1 // SPDX-License-Identifier: GPL-2.0-only
3 * Broadcom GENET (Gigabit Ethernet) controller driver
5 * Copyright (c) 2014-2017 Broadcom
8 #define pr_fmt(fmt) "bcmgenet: " fmt
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/string.h>
17 #include <linux/if_ether.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
24 #include <linux/clk.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/netdevice.h>
35 #include <linux/inetdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
40 #include <linux/ipv6.h>
41 #include <linux/phy.h>
42 #include <linux/platform_data/bcmgenet.h>
44 #include <asm/unaligned.h>
48 /* Maximum number of hardware queues, downsized if needed */
49 #define GENET_MAX_MQ_CNT 4
51 /* Default highest priority queue for multi queue support */
52 #define GENET_Q0_PRIORITY 0
54 #define GENET_Q16_RX_BD_CNT \
55 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
56 #define GENET_Q16_TX_BD_CNT \
57 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
59 #define RX_BUF_LENGTH 2048
60 #define SKB_ALIGNMENT 32
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
66 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
67 TOTAL_DESC * DMA_DESC_SIZE)
69 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
72 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
74 /* MIPS chips strapped for BE will automagically configure the
75 * peripheral registers for CPU-native byte order.
77 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
78 __raw_writel(value, offset);
80 writel_relaxed(value, offset);
83 static inline u32 bcmgenet_readl(void __iomem *offset)
85 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
86 return __raw_readl(offset);
88 return readl_relaxed(offset);
91 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
92 void __iomem *d, u32 value)
94 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
97 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
100 return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
103 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
107 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
109 /* Register writes to GISB bus can take couple hundred nanoseconds
110 * and are done for each packet, save these expensive writes unless
111 * the platform is explicitly configured for 64-bits/LPAE.
113 #ifdef CONFIG_PHYS_ADDR_T_64BIT
114 if (priv->hw_params->flags & GENET_HAS_40BITS)
115 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
119 /* Combined address + length/status setter */
120 static inline void dmadesc_set(struct bcmgenet_priv *priv,
121 void __iomem *d, dma_addr_t addr, u32 val)
123 dmadesc_set_addr(priv, d, addr);
124 dmadesc_set_length_status(priv, d, val);
127 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
132 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
134 /* Register writes to GISB bus can take couple hundred nanoseconds
135 * and are done for each packet, save these expensive writes unless
136 * the platform is explicitly configured for 64-bits/LPAE.
138 #ifdef CONFIG_PHYS_ADDR_T_64BIT
139 if (priv->hw_params->flags & GENET_HAS_40BITS)
140 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
145 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
147 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
150 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
152 if (GENET_IS_V1(priv))
153 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
155 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
158 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
160 if (GENET_IS_V1(priv))
161 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
163 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
166 /* These macros are defined to deal with register map change
167 * between GENET1.1 and GENET2. Only those currently being used
168 * by driver are defined.
170 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
172 if (GENET_IS_V1(priv))
173 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
175 return bcmgenet_readl(priv->base +
176 priv->hw_params->tbuf_offset + TBUF_CTRL);
179 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
181 if (GENET_IS_V1(priv))
182 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
184 bcmgenet_writel(val, priv->base +
185 priv->hw_params->tbuf_offset + TBUF_CTRL);
188 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
190 if (GENET_IS_V1(priv))
191 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
193 return bcmgenet_readl(priv->base +
194 priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
199 if (GENET_IS_V1(priv))
200 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
202 bcmgenet_writel(val, priv->base +
203 priv->hw_params->tbuf_offset + TBUF_BP_MC);
206 /* RX/TX DMA register accessors */
243 static const u8 bcmgenet_dma_regs_v3plus[] = {
244 [DMA_RING_CFG] = 0x00,
247 [DMA_SCB_BURST_SIZE] = 0x0C,
248 [DMA_ARB_CTRL] = 0x2C,
249 [DMA_PRIORITY_0] = 0x30,
250 [DMA_PRIORITY_1] = 0x34,
251 [DMA_PRIORITY_2] = 0x38,
252 [DMA_RING0_TIMEOUT] = 0x2C,
253 [DMA_RING1_TIMEOUT] = 0x30,
254 [DMA_RING2_TIMEOUT] = 0x34,
255 [DMA_RING3_TIMEOUT] = 0x38,
256 [DMA_RING4_TIMEOUT] = 0x3c,
257 [DMA_RING5_TIMEOUT] = 0x40,
258 [DMA_RING6_TIMEOUT] = 0x44,
259 [DMA_RING7_TIMEOUT] = 0x48,
260 [DMA_RING8_TIMEOUT] = 0x4c,
261 [DMA_RING9_TIMEOUT] = 0x50,
262 [DMA_RING10_TIMEOUT] = 0x54,
263 [DMA_RING11_TIMEOUT] = 0x58,
264 [DMA_RING12_TIMEOUT] = 0x5c,
265 [DMA_RING13_TIMEOUT] = 0x60,
266 [DMA_RING14_TIMEOUT] = 0x64,
267 [DMA_RING15_TIMEOUT] = 0x68,
268 [DMA_RING16_TIMEOUT] = 0x6C,
269 [DMA_INDEX2RING_0] = 0x70,
270 [DMA_INDEX2RING_1] = 0x74,
271 [DMA_INDEX2RING_2] = 0x78,
272 [DMA_INDEX2RING_3] = 0x7C,
273 [DMA_INDEX2RING_4] = 0x80,
274 [DMA_INDEX2RING_5] = 0x84,
275 [DMA_INDEX2RING_6] = 0x88,
276 [DMA_INDEX2RING_7] = 0x8C,
279 static const u8 bcmgenet_dma_regs_v2[] = {
280 [DMA_RING_CFG] = 0x00,
283 [DMA_SCB_BURST_SIZE] = 0x0C,
284 [DMA_ARB_CTRL] = 0x30,
285 [DMA_PRIORITY_0] = 0x34,
286 [DMA_PRIORITY_1] = 0x38,
287 [DMA_PRIORITY_2] = 0x3C,
288 [DMA_RING0_TIMEOUT] = 0x2C,
289 [DMA_RING1_TIMEOUT] = 0x30,
290 [DMA_RING2_TIMEOUT] = 0x34,
291 [DMA_RING3_TIMEOUT] = 0x38,
292 [DMA_RING4_TIMEOUT] = 0x3c,
293 [DMA_RING5_TIMEOUT] = 0x40,
294 [DMA_RING6_TIMEOUT] = 0x44,
295 [DMA_RING7_TIMEOUT] = 0x48,
296 [DMA_RING8_TIMEOUT] = 0x4c,
297 [DMA_RING9_TIMEOUT] = 0x50,
298 [DMA_RING10_TIMEOUT] = 0x54,
299 [DMA_RING11_TIMEOUT] = 0x58,
300 [DMA_RING12_TIMEOUT] = 0x5c,
301 [DMA_RING13_TIMEOUT] = 0x60,
302 [DMA_RING14_TIMEOUT] = 0x64,
303 [DMA_RING15_TIMEOUT] = 0x68,
304 [DMA_RING16_TIMEOUT] = 0x6C,
307 static const u8 bcmgenet_dma_regs_v1[] = {
310 [DMA_SCB_BURST_SIZE] = 0x0C,
311 [DMA_ARB_CTRL] = 0x30,
312 [DMA_PRIORITY_0] = 0x34,
313 [DMA_PRIORITY_1] = 0x38,
314 [DMA_PRIORITY_2] = 0x3C,
315 [DMA_RING0_TIMEOUT] = 0x2C,
316 [DMA_RING1_TIMEOUT] = 0x30,
317 [DMA_RING2_TIMEOUT] = 0x34,
318 [DMA_RING3_TIMEOUT] = 0x38,
319 [DMA_RING4_TIMEOUT] = 0x3c,
320 [DMA_RING5_TIMEOUT] = 0x40,
321 [DMA_RING6_TIMEOUT] = 0x44,
322 [DMA_RING7_TIMEOUT] = 0x48,
323 [DMA_RING8_TIMEOUT] = 0x4c,
324 [DMA_RING9_TIMEOUT] = 0x50,
325 [DMA_RING10_TIMEOUT] = 0x54,
326 [DMA_RING11_TIMEOUT] = 0x58,
327 [DMA_RING12_TIMEOUT] = 0x5c,
328 [DMA_RING13_TIMEOUT] = 0x60,
329 [DMA_RING14_TIMEOUT] = 0x64,
330 [DMA_RING15_TIMEOUT] = 0x68,
331 [DMA_RING16_TIMEOUT] = 0x6C,
334 /* Set at runtime once bcmgenet version is known */
335 static const u8 *bcmgenet_dma_regs;
337 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
339 return netdev_priv(dev_get_drvdata(dev));
342 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
345 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
346 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
349 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
350 u32 val, enum dma_reg r)
352 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
353 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
356 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
359 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
360 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
363 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
364 u32 val, enum dma_reg r)
366 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
367 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
370 /* RDMA/TDMA ring registers and accessors
371 * we merge the common fields and just prefix with T/D the registers
372 * having different meaning depending on the direction
376 RDMA_WRITE_PTR = TDMA_READ_PTR,
378 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
380 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
382 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
388 DMA_MBUF_DONE_THRESH,
390 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
392 RDMA_READ_PTR = TDMA_WRITE_PTR,
394 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
397 /* GENET v4 supports 40-bits pointer addressing
398 * for obvious reasons the LO and HI word parts
399 * are contiguous, but this offsets the other
402 static const u8 genet_dma_ring_regs_v4[] = {
403 [TDMA_READ_PTR] = 0x00,
404 [TDMA_READ_PTR_HI] = 0x04,
405 [TDMA_CONS_INDEX] = 0x08,
406 [TDMA_PROD_INDEX] = 0x0C,
407 [DMA_RING_BUF_SIZE] = 0x10,
408 [DMA_START_ADDR] = 0x14,
409 [DMA_START_ADDR_HI] = 0x18,
410 [DMA_END_ADDR] = 0x1C,
411 [DMA_END_ADDR_HI] = 0x20,
412 [DMA_MBUF_DONE_THRESH] = 0x24,
413 [TDMA_FLOW_PERIOD] = 0x28,
414 [TDMA_WRITE_PTR] = 0x2C,
415 [TDMA_WRITE_PTR_HI] = 0x30,
418 static const u8 genet_dma_ring_regs_v123[] = {
419 [TDMA_READ_PTR] = 0x00,
420 [TDMA_CONS_INDEX] = 0x04,
421 [TDMA_PROD_INDEX] = 0x08,
422 [DMA_RING_BUF_SIZE] = 0x0C,
423 [DMA_START_ADDR] = 0x10,
424 [DMA_END_ADDR] = 0x14,
425 [DMA_MBUF_DONE_THRESH] = 0x18,
426 [TDMA_FLOW_PERIOD] = 0x1C,
427 [TDMA_WRITE_PTR] = 0x20,
430 /* Set at runtime once GENET version is known */
431 static const u8 *genet_dma_ring_regs;
433 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
437 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
438 (DMA_RING_SIZE * ring) +
439 genet_dma_ring_regs[r]);
442 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
443 unsigned int ring, u32 val,
446 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
447 (DMA_RING_SIZE * ring) +
448 genet_dma_ring_regs[r]);
451 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
455 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
456 (DMA_RING_SIZE * ring) +
457 genet_dma_ring_regs[r]);
460 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
461 unsigned int ring, u32 val,
464 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
465 (DMA_RING_SIZE * ring) +
466 genet_dma_ring_regs[r]);
469 static int bcmgenet_begin(struct net_device *dev)
471 struct bcmgenet_priv *priv = netdev_priv(dev);
473 /* Turn on the clock */
474 return clk_prepare_enable(priv->clk);
477 static void bcmgenet_complete(struct net_device *dev)
479 struct bcmgenet_priv *priv = netdev_priv(dev);
481 /* Turn off the clock */
482 clk_disable_unprepare(priv->clk);
485 static int bcmgenet_get_link_ksettings(struct net_device *dev,
486 struct ethtool_link_ksettings *cmd)
488 if (!netif_running(dev))
494 phy_ethtool_ksettings_get(dev->phydev, cmd);
499 static int bcmgenet_set_link_ksettings(struct net_device *dev,
500 const struct ethtool_link_ksettings *cmd)
502 if (!netif_running(dev))
508 return phy_ethtool_ksettings_set(dev->phydev, cmd);
511 static int bcmgenet_set_rx_csum(struct net_device *dev,
512 netdev_features_t wanted)
514 struct bcmgenet_priv *priv = netdev_priv(dev);
518 rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
520 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
522 /* enable rx checksumming */
524 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
526 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
527 priv->desc_rxchk_en = rx_csum_en;
529 /* If UniMAC forwards CRC, we need to skip over it to get
530 * a valid CHK bit to be set in the per-packet status word
532 if (rx_csum_en && priv->crc_fwd_en)
533 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
535 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
537 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
542 static int bcmgenet_set_tx_csum(struct net_device *dev,
543 netdev_features_t wanted)
545 struct bcmgenet_priv *priv = netdev_priv(dev);
547 u32 tbuf_ctrl, rbuf_ctrl;
549 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
550 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
552 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
554 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
556 tbuf_ctrl |= RBUF_64B_EN;
557 rbuf_ctrl |= RBUF_64B_EN;
559 tbuf_ctrl &= ~RBUF_64B_EN;
560 rbuf_ctrl &= ~RBUF_64B_EN;
562 priv->desc_64b_en = desc_64b_en;
564 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
565 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
570 static int bcmgenet_set_features(struct net_device *dev,
571 netdev_features_t features)
573 netdev_features_t changed = features ^ dev->features;
574 netdev_features_t wanted = dev->wanted_features;
577 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
578 ret = bcmgenet_set_tx_csum(dev, wanted);
579 if (changed & (NETIF_F_RXCSUM))
580 ret = bcmgenet_set_rx_csum(dev, wanted);
585 static u32 bcmgenet_get_msglevel(struct net_device *dev)
587 struct bcmgenet_priv *priv = netdev_priv(dev);
589 return priv->msg_enable;
592 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
594 struct bcmgenet_priv *priv = netdev_priv(dev);
596 priv->msg_enable = level;
599 static int bcmgenet_get_coalesce(struct net_device *dev,
600 struct ethtool_coalesce *ec)
602 struct bcmgenet_priv *priv = netdev_priv(dev);
603 struct bcmgenet_rx_ring *ring;
606 ec->tx_max_coalesced_frames =
607 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
608 DMA_MBUF_DONE_THRESH);
609 ec->rx_max_coalesced_frames =
610 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
611 DMA_MBUF_DONE_THRESH);
612 ec->rx_coalesce_usecs =
613 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
615 for (i = 0; i < priv->hw_params->rx_queues; i++) {
616 ring = &priv->rx_rings[i];
617 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
619 ring = &priv->rx_rings[DESC_INDEX];
620 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
625 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
628 struct bcmgenet_priv *priv = ring->priv;
629 unsigned int i = ring->index;
632 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
634 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
635 reg &= ~DMA_TIMEOUT_MASK;
636 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
637 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
640 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
641 struct ethtool_coalesce *ec)
643 struct dim_cq_moder moder;
646 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
647 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
648 usecs = ring->rx_coalesce_usecs;
649 pkts = ring->rx_max_coalesced_frames;
651 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
652 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
657 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
658 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
661 static int bcmgenet_set_coalesce(struct net_device *dev,
662 struct ethtool_coalesce *ec)
664 struct bcmgenet_priv *priv = netdev_priv(dev);
667 /* Base system clock is 125Mhz, DMA timeout is this reference clock
668 * divided by 1024, which yields roughly 8.192us, our maximum value
669 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
671 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
672 ec->tx_max_coalesced_frames == 0 ||
673 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
674 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
677 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
680 /* GENET TDMA hardware does not support a configurable timeout, but will
681 * always generate an interrupt either after MBDONE packets have been
682 * transmitted, or when the ring is empty.
684 if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
685 ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
686 ec->use_adaptive_tx_coalesce)
689 /* Program all TX queues with the same values, as there is no
690 * ethtool knob to do coalescing on a per-queue basis
692 for (i = 0; i < priv->hw_params->tx_queues; i++)
693 bcmgenet_tdma_ring_writel(priv, i,
694 ec->tx_max_coalesced_frames,
695 DMA_MBUF_DONE_THRESH);
696 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
697 ec->tx_max_coalesced_frames,
698 DMA_MBUF_DONE_THRESH);
700 for (i = 0; i < priv->hw_params->rx_queues; i++)
701 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
702 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
707 /* standard ethtool support functions. */
708 enum bcmgenet_stat_type {
709 BCMGENET_STAT_NETDEV = -1,
710 BCMGENET_STAT_MIB_RX,
711 BCMGENET_STAT_MIB_TX,
717 struct bcmgenet_stats {
718 char stat_string[ETH_GSTRING_LEN];
721 enum bcmgenet_stat_type type;
722 /* reg offset from UMAC base for misc counters */
726 #define STAT_NETDEV(m) { \
727 .stat_string = __stringify(m), \
728 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
729 .stat_offset = offsetof(struct net_device_stats, m), \
730 .type = BCMGENET_STAT_NETDEV, \
733 #define STAT_GENET_MIB(str, m, _type) { \
734 .stat_string = str, \
735 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
736 .stat_offset = offsetof(struct bcmgenet_priv, m), \
740 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
741 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
742 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
743 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
745 #define STAT_GENET_MISC(str, m, offset) { \
746 .stat_string = str, \
747 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
748 .stat_offset = offsetof(struct bcmgenet_priv, m), \
749 .type = BCMGENET_STAT_MISC, \
750 .reg_offset = offset, \
753 #define STAT_GENET_Q(num) \
754 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
755 tx_rings[num].packets), \
756 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
757 tx_rings[num].bytes), \
758 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
759 rx_rings[num].bytes), \
760 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
761 rx_rings[num].packets), \
762 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
763 rx_rings[num].errors), \
764 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
765 rx_rings[num].dropped)
767 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
768 * between the end of TX stats and the beginning of the RX RUNT
770 #define BCMGENET_STAT_OFFSET 0xc
772 /* Hardware counters must be kept in sync because the order/offset
773 * is important here (order in structure declaration = order in hardware)
775 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
777 STAT_NETDEV(rx_packets),
778 STAT_NETDEV(tx_packets),
779 STAT_NETDEV(rx_bytes),
780 STAT_NETDEV(tx_bytes),
781 STAT_NETDEV(rx_errors),
782 STAT_NETDEV(tx_errors),
783 STAT_NETDEV(rx_dropped),
784 STAT_NETDEV(tx_dropped),
785 STAT_NETDEV(multicast),
786 /* UniMAC RSV counters */
787 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
788 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
789 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
790 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
791 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
792 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
793 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
794 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
795 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
796 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
797 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
798 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
799 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
800 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
801 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
802 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
803 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
804 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
805 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
806 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
807 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
808 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
809 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
810 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
811 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
812 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
813 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
814 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
815 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
816 /* UniMAC TSV counters */
817 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
818 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
819 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
820 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
821 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
822 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
823 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
824 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
825 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
826 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
827 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
828 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
829 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
830 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
831 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
832 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
833 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
834 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
835 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
836 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
837 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
838 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
839 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
840 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
841 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
842 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
843 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
844 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
845 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
846 /* UniMAC RUNT counters */
847 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
848 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
849 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
850 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
851 /* Misc UniMAC counters */
852 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
853 UMAC_RBUF_OVFL_CNT_V1),
854 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
855 UMAC_RBUF_ERR_CNT_V1),
856 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
857 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
858 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
859 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
868 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
870 static void bcmgenet_get_drvinfo(struct net_device *dev,
871 struct ethtool_drvinfo *info)
873 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
874 strlcpy(info->version, "v2.0", sizeof(info->version));
877 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
879 switch (string_set) {
881 return BCMGENET_STATS_LEN;
887 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
894 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
895 memcpy(data + i * ETH_GSTRING_LEN,
896 bcmgenet_gstrings_stats[i].stat_string,
903 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
909 case UMAC_RBUF_OVFL_CNT_V1:
910 if (GENET_IS_V2(priv))
911 new_offset = RBUF_OVFL_CNT_V2;
913 new_offset = RBUF_OVFL_CNT_V3PLUS;
915 val = bcmgenet_rbuf_readl(priv, new_offset);
916 /* clear if overflowed */
918 bcmgenet_rbuf_writel(priv, 0, new_offset);
920 case UMAC_RBUF_ERR_CNT_V1:
921 if (GENET_IS_V2(priv))
922 new_offset = RBUF_ERR_CNT_V2;
924 new_offset = RBUF_ERR_CNT_V3PLUS;
926 val = bcmgenet_rbuf_readl(priv, new_offset);
927 /* clear if overflowed */
929 bcmgenet_rbuf_writel(priv, 0, new_offset);
932 val = bcmgenet_umac_readl(priv, offset);
933 /* clear if overflowed */
935 bcmgenet_umac_writel(priv, 0, offset);
942 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
946 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
947 const struct bcmgenet_stats *s;
952 s = &bcmgenet_gstrings_stats[i];
954 case BCMGENET_STAT_NETDEV:
955 case BCMGENET_STAT_SOFT:
957 case BCMGENET_STAT_RUNT:
958 offset += BCMGENET_STAT_OFFSET;
960 case BCMGENET_STAT_MIB_TX:
961 offset += BCMGENET_STAT_OFFSET;
963 case BCMGENET_STAT_MIB_RX:
964 val = bcmgenet_umac_readl(priv,
965 UMAC_MIB_START + j + offset);
966 offset = 0; /* Reset Offset */
968 case BCMGENET_STAT_MISC:
969 if (GENET_IS_V1(priv)) {
970 val = bcmgenet_umac_readl(priv, s->reg_offset);
971 /* clear if overflowed */
973 bcmgenet_umac_writel(priv, 0,
976 val = bcmgenet_update_stat_misc(priv,
983 p = (char *)priv + s->stat_offset;
988 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
989 struct ethtool_stats *stats,
992 struct bcmgenet_priv *priv = netdev_priv(dev);
995 if (netif_running(dev))
996 bcmgenet_update_mib_counters(priv);
998 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
999 const struct bcmgenet_stats *s;
1002 s = &bcmgenet_gstrings_stats[i];
1003 if (s->type == BCMGENET_STAT_NETDEV)
1004 p = (char *)&dev->stats;
1007 p += s->stat_offset;
1008 if (sizeof(unsigned long) != sizeof(u32) &&
1009 s->stat_sizeof == sizeof(unsigned long))
1010 data[i] = *(unsigned long *)p;
1012 data[i] = *(u32 *)p;
1016 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1018 struct bcmgenet_priv *priv = netdev_priv(dev);
1019 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1022 if (enable && !priv->clk_eee_enabled) {
1023 clk_prepare_enable(priv->clk_eee);
1024 priv->clk_eee_enabled = true;
1027 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1032 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1034 /* Enable EEE and switch to a 27Mhz clock automatically */
1035 reg = bcmgenet_readl(priv->base + off);
1037 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1039 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1040 bcmgenet_writel(reg, priv->base + off);
1042 /* Do the same for thing for RBUF */
1043 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1045 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1047 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1048 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1050 if (!enable && priv->clk_eee_enabled) {
1051 clk_disable_unprepare(priv->clk_eee);
1052 priv->clk_eee_enabled = false;
1055 priv->eee.eee_enabled = enable;
1056 priv->eee.eee_active = enable;
1059 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1061 struct bcmgenet_priv *priv = netdev_priv(dev);
1062 struct ethtool_eee *p = &priv->eee;
1064 if (GENET_IS_V1(priv))
1070 e->eee_enabled = p->eee_enabled;
1071 e->eee_active = p->eee_active;
1072 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1074 return phy_ethtool_get_eee(dev->phydev, e);
1077 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1079 struct bcmgenet_priv *priv = netdev_priv(dev);
1080 struct ethtool_eee *p = &priv->eee;
1083 if (GENET_IS_V1(priv))
1089 p->eee_enabled = e->eee_enabled;
1091 if (!p->eee_enabled) {
1092 bcmgenet_eee_enable_set(dev, false);
1094 ret = phy_init_eee(dev->phydev, 0);
1096 netif_err(priv, hw, dev, "EEE initialization failed\n");
1100 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1101 bcmgenet_eee_enable_set(dev, true);
1104 return phy_ethtool_set_eee(dev->phydev, e);
1107 /* standard ethtool support functions. */
1108 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1109 .begin = bcmgenet_begin,
1110 .complete = bcmgenet_complete,
1111 .get_strings = bcmgenet_get_strings,
1112 .get_sset_count = bcmgenet_get_sset_count,
1113 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1114 .get_drvinfo = bcmgenet_get_drvinfo,
1115 .get_link = ethtool_op_get_link,
1116 .get_msglevel = bcmgenet_get_msglevel,
1117 .set_msglevel = bcmgenet_set_msglevel,
1118 .get_wol = bcmgenet_get_wol,
1119 .set_wol = bcmgenet_set_wol,
1120 .get_eee = bcmgenet_get_eee,
1121 .set_eee = bcmgenet_set_eee,
1122 .nway_reset = phy_ethtool_nway_reset,
1123 .get_coalesce = bcmgenet_get_coalesce,
1124 .set_coalesce = bcmgenet_set_coalesce,
1125 .get_link_ksettings = bcmgenet_get_link_ksettings,
1126 .set_link_ksettings = bcmgenet_set_link_ksettings,
1127 .get_ts_info = ethtool_op_get_ts_info,
1130 /* Power down the unimac, based on mode. */
1131 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1132 enum bcmgenet_power_mode mode)
1138 case GENET_POWER_CABLE_SENSE:
1139 phy_detach(priv->dev->phydev);
1142 case GENET_POWER_WOL_MAGIC:
1143 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1146 case GENET_POWER_PASSIVE:
1147 /* Power down LED */
1148 if (priv->hw_params->flags & GENET_HAS_EXT) {
1149 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1150 if (GENET_IS_V5(priv))
1151 reg |= EXT_PWR_DOWN_PHY_EN |
1152 EXT_PWR_DOWN_PHY_RD |
1153 EXT_PWR_DOWN_PHY_SD |
1154 EXT_PWR_DOWN_PHY_RX |
1155 EXT_PWR_DOWN_PHY_TX |
1158 reg |= EXT_PWR_DOWN_PHY;
1160 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1161 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1163 bcmgenet_phy_power_set(priv->dev, false);
1173 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1174 enum bcmgenet_power_mode mode)
1178 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1181 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1184 case GENET_POWER_PASSIVE:
1185 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1186 if (GENET_IS_V5(priv)) {
1187 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1188 EXT_PWR_DOWN_PHY_RD |
1189 EXT_PWR_DOWN_PHY_SD |
1190 EXT_PWR_DOWN_PHY_RX |
1191 EXT_PWR_DOWN_PHY_TX |
1193 reg |= EXT_PHY_RESET;
1194 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1197 reg &= ~EXT_PHY_RESET;
1199 reg &= ~EXT_PWR_DOWN_PHY;
1200 reg |= EXT_PWR_DN_EN_LD;
1202 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1203 bcmgenet_phy_power_set(priv->dev, true);
1206 case GENET_POWER_CABLE_SENSE:
1208 if (!GENET_IS_V5(priv)) {
1209 reg |= EXT_PWR_DN_EN_LD;
1210 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1213 case GENET_POWER_WOL_MAGIC:
1214 bcmgenet_wol_power_up_cfg(priv, mode);
1221 /* ioctl handle special commands that are not present in ethtool. */
1222 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1224 if (!netif_running(dev))
1230 return phy_mii_ioctl(dev->phydev, rq, cmd);
1233 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1234 struct bcmgenet_tx_ring *ring)
1236 struct enet_cb *tx_cb_ptr;
1238 tx_cb_ptr = ring->cbs;
1239 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1241 /* Advancing local write pointer */
1242 if (ring->write_ptr == ring->end_ptr)
1243 ring->write_ptr = ring->cb_ptr;
1250 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1251 struct bcmgenet_tx_ring *ring)
1253 struct enet_cb *tx_cb_ptr;
1255 tx_cb_ptr = ring->cbs;
1256 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1258 /* Rewinding local write pointer */
1259 if (ring->write_ptr == ring->cb_ptr)
1260 ring->write_ptr = ring->end_ptr;
1267 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1269 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1270 INTRL2_CPU_MASK_SET);
1273 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1275 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1276 INTRL2_CPU_MASK_CLEAR);
1279 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1281 bcmgenet_intrl2_1_writel(ring->priv,
1282 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1283 INTRL2_CPU_MASK_SET);
1286 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1288 bcmgenet_intrl2_1_writel(ring->priv,
1289 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1290 INTRL2_CPU_MASK_CLEAR);
1293 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1295 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1296 INTRL2_CPU_MASK_SET);
1299 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1301 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1302 INTRL2_CPU_MASK_CLEAR);
1305 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1307 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1308 INTRL2_CPU_MASK_CLEAR);
1311 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1313 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1314 INTRL2_CPU_MASK_SET);
1317 /* Simple helper to free a transmit control block's resources
1318 * Returns an skb when the last transmit control block associated with the
1319 * skb is freed. The skb should be freed by the caller if necessary.
1321 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1324 struct sk_buff *skb;
1330 if (cb == GENET_CB(skb)->first_cb)
1331 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1332 dma_unmap_len(cb, dma_len),
1335 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1336 dma_unmap_len(cb, dma_len),
1338 dma_unmap_addr_set(cb, dma_addr, 0);
1340 if (cb == GENET_CB(skb)->last_cb)
1343 } else if (dma_unmap_addr(cb, dma_addr)) {
1345 dma_unmap_addr(cb, dma_addr),
1346 dma_unmap_len(cb, dma_len),
1348 dma_unmap_addr_set(cb, dma_addr, 0);
1354 /* Simple helper to free a receive control block's resources */
1355 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1358 struct sk_buff *skb;
1363 if (dma_unmap_addr(cb, dma_addr)) {
1364 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1365 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1366 dma_unmap_addr_set(cb, dma_addr, 0);
1372 /* Unlocked version of the reclaim routine */
1373 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1374 struct bcmgenet_tx_ring *ring)
1376 struct bcmgenet_priv *priv = netdev_priv(dev);
1377 unsigned int txbds_processed = 0;
1378 unsigned int bytes_compl = 0;
1379 unsigned int pkts_compl = 0;
1380 unsigned int txbds_ready;
1381 unsigned int c_index;
1382 struct sk_buff *skb;
1384 /* Clear status before servicing to reduce spurious interrupts */
1385 if (ring->index == DESC_INDEX)
1386 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1389 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1392 /* Compute how many buffers are transmitted since last xmit call */
1393 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1395 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1397 netif_dbg(priv, tx_done, dev,
1398 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1399 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1401 /* Reclaim transmitted buffers */
1402 while (txbds_processed < txbds_ready) {
1403 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1404 &priv->tx_cbs[ring->clean_ptr]);
1407 bytes_compl += GENET_CB(skb)->bytes_sent;
1408 dev_consume_skb_any(skb);
1412 if (likely(ring->clean_ptr < ring->end_ptr))
1415 ring->clean_ptr = ring->cb_ptr;
1418 ring->free_bds += txbds_processed;
1419 ring->c_index = c_index;
1421 ring->packets += pkts_compl;
1422 ring->bytes += bytes_compl;
1424 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1425 pkts_compl, bytes_compl);
1427 return txbds_processed;
1430 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1431 struct bcmgenet_tx_ring *ring)
1433 unsigned int released;
1435 spin_lock_bh(&ring->lock);
1436 released = __bcmgenet_tx_reclaim(dev, ring);
1437 spin_unlock_bh(&ring->lock);
1442 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1444 struct bcmgenet_tx_ring *ring =
1445 container_of(napi, struct bcmgenet_tx_ring, napi);
1446 unsigned int work_done = 0;
1447 struct netdev_queue *txq;
1449 spin_lock(&ring->lock);
1450 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1451 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1452 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1453 netif_tx_wake_queue(txq);
1455 spin_unlock(&ring->lock);
1457 if (work_done == 0) {
1458 napi_complete(napi);
1459 ring->int_enable(ring);
1467 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1469 struct bcmgenet_priv *priv = netdev_priv(dev);
1472 if (netif_is_multiqueue(dev)) {
1473 for (i = 0; i < priv->hw_params->tx_queues; i++)
1474 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1477 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1480 /* Reallocate the SKB to put enough headroom in front of it and insert
1481 * the transmit checksum offsets in the descriptors
1483 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1484 struct sk_buff *skb)
1486 struct status_64 *status = NULL;
1487 struct sk_buff *new_skb;
1493 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1494 /* If 64 byte status block enabled, must make sure skb has
1495 * enough headroom for us to insert 64B status block.
1497 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1500 dev->stats.tx_dropped++;
1506 skb_push(skb, sizeof(*status));
1507 status = (struct status_64 *)skb->data;
1509 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1510 ip_ver = skb->protocol;
1512 case htons(ETH_P_IP):
1513 ip_proto = ip_hdr(skb)->protocol;
1515 case htons(ETH_P_IPV6):
1516 ip_proto = ipv6_hdr(skb)->nexthdr;
1522 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1523 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1524 (offset + skb->csum_offset);
1526 /* Set the length valid bit for TCP and UDP and just set
1527 * the special UDP flag for IPv4, else just set to 0.
1529 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1530 tx_csum_info |= STATUS_TX_CSUM_LV;
1531 if (ip_proto == IPPROTO_UDP &&
1532 ip_ver == htons(ETH_P_IP))
1533 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1538 status->tx_csum_info = tx_csum_info;
1544 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1546 struct bcmgenet_priv *priv = netdev_priv(dev);
1547 struct device *kdev = &priv->pdev->dev;
1548 struct bcmgenet_tx_ring *ring = NULL;
1549 struct enet_cb *tx_cb_ptr;
1550 struct netdev_queue *txq;
1551 int nr_frags, index;
1559 index = skb_get_queue_mapping(skb);
1560 /* Mapping strategy:
1561 * queue_mapping = 0, unclassified, packet xmited through ring16
1562 * queue_mapping = 1, goes to ring 0. (highest priority queue
1563 * queue_mapping = 2, goes to ring 1.
1564 * queue_mapping = 3, goes to ring 2.
1565 * queue_mapping = 4, goes to ring 3.
1572 ring = &priv->tx_rings[index];
1573 txq = netdev_get_tx_queue(dev, ring->queue);
1575 nr_frags = skb_shinfo(skb)->nr_frags;
1577 spin_lock(&ring->lock);
1578 if (ring->free_bds <= (nr_frags + 1)) {
1579 if (!netif_tx_queue_stopped(txq)) {
1580 netif_tx_stop_queue(txq);
1582 "%s: tx ring %d full when queue %d awake\n",
1583 __func__, index, ring->queue);
1585 ret = NETDEV_TX_BUSY;
1589 if (skb_padto(skb, ETH_ZLEN)) {
1594 /* Retain how many bytes will be sent on the wire, without TSB inserted
1595 * by transmit checksum offload
1597 GENET_CB(skb)->bytes_sent = skb->len;
1599 /* set the SKB transmit checksum */
1600 if (priv->desc_64b_en) {
1601 skb = bcmgenet_put_tx_csum(dev, skb);
1608 for (i = 0; i <= nr_frags; i++) {
1609 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1614 /* Transmit single SKB or head of fragment list */
1615 GENET_CB(skb)->first_cb = tx_cb_ptr;
1616 size = skb_headlen(skb);
1617 mapping = dma_map_single(kdev, skb->data, size,
1621 frag = &skb_shinfo(skb)->frags[i - 1];
1622 size = skb_frag_size(frag);
1623 mapping = skb_frag_dma_map(kdev, frag, 0, size,
1627 ret = dma_mapping_error(kdev, mapping);
1629 priv->mib.tx_dma_failed++;
1630 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1632 goto out_unmap_frags;
1634 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1635 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1637 tx_cb_ptr->skb = skb;
1639 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1640 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1643 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1644 if (skb->ip_summed == CHECKSUM_PARTIAL)
1645 len_stat |= DMA_TX_DO_CSUM;
1648 len_stat |= DMA_EOP;
1650 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1653 GENET_CB(skb)->last_cb = tx_cb_ptr;
1654 skb_tx_timestamp(skb);
1656 /* Decrement total BD count and advance our write pointer */
1657 ring->free_bds -= nr_frags + 1;
1658 ring->prod_index += nr_frags + 1;
1659 ring->prod_index &= DMA_P_INDEX_MASK;
1661 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1663 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1664 netif_tx_stop_queue(txq);
1666 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1667 /* Packets are ready, update producer index */
1668 bcmgenet_tdma_ring_writel(priv, ring->index,
1669 ring->prod_index, TDMA_PROD_INDEX);
1671 spin_unlock(&ring->lock);
1676 /* Back up for failed control block mapping */
1677 bcmgenet_put_txcb(priv, ring);
1679 /* Unmap successfully mapped control blocks */
1681 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1682 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1689 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1692 struct device *kdev = &priv->pdev->dev;
1693 struct sk_buff *skb;
1694 struct sk_buff *rx_skb;
1697 /* Allocate a new Rx skb */
1698 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1700 priv->mib.alloc_rx_buff_failed++;
1701 netif_err(priv, rx_err, priv->dev,
1702 "%s: Rx skb allocation failed\n", __func__);
1706 /* DMA-map the new Rx skb */
1707 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1709 if (dma_mapping_error(kdev, mapping)) {
1710 priv->mib.rx_dma_failed++;
1711 dev_kfree_skb_any(skb);
1712 netif_err(priv, rx_err, priv->dev,
1713 "%s: Rx skb DMA mapping failed\n", __func__);
1717 /* Grab the current Rx skb from the ring and DMA-unmap it */
1718 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1720 /* Put the new Rx skb on the ring */
1722 dma_unmap_addr_set(cb, dma_addr, mapping);
1723 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1724 dmadesc_set_addr(priv, cb->bd_addr, mapping);
1726 /* Return the current Rx skb to caller */
1730 /* bcmgenet_desc_rx - descriptor based rx process.
1731 * this could be called from bottom half, or from NAPI polling method.
1733 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1734 unsigned int budget)
1736 struct bcmgenet_priv *priv = ring->priv;
1737 struct net_device *dev = priv->dev;
1739 struct sk_buff *skb;
1740 u32 dma_length_status;
1741 unsigned long dma_flag;
1743 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1744 unsigned int bytes_processed = 0;
1745 unsigned int p_index, mask;
1746 unsigned int discards;
1747 unsigned int chksum_ok = 0;
1749 /* Clear status before servicing to reduce spurious interrupts */
1750 if (ring->index == DESC_INDEX) {
1751 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1754 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1755 bcmgenet_intrl2_1_writel(priv,
1760 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1762 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1763 DMA_P_INDEX_DISCARD_CNT_MASK;
1764 if (discards > ring->old_discards) {
1765 discards = discards - ring->old_discards;
1766 ring->errors += discards;
1767 ring->old_discards += discards;
1769 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1770 if (ring->old_discards >= 0xC000) {
1771 ring->old_discards = 0;
1772 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1777 p_index &= DMA_P_INDEX_MASK;
1778 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1780 netif_dbg(priv, rx_status, dev,
1781 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1783 while ((rxpktprocessed < rxpkttoprocess) &&
1784 (rxpktprocessed < budget)) {
1785 cb = &priv->rx_cbs[ring->read_ptr];
1786 skb = bcmgenet_rx_refill(priv, cb);
1788 if (unlikely(!skb)) {
1793 if (!priv->desc_64b_en) {
1795 dmadesc_get_length_status(priv, cb->bd_addr);
1797 struct status_64 *status;
1799 status = (struct status_64 *)skb->data;
1800 dma_length_status = status->length_status;
1803 /* DMA flags and length are still valid no matter how
1804 * we got the Receive Status Vector (64B RSB or register)
1806 dma_flag = dma_length_status & 0xffff;
1807 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1809 netif_dbg(priv, rx_status, dev,
1810 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1811 __func__, p_index, ring->c_index,
1812 ring->read_ptr, dma_length_status);
1814 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1815 netif_err(priv, rx_status, dev,
1816 "dropping fragmented packet!\n");
1818 dev_kfree_skb_any(skb);
1823 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1828 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1829 (unsigned int)dma_flag);
1830 if (dma_flag & DMA_RX_CRC_ERROR)
1831 dev->stats.rx_crc_errors++;
1832 if (dma_flag & DMA_RX_OV)
1833 dev->stats.rx_over_errors++;
1834 if (dma_flag & DMA_RX_NO)
1835 dev->stats.rx_frame_errors++;
1836 if (dma_flag & DMA_RX_LG)
1837 dev->stats.rx_length_errors++;
1838 dev->stats.rx_errors++;
1839 dev_kfree_skb_any(skb);
1841 } /* error packet */
1843 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1844 priv->desc_rxchk_en;
1847 if (priv->desc_64b_en) {
1852 if (likely(chksum_ok))
1853 skb->ip_summed = CHECKSUM_UNNECESSARY;
1855 /* remove hardware 2bytes added for IP alignment */
1859 if (priv->crc_fwd_en) {
1860 skb_trim(skb, len - ETH_FCS_LEN);
1864 bytes_processed += len;
1866 /*Finish setting up the received SKB and send it to the kernel*/
1867 skb->protocol = eth_type_trans(skb, priv->dev);
1870 if (dma_flag & DMA_RX_MULT)
1871 dev->stats.multicast++;
1874 napi_gro_receive(&ring->napi, skb);
1875 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1879 if (likely(ring->read_ptr < ring->end_ptr))
1882 ring->read_ptr = ring->cb_ptr;
1884 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1885 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1888 ring->dim.bytes = bytes_processed;
1889 ring->dim.packets = rxpktprocessed;
1891 return rxpktprocessed;
1894 /* Rx NAPI polling method */
1895 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1897 struct bcmgenet_rx_ring *ring = container_of(napi,
1898 struct bcmgenet_rx_ring, napi);
1899 struct dim_sample dim_sample = {};
1900 unsigned int work_done;
1902 work_done = bcmgenet_desc_rx(ring, budget);
1904 if (work_done < budget) {
1905 napi_complete_done(napi, work_done);
1906 ring->int_enable(ring);
1909 if (ring->dim.use_dim) {
1910 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1911 ring->dim.bytes, &dim_sample);
1912 net_dim(&ring->dim.dim, dim_sample);
1918 static void bcmgenet_dim_work(struct work_struct *work)
1920 struct dim *dim = container_of(work, struct dim, work);
1921 struct bcmgenet_net_dim *ndim =
1922 container_of(dim, struct bcmgenet_net_dim, dim);
1923 struct bcmgenet_rx_ring *ring =
1924 container_of(ndim, struct bcmgenet_rx_ring, dim);
1925 struct dim_cq_moder cur_profile =
1926 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1928 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1929 dim->state = DIM_START_MEASURE;
1932 /* Assign skb to RX DMA descriptor. */
1933 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1934 struct bcmgenet_rx_ring *ring)
1937 struct sk_buff *skb;
1940 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1942 /* loop here for each buffer needing assign */
1943 for (i = 0; i < ring->size; i++) {
1945 skb = bcmgenet_rx_refill(priv, cb);
1947 dev_consume_skb_any(skb);
1955 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1957 struct sk_buff *skb;
1961 for (i = 0; i < priv->num_rx_bds; i++) {
1962 cb = &priv->rx_cbs[i];
1964 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1966 dev_consume_skb_any(skb);
1970 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1974 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1979 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1981 /* UniMAC stops on a packet boundary, wait for a full-size packet
1985 usleep_range(1000, 2000);
1988 static void reset_umac(struct bcmgenet_priv *priv)
1990 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1991 bcmgenet_rbuf_ctrl_set(priv, 0);
1994 /* disable MAC while updating its registers */
1995 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1997 /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1998 bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
2000 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2003 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2005 /* Mask all interrupts.*/
2006 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2007 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2008 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2009 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2012 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2014 u32 int0_enable = 0;
2016 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2019 if (priv->internal_phy) {
2020 int0_enable |= UMAC_IRQ_LINK_EVENT;
2021 } else if (priv->ext_phy) {
2022 int0_enable |= UMAC_IRQ_LINK_EVENT;
2023 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2024 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2025 int0_enable |= UMAC_IRQ_LINK_EVENT;
2027 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2030 static void init_umac(struct bcmgenet_priv *priv)
2032 struct device *kdev = &priv->pdev->dev;
2034 u32 int0_enable = 0;
2036 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2040 /* clear tx/rx counter */
2041 bcmgenet_umac_writel(priv,
2042 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2044 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2046 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2048 /* init rx registers, enable ip header optimization */
2049 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2050 reg |= RBUF_ALIGN_2B;
2051 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2053 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2054 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2056 bcmgenet_intr_disable(priv);
2058 /* Configure backpressure vectors for MoCA */
2059 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2060 reg = bcmgenet_bp_mc_get(priv);
2061 reg |= BIT(priv->hw_params->bp_in_en_shift);
2063 /* bp_mask: back pressure mask */
2064 if (netif_is_multiqueue(priv->dev))
2065 reg |= priv->hw_params->bp_in_mask;
2067 reg &= ~priv->hw_params->bp_in_mask;
2068 bcmgenet_bp_mc_set(priv, reg);
2071 /* Enable MDIO interrupts on GENET v3+ */
2072 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2073 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2075 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2077 dev_dbg(kdev, "done init umac\n");
2080 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2081 void (*cb)(struct work_struct *work))
2083 struct bcmgenet_net_dim *dim = &ring->dim;
2085 INIT_WORK(&dim->dim.work, cb);
2086 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2092 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2094 struct bcmgenet_net_dim *dim = &ring->dim;
2095 struct dim_cq_moder moder;
2098 usecs = ring->rx_coalesce_usecs;
2099 pkts = ring->rx_max_coalesced_frames;
2101 /* If DIM was enabled, re-apply default parameters */
2103 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2108 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2111 /* Initialize a Tx ring along with corresponding hardware registers */
2112 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2113 unsigned int index, unsigned int size,
2114 unsigned int start_ptr, unsigned int end_ptr)
2116 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2117 u32 words_per_bd = WORDS_PER_BD(priv);
2118 u32 flow_period_val = 0;
2120 spin_lock_init(&ring->lock);
2122 ring->index = index;
2123 if (index == DESC_INDEX) {
2125 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2126 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2128 ring->queue = index + 1;
2129 ring->int_enable = bcmgenet_tx_ring_int_enable;
2130 ring->int_disable = bcmgenet_tx_ring_int_disable;
2132 ring->cbs = priv->tx_cbs + start_ptr;
2134 ring->clean_ptr = start_ptr;
2136 ring->free_bds = size;
2137 ring->write_ptr = start_ptr;
2138 ring->cb_ptr = start_ptr;
2139 ring->end_ptr = end_ptr - 1;
2140 ring->prod_index = 0;
2142 /* Set flow period for ring != 16 */
2143 if (index != DESC_INDEX)
2144 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2146 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2147 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2148 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2149 /* Disable rate control for now */
2150 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2152 bcmgenet_tdma_ring_writel(priv, index,
2153 ((size << DMA_RING_SIZE_SHIFT) |
2154 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2156 /* Set start and end address, read and write pointers */
2157 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2159 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2161 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2163 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2166 /* Initialize Tx NAPI */
2167 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2171 /* Initialize a RDMA ring */
2172 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2173 unsigned int index, unsigned int size,
2174 unsigned int start_ptr, unsigned int end_ptr)
2176 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2177 u32 words_per_bd = WORDS_PER_BD(priv);
2181 ring->index = index;
2182 if (index == DESC_INDEX) {
2183 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2184 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2186 ring->int_enable = bcmgenet_rx_ring_int_enable;
2187 ring->int_disable = bcmgenet_rx_ring_int_disable;
2189 ring->cbs = priv->rx_cbs + start_ptr;
2192 ring->read_ptr = start_ptr;
2193 ring->cb_ptr = start_ptr;
2194 ring->end_ptr = end_ptr - 1;
2196 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2200 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2201 bcmgenet_init_rx_coalesce(ring);
2203 /* Initialize Rx NAPI */
2204 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2207 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2208 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2209 bcmgenet_rdma_ring_writel(priv, index,
2210 ((size << DMA_RING_SIZE_SHIFT) |
2211 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2212 bcmgenet_rdma_ring_writel(priv, index,
2213 (DMA_FC_THRESH_LO <<
2214 DMA_XOFF_THRESHOLD_SHIFT) |
2215 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2217 /* Set start and end address, read and write pointers */
2218 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2220 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2222 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2224 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2230 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2233 struct bcmgenet_tx_ring *ring;
2235 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2236 ring = &priv->tx_rings[i];
2237 napi_enable(&ring->napi);
2238 ring->int_enable(ring);
2241 ring = &priv->tx_rings[DESC_INDEX];
2242 napi_enable(&ring->napi);
2243 ring->int_enable(ring);
2246 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2249 struct bcmgenet_tx_ring *ring;
2251 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2252 ring = &priv->tx_rings[i];
2253 napi_disable(&ring->napi);
2256 ring = &priv->tx_rings[DESC_INDEX];
2257 napi_disable(&ring->napi);
2260 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2263 struct bcmgenet_tx_ring *ring;
2265 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2266 ring = &priv->tx_rings[i];
2267 netif_napi_del(&ring->napi);
2270 ring = &priv->tx_rings[DESC_INDEX];
2271 netif_napi_del(&ring->napi);
2274 /* Initialize Tx queues
2276 * Queues 0-3 are priority-based, each one has 32 descriptors,
2277 * with queue 0 being the highest priority queue.
2279 * Queue 16 is the default Tx queue with
2280 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2282 * The transmit control block pool is then partitioned as follows:
2283 * - Tx queue 0 uses tx_cbs[0..31]
2284 * - Tx queue 1 uses tx_cbs[32..63]
2285 * - Tx queue 2 uses tx_cbs[64..95]
2286 * - Tx queue 3 uses tx_cbs[96..127]
2287 * - Tx queue 16 uses tx_cbs[128..255]
2289 static void bcmgenet_init_tx_queues(struct net_device *dev)
2291 struct bcmgenet_priv *priv = netdev_priv(dev);
2293 u32 dma_ctrl, ring_cfg;
2294 u32 dma_priority[3] = {0, 0, 0};
2296 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2297 dma_enable = dma_ctrl & DMA_EN;
2298 dma_ctrl &= ~DMA_EN;
2299 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2304 /* Enable strict priority arbiter mode */
2305 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2307 /* Initialize Tx priority queues */
2308 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2309 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2310 i * priv->hw_params->tx_bds_per_q,
2311 (i + 1) * priv->hw_params->tx_bds_per_q);
2312 ring_cfg |= (1 << i);
2313 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2314 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2315 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2318 /* Initialize Tx default queue 16 */
2319 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2320 priv->hw_params->tx_queues *
2321 priv->hw_params->tx_bds_per_q,
2323 ring_cfg |= (1 << DESC_INDEX);
2324 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2325 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2326 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2327 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2329 /* Set Tx queue priorities */
2330 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2331 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2332 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2334 /* Enable Tx queues */
2335 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2340 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2343 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2346 struct bcmgenet_rx_ring *ring;
2348 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2349 ring = &priv->rx_rings[i];
2350 napi_enable(&ring->napi);
2351 ring->int_enable(ring);
2354 ring = &priv->rx_rings[DESC_INDEX];
2355 napi_enable(&ring->napi);
2356 ring->int_enable(ring);
2359 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2362 struct bcmgenet_rx_ring *ring;
2364 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2365 ring = &priv->rx_rings[i];
2366 napi_disable(&ring->napi);
2367 cancel_work_sync(&ring->dim.dim.work);
2370 ring = &priv->rx_rings[DESC_INDEX];
2371 napi_disable(&ring->napi);
2372 cancel_work_sync(&ring->dim.dim.work);
2375 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2378 struct bcmgenet_rx_ring *ring;
2380 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2381 ring = &priv->rx_rings[i];
2382 netif_napi_del(&ring->napi);
2385 ring = &priv->rx_rings[DESC_INDEX];
2386 netif_napi_del(&ring->napi);
2389 /* Initialize Rx queues
2391 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2392 * used to direct traffic to these queues.
2394 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2396 static int bcmgenet_init_rx_queues(struct net_device *dev)
2398 struct bcmgenet_priv *priv = netdev_priv(dev);
2405 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2406 dma_enable = dma_ctrl & DMA_EN;
2407 dma_ctrl &= ~DMA_EN;
2408 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2413 /* Initialize Rx priority queues */
2414 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2415 ret = bcmgenet_init_rx_ring(priv, i,
2416 priv->hw_params->rx_bds_per_q,
2417 i * priv->hw_params->rx_bds_per_q,
2419 priv->hw_params->rx_bds_per_q);
2423 ring_cfg |= (1 << i);
2424 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2427 /* Initialize Rx default queue 16 */
2428 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2429 priv->hw_params->rx_queues *
2430 priv->hw_params->rx_bds_per_q,
2435 ring_cfg |= (1 << DESC_INDEX);
2436 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2439 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2441 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2444 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2449 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2457 /* Disable TDMA to stop add more frames in TX DMA */
2458 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2460 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2462 /* Check TDMA status register to confirm TDMA is disabled */
2463 while (timeout++ < DMA_TIMEOUT_VAL) {
2464 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2465 if (reg & DMA_DISABLED)
2471 if (timeout == DMA_TIMEOUT_VAL) {
2472 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2476 /* Wait 10ms for packet drain in both tx and rx dma */
2477 usleep_range(10000, 20000);
2480 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2482 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2485 /* Check RDMA status register to confirm RDMA is disabled */
2486 while (timeout++ < DMA_TIMEOUT_VAL) {
2487 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2488 if (reg & DMA_DISABLED)
2494 if (timeout == DMA_TIMEOUT_VAL) {
2495 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2500 for (i = 0; i < priv->hw_params->rx_queues; i++)
2501 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2502 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2504 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2507 for (i = 0; i < priv->hw_params->tx_queues; i++)
2508 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2509 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2511 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2516 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2518 struct netdev_queue *txq;
2521 bcmgenet_fini_rx_napi(priv);
2522 bcmgenet_fini_tx_napi(priv);
2524 for (i = 0; i < priv->num_tx_bds; i++)
2525 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2528 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2529 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2530 netdev_tx_reset_queue(txq);
2533 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2534 netdev_tx_reset_queue(txq);
2536 bcmgenet_free_rx_buffers(priv);
2537 kfree(priv->rx_cbs);
2538 kfree(priv->tx_cbs);
2541 /* init_edma: Initialize DMA control register */
2542 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2548 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2550 /* Initialize common Rx ring structures */
2551 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2552 priv->num_rx_bds = TOTAL_DESC;
2553 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2558 for (i = 0; i < priv->num_rx_bds; i++) {
2559 cb = priv->rx_cbs + i;
2560 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2563 /* Initialize common TX ring structures */
2564 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2565 priv->num_tx_bds = TOTAL_DESC;
2566 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2568 if (!priv->tx_cbs) {
2569 kfree(priv->rx_cbs);
2573 for (i = 0; i < priv->num_tx_bds; i++) {
2574 cb = priv->tx_cbs + i;
2575 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2579 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2581 /* Initialize Rx queues */
2582 ret = bcmgenet_init_rx_queues(priv->dev);
2584 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2585 bcmgenet_free_rx_buffers(priv);
2586 kfree(priv->rx_cbs);
2587 kfree(priv->tx_cbs);
2592 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2594 /* Initialize Tx queues */
2595 bcmgenet_init_tx_queues(priv->dev);
2600 /* Interrupt bottom half */
2601 static void bcmgenet_irq_task(struct work_struct *work)
2603 unsigned int status;
2604 struct bcmgenet_priv *priv = container_of(
2605 work, struct bcmgenet_priv, bcmgenet_irq_work);
2607 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2609 spin_lock_irq(&priv->lock);
2610 status = priv->irq0_stat;
2611 priv->irq0_stat = 0;
2612 spin_unlock_irq(&priv->lock);
2614 /* Link UP/DOWN event */
2615 if (status & UMAC_IRQ_LINK_EVENT)
2616 phy_mac_interrupt(priv->dev->phydev);
2619 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2620 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2622 struct bcmgenet_priv *priv = dev_id;
2623 struct bcmgenet_rx_ring *rx_ring;
2624 struct bcmgenet_tx_ring *tx_ring;
2625 unsigned int index, status;
2627 /* Read irq status */
2628 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2629 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2631 /* clear interrupts */
2632 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2634 netif_dbg(priv, intr, priv->dev,
2635 "%s: IRQ=0x%x\n", __func__, status);
2637 /* Check Rx priority queue interrupts */
2638 for (index = 0; index < priv->hw_params->rx_queues; index++) {
2639 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2642 rx_ring = &priv->rx_rings[index];
2643 rx_ring->dim.event_ctr++;
2645 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2646 rx_ring->int_disable(rx_ring);
2647 __napi_schedule_irqoff(&rx_ring->napi);
2651 /* Check Tx priority queue interrupts */
2652 for (index = 0; index < priv->hw_params->tx_queues; index++) {
2653 if (!(status & BIT(index)))
2656 tx_ring = &priv->tx_rings[index];
2658 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2659 tx_ring->int_disable(tx_ring);
2660 __napi_schedule_irqoff(&tx_ring->napi);
2667 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2668 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2670 struct bcmgenet_priv *priv = dev_id;
2671 struct bcmgenet_rx_ring *rx_ring;
2672 struct bcmgenet_tx_ring *tx_ring;
2673 unsigned int status;
2674 unsigned long flags;
2676 /* Read irq status */
2677 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2678 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2680 /* clear interrupts */
2681 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2683 netif_dbg(priv, intr, priv->dev,
2684 "IRQ=0x%x\n", status);
2686 if (status & UMAC_IRQ_RXDMA_DONE) {
2687 rx_ring = &priv->rx_rings[DESC_INDEX];
2688 rx_ring->dim.event_ctr++;
2690 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2691 rx_ring->int_disable(rx_ring);
2692 __napi_schedule_irqoff(&rx_ring->napi);
2696 if (status & UMAC_IRQ_TXDMA_DONE) {
2697 tx_ring = &priv->tx_rings[DESC_INDEX];
2699 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2700 tx_ring->int_disable(tx_ring);
2701 __napi_schedule_irqoff(&tx_ring->napi);
2705 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2706 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2710 /* all other interested interrupts handled in bottom half */
2711 status &= UMAC_IRQ_LINK_EVENT;
2713 /* Save irq status for bottom-half processing. */
2714 spin_lock_irqsave(&priv->lock, flags);
2715 priv->irq0_stat |= status;
2716 spin_unlock_irqrestore(&priv->lock, flags);
2718 schedule_work(&priv->bcmgenet_irq_work);
2724 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2726 struct bcmgenet_priv *priv = dev_id;
2728 pm_wakeup_event(&priv->pdev->dev, 0);
2733 #ifdef CONFIG_NET_POLL_CONTROLLER
2734 static void bcmgenet_poll_controller(struct net_device *dev)
2736 struct bcmgenet_priv *priv = netdev_priv(dev);
2738 /* Invoke the main RX/TX interrupt handler */
2739 disable_irq(priv->irq0);
2740 bcmgenet_isr0(priv->irq0, priv);
2741 enable_irq(priv->irq0);
2743 /* And the interrupt handler for RX/TX priority queues */
2744 disable_irq(priv->irq1);
2745 bcmgenet_isr1(priv->irq1, priv);
2746 enable_irq(priv->irq1);
2750 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2754 reg = bcmgenet_rbuf_ctrl_get(priv);
2756 bcmgenet_rbuf_ctrl_set(priv, reg);
2760 bcmgenet_rbuf_ctrl_set(priv, reg);
2764 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2765 unsigned char *addr)
2767 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2768 (addr[2] << 8) | addr[3], UMAC_MAC0);
2769 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2772 /* Returns a reusable dma control register value */
2773 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2779 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2780 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2782 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2784 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2786 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2788 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2790 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2795 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2799 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2801 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2803 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2805 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2808 /* bcmgenet_hfb_clear
2810 * Clear Hardware Filter Block and disable all filtering.
2812 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2816 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2817 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2818 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2820 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2821 bcmgenet_rdma_writel(priv, 0x0, i);
2823 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2824 bcmgenet_hfb_reg_writel(priv, 0x0,
2825 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2827 for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2828 priv->hw_params->hfb_filter_size; i++)
2829 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2832 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2834 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2837 bcmgenet_hfb_clear(priv);
2840 static void bcmgenet_netif_start(struct net_device *dev)
2842 struct bcmgenet_priv *priv = netdev_priv(dev);
2844 /* Start the network engine */
2845 bcmgenet_enable_rx_napi(priv);
2847 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2849 bcmgenet_enable_tx_napi(priv);
2851 /* Monitor link interrupts now */
2852 bcmgenet_link_intr_enable(priv);
2854 phy_start(dev->phydev);
2857 static int bcmgenet_open(struct net_device *dev)
2859 struct bcmgenet_priv *priv = netdev_priv(dev);
2860 unsigned long dma_ctrl;
2864 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2866 /* Turn on the clock */
2867 clk_prepare_enable(priv->clk);
2869 /* If this is an internal GPHY, power it back on now, before UniMAC is
2870 * brought out of reset as absolutely no UniMAC activity is allowed
2872 if (priv->internal_phy)
2873 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2875 ret = bcmgenet_mii_connect(dev);
2877 netdev_err(dev, "failed to connect to PHY\n");
2878 goto err_clk_disable;
2881 /* take MAC out of reset */
2882 bcmgenet_umac_reset(priv);
2886 /* Make sure we reflect the value of CRC_CMD_FWD */
2887 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2888 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2890 ret = bcmgenet_mii_config(dev, true);
2892 netdev_err(dev, "unsupported PHY\n");
2893 goto err_disconnect_phy;
2896 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2898 if (priv->internal_phy) {
2899 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2900 reg |= EXT_ENERGY_DET_MASK;
2901 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2904 /* Disable RX/TX DMA and flush TX queues */
2905 dma_ctrl = bcmgenet_dma_disable(priv);
2907 /* Reinitialize TDMA and RDMA and SW housekeeping */
2908 ret = bcmgenet_init_dma(priv);
2910 netdev_err(dev, "failed to initialize DMA\n");
2911 goto err_disconnect_phy;
2914 /* Always enable ring 16 - descriptor ring */
2915 bcmgenet_enable_dma(priv, dma_ctrl);
2918 bcmgenet_hfb_init(priv);
2920 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2923 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2927 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2930 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2934 bcmgenet_netif_start(dev);
2936 netif_tx_start_all_queues(dev);
2941 free_irq(priv->irq0, priv);
2943 bcmgenet_dma_teardown(priv);
2944 bcmgenet_fini_dma(priv);
2946 phy_disconnect(dev->phydev);
2948 if (priv->internal_phy)
2949 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2950 clk_disable_unprepare(priv->clk);
2954 static void bcmgenet_netif_stop(struct net_device *dev)
2956 struct bcmgenet_priv *priv = netdev_priv(dev);
2958 bcmgenet_disable_tx_napi(priv);
2959 netif_tx_disable(dev);
2961 /* Disable MAC receive */
2962 umac_enable_set(priv, CMD_RX_EN, false);
2964 bcmgenet_dma_teardown(priv);
2966 /* Disable MAC transmit. TX DMA disabled must be done before this */
2967 umac_enable_set(priv, CMD_TX_EN, false);
2969 phy_stop(dev->phydev);
2970 bcmgenet_disable_rx_napi(priv);
2971 bcmgenet_intr_disable(priv);
2973 /* Wait for pending work items to complete. Since interrupts are
2974 * disabled no new work will be scheduled.
2976 cancel_work_sync(&priv->bcmgenet_irq_work);
2978 priv->old_link = -1;
2979 priv->old_speed = -1;
2980 priv->old_duplex = -1;
2981 priv->old_pause = -1;
2984 bcmgenet_tx_reclaim_all(dev);
2985 bcmgenet_fini_dma(priv);
2988 static int bcmgenet_close(struct net_device *dev)
2990 struct bcmgenet_priv *priv = netdev_priv(dev);
2993 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2995 bcmgenet_netif_stop(dev);
2997 /* Really kill the PHY state machine and disconnect from it */
2998 phy_disconnect(dev->phydev);
3000 free_irq(priv->irq0, priv);
3001 free_irq(priv->irq1, priv);
3003 if (priv->internal_phy)
3004 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3006 clk_disable_unprepare(priv->clk);
3011 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3013 struct bcmgenet_priv *priv = ring->priv;
3014 u32 p_index, c_index, intsts, intmsk;
3015 struct netdev_queue *txq;
3016 unsigned int free_bds;
3019 if (!netif_msg_tx_err(priv))
3022 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3024 spin_lock(&ring->lock);
3025 if (ring->index == DESC_INDEX) {
3026 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3027 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3029 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3030 intmsk = 1 << ring->index;
3032 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3033 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3034 txq_stopped = netif_tx_queue_stopped(txq);
3035 free_bds = ring->free_bds;
3036 spin_unlock(&ring->lock);
3038 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3039 "TX queue status: %s, interrupts: %s\n"
3040 "(sw)free_bds: %d (sw)size: %d\n"
3041 "(sw)p_index: %d (hw)p_index: %d\n"
3042 "(sw)c_index: %d (hw)c_index: %d\n"
3043 "(sw)clean_p: %d (sw)write_p: %d\n"
3044 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3045 ring->index, ring->queue,
3046 txq_stopped ? "stopped" : "active",
3047 intsts & intmsk ? "enabled" : "disabled",
3048 free_bds, ring->size,
3049 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3050 ring->c_index, c_index & DMA_C_INDEX_MASK,
3051 ring->clean_ptr, ring->write_ptr,
3052 ring->cb_ptr, ring->end_ptr);
3055 static void bcmgenet_timeout(struct net_device *dev)
3057 struct bcmgenet_priv *priv = netdev_priv(dev);
3058 u32 int0_enable = 0;
3059 u32 int1_enable = 0;
3062 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3064 for (q = 0; q < priv->hw_params->tx_queues; q++)
3065 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3066 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3068 bcmgenet_tx_reclaim_all(dev);
3070 for (q = 0; q < priv->hw_params->tx_queues; q++)
3071 int1_enable |= (1 << q);
3073 int0_enable = UMAC_IRQ_TXDMA_DONE;
3075 /* Re-enable TX interrupts if disabled */
3076 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3077 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3079 netif_trans_update(dev);
3081 dev->stats.tx_errors++;
3083 netif_tx_wake_all_queues(dev);
3086 #define MAX_MDF_FILTER 17
3088 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3089 unsigned char *addr,
3092 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3093 UMAC_MDF_ADDR + (*i * 4));
3094 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3095 addr[4] << 8 | addr[5],
3096 UMAC_MDF_ADDR + ((*i + 1) * 4));
3100 static void bcmgenet_set_rx_mode(struct net_device *dev)
3102 struct bcmgenet_priv *priv = netdev_priv(dev);
3103 struct netdev_hw_addr *ha;
3107 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3109 /* Number of filters needed */
3110 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3113 * Turn on promicuous mode for three scenarios
3114 * 1. IFF_PROMISC flag is set
3115 * 2. IFF_ALLMULTI flag is set
3116 * 3. The number of filters needed exceeds the number filters
3117 * supported by the hardware.
3119 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3120 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3121 (nfilter > MAX_MDF_FILTER)) {
3123 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3124 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3127 reg &= ~CMD_PROMISC;
3128 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3131 /* update MDF filter */
3134 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3135 /* my own address.*/
3136 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3139 netdev_for_each_uc_addr(ha, dev)
3140 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3143 netdev_for_each_mc_addr(ha, dev)
3144 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3146 /* Enable filters */
3147 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3148 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3151 /* Set the hardware MAC address. */
3152 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3154 struct sockaddr *addr = p;
3156 /* Setting the MAC address at the hardware level is not possible
3157 * without disabling the UniMAC RX/TX enable bits.
3159 if (netif_running(dev))
3162 ether_addr_copy(dev->dev_addr, addr->sa_data);
3167 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3169 struct bcmgenet_priv *priv = netdev_priv(dev);
3170 unsigned long tx_bytes = 0, tx_packets = 0;
3171 unsigned long rx_bytes = 0, rx_packets = 0;
3172 unsigned long rx_errors = 0, rx_dropped = 0;
3173 struct bcmgenet_tx_ring *tx_ring;
3174 struct bcmgenet_rx_ring *rx_ring;
3177 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3178 tx_ring = &priv->tx_rings[q];
3179 tx_bytes += tx_ring->bytes;
3180 tx_packets += tx_ring->packets;
3182 tx_ring = &priv->tx_rings[DESC_INDEX];
3183 tx_bytes += tx_ring->bytes;
3184 tx_packets += tx_ring->packets;
3186 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3187 rx_ring = &priv->rx_rings[q];
3189 rx_bytes += rx_ring->bytes;
3190 rx_packets += rx_ring->packets;
3191 rx_errors += rx_ring->errors;
3192 rx_dropped += rx_ring->dropped;
3194 rx_ring = &priv->rx_rings[DESC_INDEX];
3195 rx_bytes += rx_ring->bytes;
3196 rx_packets += rx_ring->packets;
3197 rx_errors += rx_ring->errors;
3198 rx_dropped += rx_ring->dropped;
3200 dev->stats.tx_bytes = tx_bytes;
3201 dev->stats.tx_packets = tx_packets;
3202 dev->stats.rx_bytes = rx_bytes;
3203 dev->stats.rx_packets = rx_packets;
3204 dev->stats.rx_errors = rx_errors;
3205 dev->stats.rx_missed_errors = rx_errors;
3209 static const struct net_device_ops bcmgenet_netdev_ops = {
3210 .ndo_open = bcmgenet_open,
3211 .ndo_stop = bcmgenet_close,
3212 .ndo_start_xmit = bcmgenet_xmit,
3213 .ndo_tx_timeout = bcmgenet_timeout,
3214 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3215 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3216 .ndo_do_ioctl = bcmgenet_ioctl,
3217 .ndo_set_features = bcmgenet_set_features,
3218 #ifdef CONFIG_NET_POLL_CONTROLLER
3219 .ndo_poll_controller = bcmgenet_poll_controller,
3221 .ndo_get_stats = bcmgenet_get_stats,
3224 /* Array of GENET hardware parameters/characteristics */
3225 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3231 .bp_in_en_shift = 16,
3232 .bp_in_mask = 0xffff,
3233 .hfb_filter_cnt = 16,
3235 .hfb_offset = 0x1000,
3236 .rdma_offset = 0x2000,
3237 .tdma_offset = 0x3000,
3245 .bp_in_en_shift = 16,
3246 .bp_in_mask = 0xffff,
3247 .hfb_filter_cnt = 16,
3249 .tbuf_offset = 0x0600,
3250 .hfb_offset = 0x1000,
3251 .hfb_reg_offset = 0x2000,
3252 .rdma_offset = 0x3000,
3253 .tdma_offset = 0x4000,
3255 .flags = GENET_HAS_EXT,
3262 .bp_in_en_shift = 17,
3263 .bp_in_mask = 0x1ffff,
3264 .hfb_filter_cnt = 48,
3265 .hfb_filter_size = 128,
3267 .tbuf_offset = 0x0600,
3268 .hfb_offset = 0x8000,
3269 .hfb_reg_offset = 0xfc00,
3270 .rdma_offset = 0x10000,
3271 .tdma_offset = 0x11000,
3273 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3274 GENET_HAS_MOCA_LINK_DET,
3281 .bp_in_en_shift = 17,
3282 .bp_in_mask = 0x1ffff,
3283 .hfb_filter_cnt = 48,
3284 .hfb_filter_size = 128,
3286 .tbuf_offset = 0x0600,
3287 .hfb_offset = 0x8000,
3288 .hfb_reg_offset = 0xfc00,
3289 .rdma_offset = 0x2000,
3290 .tdma_offset = 0x4000,
3292 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3293 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3300 .bp_in_en_shift = 17,
3301 .bp_in_mask = 0x1ffff,
3302 .hfb_filter_cnt = 48,
3303 .hfb_filter_size = 128,
3305 .tbuf_offset = 0x0600,
3306 .hfb_offset = 0x8000,
3307 .hfb_reg_offset = 0xfc00,
3308 .rdma_offset = 0x2000,
3309 .tdma_offset = 0x4000,
3311 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3312 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3316 /* Infer hardware parameters from the detected GENET version */
3317 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3319 struct bcmgenet_hw_params *params;
3324 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3325 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3326 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3327 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3328 } else if (GENET_IS_V3(priv)) {
3329 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3330 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3331 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3332 } else if (GENET_IS_V2(priv)) {
3333 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3334 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3335 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3336 } else if (GENET_IS_V1(priv)) {
3337 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3338 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3339 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3342 /* enum genet_version starts at 1 */
3343 priv->hw_params = &bcmgenet_hw_params[priv->version];
3344 params = priv->hw_params;
3346 /* Read GENET HW version */
3347 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3348 major = (reg >> 24 & 0x0f);
3351 else if (major == 5)
3353 else if (major == 0)
3355 if (major != priv->version) {
3356 dev_err(&priv->pdev->dev,
3357 "GENET version mismatch, got: %d, configured for: %d\n",
3358 major, priv->version);
3361 /* Print the GENET core version */
3362 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3363 major, (reg >> 16) & 0x0f, reg & 0xffff);
3365 /* Store the integrated PHY revision for the MDIO probing function
3366 * to pass this information to the PHY driver. The PHY driver expects
3367 * to find the PHY major revision in bits 15:8 while the GENET register
3368 * stores that information in bits 7:0, account for that.
3370 * On newer chips, starting with PHY revision G0, a new scheme is
3371 * deployed similar to the Starfighter 2 switch with GPHY major
3372 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3373 * is reserved as well as special value 0x01ff, we have a small
3374 * heuristic to check for the new GPHY revision and re-arrange things
3375 * so the GPHY driver is happy.
3377 gphy_rev = reg & 0xffff;
3379 if (GENET_IS_V5(priv)) {
3380 /* The EPHY revision should come from the MDIO registers of
3381 * the PHY not from GENET.
3383 if (gphy_rev != 0) {
3384 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3387 /* This is reserved so should require special treatment */
3388 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3389 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3391 /* This is the good old scheme, just GPHY major, no minor nor patch */
3392 } else if ((gphy_rev & 0xf0) != 0) {
3393 priv->gphy_rev = gphy_rev << 8;
3394 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3395 } else if ((gphy_rev & 0xff00) != 0) {
3396 priv->gphy_rev = gphy_rev;
3399 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3400 if (!(params->flags & GENET_HAS_40BITS))
3401 pr_warn("GENET does not support 40-bits PA\n");
3404 pr_debug("Configuration for version: %d\n"
3405 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3406 "BP << en: %2d, BP msk: 0x%05x\n"
3407 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3408 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3409 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3412 params->tx_queues, params->tx_bds_per_q,
3413 params->rx_queues, params->rx_bds_per_q,
3414 params->bp_in_en_shift, params->bp_in_mask,
3415 params->hfb_filter_cnt, params->qtag_mask,
3416 params->tbuf_offset, params->hfb_offset,
3417 params->hfb_reg_offset,
3418 params->rdma_offset, params->tdma_offset,
3419 params->words_per_bd);
3422 static const struct of_device_id bcmgenet_match[] = {
3423 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3424 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3425 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3426 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3427 { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3430 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3432 static int bcmgenet_probe(struct platform_device *pdev)
3434 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3435 struct device_node *dn = pdev->dev.of_node;
3436 const struct of_device_id *of_id = NULL;
3437 struct bcmgenet_priv *priv;
3438 struct net_device *dev;
3439 const void *macaddr;
3442 const char *phy_mode_str;
3444 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3445 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3446 GENET_MAX_MQ_CNT + 1);
3448 dev_err(&pdev->dev, "can't allocate net device\n");
3453 of_id = of_match_node(bcmgenet_match, dn);
3458 priv = netdev_priv(dev);
3459 priv->irq0 = platform_get_irq(pdev, 0);
3460 priv->irq1 = platform_get_irq(pdev, 1);
3461 priv->wol_irq = platform_get_irq(pdev, 2);
3462 if (!priv->irq0 || !priv->irq1) {
3463 dev_err(&pdev->dev, "can't find IRQs\n");
3469 macaddr = of_get_mac_address(dn);
3470 if (IS_ERR(macaddr)) {
3471 dev_err(&pdev->dev, "can't find MAC address\n");
3476 macaddr = pd->mac_address;
3479 priv->base = devm_platform_ioremap_resource(pdev, 0);
3480 if (IS_ERR(priv->base)) {
3481 err = PTR_ERR(priv->base);
3485 spin_lock_init(&priv->lock);
3487 SET_NETDEV_DEV(dev, &pdev->dev);
3488 dev_set_drvdata(&pdev->dev, dev);
3489 ether_addr_copy(dev->dev_addr, macaddr);
3490 dev->watchdog_timeo = 2 * HZ;
3491 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3492 dev->netdev_ops = &bcmgenet_netdev_ops;
3494 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3496 /* Set hardware features */
3497 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3498 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3500 /* Request the WOL interrupt and advertise suspend if available */
3501 priv->wol_irq_disabled = true;
3502 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3505 device_set_wakeup_capable(&pdev->dev, 1);
3507 /* Set the needed headroom to account for any possible
3508 * features enabling/disabling at runtime
3510 dev->needed_headroom += 64;
3512 netdev_boot_setup_check(dev);
3517 priv->version = (enum bcmgenet_version)of_id->data;
3519 priv->version = pd->genet_version;
3521 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3522 if (IS_ERR(priv->clk)) {
3523 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3527 clk_prepare_enable(priv->clk);
3529 bcmgenet_set_hw_params(priv);
3531 /* Mii wait queue */
3532 init_waitqueue_head(&priv->wq);
3533 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3534 priv->rx_buf_len = RX_BUF_LENGTH;
3535 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3537 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3538 if (IS_ERR(priv->clk_wol)) {
3539 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3540 priv->clk_wol = NULL;
3543 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3544 if (IS_ERR(priv->clk_eee)) {
3545 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3546 priv->clk_eee = NULL;
3549 /* If this is an internal GPHY, power it on now, before UniMAC is
3550 * brought out of reset as absolutely no UniMAC activity is allowed
3552 if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3553 !strcasecmp(phy_mode_str, "internal"))
3554 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3558 err = bcmgenet_mii_init(dev);
3560 goto err_clk_disable;
3562 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3563 * just the ring 16 descriptor based TX
3565 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3566 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3568 /* Set default coalescing parameters */
3569 for (i = 0; i < priv->hw_params->rx_queues; i++)
3570 priv->rx_rings[i].rx_max_coalesced_frames = 1;
3571 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3573 /* libphy will determine the link state */
3574 netif_carrier_off(dev);
3576 /* Turn off the main clock, WOL clock is handled separately */
3577 clk_disable_unprepare(priv->clk);
3579 err = register_netdev(dev);
3586 clk_disable_unprepare(priv->clk);
3592 static int bcmgenet_remove(struct platform_device *pdev)
3594 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3596 dev_set_drvdata(&pdev->dev, NULL);
3597 unregister_netdev(priv->dev);
3598 bcmgenet_mii_exit(priv->dev);
3599 free_netdev(priv->dev);
3604 #ifdef CONFIG_PM_SLEEP
3605 static int bcmgenet_resume(struct device *d)
3607 struct net_device *dev = dev_get_drvdata(d);
3608 struct bcmgenet_priv *priv = netdev_priv(dev);
3609 unsigned long dma_ctrl;
3613 if (!netif_running(dev))
3616 /* Turn on the clock */
3617 ret = clk_prepare_enable(priv->clk);
3621 /* If this is an internal GPHY, power it back on now, before UniMAC is
3622 * brought out of reset as absolutely no UniMAC activity is allowed
3624 if (priv->internal_phy)
3625 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3627 phy_init_hw(dev->phydev);
3629 bcmgenet_umac_reset(priv);
3633 /* From WOL-enabled suspend, switch to regular clock */
3635 clk_disable_unprepare(priv->clk_wol);
3637 /* Speed settings must be restored */
3638 bcmgenet_mii_config(priv->dev, false);
3640 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3642 if (priv->internal_phy) {
3643 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3644 reg |= EXT_ENERGY_DET_MASK;
3645 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3649 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3651 /* Disable RX/TX DMA and flush TX queues */
3652 dma_ctrl = bcmgenet_dma_disable(priv);
3654 /* Reinitialize TDMA and RDMA and SW housekeeping */
3655 ret = bcmgenet_init_dma(priv);
3657 netdev_err(dev, "failed to initialize DMA\n");
3658 goto out_clk_disable;
3661 /* Always enable ring 16 - descriptor ring */
3662 bcmgenet_enable_dma(priv, dma_ctrl);
3664 if (!device_may_wakeup(d))
3665 phy_resume(dev->phydev);
3667 if (priv->eee.eee_enabled)
3668 bcmgenet_eee_enable_set(dev, true);
3670 bcmgenet_netif_start(dev);
3672 netif_device_attach(dev);
3677 if (priv->internal_phy)
3678 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3679 clk_disable_unprepare(priv->clk);
3683 static int bcmgenet_suspend(struct device *d)
3685 struct net_device *dev = dev_get_drvdata(d);
3686 struct bcmgenet_priv *priv = netdev_priv(dev);
3689 if (!netif_running(dev))
3692 netif_device_detach(dev);
3694 bcmgenet_netif_stop(dev);
3696 if (!device_may_wakeup(d))
3697 phy_suspend(dev->phydev);
3699 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3700 if (device_may_wakeup(d) && priv->wolopts) {
3701 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3702 clk_prepare_enable(priv->clk_wol);
3703 } else if (priv->internal_phy) {
3704 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3707 /* Turn off the clocks */
3708 clk_disable_unprepare(priv->clk);
3715 #endif /* CONFIG_PM_SLEEP */
3717 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3719 static struct platform_driver bcmgenet_driver = {
3720 .probe = bcmgenet_probe,
3721 .remove = bcmgenet_remove,
3724 .of_match_table = bcmgenet_match,
3725 .pm = &bcmgenet_pm_ops,
3728 module_platform_driver(bcmgenet_driver);
3730 MODULE_AUTHOR("Broadcom Corporation");
3731 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3732 MODULE_ALIAS("platform:bcmgenet");
3733 MODULE_LICENSE("GPL");