREELQ_N; i++) {
563                 struct freelQ *q = &sge->freelQ[i];
564
565                 q->genbit = 1;
566                 q->size = p->freelQ_size[i];
567                 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
568                 size = sizeof(struct freelQ_e) * q->size;
569                 q->entries = dma_alloc_coherent(&pdev->dev, size,
570                                                 &q->dma_addr, GFP_KERNEL);
571                 if (!q->entries)
572                         goto err_no_mem;
573
574                 size = sizeof(struct freelQ_ce) * q->size;
575                 q->centries = kzalloc(size, GFP_KERNEL);
576                 if (!q->centries)
577                         goto err_no_mem;
578         }
579
580         /*
581          * Calculate the buffer sizes for the two free lists.  FL0 accommodates
582          * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
583          * including all the sk_buff overhead.
584          *
585          * Note: For T2 FL0 and FL1 are reversed.
586          */
587         sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
588                 sizeof(struct cpl_rx_data) +
589                 sge->freelQ[!sge->jumbo_fl].dma_offset;
590
591         size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
592
593         sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
594
595         /*
596          * Setup which skb recycle Q should be used when recycling buffers from
597          * each free list.
598          */
599         sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
600         sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
601
602         sge->respQ.genbit = 1;
603         sge->respQ.size = SGE_RESPQ_E_N;
604         sge->respQ.credits = 0;
605         size = sizeof(struct respQ_e) * sge->respQ.size;
606         sge->respQ.entries =
607                 dma_alloc_coherent(&pdev->dev, size, &sge->respQ.dma_addr,
608                                    GFP_KERNEL);
609         if (!sge->respQ.entries)
610                 goto err_no_mem;
611         return 0;
612
613 err_no_mem:
614         free_rx_resources(sge);
615         return -ENOMEM;
616 }
617
618 /*
619  * Reclaims n TX descriptors and frees the buffers associated with them.
620  */
621 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
622 {
623         struct cmdQ_ce *ce;
624         struct pci_dev *pdev = sge->adapter->pdev;
625         unsigned int cidx = q->cidx;
626
627         q->in_use -= n;
628         ce = &q->centries[cidx];
629         while (n--) {
630                 if (likely(dma_unmap_len(ce, dma_len))) {
631                         dma_unmap_single(&pdev->dev,
632                                          dma_unmap_addr(ce, dma_addr),
633                                          dma_unmap_len(ce, dma_len),
634                                          DMA_TO_DEVICE);
635                         if (q->sop)
636                                 q->sop = 0;
637                 }
638                 if (ce->skb) {
639                         dev_kfree_skb_any(ce->skb);
640                         q->sop = 1;
641                 }
642                 ce++;
643                 if (++cidx == q->size) {
644                         cidx = 0;
645                         ce = q->centries;
646                 }
647         }
648         q->cidx = cidx;
649 }
650
651 /*
652  * Free TX resources.
653  *
654  * Assumes that SGE is stopped and all interrupts are disabled.
655  */
656 static void free_tx_resources(struct sge *sge)
657 {
658         struct pci_dev *pdev = sge->adapter->pdev;
659         unsigned int size, i;
660
661         for (i = 0; i < SGE_CMDQ_N; i++) {
662                 struct cmdQ *q = &sge->cmdQ[i];
663
664                 if (q->centries) {
665                         if (q->in_use)
666                                 free_cmdQ_buffers(sge, q, q->in_use);
667                         kfree(q->centries);
668                 }
669                 if (q->entries) {
670                         size = sizeof(struct cmdQ_e) * q->size;
671                         dma_free_coherent(&pdev->dev, size, q->entries,
672                                           q->dma_addr);
673                 }
674         }
675 }
676
677 /*
678  * Allocates basic TX resources, consisting of memory mapped command Qs.
679  */
680 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
681 {
682         struct pci_dev *pdev = sge->adapter->pdev;
683         unsigned int size, i;
684
685         for (i = 0; i < SGE_CMDQ_N; i++) {
686                 struct cmdQ *q = &sge->cmdQ[i];
687
688                 q->genbit = 1;
689                 q->sop = 1;
690                 q->size = p->cmdQ_size[i];
691                 q->in_use = 0;
692                 q->status = 0;
693                 q->processed = q->cleaned = 0;
694                 q->stop_thres = 0;
695                 spin_lock_init(&q->lock);
696                 size = sizeof(struct cmdQ_e) * q->size;
697                 q->entries = dma_alloc_coherent(&pdev->dev, size,
698                                                 &q->dma_addr, GFP_KERNEL);
699                 if (!q->entries)
700                         goto err_no_mem;
701
702                 size = sizeof(struct cmdQ_ce) * q->size;
703                 q->centries = kzalloc(size, GFP_KERNEL);
704                 if (!q->centries)
705                         goto err_no_mem;
706         }
707
708         /*
709          * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
710          * only.  For queue 0 set the stop threshold so we can handle one more
711          * packet from each port, plus reserve an additional 24 entries for
712          * Ethernet packets only.  Queue 1 never suspends nor do we reserve
713          * space for Ethernet packets.
714          */
715         sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
716                 (MAX_SKB_FRAGS + 1);
717         return 0;
718
719 err_no_mem:
720         free_tx_resources(sge);
721         return -ENOMEM;
722 }
723
724 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
725                                      u32 size, int base_reg_lo,
726                                      int base_reg_hi, int size_reg)
727 {
728         writel((u32)addr, adapter->regs + base_reg_lo);
729         writel(addr >> 32, adapter->regs + base_reg_hi);
730         writel(size, adapter->regs + size_reg);
731 }
732
733 /*
734  * Enable/disable VLAN acceleration.
735  */
736 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
737 {
738         struct sge *sge = adapter->sge;
739
740         if (features & NETIF_F_HW_VLAN_CTAG_RX)
741                 sge->sge_control |= F_VLAN_XTRACT;
742         else
743                 sge->sge_control &= ~F_VLAN_XTRACT;
744         if (adapter->open_device_map) {
745                 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
746                 readl(adapter->regs + A_SG_CONTROL);   /* flush */
747         }
748 }
749
750 /*
751  * Programs the various SGE registers. However, the engine is not yet enabled,
752  * but sge->sge_control is setup and ready to go.
753  */
754 static void configure_sge(struct sge *sge, struct sge_params *p)
755 {
756         struct adapter *ap = sge->adapter;
757
758         writel(0, ap->regs + A_SG_CONTROL);
759         setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
760                           A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
761         setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
762                           A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
763         setup_ring_params(ap, sge->freelQ[0].dma_addr,
764                           sge->freelQ[0].size, A_SG_FL0BASELWR,
765                           A_SG_FL0BASEUPR, A_SG_FL0SIZE);
766         setup_ring_params(ap, sge->freelQ[1].dma_addr,
767                           sge->freelQ[1].size, A_SG_FL1BASELWR,
768                           A_SG_FL1BASEUPR, A_SG_FL1SIZE);
769
770         /* The threshold comparison uses <. */
771         writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
772
773         setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
774                           A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
775         writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
776
777         sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
778                 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
779                 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
780                 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
781
782 #if defined(__BIG_ENDIAN_BITFIELD)
783         sge->sge_control |= F_ENABLE_BIG_ENDIAN;
784 #endif
785
786         /* Initialize no-resource timer */
787         sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
788
789         t1_sge_set_coalesce_params(sge, p);
790 }
791
792 /*
793  * Return the payload capacity of the jumbo free-list buffers.
794  */
795 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
796 {
797         return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
798                 sge->freelQ[sge->jumbo_fl].dma_offset -
799                 sizeof(struct cpl_rx_data);
800 }
801
802 /*
803  * Frees all SGE related resources and the sge structure itself
804  */
805 void t1_sge_destroy(struct sge *sge)
806 {
807         int i;
808
809         for_each_port(sge->adapter, i)
810                 free_percpu(sge->port_stats[i]);
811
812         kfree(sge->tx_sched);
813         free_tx_resources(sge);
814         free_rx_resources(sge);
815         kfree(sge);
816 }
817
818 /*
819  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
820  * context Q) until the Q is full or alloc_skb fails.
821  *
822  * It is possible that the generation bits already match, indicating that the
823  * buffer is already valid and nothing needs to be done. This happens when we
824  * copied a received buffer into a new sk_buff during the interrupt processing.
825  *
826  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
827  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
828  * aligned.
829  */
830 static void refill_free_list(struct sge *sge, struct freelQ *q)
831 {
832         struct pci_dev *pdev = sge->adapter->pdev;
833         struct freelQ_ce *ce = &q->centries[q->pidx];
834         struct freelQ_e *e = &q->entries[q->pidx];
835         unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
836
837         while (q->credits < q->size) {
838                 struct sk_buff *skb;
839                 dma_addr_t mapping;
840
841                 skb = dev_alloc_skb(q->rx_buffer_size);
842                 if (!skb)
843                         break;
844
845                 skb_reserve(skb, q->dma_offset);
846                 mapping = dma_map_single(&pdev->dev, skb->data, dma_len,
847                                          DMA_FROM_DEVICE);
848                 skb_reserve(skb, sge->rx_pkt_pad);
849
850                 ce->skb = skb;
851                 dma_unmap_addr_set(ce, dma_addr, mapping);
852                 dma_unmap_len_set(ce, dma_len, dma_len);
853                 e->addr_lo = (u32)mapping;
854                 e->addr_hi = (u64)mapping >> 32;
855                 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
856                 wmb();
857                 e->gen2 = V_CMD_GEN2(q->genbit);
858
859                 e++;
860                 ce++;
861                 if (++q->pidx == q->size) {
862                         q->pidx = 0;
863                         q->genbit ^= 1;
864                         ce = q->centries;
865                         e = q->entries;
866                 }
867                 q->credits++;
868         }
869 }
870
871 /*
872  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
873  * of both rings, we go into 'few interrupt mode' in order to give the system
874  * time to free up resources.
875  */
876 static void freelQs_empty(struct sge *sge)
877 {
878         struct adapter *adapter = sge->adapter;
879         u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
880         u32 irqholdoff_reg;
881
882         refill_free_list(sge, &sge->freelQ[0]);
883         refill_free_list(sge, &sge->freelQ[1]);
884
885         if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
886             sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
887                 irq_reg |= F_FL_EXHAUSTED;
888                 irqholdoff_reg = sge->fixed_intrtimer;
889         } else {
890                 /* Clear the F_FL_EXHAUSTED interrupts for now */
891                 irq_reg &= ~F_FL_EXHAUSTED;
892                 irqholdoff_reg = sge->intrtimer_nres;
893         }
894         writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
895         writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
896
897         /* We reenable the Qs to force a freelist GTS interrupt later */
898         doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
899 }
900
901 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
902 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
903 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
904                         F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
905
906 /*
907  * Disable SGE Interrupts
908  */
909 void t1_sge_intr_disable(struct sge *sge)
910 {
911         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
912
913         writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
914         writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
915 }
916
917 /*
918  * Enable SGE interrupts.
919  */
920 void t1_sge_intr_enable(struct sge *sge)
921 {
922         u32 en = SGE_INT_ENABLE;
923         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
924
925         if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
926                 en &= ~F_PACKET_TOO_BIG;
927         writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
928         writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
929 }
930
931 /*
932  * Clear SGE interrupts.
933  */
934 void t1_sge_intr_clear(struct sge *sge)
935 {
936         writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
937         writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
938 }
939
940 /*
941  * SGE 'Error' interrupt handler
942  */
943 bool t1_sge_intr_error_handler(struct sge *sge)
944 {
945         struct adapter *adapter = sge->adapter;
946         u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
947         bool wake = false;
948
949         if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
950                 cause &= ~F_PACKET_TOO_BIG;
951         if (cause & F_RESPQ_EXHAUSTED)
952                 sge->stats.respQ_empty++;
953         if (cause & F_RESPQ_OVERFLOW) {
954                 sge->stats.respQ_overflow++;
955                 pr_alert("%s: SGE response queue overflow\n",
956                          adapter->name);
957         }
958         if (cause & F_FL_EXHAUSTED) {
959                 sge->stats.freelistQ_empty++;
960                 freelQs_empty(sge);
961         }
962         if (cause & F_PACKET_TOO_BIG) {
963                 sge->stats.pkt_too_big++;
964                 pr_alert("%s: SGE max packet size exceeded\n",
965                          adapter->name);
966         }
967         if (cause & F_PACKET_MISMATCH) {
968                 sge->stats.pkt_mismatch++;
969                 pr_alert("%s: SGE packet mismatch\n", adapter->name);
970         }
971         if (cause & SGE_INT_FATAL) {
972                 t1_interrupts_disable(adapter);
973                 adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR;
974                 wake = true;
975         }
976
977         writel(cause, adapter->regs + A_SG_INT_CAUSE);
978         return wake;
979 }
980
981 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
982 {
983         return &sge->stats;
984 }
985
986 void t1_sge_get_port_stats(const struct sge *sge, int port,
987                            struct sge_port_stats *ss)
988 {
989         int cpu;
990
991         memset(ss, 0, sizeof(*ss));
992         for_each_possible_cpu(cpu) {
993                 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
994
995                 ss->rx_cso_good += st->rx_cso_good;
996                 ss->tx_cso += st->tx_cso;
997                 ss->tx_tso += st->tx_tso;
998                 ss->tx_need_hdrroom += st->tx_need_hdrroom;
999                 ss->vlan_xtract += st->vlan_xtract;
1000                 ss->vlan_insert += st->vlan_insert;
1001         }
1002 }
1003
1004 /**
1005  *      recycle_fl_buf - recycle a free list buffer
1006  *      @fl: the free list
1007  *      @idx: index of buffer to recycle
1008  *
1009  *      Recycles the specified buffer on the given free list by adding it at
1010  *      the next available slot on the list.
1011  */
1012 static void recycle_fl_buf(struct freelQ *fl, int idx)
1013 {
1014         struct freelQ_e *from = &fl->entries[idx];
1015         struct freelQ_e *to = &fl->entries[fl->pidx];
1016
1017         fl->centries[fl->pidx] = fl->centries[idx];
1018         to->addr_lo = from->addr_lo;
1019         to->addr_hi = from->addr_hi;
1020         to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1021         wmb();
1022         to->gen2 = V_CMD_GEN2(fl->genbit);
1023         fl->credits++;
1024
1025         if (++fl->pidx == fl->size) {
1026                 fl->pidx = 0;
1027                 fl->genbit ^= 1;
1028         }
1029 }
1030
1031 static int copybreak __read_mostly = 256;
1032 module_param(copybreak, int, 0);
1033 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1034
1035 /**
1036  *      get_packet - return the next ingress packet buffer
1037  *      @adapter: the adapter that received the packet
1038  *      @fl: the SGE free list holding the packet
1039  *      @len: the actual packet length, excluding any SGE padding
1040  *
1041  *      Get the next packet from a free list and complete setup of the
1042  *      sk_buff.  If the packet is small we make a copy and recycle the
1043  *      original buffer, otherwise we use the original buffer itself.  If a
1044  *      positive drop threshold is supplied packets are dropped and their
1045  *      buffers recycled if (a) the number of remaining buffers is under the
1046  *      threshold and the packet is too big to copy, or (b) the packet should
1047  *      be copied but there is no memory for the copy.
1048  */
1049 static inline struct sk_buff *get_packet(struct adapter *adapter,
1050                                          struct freelQ *fl, unsigned int len)
1051 {
1052         const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1053         struct pci_dev *pdev = adapter->pdev;
1054         struct sk_buff *skb;
1055
1056         if (len < copybreak) {
1057                 skb = napi_alloc_skb(&adapter->napi, len);
1058                 if (!skb)
1059                         goto use_orig_buf;
1060
1061                 skb_put(skb, len);
1062                 dma_sync_single_for_cpu(&pdev->dev,
1063                                         dma_unmap_addr(ce, dma_addr),
1064                                         dma_unmap_len(ce, dma_len),
1065                                         DMA_FROM_DEVICE);
1066                 skb_copy_from_linear_data(ce->skb, skb->data, len);
1067                 dma_sync_single_for_device(&pdev->dev,
1068                                            dma_unmap_addr(ce, dma_addr),
1069                                            dma_unmap_len(ce, dma_len),
1070                                            DMA_FROM_DEVICE);
1071                 recycle_fl_buf(fl, fl->cidx);
1072                 return skb;
1073         }
1074
1075 use_orig_buf:
1076         if (fl->credits < 2) {
1077                 recycle_fl_buf(fl, fl->cidx);
1078                 return NULL;
1079         }
1080
1081         dma_unmap_single(&pdev->dev, dma_unmap_addr(ce, dma_addr),
1082                          dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1083         skb = ce->skb;
1084         prefetch(skb->data);
1085
1086         skb_put(skb, len);
1087         return skb;
1088 }
1089
1090 /**
1091  *      unexpected_offload - handle an unexpected offload packet
1092  *      @adapter: the adapter
1093  *      @fl: the free list that received the packet
1094  *
1095  *      Called when we receive an unexpected offload packet (e.g., the TOE
1096  *      function is disabled or the card is a NIC).  Prints a message and
1097  *      recycles the buffer.
1098  */
1099 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1100 {
1101         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1102         struct sk_buff *skb = ce->skb;
1103
1104         dma_sync_single_for_cpu(&adapter->pdev->dev,
1105                                 dma_unmap_addr(ce, dma_addr),
1106                                 dma_unmap_len(ce, dma_len), DMA_FROM_DEVICE);
1107         pr_err("%s: unexpected offload packet, cmd %u\n",
1108                adapter->name, *skb->data);
1109         recycle_fl_buf(fl, fl->cidx);
1110 }
1111
1112 /*
1113  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1114  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1115  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1116  * Note that the *_large_page_tx_descs stuff will be optimized out when
1117  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1118  *
1119  * compute_large_page_descs() computes how many additional descriptors are
1120  * required to break down the stack's request.
1121  */
1122 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1123 {
1124         unsigned int count = 0;
1125
1126         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1127                 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1128                 unsigned int i, len = skb_headlen(skb);
1129                 while (len > SGE_TX_DESC_MAX_PLEN) {
1130                         count++;
1131                         len -= SGE_TX_DESC_MAX_PLEN;
1132                 }
1133                 for (i = 0; nfrags--; i++) {
1134                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1135                         len = skb_frag_size(frag);
1136                         while (len > SGE_TX_DESC_MAX_PLEN) {
1137                                 count++;
1138                                 len -= SGE_TX_DESC_MAX_PLEN;
1139                         }
1140                 }
1141         }
1142         return count;
1143 }
1144
1145 /*
1146  * Write a cmdQ entry.
1147  *
1148  * Since this function writes the 'flags' field, it must not be used to
1149  * write the first cmdQ entry.
1150  */
1151 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1152                                  unsigned int len, unsigned int gen,
1153                                  unsigned int eop)
1154 {
1155         BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1156
1157         e->addr_lo = (u32)mapping;
1158         e->addr_hi = (u64)mapping >> 32;
1159         e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1160         e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1161 }
1162
1163 /*
1164  * See comment for previous function.
1165  *
1166  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1167  * *desc_len exceeds HW's capability.
1168  */
1169 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1170                                                      struct cmdQ_e **e,
1171                                                      struct cmdQ_ce **ce,
1172                                                      unsigned int *gen,
1173                                                      dma_addr_t *desc_mapping,
1174                                                      unsigned int *desc_len,
1175                                                      unsigned int nfrags,
1176                                                      struct cmdQ *q)
1177 {
1178         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1179                 struct cmdQ_e *e1 = *e;
1180                 struct cmdQ_ce *ce1 = *ce;
1181
1182                 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1183                         *desc_len -= SGE_TX_DESC_MAX_PLEN;
1184                         write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1185                                       *gen, nfrags == 0 && *desc_len == 0);
1186                         ce1->skb = NULL;
1187                         dma_unmap_len_set(ce1, dma_len, 0);
1188                         *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1189                         if (*desc_len) {
1190                                 ce1++;
1191                                 e1++;
1192                                 if (++pidx == q->size) {
1193                                         pidx = 0;
1194                                         *gen ^= 1;
1195                                         ce1 = q->centries;
1196                                         e1 = q->entries;
1197                                 }
1198                         }
1199                 }
1200                 *e = e1;
1201                 *ce = ce1;
1202         }
1203         return pidx;
1204 }
1205
1206 /*
1207  * Write the command descriptors to transmit the given skb starting at
1208  * descriptor pidx with the given generation.
1209  */
1210 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1211                                   unsigned int pidx, unsigned int gen,
1212                                   struct cmdQ *q)
1213 {
1214         dma_addr_t mapping, desc_mapping;
1215         struct cmdQ_e *e, *e1;
1216         struct cmdQ_ce *ce;
1217         unsigned int i, flags, first_desc_len, desc_len,
1218             nfrags = skb_shinfo(skb)->nr_frags;
1219
1220         e = e1 = &q->entries[pidx];
1221         ce = &q->centries[pidx];
1222
1223         mapping = dma_map_single(&adapter->pdev->dev, skb->data,
1224                                  skb_headlen(skb), DMA_TO_DEVICE);
1225
1226         desc_mapping = mapping;
1227         desc_len = skb_headlen(skb);
1228
1229         flags = F_CMD_DATAVALID | F_CMD_SOP |
1230             V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1231             V_CMD_GEN2(gen);
1232         first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1233             desc_len : SGE_TX_DESC_MAX_PLEN;
1234         e->addr_lo = (u32)desc_mapping;
1235         e->addr_hi = (u64)desc_mapping >> 32;
1236         e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1237         ce->skb = NULL;
1238         dma_unmap_len_set(ce, dma_len, 0);
1239
1240         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1241             desc_len > SGE_TX_DESC_MAX_PLEN) {
1242                 desc_mapping += first_desc_len;
1243                 desc_len -= first_desc_len;
1244                 e1++;
1245                 ce++;
1246                 if (++pidx == q->size) {
1247                         pidx = 0;
1248                         gen ^= 1;
1249                         e1 = q->entries;
1250                         ce = q->centries;
1251                 }
1252                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1253                                                  &desc_mapping, &desc_len,
1254                                                  nfrags, q);
1255
1256                 if (likely(desc_len))
1257                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1258                                       nfrags == 0);
1259         }
1260
1261         ce->skb = NULL;
1262         dma_unmap_addr_set(ce, dma_addr, mapping);
1263         dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1264
1265         for (i = 0; nfrags--; i++) {
1266                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1267                 e1++;
1268                 ce++;
1269                 if (++pidx == q->size) {
1270                         pidx = 0;
1271                         gen ^= 1;
1272                         e1 = q->entries;
1273                         ce = q->centries;
1274                 }
1275
1276                 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1277                                            skb_frag_size(frag), DMA_TO_DEVICE);
1278                 desc_mapping = mapping;
1279                 desc_len = skb_frag_size(frag);
1280
1281                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1282                                                  &desc_mapping, &desc_len,
1283                                                  nfrags, q);
1284                 if (likely(desc_len))
1285                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1286                                       nfrags == 0);
1287                 ce->skb = NULL;
1288                 dma_unmap_addr_set(ce, dma_addr, mapping);
1289                 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1290         }
1291         ce->skb = skb;
1292         wmb();
1293         e->flags = flags;
1294 }
1295
1296 /*
1297  * Clean up completed Tx buffers.
1298  */
1299 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1300 {
1301         unsigned int reclaim = q->processed - q->cleaned;
1302
1303         if (reclaim) {
1304                 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1305                          q->processed, q->cleaned);
1306                 free_cmdQ_buffers(sge, q, reclaim);
1307                 q->cleaned += reclaim;
1308         }
1309 }
1310
1311 /*
1312  * Called from tasklet. Checks the scheduler for any
1313  * pending skbs that can be sent.
1314  */
1315 static void restart_sched(struct tasklet_struct *t)
1316 {
1317         struct sched *s = from_tasklet(s, t, sched_tsk);
1318         struct sge *sge = s->sge;
1319         struct adapter *adapter = sge->adapter;
1320         struct cmdQ *q = &sge->cmdQ[0];
1321         struct sk_buff *skb;
1322         unsigned int credits, queued_skb = 0;
1323
1324         spin_lock(&q->lock);
1325         reclaim_completed_tx(sge, q);
1326
1327         credits = q->size - q->in_use;
1328         pr_debug("restart_sched credits=%d\n", credits);
1329         while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1330                 unsigned int genbit, pidx, count;
1331                 count = 1 + skb_shinfo(skb)->nr_frags;
1332                 count += compute_large_page_tx_descs(skb);
1333                 q->in_use += count;
1334                 genbit = q->genbit;
1335                 pidx = q->pidx;
1336                 q->pidx += count;
1337                 if (q->pidx >= q->size) {
1338                         q->pidx -= q->size;
1339                         q->genbit ^= 1;
1340                 }
1341                 write_tx_descs(adapter, skb, pidx, genbit, q);
1342                 credits = q->size - q->in_use;
1343                 queued_skb = 1;
1344         }
1345
1346         if (queued_skb) {
1347                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1348                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1349                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1350                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1351                 }
1352         }
1353         spin_unlock(&q->lock);
1354 }
1355
1356 /**
1357  *      sge_rx - process an ingress ethernet packet
1358  *      @sge: the sge structure
1359  *      @fl: the free list that contains the packet buffer
1360  *      @len: the packet length
1361  *
1362  *      Process an ingress ethernet pakcet and deliver it to the stack.
1363  */
1364 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1365 {
1366         struct sk_buff *skb;
1367         const struct cpl_rx_pkt *p;
1368         struct adapter *adapter = sge->adapter;
1369         struct sge_port_stats *st;
1370         struct net_device *dev;
1371
1372         skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1373         if (unlikely(!skb)) {
1374                 sge->stats.rx_drops++;
1375                 return;
1376         }
1377
1378         p = (const struct cpl_rx_pkt *) skb->data;
1379         if (p->iff >= adapter->params.nports) {
1380                 kfree_skb(skb);
1381                 return;
1382         }
1383         __skb_pull(skb, sizeof(*p));
1384
1385         st = this_cpu_ptr(sge->port_stats[p->iff]);
1386         dev = adapter->port[p->iff].dev;
1387
1388         skb->protocol = eth_type_trans(skb, dev);
1389         if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1390             skb->protocol == htons(ETH_P_IP) &&
1391             (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1392                 ++st->rx_cso_good;
1393                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1394         } else
1395                 skb_checksum_none_assert(skb);
1396
1397         if (p->vlan_valid) {
1398                 st->vlan_xtract++;
1399                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1400         }
1401         netif_receive_skb(skb);
1402 }
1403
1404 /*
1405  * Returns true if a command queue has enough available descriptors that
1406  * we can resume Tx operation after temporarily disabling its packet queue.
1407  */
1408 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1409 {
1410         unsigned int r = q->processed - q->cleaned;
1411
1412         return q->in_use - r < (q->size >> 1);
1413 }
1414
1415 /*
1416  * Called when sufficient space has become available in the SGE command queues
1417  * after the Tx packet schedulers have been suspended to restart the Tx path.
1418  */
1419 static void restart_tx_queues(struct sge *sge)
1420 {
1421         struct adapter *adap = sge->adapter;
1422         int i;
1423
1424         if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1425                 return;
1426
1427         for_each_port(adap, i) {
1428                 struct net_device *nd = adap->port[i].dev;
1429
1430                 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1431                     netif_running(nd)) {
1432                         sge->stats.cmdQ_restarted[2]++;
1433                         netif_wake_queue(nd);
1434                 }
1435         }
1436 }
1437
1438 /*
1439  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1440  * information.
1441  */
1442 static unsigned int update_tx_info(struct adapter *adapter,
1443                                           unsigned int flags,
1444                                           unsigned int pr0)
1445 {
1446         struct sge *sge = adapter->sge;
1447         struct cmdQ *cmdq = &sge->cmdQ[0];
1448
1449         cmdq->processed += pr0;
1450         if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1451                 freelQs_empty(sge);
1452                 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1453         }
1454         if (flags & F_CMDQ0_ENABLE) {
1455                 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1456
1457                 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1458                     !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1459                         set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1460                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1461                 }
1462                 if (sge->tx_sched)
1463                         tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1464
1465                 flags &= ~F_CMDQ0_ENABLE;
1466         }
1467
1468         if (unlikely(sge->stopped_tx_queues != 0))
1469                 restart_tx_queues(sge);
1470
1471         return flags;
1472 }
1473
1474 /*
1475  * Process SGE responses, up to the supplied budget.  Returns the number of
1476  * responses processed.  A negative budget is effectively unlimited.
1477  */
1478 static int process_responses(struct adapter *adapter, int budget)
1479 {
1480         struct sge *sge = adapter->sge;
1481         struct respQ *q = &sge->respQ;
1482         struct respQ_e *e = &q->entries[q->cidx];
1483         int done = 0;
1484         unsigned int flags = 0;
1485         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1486
1487         while (done < budget && e->GenerationBit == q->genbit) {
1488                 flags |= e->Qsleeping;
1489
1490                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1491                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1492
1493                 /* We batch updates to the TX side to avoid cacheline
1494                  * ping-pong of TX state information on MP where the sender
1495                  * might run on a different CPU than this function...
1496                  */
1497                 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1498                         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1499                         cmdq_processed[0] = 0;
1500                 }
1501
1502                 if (unlikely(cmdq_processed[1] > 16)) {
1503                         sge->cmdQ[1].processed += cmdq_processed[1];
1504                         cmdq_processed[1] = 0;
1505                 }
1506
1507                 if (likely(e->DataValid)) {
1508                         struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1509
1510                         BUG_ON(!e->Sop || !e->Eop);
1511                         if (unlikely(e->Offload))
1512                                 unexpected_offload(adapter, fl);
1513                         else
1514                                 sge_rx(sge, fl, e->BufferLength);
1515
1516                         ++done;
1517
1518                         /*
1519                          * Note: this depends on each packet consuming a
1520                          * single free-list buffer; cf. the BUG above.
1521                          */
1522                         if (++fl->cidx == fl->size)
1523                                 fl->cidx = 0;
1524                         prefetch(fl->centries[fl->cidx].skb);
1525
1526                         if (unlikely(--fl->credits <
1527                                      fl->size - SGE_FREEL_REFILL_THRESH))
1528                                 refill_free_list(sge, fl);
1529                 } else
1530                         sge->stats.pure_rsps++;
1531
1532                 e++;
1533                 if (unlikely(++q->cidx == q->size)) {
1534                         q->cidx = 0;
1535                         q->genbit ^= 1;
1536                         e = q->entries;
1537                 }
1538                 prefetch(e);
1539
1540                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1541                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1542                         q->credits = 0;
1543                 }
1544         }
1545
1546         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1547         sge->cmdQ[1].processed += cmdq_processed[1];
1548
1549         return done;
1550 }
1551
1552 static inline int responses_pending(const struct adapter *adapter)
1553 {
1554         const struct respQ *Q = &adapter->sge->respQ;
1555         const struct respQ_e *e = &Q->entries[Q->cidx];
1556
1557         return e->GenerationBit == Q->genbit;
1558 }
1559
1560 /*
1561  * A simpler version of process_responses() that handles only pure (i.e.,
1562  * non data-carrying) responses.  Such respones are too light-weight to justify
1563  * calling a softirq when using NAPI, so we handle them specially in hard
1564  * interrupt context.  The function is called with a pointer to a response,
1565  * which the caller must ensure is a valid pure response.  Returns 1 if it
1566  * encounters a valid data-carrying response, 0 otherwise.
1567  */
1568 static int process_pure_responses(struct adapter *adapter)
1569 {
1570         struct sge *sge = adapter->sge;
1571         struct respQ *q = &sge->respQ;
1572         struct respQ_e *e = &q->entries[q->cidx];
1573         const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1574         unsigned int flags = 0;
1575         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1576
1577         prefetch(fl->centries[fl->cidx].skb);
1578         if (e->DataValid)
1579                 return 1;
1580
1581         do {
1582                 flags |= e->Qsleeping;
1583
1584                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1585                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1586
1587                 e++;
1588                 if (unlikely(++q->cidx == q->size)) {
1589                         q->cidx = 0;
1590                         q->genbit ^= 1;
1591                         e = q->entries;
1592                 }
1593                 prefetch(e);
1594
1595                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1596                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1597                         q->credits = 0;
1598                 }
1599                 sge->stats.pure_rsps++;
1600         } while (e->GenerationBit == q->genbit && !e->DataValid);
1601
1602         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1603         sge->cmdQ[1].processed += cmdq_processed[1];
1604
1605         return e->GenerationBit == q->genbit;
1606 }
1607
1608 /*
1609  * Handler for new data events when using NAPI.  This does not need any locking
1610  * or protection from interrupts as data interrupts are off at this point and
1611  * other adapter interrupts do not interfere.
1612  */
1613 int t1_poll(struct napi_struct *napi, int budget)
1614 {
1615         struct adapter *adapter = container_of(napi, struct adapter, napi);
1616         int work_done = process_responses(adapter, budget);
1617
1618         if (likely(work_done < budget)) {
1619                 napi_complete_done(napi, work_done);
1620                 writel(adapter->sge->respQ.cidx,
1621                        adapter->regs + A_SG_SLEEPING);
1622         }
1623         return work_done;
1624 }
1625
1626 irqreturn_t t1_interrupt_thread(int irq, void *data)
1627 {
1628         struct adapter *adapter = data;
1629         u32 pending_thread_intr;
1630
1631         spin_lock_irq(&adapter->async_lock);
1632         pending_thread_intr = adapter->pending_thread_intr;
1633         adapter->pending_thread_intr = 0;
1634         spin_unlock_irq(&adapter->async_lock);
1635
1636         if (!pending_thread_intr)
1637                 return IRQ_NONE;
1638
1639         if (pending_thread_intr & F_PL_INTR_EXT)
1640                 t1_elmer0_ext_intr_handler(adapter);
1641
1642         /* This error is fatal, interrupts remain off */
1643         if (pending_thread_intr & F_PL_INTR_SGE_ERR) {
1644                 pr_alert("%s: encountered fatal error, operation suspended\n",
1645                          adapter->name);
1646                 t1_sge_stop(adapter->sge);
1647                 return IRQ_HANDLED;
1648         }
1649
1650         spin_lock_irq(&adapter->async_lock);
1651         adapter->slow_intr_mask |= F_PL_INTR_EXT;
1652
1653         writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
1654         writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
1655                adapter->regs + A_PL_ENABLE);
1656         spin_unlock_irq(&adapter->async_lock);
1657
1658         return IRQ_HANDLED;
1659 }
1660
1661 irqreturn_t t1_interrupt(int irq, void *data)
1662 {
1663         struct adapter *adapter = data;
1664         struct sge *sge = adapter->sge;
1665         irqreturn_t handled;
1666
1667         if (likely(responses_pending(adapter))) {
1668                 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1669
1670                 if (napi_schedule_prep(&adapter->napi)) {
1671                         if (process_pure_responses(adapter))
1672                                 __napi_schedule(&adapter->napi);
1673                         else {
1674                                 /* no data, no NAPI needed */
1675                                 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1676                                 /* undo schedule_prep */
1677                                 napi_enable(&adapter->napi);
1678                         }
1679                 }
1680                 return IRQ_HANDLED;
1681         }
1682
1683         spin_lock(&adapter->async_lock);
1684         handled = t1_slow_intr_handler(adapter);
1685         spin_unlock(&adapter->async_lock);
1686
1687         if (handled == IRQ_NONE)
1688                 sge->stats.unhandled_irqs++;
1689
1690         return handled;
1691 }
1692
1693 /*
1694  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1695  *
1696  * The code figures out how many entries the sk_buff will require in the
1697  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1698  * has complete. Then, it doesn't access the global structure anymore, but
1699  * uses the corresponding fields on the stack. In conjunction with a spinlock
1700  * around that code, we can make the function reentrant without holding the
1701  * lock when we actually enqueue (which might be expensive, especially on
1702  * architectures with IO MMUs).
1703  *
1704  * This runs with softirqs disabled.
1705  */
1706 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1707                      unsigned int qid, struct net_device *dev)
1708 {
1709         struct sge *sge = adapter->sge;
1710         struct cmdQ *q = &sge->cmdQ[qid];
1711         unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1712
1713         spin_lock(&q->lock);
1714
1715         reclaim_completed_tx(sge, q);
1716
1717         pidx = q->pidx;
1718         credits = q->size - q->in_use;
1719         count = 1 + skb_shinfo(skb)->nr_frags;
1720         count += compute_large_page_tx_descs(skb);
1721
1722         /* Ethernet packet */
1723         if (unlikely(credits < count)) {
1724                 if (!netif_queue_stopped(dev)) {
1725                         netif_stop_queue(dev);
1726                         set_bit(dev->if_port, &sge->stopped_tx_queues);
1727                         sge->stats.cmdQ_full[2]++;
1728                         pr_err("%s: Tx ring full while queue awake!\n",
1729                                adapter->name);
1730                 }
1731                 spin_unlock(&q->lock);
1732                 return NETDEV_TX_BUSY;
1733         }
1734
1735         if (unlikely(credits - count < q->stop_thres)) {
1736                 netif_stop_queue(dev);
1737                 set_bit(dev->if_port, &sge->stopped_tx_queues);
1738                 sge->stats.cmdQ_full[2]++;
1739         }
1740
1741         /* T204 cmdQ0 skbs that are destined for a certain port have to go
1742          * through the scheduler.
1743          */
1744         if (sge->tx_sched && !qid && skb->dev) {
1745 use_sched:
1746                 use_sched_skb = 1;
1747                 /* Note that the scheduler might return a different skb than
1748                  * the one passed in.
1749                  */
1750                 skb = sched_skb(sge, skb, credits);
1751                 if (!skb) {
1752                         spin_unlock(&q->lock);
1753                         return NETDEV_TX_OK;
1754                 }
1755                 pidx = q->pidx;
1756                 count = 1 + skb_shinfo(skb)->nr_frags;
1757                 count += compute_large_page_tx_descs(skb);
1758         }
1759
1760         q->in_use += count;
1761         genbit = q->genbit;
1762         pidx = q->pidx;
1763         q->pidx += count;
1764         if (q->pidx >= q->size) {
1765                 q->pidx -= q->size;
1766                 q->genbit ^= 1;
1767         }
1768         spin_unlock(&q->lock);
1769
1770         write_tx_descs(adapter, skb, pidx, genbit, q);
1771
1772         /*
1773          * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1774          * the doorbell if the Q is asleep. There is a natural race, where
1775          * the hardware is going to sleep just after we checked, however,
1776          * then the interrupt handler will detect the outstanding TX packet
1777          * and ring the doorbell for us.
1778          */
1779         if (qid)
1780                 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1781         else {
1782                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1783                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1784                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1785                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1786                 }
1787         }
1788
1789         if (use_sched_skb) {
1790                 if (spin_trylock(&q->lock)) {
1791                         credits = q->size - q->in_use;
1792                         skb = NULL;
1793                         goto use_sched;
1794                 }
1795         }
1796         return NETDEV_TX_OK;
1797 }
1798
1799 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1800
1801 /*
1802  *      eth_hdr_len - return the length of an Ethernet header
1803  *      @data: pointer to the start of the Ethernet header
1804  *
1805  *      Returns the length of an Ethernet header, including optional VLAN tag.
1806  */
1807 static inline int eth_hdr_len(const void *data)
1808 {
1809         const struct ethhdr *e = data;
1810
1811         return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1812 }
1813
1814 /*
1815  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1816  */
1817 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1818 {
1819         struct adapter *adapter = dev->ml_priv;
1820         struct sge *sge = adapter->sge;
1821         struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1822         struct cpl_tx_pkt *cpl;
1823         struct sk_buff *orig_skb = skb;
1824         int ret;
1825
1826         if (skb->protocol == htons(ETH_P_CPL5))
1827                 goto send;
1828
1829         /*
1830          * We are using a non-standard hard_header_len.
1831          * Allocate more header room in the rare cases it is not big enough.
1832          */
1833         if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1834                 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1835                 ++st->tx_need_hdrroom;
1836                 dev_kfree_skb_any(orig_skb);
1837                 if (!skb)
1838                         return NETDEV_TX_OK;
1839         }
1840
1841         if (skb_shinfo(skb)->gso_size) {
1842                 int eth_type;
1843                 struct cpl_tx_pkt_lso *hdr;
1844
1845                 ++st->tx_tso;
1846
1847                 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1848                         CPL_ETH_II : CPL_ETH_II_VLAN;
1849
1850                 hdr = skb_push(skb, sizeof(*hdr));
1851                 hdr->opcode = CPL_TX_PKT_LSO;
1852                 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1853                 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1854                 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1855                 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1856                                                           skb_shinfo(skb)->gso_size));
1857                 hdr->len = htonl(skb->len - sizeof(*hdr));
1858                 cpl = (struct cpl_tx_pkt *)hdr;
1859         } else {
1860                 /*
1861                  * Packets shorter than ETH_HLEN can break the MAC, drop them
1862                  * early.  Also, we may get oversized packets because some
1863                  * parts of the kernel don't handle our unusual hard_header_len
1864                  * right, drop those too.
1865                  */
1866                 if (unlikely(skb->len < ETH_HLEN ||
1867                              skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1868                         netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1869                                    skb->len, eth_hdr_len(skb->data), dev->mtu);
1870                         dev_kfree_skb_any(skb);
1871                         return NETDEV_TX_OK;
1872                 }
1873
1874                 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1875                     ip_hdr(skb)->protocol == IPPROTO_UDP) {
1876                         if (unlikely(skb_checksum_help(skb))) {
1877                                 netdev_dbg(dev, "unable to do udp checksum\n");
1878                                 dev_kfree_skb_any(skb);
1879                                 return NETDEV_TX_OK;
1880                         }
1881                 }
1882
1883                 /* Hmmm, assuming to catch the gratious arp... and we'll use
1884                  * it to flush out stuck espi packets...
1885                  */
1886                 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1887                         if (skb->protocol == htons(ETH_P_ARP) &&
1888                             arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1889                                 adapter->sge->espibug_skb[dev->if_port] = skb;
1890                                 /* We want to re-use this skb later. We
1891                                  * simply bump the reference count and it
1892                                  * will not be freed...
1893                                  */
1894                                 skb = skb_get(skb);
1895                         }
1896                 }
1897
1898                 cpl = __skb_push(skb, sizeof(*cpl));
1899                 cpl->opcode = CPL_TX_PKT;
1900                 cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1901                 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1902                 /* the length field isn't used so don't bother setting it */
1903
1904                 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1905         }
1906         cpl->iff = dev->if_port;
1907
1908         if (skb_vlan_tag_present(skb)) {
1909                 cpl->vlan_valid = 1;
1910                 cpl->vlan = htons(skb_vlan_tag_get(skb));
1911                 st->vlan_insert++;
1912         } else
1913                 cpl->vlan_valid = 0;
1914
1915 send:
1916         ret = t1_sge_tx(skb, adapter, 0, dev);
1917
1918         /* If transmit busy, and we reallocated skb's due to headroom limit,
1919          * then silently discard to avoid leak.
1920          */
1921         if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1922                 dev_kfree_skb_any(skb);
1923                 ret = NETDEV_TX_OK;
1924         }
1925         return ret;
1926 }
1927
1928 /*
1929  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1930  */
1931 static void sge_tx_reclaim_cb(struct timer_list *t)
1932 {
1933         int i;
1934         struct sge *sge = from_timer(sge, t, tx_reclaim_timer);
1935
1936         for (i = 0; i < SGE_CMDQ_N; ++i) {
1937                 struct cmdQ *q = &sge->cmdQ[i];
1938
1939                 if (!spin_trylock(&q->lock))
1940                         continue;
1941
1942                 reclaim_completed_tx(sge, q);
1943                 if (i == 0 && q->in_use) {    /* flush pending credits */
1944                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1945                 }
1946                 spin_unlock(&q->lock);
1947         }
1948         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1949 }
1950
1951 /*
1952  * Propagate changes of the SGE coalescing parameters to the HW.
1953  */
1954 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1955 {
1956         sge->fixed_intrtimer = p->rx_coalesce_usecs *
1957                 core_ticks_per_usec(sge->adapter);
1958         writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1959         return 0;
1960 }
1961
1962 /*
1963  * Allocates both RX and TX resources and configures the SGE. However,
1964  * the hardware is not enabled yet.
1965  */
1966 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1967 {
1968         if (alloc_rx_resources(sge, p))
1969                 return -ENOMEM;
1970         if (alloc_tx_resources(sge, p)) {
1971                 free_rx_resources(sge);
1972                 return -ENOMEM;
1973         }
1974         configure_sge(sge, p);
1975
1976         /*
1977          * Now that we have sized the free lists calculate the payload
1978          * capacity of the large buffers.  Other parts of the driver use
1979          * this to set the max offload coalescing size so that RX packets
1980          * do not overflow our large buffers.
1981          */
1982         p->large_buf_capacity = jumbo_payload_capacity(sge);
1983         return 0;
1984 }
1985
1986 /*
1987  * Disables the DMA engine.
1988  */
1989 void t1_sge_stop(struct sge *sge)
1990 {
1991         int i;
1992         writel(0, sge->adapter->regs + A_SG_CONTROL);
1993         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1994
1995         if (is_T2(sge->adapter))
1996                 del_timer_sync(&sge->espibug_timer);
1997
1998         del_timer_sync(&sge->tx_reclaim_timer);
1999         if (sge->tx_sched)
2000                 tx_sched_stop(sge);
2001
2002         for (i = 0; i < MAX_NPORTS; i++)
2003                 kfree_skb(sge->espibug_skb[i]);
2004 }
2005
2006 /*
2007  * Enables the DMA engine.
2008  */
2009 void t1_sge_start(struct sge *sge)
2010 {
2011         refill_free_list(sge, &sge->freelQ[0]);
2012         refill_free_list(sge, &sge->freelQ[1]);
2013
2014         writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2015         doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2016         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2017
2018         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2019
2020         if (is_T2(sge->adapter))
2021                 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2022 }
2023
2024 /*
2025  * Callback for the T2 ESPI 'stuck packet feature' workaorund
2026  */
2027 static void espibug_workaround_t204(struct timer_list *t)
2028 {
2029         struct sge *sge = from_timer(sge, t, espibug_timer);
2030         struct adapter *adapter = sge->adapter;
2031         unsigned int nports = adapter->params.nports;
2032         u32 seop[MAX_NPORTS];
2033
2034         if (adapter->open_device_map & PORT_MASK) {
2035                 int i;
2036
2037                 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2038                         return;
2039
2040                 for (i = 0; i < nports; i++) {
2041                         struct sk_buff *skb = sge->espibug_skb[i];
2042
2043                         if (!netif_running(adapter->port[i].dev) ||
2044                             netif_queue_stopped(adapter->port[i].dev) ||
2045                             !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2046                                 continue;
2047
2048                         if (!skb->cb[0]) {
2049                                 skb_copy_to_linear_data_offset(skb,
2050                                                     sizeof(struct cpl_tx_pkt),
2051                                                                ch_mac_addr,
2052                                                                ETH_ALEN);
2053                                 skb_copy_to_linear_data_offset(skb,
2054                                                                skb->len - 10,
2055                                                                ch_mac_addr,
2056                                                                ETH_ALEN);
2057                                 skb->cb[0] = 0xff;
2058                         }
2059
2060                         /* bump the reference count to avoid freeing of
2061                          * the skb once the DMA has completed.
2062                          */
2063                         skb = skb_get(skb);
2064                         t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2065                 }
2066         }
2067         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2068 }
2069
2070 static void espibug_workaround(struct timer_list *t)
2071 {
2072         struct sge *sge = from_timer(sge, t, espibug_timer);
2073         struct adapter *adapter = sge->adapter;
2074
2075         if (netif_running(adapter->port[0].dev)) {
2076                 struct sk_buff *skb = sge->espibug_skb[0];
2077                 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2078
2079                 if ((seop & 0xfff0fff) == 0xfff && skb) {
2080                         if (!skb->cb[0]) {
2081                                 skb_copy_to_linear_data_offset(skb,
2082                                                      sizeof(struct cpl_tx_pkt),
2083                                                                ch_mac_addr,
2084                                                                ETH_ALEN);
2085                                 skb_copy_to_linear_data_offset(skb,
2086                                                                skb->len - 10,
2087                                                                ch_mac_addr,
2088                                                                ETH_ALEN);
2089                                 skb->cb[0] = 0xff;
2090                         }
2091
2092                         /* bump the reference count to avoid freeing of the
2093                          * skb once the DMA has completed.
2094                          */
2095                         skb = skb_get(skb);
2096                         t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2097                 }
2098         }
2099         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2100 }
2101
2102 /*
2103  * Creates a t1_sge structure and returns suggested resource parameters.
2104  */
2105 struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2106 {
2107         struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2108         int i;
2109
2110         if (!sge)
2111                 return NULL;
2112
2113         sge->adapter = adapter;
2114         sge->netdev = adapter->port[0].dev;
2115         sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2116         sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2117
2118         for_each_port(adapter, i) {
2119                 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2120                 if (!sge->port_stats[i])
2121                         goto nomem_port;
2122         }
2123
2124         timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0);
2125
2126         if (is_T2(sge->adapter)) {
2127                 timer_setup(&sge->espibug_timer,
2128                             adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround,
2129                             0);
2130
2131                 if (adapter->params.nports > 1)
2132                         tx_sched_init(sge);
2133
2134                 sge->espibug_timeout = 1;
2135                 /* for T204, every 10ms */
2136                 if (adapter->params.nports > 1)
2137                         sge->espibug_timeout = HZ/100;
2138         }
2139
2140
2141         p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2142         p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2143         p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2144         p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2145         if (sge->tx_sched) {
2146                 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2147                         p->rx_coalesce_usecs = 15;
2148                 else
2149                         p->rx_coalesce_usecs = 50;
2150         } else
2151                 p->rx_coalesce_usecs = 50;
2152
2153         p->coalesce_enable = 0;
2154         p->sample_interval_usecs = 0;
2155
2156         return sge;
2157 nomem_port:
2158         while (i >= 0) {
2159                 free_percpu(sge->port_stats[i]);
2160                 --i;
2161         }
2162         kfree(sge);
2163         return NULL;
2164
2165 }