Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/string.h>
17 #include <linux/if_ether.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/pm.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
30 #include <net/arp.h>
31
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/netdevice.h>
35 #include <linux/inetdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/ipv6.h>
41 #include <linux/phy.h>
42 #include <linux/platform_data/bcmgenet.h>
43
44 #include <asm/unaligned.h>
45
46 #include "bcmgenet.h"
47
48 /* Maximum number of hardware queues, downsized if needed */
49 #define GENET_MAX_MQ_CNT        4
50
51 /* Default highest priority queue for multi queue support */
52 #define GENET_Q0_PRIORITY       0
53
54 #define GENET_Q16_RX_BD_CNT     \
55         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
56 #define GENET_Q16_TX_BD_CNT     \
57         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
58
59 #define RX_BUF_LENGTH           2048
60 #define SKB_ALIGNMENT           32
61
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
65
66 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
67                                 TOTAL_DESC * DMA_DESC_SIZE)
68
69 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
73 {
74         /* MIPS chips strapped for BE will automagically configure the
75          * peripheral registers for CPU-native byte order.
76          */
77         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
78                 __raw_writel(value, offset);
79         else
80                 writel_relaxed(value, offset);
81 }
82
83 static inline u32 bcmgenet_readl(void __iomem *offset)
84 {
85         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
86                 return __raw_readl(offset);
87         else
88                 return readl_relaxed(offset);
89 }
90
91 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
92                                              void __iomem *d, u32 value)
93 {
94         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
95 }
96
97 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
98                                             void __iomem *d)
99 {
100         return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
101 }
102
103 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
104                                     void __iomem *d,
105                                     dma_addr_t addr)
106 {
107         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
108
109         /* Register writes to GISB bus can take couple hundred nanoseconds
110          * and are done for each packet, save these expensive writes unless
111          * the platform is explicitly configured for 64-bits/LPAE.
112          */
113 #ifdef CONFIG_PHYS_ADDR_T_64BIT
114         if (priv->hw_params->flags & GENET_HAS_40BITS)
115                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
116 #endif
117 }
118
119 /* Combined address + length/status setter */
120 static inline void dmadesc_set(struct bcmgenet_priv *priv,
121                                void __iomem *d, dma_addr_t addr, u32 val)
122 {
123         dmadesc_set_addr(priv, d, addr);
124         dmadesc_set_length_status(priv, d, val);
125 }
126
127 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
128                                           void __iomem *d)
129 {
130         dma_addr_t addr;
131
132         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
133
134         /* Register writes to GISB bus can take couple hundred nanoseconds
135          * and are done for each packet, save these expensive writes unless
136          * the platform is explicitly configured for 64-bits/LPAE.
137          */
138 #ifdef CONFIG_PHYS_ADDR_T_64BIT
139         if (priv->hw_params->flags & GENET_HAS_40BITS)
140                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
141 #endif
142         return addr;
143 }
144
145 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
146
147 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
148                                 NETIF_MSG_LINK)
149
150 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
151 {
152         if (GENET_IS_V1(priv))
153                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
154         else
155                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
156 }
157
158 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
159 {
160         if (GENET_IS_V1(priv))
161                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
162         else
163                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
164 }
165
166 /* These macros are defined to deal with register map change
167  * between GENET1.1 and GENET2. Only those currently being used
168  * by driver are defined.
169  */
170 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
171 {
172         if (GENET_IS_V1(priv))
173                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
174         else
175                 return bcmgenet_readl(priv->base +
176                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
177 }
178
179 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
180 {
181         if (GENET_IS_V1(priv))
182                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
183         else
184                 bcmgenet_writel(val, priv->base +
185                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
186 }
187
188 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
189 {
190         if (GENET_IS_V1(priv))
191                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
192         else
193                 return bcmgenet_readl(priv->base +
194                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
195 }
196
197 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
198 {
199         if (GENET_IS_V1(priv))
200                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
201         else
202                 bcmgenet_writel(val, priv->base +
203                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
204 }
205
206 /* RX/TX DMA register accessors */
207 enum dma_reg {
208         DMA_RING_CFG = 0,
209         DMA_CTRL,
210         DMA_STATUS,
211         DMA_SCB_BURST_SIZE,
212         DMA_ARB_CTRL,
213         DMA_PRIORITY_0,
214         DMA_PRIORITY_1,
215         DMA_PRIORITY_2,
216         DMA_INDEX2RING_0,
217         DMA_INDEX2RING_1,
218         DMA_INDEX2RING_2,
219         DMA_INDEX2RING_3,
220         DMA_INDEX2RING_4,
221         DMA_INDEX2RING_5,
222         DMA_INDEX2RING_6,
223         DMA_INDEX2RING_7,
224         DMA_RING0_TIMEOUT,
225         DMA_RING1_TIMEOUT,
226         DMA_RING2_TIMEOUT,
227         DMA_RING3_TIMEOUT,
228         DMA_RING4_TIMEOUT,
229         DMA_RING5_TIMEOUT,
230         DMA_RING6_TIMEOUT,
231         DMA_RING7_TIMEOUT,
232         DMA_RING8_TIMEOUT,
233         DMA_RING9_TIMEOUT,
234         DMA_RING10_TIMEOUT,
235         DMA_RING11_TIMEOUT,
236         DMA_RING12_TIMEOUT,
237         DMA_RING13_TIMEOUT,
238         DMA_RING14_TIMEOUT,
239         DMA_RING15_TIMEOUT,
240         DMA_RING16_TIMEOUT,
241 };
242
243 static const u8 bcmgenet_dma_regs_v3plus[] = {
244         [DMA_RING_CFG]          = 0x00,
245         [DMA_CTRL]              = 0x04,
246         [DMA_STATUS]            = 0x08,
247         [DMA_SCB_BURST_SIZE]    = 0x0C,
248         [DMA_ARB_CTRL]          = 0x2C,
249         [DMA_PRIORITY_0]        = 0x30,
250         [DMA_PRIORITY_1]        = 0x34,
251         [DMA_PRIORITY_2]        = 0x38,
252         [DMA_RING0_TIMEOUT]     = 0x2C,
253         [DMA_RING1_TIMEOUT]     = 0x30,
254         [DMA_RING2_TIMEOUT]     = 0x34,
255         [DMA_RING3_TIMEOUT]     = 0x38,
256         [DMA_RING4_TIMEOUT]     = 0x3c,
257         [DMA_RING5_TIMEOUT]     = 0x40,
258         [DMA_RING6_TIMEOUT]     = 0x44,
259         [DMA_RING7_TIMEOUT]     = 0x48,
260         [DMA_RING8_TIMEOUT]     = 0x4c,
261         [DMA_RING9_TIMEOUT]     = 0x50,
262         [DMA_RING10_TIMEOUT]    = 0x54,
263         [DMA_RING11_TIMEOUT]    = 0x58,
264         [DMA_RING12_TIMEOUT]    = 0x5c,
265         [DMA_RING13_TIMEOUT]    = 0x60,
266         [DMA_RING14_TIMEOUT]    = 0x64,
267         [DMA_RING15_TIMEOUT]    = 0x68,
268         [DMA_RING16_TIMEOUT]    = 0x6C,
269         [DMA_INDEX2RING_0]      = 0x70,
270         [DMA_INDEX2RING_1]      = 0x74,
271         [DMA_INDEX2RING_2]      = 0x78,
272         [DMA_INDEX2RING_3]      = 0x7C,
273         [DMA_INDEX2RING_4]      = 0x80,
274         [DMA_INDEX2RING_5]      = 0x84,
275         [DMA_INDEX2RING_6]      = 0x88,
276         [DMA_INDEX2RING_7]      = 0x8C,
277 };
278
279 static const u8 bcmgenet_dma_regs_v2[] = {
280         [DMA_RING_CFG]          = 0x00,
281         [DMA_CTRL]              = 0x04,
282         [DMA_STATUS]            = 0x08,
283         [DMA_SCB_BURST_SIZE]    = 0x0C,
284         [DMA_ARB_CTRL]          = 0x30,
285         [DMA_PRIORITY_0]        = 0x34,
286         [DMA_PRIORITY_1]        = 0x38,
287         [DMA_PRIORITY_2]        = 0x3C,
288         [DMA_RING0_TIMEOUT]     = 0x2C,
289         [DMA_RING1_TIMEOUT]     = 0x30,
290         [DMA_RING2_TIMEOUT]     = 0x34,
291         [DMA_RING3_TIMEOUT]     = 0x38,
292         [DMA_RING4_TIMEOUT]     = 0x3c,
293         [DMA_RING5_TIMEOUT]     = 0x40,
294         [DMA_RING6_TIMEOUT]     = 0x44,
295         [DMA_RING7_TIMEOUT]     = 0x48,
296         [DMA_RING8_TIMEOUT]     = 0x4c,
297         [DMA_RING9_TIMEOUT]     = 0x50,
298         [DMA_RING10_TIMEOUT]    = 0x54,
299         [DMA_RING11_TIMEOUT]    = 0x58,
300         [DMA_RING12_TIMEOUT]    = 0x5c,
301         [DMA_RING13_TIMEOUT]    = 0x60,
302         [DMA_RING14_TIMEOUT]    = 0x64,
303         [DMA_RING15_TIMEOUT]    = 0x68,
304         [DMA_RING16_TIMEOUT]    = 0x6C,
305 };
306
307 static const u8 bcmgenet_dma_regs_v1[] = {
308         [DMA_CTRL]              = 0x00,
309         [DMA_STATUS]            = 0x04,
310         [DMA_SCB_BURST_SIZE]    = 0x0C,
311         [DMA_ARB_CTRL]          = 0x30,
312         [DMA_PRIORITY_0]        = 0x34,
313         [DMA_PRIORITY_1]        = 0x38,
314         [DMA_PRIORITY_2]        = 0x3C,
315         [DMA_RING0_TIMEOUT]     = 0x2C,
316         [DMA_RING1_TIMEOUT]     = 0x30,
317         [DMA_RING2_TIMEOUT]     = 0x34,
318         [DMA_RING3_TIMEOUT]     = 0x38,
319         [DMA_RING4_TIMEOUT]     = 0x3c,
320         [DMA_RING5_TIMEOUT]     = 0x40,
321         [DMA_RING6_TIMEOUT]     = 0x44,
322         [DMA_RING7_TIMEOUT]     = 0x48,
323         [DMA_RING8_TIMEOUT]     = 0x4c,
324         [DMA_RING9_TIMEOUT]     = 0x50,
325         [DMA_RING10_TIMEOUT]    = 0x54,
326         [DMA_RING11_TIMEOUT]    = 0x58,
327         [DMA_RING12_TIMEOUT]    = 0x5c,
328         [DMA_RING13_TIMEOUT]    = 0x60,
329         [DMA_RING14_TIMEOUT]    = 0x64,
330         [DMA_RING15_TIMEOUT]    = 0x68,
331         [DMA_RING16_TIMEOUT]    = 0x6C,
332 };
333
334 /* Set at runtime once bcmgenet version is known */
335 static const u8 *bcmgenet_dma_regs;
336
337 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
338 {
339         return netdev_priv(dev_get_drvdata(dev));
340 }
341
342 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
343                                       enum dma_reg r)
344 {
345         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
346                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
350                                         u32 val, enum dma_reg r)
351 {
352         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
353                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
357                                       enum dma_reg r)
358 {
359         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
360                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
364                                         u32 val, enum dma_reg r)
365 {
366         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
367                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
368 }
369
370 /* RDMA/TDMA ring registers and accessors
371  * we merge the common fields and just prefix with T/D the registers
372  * having different meaning depending on the direction
373  */
374 enum dma_ring_reg {
375         TDMA_READ_PTR = 0,
376         RDMA_WRITE_PTR = TDMA_READ_PTR,
377         TDMA_READ_PTR_HI,
378         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
379         TDMA_CONS_INDEX,
380         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
381         TDMA_PROD_INDEX,
382         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
383         DMA_RING_BUF_SIZE,
384         DMA_START_ADDR,
385         DMA_START_ADDR_HI,
386         DMA_END_ADDR,
387         DMA_END_ADDR_HI,
388         DMA_MBUF_DONE_THRESH,
389         TDMA_FLOW_PERIOD,
390         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
391         TDMA_WRITE_PTR,
392         RDMA_READ_PTR = TDMA_WRITE_PTR,
393         TDMA_WRITE_PTR_HI,
394         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
395 };
396
397 /* GENET v4 supports 40-bits pointer addressing
398  * for obvious reasons the LO and HI word parts
399  * are contiguous, but this offsets the other
400  * registers.
401  */
402 static const u8 genet_dma_ring_regs_v4[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_READ_PTR_HI]              = 0x04,
405         [TDMA_CONS_INDEX]               = 0x08,
406         [TDMA_PROD_INDEX]               = 0x0C,
407         [DMA_RING_BUF_SIZE]             = 0x10,
408         [DMA_START_ADDR]                = 0x14,
409         [DMA_START_ADDR_HI]             = 0x18,
410         [DMA_END_ADDR]                  = 0x1C,
411         [DMA_END_ADDR_HI]               = 0x20,
412         [DMA_MBUF_DONE_THRESH]          = 0x24,
413         [TDMA_FLOW_PERIOD]              = 0x28,
414         [TDMA_WRITE_PTR]                = 0x2C,
415         [TDMA_WRITE_PTR_HI]             = 0x30,
416 };
417
418 static const u8 genet_dma_ring_regs_v123[] = {
419         [TDMA_READ_PTR]                 = 0x00,
420         [TDMA_CONS_INDEX]               = 0x04,
421         [TDMA_PROD_INDEX]               = 0x08,
422         [DMA_RING_BUF_SIZE]             = 0x0C,
423         [DMA_START_ADDR]                = 0x10,
424         [DMA_END_ADDR]                  = 0x14,
425         [DMA_MBUF_DONE_THRESH]          = 0x18,
426         [TDMA_FLOW_PERIOD]              = 0x1C,
427         [TDMA_WRITE_PTR]                = 0x20,
428 };
429
430 /* Set at runtime once GENET version is known */
431 static const u8 *genet_dma_ring_regs;
432
433 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
434                                            unsigned int ring,
435                                            enum dma_ring_reg r)
436 {
437         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
438                               (DMA_RING_SIZE * ring) +
439                               genet_dma_ring_regs[r]);
440 }
441
442 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
443                                              unsigned int ring, u32 val,
444                                              enum dma_ring_reg r)
445 {
446         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
447                         (DMA_RING_SIZE * ring) +
448                         genet_dma_ring_regs[r]);
449 }
450
451 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
452                                            unsigned int ring,
453                                            enum dma_ring_reg r)
454 {
455         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
456                               (DMA_RING_SIZE * ring) +
457                               genet_dma_ring_regs[r]);
458 }
459
460 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
461                                              unsigned int ring, u32 val,
462                                              enum dma_ring_reg r)
463 {
464         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
465                         (DMA_RING_SIZE * ring) +
466                         genet_dma_ring_regs[r]);
467 }
468
469 static int bcmgenet_begin(struct net_device *dev)
470 {
471         struct bcmgenet_priv *priv = netdev_priv(dev);
472
473         /* Turn on the clock */
474         return clk_prepare_enable(priv->clk);
475 }
476
477 static void bcmgenet_complete(struct net_device *dev)
478 {
479         struct bcmgenet_priv *priv = netdev_priv(dev);
480
481         /* Turn off the clock */
482         clk_disable_unprepare(priv->clk);
483 }
484
485 static int bcmgenet_get_link_ksettings(struct net_device *dev,
486                                        struct ethtool_link_ksettings *cmd)
487 {
488         if (!netif_running(dev))
489                 return -EINVAL;
490
491         if (!dev->phydev)
492                 return -ENODEV;
493
494         phy_ethtool_ksettings_get(dev->phydev, cmd);
495
496         return 0;
497 }
498
499 static int bcmgenet_set_link_ksettings(struct net_device *dev,
500                                        const struct ethtool_link_ksettings *cmd)
501 {
502         if (!netif_running(dev))
503                 return -EINVAL;
504
505         if (!dev->phydev)
506                 return -ENODEV;
507
508         return phy_ethtool_ksettings_set(dev->phydev, cmd);
509 }
510
511 static void bcmgenet_set_rx_csum(struct net_device *dev,
512                                  netdev_features_t wanted)
513 {
514         struct bcmgenet_priv *priv = netdev_priv(dev);
515         u32 rbuf_chk_ctrl;
516         bool rx_csum_en;
517
518         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
519
520         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
521
522         /* enable rx checksumming */
523         if (rx_csum_en)
524                 rbuf_chk_ctrl |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
525         else
526                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
527         priv->desc_rxchk_en = rx_csum_en;
528
529         /* If UniMAC forwards CRC, we need to skip over it to get
530          * a valid CHK bit to be set in the per-packet status word
531         */
532         if (rx_csum_en && priv->crc_fwd_en)
533                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
534         else
535                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
536
537         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
538 }
539
540 static void bcmgenet_set_tx_csum(struct net_device *dev,
541                                  netdev_features_t wanted)
542 {
543         struct bcmgenet_priv *priv = netdev_priv(dev);
544         bool desc_64b_en;
545         u32 tbuf_ctrl, rbuf_ctrl;
546
547         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
548         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
549
550         desc_64b_en = !!(wanted & NETIF_F_HW_CSUM);
551
552         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
553         if (desc_64b_en) {
554                 tbuf_ctrl |= RBUF_64B_EN;
555                 rbuf_ctrl |= RBUF_64B_EN;
556         } else {
557                 tbuf_ctrl &= ~RBUF_64B_EN;
558                 rbuf_ctrl &= ~RBUF_64B_EN;
559         }
560         priv->desc_64b_en = desc_64b_en;
561
562         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
563         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
564 }
565
566 static int bcmgenet_set_features(struct net_device *dev,
567                                  netdev_features_t features)
568 {
569         struct bcmgenet_priv *priv = netdev_priv(dev);
570         u32 reg;
571         int ret;
572
573         ret = clk_prepare_enable(priv->clk);
574         if (ret)
575                 return ret;
576
577         /* Make sure we reflect the value of CRC_CMD_FWD */
578         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
579         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
580
581         bcmgenet_set_tx_csum(dev, features);
582         bcmgenet_set_rx_csum(dev, features);
583
584         clk_disable_unprepare(priv->clk);
585
586         return ret;
587 }
588
589 static u32 bcmgenet_get_msglevel(struct net_device *dev)
590 {
591         struct bcmgenet_priv *priv = netdev_priv(dev);
592
593         return priv->msg_enable;
594 }
595
596 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
597 {
598         struct bcmgenet_priv *priv = netdev_priv(dev);
599
600         priv->msg_enable = level;
601 }
602
603 static int bcmgenet_get_coalesce(struct net_device *dev,
604                                  struct ethtool_coalesce *ec)
605 {
606         struct bcmgenet_priv *priv = netdev_priv(dev);
607         struct bcmgenet_rx_ring *ring;
608         unsigned int i;
609
610         ec->tx_max_coalesced_frames =
611                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
612                                          DMA_MBUF_DONE_THRESH);
613         ec->rx_max_coalesced_frames =
614                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
615                                          DMA_MBUF_DONE_THRESH);
616         ec->rx_coalesce_usecs =
617                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
618
619         for (i = 0; i < priv->hw_params->rx_queues; i++) {
620                 ring = &priv->rx_rings[i];
621                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
622         }
623         ring = &priv->rx_rings[DESC_INDEX];
624         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
625
626         return 0;
627 }
628
629 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
630                                      u32 usecs, u32 pkts)
631 {
632         struct bcmgenet_priv *priv = ring->priv;
633         unsigned int i = ring->index;
634         u32 reg;
635
636         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
637
638         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
639         reg &= ~DMA_TIMEOUT_MASK;
640         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
641         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
642 }
643
644 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
645                                           struct ethtool_coalesce *ec)
646 {
647         struct dim_cq_moder moder;
648         u32 usecs, pkts;
649
650         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
651         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
652         usecs = ring->rx_coalesce_usecs;
653         pkts = ring->rx_max_coalesced_frames;
654
655         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
656                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
657                 usecs = moder.usec;
658                 pkts = moder.pkts;
659         }
660
661         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
662         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
663 }
664
665 static int bcmgenet_set_coalesce(struct net_device *dev,
666                                  struct ethtool_coalesce *ec)
667 {
668         struct bcmgenet_priv *priv = netdev_priv(dev);
669         unsigned int i;
670
671         /* Base system clock is 125Mhz, DMA timeout is this reference clock
672          * divided by 1024, which yields roughly 8.192us, our maximum value
673          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
674          */
675         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
676             ec->tx_max_coalesced_frames == 0 ||
677             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
678             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
679                 return -EINVAL;
680
681         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
682                 return -EINVAL;
683
684         /* GENET TDMA hardware does not support a configurable timeout, but will
685          * always generate an interrupt either after MBDONE packets have been
686          * transmitted, or when the ring is empty.
687          */
688         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
689             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
690             ec->use_adaptive_tx_coalesce)
691                 return -EOPNOTSUPP;
692
693         /* Program all TX queues with the same values, as there is no
694          * ethtool knob to do coalescing on a per-queue basis
695          */
696         for (i = 0; i < priv->hw_params->tx_queues; i++)
697                 bcmgenet_tdma_ring_writel(priv, i,
698                                           ec->tx_max_coalesced_frames,
699                                           DMA_MBUF_DONE_THRESH);
700         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
701                                   ec->tx_max_coalesced_frames,
702                                   DMA_MBUF_DONE_THRESH);
703
704         for (i = 0; i < priv->hw_params->rx_queues; i++)
705                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
706         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
707
708         return 0;
709 }
710
711 /* standard ethtool support functions. */
712 enum bcmgenet_stat_type {
713         BCMGENET_STAT_NETDEV = -1,
714         BCMGENET_STAT_MIB_RX,
715         BCMGENET_STAT_MIB_TX,
716         BCMGENET_STAT_RUNT,
717         BCMGENET_STAT_MISC,
718         BCMGENET_STAT_SOFT,
719 };
720
721 struct bcmgenet_stats {
722         char stat_string[ETH_GSTRING_LEN];
723         int stat_sizeof;
724         int stat_offset;
725         enum bcmgenet_stat_type type;
726         /* reg offset from UMAC base for misc counters */
727         u16 reg_offset;
728 };
729
730 #define STAT_NETDEV(m) { \
731         .stat_string = __stringify(m), \
732         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
733         .stat_offset = offsetof(struct net_device_stats, m), \
734         .type = BCMGENET_STAT_NETDEV, \
735 }
736
737 #define STAT_GENET_MIB(str, m, _type) { \
738         .stat_string = str, \
739         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
740         .stat_offset = offsetof(struct bcmgenet_priv, m), \
741         .type = _type, \
742 }
743
744 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
745 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
746 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
747 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
748
749 #define STAT_GENET_MISC(str, m, offset) { \
750         .stat_string = str, \
751         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
752         .stat_offset = offsetof(struct bcmgenet_priv, m), \
753         .type = BCMGENET_STAT_MISC, \
754         .reg_offset = offset, \
755 }
756
757 #define STAT_GENET_Q(num) \
758         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
759                         tx_rings[num].packets), \
760         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
761                         tx_rings[num].bytes), \
762         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
763                         rx_rings[num].bytes),    \
764         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
765                         rx_rings[num].packets), \
766         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
767                         rx_rings[num].errors), \
768         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
769                         rx_rings[num].dropped)
770
771 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
772  * between the end of TX stats and the beginning of the RX RUNT
773  */
774 #define BCMGENET_STAT_OFFSET    0xc
775
776 /* Hardware counters must be kept in sync because the order/offset
777  * is important here (order in structure declaration = order in hardware)
778  */
779 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
780         /* general stats */
781         STAT_NETDEV(rx_packets),
782         STAT_NETDEV(tx_packets),
783         STAT_NETDEV(rx_bytes),
784         STAT_NETDEV(tx_bytes),
785         STAT_NETDEV(rx_errors),
786         STAT_NETDEV(tx_errors),
787         STAT_NETDEV(rx_dropped),
788         STAT_NETDEV(tx_dropped),
789         STAT_NETDEV(multicast),
790         /* UniMAC RSV counters */
791         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
792         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
793         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
794         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
795         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
796         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
797         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
798         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
799         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
800         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
801         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
802         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
803         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
804         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
805         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
806         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
807         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
808         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
809         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
810         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
811         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
812         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
813         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
814         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
815         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
816         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
817         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
818         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
819         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
820         /* UniMAC TSV counters */
821         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
822         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
823         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
824         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
825         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
826         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
827         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
828         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
829         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
830         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
831         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
832         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
833         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
834         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
835         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
836         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
837         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
838         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
839         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
840         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
841         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
842         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
843         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
844         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
845         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
846         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
847         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
848         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
849         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
850         /* UniMAC RUNT counters */
851         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
852         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
853         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
854         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
855         /* Misc UniMAC counters */
856         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
857                         UMAC_RBUF_OVFL_CNT_V1),
858         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
859                         UMAC_RBUF_ERR_CNT_V1),
860         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
861         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
862         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
863         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
864         STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
865         STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
866                             mib.tx_realloc_tsb_failed),
867         /* Per TX queues */
868         STAT_GENET_Q(0),
869         STAT_GENET_Q(1),
870         STAT_GENET_Q(2),
871         STAT_GENET_Q(3),
872         STAT_GENET_Q(16),
873 };
874
875 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
876
877 static void bcmgenet_get_drvinfo(struct net_device *dev,
878                                  struct ethtool_drvinfo *info)
879 {
880         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
881         strlcpy(info->version, "v2.0", sizeof(info->version));
882 }
883
884 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
885 {
886         switch (string_set) {
887         case ETH_SS_STATS:
888                 return BCMGENET_STATS_LEN;
889         default:
890                 return -EOPNOTSUPP;
891         }
892 }
893
894 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
895                                  u8 *data)
896 {
897         int i;
898
899         switch (stringset) {
900         case ETH_SS_STATS:
901                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
902                         memcpy(data + i * ETH_GSTRING_LEN,
903                                bcmgenet_gstrings_stats[i].stat_string,
904                                ETH_GSTRING_LEN);
905                 }
906                 break;
907         }
908 }
909
910 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
911 {
912         u16 new_offset;
913         u32 val;
914
915         switch (offset) {
916         case UMAC_RBUF_OVFL_CNT_V1:
917                 if (GENET_IS_V2(priv))
918                         new_offset = RBUF_OVFL_CNT_V2;
919                 else
920                         new_offset = RBUF_OVFL_CNT_V3PLUS;
921
922                 val = bcmgenet_rbuf_readl(priv, new_offset);
923                 /* clear if overflowed */
924                 if (val == ~0)
925                         bcmgenet_rbuf_writel(priv, 0, new_offset);
926                 break;
927         case UMAC_RBUF_ERR_CNT_V1:
928                 if (GENET_IS_V2(priv))
929                         new_offset = RBUF_ERR_CNT_V2;
930                 else
931                         new_offset = RBUF_ERR_CNT_V3PLUS;
932
933                 val = bcmgenet_rbuf_readl(priv, new_offset);
934                 /* clear if overflowed */
935                 if (val == ~0)
936                         bcmgenet_rbuf_writel(priv, 0, new_offset);
937                 break;
938         default:
939                 val = bcmgenet_umac_readl(priv, offset);
940                 /* clear if overflowed */
941                 if (val == ~0)
942                         bcmgenet_umac_writel(priv, 0, offset);
943                 break;
944         }
945
946         return val;
947 }
948
949 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
950 {
951         int i, j = 0;
952
953         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
954                 const struct bcmgenet_stats *s;
955                 u8 offset = 0;
956                 u32 val = 0;
957                 char *p;
958
959                 s = &bcmgenet_gstrings_stats[i];
960                 switch (s->type) {
961                 case BCMGENET_STAT_NETDEV:
962                 case BCMGENET_STAT_SOFT:
963                         continue;
964                 case BCMGENET_STAT_RUNT:
965                         offset += BCMGENET_STAT_OFFSET;
966                         /* fall through */
967                 case BCMGENET_STAT_MIB_TX:
968                         offset += BCMGENET_STAT_OFFSET;
969                         /* fall through */
970                 case BCMGENET_STAT_MIB_RX:
971                         val = bcmgenet_umac_readl(priv,
972                                                   UMAC_MIB_START + j + offset);
973                         offset = 0;     /* Reset Offset */
974                         break;
975                 case BCMGENET_STAT_MISC:
976                         if (GENET_IS_V1(priv)) {
977                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
978                                 /* clear if overflowed */
979                                 if (val == ~0)
980                                         bcmgenet_umac_writel(priv, 0,
981                                                              s->reg_offset);
982                         } else {
983                                 val = bcmgenet_update_stat_misc(priv,
984                                                                 s->reg_offset);
985                         }
986                         break;
987                 }
988
989                 j += s->stat_sizeof;
990                 p = (char *)priv + s->stat_offset;
991                 *(u32 *)p = val;
992         }
993 }
994
995 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
996                                        struct ethtool_stats *stats,
997                                        u64 *data)
998 {
999         struct bcmgenet_priv *priv = netdev_priv(dev);
1000         int i;
1001
1002         if (netif_running(dev))
1003                 bcmgenet_update_mib_counters(priv);
1004
1005         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1006                 const struct bcmgenet_stats *s;
1007                 char *p;
1008
1009                 s = &bcmgenet_gstrings_stats[i];
1010                 if (s->type == BCMGENET_STAT_NETDEV)
1011                         p = (char *)&dev->stats;
1012                 else
1013                         p = (char *)priv;
1014                 p += s->stat_offset;
1015                 if (sizeof(unsigned long) != sizeof(u32) &&
1016                     s->stat_sizeof == sizeof(unsigned long))
1017                         data[i] = *(unsigned long *)p;
1018                 else
1019                         data[i] = *(u32 *)p;
1020         }
1021 }
1022
1023 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1024 {
1025         struct bcmgenet_priv *priv = netdev_priv(dev);
1026         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1027         u32 reg;
1028
1029         if (enable && !priv->clk_eee_enabled) {
1030                 clk_prepare_enable(priv->clk_eee);
1031                 priv->clk_eee_enabled = true;
1032         }
1033
1034         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1035         if (enable)
1036                 reg |= EEE_EN;
1037         else
1038                 reg &= ~EEE_EN;
1039         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1040
1041         /* Enable EEE and switch to a 27Mhz clock automatically */
1042         reg = bcmgenet_readl(priv->base + off);
1043         if (enable)
1044                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1045         else
1046                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1047         bcmgenet_writel(reg, priv->base + off);
1048
1049         /* Do the same for thing for RBUF */
1050         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1051         if (enable)
1052                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1053         else
1054                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1055         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1056
1057         if (!enable && priv->clk_eee_enabled) {
1058                 clk_disable_unprepare(priv->clk_eee);
1059                 priv->clk_eee_enabled = false;
1060         }
1061
1062         priv->eee.eee_enabled = enable;
1063         priv->eee.eee_active = enable;
1064 }
1065
1066 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1067 {
1068         struct bcmgenet_priv *priv = netdev_priv(dev);
1069         struct ethtool_eee *p = &priv->eee;
1070
1071         if (GENET_IS_V1(priv))
1072                 return -EOPNOTSUPP;
1073
1074         if (!dev->phydev)
1075                 return -ENODEV;
1076
1077         e->eee_enabled = p->eee_enabled;
1078         e->eee_active = p->eee_active;
1079         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1080
1081         return phy_ethtool_get_eee(dev->phydev, e);
1082 }
1083
1084 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1085 {
1086         struct bcmgenet_priv *priv = netdev_priv(dev);
1087         struct ethtool_eee *p = &priv->eee;
1088         int ret = 0;
1089
1090         if (GENET_IS_V1(priv))
1091                 return -EOPNOTSUPP;
1092
1093         if (!dev->phydev)
1094                 return -ENODEV;
1095
1096         p->eee_enabled = e->eee_enabled;
1097
1098         if (!p->eee_enabled) {
1099                 bcmgenet_eee_enable_set(dev, false);
1100         } else {
1101                 ret = phy_init_eee(dev->phydev, 0);
1102                 if (ret) {
1103                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1104                         return ret;
1105                 }
1106
1107                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1108                 bcmgenet_eee_enable_set(dev, true);
1109         }
1110
1111         return phy_ethtool_set_eee(dev->phydev, e);
1112 }
1113
1114 /* standard ethtool support functions. */
1115 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1116         .begin                  = bcmgenet_begin,
1117         .complete               = bcmgenet_complete,
1118         .get_strings            = bcmgenet_get_strings,
1119         .get_sset_count         = bcmgenet_get_sset_count,
1120         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1121         .get_drvinfo            = bcmgenet_get_drvinfo,
1122         .get_link               = ethtool_op_get_link,
1123         .get_msglevel           = bcmgenet_get_msglevel,
1124         .set_msglevel           = bcmgenet_set_msglevel,
1125         .get_wol                = bcmgenet_get_wol,
1126         .set_wol                = bcmgenet_set_wol,
1127         .get_eee                = bcmgenet_get_eee,
1128         .set_eee                = bcmgenet_set_eee,
1129         .nway_reset             = phy_ethtool_nway_reset,
1130         .get_coalesce           = bcmgenet_get_coalesce,
1131         .set_coalesce           = bcmgenet_set_coalesce,
1132         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1133         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1134         .get_ts_info            = ethtool_op_get_ts_info,
1135 };
1136
1137 /* Power down the unimac, based on mode. */
1138 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1139                                 enum bcmgenet_power_mode mode)
1140 {
1141         int ret = 0;
1142         u32 reg;
1143
1144         switch (mode) {
1145         case GENET_POWER_CABLE_SENSE:
1146                 phy_detach(priv->dev->phydev);
1147                 break;
1148
1149         case GENET_POWER_WOL_MAGIC:
1150                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1151                 break;
1152
1153         case GENET_POWER_PASSIVE:
1154                 /* Power down LED */
1155                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1156                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1157                         if (GENET_IS_V5(priv))
1158                                 reg |= EXT_PWR_DOWN_PHY_EN |
1159                                        EXT_PWR_DOWN_PHY_RD |
1160                                        EXT_PWR_DOWN_PHY_SD |
1161                                        EXT_PWR_DOWN_PHY_RX |
1162                                        EXT_PWR_DOWN_PHY_TX |
1163                                        EXT_IDDQ_GLBL_PWR;
1164                         else
1165                                 reg |= EXT_PWR_DOWN_PHY;
1166
1167                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1168                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1169
1170                         bcmgenet_phy_power_set(priv->dev, false);
1171                 }
1172                 break;
1173         default:
1174                 break;
1175         }
1176
1177         return ret;
1178 }
1179
1180 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1181                               enum bcmgenet_power_mode mode)
1182 {
1183         u32 reg;
1184
1185         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1186                 return;
1187
1188         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1189
1190         switch (mode) {
1191         case GENET_POWER_PASSIVE:
1192                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1193                 if (GENET_IS_V5(priv)) {
1194                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1195                                  EXT_PWR_DOWN_PHY_RD |
1196                                  EXT_PWR_DOWN_PHY_SD |
1197                                  EXT_PWR_DOWN_PHY_RX |
1198                                  EXT_PWR_DOWN_PHY_TX |
1199                                  EXT_IDDQ_GLBL_PWR);
1200                         reg |=   EXT_PHY_RESET;
1201                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1202                         mdelay(1);
1203
1204                         reg &=  ~EXT_PHY_RESET;
1205                 } else {
1206                         reg &= ~EXT_PWR_DOWN_PHY;
1207                         reg |= EXT_PWR_DN_EN_LD;
1208                 }
1209                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1210                 bcmgenet_phy_power_set(priv->dev, true);
1211                 break;
1212
1213         case GENET_POWER_CABLE_SENSE:
1214                 /* enable APD */
1215                 if (!GENET_IS_V5(priv)) {
1216                         reg |= EXT_PWR_DN_EN_LD;
1217                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1218                 }
1219                 break;
1220         case GENET_POWER_WOL_MAGIC:
1221                 bcmgenet_wol_power_up_cfg(priv, mode);
1222                 return;
1223         default:
1224                 break;
1225         }
1226 }
1227
1228 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1229                                          struct bcmgenet_tx_ring *ring)
1230 {
1231         struct enet_cb *tx_cb_ptr;
1232
1233         tx_cb_ptr = ring->cbs;
1234         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1235
1236         /* Advancing local write pointer */
1237         if (ring->write_ptr == ring->end_ptr)
1238                 ring->write_ptr = ring->cb_ptr;
1239         else
1240                 ring->write_ptr++;
1241
1242         return tx_cb_ptr;
1243 }
1244
1245 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1246                                          struct bcmgenet_tx_ring *ring)
1247 {
1248         struct enet_cb *tx_cb_ptr;
1249
1250         tx_cb_ptr = ring->cbs;
1251         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1252
1253         /* Rewinding local write pointer */
1254         if (ring->write_ptr == ring->cb_ptr)
1255                 ring->write_ptr = ring->end_ptr;
1256         else
1257                 ring->write_ptr--;
1258
1259         return tx_cb_ptr;
1260 }
1261
1262 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1263 {
1264         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1265                                  INTRL2_CPU_MASK_SET);
1266 }
1267
1268 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1269 {
1270         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1271                                  INTRL2_CPU_MASK_CLEAR);
1272 }
1273
1274 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1275 {
1276         bcmgenet_intrl2_1_writel(ring->priv,
1277                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1278                                  INTRL2_CPU_MASK_SET);
1279 }
1280
1281 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1282 {
1283         bcmgenet_intrl2_1_writel(ring->priv,
1284                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1285                                  INTRL2_CPU_MASK_CLEAR);
1286 }
1287
1288 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1289 {
1290         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1291                                  INTRL2_CPU_MASK_SET);
1292 }
1293
1294 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1295 {
1296         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1297                                  INTRL2_CPU_MASK_CLEAR);
1298 }
1299
1300 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1301 {
1302         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1303                                  INTRL2_CPU_MASK_CLEAR);
1304 }
1305
1306 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1307 {
1308         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1309                                  INTRL2_CPU_MASK_SET);
1310 }
1311
1312 /* Simple helper to free a transmit control block's resources
1313  * Returns an skb when the last transmit control block associated with the
1314  * skb is freed.  The skb should be freed by the caller if necessary.
1315  */
1316 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1317                                            struct enet_cb *cb)
1318 {
1319         struct sk_buff *skb;
1320
1321         skb = cb->skb;
1322
1323         if (skb) {
1324                 cb->skb = NULL;
1325                 if (cb == GENET_CB(skb)->first_cb)
1326                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1327                                          dma_unmap_len(cb, dma_len),
1328                                          DMA_TO_DEVICE);
1329                 else
1330                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1331                                        dma_unmap_len(cb, dma_len),
1332                                        DMA_TO_DEVICE);
1333                 dma_unmap_addr_set(cb, dma_addr, 0);
1334
1335                 if (cb == GENET_CB(skb)->last_cb)
1336                         return skb;
1337
1338         } else if (dma_unmap_addr(cb, dma_addr)) {
1339                 dma_unmap_page(dev,
1340                                dma_unmap_addr(cb, dma_addr),
1341                                dma_unmap_len(cb, dma_len),
1342                                DMA_TO_DEVICE);
1343                 dma_unmap_addr_set(cb, dma_addr, 0);
1344         }
1345
1346         return NULL;
1347 }
1348
1349 /* Simple helper to free a receive control block's resources */
1350 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1351                                            struct enet_cb *cb)
1352 {
1353         struct sk_buff *skb;
1354
1355         skb = cb->skb;
1356         cb->skb = NULL;
1357
1358         if (dma_unmap_addr(cb, dma_addr)) {
1359                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1360                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1361                 dma_unmap_addr_set(cb, dma_addr, 0);
1362         }
1363
1364         return skb;
1365 }
1366
1367 /* Unlocked version of the reclaim routine */
1368 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1369                                           struct bcmgenet_tx_ring *ring)
1370 {
1371         struct bcmgenet_priv *priv = netdev_priv(dev);
1372         unsigned int txbds_processed = 0;
1373         unsigned int bytes_compl = 0;
1374         unsigned int pkts_compl = 0;
1375         unsigned int txbds_ready;
1376         unsigned int c_index;
1377         struct sk_buff *skb;
1378
1379         /* Clear status before servicing to reduce spurious interrupts */
1380         if (ring->index == DESC_INDEX)
1381                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1382                                          INTRL2_CPU_CLEAR);
1383         else
1384                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1385                                          INTRL2_CPU_CLEAR);
1386
1387         /* Compute how many buffers are transmitted since last xmit call */
1388         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1389                 & DMA_C_INDEX_MASK;
1390         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1391
1392         netif_dbg(priv, tx_done, dev,
1393                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1394                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1395
1396         /* Reclaim transmitted buffers */
1397         while (txbds_processed < txbds_ready) {
1398                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1399                                           &priv->tx_cbs[ring->clean_ptr]);
1400                 if (skb) {
1401                         pkts_compl++;
1402                         bytes_compl += GENET_CB(skb)->bytes_sent;
1403                         dev_consume_skb_any(skb);
1404                 }
1405
1406                 txbds_processed++;
1407                 if (likely(ring->clean_ptr < ring->end_ptr))
1408                         ring->clean_ptr++;
1409                 else
1410                         ring->clean_ptr = ring->cb_ptr;
1411         }
1412
1413         ring->free_bds += txbds_processed;
1414         ring->c_index = c_index;
1415
1416         ring->packets += pkts_compl;
1417         ring->bytes += bytes_compl;
1418
1419         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1420                                   pkts_compl, bytes_compl);
1421
1422         return txbds_processed;
1423 }
1424
1425 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1426                                 struct bcmgenet_tx_ring *ring)
1427 {
1428         unsigned int released;
1429
1430         spin_lock_bh(&ring->lock);
1431         released = __bcmgenet_tx_reclaim(dev, ring);
1432         spin_unlock_bh(&ring->lock);
1433
1434         return released;
1435 }
1436
1437 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1438 {
1439         struct bcmgenet_tx_ring *ring =
1440                 container_of(napi, struct bcmgenet_tx_ring, napi);
1441         unsigned int work_done = 0;
1442         struct netdev_queue *txq;
1443
1444         spin_lock(&ring->lock);
1445         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1446         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1447                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1448                 netif_tx_wake_queue(txq);
1449         }
1450         spin_unlock(&ring->lock);
1451
1452         if (work_done == 0) {
1453                 napi_complete(napi);
1454                 ring->int_enable(ring);
1455
1456                 return 0;
1457         }
1458
1459         return budget;
1460 }
1461
1462 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1463 {
1464         struct bcmgenet_priv *priv = netdev_priv(dev);
1465         int i;
1466
1467         if (netif_is_multiqueue(dev)) {
1468                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1469                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1470         }
1471
1472         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1473 }
1474
1475 /* Reallocate the SKB to put enough headroom in front of it and insert
1476  * the transmit checksum offsets in the descriptors
1477  */
1478 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1479                                             struct sk_buff *skb)
1480 {
1481         struct bcmgenet_priv *priv = netdev_priv(dev);
1482         struct status_64 *status = NULL;
1483         struct sk_buff *new_skb;
1484         u16 offset;
1485         u8 ip_proto;
1486         __be16 ip_ver;
1487         u32 tx_csum_info;
1488
1489         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1490                 /* If 64 byte status block enabled, must make sure skb has
1491                  * enough headroom for us to insert 64B status block.
1492                  */
1493                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1494                 if (!new_skb) {
1495                         dev_kfree_skb_any(skb);
1496                         priv->mib.tx_realloc_tsb_failed++;
1497                         dev->stats.tx_dropped++;
1498                         return NULL;
1499                 }
1500                 dev_consume_skb_any(skb);
1501                 skb = new_skb;
1502                 priv->mib.tx_realloc_tsb++;
1503         }
1504
1505         skb_push(skb, sizeof(*status));
1506         status = (struct status_64 *)skb->data;
1507
1508         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1509                 ip_ver = skb->protocol;
1510                 switch (ip_ver) {
1511                 case htons(ETH_P_IP):
1512                         ip_proto = ip_hdr(skb)->protocol;
1513                         break;
1514                 case htons(ETH_P_IPV6):
1515                         ip_proto = ipv6_hdr(skb)->nexthdr;
1516                         break;
1517                 default:
1518                         /* don't use UDP flag */
1519                         ip_proto = 0;
1520                         break;
1521                 }
1522
1523                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1524                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1525                                 (offset + skb->csum_offset) |
1526                                 STATUS_TX_CSUM_LV;
1527
1528                 /* Set the special UDP flag for UDP */
1529                 if (ip_proto == IPPROTO_UDP)
1530                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1531
1532                 status->tx_csum_info = tx_csum_info;
1533         }
1534
1535         return skb;
1536 }
1537
1538 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1539 {
1540         struct bcmgenet_priv *priv = netdev_priv(dev);
1541         struct device *kdev = &priv->pdev->dev;
1542         struct bcmgenet_tx_ring *ring = NULL;
1543         struct enet_cb *tx_cb_ptr;
1544         struct netdev_queue *txq;
1545         int nr_frags, index;
1546         dma_addr_t mapping;
1547         unsigned int size;
1548         skb_frag_t *frag;
1549         u32 len_stat;
1550         int ret;
1551         int i;
1552
1553         index = skb_get_queue_mapping(skb);
1554         /* Mapping strategy:
1555          * queue_mapping = 0, unclassified, packet xmited through ring16
1556          * queue_mapping = 1, goes to ring 0. (highest priority queue
1557          * queue_mapping = 2, goes to ring 1.
1558          * queue_mapping = 3, goes to ring 2.
1559          * queue_mapping = 4, goes to ring 3.
1560          */
1561         if (index == 0)
1562                 index = DESC_INDEX;
1563         else
1564                 index -= 1;
1565
1566         ring = &priv->tx_rings[index];
1567         txq = netdev_get_tx_queue(dev, ring->queue);
1568
1569         nr_frags = skb_shinfo(skb)->nr_frags;
1570
1571         spin_lock(&ring->lock);
1572         if (ring->free_bds <= (nr_frags + 1)) {
1573                 if (!netif_tx_queue_stopped(txq)) {
1574                         netif_tx_stop_queue(txq);
1575                         netdev_err(dev,
1576                                    "%s: tx ring %d full when queue %d awake\n",
1577                                    __func__, index, ring->queue);
1578                 }
1579                 ret = NETDEV_TX_BUSY;
1580                 goto out;
1581         }
1582
1583         if (skb_padto(skb, ETH_ZLEN)) {
1584                 ret = NETDEV_TX_OK;
1585                 goto out;
1586         }
1587
1588         /* Retain how many bytes will be sent on the wire, without TSB inserted
1589          * by transmit checksum offload
1590          */
1591         GENET_CB(skb)->bytes_sent = skb->len;
1592
1593         /* set the SKB transmit checksum */
1594         if (priv->desc_64b_en) {
1595                 skb = bcmgenet_put_tx_csum(dev, skb);
1596                 if (!skb) {
1597                         ret = NETDEV_TX_OK;
1598                         goto out;
1599                 }
1600         }
1601
1602         for (i = 0; i <= nr_frags; i++) {
1603                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1604
1605                 BUG_ON(!tx_cb_ptr);
1606
1607                 if (!i) {
1608                         /* Transmit single SKB or head of fragment list */
1609                         GENET_CB(skb)->first_cb = tx_cb_ptr;
1610                         size = skb_headlen(skb);
1611                         mapping = dma_map_single(kdev, skb->data, size,
1612                                                  DMA_TO_DEVICE);
1613                 } else {
1614                         /* xmit fragment */
1615                         frag = &skb_shinfo(skb)->frags[i - 1];
1616                         size = skb_frag_size(frag);
1617                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
1618                                                    DMA_TO_DEVICE);
1619                 }
1620
1621                 ret = dma_mapping_error(kdev, mapping);
1622                 if (ret) {
1623                         priv->mib.tx_dma_failed++;
1624                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1625                         ret = NETDEV_TX_OK;
1626                         goto out_unmap_frags;
1627                 }
1628                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1629                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1630
1631                 tx_cb_ptr->skb = skb;
1632
1633                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1634                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1635
1636                 if (!i) {
1637                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1638                         if (skb->ip_summed == CHECKSUM_PARTIAL)
1639                                 len_stat |= DMA_TX_DO_CSUM;
1640                 }
1641                 if (i == nr_frags)
1642                         len_stat |= DMA_EOP;
1643
1644                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1645         }
1646
1647         GENET_CB(skb)->last_cb = tx_cb_ptr;
1648         skb_tx_timestamp(skb);
1649
1650         /* Decrement total BD count and advance our write pointer */
1651         ring->free_bds -= nr_frags + 1;
1652         ring->prod_index += nr_frags + 1;
1653         ring->prod_index &= DMA_P_INDEX_MASK;
1654
1655         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1656
1657         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1658                 netif_tx_stop_queue(txq);
1659
1660         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1661                 /* Packets are ready, update producer index */
1662                 bcmgenet_tdma_ring_writel(priv, ring->index,
1663                                           ring->prod_index, TDMA_PROD_INDEX);
1664 out:
1665         spin_unlock(&ring->lock);
1666
1667         return ret;
1668
1669 out_unmap_frags:
1670         /* Back up for failed control block mapping */
1671         bcmgenet_put_txcb(priv, ring);
1672
1673         /* Unmap successfully mapped control blocks */
1674         while (i-- > 0) {
1675                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1676                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1677         }
1678
1679         dev_kfree_skb(skb);
1680         goto out;
1681 }
1682
1683 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1684                                           struct enet_cb *cb)
1685 {
1686         struct device *kdev = &priv->pdev->dev;
1687         struct sk_buff *skb;
1688         struct sk_buff *rx_skb;
1689         dma_addr_t mapping;
1690
1691         /* Allocate a new Rx skb */
1692         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1693         if (!skb) {
1694                 priv->mib.alloc_rx_buff_failed++;
1695                 netif_err(priv, rx_err, priv->dev,
1696                           "%s: Rx skb allocation failed\n", __func__);
1697                 return NULL;
1698         }
1699
1700         /* DMA-map the new Rx skb */
1701         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1702                                  DMA_FROM_DEVICE);
1703         if (dma_mapping_error(kdev, mapping)) {
1704                 priv->mib.rx_dma_failed++;
1705                 dev_kfree_skb_any(skb);
1706                 netif_err(priv, rx_err, priv->dev,
1707                           "%s: Rx skb DMA mapping failed\n", __func__);
1708                 return NULL;
1709         }
1710
1711         /* Grab the current Rx skb from the ring and DMA-unmap it */
1712         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1713
1714         /* Put the new Rx skb on the ring */
1715         cb->skb = skb;
1716         dma_unmap_addr_set(cb, dma_addr, mapping);
1717         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1718         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1719
1720         /* Return the current Rx skb to caller */
1721         return rx_skb;
1722 }
1723
1724 /* bcmgenet_desc_rx - descriptor based rx process.
1725  * this could be called from bottom half, or from NAPI polling method.
1726  */
1727 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1728                                      unsigned int budget)
1729 {
1730         struct bcmgenet_priv *priv = ring->priv;
1731         struct net_device *dev = priv->dev;
1732         struct enet_cb *cb;
1733         struct sk_buff *skb;
1734         u32 dma_length_status;
1735         unsigned long dma_flag;
1736         int len;
1737         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1738         unsigned int bytes_processed = 0;
1739         unsigned int p_index, mask;
1740         unsigned int discards;
1741
1742         /* Clear status before servicing to reduce spurious interrupts */
1743         if (ring->index == DESC_INDEX) {
1744                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1745                                          INTRL2_CPU_CLEAR);
1746         } else {
1747                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1748                 bcmgenet_intrl2_1_writel(priv,
1749                                          mask,
1750                                          INTRL2_CPU_CLEAR);
1751         }
1752
1753         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1754
1755         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1756                    DMA_P_INDEX_DISCARD_CNT_MASK;
1757         if (discards > ring->old_discards) {
1758                 discards = discards - ring->old_discards;
1759                 ring->errors += discards;
1760                 ring->old_discards += discards;
1761
1762                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1763                 if (ring->old_discards >= 0xC000) {
1764                         ring->old_discards = 0;
1765                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1766                                                   RDMA_PROD_INDEX);
1767                 }
1768         }
1769
1770         p_index &= DMA_P_INDEX_MASK;
1771         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1772
1773         netif_dbg(priv, rx_status, dev,
1774                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1775
1776         while ((rxpktprocessed < rxpkttoprocess) &&
1777                (rxpktprocessed < budget)) {
1778                 cb = &priv->rx_cbs[ring->read_ptr];
1779                 skb = bcmgenet_rx_refill(priv, cb);
1780
1781                 if (unlikely(!skb)) {
1782                         ring->dropped++;
1783                         goto next;
1784                 }
1785
1786                 if (!priv->desc_64b_en) {
1787                         dma_length_status =
1788                                 dmadesc_get_length_status(priv, cb->bd_addr);
1789                 } else {
1790                         struct status_64 *status;
1791                         __be16 rx_csum;
1792
1793                         status = (struct status_64 *)skb->data;
1794                         dma_length_status = status->length_status;
1795                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1796                         if (priv->desc_rxchk_en) {
1797                                 skb->csum = (__force __wsum)ntohs(rx_csum);
1798                                 skb->ip_summed = CHECKSUM_COMPLETE;
1799                         }
1800                 }
1801
1802                 /* DMA flags and length are still valid no matter how
1803                  * we got the Receive Status Vector (64B RSB or register)
1804                  */
1805                 dma_flag = dma_length_status & 0xffff;
1806                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1807
1808                 netif_dbg(priv, rx_status, dev,
1809                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1810                           __func__, p_index, ring->c_index,
1811                           ring->read_ptr, dma_length_status);
1812
1813                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1814                         netif_err(priv, rx_status, dev,
1815                                   "dropping fragmented packet!\n");
1816                         ring->errors++;
1817                         dev_kfree_skb_any(skb);
1818                         goto next;
1819                 }
1820
1821                 /* report errors */
1822                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1823                                                 DMA_RX_OV |
1824                                                 DMA_RX_NO |
1825                                                 DMA_RX_LG |
1826                                                 DMA_RX_RXER))) {
1827                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1828                                   (unsigned int)dma_flag);
1829                         if (dma_flag & DMA_RX_CRC_ERROR)
1830                                 dev->stats.rx_crc_errors++;
1831                         if (dma_flag & DMA_RX_OV)
1832                                 dev->stats.rx_over_errors++;
1833                         if (dma_flag & DMA_RX_NO)
1834                                 dev->stats.rx_frame_errors++;
1835                         if (dma_flag & DMA_RX_LG)
1836                                 dev->stats.rx_length_errors++;
1837                         dev->stats.rx_errors++;
1838                         dev_kfree_skb_any(skb);
1839                         goto next;
1840                 } /* error packet */
1841
1842                 skb_put(skb, len);
1843                 if (priv->desc_64b_en) {
1844                         skb_pull(skb, 64);
1845                         len -= 64;
1846                 }
1847
1848                 /* remove hardware 2bytes added for IP alignment */
1849                 skb_pull(skb, 2);
1850                 len -= 2;
1851
1852                 if (priv->crc_fwd_en) {
1853                         skb_trim(skb, len - ETH_FCS_LEN);
1854                         len -= ETH_FCS_LEN;
1855                 }
1856
1857                 bytes_processed += len;
1858
1859                 /*Finish setting up the received SKB and send it to the kernel*/
1860                 skb->protocol = eth_type_trans(skb, priv->dev);
1861                 ring->packets++;
1862                 ring->bytes += len;
1863                 if (dma_flag & DMA_RX_MULT)
1864                         dev->stats.multicast++;
1865
1866                 /* Notify kernel */
1867                 napi_gro_receive(&ring->napi, skb);
1868                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1869
1870 next:
1871                 rxpktprocessed++;
1872                 if (likely(ring->read_ptr < ring->end_ptr))
1873                         ring->read_ptr++;
1874                 else
1875                         ring->read_ptr = ring->cb_ptr;
1876
1877                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1878                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1879         }
1880
1881         ring->dim.bytes = bytes_processed;
1882         ring->dim.packets = rxpktprocessed;
1883
1884         return rxpktprocessed;
1885 }
1886
1887 /* Rx NAPI polling method */
1888 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1889 {
1890         struct bcmgenet_rx_ring *ring = container_of(napi,
1891                         struct bcmgenet_rx_ring, napi);
1892         struct dim_sample dim_sample = {};
1893         unsigned int work_done;
1894
1895         work_done = bcmgenet_desc_rx(ring, budget);
1896
1897         if (work_done < budget) {
1898                 napi_complete_done(napi, work_done);
1899                 ring->int_enable(ring);
1900         }
1901
1902         if (ring->dim.use_dim) {
1903                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1904                                   ring->dim.bytes, &dim_sample);
1905                 net_dim(&ring->dim.dim, dim_sample);
1906         }
1907
1908         return work_done;
1909 }
1910
1911 static void bcmgenet_dim_work(struct work_struct *work)
1912 {
1913         struct dim *dim = container_of(work, struct dim, work);
1914         struct bcmgenet_net_dim *ndim =
1915                         container_of(dim, struct bcmgenet_net_dim, dim);
1916         struct bcmgenet_rx_ring *ring =
1917                         container_of(ndim, struct bcmgenet_rx_ring, dim);
1918         struct dim_cq_moder cur_profile =
1919                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1920
1921         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1922         dim->state = DIM_START_MEASURE;
1923 }
1924
1925 /* Assign skb to RX DMA descriptor. */
1926 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1927                                      struct bcmgenet_rx_ring *ring)
1928 {
1929         struct enet_cb *cb;
1930         struct sk_buff *skb;
1931         int i;
1932
1933         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1934
1935         /* loop here for each buffer needing assign */
1936         for (i = 0; i < ring->size; i++) {
1937                 cb = ring->cbs + i;
1938                 skb = bcmgenet_rx_refill(priv, cb);
1939                 if (skb)
1940                         dev_consume_skb_any(skb);
1941                 if (!cb->skb)
1942                         return -ENOMEM;
1943         }
1944
1945         return 0;
1946 }
1947
1948 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1949 {
1950         struct sk_buff *skb;
1951         struct enet_cb *cb;
1952         int i;
1953
1954         for (i = 0; i < priv->num_rx_bds; i++) {
1955                 cb = &priv->rx_cbs[i];
1956
1957                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1958                 if (skb)
1959                         dev_consume_skb_any(skb);
1960         }
1961 }
1962
1963 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1964 {
1965         u32 reg;
1966
1967         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1968         if (enable)
1969                 reg |= mask;
1970         else
1971                 reg &= ~mask;
1972         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1973
1974         /* UniMAC stops on a packet boundary, wait for a full-size packet
1975          * to be processed
1976          */
1977         if (enable == 0)
1978                 usleep_range(1000, 2000);
1979 }
1980
1981 static void reset_umac(struct bcmgenet_priv *priv)
1982 {
1983         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1984         bcmgenet_rbuf_ctrl_set(priv, 0);
1985         udelay(10);
1986
1987         /* disable MAC while updating its registers */
1988         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1989
1990         /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1991         bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
1992 }
1993
1994 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1995 {
1996         /* Mask all interrupts.*/
1997         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1998         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1999         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2000         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2001 }
2002
2003 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2004 {
2005         u32 int0_enable = 0;
2006
2007         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2008          * and MoCA PHY
2009          */
2010         if (priv->internal_phy) {
2011                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2012                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2013                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2014         } else if (priv->ext_phy) {
2015                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2016         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2017                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2018                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2019         }
2020         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2021 }
2022
2023 static void init_umac(struct bcmgenet_priv *priv)
2024 {
2025         struct device *kdev = &priv->pdev->dev;
2026         u32 reg;
2027         u32 int0_enable = 0;
2028
2029         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2030
2031         reset_umac(priv);
2032
2033         /* clear tx/rx counter */
2034         bcmgenet_umac_writel(priv,
2035                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2036                              UMAC_MIB_CTRL);
2037         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2038
2039         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2040
2041         /* init rx registers, enable ip header optimization */
2042         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2043         reg |= RBUF_ALIGN_2B;
2044         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2045
2046         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2047                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2048
2049         bcmgenet_intr_disable(priv);
2050
2051         /* Configure backpressure vectors for MoCA */
2052         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2053                 reg = bcmgenet_bp_mc_get(priv);
2054                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2055
2056                 /* bp_mask: back pressure mask */
2057                 if (netif_is_multiqueue(priv->dev))
2058                         reg |= priv->hw_params->bp_in_mask;
2059                 else
2060                         reg &= ~priv->hw_params->bp_in_mask;
2061                 bcmgenet_bp_mc_set(priv, reg);
2062         }
2063
2064         /* Enable MDIO interrupts on GENET v3+ */
2065         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2066                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2067
2068         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2069
2070         dev_dbg(kdev, "done init umac\n");
2071 }
2072
2073 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2074                               void (*cb)(struct work_struct *work))
2075 {
2076         struct bcmgenet_net_dim *dim = &ring->dim;
2077
2078         INIT_WORK(&dim->dim.work, cb);
2079         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2080         dim->event_ctr = 0;
2081         dim->packets = 0;
2082         dim->bytes = 0;
2083 }
2084
2085 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2086 {
2087         struct bcmgenet_net_dim *dim = &ring->dim;
2088         struct dim_cq_moder moder;
2089         u32 usecs, pkts;
2090
2091         usecs = ring->rx_coalesce_usecs;
2092         pkts = ring->rx_max_coalesced_frames;
2093
2094         /* If DIM was enabled, re-apply default parameters */
2095         if (dim->use_dim) {
2096                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2097                 usecs = moder.usec;
2098                 pkts = moder.pkts;
2099         }
2100
2101         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2102 }
2103
2104 /* Initialize a Tx ring along with corresponding hardware registers */
2105 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2106                                   unsigned int index, unsigned int size,
2107                                   unsigned int start_ptr, unsigned int end_ptr)
2108 {
2109         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2110         u32 words_per_bd = WORDS_PER_BD(priv);
2111         u32 flow_period_val = 0;
2112
2113         spin_lock_init(&ring->lock);
2114         ring->priv = priv;
2115         ring->index = index;
2116         if (index == DESC_INDEX) {
2117                 ring->queue = 0;
2118                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2119                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2120         } else {
2121                 ring->queue = index + 1;
2122                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2123                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2124         }
2125         ring->cbs = priv->tx_cbs + start_ptr;
2126         ring->size = size;
2127         ring->clean_ptr = start_ptr;
2128         ring->c_index = 0;
2129         ring->free_bds = size;
2130         ring->write_ptr = start_ptr;
2131         ring->cb_ptr = start_ptr;
2132         ring->end_ptr = end_ptr - 1;
2133         ring->prod_index = 0;
2134
2135         /* Set flow period for ring != 16 */
2136         if (index != DESC_INDEX)
2137                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2138
2139         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2140         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2141         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2142         /* Disable rate control for now */
2143         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2144                                   TDMA_FLOW_PERIOD);
2145         bcmgenet_tdma_ring_writel(priv, index,
2146                                   ((size << DMA_RING_SIZE_SHIFT) |
2147                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2148
2149         /* Set start and end address, read and write pointers */
2150         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2151                                   DMA_START_ADDR);
2152         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2153                                   TDMA_READ_PTR);
2154         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2155                                   TDMA_WRITE_PTR);
2156         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2157                                   DMA_END_ADDR);
2158
2159         /* Initialize Tx NAPI */
2160         netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2161                           NAPI_POLL_WEIGHT);
2162 }
2163
2164 /* Initialize a RDMA ring */
2165 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2166                                  unsigned int index, unsigned int size,
2167                                  unsigned int start_ptr, unsigned int end_ptr)
2168 {
2169         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2170         u32 words_per_bd = WORDS_PER_BD(priv);
2171         int ret;
2172
2173         ring->priv = priv;
2174         ring->index = index;
2175         if (index == DESC_INDEX) {
2176                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2177                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2178         } else {
2179                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2180                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2181         }
2182         ring->cbs = priv->rx_cbs + start_ptr;
2183         ring->size = size;
2184         ring->c_index = 0;
2185         ring->read_ptr = start_ptr;
2186         ring->cb_ptr = start_ptr;
2187         ring->end_ptr = end_ptr - 1;
2188
2189         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2190         if (ret)
2191                 return ret;
2192
2193         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2194         bcmgenet_init_rx_coalesce(ring);
2195
2196         /* Initialize Rx NAPI */
2197         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2198                        NAPI_POLL_WEIGHT);
2199
2200         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2201         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2202         bcmgenet_rdma_ring_writel(priv, index,
2203                                   ((size << DMA_RING_SIZE_SHIFT) |
2204                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2205         bcmgenet_rdma_ring_writel(priv, index,
2206                                   (DMA_FC_THRESH_LO <<
2207                                    DMA_XOFF_THRESHOLD_SHIFT) |
2208                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2209
2210         /* Set start and end address, read and write pointers */
2211         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2212                                   DMA_START_ADDR);
2213         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2214                                   RDMA_READ_PTR);
2215         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2216                                   RDMA_WRITE_PTR);
2217         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2218                                   DMA_END_ADDR);
2219
2220         return ret;
2221 }
2222
2223 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2224 {
2225         unsigned int i;
2226         struct bcmgenet_tx_ring *ring;
2227
2228         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2229                 ring = &priv->tx_rings[i];
2230                 napi_enable(&ring->napi);
2231                 ring->int_enable(ring);
2232         }
2233
2234         ring = &priv->tx_rings[DESC_INDEX];
2235         napi_enable(&ring->napi);
2236         ring->int_enable(ring);
2237 }
2238
2239 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2240 {
2241         unsigned int i;
2242         struct bcmgenet_tx_ring *ring;
2243
2244         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2245                 ring = &priv->tx_rings[i];
2246                 napi_disable(&ring->napi);
2247         }
2248
2249         ring = &priv->tx_rings[DESC_INDEX];
2250         napi_disable(&ring->napi);
2251 }
2252
2253 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2254 {
2255         unsigned int i;
2256         struct bcmgenet_tx_ring *ring;
2257
2258         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2259                 ring = &priv->tx_rings[i];
2260                 netif_napi_del(&ring->napi);
2261         }
2262
2263         ring = &priv->tx_rings[DESC_INDEX];
2264         netif_napi_del(&ring->napi);
2265 }
2266
2267 /* Initialize Tx queues
2268  *
2269  * Queues 0-3 are priority-based, each one has 32 descriptors,
2270  * with queue 0 being the highest priority queue.
2271  *
2272  * Queue 16 is the default Tx queue with
2273  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2274  *
2275  * The transmit control block pool is then partitioned as follows:
2276  * - Tx queue 0 uses tx_cbs[0..31]
2277  * - Tx queue 1 uses tx_cbs[32..63]
2278  * - Tx queue 2 uses tx_cbs[64..95]
2279  * - Tx queue 3 uses tx_cbs[96..127]
2280  * - Tx queue 16 uses tx_cbs[128..255]
2281  */
2282 static void bcmgenet_init_tx_queues(struct net_device *dev)
2283 {
2284         struct bcmgenet_priv *priv = netdev_priv(dev);
2285         u32 i, dma_enable;
2286         u32 dma_ctrl, ring_cfg;
2287         u32 dma_priority[3] = {0, 0, 0};
2288
2289         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2290         dma_enable = dma_ctrl & DMA_EN;
2291         dma_ctrl &= ~DMA_EN;
2292         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2293
2294         dma_ctrl = 0;
2295         ring_cfg = 0;
2296
2297         /* Enable strict priority arbiter mode */
2298         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2299
2300         /* Initialize Tx priority queues */
2301         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2302                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2303                                       i * priv->hw_params->tx_bds_per_q,
2304                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2305                 ring_cfg |= (1 << i);
2306                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2307                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2308                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2309         }
2310
2311         /* Initialize Tx default queue 16 */
2312         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2313                               priv->hw_params->tx_queues *
2314                               priv->hw_params->tx_bds_per_q,
2315                               TOTAL_DESC);
2316         ring_cfg |= (1 << DESC_INDEX);
2317         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2318         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2319                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2320                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2321
2322         /* Set Tx queue priorities */
2323         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2324         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2325         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2326
2327         /* Enable Tx queues */
2328         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2329
2330         /* Enable Tx DMA */
2331         if (dma_enable)
2332                 dma_ctrl |= DMA_EN;
2333         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2334 }
2335
2336 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2337 {
2338         unsigned int i;
2339         struct bcmgenet_rx_ring *ring;
2340
2341         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2342                 ring = &priv->rx_rings[i];
2343                 napi_enable(&ring->napi);
2344                 ring->int_enable(ring);
2345         }
2346
2347         ring = &priv->rx_rings[DESC_INDEX];
2348         napi_enable(&ring->napi);
2349         ring->int_enable(ring);
2350 }
2351
2352 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2353 {
2354         unsigned int i;
2355         struct bcmgenet_rx_ring *ring;
2356
2357         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2358                 ring = &priv->rx_rings[i];
2359                 napi_disable(&ring->napi);
2360                 cancel_work_sync(&ring->dim.dim.work);
2361         }
2362
2363         ring = &priv->rx_rings[DESC_INDEX];
2364         napi_disable(&ring->napi);
2365         cancel_work_sync(&ring->dim.dim.work);
2366 }
2367
2368 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2369 {
2370         unsigned int i;
2371         struct bcmgenet_rx_ring *ring;
2372
2373         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2374                 ring = &priv->rx_rings[i];
2375                 netif_napi_del(&ring->napi);
2376         }
2377
2378         ring = &priv->rx_rings[DESC_INDEX];
2379         netif_napi_del(&ring->napi);
2380 }
2381
2382 /* Initialize Rx queues
2383  *
2384  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2385  * used to direct traffic to these queues.
2386  *
2387  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2388  */
2389 static int bcmgenet_init_rx_queues(struct net_device *dev)
2390 {
2391         struct bcmgenet_priv *priv = netdev_priv(dev);
2392         u32 i;
2393         u32 dma_enable;
2394         u32 dma_ctrl;
2395         u32 ring_cfg;
2396         int ret;
2397
2398         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2399         dma_enable = dma_ctrl & DMA_EN;
2400         dma_ctrl &= ~DMA_EN;
2401         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2402
2403         dma_ctrl = 0;
2404         ring_cfg = 0;
2405
2406         /* Initialize Rx priority queues */
2407         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2408                 ret = bcmgenet_init_rx_ring(priv, i,
2409                                             priv->hw_params->rx_bds_per_q,
2410                                             i * priv->hw_params->rx_bds_per_q,
2411                                             (i + 1) *
2412                                             priv->hw_params->rx_bds_per_q);
2413                 if (ret)
2414                         return ret;
2415
2416                 ring_cfg |= (1 << i);
2417                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2418         }
2419
2420         /* Initialize Rx default queue 16 */
2421         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2422                                     priv->hw_params->rx_queues *
2423                                     priv->hw_params->rx_bds_per_q,
2424                                     TOTAL_DESC);
2425         if (ret)
2426                 return ret;
2427
2428         ring_cfg |= (1 << DESC_INDEX);
2429         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2430
2431         /* Enable rings */
2432         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2433
2434         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2435         if (dma_enable)
2436                 dma_ctrl |= DMA_EN;
2437         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2438
2439         return 0;
2440 }
2441
2442 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2443 {
2444         int ret = 0;
2445         int timeout = 0;
2446         u32 reg;
2447         u32 dma_ctrl;
2448         int i;
2449
2450         /* Disable TDMA to stop add more frames in TX DMA */
2451         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2452         reg &= ~DMA_EN;
2453         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2454
2455         /* Check TDMA status register to confirm TDMA is disabled */
2456         while (timeout++ < DMA_TIMEOUT_VAL) {
2457                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2458                 if (reg & DMA_DISABLED)
2459                         break;
2460
2461                 udelay(1);
2462         }
2463
2464         if (timeout == DMA_TIMEOUT_VAL) {
2465                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2466                 ret = -ETIMEDOUT;
2467         }
2468
2469         /* Wait 10ms for packet drain in both tx and rx dma */
2470         usleep_range(10000, 20000);
2471
2472         /* Disable RDMA */
2473         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2474         reg &= ~DMA_EN;
2475         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2476
2477         timeout = 0;
2478         /* Check RDMA status register to confirm RDMA is disabled */
2479         while (timeout++ < DMA_TIMEOUT_VAL) {
2480                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2481                 if (reg & DMA_DISABLED)
2482                         break;
2483
2484                 udelay(1);
2485         }
2486
2487         if (timeout == DMA_TIMEOUT_VAL) {
2488                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2489                 ret = -ETIMEDOUT;
2490         }
2491
2492         dma_ctrl = 0;
2493         for (i = 0; i < priv->hw_params->rx_queues; i++)
2494                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2495         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2496         reg &= ~dma_ctrl;
2497         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2498
2499         dma_ctrl = 0;
2500         for (i = 0; i < priv->hw_params->tx_queues; i++)
2501                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2502         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2503         reg &= ~dma_ctrl;
2504         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2505
2506         return ret;
2507 }
2508
2509 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2510 {
2511         struct netdev_queue *txq;
2512         int i;
2513
2514         bcmgenet_fini_rx_napi(priv);
2515         bcmgenet_fini_tx_napi(priv);
2516
2517         for (i = 0; i < priv->num_tx_bds; i++)
2518                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2519                                                   priv->tx_cbs + i));
2520
2521         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2522                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2523                 netdev_tx_reset_queue(txq);
2524         }
2525
2526         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2527         netdev_tx_reset_queue(txq);
2528
2529         bcmgenet_free_rx_buffers(priv);
2530         kfree(priv->rx_cbs);
2531         kfree(priv->tx_cbs);
2532 }
2533
2534 /* init_edma: Initialize DMA control register */
2535 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2536 {
2537         int ret;
2538         unsigned int i;
2539         struct enet_cb *cb;
2540
2541         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2542
2543         /* Initialize common Rx ring structures */
2544         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2545         priv->num_rx_bds = TOTAL_DESC;
2546         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2547                                GFP_KERNEL);
2548         if (!priv->rx_cbs)
2549                 return -ENOMEM;
2550
2551         for (i = 0; i < priv->num_rx_bds; i++) {
2552                 cb = priv->rx_cbs + i;
2553                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2554         }
2555
2556         /* Initialize common TX ring structures */
2557         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2558         priv->num_tx_bds = TOTAL_DESC;
2559         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2560                                GFP_KERNEL);
2561         if (!priv->tx_cbs) {
2562                 kfree(priv->rx_cbs);
2563                 return -ENOMEM;
2564         }
2565
2566         for (i = 0; i < priv->num_tx_bds; i++) {
2567                 cb = priv->tx_cbs + i;
2568                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2569         }
2570
2571         /* Init rDma */
2572         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2573                              DMA_SCB_BURST_SIZE);
2574
2575         /* Initialize Rx queues */
2576         ret = bcmgenet_init_rx_queues(priv->dev);
2577         if (ret) {
2578                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2579                 bcmgenet_free_rx_buffers(priv);
2580                 kfree(priv->rx_cbs);
2581                 kfree(priv->tx_cbs);
2582                 return ret;
2583         }
2584
2585         /* Init tDma */
2586         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2587                              DMA_SCB_BURST_SIZE);
2588
2589         /* Initialize Tx queues */
2590         bcmgenet_init_tx_queues(priv->dev);
2591
2592         return 0;
2593 }
2594
2595 /* Interrupt bottom half */
2596 static void bcmgenet_irq_task(struct work_struct *work)
2597 {
2598         unsigned int status;
2599         struct bcmgenet_priv *priv = container_of(
2600                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2601
2602         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2603
2604         spin_lock_irq(&priv->lock);
2605         status = priv->irq0_stat;
2606         priv->irq0_stat = 0;
2607         spin_unlock_irq(&priv->lock);
2608
2609         if (status & UMAC_IRQ_PHY_DET_R &&
2610             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2611                 phy_init_hw(priv->dev->phydev);
2612                 genphy_config_aneg(priv->dev->phydev);
2613         }
2614
2615         /* Link UP/DOWN event */
2616         if (status & UMAC_IRQ_LINK_EVENT)
2617                 phy_mac_interrupt(priv->dev->phydev);
2618
2619 }
2620
2621 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2622 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2623 {
2624         struct bcmgenet_priv *priv = dev_id;
2625         struct bcmgenet_rx_ring *rx_ring;
2626         struct bcmgenet_tx_ring *tx_ring;
2627         unsigned int index, status;
2628
2629         /* Read irq status */
2630         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2631                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2632
2633         /* clear interrupts */
2634         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2635
2636         netif_dbg(priv, intr, priv->dev,
2637                   "%s: IRQ=0x%x\n", __func__, status);
2638
2639         /* Check Rx priority queue interrupts */
2640         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2641                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2642                         continue;
2643
2644                 rx_ring = &priv->rx_rings[index];
2645                 rx_ring->dim.event_ctr++;
2646
2647                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2648                         rx_ring->int_disable(rx_ring);
2649                         __napi_schedule_irqoff(&rx_ring->napi);
2650                 }
2651         }
2652
2653         /* Check Tx priority queue interrupts */
2654         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2655                 if (!(status & BIT(index)))
2656                         continue;
2657
2658                 tx_ring = &priv->tx_rings[index];
2659
2660                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2661                         tx_ring->int_disable(tx_ring);
2662                         __napi_schedule_irqoff(&tx_ring->napi);
2663                 }
2664         }
2665
2666         return IRQ_HANDLED;
2667 }
2668
2669 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2670 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2671 {
2672         struct bcmgenet_priv *priv = dev_id;
2673         struct bcmgenet_rx_ring *rx_ring;
2674         struct bcmgenet_tx_ring *tx_ring;
2675         unsigned int status;
2676         unsigned long flags;
2677
2678         /* Read irq status */
2679         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2680                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2681
2682         /* clear interrupts */
2683         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2684
2685         netif_dbg(priv, intr, priv->dev,
2686                   "IRQ=0x%x\n", status);
2687
2688         if (status & UMAC_IRQ_RXDMA_DONE) {
2689                 rx_ring = &priv->rx_rings[DESC_INDEX];
2690                 rx_ring->dim.event_ctr++;
2691
2692                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2693                         rx_ring->int_disable(rx_ring);
2694                         __napi_schedule_irqoff(&rx_ring->napi);
2695                 }
2696         }
2697
2698         if (status & UMAC_IRQ_TXDMA_DONE) {
2699                 tx_ring = &priv->tx_rings[DESC_INDEX];
2700
2701                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2702                         tx_ring->int_disable(tx_ring);
2703                         __napi_schedule_irqoff(&tx_ring->napi);
2704                 }
2705         }
2706
2707         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2708                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2709                 wake_up(&priv->wq);
2710         }
2711
2712         /* all other interested interrupts handled in bottom half */
2713         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2714         if (status) {
2715                 /* Save irq status for bottom-half processing. */
2716                 spin_lock_irqsave(&priv->lock, flags);
2717                 priv->irq0_stat |= status;
2718                 spin_unlock_irqrestore(&priv->lock, flags);
2719
2720                 schedule_work(&priv->bcmgenet_irq_work);
2721         }
2722
2723         return IRQ_HANDLED;
2724 }
2725
2726 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2727 {
2728         struct bcmgenet_priv *priv = dev_id;
2729
2730         pm_wakeup_event(&priv->pdev->dev, 0);
2731
2732         return IRQ_HANDLED;
2733 }
2734
2735 #ifdef CONFIG_NET_POLL_CONTROLLER
2736 static void bcmgenet_poll_controller(struct net_device *dev)
2737 {
2738         struct bcmgenet_priv *priv = netdev_priv(dev);
2739
2740         /* Invoke the main RX/TX interrupt handler */
2741         disable_irq(priv->irq0);
2742         bcmgenet_isr0(priv->irq0, priv);
2743         enable_irq(priv->irq0);
2744
2745         /* And the interrupt handler for RX/TX priority queues */
2746         disable_irq(priv->irq1);
2747         bcmgenet_isr1(priv->irq1, priv);
2748         enable_irq(priv->irq1);
2749 }
2750 #endif
2751
2752 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2753 {
2754         u32 reg;
2755
2756         reg = bcmgenet_rbuf_ctrl_get(priv);
2757         reg |= BIT(1);
2758         bcmgenet_rbuf_ctrl_set(priv, reg);
2759         udelay(10);
2760
2761         reg &= ~BIT(1);
2762         bcmgenet_rbuf_ctrl_set(priv, reg);
2763         udelay(10);
2764 }
2765
2766 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2767                                  unsigned char *addr)
2768 {
2769         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2770                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2771         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2772 }
2773
2774 /* Returns a reusable dma control register value */
2775 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2776 {
2777         u32 reg;
2778         u32 dma_ctrl;
2779
2780         /* disable DMA */
2781         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2782         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2783         reg &= ~dma_ctrl;
2784         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2785
2786         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2787         reg &= ~dma_ctrl;
2788         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2789
2790         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2791         udelay(10);
2792         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2793
2794         return dma_ctrl;
2795 }
2796
2797 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2798 {
2799         u32 reg;
2800
2801         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2802         reg |= dma_ctrl;
2803         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2804
2805         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2806         reg |= dma_ctrl;
2807         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2808 }
2809
2810 /* bcmgenet_hfb_clear
2811  *
2812  * Clear Hardware Filter Block and disable all filtering.
2813  */
2814 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2815 {
2816         u32 i;
2817
2818         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2819         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2820         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2821
2822         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2823                 bcmgenet_rdma_writel(priv, 0x0, i);
2824
2825         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2826                 bcmgenet_hfb_reg_writel(priv, 0x0,
2827                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2828
2829         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2830                         priv->hw_params->hfb_filter_size; i++)
2831                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2832 }
2833
2834 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2835 {
2836         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2837                 return;
2838
2839         bcmgenet_hfb_clear(priv);
2840 }
2841
2842 static void bcmgenet_netif_start(struct net_device *dev)
2843 {
2844         struct bcmgenet_priv *priv = netdev_priv(dev);
2845
2846         /* Start the network engine */
2847         bcmgenet_enable_rx_napi(priv);
2848
2849         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2850
2851         bcmgenet_enable_tx_napi(priv);
2852
2853         /* Monitor link interrupts now */
2854         bcmgenet_link_intr_enable(priv);
2855
2856         phy_start(dev->phydev);
2857 }
2858
2859 static int bcmgenet_open(struct net_device *dev)
2860 {
2861         struct bcmgenet_priv *priv = netdev_priv(dev);
2862         unsigned long dma_ctrl;
2863         u32 reg;
2864         int ret;
2865
2866         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2867
2868         /* Turn on the clock */
2869         clk_prepare_enable(priv->clk);
2870
2871         /* If this is an internal GPHY, power it back on now, before UniMAC is
2872          * brought out of reset as absolutely no UniMAC activity is allowed
2873          */
2874         if (priv->internal_phy)
2875                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2876
2877         /* take MAC out of reset */
2878         bcmgenet_umac_reset(priv);
2879
2880         init_umac(priv);
2881
2882         /* Apply features again in case we changed them while interface was
2883          * down
2884          */
2885         bcmgenet_set_features(dev, dev->features);
2886
2887         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2888
2889         if (priv->internal_phy) {
2890                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2891                 reg |= EXT_ENERGY_DET_MASK;
2892                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2893         }
2894
2895         /* Disable RX/TX DMA and flush TX queues */
2896         dma_ctrl = bcmgenet_dma_disable(priv);
2897
2898         /* Reinitialize TDMA and RDMA and SW housekeeping */
2899         ret = bcmgenet_init_dma(priv);
2900         if (ret) {
2901                 netdev_err(dev, "failed to initialize DMA\n");
2902                 goto err_clk_disable;
2903         }
2904
2905         /* Always enable ring 16 - descriptor ring */
2906         bcmgenet_enable_dma(priv, dma_ctrl);
2907
2908         /* HFB init */
2909         bcmgenet_hfb_init(priv);
2910
2911         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2912                           dev->name, priv);
2913         if (ret < 0) {
2914                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2915                 goto err_fini_dma;
2916         }
2917
2918         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2919                           dev->name, priv);
2920         if (ret < 0) {
2921                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2922                 goto err_irq0;
2923         }
2924
2925         ret = bcmgenet_mii_probe(dev);
2926         if (ret) {
2927                 netdev_err(dev, "failed to connect to PHY\n");
2928                 goto err_irq1;
2929         }
2930
2931         bcmgenet_netif_start(dev);
2932
2933         netif_tx_start_all_queues(dev);
2934
2935         return 0;
2936
2937 err_irq1:
2938         free_irq(priv->irq1, priv);
2939 err_irq0:
2940         free_irq(priv->irq0, priv);
2941 err_fini_dma:
2942         bcmgenet_dma_teardown(priv);
2943         bcmgenet_fini_dma(priv);
2944 err_clk_disable:
2945         if (priv->internal_phy)
2946                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2947         clk_disable_unprepare(priv->clk);
2948         return ret;
2949 }
2950
2951 static void bcmgenet_netif_stop(struct net_device *dev)
2952 {
2953         struct bcmgenet_priv *priv = netdev_priv(dev);
2954
2955         bcmgenet_disable_tx_napi(priv);
2956         netif_tx_disable(dev);
2957
2958         /* Disable MAC receive */
2959         umac_enable_set(priv, CMD_RX_EN, false);
2960
2961         bcmgenet_dma_teardown(priv);
2962
2963         /* Disable MAC transmit. TX DMA disabled must be done before this */
2964         umac_enable_set(priv, CMD_TX_EN, false);
2965
2966         phy_stop(dev->phydev);
2967         bcmgenet_disable_rx_napi(priv);
2968         bcmgenet_intr_disable(priv);
2969
2970         /* Wait for pending work items to complete. Since interrupts are
2971          * disabled no new work will be scheduled.
2972          */
2973         cancel_work_sync(&priv->bcmgenet_irq_work);
2974
2975         priv->old_link = -1;
2976         priv->old_speed = -1;
2977         priv->old_duplex = -1;
2978         priv->old_pause = -1;
2979
2980         /* tx reclaim */
2981         bcmgenet_tx_reclaim_all(dev);
2982         bcmgenet_fini_dma(priv);
2983 }
2984
2985 static int bcmgenet_close(struct net_device *dev)
2986 {
2987         struct bcmgenet_priv *priv = netdev_priv(dev);
2988         int ret = 0;
2989
2990         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2991
2992         bcmgenet_netif_stop(dev);
2993
2994         /* Really kill the PHY state machine and disconnect from it */
2995         phy_disconnect(dev->phydev);
2996
2997         free_irq(priv->irq0, priv);
2998         free_irq(priv->irq1, priv);
2999
3000         if (priv->internal_phy)
3001                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3002
3003         clk_disable_unprepare(priv->clk);
3004
3005         return ret;
3006 }
3007
3008 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3009 {
3010         struct bcmgenet_priv *priv = ring->priv;
3011         u32 p_index, c_index, intsts, intmsk;
3012         struct netdev_queue *txq;
3013         unsigned int free_bds;
3014         bool txq_stopped;
3015
3016         if (!netif_msg_tx_err(priv))
3017                 return;
3018
3019         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3020
3021         spin_lock(&ring->lock);
3022         if (ring->index == DESC_INDEX) {
3023                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3024                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3025         } else {
3026                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3027                 intmsk = 1 << ring->index;
3028         }
3029         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3030         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3031         txq_stopped = netif_tx_queue_stopped(txq);
3032         free_bds = ring->free_bds;
3033         spin_unlock(&ring->lock);
3034
3035         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3036                   "TX queue status: %s, interrupts: %s\n"
3037                   "(sw)free_bds: %d (sw)size: %d\n"
3038                   "(sw)p_index: %d (hw)p_index: %d\n"
3039                   "(sw)c_index: %d (hw)c_index: %d\n"
3040                   "(sw)clean_p: %d (sw)write_p: %d\n"
3041                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3042                   ring->index, ring->queue,
3043                   txq_stopped ? "stopped" : "active",
3044                   intsts & intmsk ? "enabled" : "disabled",
3045                   free_bds, ring->size,
3046                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3047                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3048                   ring->clean_ptr, ring->write_ptr,
3049                   ring->cb_ptr, ring->end_ptr);
3050 }
3051
3052 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3053 {
3054         struct bcmgenet_priv *priv = netdev_priv(dev);
3055         u32 int0_enable = 0;
3056         u32 int1_enable = 0;
3057         unsigned int q;
3058
3059         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3060
3061         for (q = 0; q < priv->hw_params->tx_queues; q++)
3062                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3063         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3064
3065         bcmgenet_tx_reclaim_all(dev);
3066
3067         for (q = 0; q < priv->hw_params->tx_queues; q++)
3068                 int1_enable |= (1 << q);
3069
3070         int0_enable = UMAC_IRQ_TXDMA_DONE;
3071
3072         /* Re-enable TX interrupts if disabled */
3073         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3074         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3075
3076         netif_trans_update(dev);
3077
3078         dev->stats.tx_errors++;
3079
3080         netif_tx_wake_all_queues(dev);
3081 }
3082
3083 #define MAX_MDF_FILTER  17
3084
3085 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3086                                          unsigned char *addr,
3087                                          int *i)
3088 {
3089         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3090                              UMAC_MDF_ADDR + (*i * 4));
3091         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3092                              addr[4] << 8 | addr[5],
3093                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3094         *i += 2;
3095 }
3096
3097 static void bcmgenet_set_rx_mode(struct net_device *dev)
3098 {
3099         struct bcmgenet_priv *priv = netdev_priv(dev);
3100         struct netdev_hw_addr *ha;
3101         int i, nfilter;
3102         u32 reg;
3103
3104         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3105
3106         /* Number of filters needed */
3107         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3108
3109         /*
3110          * Turn on promicuous mode for three scenarios
3111          * 1. IFF_PROMISC flag is set
3112          * 2. IFF_ALLMULTI flag is set
3113          * 3. The number of filters needed exceeds the number filters
3114          *    supported by the hardware.
3115         */
3116         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3117         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3118             (nfilter > MAX_MDF_FILTER)) {
3119                 reg |= CMD_PROMISC;
3120                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3121                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3122                 return;
3123         } else {
3124                 reg &= ~CMD_PROMISC;
3125                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3126         }
3127
3128         /* update MDF filter */
3129         i = 0;
3130         /* Broadcast */
3131         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3132         /* my own address.*/
3133         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3134
3135         /* Unicast */
3136         netdev_for_each_uc_addr(ha, dev)
3137                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3138
3139         /* Multicast */
3140         netdev_for_each_mc_addr(ha, dev)
3141                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3142
3143         /* Enable filters */
3144         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3145         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3146 }
3147
3148 /* Set the hardware MAC address. */
3149 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3150 {
3151         struct sockaddr *addr = p;
3152
3153         /* Setting the MAC address at the hardware level is not possible
3154          * without disabling the UniMAC RX/TX enable bits.
3155          */
3156         if (netif_running(dev))
3157                 return -EBUSY;
3158
3159         ether_addr_copy(dev->dev_addr, addr->sa_data);
3160
3161         return 0;
3162 }
3163
3164 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3165 {
3166         struct bcmgenet_priv *priv = netdev_priv(dev);
3167         unsigned long tx_bytes = 0, tx_packets = 0;
3168         unsigned long rx_bytes = 0, rx_packets = 0;
3169         unsigned long rx_errors = 0, rx_dropped = 0;
3170         struct bcmgenet_tx_ring *tx_ring;
3171         struct bcmgenet_rx_ring *rx_ring;
3172         unsigned int q;
3173
3174         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3175                 tx_ring = &priv->tx_rings[q];
3176                 tx_bytes += tx_ring->bytes;
3177                 tx_packets += tx_ring->packets;
3178         }
3179         tx_ring = &priv->tx_rings[DESC_INDEX];
3180         tx_bytes += tx_ring->bytes;
3181         tx_packets += tx_ring->packets;
3182
3183         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3184                 rx_ring = &priv->rx_rings[q];
3185
3186                 rx_bytes += rx_ring->bytes;
3187                 rx_packets += rx_ring->packets;
3188                 rx_errors += rx_ring->errors;
3189                 rx_dropped += rx_ring->dropped;
3190         }
3191         rx_ring = &priv->rx_rings[DESC_INDEX];
3192         rx_bytes += rx_ring->bytes;
3193         rx_packets += rx_ring->packets;
3194         rx_errors += rx_ring->errors;
3195         rx_dropped += rx_ring->dropped;
3196
3197         dev->stats.tx_bytes = tx_bytes;
3198         dev->stats.tx_packets = tx_packets;
3199         dev->stats.rx_bytes = rx_bytes;
3200         dev->stats.rx_packets = rx_packets;
3201         dev->stats.rx_errors = rx_errors;
3202         dev->stats.rx_missed_errors = rx_errors;
3203         return &dev->stats;
3204 }
3205
3206 static const struct net_device_ops bcmgenet_netdev_ops = {
3207         .ndo_open               = bcmgenet_open,
3208         .ndo_stop               = bcmgenet_close,
3209         .ndo_start_xmit         = bcmgenet_xmit,
3210         .ndo_tx_timeout         = bcmgenet_timeout,
3211         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3212         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3213         .ndo_do_ioctl           = phy_do_ioctl_running,
3214         .ndo_set_features       = bcmgenet_set_features,
3215 #ifdef CONFIG_NET_POLL_CONTROLLER
3216         .ndo_poll_controller    = bcmgenet_poll_controller,
3217 #endif
3218         .ndo_get_stats          = bcmgenet_get_stats,
3219 };
3220
3221 /* Array of GENET hardware parameters/characteristics */
3222 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3223         [GENET_V1] = {
3224                 .tx_queues = 0,
3225                 .tx_bds_per_q = 0,
3226                 .rx_queues = 0,
3227                 .rx_bds_per_q = 0,
3228                 .bp_in_en_shift = 16,
3229                 .bp_in_mask = 0xffff,
3230                 .hfb_filter_cnt = 16,
3231                 .qtag_mask = 0x1F,
3232                 .hfb_offset = 0x1000,
3233                 .rdma_offset = 0x2000,
3234                 .tdma_offset = 0x3000,
3235                 .words_per_bd = 2,
3236         },
3237         [GENET_V2] = {
3238                 .tx_queues = 4,
3239                 .tx_bds_per_q = 32,
3240                 .rx_queues = 0,
3241                 .rx_bds_per_q = 0,
3242                 .bp_in_en_shift = 16,
3243                 .bp_in_mask = 0xffff,
3244                 .hfb_filter_cnt = 16,
3245                 .qtag_mask = 0x1F,
3246                 .tbuf_offset = 0x0600,
3247                 .hfb_offset = 0x1000,
3248                 .hfb_reg_offset = 0x2000,
3249                 .rdma_offset = 0x3000,
3250                 .tdma_offset = 0x4000,
3251                 .words_per_bd = 2,
3252                 .flags = GENET_HAS_EXT,
3253         },
3254         [GENET_V3] = {
3255                 .tx_queues = 4,
3256                 .tx_bds_per_q = 32,
3257                 .rx_queues = 0,
3258                 .rx_bds_per_q = 0,
3259                 .bp_in_en_shift = 17,
3260                 .bp_in_mask = 0x1ffff,
3261                 .hfb_filter_cnt = 48,
3262                 .hfb_filter_size = 128,
3263                 .qtag_mask = 0x3F,
3264                 .tbuf_offset = 0x0600,
3265                 .hfb_offset = 0x8000,
3266                 .hfb_reg_offset = 0xfc00,
3267                 .rdma_offset = 0x10000,
3268                 .tdma_offset = 0x11000,
3269                 .words_per_bd = 2,
3270                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3271                          GENET_HAS_MOCA_LINK_DET,
3272         },
3273         [GENET_V4] = {
3274                 .tx_queues = 4,
3275                 .tx_bds_per_q = 32,
3276                 .rx_queues = 0,
3277                 .rx_bds_per_q = 0,
3278                 .bp_in_en_shift = 17,
3279                 .bp_in_mask = 0x1ffff,
3280                 .hfb_filter_cnt = 48,
3281                 .hfb_filter_size = 128,
3282                 .qtag_mask = 0x3F,
3283                 .tbuf_offset = 0x0600,
3284                 .hfb_offset = 0x8000,
3285                 .hfb_reg_offset = 0xfc00,
3286                 .rdma_offset = 0x2000,
3287                 .tdma_offset = 0x4000,
3288                 .words_per_bd = 3,
3289                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3290                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3291         },
3292         [GENET_V5] = {
3293                 .tx_queues = 4,
3294                 .tx_bds_per_q = 32,
3295                 .rx_queues = 0,
3296                 .rx_bds_per_q = 0,
3297                 .bp_in_en_shift = 17,
3298                 .bp_in_mask = 0x1ffff,
3299                 .hfb_filter_cnt = 48,
3300                 .hfb_filter_size = 128,
3301                 .qtag_mask = 0x3F,
3302                 .tbuf_offset = 0x0600,
3303                 .hfb_offset = 0x8000,
3304                 .hfb_reg_offset = 0xfc00,
3305                 .rdma_offset = 0x2000,
3306                 .tdma_offset = 0x4000,
3307                 .words_per_bd = 3,
3308                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3309                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3310         },
3311 };
3312
3313 /* Infer hardware parameters from the detected GENET version */
3314 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3315 {
3316         struct bcmgenet_hw_params *params;
3317         u32 reg;
3318         u8 major;
3319         u16 gphy_rev;
3320
3321         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3322                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3323                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3324         } else if (GENET_IS_V3(priv)) {
3325                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3326                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3327         } else if (GENET_IS_V2(priv)) {
3328                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3329                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3330         } else if (GENET_IS_V1(priv)) {
3331                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3332                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3333         }
3334
3335         /* enum genet_version starts at 1 */
3336         priv->hw_params = &bcmgenet_hw_params[priv->version];
3337         params = priv->hw_params;
3338
3339         /* Read GENET HW version */
3340         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3341         major = (reg >> 24 & 0x0f);
3342         if (major == 6)
3343                 major = 5;
3344         else if (major == 5)
3345                 major = 4;
3346         else if (major == 0)
3347                 major = 1;
3348         if (major != priv->version) {
3349                 dev_err(&priv->pdev->dev,
3350                         "GENET version mismatch, got: %d, configured for: %d\n",
3351                         major, priv->version);
3352         }
3353
3354         /* Print the GENET core version */
3355         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3356                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3357
3358         /* Store the integrated PHY revision for the MDIO probing function
3359          * to pass this information to the PHY driver. The PHY driver expects
3360          * to find the PHY major revision in bits 15:8 while the GENET register
3361          * stores that information in bits 7:0, account for that.
3362          *
3363          * On newer chips, starting with PHY revision G0, a new scheme is
3364          * deployed similar to the Starfighter 2 switch with GPHY major
3365          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3366          * is reserved as well as special value 0x01ff, we have a small
3367          * heuristic to check for the new GPHY revision and re-arrange things
3368          * so the GPHY driver is happy.
3369          */
3370         gphy_rev = reg & 0xffff;
3371
3372         if (GENET_IS_V5(priv)) {
3373                 /* The EPHY revision should come from the MDIO registers of
3374                  * the PHY not from GENET.
3375                  */
3376                 if (gphy_rev != 0) {
3377                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3378                                 gphy_rev);
3379                 }
3380         /* This is reserved so should require special treatment */
3381         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3382                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3383                 return;
3384         /* This is the good old scheme, just GPHY major, no minor nor patch */
3385         } else if ((gphy_rev & 0xf0) != 0) {
3386                 priv->gphy_rev = gphy_rev << 8;
3387         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3388         } else if ((gphy_rev & 0xff00) != 0) {
3389                 priv->gphy_rev = gphy_rev;
3390         }
3391
3392 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3393         if (!(params->flags & GENET_HAS_40BITS))
3394                 pr_warn("GENET does not support 40-bits PA\n");
3395 #endif
3396
3397         pr_debug("Configuration for version: %d\n"
3398                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3399                 "BP << en: %2d, BP msk: 0x%05x\n"
3400                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3401                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3402                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3403                 "Words/BD: %d\n",
3404                 priv->version,
3405                 params->tx_queues, params->tx_bds_per_q,
3406                 params->rx_queues, params->rx_bds_per_q,
3407                 params->bp_in_en_shift, params->bp_in_mask,
3408                 params->hfb_filter_cnt, params->qtag_mask,
3409                 params->tbuf_offset, params->hfb_offset,
3410                 params->hfb_reg_offset,
3411                 params->rdma_offset, params->tdma_offset,
3412                 params->words_per_bd);
3413 }
3414
3415 struct bcmgenet_plat_data {
3416         enum bcmgenet_version version;
3417         u32 dma_max_burst_length;
3418 };
3419
3420 static const struct bcmgenet_plat_data v1_plat_data = {
3421         .version = GENET_V1,
3422         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3423 };
3424
3425 static const struct bcmgenet_plat_data v2_plat_data = {
3426         .version = GENET_V2,
3427         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3428 };
3429
3430 static const struct bcmgenet_plat_data v3_plat_data = {
3431         .version = GENET_V3,
3432         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3433 };
3434
3435 static const struct bcmgenet_plat_data v4_plat_data = {
3436         .version = GENET_V4,
3437         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3438 };
3439
3440 static const struct bcmgenet_plat_data v5_plat_data = {
3441         .version = GENET_V5,
3442         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3443 };
3444
3445 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3446         .version = GENET_V5,
3447         .dma_max_burst_length = 0x08,
3448 };
3449
3450 static const struct of_device_id bcmgenet_match[] = {
3451         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3452         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3453         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3454         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3455         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3456         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3457         { },
3458 };
3459 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3460
3461 static int bcmgenet_probe(struct platform_device *pdev)
3462 {
3463         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3464         struct device_node *dn = pdev->dev.of_node;
3465         const struct of_device_id *of_id = NULL;
3466         const struct bcmgenet_plat_data *pdata;
3467         struct bcmgenet_priv *priv;
3468         struct net_device *dev;
3469         const void *macaddr;
3470         unsigned int i;
3471         int err = -EIO;
3472         const char *phy_mode_str;
3473
3474         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3475         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3476                                  GENET_MAX_MQ_CNT + 1);
3477         if (!dev) {
3478                 dev_err(&pdev->dev, "can't allocate net device\n");
3479                 return -ENOMEM;
3480         }
3481
3482         if (dn) {
3483                 of_id = of_match_node(bcmgenet_match, dn);
3484                 if (!of_id)
3485                         return -EINVAL;
3486         }
3487
3488         priv = netdev_priv(dev);
3489         priv->irq0 = platform_get_irq(pdev, 0);
3490         if (priv->irq0 < 0) {
3491                 err = priv->irq0;
3492                 goto err;
3493         }
3494         priv->irq1 = platform_get_irq(pdev, 1);
3495         if (priv->irq1 < 0) {
3496                 err = priv->irq1;
3497                 goto err;
3498         }
3499         priv->wol_irq = platform_get_irq_optional(pdev, 2);
3500
3501         if (dn)
3502                 macaddr = of_get_mac_address(dn);
3503         else
3504                 macaddr = pd->mac_address;
3505
3506         priv->base = devm_platform_ioremap_resource(pdev, 0);
3507         if (IS_ERR(priv->base)) {
3508                 err = PTR_ERR(priv->base);
3509                 goto err;
3510         }
3511
3512         spin_lock_init(&priv->lock);
3513
3514         SET_NETDEV_DEV(dev, &pdev->dev);
3515         dev_set_drvdata(&pdev->dev, dev);
3516         if (IS_ERR_OR_NULL(macaddr) || !is_valid_ether_addr(macaddr)) {
3517                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3518                 eth_hw_addr_random(dev);
3519         } else {
3520                 ether_addr_copy(dev->dev_addr, macaddr);
3521         }
3522         dev->watchdog_timeo = 2 * HZ;
3523         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3524         dev->netdev_ops = &bcmgenet_netdev_ops;
3525
3526         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3527
3528         /* Set default features */
3529         dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3530                          NETIF_F_RXCSUM;
3531         dev->hw_features |= dev->features;
3532         dev->vlan_features |= dev->features;
3533
3534         /* Request the WOL interrupt and advertise suspend if available */
3535         priv->wol_irq_disabled = true;
3536         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3537                                dev->name, priv);
3538         if (!err)
3539                 device_set_wakeup_capable(&pdev->dev, 1);
3540
3541         /* Set the needed headroom to account for any possible
3542          * features enabling/disabling at runtime
3543          */
3544         dev->needed_headroom += 64;
3545
3546         netdev_boot_setup_check(dev);
3547
3548         priv->dev = dev;
3549         priv->pdev = pdev;
3550         if (of_id) {
3551                 pdata = of_id->data;
3552                 priv->version = pdata->version;
3553                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
3554         } else {
3555                 priv->version = pd->genet_version;
3556                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3557         }
3558
3559         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3560         if (IS_ERR(priv->clk)) {
3561                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3562                 priv->clk = NULL;
3563         }
3564
3565         clk_prepare_enable(priv->clk);
3566
3567         bcmgenet_set_hw_params(priv);
3568
3569         err = -EIO;
3570         if (priv->hw_params->flags & GENET_HAS_40BITS)
3571                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3572         if (err)
3573                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3574         if (err)
3575                 goto err;
3576
3577         /* Mii wait queue */
3578         init_waitqueue_head(&priv->wq);
3579         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3580         priv->rx_buf_len = RX_BUF_LENGTH;
3581         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3582
3583         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3584         if (IS_ERR(priv->clk_wol)) {
3585                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3586                 priv->clk_wol = NULL;
3587         }
3588
3589         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3590         if (IS_ERR(priv->clk_eee)) {
3591                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3592                 priv->clk_eee = NULL;
3593         }
3594
3595         /* If this is an internal GPHY, power it on now, before UniMAC is
3596          * brought out of reset as absolutely no UniMAC activity is allowed
3597          */
3598         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3599             !strcasecmp(phy_mode_str, "internal"))
3600                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3601
3602         reset_umac(priv);
3603
3604         err = bcmgenet_mii_init(dev);
3605         if (err)
3606                 goto err_clk_disable;
3607
3608         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3609          * just the ring 16 descriptor based TX
3610          */
3611         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3612         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3613
3614         /* Set default coalescing parameters */
3615         for (i = 0; i < priv->hw_params->rx_queues; i++)
3616                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
3617         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3618
3619         /* libphy will determine the link state */
3620         netif_carrier_off(dev);
3621
3622         /* Turn off the main clock, WOL clock is handled separately */
3623         clk_disable_unprepare(priv->clk);
3624
3625         err = register_netdev(dev);
3626         if (err)
3627                 goto err;
3628
3629         return err;
3630
3631 err_clk_disable:
3632         clk_disable_unprepare(priv->clk);
3633 err:
3634         free_netdev(dev);
3635         return err;
3636 }
3637
3638 static int bcmgenet_remove(struct platform_device *pdev)
3639 {
3640         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3641
3642         dev_set_drvdata(&pdev->dev, NULL);
3643         unregister_netdev(priv->dev);
3644         bcmgenet_mii_exit(priv->dev);
3645         free_netdev(priv->dev);
3646
3647         return 0;
3648 }
3649
3650 static void bcmgenet_shutdown(struct platform_device *pdev)
3651 {
3652         bcmgenet_remove(pdev);
3653 }
3654
3655 #ifdef CONFIG_PM_SLEEP
3656 static int bcmgenet_resume(struct device *d)
3657 {
3658         struct net_device *dev = dev_get_drvdata(d);
3659         struct bcmgenet_priv *priv = netdev_priv(dev);
3660         unsigned long dma_ctrl;
3661         int ret;
3662         u32 reg;
3663
3664         if (!netif_running(dev))
3665                 return 0;
3666
3667         /* Turn on the clock */
3668         ret = clk_prepare_enable(priv->clk);
3669         if (ret)
3670                 return ret;
3671
3672         /* If this is an internal GPHY, power it back on now, before UniMAC is
3673          * brought out of reset as absolutely no UniMAC activity is allowed
3674          */
3675         if (priv->internal_phy)
3676                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3677
3678         bcmgenet_umac_reset(priv);
3679
3680         init_umac(priv);
3681
3682         /* From WOL-enabled suspend, switch to regular clock */
3683         if (priv->wolopts)
3684                 clk_disable_unprepare(priv->clk_wol);
3685
3686         phy_init_hw(dev->phydev);
3687
3688         /* Speed settings must be restored */
3689         genphy_config_aneg(dev->phydev);
3690         bcmgenet_mii_config(priv->dev, false);
3691
3692         /* Restore enabled features */
3693         bcmgenet_set_features(dev, dev->features);
3694
3695         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3696
3697         if (priv->internal_phy) {
3698                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3699                 reg |= EXT_ENERGY_DET_MASK;
3700                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3701         }
3702
3703         if (priv->wolopts)
3704                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3705
3706         /* Disable RX/TX DMA and flush TX queues */
3707         dma_ctrl = bcmgenet_dma_disable(priv);
3708
3709         /* Reinitialize TDMA and RDMA and SW housekeeping */
3710         ret = bcmgenet_init_dma(priv);
3711         if (ret) {
3712                 netdev_err(dev, "failed to initialize DMA\n");
3713                 goto out_clk_disable;
3714         }
3715
3716         /* Always enable ring 16 - descriptor ring */
3717         bcmgenet_enable_dma(priv, dma_ctrl);
3718
3719         if (!device_may_wakeup(d))
3720                 phy_resume(dev->phydev);
3721
3722         if (priv->eee.eee_enabled)
3723                 bcmgenet_eee_enable_set(dev, true);
3724
3725         bcmgenet_netif_start(dev);
3726
3727         netif_device_attach(dev);
3728
3729         return 0;
3730
3731 out_clk_disable:
3732         if (priv->internal_phy)
3733                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3734         clk_disable_unprepare(priv->clk);
3735         return ret;
3736 }
3737
3738 static int bcmgenet_suspend(struct device *d)
3739 {
3740         struct net_device *dev = dev_get_drvdata(d);
3741         struct bcmgenet_priv *priv = netdev_priv(dev);
3742         int ret = 0;
3743
3744         if (!netif_running(dev))
3745                 return 0;
3746
3747         netif_device_detach(dev);
3748
3749         bcmgenet_netif_stop(dev);
3750
3751         if (!device_may_wakeup(d))
3752                 phy_suspend(dev->phydev);
3753
3754         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3755         if (device_may_wakeup(d) && priv->wolopts) {
3756                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3757                 clk_prepare_enable(priv->clk_wol);
3758         } else if (priv->internal_phy) {
3759                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3760         }
3761
3762         /* Turn off the clocks */
3763         clk_disable_unprepare(priv->clk);
3764
3765         if (ret)
3766                 bcmgenet_resume(d);
3767
3768         return ret;
3769 }
3770 #endif /* CONFIG_PM_SLEEP */
3771
3772 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3773
3774 static struct platform_driver bcmgenet_driver = {
3775         .probe  = bcmgenet_probe,
3776         .remove = bcmgenet_remove,
3777         .shutdown = bcmgenet_shutdown,
3778         .driver = {
3779                 .name   = "bcmgenet",
3780                 .of_match_table = bcmgenet_match,
3781                 .pm     = &bcmgenet_pm_ops,
3782         },
3783 };
3784 module_platform_driver(bcmgenet_driver);
3785
3786 MODULE_AUTHOR("Broadcom Corporation");
3787 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3788 MODULE_ALIAS("platform:bcmgenet");
3789 MODULE_LICENSE("GPL");