Merge tag 'pci-v5.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39
40 #include <asm/unaligned.h>
41
42 #include "bcmgenet.h"
43
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT        4
46
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY       0
49
50 #define GENET_Q16_RX_BD_CNT     \
51         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT     \
53         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54
55 #define RX_BUF_LENGTH           2048
56 #define SKB_ALIGNMENT           32
57
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
61
62 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
63                                 TOTAL_DESC * DMA_DESC_SIZE)
64
65 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
66                                 TOTAL_DESC * DMA_DESC_SIZE)
67
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73         /* MIPS chips strapped for BE will automagically configure the
74          * peripheral registers for CPU-native byte order.
75          */
76         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77                 __raw_writel(value, offset);
78         else
79                 writel_relaxed(value, offset);
80 }
81
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85                 return __raw_readl(offset);
86         else
87                 return readl_relaxed(offset);
88 }
89
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91                                              void __iomem *d, u32 value)
92 {
93         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97                                     void __iomem *d,
98                                     dma_addr_t addr)
99 {
100         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101
102         /* Register writes to GISB bus can take couple hundred nanoseconds
103          * and are done for each packet, save these expensive writes unless
104          * the platform is explicitly configured for 64-bits/LPAE.
105          */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107         if (priv->hw_params->flags & GENET_HAS_40BITS)
108                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114                                void __iomem *d, dma_addr_t addr, u32 val)
115 {
116         dmadesc_set_addr(priv, d, addr);
117         dmadesc_set_length_status(priv, d, val);
118 }
119
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121                                           void __iomem *d)
122 {
123         dma_addr_t addr;
124
125         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126
127         /* Register writes to GISB bus can take couple hundred nanoseconds
128          * and are done for each packet, save these expensive writes unless
129          * the platform is explicitly configured for 64-bits/LPAE.
130          */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132         if (priv->hw_params->flags & GENET_HAS_40BITS)
133                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135         return addr;
136 }
137
138 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
139
140 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141                                 NETIF_MSG_LINK)
142
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145         if (GENET_IS_V1(priv))
146                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147         else
148                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153         if (GENET_IS_V1(priv))
154                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155         else
156                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165         if (GENET_IS_V1(priv))
166                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167         else
168                 return bcmgenet_readl(priv->base +
169                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174         if (GENET_IS_V1(priv))
175                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176         else
177                 bcmgenet_writel(val, priv->base +
178                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183         if (GENET_IS_V1(priv))
184                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185         else
186                 return bcmgenet_readl(priv->base +
187                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192         if (GENET_IS_V1(priv))
193                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194         else
195                 bcmgenet_writel(val, priv->base +
196                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201         DMA_RING_CFG = 0,
202         DMA_CTRL,
203         DMA_STATUS,
204         DMA_SCB_BURST_SIZE,
205         DMA_ARB_CTRL,
206         DMA_PRIORITY_0,
207         DMA_PRIORITY_1,
208         DMA_PRIORITY_2,
209         DMA_INDEX2RING_0,
210         DMA_INDEX2RING_1,
211         DMA_INDEX2RING_2,
212         DMA_INDEX2RING_3,
213         DMA_INDEX2RING_4,
214         DMA_INDEX2RING_5,
215         DMA_INDEX2RING_6,
216         DMA_INDEX2RING_7,
217         DMA_RING0_TIMEOUT,
218         DMA_RING1_TIMEOUT,
219         DMA_RING2_TIMEOUT,
220         DMA_RING3_TIMEOUT,
221         DMA_RING4_TIMEOUT,
222         DMA_RING5_TIMEOUT,
223         DMA_RING6_TIMEOUT,
224         DMA_RING7_TIMEOUT,
225         DMA_RING8_TIMEOUT,
226         DMA_RING9_TIMEOUT,
227         DMA_RING10_TIMEOUT,
228         DMA_RING11_TIMEOUT,
229         DMA_RING12_TIMEOUT,
230         DMA_RING13_TIMEOUT,
231         DMA_RING14_TIMEOUT,
232         DMA_RING15_TIMEOUT,
233         DMA_RING16_TIMEOUT,
234 };
235
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237         [DMA_RING_CFG]          = 0x00,
238         [DMA_CTRL]              = 0x04,
239         [DMA_STATUS]            = 0x08,
240         [DMA_SCB_BURST_SIZE]    = 0x0C,
241         [DMA_ARB_CTRL]          = 0x2C,
242         [DMA_PRIORITY_0]        = 0x30,
243         [DMA_PRIORITY_1]        = 0x34,
244         [DMA_PRIORITY_2]        = 0x38,
245         [DMA_RING0_TIMEOUT]     = 0x2C,
246         [DMA_RING1_TIMEOUT]     = 0x30,
247         [DMA_RING2_TIMEOUT]     = 0x34,
248         [DMA_RING3_TIMEOUT]     = 0x38,
249         [DMA_RING4_TIMEOUT]     = 0x3c,
250         [DMA_RING5_TIMEOUT]     = 0x40,
251         [DMA_RING6_TIMEOUT]     = 0x44,
252         [DMA_RING7_TIMEOUT]     = 0x48,
253         [DMA_RING8_TIMEOUT]     = 0x4c,
254         [DMA_RING9_TIMEOUT]     = 0x50,
255         [DMA_RING10_TIMEOUT]    = 0x54,
256         [DMA_RING11_TIMEOUT]    = 0x58,
257         [DMA_RING12_TIMEOUT]    = 0x5c,
258         [DMA_RING13_TIMEOUT]    = 0x60,
259         [DMA_RING14_TIMEOUT]    = 0x64,
260         [DMA_RING15_TIMEOUT]    = 0x68,
261         [DMA_RING16_TIMEOUT]    = 0x6C,
262         [DMA_INDEX2RING_0]      = 0x70,
263         [DMA_INDEX2RING_1]      = 0x74,
264         [DMA_INDEX2RING_2]      = 0x78,
265         [DMA_INDEX2RING_3]      = 0x7C,
266         [DMA_INDEX2RING_4]      = 0x80,
267         [DMA_INDEX2RING_5]      = 0x84,
268         [DMA_INDEX2RING_6]      = 0x88,
269         [DMA_INDEX2RING_7]      = 0x8C,
270 };
271
272 static const u8 bcmgenet_dma_regs_v2[] = {
273         [DMA_RING_CFG]          = 0x00,
274         [DMA_CTRL]              = 0x04,
275         [DMA_STATUS]            = 0x08,
276         [DMA_SCB_BURST_SIZE]    = 0x0C,
277         [DMA_ARB_CTRL]          = 0x30,
278         [DMA_PRIORITY_0]        = 0x34,
279         [DMA_PRIORITY_1]        = 0x38,
280         [DMA_PRIORITY_2]        = 0x3C,
281         [DMA_RING0_TIMEOUT]     = 0x2C,
282         [DMA_RING1_TIMEOUT]     = 0x30,
283         [DMA_RING2_TIMEOUT]     = 0x34,
284         [DMA_RING3_TIMEOUT]     = 0x38,
285         [DMA_RING4_TIMEOUT]     = 0x3c,
286         [DMA_RING5_TIMEOUT]     = 0x40,
287         [DMA_RING6_TIMEOUT]     = 0x44,
288         [DMA_RING7_TIMEOUT]     = 0x48,
289         [DMA_RING8_TIMEOUT]     = 0x4c,
290         [DMA_RING9_TIMEOUT]     = 0x50,
291         [DMA_RING10_TIMEOUT]    = 0x54,
292         [DMA_RING11_TIMEOUT]    = 0x58,
293         [DMA_RING12_TIMEOUT]    = 0x5c,
294         [DMA_RING13_TIMEOUT]    = 0x60,
295         [DMA_RING14_TIMEOUT]    = 0x64,
296         [DMA_RING15_TIMEOUT]    = 0x68,
297         [DMA_RING16_TIMEOUT]    = 0x6C,
298 };
299
300 static const u8 bcmgenet_dma_regs_v1[] = {
301         [DMA_CTRL]              = 0x00,
302         [DMA_STATUS]            = 0x04,
303         [DMA_SCB_BURST_SIZE]    = 0x0C,
304         [DMA_ARB_CTRL]          = 0x30,
305         [DMA_PRIORITY_0]        = 0x34,
306         [DMA_PRIORITY_1]        = 0x38,
307         [DMA_PRIORITY_2]        = 0x3C,
308         [DMA_RING0_TIMEOUT]     = 0x2C,
309         [DMA_RING1_TIMEOUT]     = 0x30,
310         [DMA_RING2_TIMEOUT]     = 0x34,
311         [DMA_RING3_TIMEOUT]     = 0x38,
312         [DMA_RING4_TIMEOUT]     = 0x3c,
313         [DMA_RING5_TIMEOUT]     = 0x40,
314         [DMA_RING6_TIMEOUT]     = 0x44,
315         [DMA_RING7_TIMEOUT]     = 0x48,
316         [DMA_RING8_TIMEOUT]     = 0x4c,
317         [DMA_RING9_TIMEOUT]     = 0x50,
318         [DMA_RING10_TIMEOUT]    = 0x54,
319         [DMA_RING11_TIMEOUT]    = 0x58,
320         [DMA_RING12_TIMEOUT]    = 0x5c,
321         [DMA_RING13_TIMEOUT]    = 0x60,
322         [DMA_RING14_TIMEOUT]    = 0x64,
323         [DMA_RING15_TIMEOUT]    = 0x68,
324         [DMA_RING16_TIMEOUT]    = 0x6C,
325 };
326
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332         return netdev_priv(dev_get_drvdata(dev));
333 }
334
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336                                       enum dma_reg r)
337 {
338         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343                                         u32 val, enum dma_reg r)
344 {
345         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350                                       enum dma_reg r)
351 {
352         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357                                         u32 val, enum dma_reg r)
358 {
359         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368         TDMA_READ_PTR = 0,
369         RDMA_WRITE_PTR = TDMA_READ_PTR,
370         TDMA_READ_PTR_HI,
371         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372         TDMA_CONS_INDEX,
373         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374         TDMA_PROD_INDEX,
375         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376         DMA_RING_BUF_SIZE,
377         DMA_START_ADDR,
378         DMA_START_ADDR_HI,
379         DMA_END_ADDR,
380         DMA_END_ADDR_HI,
381         DMA_MBUF_DONE_THRESH,
382         TDMA_FLOW_PERIOD,
383         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384         TDMA_WRITE_PTR,
385         RDMA_READ_PTR = TDMA_WRITE_PTR,
386         TDMA_WRITE_PTR_HI,
387         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396         [TDMA_READ_PTR]                 = 0x00,
397         [TDMA_READ_PTR_HI]              = 0x04,
398         [TDMA_CONS_INDEX]               = 0x08,
399         [TDMA_PROD_INDEX]               = 0x0C,
400         [DMA_RING_BUF_SIZE]             = 0x10,
401         [DMA_START_ADDR]                = 0x14,
402         [DMA_START_ADDR_HI]             = 0x18,
403         [DMA_END_ADDR]                  = 0x1C,
404         [DMA_END_ADDR_HI]               = 0x20,
405         [DMA_MBUF_DONE_THRESH]          = 0x24,
406         [TDMA_FLOW_PERIOD]              = 0x28,
407         [TDMA_WRITE_PTR]                = 0x2C,
408         [TDMA_WRITE_PTR_HI]             = 0x30,
409 };
410
411 static const u8 genet_dma_ring_regs_v123[] = {
412         [TDMA_READ_PTR]                 = 0x00,
413         [TDMA_CONS_INDEX]               = 0x04,
414         [TDMA_PROD_INDEX]               = 0x08,
415         [DMA_RING_BUF_SIZE]             = 0x0C,
416         [DMA_START_ADDR]                = 0x10,
417         [DMA_END_ADDR]                  = 0x14,
418         [DMA_MBUF_DONE_THRESH]          = 0x18,
419         [TDMA_FLOW_PERIOD]              = 0x1C,
420         [TDMA_WRITE_PTR]                = 0x20,
421 };
422
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427                                            unsigned int ring,
428                                            enum dma_ring_reg r)
429 {
430         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431                               (DMA_RING_SIZE * ring) +
432                               genet_dma_ring_regs[r]);
433 }
434
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436                                              unsigned int ring, u32 val,
437                                              enum dma_ring_reg r)
438 {
439         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440                         (DMA_RING_SIZE * ring) +
441                         genet_dma_ring_regs[r]);
442 }
443
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445                                            unsigned int ring,
446                                            enum dma_ring_reg r)
447 {
448         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449                               (DMA_RING_SIZE * ring) +
450                               genet_dma_ring_regs[r]);
451 }
452
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454                                              unsigned int ring, u32 val,
455                                              enum dma_ring_reg r)
456 {
457         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458                         (DMA_RING_SIZE * ring) +
459                         genet_dma_ring_regs[r]);
460 }
461
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464         u32 offset;
465         u32 reg;
466
467         offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468         reg = bcmgenet_hfb_reg_readl(priv, offset);
469         reg |= (1 << (f_index % 32));
470         bcmgenet_hfb_reg_writel(priv, reg, offset);
471         reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472         reg |= RBUF_HFB_EN;
473         bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478         u32 offset, reg, reg1;
479
480         offset = HFB_FLT_ENABLE_V3PLUS;
481         reg = bcmgenet_hfb_reg_readl(priv, offset);
482         reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483         if  (f_index < 32) {
484                 reg1 &= ~(1 << (f_index % 32));
485                 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486         } else {
487                 reg &= ~(1 << (f_index % 32));
488                 bcmgenet_hfb_reg_writel(priv, reg, offset);
489         }
490         if (!reg && !reg1) {
491                 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492                 reg &= ~RBUF_HFB_EN;
493                 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494         }
495 }
496
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498                                                      u32 f_index, u32 rx_queue)
499 {
500         u32 offset;
501         u32 reg;
502
503         offset = f_index / 8;
504         reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505         reg &= ~(0xF << (4 * (f_index % 8)));
506         reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507         bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511                                            u32 f_index, u32 f_length)
512 {
513         u32 offset;
514         u32 reg;
515
516         offset = HFB_FLT_LEN_V3PLUS +
517                  ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518                  sizeof(u32);
519         reg = bcmgenet_hfb_reg_readl(priv, offset);
520         reg &= ~(0xFF << (8 * (f_index % 4)));
521         reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522         bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527         while (size) {
528                 switch (*(unsigned char *)mask++) {
529                 case 0x00:
530                 case 0x0f:
531                 case 0xf0:
532                 case 0xff:
533                         size--;
534                         continue;
535                 default:
536                         return -EINVAL;
537                 }
538         }
539
540         return 0;
541 }
542
543 #define VALIDATE_MASK(x) \
544         bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545
546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547                                     u32 offset, void *val, void *mask,
548                                     size_t size)
549 {
550         u32 index, tmp;
551
552         index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553         tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
554
555         while (size--) {
556                 if (offset++ & 1) {
557                         tmp &= ~0x300FF;
558                         tmp |= (*(unsigned char *)val++);
559                         switch ((*(unsigned char *)mask++)) {
560                         case 0xFF:
561                                 tmp |= 0x30000;
562                                 break;
563                         case 0xF0:
564                                 tmp |= 0x20000;
565                                 break;
566                         case 0x0F:
567                                 tmp |= 0x10000;
568                                 break;
569                         }
570                         bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571                         if (size)
572                                 tmp = bcmgenet_hfb_readl(priv,
573                                                          index * sizeof(u32));
574                 } else {
575                         tmp &= ~0xCFF00;
576                         tmp |= (*(unsigned char *)val++) << 8;
577                         switch ((*(unsigned char *)mask++)) {
578                         case 0xFF:
579                                 tmp |= 0xC0000;
580                                 break;
581                         case 0xF0:
582                                 tmp |= 0x80000;
583                                 break;
584                         case 0x0F:
585                                 tmp |= 0x40000;
586                                 break;
587                         }
588                         if (!size)
589                                 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
590                 }
591         }
592
593         return 0;
594 }
595
596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597                                              struct bcmgenet_rxnfc_rule *rule)
598 {
599         struct ethtool_rx_flow_spec *fs = &rule->fs;
600         u32 offset = 0, f_length = 0, f;
601         u8 val_8, mask_8;
602         __be16 val_16;
603         u16 mask_16;
604         size_t size;
605
606         f = fs->location;
607         if (fs->flow_type & FLOW_MAC_EXT) {
608                 bcmgenet_hfb_insert_data(priv, f, 0,
609                                          &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610                                          sizeof(fs->h_ext.h_dest));
611         }
612
613         if (fs->flow_type & FLOW_EXT) {
614                 if (fs->m_ext.vlan_etype ||
615                     fs->m_ext.vlan_tci) {
616                         bcmgenet_hfb_insert_data(priv, f, 12,
617                                                  &fs->h_ext.vlan_etype,
618                                                  &fs->m_ext.vlan_etype,
619                                                  sizeof(fs->h_ext.vlan_etype));
620                         bcmgenet_hfb_insert_data(priv, f, 14,
621                                                  &fs->h_ext.vlan_tci,
622                                                  &fs->m_ext.vlan_tci,
623                                                  sizeof(fs->h_ext.vlan_tci));
624                         offset += VLAN_HLEN;
625                         f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
626                 }
627         }
628
629         switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630         case ETHER_FLOW:
631                 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632                 bcmgenet_hfb_insert_data(priv, f, 0,
633                                          &fs->h_u.ether_spec.h_dest,
634                                          &fs->m_u.ether_spec.h_dest,
635                                          sizeof(fs->h_u.ether_spec.h_dest));
636                 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637                                          &fs->h_u.ether_spec.h_source,
638                                          &fs->m_u.ether_spec.h_source,
639                                          sizeof(fs->h_u.ether_spec.h_source));
640                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641                                          &fs->h_u.ether_spec.h_proto,
642                                          &fs->m_u.ether_spec.h_proto,
643                                          sizeof(fs->h_u.ether_spec.h_proto));
644                 break;
645         case IP_USER_FLOW:
646                 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647                 /* Specify IP Ether Type */
648                 val_16 = htons(ETH_P_IP);
649                 mask_16 = 0xFFFF;
650                 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651                                          &val_16, &mask_16, sizeof(val_16));
652                 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653                                          &fs->h_u.usr_ip4_spec.tos,
654                                          &fs->m_u.usr_ip4_spec.tos,
655                                          sizeof(fs->h_u.usr_ip4_spec.tos));
656                 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657                                          &fs->h_u.usr_ip4_spec.proto,
658                                          &fs->m_u.usr_ip4_spec.proto,
659                                          sizeof(fs->h_u.usr_ip4_spec.proto));
660                 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661                                          &fs->h_u.usr_ip4_spec.ip4src,
662                                          &fs->m_u.usr_ip4_spec.ip4src,
663                                          sizeof(fs->h_u.usr_ip4_spec.ip4src));
664                 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665                                          &fs->h_u.usr_ip4_spec.ip4dst,
666                                          &fs->m_u.usr_ip4_spec.ip4dst,
667                                          sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668                 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669                         break;
670
671                 /* Only supports 20 byte IPv4 header */
672                 val_8 = 0x45;
673                 mask_8 = 0xFF;
674                 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675                                          &val_8, &mask_8,
676                                          sizeof(val_8));
677                 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678                 bcmgenet_hfb_insert_data(priv, f,
679                                          ETH_HLEN + 20 + offset,
680                                          &fs->h_u.usr_ip4_spec.l4_4_bytes,
681                                          &fs->m_u.usr_ip4_spec.l4_4_bytes,
682                                          size);
683                 f_length += DIV_ROUND_UP(size, 2);
684                 break;
685         }
686
687         bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688         if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689                 /* Ring 0 flows can be handled by the default Descriptor Ring
690                  * We'll map them to ring 0, but don't enable the filter
691                  */
692                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693                 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694         } else {
695                 /* Other Rx rings are direct mapped here */
696                 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697                                                          fs->ring_cookie);
698                 bcmgenet_hfb_enable_filter(priv, f);
699                 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
700         }
701 }
702
703 /* bcmgenet_hfb_clear
704  *
705  * Clear Hardware Filter Block and disable all filtering.
706  */
707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
708 {
709         u32 base, i;
710
711         base = f_index * priv->hw_params->hfb_filter_size;
712         for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713                 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
714 }
715
716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
717 {
718         u32 i;
719
720         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721                 return;
722
723         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
726
727         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728                 bcmgenet_rdma_writel(priv, 0x0, i);
729
730         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731                 bcmgenet_hfb_reg_writel(priv, 0x0,
732                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
733
734         for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735                 bcmgenet_hfb_clear_filter(priv, i);
736 }
737
738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
739 {
740         int i;
741
742         INIT_LIST_HEAD(&priv->rxnfc_list);
743         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744                 return;
745
746         for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747                 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748                 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
749         }
750
751         bcmgenet_hfb_clear(priv);
752 }
753
754 static int bcmgenet_begin(struct net_device *dev)
755 {
756         struct bcmgenet_priv *priv = netdev_priv(dev);
757
758         /* Turn on the clock */
759         return clk_prepare_enable(priv->clk);
760 }
761
762 static void bcmgenet_complete(struct net_device *dev)
763 {
764         struct bcmgenet_priv *priv = netdev_priv(dev);
765
766         /* Turn off the clock */
767         clk_disable_unprepare(priv->clk);
768 }
769
770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771                                        struct ethtool_link_ksettings *cmd)
772 {
773         if (!netif_running(dev))
774                 return -EINVAL;
775
776         if (!dev->phydev)
777                 return -ENODEV;
778
779         phy_ethtool_ksettings_get(dev->phydev, cmd);
780
781         return 0;
782 }
783
784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785                                        const struct ethtool_link_ksettings *cmd)
786 {
787         if (!netif_running(dev))
788                 return -EINVAL;
789
790         if (!dev->phydev)
791                 return -ENODEV;
792
793         return phy_ethtool_ksettings_set(dev->phydev, cmd);
794 }
795
796 static int bcmgenet_set_features(struct net_device *dev,
797                                  netdev_features_t features)
798 {
799         struct bcmgenet_priv *priv = netdev_priv(dev);
800         u32 reg;
801         int ret;
802
803         ret = clk_prepare_enable(priv->clk);
804         if (ret)
805                 return ret;
806
807         /* Make sure we reflect the value of CRC_CMD_FWD */
808         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
810
811         clk_disable_unprepare(priv->clk);
812
813         return ret;
814 }
815
816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
817 {
818         struct bcmgenet_priv *priv = netdev_priv(dev);
819
820         return priv->msg_enable;
821 }
822
823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
824 {
825         struct bcmgenet_priv *priv = netdev_priv(dev);
826
827         priv->msg_enable = level;
828 }
829
830 static int bcmgenet_get_coalesce(struct net_device *dev,
831                                  struct ethtool_coalesce *ec,
832                                  struct kernel_ethtool_coalesce *kernel_coal,
833                                  struct netlink_ext_ack *extack)
834 {
835         struct bcmgenet_priv *priv = netdev_priv(dev);
836         struct bcmgenet_rx_ring *ring;
837         unsigned int i;
838
839         ec->tx_max_coalesced_frames =
840                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
841                                          DMA_MBUF_DONE_THRESH);
842         ec->rx_max_coalesced_frames =
843                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
844                                          DMA_MBUF_DONE_THRESH);
845         ec->rx_coalesce_usecs =
846                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
847
848         for (i = 0; i < priv->hw_params->rx_queues; i++) {
849                 ring = &priv->rx_rings[i];
850                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
851         }
852         ring = &priv->rx_rings[DESC_INDEX];
853         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
854
855         return 0;
856 }
857
858 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
859                                      u32 usecs, u32 pkts)
860 {
861         struct bcmgenet_priv *priv = ring->priv;
862         unsigned int i = ring->index;
863         u32 reg;
864
865         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
866
867         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
868         reg &= ~DMA_TIMEOUT_MASK;
869         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
870         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
871 }
872
873 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
874                                           struct ethtool_coalesce *ec)
875 {
876         struct dim_cq_moder moder;
877         u32 usecs, pkts;
878
879         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
880         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
881         usecs = ring->rx_coalesce_usecs;
882         pkts = ring->rx_max_coalesced_frames;
883
884         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
885                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
886                 usecs = moder.usec;
887                 pkts = moder.pkts;
888         }
889
890         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
891         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
892 }
893
894 static int bcmgenet_set_coalesce(struct net_device *dev,
895                                  struct ethtool_coalesce *ec,
896                                  struct kernel_ethtool_coalesce *kernel_coal,
897                                  struct netlink_ext_ack *extack)
898 {
899         struct bcmgenet_priv *priv = netdev_priv(dev);
900         unsigned int i;
901
902         /* Base system clock is 125Mhz, DMA timeout is this reference clock
903          * divided by 1024, which yields roughly 8.192us, our maximum value
904          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
905          */
906         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
907             ec->tx_max_coalesced_frames == 0 ||
908             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
909             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
910                 return -EINVAL;
911
912         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
913                 return -EINVAL;
914
915         /* GENET TDMA hardware does not support a configurable timeout, but will
916          * always generate an interrupt either after MBDONE packets have been
917          * transmitted, or when the ring is empty.
918          */
919
920         /* Program all TX queues with the same values, as there is no
921          * ethtool knob to do coalescing on a per-queue basis
922          */
923         for (i = 0; i < priv->hw_params->tx_queues; i++)
924                 bcmgenet_tdma_ring_writel(priv, i,
925                                           ec->tx_max_coalesced_frames,
926                                           DMA_MBUF_DONE_THRESH);
927         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
928                                   ec->tx_max_coalesced_frames,
929                                   DMA_MBUF_DONE_THRESH);
930
931         for (i = 0; i < priv->hw_params->rx_queues; i++)
932                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
933         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
934
935         return 0;
936 }
937
938 /* standard ethtool support functions. */
939 enum bcmgenet_stat_type {
940         BCMGENET_STAT_NETDEV = -1,
941         BCMGENET_STAT_MIB_RX,
942         BCMGENET_STAT_MIB_TX,
943         BCMGENET_STAT_RUNT,
944         BCMGENET_STAT_MISC,
945         BCMGENET_STAT_SOFT,
946 };
947
948 struct bcmgenet_stats {
949         char stat_string[ETH_GSTRING_LEN];
950         int stat_sizeof;
951         int stat_offset;
952         enum bcmgenet_stat_type type;
953         /* reg offset from UMAC base for misc counters */
954         u16 reg_offset;
955 };
956
957 #define STAT_NETDEV(m) { \
958         .stat_string = __stringify(m), \
959         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
960         .stat_offset = offsetof(struct net_device_stats, m), \
961         .type = BCMGENET_STAT_NETDEV, \
962 }
963
964 #define STAT_GENET_MIB(str, m, _type) { \
965         .stat_string = str, \
966         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
967         .stat_offset = offsetof(struct bcmgenet_priv, m), \
968         .type = _type, \
969 }
970
971 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
972 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
973 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
974 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
975
976 #define STAT_GENET_MISC(str, m, offset) { \
977         .stat_string = str, \
978         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
979         .stat_offset = offsetof(struct bcmgenet_priv, m), \
980         .type = BCMGENET_STAT_MISC, \
981         .reg_offset = offset, \
982 }
983
984 #define STAT_GENET_Q(num) \
985         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
986                         tx_rings[num].packets), \
987         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
988                         tx_rings[num].bytes), \
989         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
990                         rx_rings[num].bytes),    \
991         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
992                         rx_rings[num].packets), \
993         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
994                         rx_rings[num].errors), \
995         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
996                         rx_rings[num].dropped)
997
998 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
999  * between the end of TX stats and the beginning of the RX RUNT
1000  */
1001 #define BCMGENET_STAT_OFFSET    0xc
1002
1003 /* Hardware counters must be kept in sync because the order/offset
1004  * is important here (order in structure declaration = order in hardware)
1005  */
1006 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1007         /* general stats */
1008         STAT_NETDEV(rx_packets),
1009         STAT_NETDEV(tx_packets),
1010         STAT_NETDEV(rx_bytes),
1011         STAT_NETDEV(tx_bytes),
1012         STAT_NETDEV(rx_errors),
1013         STAT_NETDEV(tx_errors),
1014         STAT_NETDEV(rx_dropped),
1015         STAT_NETDEV(tx_dropped),
1016         STAT_NETDEV(multicast),
1017         /* UniMAC RSV counters */
1018         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1019         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1020         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1021         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1022         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1023         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1024         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1025         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1026         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1027         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1028         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1029         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1030         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1031         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1032         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1033         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1034         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1035         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1036         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1037         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1038         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1039         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1040         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1041         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1042         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1043         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1044         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1045         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1046         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1047         /* UniMAC TSV counters */
1048         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1049         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1050         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1051         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1052         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1053         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1054         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1055         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1056         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1057         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1058         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1059         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1060         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1061         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1062         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1063         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1064         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1065         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1066         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1067         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1068         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1069         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1070         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1071         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1072         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1073         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1074         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1075         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1076         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1077         /* UniMAC RUNT counters */
1078         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1079         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1080         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1081         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1082         /* Misc UniMAC counters */
1083         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1084                         UMAC_RBUF_OVFL_CNT_V1),
1085         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1086                         UMAC_RBUF_ERR_CNT_V1),
1087         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1088         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1089         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1090         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1091         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1092         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1093                             mib.tx_realloc_tsb_failed),
1094         /* Per TX queues */
1095         STAT_GENET_Q(0),
1096         STAT_GENET_Q(1),
1097         STAT_GENET_Q(2),
1098         STAT_GENET_Q(3),
1099         STAT_GENET_Q(16),
1100 };
1101
1102 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
1103
1104 static void bcmgenet_get_drvinfo(struct net_device *dev,
1105                                  struct ethtool_drvinfo *info)
1106 {
1107         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1108 }
1109
1110 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1111 {
1112         switch (string_set) {
1113         case ETH_SS_STATS:
1114                 return BCMGENET_STATS_LEN;
1115         default:
1116                 return -EOPNOTSUPP;
1117         }
1118 }
1119
1120 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1121                                  u8 *data)
1122 {
1123         int i;
1124
1125         switch (stringset) {
1126         case ETH_SS_STATS:
1127                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1128                         memcpy(data + i * ETH_GSTRING_LEN,
1129                                bcmgenet_gstrings_stats[i].stat_string,
1130                                ETH_GSTRING_LEN);
1131                 }
1132                 break;
1133         }
1134 }
1135
1136 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1137 {
1138         u16 new_offset;
1139         u32 val;
1140
1141         switch (offset) {
1142         case UMAC_RBUF_OVFL_CNT_V1:
1143                 if (GENET_IS_V2(priv))
1144                         new_offset = RBUF_OVFL_CNT_V2;
1145                 else
1146                         new_offset = RBUF_OVFL_CNT_V3PLUS;
1147
1148                 val = bcmgenet_rbuf_readl(priv, new_offset);
1149                 /* clear if overflowed */
1150                 if (val == ~0)
1151                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1152                 break;
1153         case UMAC_RBUF_ERR_CNT_V1:
1154                 if (GENET_IS_V2(priv))
1155                         new_offset = RBUF_ERR_CNT_V2;
1156                 else
1157                         new_offset = RBUF_ERR_CNT_V3PLUS;
1158
1159                 val = bcmgenet_rbuf_readl(priv, new_offset);
1160                 /* clear if overflowed */
1161                 if (val == ~0)
1162                         bcmgenet_rbuf_writel(priv, 0, new_offset);
1163                 break;
1164         default:
1165                 val = bcmgenet_umac_readl(priv, offset);
1166                 /* clear if overflowed */
1167                 if (val == ~0)
1168                         bcmgenet_umac_writel(priv, 0, offset);
1169                 break;
1170         }
1171
1172         return val;
1173 }
1174
1175 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1176 {
1177         int i, j = 0;
1178
1179         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1180                 const struct bcmgenet_stats *s;
1181                 u8 offset = 0;
1182                 u32 val = 0;
1183                 char *p;
1184
1185                 s = &bcmgenet_gstrings_stats[i];
1186                 switch (s->type) {
1187                 case BCMGENET_STAT_NETDEV:
1188                 case BCMGENET_STAT_SOFT:
1189                         continue;
1190                 case BCMGENET_STAT_RUNT:
1191                         offset += BCMGENET_STAT_OFFSET;
1192                         fallthrough;
1193                 case BCMGENET_STAT_MIB_TX:
1194                         offset += BCMGENET_STAT_OFFSET;
1195                         fallthrough;
1196                 case BCMGENET_STAT_MIB_RX:
1197                         val = bcmgenet_umac_readl(priv,
1198                                                   UMAC_MIB_START + j + offset);
1199                         offset = 0;     /* Reset Offset */
1200                         break;
1201                 case BCMGENET_STAT_MISC:
1202                         if (GENET_IS_V1(priv)) {
1203                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
1204                                 /* clear if overflowed */
1205                                 if (val == ~0)
1206                                         bcmgenet_umac_writel(priv, 0,
1207                                                              s->reg_offset);
1208                         } else {
1209                                 val = bcmgenet_update_stat_misc(priv,
1210                                                                 s->reg_offset);
1211                         }
1212                         break;
1213                 }
1214
1215                 j += s->stat_sizeof;
1216                 p = (char *)priv + s->stat_offset;
1217                 *(u32 *)p = val;
1218         }
1219 }
1220
1221 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1222                                        struct ethtool_stats *stats,
1223                                        u64 *data)
1224 {
1225         struct bcmgenet_priv *priv = netdev_priv(dev);
1226         int i;
1227
1228         if (netif_running(dev))
1229                 bcmgenet_update_mib_counters(priv);
1230
1231         dev->netdev_ops->ndo_get_stats(dev);
1232
1233         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1234                 const struct bcmgenet_stats *s;
1235                 char *p;
1236
1237                 s = &bcmgenet_gstrings_stats[i];
1238                 if (s->type == BCMGENET_STAT_NETDEV)
1239                         p = (char *)&dev->stats;
1240                 else
1241                         p = (char *)priv;
1242                 p += s->stat_offset;
1243                 if (sizeof(unsigned long) != sizeof(u32) &&
1244                     s->stat_sizeof == sizeof(unsigned long))
1245                         data[i] = *(unsigned long *)p;
1246                 else
1247                         data[i] = *(u32 *)p;
1248         }
1249 }
1250
1251 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1252 {
1253         struct bcmgenet_priv *priv = netdev_priv(dev);
1254         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1255         u32 reg;
1256
1257         if (enable && !priv->clk_eee_enabled) {
1258                 clk_prepare_enable(priv->clk_eee);
1259                 priv->clk_eee_enabled = true;
1260         }
1261
1262         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1263         if (enable)
1264                 reg |= EEE_EN;
1265         else
1266                 reg &= ~EEE_EN;
1267         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1268
1269         /* Enable EEE and switch to a 27Mhz clock automatically */
1270         reg = bcmgenet_readl(priv->base + off);
1271         if (enable)
1272                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1273         else
1274                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1275         bcmgenet_writel(reg, priv->base + off);
1276
1277         /* Do the same for thing for RBUF */
1278         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1279         if (enable)
1280                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1281         else
1282                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1283         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1284
1285         if (!enable && priv->clk_eee_enabled) {
1286                 clk_disable_unprepare(priv->clk_eee);
1287                 priv->clk_eee_enabled = false;
1288         }
1289
1290         priv->eee.eee_enabled = enable;
1291         priv->eee.eee_active = enable;
1292 }
1293
1294 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1295 {
1296         struct bcmgenet_priv *priv = netdev_priv(dev);
1297         struct ethtool_eee *p = &priv->eee;
1298
1299         if (GENET_IS_V1(priv))
1300                 return -EOPNOTSUPP;
1301
1302         if (!dev->phydev)
1303                 return -ENODEV;
1304
1305         e->eee_enabled = p->eee_enabled;
1306         e->eee_active = p->eee_active;
1307         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1308
1309         return phy_ethtool_get_eee(dev->phydev, e);
1310 }
1311
1312 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1313 {
1314         struct bcmgenet_priv *priv = netdev_priv(dev);
1315         struct ethtool_eee *p = &priv->eee;
1316         int ret = 0;
1317
1318         if (GENET_IS_V1(priv))
1319                 return -EOPNOTSUPP;
1320
1321         if (!dev->phydev)
1322                 return -ENODEV;
1323
1324         p->eee_enabled = e->eee_enabled;
1325
1326         if (!p->eee_enabled) {
1327                 bcmgenet_eee_enable_set(dev, false);
1328         } else {
1329                 ret = phy_init_eee(dev->phydev, 0);
1330                 if (ret) {
1331                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1332                         return ret;
1333                 }
1334
1335                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1336                 bcmgenet_eee_enable_set(dev, true);
1337         }
1338
1339         return phy_ethtool_set_eee(dev->phydev, e);
1340 }
1341
1342 static int bcmgenet_validate_flow(struct net_device *dev,
1343                                   struct ethtool_rxnfc *cmd)
1344 {
1345         struct ethtool_usrip4_spec *l4_mask;
1346         struct ethhdr *eth_mask;
1347
1348         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1349                 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1350                            cmd->fs.location);
1351                 return -EINVAL;
1352         }
1353
1354         switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1355         case IP_USER_FLOW:
1356                 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1357                 /* don't allow mask which isn't valid */
1358                 if (VALIDATE_MASK(l4_mask->ip4src) ||
1359                     VALIDATE_MASK(l4_mask->ip4dst) ||
1360                     VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1361                     VALIDATE_MASK(l4_mask->proto) ||
1362                     VALIDATE_MASK(l4_mask->ip_ver) ||
1363                     VALIDATE_MASK(l4_mask->tos)) {
1364                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1365                         return -EINVAL;
1366                 }
1367                 break;
1368         case ETHER_FLOW:
1369                 eth_mask = &cmd->fs.m_u.ether_spec;
1370                 /* don't allow mask which isn't valid */
1371                 if (VALIDATE_MASK(eth_mask->h_dest) ||
1372                     VALIDATE_MASK(eth_mask->h_source) ||
1373                     VALIDATE_MASK(eth_mask->h_proto)) {
1374                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1375                         return -EINVAL;
1376                 }
1377                 break;
1378         default:
1379                 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1380                            cmd->fs.flow_type);
1381                 return -EINVAL;
1382         }
1383
1384         if ((cmd->fs.flow_type & FLOW_EXT)) {
1385                 /* don't allow mask which isn't valid */
1386                 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1387                     VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1388                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1389                         return -EINVAL;
1390                 }
1391                 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1392                         netdev_err(dev, "rxnfc: user-def not supported\n");
1393                         return -EINVAL;
1394                 }
1395         }
1396
1397         if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1398                 /* don't allow mask which isn't valid */
1399                 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1400                         netdev_err(dev, "rxnfc: Unsupported mask\n");
1401                         return -EINVAL;
1402                 }
1403         }
1404
1405         return 0;
1406 }
1407
1408 static int bcmgenet_insert_flow(struct net_device *dev,
1409                                 struct ethtool_rxnfc *cmd)
1410 {
1411         struct bcmgenet_priv *priv = netdev_priv(dev);
1412         struct bcmgenet_rxnfc_rule *loc_rule;
1413         int err;
1414
1415         if (priv->hw_params->hfb_filter_size < 128) {
1416                 netdev_err(dev, "rxnfc: Not supported by this device\n");
1417                 return -EINVAL;
1418         }
1419
1420         if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1421             cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1422                 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1423                            cmd->fs.ring_cookie);
1424                 return -EINVAL;
1425         }
1426
1427         err = bcmgenet_validate_flow(dev, cmd);
1428         if (err)
1429                 return err;
1430
1431         loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1432         if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1433                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1434         if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1435                 list_del(&loc_rule->list);
1436                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1437         }
1438         loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1439         memcpy(&loc_rule->fs, &cmd->fs,
1440                sizeof(struct ethtool_rx_flow_spec));
1441
1442         bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1443
1444         list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1445
1446         return 0;
1447 }
1448
1449 static int bcmgenet_delete_flow(struct net_device *dev,
1450                                 struct ethtool_rxnfc *cmd)
1451 {
1452         struct bcmgenet_priv *priv = netdev_priv(dev);
1453         struct bcmgenet_rxnfc_rule *rule;
1454         int err = 0;
1455
1456         if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1457                 return -EINVAL;
1458
1459         rule = &priv->rxnfc_rules[cmd->fs.location];
1460         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1461                 err =  -ENOENT;
1462                 goto out;
1463         }
1464
1465         if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1466                 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1467         if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1468                 list_del(&rule->list);
1469                 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1470         }
1471         rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1472         memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1473
1474 out:
1475         return err;
1476 }
1477
1478 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1479 {
1480         struct bcmgenet_priv *priv = netdev_priv(dev);
1481         int err = 0;
1482
1483         switch (cmd->cmd) {
1484         case ETHTOOL_SRXCLSRLINS:
1485                 err = bcmgenet_insert_flow(dev, cmd);
1486                 break;
1487         case ETHTOOL_SRXCLSRLDEL:
1488                 err = bcmgenet_delete_flow(dev, cmd);
1489                 break;
1490         default:
1491                 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1492                             cmd->cmd);
1493                 return -EINVAL;
1494         }
1495
1496         return err;
1497 }
1498
1499 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1500                              int loc)
1501 {
1502         struct bcmgenet_priv *priv = netdev_priv(dev);
1503         struct bcmgenet_rxnfc_rule *rule;
1504         int err = 0;
1505
1506         if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1507                 return -EINVAL;
1508
1509         rule = &priv->rxnfc_rules[loc];
1510         if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1511                 err = -ENOENT;
1512         else
1513                 memcpy(&cmd->fs, &rule->fs,
1514                        sizeof(struct ethtool_rx_flow_spec));
1515
1516         return err;
1517 }
1518
1519 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1520 {
1521         struct list_head *pos;
1522         int res = 0;
1523
1524         list_for_each(pos, &priv->rxnfc_list)
1525                 res++;
1526
1527         return res;
1528 }
1529
1530 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1531                               u32 *rule_locs)
1532 {
1533         struct bcmgenet_priv *priv = netdev_priv(dev);
1534         struct bcmgenet_rxnfc_rule *rule;
1535         int err = 0;
1536         int i = 0;
1537
1538         switch (cmd->cmd) {
1539         case ETHTOOL_GRXRINGS:
1540                 cmd->data = priv->hw_params->rx_queues ?: 1;
1541                 break;
1542         case ETHTOOL_GRXCLSRLCNT:
1543                 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1544                 cmd->data = MAX_NUM_OF_FS_RULES;
1545                 break;
1546         case ETHTOOL_GRXCLSRULE:
1547                 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1548                 break;
1549         case ETHTOOL_GRXCLSRLALL:
1550                 list_for_each_entry(rule, &priv->rxnfc_list, list)
1551                         if (i < cmd->rule_cnt)
1552                                 rule_locs[i++] = rule->fs.location;
1553                 cmd->rule_cnt = i;
1554                 cmd->data = MAX_NUM_OF_FS_RULES;
1555                 break;
1556         default:
1557                 err = -EOPNOTSUPP;
1558                 break;
1559         }
1560
1561         return err;
1562 }
1563
1564 /* standard ethtool support functions. */
1565 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1566         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1567                                      ETHTOOL_COALESCE_MAX_FRAMES |
1568                                      ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1569         .begin                  = bcmgenet_begin,
1570         .complete               = bcmgenet_complete,
1571         .get_strings            = bcmgenet_get_strings,
1572         .get_sset_count         = bcmgenet_get_sset_count,
1573         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1574         .get_drvinfo            = bcmgenet_get_drvinfo,
1575         .get_link               = ethtool_op_get_link,
1576         .get_msglevel           = bcmgenet_get_msglevel,
1577         .set_msglevel           = bcmgenet_set_msglevel,
1578         .get_wol                = bcmgenet_get_wol,
1579         .set_wol                = bcmgenet_set_wol,
1580         .get_eee                = bcmgenet_get_eee,
1581         .set_eee                = bcmgenet_set_eee,
1582         .nway_reset             = phy_ethtool_nway_reset,
1583         .get_coalesce           = bcmgenet_get_coalesce,
1584         .set_coalesce           = bcmgenet_set_coalesce,
1585         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1586         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1587         .get_ts_info            = ethtool_op_get_ts_info,
1588         .get_rxnfc              = bcmgenet_get_rxnfc,
1589         .set_rxnfc              = bcmgenet_set_rxnfc,
1590 };
1591
1592 /* Power down the unimac, based on mode. */
1593 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1594                                 enum bcmgenet_power_mode mode)
1595 {
1596         int ret = 0;
1597         u32 reg;
1598
1599         switch (mode) {
1600         case GENET_POWER_CABLE_SENSE:
1601                 phy_detach(priv->dev->phydev);
1602                 break;
1603
1604         case GENET_POWER_WOL_MAGIC:
1605                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1606                 break;
1607
1608         case GENET_POWER_PASSIVE:
1609                 /* Power down LED */
1610                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1611                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1612                         if (GENET_IS_V5(priv))
1613                                 reg |= EXT_PWR_DOWN_PHY_EN |
1614                                        EXT_PWR_DOWN_PHY_RD |
1615                                        EXT_PWR_DOWN_PHY_SD |
1616                                        EXT_PWR_DOWN_PHY_RX |
1617                                        EXT_PWR_DOWN_PHY_TX |
1618                                        EXT_IDDQ_GLBL_PWR;
1619                         else
1620                                 reg |= EXT_PWR_DOWN_PHY;
1621
1622                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1623                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1624
1625                         bcmgenet_phy_power_set(priv->dev, false);
1626                 }
1627                 break;
1628         default:
1629                 break;
1630         }
1631
1632         return ret;
1633 }
1634
1635 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1636                               enum bcmgenet_power_mode mode)
1637 {
1638         u32 reg;
1639
1640         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1641                 return;
1642
1643         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1644
1645         switch (mode) {
1646         case GENET_POWER_PASSIVE:
1647                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1648                          EXT_ENERGY_DET_MASK);
1649                 if (GENET_IS_V5(priv)) {
1650                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1651                                  EXT_PWR_DOWN_PHY_RD |
1652                                  EXT_PWR_DOWN_PHY_SD |
1653                                  EXT_PWR_DOWN_PHY_RX |
1654                                  EXT_PWR_DOWN_PHY_TX |
1655                                  EXT_IDDQ_GLBL_PWR);
1656                         reg |=   EXT_PHY_RESET;
1657                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1658                         mdelay(1);
1659
1660                         reg &=  ~EXT_PHY_RESET;
1661                 } else {
1662                         reg &= ~EXT_PWR_DOWN_PHY;
1663                         reg |= EXT_PWR_DN_EN_LD;
1664                 }
1665                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1666                 bcmgenet_phy_power_set(priv->dev, true);
1667                 break;
1668
1669         case GENET_POWER_CABLE_SENSE:
1670                 /* enable APD */
1671                 if (!GENET_IS_V5(priv)) {
1672                         reg |= EXT_PWR_DN_EN_LD;
1673                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1674                 }
1675                 break;
1676         case GENET_POWER_WOL_MAGIC:
1677                 bcmgenet_wol_power_up_cfg(priv, mode);
1678                 return;
1679         default:
1680                 break;
1681         }
1682 }
1683
1684 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1685                                          struct bcmgenet_tx_ring *ring)
1686 {
1687         struct enet_cb *tx_cb_ptr;
1688
1689         tx_cb_ptr = ring->cbs;
1690         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1691
1692         /* Advancing local write pointer */
1693         if (ring->write_ptr == ring->end_ptr)
1694                 ring->write_ptr = ring->cb_ptr;
1695         else
1696                 ring->write_ptr++;
1697
1698         return tx_cb_ptr;
1699 }
1700
1701 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1702                                          struct bcmgenet_tx_ring *ring)
1703 {
1704         struct enet_cb *tx_cb_ptr;
1705
1706         tx_cb_ptr = ring->cbs;
1707         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1708
1709         /* Rewinding local write pointer */
1710         if (ring->write_ptr == ring->cb_ptr)
1711                 ring->write_ptr = ring->end_ptr;
1712         else
1713                 ring->write_ptr--;
1714
1715         return tx_cb_ptr;
1716 }
1717
1718 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1719 {
1720         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1721                                  INTRL2_CPU_MASK_SET);
1722 }
1723
1724 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1725 {
1726         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1727                                  INTRL2_CPU_MASK_CLEAR);
1728 }
1729
1730 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1731 {
1732         bcmgenet_intrl2_1_writel(ring->priv,
1733                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1734                                  INTRL2_CPU_MASK_SET);
1735 }
1736
1737 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1738 {
1739         bcmgenet_intrl2_1_writel(ring->priv,
1740                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1741                                  INTRL2_CPU_MASK_CLEAR);
1742 }
1743
1744 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1745 {
1746         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1747                                  INTRL2_CPU_MASK_SET);
1748 }
1749
1750 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1751 {
1752         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1753                                  INTRL2_CPU_MASK_CLEAR);
1754 }
1755
1756 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1757 {
1758         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1759                                  INTRL2_CPU_MASK_CLEAR);
1760 }
1761
1762 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1763 {
1764         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1765                                  INTRL2_CPU_MASK_SET);
1766 }
1767
1768 /* Simple helper to free a transmit control block's resources
1769  * Returns an skb when the last transmit control block associated with the
1770  * skb is freed.  The skb should be freed by the caller if necessary.
1771  */
1772 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1773                                            struct enet_cb *cb)
1774 {
1775         struct sk_buff *skb;
1776
1777         skb = cb->skb;
1778
1779         if (skb) {
1780                 cb->skb = NULL;
1781                 if (cb == GENET_CB(skb)->first_cb)
1782                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1783                                          dma_unmap_len(cb, dma_len),
1784                                          DMA_TO_DEVICE);
1785                 else
1786                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1787                                        dma_unmap_len(cb, dma_len),
1788                                        DMA_TO_DEVICE);
1789                 dma_unmap_addr_set(cb, dma_addr, 0);
1790
1791                 if (cb == GENET_CB(skb)->last_cb)
1792                         return skb;
1793
1794         } else if (dma_unmap_addr(cb, dma_addr)) {
1795                 dma_unmap_page(dev,
1796                                dma_unmap_addr(cb, dma_addr),
1797                                dma_unmap_len(cb, dma_len),
1798                                DMA_TO_DEVICE);
1799                 dma_unmap_addr_set(cb, dma_addr, 0);
1800         }
1801
1802         return NULL;
1803 }
1804
1805 /* Simple helper to free a receive control block's resources */
1806 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1807                                            struct enet_cb *cb)
1808 {
1809         struct sk_buff *skb;
1810
1811         skb = cb->skb;
1812         cb->skb = NULL;
1813
1814         if (dma_unmap_addr(cb, dma_addr)) {
1815                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1816                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1817                 dma_unmap_addr_set(cb, dma_addr, 0);
1818         }
1819
1820         return skb;
1821 }
1822
1823 /* Unlocked version of the reclaim routine */
1824 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1825                                           struct bcmgenet_tx_ring *ring)
1826 {
1827         struct bcmgenet_priv *priv = netdev_priv(dev);
1828         unsigned int txbds_processed = 0;
1829         unsigned int bytes_compl = 0;
1830         unsigned int pkts_compl = 0;
1831         unsigned int txbds_ready;
1832         unsigned int c_index;
1833         struct sk_buff *skb;
1834
1835         /* Clear status before servicing to reduce spurious interrupts */
1836         if (ring->index == DESC_INDEX)
1837                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1838                                          INTRL2_CPU_CLEAR);
1839         else
1840                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1841                                          INTRL2_CPU_CLEAR);
1842
1843         /* Compute how many buffers are transmitted since last xmit call */
1844         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1845                 & DMA_C_INDEX_MASK;
1846         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1847
1848         netif_dbg(priv, tx_done, dev,
1849                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1850                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1851
1852         /* Reclaim transmitted buffers */
1853         while (txbds_processed < txbds_ready) {
1854                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1855                                           &priv->tx_cbs[ring->clean_ptr]);
1856                 if (skb) {
1857                         pkts_compl++;
1858                         bytes_compl += GENET_CB(skb)->bytes_sent;
1859                         dev_consume_skb_any(skb);
1860                 }
1861
1862                 txbds_processed++;
1863                 if (likely(ring->clean_ptr < ring->end_ptr))
1864                         ring->clean_ptr++;
1865                 else
1866                         ring->clean_ptr = ring->cb_ptr;
1867         }
1868
1869         ring->free_bds += txbds_processed;
1870         ring->c_index = c_index;
1871
1872         ring->packets += pkts_compl;
1873         ring->bytes += bytes_compl;
1874
1875         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1876                                   pkts_compl, bytes_compl);
1877
1878         return txbds_processed;
1879 }
1880
1881 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1882                                 struct bcmgenet_tx_ring *ring)
1883 {
1884         unsigned int released;
1885
1886         spin_lock_bh(&ring->lock);
1887         released = __bcmgenet_tx_reclaim(dev, ring);
1888         spin_unlock_bh(&ring->lock);
1889
1890         return released;
1891 }
1892
1893 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1894 {
1895         struct bcmgenet_tx_ring *ring =
1896                 container_of(napi, struct bcmgenet_tx_ring, napi);
1897         unsigned int work_done = 0;
1898         struct netdev_queue *txq;
1899
1900         spin_lock(&ring->lock);
1901         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1902         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1903                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1904                 netif_tx_wake_queue(txq);
1905         }
1906         spin_unlock(&ring->lock);
1907
1908         if (work_done == 0) {
1909                 napi_complete(napi);
1910                 ring->int_enable(ring);
1911
1912                 return 0;
1913         }
1914
1915         return budget;
1916 }
1917
1918 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1919 {
1920         struct bcmgenet_priv *priv = netdev_priv(dev);
1921         int i;
1922
1923         if (netif_is_multiqueue(dev)) {
1924                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1925                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1926         }
1927
1928         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1929 }
1930
1931 /* Reallocate the SKB to put enough headroom in front of it and insert
1932  * the transmit checksum offsets in the descriptors
1933  */
1934 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1935                                         struct sk_buff *skb)
1936 {
1937         struct bcmgenet_priv *priv = netdev_priv(dev);
1938         struct status_64 *status = NULL;
1939         struct sk_buff *new_skb;
1940         u16 offset;
1941         u8 ip_proto;
1942         __be16 ip_ver;
1943         u32 tx_csum_info;
1944
1945         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1946                 /* If 64 byte status block enabled, must make sure skb has
1947                  * enough headroom for us to insert 64B status block.
1948                  */
1949                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1950                 if (!new_skb) {
1951                         dev_kfree_skb_any(skb);
1952                         priv->mib.tx_realloc_tsb_failed++;
1953                         dev->stats.tx_dropped++;
1954                         return NULL;
1955                 }
1956                 dev_consume_skb_any(skb);
1957                 skb = new_skb;
1958                 priv->mib.tx_realloc_tsb++;
1959         }
1960
1961         skb_push(skb, sizeof(*status));
1962         status = (struct status_64 *)skb->data;
1963
1964         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1965                 ip_ver = skb->protocol;
1966                 switch (ip_ver) {
1967                 case htons(ETH_P_IP):
1968                         ip_proto = ip_hdr(skb)->protocol;
1969                         break;
1970                 case htons(ETH_P_IPV6):
1971                         ip_proto = ipv6_hdr(skb)->nexthdr;
1972                         break;
1973                 default:
1974                         /* don't use UDP flag */
1975                         ip_proto = 0;
1976                         break;
1977                 }
1978
1979                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1980                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1981                                 (offset + skb->csum_offset) |
1982                                 STATUS_TX_CSUM_LV;
1983
1984                 /* Set the special UDP flag for UDP */
1985                 if (ip_proto == IPPROTO_UDP)
1986                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1987
1988                 status->tx_csum_info = tx_csum_info;
1989         }
1990
1991         return skb;
1992 }
1993
1994 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1995 {
1996         struct bcmgenet_priv *priv = netdev_priv(dev);
1997         struct device *kdev = &priv->pdev->dev;
1998         struct bcmgenet_tx_ring *ring = NULL;
1999         struct enet_cb *tx_cb_ptr;
2000         struct netdev_queue *txq;
2001         int nr_frags, index;
2002         dma_addr_t mapping;
2003         unsigned int size;
2004         skb_frag_t *frag;
2005         u32 len_stat;
2006         int ret;
2007         int i;
2008
2009         index = skb_get_queue_mapping(skb);
2010         /* Mapping strategy:
2011          * queue_mapping = 0, unclassified, packet xmited through ring16
2012          * queue_mapping = 1, goes to ring 0. (highest priority queue
2013          * queue_mapping = 2, goes to ring 1.
2014          * queue_mapping = 3, goes to ring 2.
2015          * queue_mapping = 4, goes to ring 3.
2016          */
2017         if (index == 0)
2018                 index = DESC_INDEX;
2019         else
2020                 index -= 1;
2021
2022         ring = &priv->tx_rings[index];
2023         txq = netdev_get_tx_queue(dev, ring->queue);
2024
2025         nr_frags = skb_shinfo(skb)->nr_frags;
2026
2027         spin_lock(&ring->lock);
2028         if (ring->free_bds <= (nr_frags + 1)) {
2029                 if (!netif_tx_queue_stopped(txq)) {
2030                         netif_tx_stop_queue(txq);
2031                         netdev_err(dev,
2032                                    "%s: tx ring %d full when queue %d awake\n",
2033                                    __func__, index, ring->queue);
2034                 }
2035                 ret = NETDEV_TX_BUSY;
2036                 goto out;
2037         }
2038
2039         /* Retain how many bytes will be sent on the wire, without TSB inserted
2040          * by transmit checksum offload
2041          */
2042         GENET_CB(skb)->bytes_sent = skb->len;
2043
2044         /* add the Transmit Status Block */
2045         skb = bcmgenet_add_tsb(dev, skb);
2046         if (!skb) {
2047                 ret = NETDEV_TX_OK;
2048                 goto out;
2049         }
2050
2051         for (i = 0; i <= nr_frags; i++) {
2052                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2053
2054                 BUG_ON(!tx_cb_ptr);
2055
2056                 if (!i) {
2057                         /* Transmit single SKB or head of fragment list */
2058                         GENET_CB(skb)->first_cb = tx_cb_ptr;
2059                         size = skb_headlen(skb);
2060                         mapping = dma_map_single(kdev, skb->data, size,
2061                                                  DMA_TO_DEVICE);
2062                 } else {
2063                         /* xmit fragment */
2064                         frag = &skb_shinfo(skb)->frags[i - 1];
2065                         size = skb_frag_size(frag);
2066                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
2067                                                    DMA_TO_DEVICE);
2068                 }
2069
2070                 ret = dma_mapping_error(kdev, mapping);
2071                 if (ret) {
2072                         priv->mib.tx_dma_failed++;
2073                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2074                         ret = NETDEV_TX_OK;
2075                         goto out_unmap_frags;
2076                 }
2077                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2078                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2079
2080                 tx_cb_ptr->skb = skb;
2081
2082                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2083                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2084
2085                 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2086                  * will need to restore software padding of "runt" packets
2087                  */
2088                 if (!i) {
2089                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2090                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2091                                 len_stat |= DMA_TX_DO_CSUM;
2092                 }
2093                 if (i == nr_frags)
2094                         len_stat |= DMA_EOP;
2095
2096                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2097         }
2098
2099         GENET_CB(skb)->last_cb = tx_cb_ptr;
2100         skb_tx_timestamp(skb);
2101
2102         /* Decrement total BD count and advance our write pointer */
2103         ring->free_bds -= nr_frags + 1;
2104         ring->prod_index += nr_frags + 1;
2105         ring->prod_index &= DMA_P_INDEX_MASK;
2106
2107         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2108
2109         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2110                 netif_tx_stop_queue(txq);
2111
2112         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2113                 /* Packets are ready, update producer index */
2114                 bcmgenet_tdma_ring_writel(priv, ring->index,
2115                                           ring->prod_index, TDMA_PROD_INDEX);
2116 out:
2117         spin_unlock(&ring->lock);
2118
2119         return ret;
2120
2121 out_unmap_frags:
2122         /* Back up for failed control block mapping */
2123         bcmgenet_put_txcb(priv, ring);
2124
2125         /* Unmap successfully mapped control blocks */
2126         while (i-- > 0) {
2127                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2128                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2129         }
2130
2131         dev_kfree_skb(skb);
2132         goto out;
2133 }
2134
2135 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2136                                           struct enet_cb *cb)
2137 {
2138         struct device *kdev = &priv->pdev->dev;
2139         struct sk_buff *skb;
2140         struct sk_buff *rx_skb;
2141         dma_addr_t mapping;
2142
2143         /* Allocate a new Rx skb */
2144         skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2145                                  GFP_ATOMIC | __GFP_NOWARN);
2146         if (!skb) {
2147                 priv->mib.alloc_rx_buff_failed++;
2148                 netif_err(priv, rx_err, priv->dev,
2149                           "%s: Rx skb allocation failed\n", __func__);
2150                 return NULL;
2151         }
2152
2153         /* DMA-map the new Rx skb */
2154         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2155                                  DMA_FROM_DEVICE);
2156         if (dma_mapping_error(kdev, mapping)) {
2157                 priv->mib.rx_dma_failed++;
2158                 dev_kfree_skb_any(skb);
2159                 netif_err(priv, rx_err, priv->dev,
2160                           "%s: Rx skb DMA mapping failed\n", __func__);
2161                 return NULL;
2162         }
2163
2164         /* Grab the current Rx skb from the ring and DMA-unmap it */
2165         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2166
2167         /* Put the new Rx skb on the ring */
2168         cb->skb = skb;
2169         dma_unmap_addr_set(cb, dma_addr, mapping);
2170         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2171         dmadesc_set_addr(priv, cb->bd_addr, mapping);
2172
2173         /* Return the current Rx skb to caller */
2174         return rx_skb;
2175 }
2176
2177 /* bcmgenet_desc_rx - descriptor based rx process.
2178  * this could be called from bottom half, or from NAPI polling method.
2179  */
2180 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2181                                      unsigned int budget)
2182 {
2183         struct bcmgenet_priv *priv = ring->priv;
2184         struct net_device *dev = priv->dev;
2185         struct enet_cb *cb;
2186         struct sk_buff *skb;
2187         u32 dma_length_status;
2188         unsigned long dma_flag;
2189         int len;
2190         unsigned int rxpktprocessed = 0, rxpkttoprocess;
2191         unsigned int bytes_processed = 0;
2192         unsigned int p_index, mask;
2193         unsigned int discards;
2194
2195         /* Clear status before servicing to reduce spurious interrupts */
2196         if (ring->index == DESC_INDEX) {
2197                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2198                                          INTRL2_CPU_CLEAR);
2199         } else {
2200                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2201                 bcmgenet_intrl2_1_writel(priv,
2202                                          mask,
2203                                          INTRL2_CPU_CLEAR);
2204         }
2205
2206         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2207
2208         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2209                    DMA_P_INDEX_DISCARD_CNT_MASK;
2210         if (discards > ring->old_discards) {
2211                 discards = discards - ring->old_discards;
2212                 ring->errors += discards;
2213                 ring->old_discards += discards;
2214
2215                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2216                 if (ring->old_discards >= 0xC000) {
2217                         ring->old_discards = 0;
2218                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2219                                                   RDMA_PROD_INDEX);
2220                 }
2221         }
2222
2223         p_index &= DMA_P_INDEX_MASK;
2224         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2225
2226         netif_dbg(priv, rx_status, dev,
2227                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2228
2229         while ((rxpktprocessed < rxpkttoprocess) &&
2230                (rxpktprocessed < budget)) {
2231                 struct status_64 *status;
2232                 __be16 rx_csum;
2233
2234                 cb = &priv->rx_cbs[ring->read_ptr];
2235                 skb = bcmgenet_rx_refill(priv, cb);
2236
2237                 if (unlikely(!skb)) {
2238                         ring->dropped++;
2239                         goto next;
2240                 }
2241
2242                 status = (struct status_64 *)skb->data;
2243                 dma_length_status = status->length_status;
2244                 if (dev->features & NETIF_F_RXCSUM) {
2245                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2246                         skb->csum = (__force __wsum)ntohs(rx_csum);
2247                         skb->ip_summed = CHECKSUM_COMPLETE;
2248                 }
2249
2250                 /* DMA flags and length are still valid no matter how
2251                  * we got the Receive Status Vector (64B RSB or register)
2252                  */
2253                 dma_flag = dma_length_status & 0xffff;
2254                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2255
2256                 netif_dbg(priv, rx_status, dev,
2257                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2258                           __func__, p_index, ring->c_index,
2259                           ring->read_ptr, dma_length_status);
2260
2261                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2262                         netif_err(priv, rx_status, dev,
2263                                   "dropping fragmented packet!\n");
2264                         ring->errors++;
2265                         dev_kfree_skb_any(skb);
2266                         goto next;
2267                 }
2268
2269                 /* report errors */
2270                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2271                                                 DMA_RX_OV |
2272                                                 DMA_RX_NO |
2273                                                 DMA_RX_LG |
2274                                                 DMA_RX_RXER))) {
2275                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2276                                   (unsigned int)dma_flag);
2277                         if (dma_flag & DMA_RX_CRC_ERROR)
2278                                 dev->stats.rx_crc_errors++;
2279                         if (dma_flag & DMA_RX_OV)
2280                                 dev->stats.rx_over_errors++;
2281                         if (dma_flag & DMA_RX_NO)
2282                                 dev->stats.rx_frame_errors++;
2283                         if (dma_flag & DMA_RX_LG)
2284                                 dev->stats.rx_length_errors++;
2285                         dev->stats.rx_errors++;
2286                         dev_kfree_skb_any(skb);
2287                         goto next;
2288                 } /* error packet */
2289
2290                 skb_put(skb, len);
2291
2292                 /* remove RSB and hardware 2bytes added for IP alignment */
2293                 skb_pull(skb, 66);
2294                 len -= 66;
2295
2296                 if (priv->crc_fwd_en) {
2297                         skb_trim(skb, len - ETH_FCS_LEN);
2298                         len -= ETH_FCS_LEN;
2299                 }
2300
2301                 bytes_processed += len;
2302
2303                 /*Finish setting up the received SKB and send it to the kernel*/
2304                 skb->protocol = eth_type_trans(skb, priv->dev);
2305                 ring->packets++;
2306                 ring->bytes += len;
2307                 if (dma_flag & DMA_RX_MULT)
2308                         dev->stats.multicast++;
2309
2310                 /* Notify kernel */
2311                 napi_gro_receive(&ring->napi, skb);
2312                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2313
2314 next:
2315                 rxpktprocessed++;
2316                 if (likely(ring->read_ptr < ring->end_ptr))
2317                         ring->read_ptr++;
2318                 else
2319                         ring->read_ptr = ring->cb_ptr;
2320
2321                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2322                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2323         }
2324
2325         ring->dim.bytes = bytes_processed;
2326         ring->dim.packets = rxpktprocessed;
2327
2328         return rxpktprocessed;
2329 }
2330
2331 /* Rx NAPI polling method */
2332 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2333 {
2334         struct bcmgenet_rx_ring *ring = container_of(napi,
2335                         struct bcmgenet_rx_ring, napi);
2336         struct dim_sample dim_sample = {};
2337         unsigned int work_done;
2338
2339         work_done = bcmgenet_desc_rx(ring, budget);
2340
2341         if (work_done < budget) {
2342                 napi_complete_done(napi, work_done);
2343                 ring->int_enable(ring);
2344         }
2345
2346         if (ring->dim.use_dim) {
2347                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2348                                   ring->dim.bytes, &dim_sample);
2349                 net_dim(&ring->dim.dim, dim_sample);
2350         }
2351
2352         return work_done;
2353 }
2354
2355 static void bcmgenet_dim_work(struct work_struct *work)
2356 {
2357         struct dim *dim = container_of(work, struct dim, work);
2358         struct bcmgenet_net_dim *ndim =
2359                         container_of(dim, struct bcmgenet_net_dim, dim);
2360         struct bcmgenet_rx_ring *ring =
2361                         container_of(ndim, struct bcmgenet_rx_ring, dim);
2362         struct dim_cq_moder cur_profile =
2363                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2364
2365         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2366         dim->state = DIM_START_MEASURE;
2367 }
2368
2369 /* Assign skb to RX DMA descriptor. */
2370 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2371                                      struct bcmgenet_rx_ring *ring)
2372 {
2373         struct enet_cb *cb;
2374         struct sk_buff *skb;
2375         int i;
2376
2377         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2378
2379         /* loop here for each buffer needing assign */
2380         for (i = 0; i < ring->size; i++) {
2381                 cb = ring->cbs + i;
2382                 skb = bcmgenet_rx_refill(priv, cb);
2383                 if (skb)
2384                         dev_consume_skb_any(skb);
2385                 if (!cb->skb)
2386                         return -ENOMEM;
2387         }
2388
2389         return 0;
2390 }
2391
2392 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2393 {
2394         struct sk_buff *skb;
2395         struct enet_cb *cb;
2396         int i;
2397
2398         for (i = 0; i < priv->num_rx_bds; i++) {
2399                 cb = &priv->rx_cbs[i];
2400
2401                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2402                 if (skb)
2403                         dev_consume_skb_any(skb);
2404         }
2405 }
2406
2407 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2408 {
2409         u32 reg;
2410
2411         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2412         if (reg & CMD_SW_RESET)
2413                 return;
2414         if (enable)
2415                 reg |= mask;
2416         else
2417                 reg &= ~mask;
2418         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2419
2420         /* UniMAC stops on a packet boundary, wait for a full-size packet
2421          * to be processed
2422          */
2423         if (enable == 0)
2424                 usleep_range(1000, 2000);
2425 }
2426
2427 static void reset_umac(struct bcmgenet_priv *priv)
2428 {
2429         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2430         bcmgenet_rbuf_ctrl_set(priv, 0);
2431         udelay(10);
2432
2433         /* issue soft reset and disable MAC while updating its registers */
2434         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2435         udelay(2);
2436 }
2437
2438 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2439 {
2440         /* Mask all interrupts.*/
2441         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2442         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2443         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2444         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2445 }
2446
2447 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2448 {
2449         u32 int0_enable = 0;
2450
2451         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2452          * and MoCA PHY
2453          */
2454         if (priv->internal_phy) {
2455                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2456                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2457                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2458         } else if (priv->ext_phy) {
2459                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2460         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2461                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2462                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2463         }
2464         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2465 }
2466
2467 static void init_umac(struct bcmgenet_priv *priv)
2468 {
2469         struct device *kdev = &priv->pdev->dev;
2470         u32 reg;
2471         u32 int0_enable = 0;
2472
2473         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2474
2475         reset_umac(priv);
2476
2477         /* clear tx/rx counter */
2478         bcmgenet_umac_writel(priv,
2479                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2480                              UMAC_MIB_CTRL);
2481         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2482
2483         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2484
2485         /* init tx registers, enable TSB */
2486         reg = bcmgenet_tbuf_ctrl_get(priv);
2487         reg |= TBUF_64B_EN;
2488         bcmgenet_tbuf_ctrl_set(priv, reg);
2489
2490         /* init rx registers, enable ip header optimization and RSB */
2491         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2492         reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2493         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2494
2495         /* enable rx checksumming */
2496         reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2497         reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2498         /* If UniMAC forwards CRC, we need to skip over it to get
2499          * a valid CHK bit to be set in the per-packet status word
2500          */
2501         if (priv->crc_fwd_en)
2502                 reg |= RBUF_SKIP_FCS;
2503         else
2504                 reg &= ~RBUF_SKIP_FCS;
2505         bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2506
2507         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2508                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2509
2510         bcmgenet_intr_disable(priv);
2511
2512         /* Configure backpressure vectors for MoCA */
2513         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2514                 reg = bcmgenet_bp_mc_get(priv);
2515                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2516
2517                 /* bp_mask: back pressure mask */
2518                 if (netif_is_multiqueue(priv->dev))
2519                         reg |= priv->hw_params->bp_in_mask;
2520                 else
2521                         reg &= ~priv->hw_params->bp_in_mask;
2522                 bcmgenet_bp_mc_set(priv, reg);
2523         }
2524
2525         /* Enable MDIO interrupts on GENET v3+ */
2526         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2527                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2528
2529         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2530
2531         dev_dbg(kdev, "done init umac\n");
2532 }
2533
2534 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2535                               void (*cb)(struct work_struct *work))
2536 {
2537         struct bcmgenet_net_dim *dim = &ring->dim;
2538
2539         INIT_WORK(&dim->dim.work, cb);
2540         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2541         dim->event_ctr = 0;
2542         dim->packets = 0;
2543         dim->bytes = 0;
2544 }
2545
2546 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2547 {
2548         struct bcmgenet_net_dim *dim = &ring->dim;
2549         struct dim_cq_moder moder;
2550         u32 usecs, pkts;
2551
2552         usecs = ring->rx_coalesce_usecs;
2553         pkts = ring->rx_max_coalesced_frames;
2554
2555         /* If DIM was enabled, re-apply default parameters */
2556         if (dim->use_dim) {
2557                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2558                 usecs = moder.usec;
2559                 pkts = moder.pkts;
2560         }
2561
2562         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2563 }
2564
2565 /* Initialize a Tx ring along with corresponding hardware registers */
2566 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2567                                   unsigned int index, unsigned int size,
2568                                   unsigned int start_ptr, unsigned int end_ptr)
2569 {
2570         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2571         u32 words_per_bd = WORDS_PER_BD(priv);
2572         u32 flow_period_val = 0;
2573
2574         spin_lock_init(&ring->lock);
2575         ring->priv = priv;
2576         ring->index = index;
2577         if (index == DESC_INDEX) {
2578                 ring->queue = 0;
2579                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2580                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2581         } else {
2582                 ring->queue = index + 1;
2583                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2584                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2585         }
2586         ring->cbs = priv->tx_cbs + start_ptr;
2587         ring->size = size;
2588         ring->clean_ptr = start_ptr;
2589         ring->c_index = 0;
2590         ring->free_bds = size;
2591         ring->write_ptr = start_ptr;
2592         ring->cb_ptr = start_ptr;
2593         ring->end_ptr = end_ptr - 1;
2594         ring->prod_index = 0;
2595
2596         /* Set flow period for ring != 16 */
2597         if (index != DESC_INDEX)
2598                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2599
2600         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2601         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2602         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2603         /* Disable rate control for now */
2604         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2605                                   TDMA_FLOW_PERIOD);
2606         bcmgenet_tdma_ring_writel(priv, index,
2607                                   ((size << DMA_RING_SIZE_SHIFT) |
2608                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2609
2610         /* Set start and end address, read and write pointers */
2611         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2612                                   DMA_START_ADDR);
2613         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2614                                   TDMA_READ_PTR);
2615         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2616                                   TDMA_WRITE_PTR);
2617         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2618                                   DMA_END_ADDR);
2619
2620         /* Initialize Tx NAPI */
2621         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2622                           NAPI_POLL_WEIGHT);
2623 }
2624
2625 /* Initialize a RDMA ring */
2626 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2627                                  unsigned int index, unsigned int size,
2628                                  unsigned int start_ptr, unsigned int end_ptr)
2629 {
2630         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2631         u32 words_per_bd = WORDS_PER_BD(priv);
2632         int ret;
2633
2634         ring->priv = priv;
2635         ring->index = index;
2636         if (index == DESC_INDEX) {
2637                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2638                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2639         } else {
2640                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2641                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2642         }
2643         ring->cbs = priv->rx_cbs + start_ptr;
2644         ring->size = size;
2645         ring->c_index = 0;
2646         ring->read_ptr = start_ptr;
2647         ring->cb_ptr = start_ptr;
2648         ring->end_ptr = end_ptr - 1;
2649
2650         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2651         if (ret)
2652                 return ret;
2653
2654         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2655         bcmgenet_init_rx_coalesce(ring);
2656
2657         /* Initialize Rx NAPI */
2658         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2659                        NAPI_POLL_WEIGHT);
2660
2661         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2662         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2663         bcmgenet_rdma_ring_writel(priv, index,
2664                                   ((size << DMA_RING_SIZE_SHIFT) |
2665                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2666         bcmgenet_rdma_ring_writel(priv, index,
2667                                   (DMA_FC_THRESH_LO <<
2668                                    DMA_XOFF_THRESHOLD_SHIFT) |
2669                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2670
2671         /* Set start and end address, read and write pointers */
2672         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673                                   DMA_START_ADDR);
2674         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2675                                   RDMA_READ_PTR);
2676         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2677                                   RDMA_WRITE_PTR);
2678         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2679                                   DMA_END_ADDR);
2680
2681         return ret;
2682 }
2683
2684 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2685 {
2686         unsigned int i;
2687         struct bcmgenet_tx_ring *ring;
2688
2689         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2690                 ring = &priv->tx_rings[i];
2691                 napi_enable(&ring->napi);
2692                 ring->int_enable(ring);
2693         }
2694
2695         ring = &priv->tx_rings[DESC_INDEX];
2696         napi_enable(&ring->napi);
2697         ring->int_enable(ring);
2698 }
2699
2700 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2701 {
2702         unsigned int i;
2703         struct bcmgenet_tx_ring *ring;
2704
2705         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2706                 ring = &priv->tx_rings[i];
2707                 napi_disable(&ring->napi);
2708         }
2709
2710         ring = &priv->tx_rings[DESC_INDEX];
2711         napi_disable(&ring->napi);
2712 }
2713
2714 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2715 {
2716         unsigned int i;
2717         struct bcmgenet_tx_ring *ring;
2718
2719         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2720                 ring = &priv->tx_rings[i];
2721                 netif_napi_del(&ring->napi);
2722         }
2723
2724         ring = &priv->tx_rings[DESC_INDEX];
2725         netif_napi_del(&ring->napi);
2726 }
2727
2728 /* Initialize Tx queues
2729  *
2730  * Queues 0-3 are priority-based, each one has 32 descriptors,
2731  * with queue 0 being the highest priority queue.
2732  *
2733  * Queue 16 is the default Tx queue with
2734  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2735  *
2736  * The transmit control block pool is then partitioned as follows:
2737  * - Tx queue 0 uses tx_cbs[0..31]
2738  * - Tx queue 1 uses tx_cbs[32..63]
2739  * - Tx queue 2 uses tx_cbs[64..95]
2740  * - Tx queue 3 uses tx_cbs[96..127]
2741  * - Tx queue 16 uses tx_cbs[128..255]
2742  */
2743 static void bcmgenet_init_tx_queues(struct net_device *dev)
2744 {
2745         struct bcmgenet_priv *priv = netdev_priv(dev);
2746         u32 i, dma_enable;
2747         u32 dma_ctrl, ring_cfg;
2748         u32 dma_priority[3] = {0, 0, 0};
2749
2750         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2751         dma_enable = dma_ctrl & DMA_EN;
2752         dma_ctrl &= ~DMA_EN;
2753         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2754
2755         dma_ctrl = 0;
2756         ring_cfg = 0;
2757
2758         /* Enable strict priority arbiter mode */
2759         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2760
2761         /* Initialize Tx priority queues */
2762         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2763                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2764                                       i * priv->hw_params->tx_bds_per_q,
2765                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2766                 ring_cfg |= (1 << i);
2767                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2768                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2769                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2770         }
2771
2772         /* Initialize Tx default queue 16 */
2773         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2774                               priv->hw_params->tx_queues *
2775                               priv->hw_params->tx_bds_per_q,
2776                               TOTAL_DESC);
2777         ring_cfg |= (1 << DESC_INDEX);
2778         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2779         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2780                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2781                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2782
2783         /* Set Tx queue priorities */
2784         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2785         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2786         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2787
2788         /* Enable Tx queues */
2789         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2790
2791         /* Enable Tx DMA */
2792         if (dma_enable)
2793                 dma_ctrl |= DMA_EN;
2794         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2795 }
2796
2797 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2798 {
2799         unsigned int i;
2800         struct bcmgenet_rx_ring *ring;
2801
2802         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2803                 ring = &priv->rx_rings[i];
2804                 napi_enable(&ring->napi);
2805                 ring->int_enable(ring);
2806         }
2807
2808         ring = &priv->rx_rings[DESC_INDEX];
2809         napi_enable(&ring->napi);
2810         ring->int_enable(ring);
2811 }
2812
2813 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2814 {
2815         unsigned int i;
2816         struct bcmgenet_rx_ring *ring;
2817
2818         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2819                 ring = &priv->rx_rings[i];
2820                 napi_disable(&ring->napi);
2821                 cancel_work_sync(&ring->dim.dim.work);
2822         }
2823
2824         ring = &priv->rx_rings[DESC_INDEX];
2825         napi_disable(&ring->napi);
2826         cancel_work_sync(&ring->dim.dim.work);
2827 }
2828
2829 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2830 {
2831         unsigned int i;
2832         struct bcmgenet_rx_ring *ring;
2833
2834         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2835                 ring = &priv->rx_rings[i];
2836                 netif_napi_del(&ring->napi);
2837         }
2838
2839         ring = &priv->rx_rings[DESC_INDEX];
2840         netif_napi_del(&ring->napi);
2841 }
2842
2843 /* Initialize Rx queues
2844  *
2845  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2846  * used to direct traffic to these queues.
2847  *
2848  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2849  */
2850 static int bcmgenet_init_rx_queues(struct net_device *dev)
2851 {
2852         struct bcmgenet_priv *priv = netdev_priv(dev);
2853         u32 i;
2854         u32 dma_enable;
2855         u32 dma_ctrl;
2856         u32 ring_cfg;
2857         int ret;
2858
2859         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2860         dma_enable = dma_ctrl & DMA_EN;
2861         dma_ctrl &= ~DMA_EN;
2862         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2863
2864         dma_ctrl = 0;
2865         ring_cfg = 0;
2866
2867         /* Initialize Rx priority queues */
2868         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2869                 ret = bcmgenet_init_rx_ring(priv, i,
2870                                             priv->hw_params->rx_bds_per_q,
2871                                             i * priv->hw_params->rx_bds_per_q,
2872                                             (i + 1) *
2873                                             priv->hw_params->rx_bds_per_q);
2874                 if (ret)
2875                         return ret;
2876
2877                 ring_cfg |= (1 << i);
2878                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2879         }
2880
2881         /* Initialize Rx default queue 16 */
2882         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2883                                     priv->hw_params->rx_queues *
2884                                     priv->hw_params->rx_bds_per_q,
2885                                     TOTAL_DESC);
2886         if (ret)
2887                 return ret;
2888
2889         ring_cfg |= (1 << DESC_INDEX);
2890         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2891
2892         /* Enable rings */
2893         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2894
2895         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2896         if (dma_enable)
2897                 dma_ctrl |= DMA_EN;
2898         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2899
2900         return 0;
2901 }
2902
2903 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2904 {
2905         int ret = 0;
2906         int timeout = 0;
2907         u32 reg;
2908         u32 dma_ctrl;
2909         int i;
2910
2911         /* Disable TDMA to stop add more frames in TX DMA */
2912         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2913         reg &= ~DMA_EN;
2914         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2915
2916         /* Check TDMA status register to confirm TDMA is disabled */
2917         while (timeout++ < DMA_TIMEOUT_VAL) {
2918                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2919                 if (reg & DMA_DISABLED)
2920                         break;
2921
2922                 udelay(1);
2923         }
2924
2925         if (timeout == DMA_TIMEOUT_VAL) {
2926                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2927                 ret = -ETIMEDOUT;
2928         }
2929
2930         /* Wait 10ms for packet drain in both tx and rx dma */
2931         usleep_range(10000, 20000);
2932
2933         /* Disable RDMA */
2934         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2935         reg &= ~DMA_EN;
2936         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2937
2938         timeout = 0;
2939         /* Check RDMA status register to confirm RDMA is disabled */
2940         while (timeout++ < DMA_TIMEOUT_VAL) {
2941                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2942                 if (reg & DMA_DISABLED)
2943                         break;
2944
2945                 udelay(1);
2946         }
2947
2948         if (timeout == DMA_TIMEOUT_VAL) {
2949                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2950                 ret = -ETIMEDOUT;
2951         }
2952
2953         dma_ctrl = 0;
2954         for (i = 0; i < priv->hw_params->rx_queues; i++)
2955                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2956         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2957         reg &= ~dma_ctrl;
2958         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2959
2960         dma_ctrl = 0;
2961         for (i = 0; i < priv->hw_params->tx_queues; i++)
2962                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2963         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2964         reg &= ~dma_ctrl;
2965         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2966
2967         return ret;
2968 }
2969
2970 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2971 {
2972         struct netdev_queue *txq;
2973         int i;
2974
2975         bcmgenet_fini_rx_napi(priv);
2976         bcmgenet_fini_tx_napi(priv);
2977
2978         for (i = 0; i < priv->num_tx_bds; i++)
2979                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2980                                                   priv->tx_cbs + i));
2981
2982         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2983                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2984                 netdev_tx_reset_queue(txq);
2985         }
2986
2987         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2988         netdev_tx_reset_queue(txq);
2989
2990         bcmgenet_free_rx_buffers(priv);
2991         kfree(priv->rx_cbs);
2992         kfree(priv->tx_cbs);
2993 }
2994
2995 /* init_edma: Initialize DMA control register */
2996 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2997 {
2998         int ret;
2999         unsigned int i;
3000         struct enet_cb *cb;
3001
3002         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3003
3004         /* Initialize common Rx ring structures */
3005         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3006         priv->num_rx_bds = TOTAL_DESC;
3007         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3008                                GFP_KERNEL);
3009         if (!priv->rx_cbs)
3010                 return -ENOMEM;
3011
3012         for (i = 0; i < priv->num_rx_bds; i++) {
3013                 cb = priv->rx_cbs + i;
3014                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3015         }
3016
3017         /* Initialize common TX ring structures */
3018         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3019         priv->num_tx_bds = TOTAL_DESC;
3020         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3021                                GFP_KERNEL);
3022         if (!priv->tx_cbs) {
3023                 kfree(priv->rx_cbs);
3024                 return -ENOMEM;
3025         }
3026
3027         for (i = 0; i < priv->num_tx_bds; i++) {
3028                 cb = priv->tx_cbs + i;
3029                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3030         }
3031
3032         /* Init rDma */
3033         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3034                              DMA_SCB_BURST_SIZE);
3035
3036         /* Initialize Rx queues */
3037         ret = bcmgenet_init_rx_queues(priv->dev);
3038         if (ret) {
3039                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3040                 bcmgenet_free_rx_buffers(priv);
3041                 kfree(priv->rx_cbs);
3042                 kfree(priv->tx_cbs);
3043                 return ret;
3044         }
3045
3046         /* Init tDma */
3047         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3048                              DMA_SCB_BURST_SIZE);
3049
3050         /* Initialize Tx queues */
3051         bcmgenet_init_tx_queues(priv->dev);
3052
3053         return 0;
3054 }
3055
3056 /* Interrupt bottom half */
3057 static void bcmgenet_irq_task(struct work_struct *work)
3058 {
3059         unsigned int status;
3060         struct bcmgenet_priv *priv = container_of(
3061                         work, struct bcmgenet_priv, bcmgenet_irq_work);
3062
3063         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3064
3065         spin_lock_irq(&priv->lock);
3066         status = priv->irq0_stat;
3067         priv->irq0_stat = 0;
3068         spin_unlock_irq(&priv->lock);
3069
3070         if (status & UMAC_IRQ_PHY_DET_R &&
3071             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3072                 phy_init_hw(priv->dev->phydev);
3073                 genphy_config_aneg(priv->dev->phydev);
3074         }
3075
3076         /* Link UP/DOWN event */
3077         if (status & UMAC_IRQ_LINK_EVENT)
3078                 phy_mac_interrupt(priv->dev->phydev);
3079
3080 }
3081
3082 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3083 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3084 {
3085         struct bcmgenet_priv *priv = dev_id;
3086         struct bcmgenet_rx_ring *rx_ring;
3087         struct bcmgenet_tx_ring *tx_ring;
3088         unsigned int index, status;
3089
3090         /* Read irq status */
3091         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3092                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3093
3094         /* clear interrupts */
3095         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3096
3097         netif_dbg(priv, intr, priv->dev,
3098                   "%s: IRQ=0x%x\n", __func__, status);
3099
3100         /* Check Rx priority queue interrupts */
3101         for (index = 0; index < priv->hw_params->rx_queues; index++) {
3102                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3103                         continue;
3104
3105                 rx_ring = &priv->rx_rings[index];
3106                 rx_ring->dim.event_ctr++;
3107
3108                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3109                         rx_ring->int_disable(rx_ring);
3110                         __napi_schedule_irqoff(&rx_ring->napi);
3111                 }
3112         }
3113
3114         /* Check Tx priority queue interrupts */
3115         for (index = 0; index < priv->hw_params->tx_queues; index++) {
3116                 if (!(status & BIT(index)))
3117                         continue;
3118
3119                 tx_ring = &priv->tx_rings[index];
3120
3121                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3122                         tx_ring->int_disable(tx_ring);
3123                         __napi_schedule_irqoff(&tx_ring->napi);
3124                 }
3125         }
3126
3127         return IRQ_HANDLED;
3128 }
3129
3130 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3131 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3132 {
3133         struct bcmgenet_priv *priv = dev_id;
3134         struct bcmgenet_rx_ring *rx_ring;
3135         struct bcmgenet_tx_ring *tx_ring;
3136         unsigned int status;
3137         unsigned long flags;
3138
3139         /* Read irq status */
3140         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3141                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3142
3143         /* clear interrupts */
3144         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3145
3146         netif_dbg(priv, intr, priv->dev,
3147                   "IRQ=0x%x\n", status);
3148
3149         if (status & UMAC_IRQ_RXDMA_DONE) {
3150                 rx_ring = &priv->rx_rings[DESC_INDEX];
3151                 rx_ring->dim.event_ctr++;
3152
3153                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3154                         rx_ring->int_disable(rx_ring);
3155                         __napi_schedule_irqoff(&rx_ring->napi);
3156                 }
3157         }
3158
3159         if (status & UMAC_IRQ_TXDMA_DONE) {
3160                 tx_ring = &priv->tx_rings[DESC_INDEX];
3161
3162                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3163                         tx_ring->int_disable(tx_ring);
3164                         __napi_schedule_irqoff(&tx_ring->napi);
3165                 }
3166         }
3167
3168         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3169                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3170                 wake_up(&priv->wq);
3171         }
3172
3173         /* all other interested interrupts handled in bottom half */
3174         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3175         if (status) {
3176                 /* Save irq status for bottom-half processing. */
3177                 spin_lock_irqsave(&priv->lock, flags);
3178                 priv->irq0_stat |= status;
3179                 spin_unlock_irqrestore(&priv->lock, flags);
3180
3181                 schedule_work(&priv->bcmgenet_irq_work);
3182         }
3183
3184         return IRQ_HANDLED;
3185 }
3186
3187 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3188 {
3189         /* Acknowledge the interrupt */
3190         return IRQ_HANDLED;
3191 }
3192
3193 #ifdef CONFIG_NET_POLL_CONTROLLER
3194 static void bcmgenet_poll_controller(struct net_device *dev)
3195 {
3196         struct bcmgenet_priv *priv = netdev_priv(dev);
3197
3198         /* Invoke the main RX/TX interrupt handler */
3199         disable_irq(priv->irq0);
3200         bcmgenet_isr0(priv->irq0, priv);
3201         enable_irq(priv->irq0);
3202
3203         /* And the interrupt handler for RX/TX priority queues */
3204         disable_irq(priv->irq1);
3205         bcmgenet_isr1(priv->irq1, priv);
3206         enable_irq(priv->irq1);
3207 }
3208 #endif
3209
3210 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3211 {
3212         u32 reg;
3213
3214         reg = bcmgenet_rbuf_ctrl_get(priv);
3215         reg |= BIT(1);
3216         bcmgenet_rbuf_ctrl_set(priv, reg);
3217         udelay(10);
3218
3219         reg &= ~BIT(1);
3220         bcmgenet_rbuf_ctrl_set(priv, reg);
3221         udelay(10);
3222 }
3223
3224 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3225                                  unsigned char *addr)
3226 {
3227         bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3228         bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3229 }
3230
3231 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3232                                  unsigned char *addr)
3233 {
3234         u32 addr_tmp;
3235
3236         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3237         put_unaligned_be32(addr_tmp, &addr[0]);
3238         addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3239         put_unaligned_be16(addr_tmp, &addr[4]);
3240 }
3241
3242 /* Returns a reusable dma control register value */
3243 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3244 {
3245         unsigned int i;
3246         u32 reg;
3247         u32 dma_ctrl;
3248
3249         /* disable DMA */
3250         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3251         for (i = 0; i < priv->hw_params->tx_queues; i++)
3252                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3253         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3254         reg &= ~dma_ctrl;
3255         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3256
3257         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3258         for (i = 0; i < priv->hw_params->rx_queues; i++)
3259                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3260         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3261         reg &= ~dma_ctrl;
3262         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3263
3264         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3265         udelay(10);
3266         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3267
3268         return dma_ctrl;
3269 }
3270
3271 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3272 {
3273         u32 reg;
3274
3275         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3276         reg |= dma_ctrl;
3277         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3278
3279         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3280         reg |= dma_ctrl;
3281         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3282 }
3283
3284 static void bcmgenet_netif_start(struct net_device *dev)
3285 {
3286         struct bcmgenet_priv *priv = netdev_priv(dev);
3287
3288         /* Start the network engine */
3289         bcmgenet_set_rx_mode(dev);
3290         bcmgenet_enable_rx_napi(priv);
3291
3292         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3293
3294         bcmgenet_enable_tx_napi(priv);
3295
3296         /* Monitor link interrupts now */
3297         bcmgenet_link_intr_enable(priv);
3298
3299         phy_start(dev->phydev);
3300 }
3301
3302 static int bcmgenet_open(struct net_device *dev)
3303 {
3304         struct bcmgenet_priv *priv = netdev_priv(dev);
3305         unsigned long dma_ctrl;
3306         int ret;
3307
3308         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3309
3310         /* Turn on the clock */
3311         clk_prepare_enable(priv->clk);
3312
3313         /* If this is an internal GPHY, power it back on now, before UniMAC is
3314          * brought out of reset as absolutely no UniMAC activity is allowed
3315          */
3316         if (priv->internal_phy)
3317                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3318
3319         /* take MAC out of reset */
3320         bcmgenet_umac_reset(priv);
3321
3322         init_umac(priv);
3323
3324         /* Apply features again in case we changed them while interface was
3325          * down
3326          */
3327         bcmgenet_set_features(dev, dev->features);
3328
3329         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3330
3331         /* Disable RX/TX DMA and flush TX queues */
3332         dma_ctrl = bcmgenet_dma_disable(priv);
3333
3334         /* Reinitialize TDMA and RDMA and SW housekeeping */
3335         ret = bcmgenet_init_dma(priv);
3336         if (ret) {
3337                 netdev_err(dev, "failed to initialize DMA\n");
3338                 goto err_clk_disable;
3339         }
3340
3341         /* Always enable ring 16 - descriptor ring */
3342         bcmgenet_enable_dma(priv, dma_ctrl);
3343
3344         /* HFB init */
3345         bcmgenet_hfb_init(priv);
3346
3347         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3348                           dev->name, priv);
3349         if (ret < 0) {
3350                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3351                 goto err_fini_dma;
3352         }
3353
3354         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3355                           dev->name, priv);
3356         if (ret < 0) {
3357                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3358                 goto err_irq0;
3359         }
3360
3361         ret = bcmgenet_mii_probe(dev);
3362         if (ret) {
3363                 netdev_err(dev, "failed to connect to PHY\n");
3364                 goto err_irq1;
3365         }
3366
3367         bcmgenet_netif_start(dev);
3368
3369         netif_tx_start_all_queues(dev);
3370
3371         return 0;
3372
3373 err_irq1:
3374         free_irq(priv->irq1, priv);
3375 err_irq0:
3376         free_irq(priv->irq0, priv);
3377 err_fini_dma:
3378         bcmgenet_dma_teardown(priv);
3379         bcmgenet_fini_dma(priv);
3380 err_clk_disable:
3381         if (priv->internal_phy)
3382                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3383         clk_disable_unprepare(priv->clk);
3384         return ret;
3385 }
3386
3387 static void bcmgenet_netif_stop(struct net_device *dev)
3388 {
3389         struct bcmgenet_priv *priv = netdev_priv(dev);
3390
3391         bcmgenet_disable_tx_napi(priv);
3392         netif_tx_disable(dev);
3393
3394         /* Disable MAC receive */
3395         umac_enable_set(priv, CMD_RX_EN, false);
3396
3397         bcmgenet_dma_teardown(priv);
3398
3399         /* Disable MAC transmit. TX DMA disabled must be done before this */
3400         umac_enable_set(priv, CMD_TX_EN, false);
3401
3402         phy_stop(dev->phydev);
3403         bcmgenet_disable_rx_napi(priv);
3404         bcmgenet_intr_disable(priv);
3405
3406         /* Wait for pending work items to complete. Since interrupts are
3407          * disabled no new work will be scheduled.
3408          */
3409         cancel_work_sync(&priv->bcmgenet_irq_work);
3410
3411         priv->old_link = -1;
3412         priv->old_speed = -1;
3413         priv->old_duplex = -1;
3414         priv->old_pause = -1;
3415
3416         /* tx reclaim */
3417         bcmgenet_tx_reclaim_all(dev);
3418         bcmgenet_fini_dma(priv);
3419 }
3420
3421 static int bcmgenet_close(struct net_device *dev)
3422 {
3423         struct bcmgenet_priv *priv = netdev_priv(dev);
3424         int ret = 0;
3425
3426         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3427
3428         bcmgenet_netif_stop(dev);
3429
3430         /* Really kill the PHY state machine and disconnect from it */
3431         phy_disconnect(dev->phydev);
3432
3433         free_irq(priv->irq0, priv);
3434         free_irq(priv->irq1, priv);
3435
3436         if (priv->internal_phy)
3437                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3438
3439         clk_disable_unprepare(priv->clk);
3440
3441         return ret;
3442 }
3443
3444 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3445 {
3446         struct bcmgenet_priv *priv = ring->priv;
3447         u32 p_index, c_index, intsts, intmsk;
3448         struct netdev_queue *txq;
3449         unsigned int free_bds;
3450         bool txq_stopped;
3451
3452         if (!netif_msg_tx_err(priv))
3453                 return;
3454
3455         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3456
3457         spin_lock(&ring->lock);
3458         if (ring->index == DESC_INDEX) {
3459                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3460                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3461         } else {
3462                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3463                 intmsk = 1 << ring->index;
3464         }
3465         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3466         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3467         txq_stopped = netif_tx_queue_stopped(txq);
3468         free_bds = ring->free_bds;
3469         spin_unlock(&ring->lock);
3470
3471         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3472                   "TX queue status: %s, interrupts: %s\n"
3473                   "(sw)free_bds: %d (sw)size: %d\n"
3474                   "(sw)p_index: %d (hw)p_index: %d\n"
3475                   "(sw)c_index: %d (hw)c_index: %d\n"
3476                   "(sw)clean_p: %d (sw)write_p: %d\n"
3477                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3478                   ring->index, ring->queue,
3479                   txq_stopped ? "stopped" : "active",
3480                   intsts & intmsk ? "enabled" : "disabled",
3481                   free_bds, ring->size,
3482                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3483                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3484                   ring->clean_ptr, ring->write_ptr,
3485                   ring->cb_ptr, ring->end_ptr);
3486 }
3487
3488 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3489 {
3490         struct bcmgenet_priv *priv = netdev_priv(dev);
3491         u32 int0_enable = 0;
3492         u32 int1_enable = 0;
3493         unsigned int q;
3494
3495         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3496
3497         for (q = 0; q < priv->hw_params->tx_queues; q++)
3498                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3499         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3500
3501         bcmgenet_tx_reclaim_all(dev);
3502
3503         for (q = 0; q < priv->hw_params->tx_queues; q++)
3504                 int1_enable |= (1 << q);
3505
3506         int0_enable = UMAC_IRQ_TXDMA_DONE;
3507
3508         /* Re-enable TX interrupts if disabled */
3509         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3510         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3511
3512         netif_trans_update(dev);
3513
3514         dev->stats.tx_errors++;
3515
3516         netif_tx_wake_all_queues(dev);
3517 }
3518
3519 #define MAX_MDF_FILTER  17
3520
3521 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3522                                          unsigned char *addr,
3523                                          int *i)
3524 {
3525         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3526                              UMAC_MDF_ADDR + (*i * 4));
3527         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3528                              addr[4] << 8 | addr[5],
3529                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3530         *i += 2;
3531 }
3532
3533 static void bcmgenet_set_rx_mode(struct net_device *dev)
3534 {
3535         struct bcmgenet_priv *priv = netdev_priv(dev);
3536         struct netdev_hw_addr *ha;
3537         int i, nfilter;
3538         u32 reg;
3539
3540         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3541
3542         /* Number of filters needed */
3543         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3544
3545         /*
3546          * Turn on promicuous mode for three scenarios
3547          * 1. IFF_PROMISC flag is set
3548          * 2. IFF_ALLMULTI flag is set
3549          * 3. The number of filters needed exceeds the number filters
3550          *    supported by the hardware.
3551         */
3552         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3553         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3554             (nfilter > MAX_MDF_FILTER)) {
3555                 reg |= CMD_PROMISC;
3556                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3557                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3558                 return;
3559         } else {
3560                 reg &= ~CMD_PROMISC;
3561                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3562         }
3563
3564         /* update MDF filter */
3565         i = 0;
3566         /* Broadcast */
3567         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3568         /* my own address.*/
3569         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3570
3571         /* Unicast */
3572         netdev_for_each_uc_addr(ha, dev)
3573                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3574
3575         /* Multicast */
3576         netdev_for_each_mc_addr(ha, dev)
3577                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3578
3579         /* Enable filters */
3580         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3581         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3582 }
3583
3584 /* Set the hardware MAC address. */
3585 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3586 {
3587         struct sockaddr *addr = p;
3588
3589         /* Setting the MAC address at the hardware level is not possible
3590          * without disabling the UniMAC RX/TX enable bits.
3591          */
3592         if (netif_running(dev))
3593                 return -EBUSY;
3594
3595         ether_addr_copy(dev->dev_addr, addr->sa_data);
3596
3597         return 0;
3598 }
3599
3600 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3601 {
3602         struct bcmgenet_priv *priv = netdev_priv(dev);
3603         unsigned long tx_bytes = 0, tx_packets = 0;
3604         unsigned long rx_bytes = 0, rx_packets = 0;
3605         unsigned long rx_errors = 0, rx_dropped = 0;
3606         struct bcmgenet_tx_ring *tx_ring;
3607         struct bcmgenet_rx_ring *rx_ring;
3608         unsigned int q;
3609
3610         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3611                 tx_ring = &priv->tx_rings[q];
3612                 tx_bytes += tx_ring->bytes;
3613                 tx_packets += tx_ring->packets;
3614         }
3615         tx_ring = &priv->tx_rings[DESC_INDEX];
3616         tx_bytes += tx_ring->bytes;
3617         tx_packets += tx_ring->packets;
3618
3619         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3620                 rx_ring = &priv->rx_rings[q];
3621
3622                 rx_bytes += rx_ring->bytes;
3623                 rx_packets += rx_ring->packets;
3624                 rx_errors += rx_ring->errors;
3625                 rx_dropped += rx_ring->dropped;
3626         }
3627         rx_ring = &priv->rx_rings[DESC_INDEX];
3628         rx_bytes += rx_ring->bytes;
3629         rx_packets += rx_ring->packets;
3630         rx_errors += rx_ring->errors;
3631         rx_dropped += rx_ring->dropped;
3632
3633         dev->stats.tx_bytes = tx_bytes;
3634         dev->stats.tx_packets = tx_packets;
3635         dev->stats.rx_bytes = rx_bytes;
3636         dev->stats.rx_packets = rx_packets;
3637         dev->stats.rx_errors = rx_errors;
3638         dev->stats.rx_missed_errors = rx_errors;
3639         dev->stats.rx_dropped = rx_dropped;
3640         return &dev->stats;
3641 }
3642
3643 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3644 {
3645         struct bcmgenet_priv *priv = netdev_priv(dev);
3646
3647         if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3648             priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3649                 return -EOPNOTSUPP;
3650
3651         if (new_carrier)
3652                 netif_carrier_on(dev);
3653         else
3654                 netif_carrier_off(dev);
3655
3656         return 0;
3657 }
3658
3659 static const struct net_device_ops bcmgenet_netdev_ops = {
3660         .ndo_open               = bcmgenet_open,
3661         .ndo_stop               = bcmgenet_close,
3662         .ndo_start_xmit         = bcmgenet_xmit,
3663         .ndo_tx_timeout         = bcmgenet_timeout,
3664         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3665         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3666         .ndo_eth_ioctl          = phy_do_ioctl_running,
3667         .ndo_set_features       = bcmgenet_set_features,
3668 #ifdef CONFIG_NET_POLL_CONTROLLER
3669         .ndo_poll_controller    = bcmgenet_poll_controller,
3670 #endif
3671         .ndo_get_stats          = bcmgenet_get_stats,
3672         .ndo_change_carrier     = bcmgenet_change_carrier,
3673 };
3674
3675 /* Array of GENET hardware parameters/characteristics */
3676 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3677         [GENET_V1] = {
3678                 .tx_queues = 0,
3679                 .tx_bds_per_q = 0,
3680                 .rx_queues = 0,
3681                 .rx_bds_per_q = 0,
3682                 .bp_in_en_shift = 16,
3683                 .bp_in_mask = 0xffff,
3684                 .hfb_filter_cnt = 16,
3685                 .qtag_mask = 0x1F,
3686                 .hfb_offset = 0x1000,
3687                 .rdma_offset = 0x2000,
3688                 .tdma_offset = 0x3000,
3689                 .words_per_bd = 2,
3690         },
3691         [GENET_V2] = {
3692                 .tx_queues = 4,
3693                 .tx_bds_per_q = 32,
3694                 .rx_queues = 0,
3695                 .rx_bds_per_q = 0,
3696                 .bp_in_en_shift = 16,
3697                 .bp_in_mask = 0xffff,
3698                 .hfb_filter_cnt = 16,
3699                 .qtag_mask = 0x1F,
3700                 .tbuf_offset = 0x0600,
3701                 .hfb_offset = 0x1000,
3702                 .hfb_reg_offset = 0x2000,
3703                 .rdma_offset = 0x3000,
3704                 .tdma_offset = 0x4000,
3705                 .words_per_bd = 2,
3706                 .flags = GENET_HAS_EXT,
3707         },
3708         [GENET_V3] = {
3709                 .tx_queues = 4,
3710                 .tx_bds_per_q = 32,
3711                 .rx_queues = 0,
3712                 .rx_bds_per_q = 0,
3713                 .bp_in_en_shift = 17,
3714                 .bp_in_mask = 0x1ffff,
3715                 .hfb_filter_cnt = 48,
3716                 .hfb_filter_size = 128,
3717                 .qtag_mask = 0x3F,
3718                 .tbuf_offset = 0x0600,
3719                 .hfb_offset = 0x8000,
3720                 .hfb_reg_offset = 0xfc00,
3721                 .rdma_offset = 0x10000,
3722                 .tdma_offset = 0x11000,
3723                 .words_per_bd = 2,
3724                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3725                          GENET_HAS_MOCA_LINK_DET,
3726         },
3727         [GENET_V4] = {
3728                 .tx_queues = 4,
3729                 .tx_bds_per_q = 32,
3730                 .rx_queues = 0,
3731                 .rx_bds_per_q = 0,
3732                 .bp_in_en_shift = 17,
3733                 .bp_in_mask = 0x1ffff,
3734                 .hfb_filter_cnt = 48,
3735                 .hfb_filter_size = 128,
3736                 .qtag_mask = 0x3F,
3737                 .tbuf_offset = 0x0600,
3738                 .hfb_offset = 0x8000,
3739                 .hfb_reg_offset = 0xfc00,
3740                 .rdma_offset = 0x2000,
3741                 .tdma_offset = 0x4000,
3742                 .words_per_bd = 3,
3743                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3744                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3745         },
3746         [GENET_V5] = {
3747                 .tx_queues = 4,
3748                 .tx_bds_per_q = 32,
3749                 .rx_queues = 0,
3750                 .rx_bds_per_q = 0,
3751                 .bp_in_en_shift = 17,
3752                 .bp_in_mask = 0x1ffff,
3753                 .hfb_filter_cnt = 48,
3754                 .hfb_filter_size = 128,
3755                 .qtag_mask = 0x3F,
3756                 .tbuf_offset = 0x0600,
3757                 .hfb_offset = 0x8000,
3758                 .hfb_reg_offset = 0xfc00,
3759                 .rdma_offset = 0x2000,
3760                 .tdma_offset = 0x4000,
3761                 .words_per_bd = 3,
3762                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3763                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3764         },
3765 };
3766
3767 /* Infer hardware parameters from the detected GENET version */
3768 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3769 {
3770         struct bcmgenet_hw_params *params;
3771         u32 reg;
3772         u8 major;
3773         u16 gphy_rev;
3774
3775         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3776                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3777                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3778         } else if (GENET_IS_V3(priv)) {
3779                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3780                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3781         } else if (GENET_IS_V2(priv)) {
3782                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3783                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3784         } else if (GENET_IS_V1(priv)) {
3785                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3786                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3787         }
3788
3789         /* enum genet_version starts at 1 */
3790         priv->hw_params = &bcmgenet_hw_params[priv->version];
3791         params = priv->hw_params;
3792
3793         /* Read GENET HW version */
3794         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3795         major = (reg >> 24 & 0x0f);
3796         if (major == 6)
3797                 major = 5;
3798         else if (major == 5)
3799                 major = 4;
3800         else if (major == 0)
3801                 major = 1;
3802         if (major != priv->version) {
3803                 dev_err(&priv->pdev->dev,
3804                         "GENET version mismatch, got: %d, configured for: %d\n",
3805                         major, priv->version);
3806         }
3807
3808         /* Print the GENET core version */
3809         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3810                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3811
3812         /* Store the integrated PHY revision for the MDIO probing function
3813          * to pass this information to the PHY driver. The PHY driver expects
3814          * to find the PHY major revision in bits 15:8 while the GENET register
3815          * stores that information in bits 7:0, account for that.
3816          *
3817          * On newer chips, starting with PHY revision G0, a new scheme is
3818          * deployed similar to the Starfighter 2 switch with GPHY major
3819          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3820          * is reserved as well as special value 0x01ff, we have a small
3821          * heuristic to check for the new GPHY revision and re-arrange things
3822          * so the GPHY driver is happy.
3823          */
3824         gphy_rev = reg & 0xffff;
3825
3826         if (GENET_IS_V5(priv)) {
3827                 /* The EPHY revision should come from the MDIO registers of
3828                  * the PHY not from GENET.
3829                  */
3830                 if (gphy_rev != 0) {
3831                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3832                                 gphy_rev);
3833                 }
3834         /* This is reserved so should require special treatment */
3835         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3836                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3837                 return;
3838         /* This is the good old scheme, just GPHY major, no minor nor patch */
3839         } else if ((gphy_rev & 0xf0) != 0) {
3840                 priv->gphy_rev = gphy_rev << 8;
3841         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3842         } else if ((gphy_rev & 0xff00) != 0) {
3843                 priv->gphy_rev = gphy_rev;
3844         }
3845
3846 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3847         if (!(params->flags & GENET_HAS_40BITS))
3848                 pr_warn("GENET does not support 40-bits PA\n");
3849 #endif
3850
3851         pr_debug("Configuration for version: %d\n"
3852                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3853                 "BP << en: %2d, BP msk: 0x%05x\n"
3854                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3855                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3856                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3857                 "Words/BD: %d\n",
3858                 priv->version,
3859                 params->tx_queues, params->tx_bds_per_q,
3860                 params->rx_queues, params->rx_bds_per_q,
3861                 params->bp_in_en_shift, params->bp_in_mask,
3862                 params->hfb_filter_cnt, params->qtag_mask,
3863                 params->tbuf_offset, params->hfb_offset,
3864                 params->hfb_reg_offset,
3865                 params->rdma_offset, params->tdma_offset,
3866                 params->words_per_bd);
3867 }
3868
3869 struct bcmgenet_plat_data {
3870         enum bcmgenet_version version;
3871         u32 dma_max_burst_length;
3872 };
3873
3874 static const struct bcmgenet_plat_data v1_plat_data = {
3875         .version = GENET_V1,
3876         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3877 };
3878
3879 static const struct bcmgenet_plat_data v2_plat_data = {
3880         .version = GENET_V2,
3881         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3882 };
3883
3884 static const struct bcmgenet_plat_data v3_plat_data = {
3885         .version = GENET_V3,
3886         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3887 };
3888
3889 static const struct bcmgenet_plat_data v4_plat_data = {
3890         .version = GENET_V4,
3891         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3892 };
3893
3894 static const struct bcmgenet_plat_data v5_plat_data = {
3895         .version = GENET_V5,
3896         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3897 };
3898
3899 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3900         .version = GENET_V5,
3901         .dma_max_burst_length = 0x08,
3902 };
3903
3904 static const struct of_device_id bcmgenet_match[] = {
3905         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3906         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3907         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3908         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3909         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3910         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3911         { },
3912 };
3913 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3914
3915 static int bcmgenet_probe(struct platform_device *pdev)
3916 {
3917         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3918         const struct bcmgenet_plat_data *pdata;
3919         struct bcmgenet_priv *priv;
3920         struct net_device *dev;
3921         unsigned int i;
3922         int err = -EIO;
3923
3924         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3925         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3926                                  GENET_MAX_MQ_CNT + 1);
3927         if (!dev) {
3928                 dev_err(&pdev->dev, "can't allocate net device\n");
3929                 return -ENOMEM;
3930         }
3931
3932         priv = netdev_priv(dev);
3933         priv->irq0 = platform_get_irq(pdev, 0);
3934         if (priv->irq0 < 0) {
3935                 err = priv->irq0;
3936                 goto err;
3937         }
3938         priv->irq1 = platform_get_irq(pdev, 1);
3939         if (priv->irq1 < 0) {
3940                 err = priv->irq1;
3941                 goto err;
3942         }
3943         priv->wol_irq = platform_get_irq_optional(pdev, 2);
3944
3945         priv->base = devm_platform_ioremap_resource(pdev, 0);
3946         if (IS_ERR(priv->base)) {
3947                 err = PTR_ERR(priv->base);
3948                 goto err;
3949         }
3950
3951         spin_lock_init(&priv->lock);
3952
3953         SET_NETDEV_DEV(dev, &pdev->dev);
3954         dev_set_drvdata(&pdev->dev, dev);
3955         dev->watchdog_timeo = 2 * HZ;
3956         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3957         dev->netdev_ops = &bcmgenet_netdev_ops;
3958
3959         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3960
3961         /* Set default features */
3962         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3963                          NETIF_F_RXCSUM;
3964         dev->hw_features |= dev->features;
3965         dev->vlan_features |= dev->features;
3966
3967         /* Request the WOL interrupt and advertise suspend if available */
3968         priv->wol_irq_disabled = true;
3969         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3970                                dev->name, priv);
3971         if (!err)
3972                 device_set_wakeup_capable(&pdev->dev, 1);
3973
3974         /* Set the needed headroom to account for any possible
3975          * features enabling/disabling at runtime
3976          */
3977         dev->needed_headroom += 64;
3978
3979         priv->dev = dev;
3980         priv->pdev = pdev;
3981
3982         pdata = device_get_match_data(&pdev->dev);
3983         if (pdata) {
3984                 priv->version = pdata->version;
3985                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
3986         } else {
3987                 priv->version = pd->genet_version;
3988                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3989         }
3990
3991         priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3992         if (IS_ERR(priv->clk)) {
3993                 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3994                 err = PTR_ERR(priv->clk);
3995                 goto err;
3996         }
3997
3998         err = clk_prepare_enable(priv->clk);
3999         if (err)
4000                 goto err;
4001
4002         bcmgenet_set_hw_params(priv);
4003
4004         err = -EIO;
4005         if (priv->hw_params->flags & GENET_HAS_40BITS)
4006                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4007         if (err)
4008                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4009         if (err)
4010                 goto err_clk_disable;
4011
4012         /* Mii wait queue */
4013         init_waitqueue_head(&priv->wq);
4014         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4015         priv->rx_buf_len = RX_BUF_LENGTH;
4016         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4017
4018         priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4019         if (IS_ERR(priv->clk_wol)) {
4020                 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4021                 err = PTR_ERR(priv->clk_wol);
4022                 goto err_clk_disable;
4023         }
4024
4025         priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4026         if (IS_ERR(priv->clk_eee)) {
4027                 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4028                 err = PTR_ERR(priv->clk_eee);
4029                 goto err_clk_disable;
4030         }
4031
4032         /* If this is an internal GPHY, power it on now, before UniMAC is
4033          * brought out of reset as absolutely no UniMAC activity is allowed
4034          */
4035         if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4036                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4037
4038         if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4039                 ether_addr_copy(dev->dev_addr, pd->mac_address);
4040         else
4041                 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4042                         if (has_acpi_companion(&pdev->dev))
4043                                 bcmgenet_get_hw_addr(priv, dev->dev_addr);
4044
4045         if (!is_valid_ether_addr(dev->dev_addr)) {
4046                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4047                 eth_hw_addr_random(dev);
4048         }
4049
4050         reset_umac(priv);
4051
4052         err = bcmgenet_mii_init(dev);
4053         if (err)
4054                 goto err_clk_disable;
4055
4056         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4057          * just the ring 16 descriptor based TX
4058          */
4059         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4060         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4061
4062         /* Set default coalescing parameters */
4063         for (i = 0; i < priv->hw_params->rx_queues; i++)
4064                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4065         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4066
4067         /* libphy will determine the link state */
4068         netif_carrier_off(dev);
4069
4070         /* Turn off the main clock, WOL clock is handled separately */
4071         clk_disable_unprepare(priv->clk);
4072
4073         err = register_netdev(dev);
4074         if (err) {
4075                 bcmgenet_mii_exit(dev);
4076                 goto err;
4077         }
4078
4079         return err;
4080
4081 err_clk_disable:
4082         clk_disable_unprepare(priv->clk);
4083 err:
4084         free_netdev(dev);
4085         return err;
4086 }
4087
4088 static int bcmgenet_remove(struct platform_device *pdev)
4089 {
4090         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4091
4092         dev_set_drvdata(&pdev->dev, NULL);
4093         unregister_netdev(priv->dev);
4094         bcmgenet_mii_exit(priv->dev);
4095         free_netdev(priv->dev);
4096
4097         return 0;
4098 }
4099
4100 static void bcmgenet_shutdown(struct platform_device *pdev)
4101 {
4102         bcmgenet_remove(pdev);
4103 }
4104
4105 #ifdef CONFIG_PM_SLEEP
4106 static int bcmgenet_resume_noirq(struct device *d)
4107 {
4108         struct net_device *dev = dev_get_drvdata(d);
4109         struct bcmgenet_priv *priv = netdev_priv(dev);
4110         int ret;
4111         u32 reg;
4112
4113         if (!netif_running(dev))
4114                 return 0;
4115
4116         /* Turn on the clock */
4117         ret = clk_prepare_enable(priv->clk);
4118         if (ret)
4119                 return ret;
4120
4121         if (device_may_wakeup(d) && priv->wolopts) {
4122                 /* Account for Wake-on-LAN events and clear those events
4123                  * (Some devices need more time between enabling the clocks
4124                  *  and the interrupt register reflecting the wake event so
4125                  *  read the register twice)
4126                  */
4127                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4128                 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4129                 if (reg & UMAC_IRQ_WAKE_EVENT)
4130                         pm_wakeup_event(&priv->pdev->dev, 0);
4131         }
4132
4133         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4134
4135         return 0;
4136 }
4137
4138 static int bcmgenet_resume(struct device *d)
4139 {
4140         struct net_device *dev = dev_get_drvdata(d);
4141         struct bcmgenet_priv *priv = netdev_priv(dev);
4142         struct bcmgenet_rxnfc_rule *rule;
4143         unsigned long dma_ctrl;
4144         int ret;
4145
4146         if (!netif_running(dev))
4147                 return 0;
4148
4149         /* From WOL-enabled suspend, switch to regular clock */
4150         if (device_may_wakeup(d) && priv->wolopts)
4151                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4152
4153         /* If this is an internal GPHY, power it back on now, before UniMAC is
4154          * brought out of reset as absolutely no UniMAC activity is allowed
4155          */
4156         if (priv->internal_phy)
4157                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4158
4159         bcmgenet_umac_reset(priv);
4160
4161         init_umac(priv);
4162
4163         phy_init_hw(dev->phydev);
4164
4165         /* Speed settings must be restored */
4166         genphy_config_aneg(dev->phydev);
4167         bcmgenet_mii_config(priv->dev, false);
4168
4169         /* Restore enabled features */
4170         bcmgenet_set_features(dev, dev->features);
4171
4172         bcmgenet_set_hw_addr(priv, dev->dev_addr);
4173
4174         /* Restore hardware filters */
4175         bcmgenet_hfb_clear(priv);
4176         list_for_each_entry(rule, &priv->rxnfc_list, list)
4177                 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4178                         bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4179
4180         /* Disable RX/TX DMA and flush TX queues */
4181         dma_ctrl = bcmgenet_dma_disable(priv);
4182
4183         /* Reinitialize TDMA and RDMA and SW housekeeping */
4184         ret = bcmgenet_init_dma(priv);
4185         if (ret) {
4186                 netdev_err(dev, "failed to initialize DMA\n");
4187                 goto out_clk_disable;
4188         }
4189
4190         /* Always enable ring 16 - descriptor ring */
4191         bcmgenet_enable_dma(priv, dma_ctrl);
4192
4193         if (!device_may_wakeup(d))
4194                 phy_resume(dev->phydev);
4195
4196         if (priv->eee.eee_enabled)
4197                 bcmgenet_eee_enable_set(dev, true);
4198
4199         bcmgenet_netif_start(dev);
4200
4201         netif_device_attach(dev);
4202
4203         return 0;
4204
4205 out_clk_disable:
4206         if (priv->internal_phy)
4207                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4208         clk_disable_unprepare(priv->clk);
4209         return ret;
4210 }
4211
4212 static int bcmgenet_suspend(struct device *d)
4213 {
4214         struct net_device *dev = dev_get_drvdata(d);
4215         struct bcmgenet_priv *priv = netdev_priv(dev);
4216
4217         if (!netif_running(dev))
4218                 return 0;
4219
4220         netif_device_detach(dev);
4221
4222         bcmgenet_netif_stop(dev);
4223
4224         if (!device_may_wakeup(d))
4225                 phy_suspend(dev->phydev);
4226
4227         /* Disable filtering */
4228         bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4229
4230         return 0;
4231 }
4232
4233 static int bcmgenet_suspend_noirq(struct device *d)
4234 {
4235         struct net_device *dev = dev_get_drvdata(d);
4236         struct bcmgenet_priv *priv = netdev_priv(dev);
4237         int ret = 0;
4238
4239         if (!netif_running(dev))
4240                 return 0;
4241
4242         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4243         if (device_may_wakeup(d) && priv->wolopts)
4244                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4245         else if (priv->internal_phy)
4246                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4247
4248         /* Let the framework handle resumption and leave the clocks on */
4249         if (ret)
4250                 return ret;
4251
4252         /* Turn off the clocks */
4253         clk_disable_unprepare(priv->clk);
4254
4255         return 0;
4256 }
4257 #else
4258 #define bcmgenet_suspend        NULL
4259 #define bcmgenet_suspend_noirq  NULL
4260 #define bcmgenet_resume         NULL
4261 #define bcmgenet_resume_noirq   NULL
4262 #endif /* CONFIG_PM_SLEEP */
4263
4264 static const struct dev_pm_ops bcmgenet_pm_ops = {
4265         .suspend        = bcmgenet_suspend,
4266         .suspend_noirq  = bcmgenet_suspend_noirq,
4267         .resume         = bcmgenet_resume,
4268         .resume_noirq   = bcmgenet_resume_noirq,
4269 };
4270
4271 static const struct acpi_device_id genet_acpi_match[] = {
4272         { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4273         { },
4274 };
4275 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4276
4277 static struct platform_driver bcmgenet_driver = {
4278         .probe  = bcmgenet_probe,
4279         .remove = bcmgenet_remove,
4280         .shutdown = bcmgenet_shutdown,
4281         .driver = {
4282                 .name   = "bcmgenet",
4283                 .of_match_table = bcmgenet_match,
4284                 .pm     = &bcmgenet_pm_ops,
4285                 .acpi_match_table = genet_acpi_match,
4286         },
4287 };
4288 module_platform_driver(bcmgenet_driver);
4289
4290 MODULE_AUTHOR("Broadcom Corporation");
4291 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4292 MODULE_ALIAS("platform:bcmgenet");
4293 MODULE_LICENSE("GPL");
4294 MODULE_SOFTDEP("pre: mdio-bcm-unimac");