Merge tag 'selinux-pr-20191007' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2017 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/string.h>
17 #include <linux/if_ether.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/pm.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
30 #include <net/arp.h>
31
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/netdevice.h>
35 #include <linux/inetdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/ipv6.h>
41 #include <linux/phy.h>
42 #include <linux/platform_data/bcmgenet.h>
43
44 #include <asm/unaligned.h>
45
46 #include "bcmgenet.h"
47
48 /* Maximum number of hardware queues, downsized if needed */
49 #define GENET_MAX_MQ_CNT        4
50
51 /* Default highest priority queue for multi queue support */
52 #define GENET_Q0_PRIORITY       0
53
54 #define GENET_Q16_RX_BD_CNT     \
55         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
56 #define GENET_Q16_TX_BD_CNT     \
57         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
58
59 #define RX_BUF_LENGTH           2048
60 #define SKB_ALIGNMENT           32
61
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
65
66 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
67                                 TOTAL_DESC * DMA_DESC_SIZE)
68
69 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
73 {
74         /* MIPS chips strapped for BE will automagically configure the
75          * peripheral registers for CPU-native byte order.
76          */
77         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
78                 __raw_writel(value, offset);
79         else
80                 writel_relaxed(value, offset);
81 }
82
83 static inline u32 bcmgenet_readl(void __iomem *offset)
84 {
85         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
86                 return __raw_readl(offset);
87         else
88                 return readl_relaxed(offset);
89 }
90
91 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
92                                              void __iomem *d, u32 value)
93 {
94         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
95 }
96
97 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
98                                             void __iomem *d)
99 {
100         return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
101 }
102
103 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
104                                     void __iomem *d,
105                                     dma_addr_t addr)
106 {
107         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
108
109         /* Register writes to GISB bus can take couple hundred nanoseconds
110          * and are done for each packet, save these expensive writes unless
111          * the platform is explicitly configured for 64-bits/LPAE.
112          */
113 #ifdef CONFIG_PHYS_ADDR_T_64BIT
114         if (priv->hw_params->flags & GENET_HAS_40BITS)
115                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
116 #endif
117 }
118
119 /* Combined address + length/status setter */
120 static inline void dmadesc_set(struct bcmgenet_priv *priv,
121                                void __iomem *d, dma_addr_t addr, u32 val)
122 {
123         dmadesc_set_addr(priv, d, addr);
124         dmadesc_set_length_status(priv, d, val);
125 }
126
127 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
128                                           void __iomem *d)
129 {
130         dma_addr_t addr;
131
132         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
133
134         /* Register writes to GISB bus can take couple hundred nanoseconds
135          * and are done for each packet, save these expensive writes unless
136          * the platform is explicitly configured for 64-bits/LPAE.
137          */
138 #ifdef CONFIG_PHYS_ADDR_T_64BIT
139         if (priv->hw_params->flags & GENET_HAS_40BITS)
140                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
141 #endif
142         return addr;
143 }
144
145 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
146
147 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
148                                 NETIF_MSG_LINK)
149
150 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
151 {
152         if (GENET_IS_V1(priv))
153                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
154         else
155                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
156 }
157
158 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
159 {
160         if (GENET_IS_V1(priv))
161                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
162         else
163                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
164 }
165
166 /* These macros are defined to deal with register map change
167  * between GENET1.1 and GENET2. Only those currently being used
168  * by driver are defined.
169  */
170 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
171 {
172         if (GENET_IS_V1(priv))
173                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
174         else
175                 return bcmgenet_readl(priv->base +
176                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
177 }
178
179 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
180 {
181         if (GENET_IS_V1(priv))
182                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
183         else
184                 bcmgenet_writel(val, priv->base +
185                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
186 }
187
188 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
189 {
190         if (GENET_IS_V1(priv))
191                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
192         else
193                 return bcmgenet_readl(priv->base +
194                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
195 }
196
197 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
198 {
199         if (GENET_IS_V1(priv))
200                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
201         else
202                 bcmgenet_writel(val, priv->base +
203                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
204 }
205
206 /* RX/TX DMA register accessors */
207 enum dma_reg {
208         DMA_RING_CFG = 0,
209         DMA_CTRL,
210         DMA_STATUS,
211         DMA_SCB_BURST_SIZE,
212         DMA_ARB_CTRL,
213         DMA_PRIORITY_0,
214         DMA_PRIORITY_1,
215         DMA_PRIORITY_2,
216         DMA_INDEX2RING_0,
217         DMA_INDEX2RING_1,
218         DMA_INDEX2RING_2,
219         DMA_INDEX2RING_3,
220         DMA_INDEX2RING_4,
221         DMA_INDEX2RING_5,
222         DMA_INDEX2RING_6,
223         DMA_INDEX2RING_7,
224         DMA_RING0_TIMEOUT,
225         DMA_RING1_TIMEOUT,
226         DMA_RING2_TIMEOUT,
227         DMA_RING3_TIMEOUT,
228         DMA_RING4_TIMEOUT,
229         DMA_RING5_TIMEOUT,
230         DMA_RING6_TIMEOUT,
231         DMA_RING7_TIMEOUT,
232         DMA_RING8_TIMEOUT,
233         DMA_RING9_TIMEOUT,
234         DMA_RING10_TIMEOUT,
235         DMA_RING11_TIMEOUT,
236         DMA_RING12_TIMEOUT,
237         DMA_RING13_TIMEOUT,
238         DMA_RING14_TIMEOUT,
239         DMA_RING15_TIMEOUT,
240         DMA_RING16_TIMEOUT,
241 };
242
243 static const u8 bcmgenet_dma_regs_v3plus[] = {
244         [DMA_RING_CFG]          = 0x00,
245         [DMA_CTRL]              = 0x04,
246         [DMA_STATUS]            = 0x08,
247         [DMA_SCB_BURST_SIZE]    = 0x0C,
248         [DMA_ARB_CTRL]          = 0x2C,
249         [DMA_PRIORITY_0]        = 0x30,
250         [DMA_PRIORITY_1]        = 0x34,
251         [DMA_PRIORITY_2]        = 0x38,
252         [DMA_RING0_TIMEOUT]     = 0x2C,
253         [DMA_RING1_TIMEOUT]     = 0x30,
254         [DMA_RING2_TIMEOUT]     = 0x34,
255         [DMA_RING3_TIMEOUT]     = 0x38,
256         [DMA_RING4_TIMEOUT]     = 0x3c,
257         [DMA_RING5_TIMEOUT]     = 0x40,
258         [DMA_RING6_TIMEOUT]     = 0x44,
259         [DMA_RING7_TIMEOUT]     = 0x48,
260         [DMA_RING8_TIMEOUT]     = 0x4c,
261         [DMA_RING9_TIMEOUT]     = 0x50,
262         [DMA_RING10_TIMEOUT]    = 0x54,
263         [DMA_RING11_TIMEOUT]    = 0x58,
264         [DMA_RING12_TIMEOUT]    = 0x5c,
265         [DMA_RING13_TIMEOUT]    = 0x60,
266         [DMA_RING14_TIMEOUT]    = 0x64,
267         [DMA_RING15_TIMEOUT]    = 0x68,
268         [DMA_RING16_TIMEOUT]    = 0x6C,
269         [DMA_INDEX2RING_0]      = 0x70,
270         [DMA_INDEX2RING_1]      = 0x74,
271         [DMA_INDEX2RING_2]      = 0x78,
272         [DMA_INDEX2RING_3]      = 0x7C,
273         [DMA_INDEX2RING_4]      = 0x80,
274         [DMA_INDEX2RING_5]      = 0x84,
275         [DMA_INDEX2RING_6]      = 0x88,
276         [DMA_INDEX2RING_7]      = 0x8C,
277 };
278
279 static const u8 bcmgenet_dma_regs_v2[] = {
280         [DMA_RING_CFG]          = 0x00,
281         [DMA_CTRL]              = 0x04,
282         [DMA_STATUS]            = 0x08,
283         [DMA_SCB_BURST_SIZE]    = 0x0C,
284         [DMA_ARB_CTRL]          = 0x30,
285         [DMA_PRIORITY_0]        = 0x34,
286         [DMA_PRIORITY_1]        = 0x38,
287         [DMA_PRIORITY_2]        = 0x3C,
288         [DMA_RING0_TIMEOUT]     = 0x2C,
289         [DMA_RING1_TIMEOUT]     = 0x30,
290         [DMA_RING2_TIMEOUT]     = 0x34,
291         [DMA_RING3_TIMEOUT]     = 0x38,
292         [DMA_RING4_TIMEOUT]     = 0x3c,
293         [DMA_RING5_TIMEOUT]     = 0x40,
294         [DMA_RING6_TIMEOUT]     = 0x44,
295         [DMA_RING7_TIMEOUT]     = 0x48,
296         [DMA_RING8_TIMEOUT]     = 0x4c,
297         [DMA_RING9_TIMEOUT]     = 0x50,
298         [DMA_RING10_TIMEOUT]    = 0x54,
299         [DMA_RING11_TIMEOUT]    = 0x58,
300         [DMA_RING12_TIMEOUT]    = 0x5c,
301         [DMA_RING13_TIMEOUT]    = 0x60,
302         [DMA_RING14_TIMEOUT]    = 0x64,
303         [DMA_RING15_TIMEOUT]    = 0x68,
304         [DMA_RING16_TIMEOUT]    = 0x6C,
305 };
306
307 static const u8 bcmgenet_dma_regs_v1[] = {
308         [DMA_CTRL]              = 0x00,
309         [DMA_STATUS]            = 0x04,
310         [DMA_SCB_BURST_SIZE]    = 0x0C,
311         [DMA_ARB_CTRL]          = 0x30,
312         [DMA_PRIORITY_0]        = 0x34,
313         [DMA_PRIORITY_1]        = 0x38,
314         [DMA_PRIORITY_2]        = 0x3C,
315         [DMA_RING0_TIMEOUT]     = 0x2C,
316         [DMA_RING1_TIMEOUT]     = 0x30,
317         [DMA_RING2_TIMEOUT]     = 0x34,
318         [DMA_RING3_TIMEOUT]     = 0x38,
319         [DMA_RING4_TIMEOUT]     = 0x3c,
320         [DMA_RING5_TIMEOUT]     = 0x40,
321         [DMA_RING6_TIMEOUT]     = 0x44,
322         [DMA_RING7_TIMEOUT]     = 0x48,
323         [DMA_RING8_TIMEOUT]     = 0x4c,
324         [DMA_RING9_TIMEOUT]     = 0x50,
325         [DMA_RING10_TIMEOUT]    = 0x54,
326         [DMA_RING11_TIMEOUT]    = 0x58,
327         [DMA_RING12_TIMEOUT]    = 0x5c,
328         [DMA_RING13_TIMEOUT]    = 0x60,
329         [DMA_RING14_TIMEOUT]    = 0x64,
330         [DMA_RING15_TIMEOUT]    = 0x68,
331         [DMA_RING16_TIMEOUT]    = 0x6C,
332 };
333
334 /* Set at runtime once bcmgenet version is known */
335 static const u8 *bcmgenet_dma_regs;
336
337 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
338 {
339         return netdev_priv(dev_get_drvdata(dev));
340 }
341
342 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
343                                       enum dma_reg r)
344 {
345         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
346                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
350                                         u32 val, enum dma_reg r)
351 {
352         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
353                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
357                                       enum dma_reg r)
358 {
359         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
360                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
364                                         u32 val, enum dma_reg r)
365 {
366         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
367                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
368 }
369
370 /* RDMA/TDMA ring registers and accessors
371  * we merge the common fields and just prefix with T/D the registers
372  * having different meaning depending on the direction
373  */
374 enum dma_ring_reg {
375         TDMA_READ_PTR = 0,
376         RDMA_WRITE_PTR = TDMA_READ_PTR,
377         TDMA_READ_PTR_HI,
378         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
379         TDMA_CONS_INDEX,
380         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
381         TDMA_PROD_INDEX,
382         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
383         DMA_RING_BUF_SIZE,
384         DMA_START_ADDR,
385         DMA_START_ADDR_HI,
386         DMA_END_ADDR,
387         DMA_END_ADDR_HI,
388         DMA_MBUF_DONE_THRESH,
389         TDMA_FLOW_PERIOD,
390         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
391         TDMA_WRITE_PTR,
392         RDMA_READ_PTR = TDMA_WRITE_PTR,
393         TDMA_WRITE_PTR_HI,
394         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
395 };
396
397 /* GENET v4 supports 40-bits pointer addressing
398  * for obvious reasons the LO and HI word parts
399  * are contiguous, but this offsets the other
400  * registers.
401  */
402 static const u8 genet_dma_ring_regs_v4[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_READ_PTR_HI]              = 0x04,
405         [TDMA_CONS_INDEX]               = 0x08,
406         [TDMA_PROD_INDEX]               = 0x0C,
407         [DMA_RING_BUF_SIZE]             = 0x10,
408         [DMA_START_ADDR]                = 0x14,
409         [DMA_START_ADDR_HI]             = 0x18,
410         [DMA_END_ADDR]                  = 0x1C,
411         [DMA_END_ADDR_HI]               = 0x20,
412         [DMA_MBUF_DONE_THRESH]          = 0x24,
413         [TDMA_FLOW_PERIOD]              = 0x28,
414         [TDMA_WRITE_PTR]                = 0x2C,
415         [TDMA_WRITE_PTR_HI]             = 0x30,
416 };
417
418 static const u8 genet_dma_ring_regs_v123[] = {
419         [TDMA_READ_PTR]                 = 0x00,
420         [TDMA_CONS_INDEX]               = 0x04,
421         [TDMA_PROD_INDEX]               = 0x08,
422         [DMA_RING_BUF_SIZE]             = 0x0C,
423         [DMA_START_ADDR]                = 0x10,
424         [DMA_END_ADDR]                  = 0x14,
425         [DMA_MBUF_DONE_THRESH]          = 0x18,
426         [TDMA_FLOW_PERIOD]              = 0x1C,
427         [TDMA_WRITE_PTR]                = 0x20,
428 };
429
430 /* Set at runtime once GENET version is known */
431 static const u8 *genet_dma_ring_regs;
432
433 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
434                                            unsigned int ring,
435                                            enum dma_ring_reg r)
436 {
437         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
438                               (DMA_RING_SIZE * ring) +
439                               genet_dma_ring_regs[r]);
440 }
441
442 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
443                                              unsigned int ring, u32 val,
444                                              enum dma_ring_reg r)
445 {
446         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
447                         (DMA_RING_SIZE * ring) +
448                         genet_dma_ring_regs[r]);
449 }
450
451 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
452                                            unsigned int ring,
453                                            enum dma_ring_reg r)
454 {
455         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
456                               (DMA_RING_SIZE * ring) +
457                               genet_dma_ring_regs[r]);
458 }
459
460 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
461                                              unsigned int ring, u32 val,
462                                              enum dma_ring_reg r)
463 {
464         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
465                         (DMA_RING_SIZE * ring) +
466                         genet_dma_ring_regs[r]);
467 }
468
469 static int bcmgenet_begin(struct net_device *dev)
470 {
471         struct bcmgenet_priv *priv = netdev_priv(dev);
472
473         /* Turn on the clock */
474         return clk_prepare_enable(priv->clk);
475 }
476
477 static void bcmgenet_complete(struct net_device *dev)
478 {
479         struct bcmgenet_priv *priv = netdev_priv(dev);
480
481         /* Turn off the clock */
482         clk_disable_unprepare(priv->clk);
483 }
484
485 static int bcmgenet_get_link_ksettings(struct net_device *dev,
486                                        struct ethtool_link_ksettings *cmd)
487 {
488         if (!netif_running(dev))
489                 return -EINVAL;
490
491         if (!dev->phydev)
492                 return -ENODEV;
493
494         phy_ethtool_ksettings_get(dev->phydev, cmd);
495
496         return 0;
497 }
498
499 static int bcmgenet_set_link_ksettings(struct net_device *dev,
500                                        const struct ethtool_link_ksettings *cmd)
501 {
502         if (!netif_running(dev))
503                 return -EINVAL;
504
505         if (!dev->phydev)
506                 return -ENODEV;
507
508         return phy_ethtool_ksettings_set(dev->phydev, cmd);
509 }
510
511 static int bcmgenet_set_rx_csum(struct net_device *dev,
512                                 netdev_features_t wanted)
513 {
514         struct bcmgenet_priv *priv = netdev_priv(dev);
515         u32 rbuf_chk_ctrl;
516         bool rx_csum_en;
517
518         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
519
520         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
521
522         /* enable rx checksumming */
523         if (rx_csum_en)
524                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
525         else
526                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
527         priv->desc_rxchk_en = rx_csum_en;
528
529         /* If UniMAC forwards CRC, we need to skip over it to get
530          * a valid CHK bit to be set in the per-packet status word
531         */
532         if (rx_csum_en && priv->crc_fwd_en)
533                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
534         else
535                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
536
537         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
538
539         return 0;
540 }
541
542 static int bcmgenet_set_tx_csum(struct net_device *dev,
543                                 netdev_features_t wanted)
544 {
545         struct bcmgenet_priv *priv = netdev_priv(dev);
546         bool desc_64b_en;
547         u32 tbuf_ctrl, rbuf_ctrl;
548
549         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
550         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
551
552         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
553
554         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
555         if (desc_64b_en) {
556                 tbuf_ctrl |= RBUF_64B_EN;
557                 rbuf_ctrl |= RBUF_64B_EN;
558         } else {
559                 tbuf_ctrl &= ~RBUF_64B_EN;
560                 rbuf_ctrl &= ~RBUF_64B_EN;
561         }
562         priv->desc_64b_en = desc_64b_en;
563
564         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
565         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
566
567         return 0;
568 }
569
570 static int bcmgenet_set_features(struct net_device *dev,
571                                  netdev_features_t features)
572 {
573         netdev_features_t changed = features ^ dev->features;
574         netdev_features_t wanted = dev->wanted_features;
575         int ret = 0;
576
577         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
578                 ret = bcmgenet_set_tx_csum(dev, wanted);
579         if (changed & (NETIF_F_RXCSUM))
580                 ret = bcmgenet_set_rx_csum(dev, wanted);
581
582         return ret;
583 }
584
585 static u32 bcmgenet_get_msglevel(struct net_device *dev)
586 {
587         struct bcmgenet_priv *priv = netdev_priv(dev);
588
589         return priv->msg_enable;
590 }
591
592 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
593 {
594         struct bcmgenet_priv *priv = netdev_priv(dev);
595
596         priv->msg_enable = level;
597 }
598
599 static int bcmgenet_get_coalesce(struct net_device *dev,
600                                  struct ethtool_coalesce *ec)
601 {
602         struct bcmgenet_priv *priv = netdev_priv(dev);
603         struct bcmgenet_rx_ring *ring;
604         unsigned int i;
605
606         ec->tx_max_coalesced_frames =
607                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
608                                          DMA_MBUF_DONE_THRESH);
609         ec->rx_max_coalesced_frames =
610                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
611                                          DMA_MBUF_DONE_THRESH);
612         ec->rx_coalesce_usecs =
613                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
614
615         for (i = 0; i < priv->hw_params->rx_queues; i++) {
616                 ring = &priv->rx_rings[i];
617                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
618         }
619         ring = &priv->rx_rings[DESC_INDEX];
620         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
621
622         return 0;
623 }
624
625 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
626                                      u32 usecs, u32 pkts)
627 {
628         struct bcmgenet_priv *priv = ring->priv;
629         unsigned int i = ring->index;
630         u32 reg;
631
632         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
633
634         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
635         reg &= ~DMA_TIMEOUT_MASK;
636         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
637         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
638 }
639
640 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
641                                           struct ethtool_coalesce *ec)
642 {
643         struct dim_cq_moder moder;
644         u32 usecs, pkts;
645
646         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
647         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
648         usecs = ring->rx_coalesce_usecs;
649         pkts = ring->rx_max_coalesced_frames;
650
651         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
652                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
653                 usecs = moder.usec;
654                 pkts = moder.pkts;
655         }
656
657         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
658         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
659 }
660
661 static int bcmgenet_set_coalesce(struct net_device *dev,
662                                  struct ethtool_coalesce *ec)
663 {
664         struct bcmgenet_priv *priv = netdev_priv(dev);
665         unsigned int i;
666
667         /* Base system clock is 125Mhz, DMA timeout is this reference clock
668          * divided by 1024, which yields roughly 8.192us, our maximum value
669          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
670          */
671         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
672             ec->tx_max_coalesced_frames == 0 ||
673             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
674             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
675                 return -EINVAL;
676
677         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
678                 return -EINVAL;
679
680         /* GENET TDMA hardware does not support a configurable timeout, but will
681          * always generate an interrupt either after MBDONE packets have been
682          * transmitted, or when the ring is empty.
683          */
684         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
685             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
686             ec->use_adaptive_tx_coalesce)
687                 return -EOPNOTSUPP;
688
689         /* Program all TX queues with the same values, as there is no
690          * ethtool knob to do coalescing on a per-queue basis
691          */
692         for (i = 0; i < priv->hw_params->tx_queues; i++)
693                 bcmgenet_tdma_ring_writel(priv, i,
694                                           ec->tx_max_coalesced_frames,
695                                           DMA_MBUF_DONE_THRESH);
696         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
697                                   ec->tx_max_coalesced_frames,
698                                   DMA_MBUF_DONE_THRESH);
699
700         for (i = 0; i < priv->hw_params->rx_queues; i++)
701                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
702         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
703
704         return 0;
705 }
706
707 /* standard ethtool support functions. */
708 enum bcmgenet_stat_type {
709         BCMGENET_STAT_NETDEV = -1,
710         BCMGENET_STAT_MIB_RX,
711         BCMGENET_STAT_MIB_TX,
712         BCMGENET_STAT_RUNT,
713         BCMGENET_STAT_MISC,
714         BCMGENET_STAT_SOFT,
715 };
716
717 struct bcmgenet_stats {
718         char stat_string[ETH_GSTRING_LEN];
719         int stat_sizeof;
720         int stat_offset;
721         enum bcmgenet_stat_type type;
722         /* reg offset from UMAC base for misc counters */
723         u16 reg_offset;
724 };
725
726 #define STAT_NETDEV(m) { \
727         .stat_string = __stringify(m), \
728         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
729         .stat_offset = offsetof(struct net_device_stats, m), \
730         .type = BCMGENET_STAT_NETDEV, \
731 }
732
733 #define STAT_GENET_MIB(str, m, _type) { \
734         .stat_string = str, \
735         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
736         .stat_offset = offsetof(struct bcmgenet_priv, m), \
737         .type = _type, \
738 }
739
740 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
741 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
742 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
743 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
744
745 #define STAT_GENET_MISC(str, m, offset) { \
746         .stat_string = str, \
747         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
748         .stat_offset = offsetof(struct bcmgenet_priv, m), \
749         .type = BCMGENET_STAT_MISC, \
750         .reg_offset = offset, \
751 }
752
753 #define STAT_GENET_Q(num) \
754         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
755                         tx_rings[num].packets), \
756         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
757                         tx_rings[num].bytes), \
758         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
759                         rx_rings[num].bytes),    \
760         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
761                         rx_rings[num].packets), \
762         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
763                         rx_rings[num].errors), \
764         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
765                         rx_rings[num].dropped)
766
767 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
768  * between the end of TX stats and the beginning of the RX RUNT
769  */
770 #define BCMGENET_STAT_OFFSET    0xc
771
772 /* Hardware counters must be kept in sync because the order/offset
773  * is important here (order in structure declaration = order in hardware)
774  */
775 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
776         /* general stats */
777         STAT_NETDEV(rx_packets),
778         STAT_NETDEV(tx_packets),
779         STAT_NETDEV(rx_bytes),
780         STAT_NETDEV(tx_bytes),
781         STAT_NETDEV(rx_errors),
782         STAT_NETDEV(tx_errors),
783         STAT_NETDEV(rx_dropped),
784         STAT_NETDEV(tx_dropped),
785         STAT_NETDEV(multicast),
786         /* UniMAC RSV counters */
787         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
788         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
789         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
790         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
791         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
792         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
793         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
794         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
795         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
796         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
797         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
798         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
799         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
800         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
801         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
802         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
803         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
804         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
805         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
806         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
807         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
808         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
809         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
810         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
811         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
812         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
813         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
814         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
815         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
816         /* UniMAC TSV counters */
817         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
818         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
819         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
820         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
821         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
822         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
823         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
824         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
825         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
826         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
827         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
828         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
829         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
830         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
831         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
832         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
833         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
834         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
835         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
836         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
837         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
838         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
839         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
840         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
841         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
842         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
843         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
844         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
845         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
846         /* UniMAC RUNT counters */
847         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
848         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
849         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
850         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
851         /* Misc UniMAC counters */
852         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
853                         UMAC_RBUF_OVFL_CNT_V1),
854         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
855                         UMAC_RBUF_ERR_CNT_V1),
856         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
857         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
858         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
859         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
860         /* Per TX queues */
861         STAT_GENET_Q(0),
862         STAT_GENET_Q(1),
863         STAT_GENET_Q(2),
864         STAT_GENET_Q(3),
865         STAT_GENET_Q(16),
866 };
867
868 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
869
870 static void bcmgenet_get_drvinfo(struct net_device *dev,
871                                  struct ethtool_drvinfo *info)
872 {
873         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
874         strlcpy(info->version, "v2.0", sizeof(info->version));
875 }
876
877 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
878 {
879         switch (string_set) {
880         case ETH_SS_STATS:
881                 return BCMGENET_STATS_LEN;
882         default:
883                 return -EOPNOTSUPP;
884         }
885 }
886
887 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
888                                  u8 *data)
889 {
890         int i;
891
892         switch (stringset) {
893         case ETH_SS_STATS:
894                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
895                         memcpy(data + i * ETH_GSTRING_LEN,
896                                bcmgenet_gstrings_stats[i].stat_string,
897                                ETH_GSTRING_LEN);
898                 }
899                 break;
900         }
901 }
902
903 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
904 {
905         u16 new_offset;
906         u32 val;
907
908         switch (offset) {
909         case UMAC_RBUF_OVFL_CNT_V1:
910                 if (GENET_IS_V2(priv))
911                         new_offset = RBUF_OVFL_CNT_V2;
912                 else
913                         new_offset = RBUF_OVFL_CNT_V3PLUS;
914
915                 val = bcmgenet_rbuf_readl(priv, new_offset);
916                 /* clear if overflowed */
917                 if (val == ~0)
918                         bcmgenet_rbuf_writel(priv, 0, new_offset);
919                 break;
920         case UMAC_RBUF_ERR_CNT_V1:
921                 if (GENET_IS_V2(priv))
922                         new_offset = RBUF_ERR_CNT_V2;
923                 else
924                         new_offset = RBUF_ERR_CNT_V3PLUS;
925
926                 val = bcmgenet_rbuf_readl(priv, new_offset);
927                 /* clear if overflowed */
928                 if (val == ~0)
929                         bcmgenet_rbuf_writel(priv, 0, new_offset);
930                 break;
931         default:
932                 val = bcmgenet_umac_readl(priv, offset);
933                 /* clear if overflowed */
934                 if (val == ~0)
935                         bcmgenet_umac_writel(priv, 0, offset);
936                 break;
937         }
938
939         return val;
940 }
941
942 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
943 {
944         int i, j = 0;
945
946         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
947                 const struct bcmgenet_stats *s;
948                 u8 offset = 0;
949                 u32 val = 0;
950                 char *p;
951
952                 s = &bcmgenet_gstrings_stats[i];
953                 switch (s->type) {
954                 case BCMGENET_STAT_NETDEV:
955                 case BCMGENET_STAT_SOFT:
956                         continue;
957                 case BCMGENET_STAT_RUNT:
958                         offset += BCMGENET_STAT_OFFSET;
959                         /* fall through */
960                 case BCMGENET_STAT_MIB_TX:
961                         offset += BCMGENET_STAT_OFFSET;
962                         /* fall through */
963                 case BCMGENET_STAT_MIB_RX:
964                         val = bcmgenet_umac_readl(priv,
965                                                   UMAC_MIB_START + j + offset);
966                         offset = 0;     /* Reset Offset */
967                         break;
968                 case BCMGENET_STAT_MISC:
969                         if (GENET_IS_V1(priv)) {
970                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
971                                 /* clear if overflowed */
972                                 if (val == ~0)
973                                         bcmgenet_umac_writel(priv, 0,
974                                                              s->reg_offset);
975                         } else {
976                                 val = bcmgenet_update_stat_misc(priv,
977                                                                 s->reg_offset);
978                         }
979                         break;
980                 }
981
982                 j += s->stat_sizeof;
983                 p = (char *)priv + s->stat_offset;
984                 *(u32 *)p = val;
985         }
986 }
987
988 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
989                                        struct ethtool_stats *stats,
990                                        u64 *data)
991 {
992         struct bcmgenet_priv *priv = netdev_priv(dev);
993         int i;
994
995         if (netif_running(dev))
996                 bcmgenet_update_mib_counters(priv);
997
998         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
999                 const struct bcmgenet_stats *s;
1000                 char *p;
1001
1002                 s = &bcmgenet_gstrings_stats[i];
1003                 if (s->type == BCMGENET_STAT_NETDEV)
1004                         p = (char *)&dev->stats;
1005                 else
1006                         p = (char *)priv;
1007                 p += s->stat_offset;
1008                 if (sizeof(unsigned long) != sizeof(u32) &&
1009                     s->stat_sizeof == sizeof(unsigned long))
1010                         data[i] = *(unsigned long *)p;
1011                 else
1012                         data[i] = *(u32 *)p;
1013         }
1014 }
1015
1016 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1017 {
1018         struct bcmgenet_priv *priv = netdev_priv(dev);
1019         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1020         u32 reg;
1021
1022         if (enable && !priv->clk_eee_enabled) {
1023                 clk_prepare_enable(priv->clk_eee);
1024                 priv->clk_eee_enabled = true;
1025         }
1026
1027         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1028         if (enable)
1029                 reg |= EEE_EN;
1030         else
1031                 reg &= ~EEE_EN;
1032         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1033
1034         /* Enable EEE and switch to a 27Mhz clock automatically */
1035         reg = bcmgenet_readl(priv->base + off);
1036         if (enable)
1037                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1038         else
1039                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1040         bcmgenet_writel(reg, priv->base + off);
1041
1042         /* Do the same for thing for RBUF */
1043         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1044         if (enable)
1045                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1046         else
1047                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1048         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1049
1050         if (!enable && priv->clk_eee_enabled) {
1051                 clk_disable_unprepare(priv->clk_eee);
1052                 priv->clk_eee_enabled = false;
1053         }
1054
1055         priv->eee.eee_enabled = enable;
1056         priv->eee.eee_active = enable;
1057 }
1058
1059 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1060 {
1061         struct bcmgenet_priv *priv = netdev_priv(dev);
1062         struct ethtool_eee *p = &priv->eee;
1063
1064         if (GENET_IS_V1(priv))
1065                 return -EOPNOTSUPP;
1066
1067         if (!dev->phydev)
1068                 return -ENODEV;
1069
1070         e->eee_enabled = p->eee_enabled;
1071         e->eee_active = p->eee_active;
1072         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1073
1074         return phy_ethtool_get_eee(dev->phydev, e);
1075 }
1076
1077 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1078 {
1079         struct bcmgenet_priv *priv = netdev_priv(dev);
1080         struct ethtool_eee *p = &priv->eee;
1081         int ret = 0;
1082
1083         if (GENET_IS_V1(priv))
1084                 return -EOPNOTSUPP;
1085
1086         if (!dev->phydev)
1087                 return -ENODEV;
1088
1089         p->eee_enabled = e->eee_enabled;
1090
1091         if (!p->eee_enabled) {
1092                 bcmgenet_eee_enable_set(dev, false);
1093         } else {
1094                 ret = phy_init_eee(dev->phydev, 0);
1095                 if (ret) {
1096                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1097                         return ret;
1098                 }
1099
1100                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1101                 bcmgenet_eee_enable_set(dev, true);
1102         }
1103
1104         return phy_ethtool_set_eee(dev->phydev, e);
1105 }
1106
1107 /* standard ethtool support functions. */
1108 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1109         .begin                  = bcmgenet_begin,
1110         .complete               = bcmgenet_complete,
1111         .get_strings            = bcmgenet_get_strings,
1112         .get_sset_count         = bcmgenet_get_sset_count,
1113         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1114         .get_drvinfo            = bcmgenet_get_drvinfo,
1115         .get_link               = ethtool_op_get_link,
1116         .get_msglevel           = bcmgenet_get_msglevel,
1117         .set_msglevel           = bcmgenet_set_msglevel,
1118         .get_wol                = bcmgenet_get_wol,
1119         .set_wol                = bcmgenet_set_wol,
1120         .get_eee                = bcmgenet_get_eee,
1121         .set_eee                = bcmgenet_set_eee,
1122         .nway_reset             = phy_ethtool_nway_reset,
1123         .get_coalesce           = bcmgenet_get_coalesce,
1124         .set_coalesce           = bcmgenet_set_coalesce,
1125         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1126         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1127         .get_ts_info            = ethtool_op_get_ts_info,
1128 };
1129
1130 /* Power down the unimac, based on mode. */
1131 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1132                                 enum bcmgenet_power_mode mode)
1133 {
1134         int ret = 0;
1135         u32 reg;
1136
1137         switch (mode) {
1138         case GENET_POWER_CABLE_SENSE:
1139                 phy_detach(priv->dev->phydev);
1140                 break;
1141
1142         case GENET_POWER_WOL_MAGIC:
1143                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1144                 break;
1145
1146         case GENET_POWER_PASSIVE:
1147                 /* Power down LED */
1148                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1149                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1150                         if (GENET_IS_V5(priv))
1151                                 reg |= EXT_PWR_DOWN_PHY_EN |
1152                                        EXT_PWR_DOWN_PHY_RD |
1153                                        EXT_PWR_DOWN_PHY_SD |
1154                                        EXT_PWR_DOWN_PHY_RX |
1155                                        EXT_PWR_DOWN_PHY_TX |
1156                                        EXT_IDDQ_GLBL_PWR;
1157                         else
1158                                 reg |= EXT_PWR_DOWN_PHY;
1159
1160                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1161                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1162
1163                         bcmgenet_phy_power_set(priv->dev, false);
1164                 }
1165                 break;
1166         default:
1167                 break;
1168         }
1169
1170         return ret;
1171 }
1172
1173 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1174                               enum bcmgenet_power_mode mode)
1175 {
1176         u32 reg;
1177
1178         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1179                 return;
1180
1181         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1182
1183         switch (mode) {
1184         case GENET_POWER_PASSIVE:
1185                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1186                 if (GENET_IS_V5(priv)) {
1187                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1188                                  EXT_PWR_DOWN_PHY_RD |
1189                                  EXT_PWR_DOWN_PHY_SD |
1190                                  EXT_PWR_DOWN_PHY_RX |
1191                                  EXT_PWR_DOWN_PHY_TX |
1192                                  EXT_IDDQ_GLBL_PWR);
1193                         reg |=   EXT_PHY_RESET;
1194                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1195                         mdelay(1);
1196
1197                         reg &=  ~EXT_PHY_RESET;
1198                 } else {
1199                         reg &= ~EXT_PWR_DOWN_PHY;
1200                         reg |= EXT_PWR_DN_EN_LD;
1201                 }
1202                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1203                 bcmgenet_phy_power_set(priv->dev, true);
1204                 break;
1205
1206         case GENET_POWER_CABLE_SENSE:
1207                 /* enable APD */
1208                 if (!GENET_IS_V5(priv)) {
1209                         reg |= EXT_PWR_DN_EN_LD;
1210                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1211                 }
1212                 break;
1213         case GENET_POWER_WOL_MAGIC:
1214                 bcmgenet_wol_power_up_cfg(priv, mode);
1215                 return;
1216         default:
1217                 break;
1218         }
1219 }
1220
1221 /* ioctl handle special commands that are not present in ethtool. */
1222 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1223 {
1224         if (!netif_running(dev))
1225                 return -EINVAL;
1226
1227         if (!dev->phydev)
1228                 return -ENODEV;
1229
1230         return phy_mii_ioctl(dev->phydev, rq, cmd);
1231 }
1232
1233 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1234                                          struct bcmgenet_tx_ring *ring)
1235 {
1236         struct enet_cb *tx_cb_ptr;
1237
1238         tx_cb_ptr = ring->cbs;
1239         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1240
1241         /* Advancing local write pointer */
1242         if (ring->write_ptr == ring->end_ptr)
1243                 ring->write_ptr = ring->cb_ptr;
1244         else
1245                 ring->write_ptr++;
1246
1247         return tx_cb_ptr;
1248 }
1249
1250 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1251                                          struct bcmgenet_tx_ring *ring)
1252 {
1253         struct enet_cb *tx_cb_ptr;
1254
1255         tx_cb_ptr = ring->cbs;
1256         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1257
1258         /* Rewinding local write pointer */
1259         if (ring->write_ptr == ring->cb_ptr)
1260                 ring->write_ptr = ring->end_ptr;
1261         else
1262                 ring->write_ptr--;
1263
1264         return tx_cb_ptr;
1265 }
1266
1267 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1268 {
1269         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1270                                  INTRL2_CPU_MASK_SET);
1271 }
1272
1273 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1274 {
1275         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1276                                  INTRL2_CPU_MASK_CLEAR);
1277 }
1278
1279 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1280 {
1281         bcmgenet_intrl2_1_writel(ring->priv,
1282                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1283                                  INTRL2_CPU_MASK_SET);
1284 }
1285
1286 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1287 {
1288         bcmgenet_intrl2_1_writel(ring->priv,
1289                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1290                                  INTRL2_CPU_MASK_CLEAR);
1291 }
1292
1293 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1294 {
1295         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1296                                  INTRL2_CPU_MASK_SET);
1297 }
1298
1299 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1300 {
1301         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1302                                  INTRL2_CPU_MASK_CLEAR);
1303 }
1304
1305 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1306 {
1307         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1308                                  INTRL2_CPU_MASK_CLEAR);
1309 }
1310
1311 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1312 {
1313         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1314                                  INTRL2_CPU_MASK_SET);
1315 }
1316
1317 /* Simple helper to free a transmit control block's resources
1318  * Returns an skb when the last transmit control block associated with the
1319  * skb is freed.  The skb should be freed by the caller if necessary.
1320  */
1321 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1322                                            struct enet_cb *cb)
1323 {
1324         struct sk_buff *skb;
1325
1326         skb = cb->skb;
1327
1328         if (skb) {
1329                 cb->skb = NULL;
1330                 if (cb == GENET_CB(skb)->first_cb)
1331                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1332                                          dma_unmap_len(cb, dma_len),
1333                                          DMA_TO_DEVICE);
1334                 else
1335                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1336                                        dma_unmap_len(cb, dma_len),
1337                                        DMA_TO_DEVICE);
1338                 dma_unmap_addr_set(cb, dma_addr, 0);
1339
1340                 if (cb == GENET_CB(skb)->last_cb)
1341                         return skb;
1342
1343         } else if (dma_unmap_addr(cb, dma_addr)) {
1344                 dma_unmap_page(dev,
1345                                dma_unmap_addr(cb, dma_addr),
1346                                dma_unmap_len(cb, dma_len),
1347                                DMA_TO_DEVICE);
1348                 dma_unmap_addr_set(cb, dma_addr, 0);
1349         }
1350
1351         return NULL;
1352 }
1353
1354 /* Simple helper to free a receive control block's resources */
1355 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1356                                            struct enet_cb *cb)
1357 {
1358         struct sk_buff *skb;
1359
1360         skb = cb->skb;
1361         cb->skb = NULL;
1362
1363         if (dma_unmap_addr(cb, dma_addr)) {
1364                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1365                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1366                 dma_unmap_addr_set(cb, dma_addr, 0);
1367         }
1368
1369         return skb;
1370 }
1371
1372 /* Unlocked version of the reclaim routine */
1373 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1374                                           struct bcmgenet_tx_ring *ring)
1375 {
1376         struct bcmgenet_priv *priv = netdev_priv(dev);
1377         unsigned int txbds_processed = 0;
1378         unsigned int bytes_compl = 0;
1379         unsigned int pkts_compl = 0;
1380         unsigned int txbds_ready;
1381         unsigned int c_index;
1382         struct sk_buff *skb;
1383
1384         /* Clear status before servicing to reduce spurious interrupts */
1385         if (ring->index == DESC_INDEX)
1386                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1387                                          INTRL2_CPU_CLEAR);
1388         else
1389                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1390                                          INTRL2_CPU_CLEAR);
1391
1392         /* Compute how many buffers are transmitted since last xmit call */
1393         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1394                 & DMA_C_INDEX_MASK;
1395         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1396
1397         netif_dbg(priv, tx_done, dev,
1398                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1399                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1400
1401         /* Reclaim transmitted buffers */
1402         while (txbds_processed < txbds_ready) {
1403                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1404                                           &priv->tx_cbs[ring->clean_ptr]);
1405                 if (skb) {
1406                         pkts_compl++;
1407                         bytes_compl += GENET_CB(skb)->bytes_sent;
1408                         dev_consume_skb_any(skb);
1409                 }
1410
1411                 txbds_processed++;
1412                 if (likely(ring->clean_ptr < ring->end_ptr))
1413                         ring->clean_ptr++;
1414                 else
1415                         ring->clean_ptr = ring->cb_ptr;
1416         }
1417
1418         ring->free_bds += txbds_processed;
1419         ring->c_index = c_index;
1420
1421         ring->packets += pkts_compl;
1422         ring->bytes += bytes_compl;
1423
1424         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1425                                   pkts_compl, bytes_compl);
1426
1427         return txbds_processed;
1428 }
1429
1430 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1431                                 struct bcmgenet_tx_ring *ring)
1432 {
1433         unsigned int released;
1434
1435         spin_lock_bh(&ring->lock);
1436         released = __bcmgenet_tx_reclaim(dev, ring);
1437         spin_unlock_bh(&ring->lock);
1438
1439         return released;
1440 }
1441
1442 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1443 {
1444         struct bcmgenet_tx_ring *ring =
1445                 container_of(napi, struct bcmgenet_tx_ring, napi);
1446         unsigned int work_done = 0;
1447         struct netdev_queue *txq;
1448
1449         spin_lock(&ring->lock);
1450         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1451         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1452                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1453                 netif_tx_wake_queue(txq);
1454         }
1455         spin_unlock(&ring->lock);
1456
1457         if (work_done == 0) {
1458                 napi_complete(napi);
1459                 ring->int_enable(ring);
1460
1461                 return 0;
1462         }
1463
1464         return budget;
1465 }
1466
1467 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1468 {
1469         struct bcmgenet_priv *priv = netdev_priv(dev);
1470         int i;
1471
1472         if (netif_is_multiqueue(dev)) {
1473                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1474                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1475         }
1476
1477         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1478 }
1479
1480 /* Reallocate the SKB to put enough headroom in front of it and insert
1481  * the transmit checksum offsets in the descriptors
1482  */
1483 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1484                                             struct sk_buff *skb)
1485 {
1486         struct status_64 *status = NULL;
1487         struct sk_buff *new_skb;
1488         u16 offset;
1489         u8 ip_proto;
1490         __be16 ip_ver;
1491         u32 tx_csum_info;
1492
1493         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1494                 /* If 64 byte status block enabled, must make sure skb has
1495                  * enough headroom for us to insert 64B status block.
1496                  */
1497                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1498                 dev_kfree_skb(skb);
1499                 if (!new_skb) {
1500                         dev->stats.tx_dropped++;
1501                         return NULL;
1502                 }
1503                 skb = new_skb;
1504         }
1505
1506         skb_push(skb, sizeof(*status));
1507         status = (struct status_64 *)skb->data;
1508
1509         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1510                 ip_ver = skb->protocol;
1511                 switch (ip_ver) {
1512                 case htons(ETH_P_IP):
1513                         ip_proto = ip_hdr(skb)->protocol;
1514                         break;
1515                 case htons(ETH_P_IPV6):
1516                         ip_proto = ipv6_hdr(skb)->nexthdr;
1517                         break;
1518                 default:
1519                         return skb;
1520                 }
1521
1522                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1523                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1524                                 (offset + skb->csum_offset);
1525
1526                 /* Set the length valid bit for TCP and UDP and just set
1527                  * the special UDP flag for IPv4, else just set to 0.
1528                  */
1529                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1530                         tx_csum_info |= STATUS_TX_CSUM_LV;
1531                         if (ip_proto == IPPROTO_UDP &&
1532                             ip_ver == htons(ETH_P_IP))
1533                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1534                 } else {
1535                         tx_csum_info = 0;
1536                 }
1537
1538                 status->tx_csum_info = tx_csum_info;
1539         }
1540
1541         return skb;
1542 }
1543
1544 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1545 {
1546         struct bcmgenet_priv *priv = netdev_priv(dev);
1547         struct device *kdev = &priv->pdev->dev;
1548         struct bcmgenet_tx_ring *ring = NULL;
1549         struct enet_cb *tx_cb_ptr;
1550         struct netdev_queue *txq;
1551         int nr_frags, index;
1552         dma_addr_t mapping;
1553         unsigned int size;
1554         skb_frag_t *frag;
1555         u32 len_stat;
1556         int ret;
1557         int i;
1558
1559         index = skb_get_queue_mapping(skb);
1560         /* Mapping strategy:
1561          * queue_mapping = 0, unclassified, packet xmited through ring16
1562          * queue_mapping = 1, goes to ring 0. (highest priority queue
1563          * queue_mapping = 2, goes to ring 1.
1564          * queue_mapping = 3, goes to ring 2.
1565          * queue_mapping = 4, goes to ring 3.
1566          */
1567         if (index == 0)
1568                 index = DESC_INDEX;
1569         else
1570                 index -= 1;
1571
1572         ring = &priv->tx_rings[index];
1573         txq = netdev_get_tx_queue(dev, ring->queue);
1574
1575         nr_frags = skb_shinfo(skb)->nr_frags;
1576
1577         spin_lock(&ring->lock);
1578         if (ring->free_bds <= (nr_frags + 1)) {
1579                 if (!netif_tx_queue_stopped(txq)) {
1580                         netif_tx_stop_queue(txq);
1581                         netdev_err(dev,
1582                                    "%s: tx ring %d full when queue %d awake\n",
1583                                    __func__, index, ring->queue);
1584                 }
1585                 ret = NETDEV_TX_BUSY;
1586                 goto out;
1587         }
1588
1589         if (skb_padto(skb, ETH_ZLEN)) {
1590                 ret = NETDEV_TX_OK;
1591                 goto out;
1592         }
1593
1594         /* Retain how many bytes will be sent on the wire, without TSB inserted
1595          * by transmit checksum offload
1596          */
1597         GENET_CB(skb)->bytes_sent = skb->len;
1598
1599         /* set the SKB transmit checksum */
1600         if (priv->desc_64b_en) {
1601                 skb = bcmgenet_put_tx_csum(dev, skb);
1602                 if (!skb) {
1603                         ret = NETDEV_TX_OK;
1604                         goto out;
1605                 }
1606         }
1607
1608         for (i = 0; i <= nr_frags; i++) {
1609                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1610
1611                 BUG_ON(!tx_cb_ptr);
1612
1613                 if (!i) {
1614                         /* Transmit single SKB or head of fragment list */
1615                         GENET_CB(skb)->first_cb = tx_cb_ptr;
1616                         size = skb_headlen(skb);
1617                         mapping = dma_map_single(kdev, skb->data, size,
1618                                                  DMA_TO_DEVICE);
1619                 } else {
1620                         /* xmit fragment */
1621                         frag = &skb_shinfo(skb)->frags[i - 1];
1622                         size = skb_frag_size(frag);
1623                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
1624                                                    DMA_TO_DEVICE);
1625                 }
1626
1627                 ret = dma_mapping_error(kdev, mapping);
1628                 if (ret) {
1629                         priv->mib.tx_dma_failed++;
1630                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1631                         ret = NETDEV_TX_OK;
1632                         goto out_unmap_frags;
1633                 }
1634                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1635                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1636
1637                 tx_cb_ptr->skb = skb;
1638
1639                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1640                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1641
1642                 if (!i) {
1643                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1644                         if (skb->ip_summed == CHECKSUM_PARTIAL)
1645                                 len_stat |= DMA_TX_DO_CSUM;
1646                 }
1647                 if (i == nr_frags)
1648                         len_stat |= DMA_EOP;
1649
1650                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1651         }
1652
1653         GENET_CB(skb)->last_cb = tx_cb_ptr;
1654         skb_tx_timestamp(skb);
1655
1656         /* Decrement total BD count and advance our write pointer */
1657         ring->free_bds -= nr_frags + 1;
1658         ring->prod_index += nr_frags + 1;
1659         ring->prod_index &= DMA_P_INDEX_MASK;
1660
1661         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1662
1663         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1664                 netif_tx_stop_queue(txq);
1665
1666         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1667                 /* Packets are ready, update producer index */
1668                 bcmgenet_tdma_ring_writel(priv, ring->index,
1669                                           ring->prod_index, TDMA_PROD_INDEX);
1670 out:
1671         spin_unlock(&ring->lock);
1672
1673         return ret;
1674
1675 out_unmap_frags:
1676         /* Back up for failed control block mapping */
1677         bcmgenet_put_txcb(priv, ring);
1678
1679         /* Unmap successfully mapped control blocks */
1680         while (i-- > 0) {
1681                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1682                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1683         }
1684
1685         dev_kfree_skb(skb);
1686         goto out;
1687 }
1688
1689 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1690                                           struct enet_cb *cb)
1691 {
1692         struct device *kdev = &priv->pdev->dev;
1693         struct sk_buff *skb;
1694         struct sk_buff *rx_skb;
1695         dma_addr_t mapping;
1696
1697         /* Allocate a new Rx skb */
1698         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1699         if (!skb) {
1700                 priv->mib.alloc_rx_buff_failed++;
1701                 netif_err(priv, rx_err, priv->dev,
1702                           "%s: Rx skb allocation failed\n", __func__);
1703                 return NULL;
1704         }
1705
1706         /* DMA-map the new Rx skb */
1707         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1708                                  DMA_FROM_DEVICE);
1709         if (dma_mapping_error(kdev, mapping)) {
1710                 priv->mib.rx_dma_failed++;
1711                 dev_kfree_skb_any(skb);
1712                 netif_err(priv, rx_err, priv->dev,
1713                           "%s: Rx skb DMA mapping failed\n", __func__);
1714                 return NULL;
1715         }
1716
1717         /* Grab the current Rx skb from the ring and DMA-unmap it */
1718         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1719
1720         /* Put the new Rx skb on the ring */
1721         cb->skb = skb;
1722         dma_unmap_addr_set(cb, dma_addr, mapping);
1723         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1724         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1725
1726         /* Return the current Rx skb to caller */
1727         return rx_skb;
1728 }
1729
1730 /* bcmgenet_desc_rx - descriptor based rx process.
1731  * this could be called from bottom half, or from NAPI polling method.
1732  */
1733 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1734                                      unsigned int budget)
1735 {
1736         struct bcmgenet_priv *priv = ring->priv;
1737         struct net_device *dev = priv->dev;
1738         struct enet_cb *cb;
1739         struct sk_buff *skb;
1740         u32 dma_length_status;
1741         unsigned long dma_flag;
1742         int len;
1743         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1744         unsigned int bytes_processed = 0;
1745         unsigned int p_index, mask;
1746         unsigned int discards;
1747         unsigned int chksum_ok = 0;
1748
1749         /* Clear status before servicing to reduce spurious interrupts */
1750         if (ring->index == DESC_INDEX) {
1751                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1752                                          INTRL2_CPU_CLEAR);
1753         } else {
1754                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1755                 bcmgenet_intrl2_1_writel(priv,
1756                                          mask,
1757                                          INTRL2_CPU_CLEAR);
1758         }
1759
1760         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1761
1762         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1763                    DMA_P_INDEX_DISCARD_CNT_MASK;
1764         if (discards > ring->old_discards) {
1765                 discards = discards - ring->old_discards;
1766                 ring->errors += discards;
1767                 ring->old_discards += discards;
1768
1769                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1770                 if (ring->old_discards >= 0xC000) {
1771                         ring->old_discards = 0;
1772                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1773                                                   RDMA_PROD_INDEX);
1774                 }
1775         }
1776
1777         p_index &= DMA_P_INDEX_MASK;
1778         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1779
1780         netif_dbg(priv, rx_status, dev,
1781                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1782
1783         while ((rxpktprocessed < rxpkttoprocess) &&
1784                (rxpktprocessed < budget)) {
1785                 cb = &priv->rx_cbs[ring->read_ptr];
1786                 skb = bcmgenet_rx_refill(priv, cb);
1787
1788                 if (unlikely(!skb)) {
1789                         ring->dropped++;
1790                         goto next;
1791                 }
1792
1793                 if (!priv->desc_64b_en) {
1794                         dma_length_status =
1795                                 dmadesc_get_length_status(priv, cb->bd_addr);
1796                 } else {
1797                         struct status_64 *status;
1798
1799                         status = (struct status_64 *)skb->data;
1800                         dma_length_status = status->length_status;
1801                 }
1802
1803                 /* DMA flags and length are still valid no matter how
1804                  * we got the Receive Status Vector (64B RSB or register)
1805                  */
1806                 dma_flag = dma_length_status & 0xffff;
1807                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1808
1809                 netif_dbg(priv, rx_status, dev,
1810                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1811                           __func__, p_index, ring->c_index,
1812                           ring->read_ptr, dma_length_status);
1813
1814                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1815                         netif_err(priv, rx_status, dev,
1816                                   "dropping fragmented packet!\n");
1817                         ring->errors++;
1818                         dev_kfree_skb_any(skb);
1819                         goto next;
1820                 }
1821
1822                 /* report errors */
1823                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1824                                                 DMA_RX_OV |
1825                                                 DMA_RX_NO |
1826                                                 DMA_RX_LG |
1827                                                 DMA_RX_RXER))) {
1828                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1829                                   (unsigned int)dma_flag);
1830                         if (dma_flag & DMA_RX_CRC_ERROR)
1831                                 dev->stats.rx_crc_errors++;
1832                         if (dma_flag & DMA_RX_OV)
1833                                 dev->stats.rx_over_errors++;
1834                         if (dma_flag & DMA_RX_NO)
1835                                 dev->stats.rx_frame_errors++;
1836                         if (dma_flag & DMA_RX_LG)
1837                                 dev->stats.rx_length_errors++;
1838                         dev->stats.rx_errors++;
1839                         dev_kfree_skb_any(skb);
1840                         goto next;
1841                 } /* error packet */
1842
1843                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1844                              priv->desc_rxchk_en;
1845
1846                 skb_put(skb, len);
1847                 if (priv->desc_64b_en) {
1848                         skb_pull(skb, 64);
1849                         len -= 64;
1850                 }
1851
1852                 if (likely(chksum_ok))
1853                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1854
1855                 /* remove hardware 2bytes added for IP alignment */
1856                 skb_pull(skb, 2);
1857                 len -= 2;
1858
1859                 if (priv->crc_fwd_en) {
1860                         skb_trim(skb, len - ETH_FCS_LEN);
1861                         len -= ETH_FCS_LEN;
1862                 }
1863
1864                 bytes_processed += len;
1865
1866                 /*Finish setting up the received SKB and send it to the kernel*/
1867                 skb->protocol = eth_type_trans(skb, priv->dev);
1868                 ring->packets++;
1869                 ring->bytes += len;
1870                 if (dma_flag & DMA_RX_MULT)
1871                         dev->stats.multicast++;
1872
1873                 /* Notify kernel */
1874                 napi_gro_receive(&ring->napi, skb);
1875                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1876
1877 next:
1878                 rxpktprocessed++;
1879                 if (likely(ring->read_ptr < ring->end_ptr))
1880                         ring->read_ptr++;
1881                 else
1882                         ring->read_ptr = ring->cb_ptr;
1883
1884                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1885                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1886         }
1887
1888         ring->dim.bytes = bytes_processed;
1889         ring->dim.packets = rxpktprocessed;
1890
1891         return rxpktprocessed;
1892 }
1893
1894 /* Rx NAPI polling method */
1895 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1896 {
1897         struct bcmgenet_rx_ring *ring = container_of(napi,
1898                         struct bcmgenet_rx_ring, napi);
1899         struct dim_sample dim_sample = {};
1900         unsigned int work_done;
1901
1902         work_done = bcmgenet_desc_rx(ring, budget);
1903
1904         if (work_done < budget) {
1905                 napi_complete_done(napi, work_done);
1906                 ring->int_enable(ring);
1907         }
1908
1909         if (ring->dim.use_dim) {
1910                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1911                                   ring->dim.bytes, &dim_sample);
1912                 net_dim(&ring->dim.dim, dim_sample);
1913         }
1914
1915         return work_done;
1916 }
1917
1918 static void bcmgenet_dim_work(struct work_struct *work)
1919 {
1920         struct dim *dim = container_of(work, struct dim, work);
1921         struct bcmgenet_net_dim *ndim =
1922                         container_of(dim, struct bcmgenet_net_dim, dim);
1923         struct bcmgenet_rx_ring *ring =
1924                         container_of(ndim, struct bcmgenet_rx_ring, dim);
1925         struct dim_cq_moder cur_profile =
1926                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1927
1928         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1929         dim->state = DIM_START_MEASURE;
1930 }
1931
1932 /* Assign skb to RX DMA descriptor. */
1933 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1934                                      struct bcmgenet_rx_ring *ring)
1935 {
1936         struct enet_cb *cb;
1937         struct sk_buff *skb;
1938         int i;
1939
1940         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1941
1942         /* loop here for each buffer needing assign */
1943         for (i = 0; i < ring->size; i++) {
1944                 cb = ring->cbs + i;
1945                 skb = bcmgenet_rx_refill(priv, cb);
1946                 if (skb)
1947                         dev_consume_skb_any(skb);
1948                 if (!cb->skb)
1949                         return -ENOMEM;
1950         }
1951
1952         return 0;
1953 }
1954
1955 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1956 {
1957         struct sk_buff *skb;
1958         struct enet_cb *cb;
1959         int i;
1960
1961         for (i = 0; i < priv->num_rx_bds; i++) {
1962                 cb = &priv->rx_cbs[i];
1963
1964                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1965                 if (skb)
1966                         dev_consume_skb_any(skb);
1967         }
1968 }
1969
1970 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1971 {
1972         u32 reg;
1973
1974         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1975         if (enable)
1976                 reg |= mask;
1977         else
1978                 reg &= ~mask;
1979         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1980
1981         /* UniMAC stops on a packet boundary, wait for a full-size packet
1982          * to be processed
1983          */
1984         if (enable == 0)
1985                 usleep_range(1000, 2000);
1986 }
1987
1988 static void reset_umac(struct bcmgenet_priv *priv)
1989 {
1990         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1991         bcmgenet_rbuf_ctrl_set(priv, 0);
1992         udelay(10);
1993
1994         /* disable MAC while updating its registers */
1995         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1996
1997         /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1998         bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
1999         udelay(2);
2000         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2001 }
2002
2003 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2004 {
2005         /* Mask all interrupts.*/
2006         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2007         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2008         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2009         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2010 }
2011
2012 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2013 {
2014         u32 int0_enable = 0;
2015
2016         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2017          * and MoCA PHY
2018          */
2019         if (priv->internal_phy) {
2020                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2021         } else if (priv->ext_phy) {
2022                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2023         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2024                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2025                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2026         }
2027         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2028 }
2029
2030 static void init_umac(struct bcmgenet_priv *priv)
2031 {
2032         struct device *kdev = &priv->pdev->dev;
2033         u32 reg;
2034         u32 int0_enable = 0;
2035
2036         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2037
2038         reset_umac(priv);
2039
2040         /* clear tx/rx counter */
2041         bcmgenet_umac_writel(priv,
2042                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2043                              UMAC_MIB_CTRL);
2044         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2045
2046         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2047
2048         /* init rx registers, enable ip header optimization */
2049         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2050         reg |= RBUF_ALIGN_2B;
2051         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2052
2053         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2054                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2055
2056         bcmgenet_intr_disable(priv);
2057
2058         /* Configure backpressure vectors for MoCA */
2059         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2060                 reg = bcmgenet_bp_mc_get(priv);
2061                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2062
2063                 /* bp_mask: back pressure mask */
2064                 if (netif_is_multiqueue(priv->dev))
2065                         reg |= priv->hw_params->bp_in_mask;
2066                 else
2067                         reg &= ~priv->hw_params->bp_in_mask;
2068                 bcmgenet_bp_mc_set(priv, reg);
2069         }
2070
2071         /* Enable MDIO interrupts on GENET v3+ */
2072         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2073                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2074
2075         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2076
2077         dev_dbg(kdev, "done init umac\n");
2078 }
2079
2080 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2081                               void (*cb)(struct work_struct *work))
2082 {
2083         struct bcmgenet_net_dim *dim = &ring->dim;
2084
2085         INIT_WORK(&dim->dim.work, cb);
2086         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2087         dim->event_ctr = 0;
2088         dim->packets = 0;
2089         dim->bytes = 0;
2090 }
2091
2092 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2093 {
2094         struct bcmgenet_net_dim *dim = &ring->dim;
2095         struct dim_cq_moder moder;
2096         u32 usecs, pkts;
2097
2098         usecs = ring->rx_coalesce_usecs;
2099         pkts = ring->rx_max_coalesced_frames;
2100
2101         /* If DIM was enabled, re-apply default parameters */
2102         if (dim->use_dim) {
2103                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2104                 usecs = moder.usec;
2105                 pkts = moder.pkts;
2106         }
2107
2108         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2109 }
2110
2111 /* Initialize a Tx ring along with corresponding hardware registers */
2112 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2113                                   unsigned int index, unsigned int size,
2114                                   unsigned int start_ptr, unsigned int end_ptr)
2115 {
2116         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2117         u32 words_per_bd = WORDS_PER_BD(priv);
2118         u32 flow_period_val = 0;
2119
2120         spin_lock_init(&ring->lock);
2121         ring->priv = priv;
2122         ring->index = index;
2123         if (index == DESC_INDEX) {
2124                 ring->queue = 0;
2125                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2126                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2127         } else {
2128                 ring->queue = index + 1;
2129                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2130                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2131         }
2132         ring->cbs = priv->tx_cbs + start_ptr;
2133         ring->size = size;
2134         ring->clean_ptr = start_ptr;
2135         ring->c_index = 0;
2136         ring->free_bds = size;
2137         ring->write_ptr = start_ptr;
2138         ring->cb_ptr = start_ptr;
2139         ring->end_ptr = end_ptr - 1;
2140         ring->prod_index = 0;
2141
2142         /* Set flow period for ring != 16 */
2143         if (index != DESC_INDEX)
2144                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2145
2146         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2147         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2148         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2149         /* Disable rate control for now */
2150         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2151                                   TDMA_FLOW_PERIOD);
2152         bcmgenet_tdma_ring_writel(priv, index,
2153                                   ((size << DMA_RING_SIZE_SHIFT) |
2154                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2155
2156         /* Set start and end address, read and write pointers */
2157         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2158                                   DMA_START_ADDR);
2159         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2160                                   TDMA_READ_PTR);
2161         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2162                                   TDMA_WRITE_PTR);
2163         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2164                                   DMA_END_ADDR);
2165
2166         /* Initialize Tx NAPI */
2167         netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2168                        NAPI_POLL_WEIGHT);
2169 }
2170
2171 /* Initialize a RDMA ring */
2172 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2173                                  unsigned int index, unsigned int size,
2174                                  unsigned int start_ptr, unsigned int end_ptr)
2175 {
2176         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2177         u32 words_per_bd = WORDS_PER_BD(priv);
2178         int ret;
2179
2180         ring->priv = priv;
2181         ring->index = index;
2182         if (index == DESC_INDEX) {
2183                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2184                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2185         } else {
2186                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2187                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2188         }
2189         ring->cbs = priv->rx_cbs + start_ptr;
2190         ring->size = size;
2191         ring->c_index = 0;
2192         ring->read_ptr = start_ptr;
2193         ring->cb_ptr = start_ptr;
2194         ring->end_ptr = end_ptr - 1;
2195
2196         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2197         if (ret)
2198                 return ret;
2199
2200         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2201         bcmgenet_init_rx_coalesce(ring);
2202
2203         /* Initialize Rx NAPI */
2204         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2205                        NAPI_POLL_WEIGHT);
2206
2207         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2208         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2209         bcmgenet_rdma_ring_writel(priv, index,
2210                                   ((size << DMA_RING_SIZE_SHIFT) |
2211                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2212         bcmgenet_rdma_ring_writel(priv, index,
2213                                   (DMA_FC_THRESH_LO <<
2214                                    DMA_XOFF_THRESHOLD_SHIFT) |
2215                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2216
2217         /* Set start and end address, read and write pointers */
2218         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2219                                   DMA_START_ADDR);
2220         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2221                                   RDMA_READ_PTR);
2222         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2223                                   RDMA_WRITE_PTR);
2224         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2225                                   DMA_END_ADDR);
2226
2227         return ret;
2228 }
2229
2230 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2231 {
2232         unsigned int i;
2233         struct bcmgenet_tx_ring *ring;
2234
2235         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2236                 ring = &priv->tx_rings[i];
2237                 napi_enable(&ring->napi);
2238                 ring->int_enable(ring);
2239         }
2240
2241         ring = &priv->tx_rings[DESC_INDEX];
2242         napi_enable(&ring->napi);
2243         ring->int_enable(ring);
2244 }
2245
2246 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2247 {
2248         unsigned int i;
2249         struct bcmgenet_tx_ring *ring;
2250
2251         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2252                 ring = &priv->tx_rings[i];
2253                 napi_disable(&ring->napi);
2254         }
2255
2256         ring = &priv->tx_rings[DESC_INDEX];
2257         napi_disable(&ring->napi);
2258 }
2259
2260 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2261 {
2262         unsigned int i;
2263         struct bcmgenet_tx_ring *ring;
2264
2265         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2266                 ring = &priv->tx_rings[i];
2267                 netif_napi_del(&ring->napi);
2268         }
2269
2270         ring = &priv->tx_rings[DESC_INDEX];
2271         netif_napi_del(&ring->napi);
2272 }
2273
2274 /* Initialize Tx queues
2275  *
2276  * Queues 0-3 are priority-based, each one has 32 descriptors,
2277  * with queue 0 being the highest priority queue.
2278  *
2279  * Queue 16 is the default Tx queue with
2280  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2281  *
2282  * The transmit control block pool is then partitioned as follows:
2283  * - Tx queue 0 uses tx_cbs[0..31]
2284  * - Tx queue 1 uses tx_cbs[32..63]
2285  * - Tx queue 2 uses tx_cbs[64..95]
2286  * - Tx queue 3 uses tx_cbs[96..127]
2287  * - Tx queue 16 uses tx_cbs[128..255]
2288  */
2289 static void bcmgenet_init_tx_queues(struct net_device *dev)
2290 {
2291         struct bcmgenet_priv *priv = netdev_priv(dev);
2292         u32 i, dma_enable;
2293         u32 dma_ctrl, ring_cfg;
2294         u32 dma_priority[3] = {0, 0, 0};
2295
2296         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2297         dma_enable = dma_ctrl & DMA_EN;
2298         dma_ctrl &= ~DMA_EN;
2299         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2300
2301         dma_ctrl = 0;
2302         ring_cfg = 0;
2303
2304         /* Enable strict priority arbiter mode */
2305         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2306
2307         /* Initialize Tx priority queues */
2308         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2309                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2310                                       i * priv->hw_params->tx_bds_per_q,
2311                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2312                 ring_cfg |= (1 << i);
2313                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2314                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2315                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2316         }
2317
2318         /* Initialize Tx default queue 16 */
2319         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2320                               priv->hw_params->tx_queues *
2321                               priv->hw_params->tx_bds_per_q,
2322                               TOTAL_DESC);
2323         ring_cfg |= (1 << DESC_INDEX);
2324         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2325         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2326                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2327                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2328
2329         /* Set Tx queue priorities */
2330         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2331         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2332         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2333
2334         /* Enable Tx queues */
2335         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2336
2337         /* Enable Tx DMA */
2338         if (dma_enable)
2339                 dma_ctrl |= DMA_EN;
2340         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2341 }
2342
2343 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2344 {
2345         unsigned int i;
2346         struct bcmgenet_rx_ring *ring;
2347
2348         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2349                 ring = &priv->rx_rings[i];
2350                 napi_enable(&ring->napi);
2351                 ring->int_enable(ring);
2352         }
2353
2354         ring = &priv->rx_rings[DESC_INDEX];
2355         napi_enable(&ring->napi);
2356         ring->int_enable(ring);
2357 }
2358
2359 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2360 {
2361         unsigned int i;
2362         struct bcmgenet_rx_ring *ring;
2363
2364         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2365                 ring = &priv->rx_rings[i];
2366                 napi_disable(&ring->napi);
2367                 cancel_work_sync(&ring->dim.dim.work);
2368         }
2369
2370         ring = &priv->rx_rings[DESC_INDEX];
2371         napi_disable(&ring->napi);
2372         cancel_work_sync(&ring->dim.dim.work);
2373 }
2374
2375 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2376 {
2377         unsigned int i;
2378         struct bcmgenet_rx_ring *ring;
2379
2380         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2381                 ring = &priv->rx_rings[i];
2382                 netif_napi_del(&ring->napi);
2383         }
2384
2385         ring = &priv->rx_rings[DESC_INDEX];
2386         netif_napi_del(&ring->napi);
2387 }
2388
2389 /* Initialize Rx queues
2390  *
2391  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2392  * used to direct traffic to these queues.
2393  *
2394  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2395  */
2396 static int bcmgenet_init_rx_queues(struct net_device *dev)
2397 {
2398         struct bcmgenet_priv *priv = netdev_priv(dev);
2399         u32 i;
2400         u32 dma_enable;
2401         u32 dma_ctrl;
2402         u32 ring_cfg;
2403         int ret;
2404
2405         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2406         dma_enable = dma_ctrl & DMA_EN;
2407         dma_ctrl &= ~DMA_EN;
2408         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2409
2410         dma_ctrl = 0;
2411         ring_cfg = 0;
2412
2413         /* Initialize Rx priority queues */
2414         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2415                 ret = bcmgenet_init_rx_ring(priv, i,
2416                                             priv->hw_params->rx_bds_per_q,
2417                                             i * priv->hw_params->rx_bds_per_q,
2418                                             (i + 1) *
2419                                             priv->hw_params->rx_bds_per_q);
2420                 if (ret)
2421                         return ret;
2422
2423                 ring_cfg |= (1 << i);
2424                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2425         }
2426
2427         /* Initialize Rx default queue 16 */
2428         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2429                                     priv->hw_params->rx_queues *
2430                                     priv->hw_params->rx_bds_per_q,
2431                                     TOTAL_DESC);
2432         if (ret)
2433                 return ret;
2434
2435         ring_cfg |= (1 << DESC_INDEX);
2436         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2437
2438         /* Enable rings */
2439         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2440
2441         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2442         if (dma_enable)
2443                 dma_ctrl |= DMA_EN;
2444         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2445
2446         return 0;
2447 }
2448
2449 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2450 {
2451         int ret = 0;
2452         int timeout = 0;
2453         u32 reg;
2454         u32 dma_ctrl;
2455         int i;
2456
2457         /* Disable TDMA to stop add more frames in TX DMA */
2458         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2459         reg &= ~DMA_EN;
2460         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2461
2462         /* Check TDMA status register to confirm TDMA is disabled */
2463         while (timeout++ < DMA_TIMEOUT_VAL) {
2464                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2465                 if (reg & DMA_DISABLED)
2466                         break;
2467
2468                 udelay(1);
2469         }
2470
2471         if (timeout == DMA_TIMEOUT_VAL) {
2472                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2473                 ret = -ETIMEDOUT;
2474         }
2475
2476         /* Wait 10ms for packet drain in both tx and rx dma */
2477         usleep_range(10000, 20000);
2478
2479         /* Disable RDMA */
2480         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2481         reg &= ~DMA_EN;
2482         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2483
2484         timeout = 0;
2485         /* Check RDMA status register to confirm RDMA is disabled */
2486         while (timeout++ < DMA_TIMEOUT_VAL) {
2487                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2488                 if (reg & DMA_DISABLED)
2489                         break;
2490
2491                 udelay(1);
2492         }
2493
2494         if (timeout == DMA_TIMEOUT_VAL) {
2495                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2496                 ret = -ETIMEDOUT;
2497         }
2498
2499         dma_ctrl = 0;
2500         for (i = 0; i < priv->hw_params->rx_queues; i++)
2501                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2502         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2503         reg &= ~dma_ctrl;
2504         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2505
2506         dma_ctrl = 0;
2507         for (i = 0; i < priv->hw_params->tx_queues; i++)
2508                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2509         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2510         reg &= ~dma_ctrl;
2511         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2512
2513         return ret;
2514 }
2515
2516 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2517 {
2518         struct netdev_queue *txq;
2519         int i;
2520
2521         bcmgenet_fini_rx_napi(priv);
2522         bcmgenet_fini_tx_napi(priv);
2523
2524         for (i = 0; i < priv->num_tx_bds; i++)
2525                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2526                                                   priv->tx_cbs + i));
2527
2528         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2529                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2530                 netdev_tx_reset_queue(txq);
2531         }
2532
2533         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2534         netdev_tx_reset_queue(txq);
2535
2536         bcmgenet_free_rx_buffers(priv);
2537         kfree(priv->rx_cbs);
2538         kfree(priv->tx_cbs);
2539 }
2540
2541 /* init_edma: Initialize DMA control register */
2542 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2543 {
2544         int ret;
2545         unsigned int i;
2546         struct enet_cb *cb;
2547
2548         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2549
2550         /* Initialize common Rx ring structures */
2551         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2552         priv->num_rx_bds = TOTAL_DESC;
2553         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2554                                GFP_KERNEL);
2555         if (!priv->rx_cbs)
2556                 return -ENOMEM;
2557
2558         for (i = 0; i < priv->num_rx_bds; i++) {
2559                 cb = priv->rx_cbs + i;
2560                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2561         }
2562
2563         /* Initialize common TX ring structures */
2564         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2565         priv->num_tx_bds = TOTAL_DESC;
2566         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2567                                GFP_KERNEL);
2568         if (!priv->tx_cbs) {
2569                 kfree(priv->rx_cbs);
2570                 return -ENOMEM;
2571         }
2572
2573         for (i = 0; i < priv->num_tx_bds; i++) {
2574                 cb = priv->tx_cbs + i;
2575                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2576         }
2577
2578         /* Init rDma */
2579         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2580
2581         /* Initialize Rx queues */
2582         ret = bcmgenet_init_rx_queues(priv->dev);
2583         if (ret) {
2584                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2585                 bcmgenet_free_rx_buffers(priv);
2586                 kfree(priv->rx_cbs);
2587                 kfree(priv->tx_cbs);
2588                 return ret;
2589         }
2590
2591         /* Init tDma */
2592         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2593
2594         /* Initialize Tx queues */
2595         bcmgenet_init_tx_queues(priv->dev);
2596
2597         return 0;
2598 }
2599
2600 /* Interrupt bottom half */
2601 static void bcmgenet_irq_task(struct work_struct *work)
2602 {
2603         unsigned int status;
2604         struct bcmgenet_priv *priv = container_of(
2605                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2606
2607         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2608
2609         spin_lock_irq(&priv->lock);
2610         status = priv->irq0_stat;
2611         priv->irq0_stat = 0;
2612         spin_unlock_irq(&priv->lock);
2613
2614         /* Link UP/DOWN event */
2615         if (status & UMAC_IRQ_LINK_EVENT) {
2616                 priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP);
2617                 phy_mac_interrupt(priv->dev->phydev);
2618         }
2619 }
2620
2621 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2622 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2623 {
2624         struct bcmgenet_priv *priv = dev_id;
2625         struct bcmgenet_rx_ring *rx_ring;
2626         struct bcmgenet_tx_ring *tx_ring;
2627         unsigned int index, status;
2628
2629         /* Read irq status */
2630         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2631                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2632
2633         /* clear interrupts */
2634         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2635
2636         netif_dbg(priv, intr, priv->dev,
2637                   "%s: IRQ=0x%x\n", __func__, status);
2638
2639         /* Check Rx priority queue interrupts */
2640         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2641                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2642                         continue;
2643
2644                 rx_ring = &priv->rx_rings[index];
2645                 rx_ring->dim.event_ctr++;
2646
2647                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2648                         rx_ring->int_disable(rx_ring);
2649                         __napi_schedule_irqoff(&rx_ring->napi);
2650                 }
2651         }
2652
2653         /* Check Tx priority queue interrupts */
2654         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2655                 if (!(status & BIT(index)))
2656                         continue;
2657
2658                 tx_ring = &priv->tx_rings[index];
2659
2660                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2661                         tx_ring->int_disable(tx_ring);
2662                         __napi_schedule_irqoff(&tx_ring->napi);
2663                 }
2664         }
2665
2666         return IRQ_HANDLED;
2667 }
2668
2669 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2670 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2671 {
2672         struct bcmgenet_priv *priv = dev_id;
2673         struct bcmgenet_rx_ring *rx_ring;
2674         struct bcmgenet_tx_ring *tx_ring;
2675         unsigned int status;
2676         unsigned long flags;
2677
2678         /* Read irq status */
2679         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2680                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2681
2682         /* clear interrupts */
2683         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2684
2685         netif_dbg(priv, intr, priv->dev,
2686                   "IRQ=0x%x\n", status);
2687
2688         if (status & UMAC_IRQ_RXDMA_DONE) {
2689                 rx_ring = &priv->rx_rings[DESC_INDEX];
2690                 rx_ring->dim.event_ctr++;
2691
2692                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2693                         rx_ring->int_disable(rx_ring);
2694                         __napi_schedule_irqoff(&rx_ring->napi);
2695                 }
2696         }
2697
2698         if (status & UMAC_IRQ_TXDMA_DONE) {
2699                 tx_ring = &priv->tx_rings[DESC_INDEX];
2700
2701                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2702                         tx_ring->int_disable(tx_ring);
2703                         __napi_schedule_irqoff(&tx_ring->napi);
2704                 }
2705         }
2706
2707         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2708                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2709                 wake_up(&priv->wq);
2710         }
2711
2712         /* all other interested interrupts handled in bottom half */
2713         status &= UMAC_IRQ_LINK_EVENT;
2714         if (status) {
2715                 /* Save irq status for bottom-half processing. */
2716                 spin_lock_irqsave(&priv->lock, flags);
2717                 priv->irq0_stat |= status;
2718                 spin_unlock_irqrestore(&priv->lock, flags);
2719
2720                 schedule_work(&priv->bcmgenet_irq_work);
2721         }
2722
2723         return IRQ_HANDLED;
2724 }
2725
2726 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2727 {
2728         struct bcmgenet_priv *priv = dev_id;
2729
2730         pm_wakeup_event(&priv->pdev->dev, 0);
2731
2732         return IRQ_HANDLED;
2733 }
2734
2735 #ifdef CONFIG_NET_POLL_CONTROLLER
2736 static void bcmgenet_poll_controller(struct net_device *dev)
2737 {
2738         struct bcmgenet_priv *priv = netdev_priv(dev);
2739
2740         /* Invoke the main RX/TX interrupt handler */
2741         disable_irq(priv->irq0);
2742         bcmgenet_isr0(priv->irq0, priv);
2743         enable_irq(priv->irq0);
2744
2745         /* And the interrupt handler for RX/TX priority queues */
2746         disable_irq(priv->irq1);
2747         bcmgenet_isr1(priv->irq1, priv);
2748         enable_irq(priv->irq1);
2749 }
2750 #endif
2751
2752 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2753 {
2754         u32 reg;
2755
2756         reg = bcmgenet_rbuf_ctrl_get(priv);
2757         reg |= BIT(1);
2758         bcmgenet_rbuf_ctrl_set(priv, reg);
2759         udelay(10);
2760
2761         reg &= ~BIT(1);
2762         bcmgenet_rbuf_ctrl_set(priv, reg);
2763         udelay(10);
2764 }
2765
2766 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2767                                  unsigned char *addr)
2768 {
2769         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2770                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2771         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2772 }
2773
2774 /* Returns a reusable dma control register value */
2775 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2776 {
2777         u32 reg;
2778         u32 dma_ctrl;
2779
2780         /* disable DMA */
2781         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2782         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2783         reg &= ~dma_ctrl;
2784         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2785
2786         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2787         reg &= ~dma_ctrl;
2788         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2789
2790         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2791         udelay(10);
2792         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2793
2794         return dma_ctrl;
2795 }
2796
2797 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2798 {
2799         u32 reg;
2800
2801         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2802         reg |= dma_ctrl;
2803         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2804
2805         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2806         reg |= dma_ctrl;
2807         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2808 }
2809
2810 /* bcmgenet_hfb_clear
2811  *
2812  * Clear Hardware Filter Block and disable all filtering.
2813  */
2814 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2815 {
2816         u32 i;
2817
2818         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2819         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2820         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2821
2822         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2823                 bcmgenet_rdma_writel(priv, 0x0, i);
2824
2825         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2826                 bcmgenet_hfb_reg_writel(priv, 0x0,
2827                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2828
2829         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2830                         priv->hw_params->hfb_filter_size; i++)
2831                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2832 }
2833
2834 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2835 {
2836         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2837                 return;
2838
2839         bcmgenet_hfb_clear(priv);
2840 }
2841
2842 static void bcmgenet_netif_start(struct net_device *dev)
2843 {
2844         struct bcmgenet_priv *priv = netdev_priv(dev);
2845
2846         /* Start the network engine */
2847         bcmgenet_enable_rx_napi(priv);
2848
2849         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2850
2851         bcmgenet_enable_tx_napi(priv);
2852
2853         /* Monitor link interrupts now */
2854         bcmgenet_link_intr_enable(priv);
2855
2856         phy_start(dev->phydev);
2857 }
2858
2859 static int bcmgenet_open(struct net_device *dev)
2860 {
2861         struct bcmgenet_priv *priv = netdev_priv(dev);
2862         unsigned long dma_ctrl;
2863         u32 reg;
2864         int ret;
2865
2866         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2867
2868         /* Turn on the clock */
2869         clk_prepare_enable(priv->clk);
2870
2871         /* If this is an internal GPHY, power it back on now, before UniMAC is
2872          * brought out of reset as absolutely no UniMAC activity is allowed
2873          */
2874         if (priv->internal_phy)
2875                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2876
2877         /* take MAC out of reset */
2878         bcmgenet_umac_reset(priv);
2879
2880         init_umac(priv);
2881
2882         /* Make sure we reflect the value of CRC_CMD_FWD */
2883         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2884         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2885
2886         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2887
2888         if (priv->internal_phy) {
2889                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2890                 reg |= EXT_ENERGY_DET_MASK;
2891                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2892         }
2893
2894         /* Disable RX/TX DMA and flush TX queues */
2895         dma_ctrl = bcmgenet_dma_disable(priv);
2896
2897         /* Reinitialize TDMA and RDMA and SW housekeeping */
2898         ret = bcmgenet_init_dma(priv);
2899         if (ret) {
2900                 netdev_err(dev, "failed to initialize DMA\n");
2901                 goto err_clk_disable;
2902         }
2903
2904         /* Always enable ring 16 - descriptor ring */
2905         bcmgenet_enable_dma(priv, dma_ctrl);
2906
2907         /* HFB init */
2908         bcmgenet_hfb_init(priv);
2909
2910         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2911                           dev->name, priv);
2912         if (ret < 0) {
2913                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2914                 goto err_fini_dma;
2915         }
2916
2917         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2918                           dev->name, priv);
2919         if (ret < 0) {
2920                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2921                 goto err_irq0;
2922         }
2923
2924         ret = bcmgenet_mii_probe(dev);
2925         if (ret) {
2926                 netdev_err(dev, "failed to connect to PHY\n");
2927                 goto err_irq1;
2928         }
2929
2930         bcmgenet_netif_start(dev);
2931
2932         netif_tx_start_all_queues(dev);
2933
2934         return 0;
2935
2936 err_irq1:
2937         free_irq(priv->irq1, priv);
2938 err_irq0:
2939         free_irq(priv->irq0, priv);
2940 err_fini_dma:
2941         bcmgenet_dma_teardown(priv);
2942         bcmgenet_fini_dma(priv);
2943 err_clk_disable:
2944         if (priv->internal_phy)
2945                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2946         clk_disable_unprepare(priv->clk);
2947         return ret;
2948 }
2949
2950 static void bcmgenet_netif_stop(struct net_device *dev)
2951 {
2952         struct bcmgenet_priv *priv = netdev_priv(dev);
2953
2954         bcmgenet_disable_tx_napi(priv);
2955         netif_tx_disable(dev);
2956
2957         /* Disable MAC receive */
2958         umac_enable_set(priv, CMD_RX_EN, false);
2959
2960         bcmgenet_dma_teardown(priv);
2961
2962         /* Disable MAC transmit. TX DMA disabled must be done before this */
2963         umac_enable_set(priv, CMD_TX_EN, false);
2964
2965         phy_stop(dev->phydev);
2966         bcmgenet_disable_rx_napi(priv);
2967         bcmgenet_intr_disable(priv);
2968
2969         /* Wait for pending work items to complete. Since interrupts are
2970          * disabled no new work will be scheduled.
2971          */
2972         cancel_work_sync(&priv->bcmgenet_irq_work);
2973
2974         priv->old_link = -1;
2975         priv->old_speed = -1;
2976         priv->old_duplex = -1;
2977         priv->old_pause = -1;
2978
2979         /* tx reclaim */
2980         bcmgenet_tx_reclaim_all(dev);
2981         bcmgenet_fini_dma(priv);
2982 }
2983
2984 static int bcmgenet_close(struct net_device *dev)
2985 {
2986         struct bcmgenet_priv *priv = netdev_priv(dev);
2987         int ret = 0;
2988
2989         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2990
2991         bcmgenet_netif_stop(dev);
2992
2993         /* Really kill the PHY state machine and disconnect from it */
2994         phy_disconnect(dev->phydev);
2995
2996         free_irq(priv->irq0, priv);
2997         free_irq(priv->irq1, priv);
2998
2999         if (priv->internal_phy)
3000                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3001
3002         clk_disable_unprepare(priv->clk);
3003
3004         return ret;
3005 }
3006
3007 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3008 {
3009         struct bcmgenet_priv *priv = ring->priv;
3010         u32 p_index, c_index, intsts, intmsk;
3011         struct netdev_queue *txq;
3012         unsigned int free_bds;
3013         bool txq_stopped;
3014
3015         if (!netif_msg_tx_err(priv))
3016                 return;
3017
3018         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3019
3020         spin_lock(&ring->lock);
3021         if (ring->index == DESC_INDEX) {
3022                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3023                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3024         } else {
3025                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3026                 intmsk = 1 << ring->index;
3027         }
3028         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3029         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3030         txq_stopped = netif_tx_queue_stopped(txq);
3031         free_bds = ring->free_bds;
3032         spin_unlock(&ring->lock);
3033
3034         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3035                   "TX queue status: %s, interrupts: %s\n"
3036                   "(sw)free_bds: %d (sw)size: %d\n"
3037                   "(sw)p_index: %d (hw)p_index: %d\n"
3038                   "(sw)c_index: %d (hw)c_index: %d\n"
3039                   "(sw)clean_p: %d (sw)write_p: %d\n"
3040                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3041                   ring->index, ring->queue,
3042                   txq_stopped ? "stopped" : "active",
3043                   intsts & intmsk ? "enabled" : "disabled",
3044                   free_bds, ring->size,
3045                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3046                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3047                   ring->clean_ptr, ring->write_ptr,
3048                   ring->cb_ptr, ring->end_ptr);
3049 }
3050
3051 static void bcmgenet_timeout(struct net_device *dev)
3052 {
3053         struct bcmgenet_priv *priv = netdev_priv(dev);
3054         u32 int0_enable = 0;
3055         u32 int1_enable = 0;
3056         unsigned int q;
3057
3058         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3059
3060         for (q = 0; q < priv->hw_params->tx_queues; q++)
3061                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3062         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3063
3064         bcmgenet_tx_reclaim_all(dev);
3065
3066         for (q = 0; q < priv->hw_params->tx_queues; q++)
3067                 int1_enable |= (1 << q);
3068
3069         int0_enable = UMAC_IRQ_TXDMA_DONE;
3070
3071         /* Re-enable TX interrupts if disabled */
3072         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3073         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3074
3075         netif_trans_update(dev);
3076
3077         dev->stats.tx_errors++;
3078
3079         netif_tx_wake_all_queues(dev);
3080 }
3081
3082 #define MAX_MDF_FILTER  17
3083
3084 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3085                                          unsigned char *addr,
3086                                          int *i)
3087 {
3088         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3089                              UMAC_MDF_ADDR + (*i * 4));
3090         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3091                              addr[4] << 8 | addr[5],
3092                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3093         *i += 2;
3094 }
3095
3096 static void bcmgenet_set_rx_mode(struct net_device *dev)
3097 {
3098         struct bcmgenet_priv *priv = netdev_priv(dev);
3099         struct netdev_hw_addr *ha;
3100         int i, nfilter;
3101         u32 reg;
3102
3103         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3104
3105         /* Number of filters needed */
3106         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3107
3108         /*
3109          * Turn on promicuous mode for three scenarios
3110          * 1. IFF_PROMISC flag is set
3111          * 2. IFF_ALLMULTI flag is set
3112          * 3. The number of filters needed exceeds the number filters
3113          *    supported by the hardware.
3114         */
3115         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3116         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3117             (nfilter > MAX_MDF_FILTER)) {
3118                 reg |= CMD_PROMISC;
3119                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3120                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3121                 return;
3122         } else {
3123                 reg &= ~CMD_PROMISC;
3124                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3125         }
3126
3127         /* update MDF filter */
3128         i = 0;
3129         /* Broadcast */
3130         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3131         /* my own address.*/
3132         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3133
3134         /* Unicast */
3135         netdev_for_each_uc_addr(ha, dev)
3136                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3137
3138         /* Multicast */
3139         netdev_for_each_mc_addr(ha, dev)
3140                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3141
3142         /* Enable filters */
3143         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3144         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3145 }
3146
3147 /* Set the hardware MAC address. */
3148 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3149 {
3150         struct sockaddr *addr = p;
3151
3152         /* Setting the MAC address at the hardware level is not possible
3153          * without disabling the UniMAC RX/TX enable bits.
3154          */
3155         if (netif_running(dev))
3156                 return -EBUSY;
3157
3158         ether_addr_copy(dev->dev_addr, addr->sa_data);
3159
3160         return 0;
3161 }
3162
3163 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3164 {
3165         struct bcmgenet_priv *priv = netdev_priv(dev);
3166         unsigned long tx_bytes = 0, tx_packets = 0;
3167         unsigned long rx_bytes = 0, rx_packets = 0;
3168         unsigned long rx_errors = 0, rx_dropped = 0;
3169         struct bcmgenet_tx_ring *tx_ring;
3170         struct bcmgenet_rx_ring *rx_ring;
3171         unsigned int q;
3172
3173         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3174                 tx_ring = &priv->tx_rings[q];
3175                 tx_bytes += tx_ring->bytes;
3176                 tx_packets += tx_ring->packets;
3177         }
3178         tx_ring = &priv->tx_rings[DESC_INDEX];
3179         tx_bytes += tx_ring->bytes;
3180         tx_packets += tx_ring->packets;
3181
3182         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3183                 rx_ring = &priv->rx_rings[q];
3184
3185                 rx_bytes += rx_ring->bytes;
3186                 rx_packets += rx_ring->packets;
3187                 rx_errors += rx_ring->errors;
3188                 rx_dropped += rx_ring->dropped;
3189         }
3190         rx_ring = &priv->rx_rings[DESC_INDEX];
3191         rx_bytes += rx_ring->bytes;
3192         rx_packets += rx_ring->packets;
3193         rx_errors += rx_ring->errors;
3194         rx_dropped += rx_ring->dropped;
3195
3196         dev->stats.tx_bytes = tx_bytes;
3197         dev->stats.tx_packets = tx_packets;
3198         dev->stats.rx_bytes = rx_bytes;
3199         dev->stats.rx_packets = rx_packets;
3200         dev->stats.rx_errors = rx_errors;
3201         dev->stats.rx_missed_errors = rx_errors;
3202         return &dev->stats;
3203 }
3204
3205 static const struct net_device_ops bcmgenet_netdev_ops = {
3206         .ndo_open               = bcmgenet_open,
3207         .ndo_stop               = bcmgenet_close,
3208         .ndo_start_xmit         = bcmgenet_xmit,
3209         .ndo_tx_timeout         = bcmgenet_timeout,
3210         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3211         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3212         .ndo_do_ioctl           = bcmgenet_ioctl,
3213         .ndo_set_features       = bcmgenet_set_features,
3214 #ifdef CONFIG_NET_POLL_CONTROLLER
3215         .ndo_poll_controller    = bcmgenet_poll_controller,
3216 #endif
3217         .ndo_get_stats          = bcmgenet_get_stats,
3218 };
3219
3220 /* Array of GENET hardware parameters/characteristics */
3221 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3222         [GENET_V1] = {
3223                 .tx_queues = 0,
3224                 .tx_bds_per_q = 0,
3225                 .rx_queues = 0,
3226                 .rx_bds_per_q = 0,
3227                 .bp_in_en_shift = 16,
3228                 .bp_in_mask = 0xffff,
3229                 .hfb_filter_cnt = 16,
3230                 .qtag_mask = 0x1F,
3231                 .hfb_offset = 0x1000,
3232                 .rdma_offset = 0x2000,
3233                 .tdma_offset = 0x3000,
3234                 .words_per_bd = 2,
3235         },
3236         [GENET_V2] = {
3237                 .tx_queues = 4,
3238                 .tx_bds_per_q = 32,
3239                 .rx_queues = 0,
3240                 .rx_bds_per_q = 0,
3241                 .bp_in_en_shift = 16,
3242                 .bp_in_mask = 0xffff,
3243                 .hfb_filter_cnt = 16,
3244                 .qtag_mask = 0x1F,
3245                 .tbuf_offset = 0x0600,
3246                 .hfb_offset = 0x1000,
3247                 .hfb_reg_offset = 0x2000,
3248                 .rdma_offset = 0x3000,
3249                 .tdma_offset = 0x4000,
3250                 .words_per_bd = 2,
3251                 .flags = GENET_HAS_EXT,
3252         },
3253         [GENET_V3] = {
3254                 .tx_queues = 4,
3255                 .tx_bds_per_q = 32,
3256                 .rx_queues = 0,
3257                 .rx_bds_per_q = 0,
3258                 .bp_in_en_shift = 17,
3259                 .bp_in_mask = 0x1ffff,
3260                 .hfb_filter_cnt = 48,
3261                 .hfb_filter_size = 128,
3262                 .qtag_mask = 0x3F,
3263                 .tbuf_offset = 0x0600,
3264                 .hfb_offset = 0x8000,
3265                 .hfb_reg_offset = 0xfc00,
3266                 .rdma_offset = 0x10000,
3267                 .tdma_offset = 0x11000,
3268                 .words_per_bd = 2,
3269                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3270                          GENET_HAS_MOCA_LINK_DET,
3271         },
3272         [GENET_V4] = {
3273                 .tx_queues = 4,
3274                 .tx_bds_per_q = 32,
3275                 .rx_queues = 0,
3276                 .rx_bds_per_q = 0,
3277                 .bp_in_en_shift = 17,
3278                 .bp_in_mask = 0x1ffff,
3279                 .hfb_filter_cnt = 48,
3280                 .hfb_filter_size = 128,
3281                 .qtag_mask = 0x3F,
3282                 .tbuf_offset = 0x0600,
3283                 .hfb_offset = 0x8000,
3284                 .hfb_reg_offset = 0xfc00,
3285                 .rdma_offset = 0x2000,
3286                 .tdma_offset = 0x4000,
3287                 .words_per_bd = 3,
3288                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3289                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3290         },
3291         [GENET_V5] = {
3292                 .tx_queues = 4,
3293                 .tx_bds_per_q = 32,
3294                 .rx_queues = 0,
3295                 .rx_bds_per_q = 0,
3296                 .bp_in_en_shift = 17,
3297                 .bp_in_mask = 0x1ffff,
3298                 .hfb_filter_cnt = 48,
3299                 .hfb_filter_size = 128,
3300                 .qtag_mask = 0x3F,
3301                 .tbuf_offset = 0x0600,
3302                 .hfb_offset = 0x8000,
3303                 .hfb_reg_offset = 0xfc00,
3304                 .rdma_offset = 0x2000,
3305                 .tdma_offset = 0x4000,
3306                 .words_per_bd = 3,
3307                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3308                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3309         },
3310 };
3311
3312 /* Infer hardware parameters from the detected GENET version */
3313 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3314 {
3315         struct bcmgenet_hw_params *params;
3316         u32 reg;
3317         u8 major;
3318         u16 gphy_rev;
3319
3320         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3321                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3322                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3323                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3324         } else if (GENET_IS_V3(priv)) {
3325                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3326                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3327                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3328         } else if (GENET_IS_V2(priv)) {
3329                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3330                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3331                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3332         } else if (GENET_IS_V1(priv)) {
3333                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3334                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3335                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3336         }
3337
3338         /* enum genet_version starts at 1 */
3339         priv->hw_params = &bcmgenet_hw_params[priv->version];
3340         params = priv->hw_params;
3341
3342         /* Read GENET HW version */
3343         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3344         major = (reg >> 24 & 0x0f);
3345         if (major == 6)
3346                 major = 5;
3347         else if (major == 5)
3348                 major = 4;
3349         else if (major == 0)
3350                 major = 1;
3351         if (major != priv->version) {
3352                 dev_err(&priv->pdev->dev,
3353                         "GENET version mismatch, got: %d, configured for: %d\n",
3354                         major, priv->version);
3355         }
3356
3357         /* Print the GENET core version */
3358         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3359                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3360
3361         /* Store the integrated PHY revision for the MDIO probing function
3362          * to pass this information to the PHY driver. The PHY driver expects
3363          * to find the PHY major revision in bits 15:8 while the GENET register
3364          * stores that information in bits 7:0, account for that.
3365          *
3366          * On newer chips, starting with PHY revision G0, a new scheme is
3367          * deployed similar to the Starfighter 2 switch with GPHY major
3368          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3369          * is reserved as well as special value 0x01ff, we have a small
3370          * heuristic to check for the new GPHY revision and re-arrange things
3371          * so the GPHY driver is happy.
3372          */
3373         gphy_rev = reg & 0xffff;
3374
3375         if (GENET_IS_V5(priv)) {
3376                 /* The EPHY revision should come from the MDIO registers of
3377                  * the PHY not from GENET.
3378                  */
3379                 if (gphy_rev != 0) {
3380                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3381                                 gphy_rev);
3382                 }
3383         /* This is reserved so should require special treatment */
3384         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3385                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3386                 return;
3387         /* This is the good old scheme, just GPHY major, no minor nor patch */
3388         } else if ((gphy_rev & 0xf0) != 0) {
3389                 priv->gphy_rev = gphy_rev << 8;
3390         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3391         } else if ((gphy_rev & 0xff00) != 0) {
3392                 priv->gphy_rev = gphy_rev;
3393         }
3394
3395 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3396         if (!(params->flags & GENET_HAS_40BITS))
3397                 pr_warn("GENET does not support 40-bits PA\n");
3398 #endif
3399
3400         pr_debug("Configuration for version: %d\n"
3401                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3402                 "BP << en: %2d, BP msk: 0x%05x\n"
3403                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3404                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3405                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3406                 "Words/BD: %d\n",
3407                 priv->version,
3408                 params->tx_queues, params->tx_bds_per_q,
3409                 params->rx_queues, params->rx_bds_per_q,
3410                 params->bp_in_en_shift, params->bp_in_mask,
3411                 params->hfb_filter_cnt, params->qtag_mask,
3412                 params->tbuf_offset, params->hfb_offset,
3413                 params->hfb_reg_offset,
3414                 params->rdma_offset, params->tdma_offset,
3415                 params->words_per_bd);
3416 }
3417
3418 static const struct of_device_id bcmgenet_match[] = {
3419         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3420         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3421         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3422         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3423         { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3424         { },
3425 };
3426 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3427
3428 static int bcmgenet_probe(struct platform_device *pdev)
3429 {
3430         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3431         struct device_node *dn = pdev->dev.of_node;
3432         const struct of_device_id *of_id = NULL;
3433         struct bcmgenet_priv *priv;
3434         struct net_device *dev;
3435         const void *macaddr;
3436         unsigned int i;
3437         int err = -EIO;
3438         const char *phy_mode_str;
3439
3440         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3441         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3442                                  GENET_MAX_MQ_CNT + 1);
3443         if (!dev) {
3444                 dev_err(&pdev->dev, "can't allocate net device\n");
3445                 return -ENOMEM;
3446         }
3447
3448         if (dn) {
3449                 of_id = of_match_node(bcmgenet_match, dn);
3450                 if (!of_id)
3451                         return -EINVAL;
3452         }
3453
3454         priv = netdev_priv(dev);
3455         priv->irq0 = platform_get_irq(pdev, 0);
3456         priv->irq1 = platform_get_irq(pdev, 1);
3457         priv->wol_irq = platform_get_irq(pdev, 2);
3458         if (!priv->irq0 || !priv->irq1) {
3459                 dev_err(&pdev->dev, "can't find IRQs\n");
3460                 err = -EINVAL;
3461                 goto err;
3462         }
3463
3464         if (dn) {
3465                 macaddr = of_get_mac_address(dn);
3466                 if (IS_ERR(macaddr)) {
3467                         dev_err(&pdev->dev, "can't find MAC address\n");
3468                         err = -EINVAL;
3469                         goto err;
3470                 }
3471         } else {
3472                 macaddr = pd->mac_address;
3473         }
3474
3475         priv->base = devm_platform_ioremap_resource(pdev, 0);
3476         if (IS_ERR(priv->base)) {
3477                 err = PTR_ERR(priv->base);
3478                 goto err;
3479         }
3480
3481         spin_lock_init(&priv->lock);
3482
3483         SET_NETDEV_DEV(dev, &pdev->dev);
3484         dev_set_drvdata(&pdev->dev, dev);
3485         ether_addr_copy(dev->dev_addr, macaddr);
3486         dev->watchdog_timeo = 2 * HZ;
3487         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3488         dev->netdev_ops = &bcmgenet_netdev_ops;
3489
3490         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3491
3492         /* Set hardware features */
3493         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3494                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3495
3496         /* Request the WOL interrupt and advertise suspend if available */
3497         priv->wol_irq_disabled = true;
3498         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3499                                dev->name, priv);
3500         if (!err)
3501                 device_set_wakeup_capable(&pdev->dev, 1);
3502
3503         /* Set the needed headroom to account for any possible
3504          * features enabling/disabling at runtime
3505          */
3506         dev->needed_headroom += 64;
3507
3508         netdev_boot_setup_check(dev);
3509
3510         priv->dev = dev;
3511         priv->pdev = pdev;
3512         if (of_id)
3513                 priv->version = (enum bcmgenet_version)of_id->data;
3514         else
3515                 priv->version = pd->genet_version;
3516
3517         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3518         if (IS_ERR(priv->clk)) {
3519                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3520                 priv->clk = NULL;
3521         }
3522
3523         clk_prepare_enable(priv->clk);
3524
3525         bcmgenet_set_hw_params(priv);
3526
3527         /* Mii wait queue */
3528         init_waitqueue_head(&priv->wq);
3529         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3530         priv->rx_buf_len = RX_BUF_LENGTH;
3531         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3532
3533         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3534         if (IS_ERR(priv->clk_wol)) {
3535                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3536                 priv->clk_wol = NULL;
3537         }
3538
3539         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3540         if (IS_ERR(priv->clk_eee)) {
3541                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3542                 priv->clk_eee = NULL;
3543         }
3544
3545         /* If this is an internal GPHY, power it on now, before UniMAC is
3546          * brought out of reset as absolutely no UniMAC activity is allowed
3547          */
3548         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3549             !strcasecmp(phy_mode_str, "internal"))
3550                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3551
3552         reset_umac(priv);
3553
3554         err = bcmgenet_mii_init(dev);
3555         if (err)
3556                 goto err_clk_disable;
3557
3558         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3559          * just the ring 16 descriptor based TX
3560          */
3561         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3562         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3563
3564         /* Set default coalescing parameters */
3565         for (i = 0; i < priv->hw_params->rx_queues; i++)
3566                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
3567         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3568
3569         /* libphy will determine the link state */
3570         netif_carrier_off(dev);
3571
3572         /* Turn off the main clock, WOL clock is handled separately */
3573         clk_disable_unprepare(priv->clk);
3574
3575         err = register_netdev(dev);
3576         if (err)
3577                 goto err;
3578
3579         return err;
3580
3581 err_clk_disable:
3582         clk_disable_unprepare(priv->clk);
3583 err:
3584         free_netdev(dev);
3585         return err;
3586 }
3587
3588 static int bcmgenet_remove(struct platform_device *pdev)
3589 {
3590         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3591
3592         dev_set_drvdata(&pdev->dev, NULL);
3593         unregister_netdev(priv->dev);
3594         bcmgenet_mii_exit(priv->dev);
3595         free_netdev(priv->dev);
3596
3597         return 0;
3598 }
3599
3600 #ifdef CONFIG_PM_SLEEP
3601 static int bcmgenet_resume(struct device *d)
3602 {
3603         struct net_device *dev = dev_get_drvdata(d);
3604         struct bcmgenet_priv *priv = netdev_priv(dev);
3605         unsigned long dma_ctrl;
3606         int ret;
3607         u32 reg;
3608
3609         if (!netif_running(dev))
3610                 return 0;
3611
3612         /* Turn on the clock */
3613         ret = clk_prepare_enable(priv->clk);
3614         if (ret)
3615                 return ret;
3616
3617         /* If this is an internal GPHY, power it back on now, before UniMAC is
3618          * brought out of reset as absolutely no UniMAC activity is allowed
3619          */
3620         if (priv->internal_phy)
3621                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3622
3623         bcmgenet_umac_reset(priv);
3624
3625         init_umac(priv);
3626
3627         /* From WOL-enabled suspend, switch to regular clock */
3628         if (priv->wolopts)
3629                 clk_disable_unprepare(priv->clk_wol);
3630
3631         phy_init_hw(dev->phydev);
3632
3633         /* Speed settings must be restored */
3634         bcmgenet_mii_config(priv->dev, false);
3635
3636         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3637
3638         if (priv->internal_phy) {
3639                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3640                 reg |= EXT_ENERGY_DET_MASK;
3641                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3642         }
3643
3644         if (priv->wolopts)
3645                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3646
3647         /* Disable RX/TX DMA and flush TX queues */
3648         dma_ctrl = bcmgenet_dma_disable(priv);
3649
3650         /* Reinitialize TDMA and RDMA and SW housekeeping */
3651         ret = bcmgenet_init_dma(priv);
3652         if (ret) {
3653                 netdev_err(dev, "failed to initialize DMA\n");
3654                 goto out_clk_disable;
3655         }
3656
3657         /* Always enable ring 16 - descriptor ring */
3658         bcmgenet_enable_dma(priv, dma_ctrl);
3659
3660         if (!device_may_wakeup(d))
3661                 phy_resume(dev->phydev);
3662
3663         if (priv->eee.eee_enabled)
3664                 bcmgenet_eee_enable_set(dev, true);
3665
3666         bcmgenet_netif_start(dev);
3667
3668         netif_device_attach(dev);
3669
3670         return 0;
3671
3672 out_clk_disable:
3673         if (priv->internal_phy)
3674                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3675         clk_disable_unprepare(priv->clk);
3676         return ret;
3677 }
3678
3679 static int bcmgenet_suspend(struct device *d)
3680 {
3681         struct net_device *dev = dev_get_drvdata(d);
3682         struct bcmgenet_priv *priv = netdev_priv(dev);
3683         int ret = 0;
3684
3685         if (!netif_running(dev))
3686                 return 0;
3687
3688         netif_device_detach(dev);
3689
3690         bcmgenet_netif_stop(dev);
3691
3692         if (!device_may_wakeup(d))
3693                 phy_suspend(dev->phydev);
3694
3695         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3696         if (device_may_wakeup(d) && priv->wolopts) {
3697                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3698                 clk_prepare_enable(priv->clk_wol);
3699         } else if (priv->internal_phy) {
3700                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3701         }
3702
3703         /* Turn off the clocks */
3704         clk_disable_unprepare(priv->clk);
3705
3706         if (ret)
3707                 bcmgenet_resume(d);
3708
3709         return ret;
3710 }
3711 #endif /* CONFIG_PM_SLEEP */
3712
3713 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3714
3715 static struct platform_driver bcmgenet_driver = {
3716         .probe  = bcmgenet_probe,
3717         .remove = bcmgenet_remove,
3718         .driver = {
3719                 .name   = "bcmgenet",
3720                 .of_match_table = bcmgenet_match,
3721                 .pm     = &bcmgenet_pm_ops,
3722         },
3723 };
3724 module_platform_driver(bcmgenet_driver);
3725
3726 MODULE_AUTHOR("Broadcom Corporation");
3727 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3728 MODULE_ALIAS("platform:bcmgenet");
3729 MODULE_LICENSE("GPL");