treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2017 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/string.h>
17 #include <linux/if_ether.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/pm.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
30 #include <net/arp.h>
31
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/netdevice.h>
35 #include <linux/inetdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/ipv6.h>
41 #include <linux/phy.h>
42 #include <linux/platform_data/bcmgenet.h>
43
44 #include <asm/unaligned.h>
45
46 #include "bcmgenet.h"
47
48 /* Maximum number of hardware queues, downsized if needed */
49 #define GENET_MAX_MQ_CNT        4
50
51 /* Default highest priority queue for multi queue support */
52 #define GENET_Q0_PRIORITY       0
53
54 #define GENET_Q16_RX_BD_CNT     \
55         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
56 #define GENET_Q16_TX_BD_CNT     \
57         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
58
59 #define RX_BUF_LENGTH           2048
60 #define SKB_ALIGNMENT           32
61
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
65
66 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
67                                 TOTAL_DESC * DMA_DESC_SIZE)
68
69 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
73 {
74         /* MIPS chips strapped for BE will automagically configure the
75          * peripheral registers for CPU-native byte order.
76          */
77         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
78                 __raw_writel(value, offset);
79         else
80                 writel_relaxed(value, offset);
81 }
82
83 static inline u32 bcmgenet_readl(void __iomem *offset)
84 {
85         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
86                 return __raw_readl(offset);
87         else
88                 return readl_relaxed(offset);
89 }
90
91 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
92                                              void __iomem *d, u32 value)
93 {
94         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
95 }
96
97 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
98                                             void __iomem *d)
99 {
100         return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
101 }
102
103 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
104                                     void __iomem *d,
105                                     dma_addr_t addr)
106 {
107         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
108
109         /* Register writes to GISB bus can take couple hundred nanoseconds
110          * and are done for each packet, save these expensive writes unless
111          * the platform is explicitly configured for 64-bits/LPAE.
112          */
113 #ifdef CONFIG_PHYS_ADDR_T_64BIT
114         if (priv->hw_params->flags & GENET_HAS_40BITS)
115                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
116 #endif
117 }
118
119 /* Combined address + length/status setter */
120 static inline void dmadesc_set(struct bcmgenet_priv *priv,
121                                void __iomem *d, dma_addr_t addr, u32 val)
122 {
123         dmadesc_set_addr(priv, d, addr);
124         dmadesc_set_length_status(priv, d, val);
125 }
126
127 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
128                                           void __iomem *d)
129 {
130         dma_addr_t addr;
131
132         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
133
134         /* Register writes to GISB bus can take couple hundred nanoseconds
135          * and are done for each packet, save these expensive writes unless
136          * the platform is explicitly configured for 64-bits/LPAE.
137          */
138 #ifdef CONFIG_PHYS_ADDR_T_64BIT
139         if (priv->hw_params->flags & GENET_HAS_40BITS)
140                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
141 #endif
142         return addr;
143 }
144
145 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
146
147 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
148                                 NETIF_MSG_LINK)
149
150 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
151 {
152         if (GENET_IS_V1(priv))
153                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
154         else
155                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
156 }
157
158 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
159 {
160         if (GENET_IS_V1(priv))
161                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
162         else
163                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
164 }
165
166 /* These macros are defined to deal with register map change
167  * between GENET1.1 and GENET2. Only those currently being used
168  * by driver are defined.
169  */
170 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
171 {
172         if (GENET_IS_V1(priv))
173                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
174         else
175                 return bcmgenet_readl(priv->base +
176                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
177 }
178
179 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
180 {
181         if (GENET_IS_V1(priv))
182                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
183         else
184                 bcmgenet_writel(val, priv->base +
185                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
186 }
187
188 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
189 {
190         if (GENET_IS_V1(priv))
191                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
192         else
193                 return bcmgenet_readl(priv->base +
194                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
195 }
196
197 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
198 {
199         if (GENET_IS_V1(priv))
200                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
201         else
202                 bcmgenet_writel(val, priv->base +
203                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
204 }
205
206 /* RX/TX DMA register accessors */
207 enum dma_reg {
208         DMA_RING_CFG = 0,
209         DMA_CTRL,
210         DMA_STATUS,
211         DMA_SCB_BURST_SIZE,
212         DMA_ARB_CTRL,
213         DMA_PRIORITY_0,
214         DMA_PRIORITY_1,
215         DMA_PRIORITY_2,
216         DMA_INDEX2RING_0,
217         DMA_INDEX2RING_1,
218         DMA_INDEX2RING_2,
219         DMA_INDEX2RING_3,
220         DMA_INDEX2RING_4,
221         DMA_INDEX2RING_5,
222         DMA_INDEX2RING_6,
223         DMA_INDEX2RING_7,
224         DMA_RING0_TIMEOUT,
225         DMA_RING1_TIMEOUT,
226         DMA_RING2_TIMEOUT,
227         DMA_RING3_TIMEOUT,
228         DMA_RING4_TIMEOUT,
229         DMA_RING5_TIMEOUT,
230         DMA_RING6_TIMEOUT,
231         DMA_RING7_TIMEOUT,
232         DMA_RING8_TIMEOUT,
233         DMA_RING9_TIMEOUT,
234         DMA_RING10_TIMEOUT,
235         DMA_RING11_TIMEOUT,
236         DMA_RING12_TIMEOUT,
237         DMA_RING13_TIMEOUT,
238         DMA_RING14_TIMEOUT,
239         DMA_RING15_TIMEOUT,
240         DMA_RING16_TIMEOUT,
241 };
242
243 static const u8 bcmgenet_dma_regs_v3plus[] = {
244         [DMA_RING_CFG]          = 0x00,
245         [DMA_CTRL]              = 0x04,
246         [DMA_STATUS]            = 0x08,
247         [DMA_SCB_BURST_SIZE]    = 0x0C,
248         [DMA_ARB_CTRL]          = 0x2C,
249         [DMA_PRIORITY_0]        = 0x30,
250         [DMA_PRIORITY_1]        = 0x34,
251         [DMA_PRIORITY_2]        = 0x38,
252         [DMA_RING0_TIMEOUT]     = 0x2C,
253         [DMA_RING1_TIMEOUT]     = 0x30,
254         [DMA_RING2_TIMEOUT]     = 0x34,
255         [DMA_RING3_TIMEOUT]     = 0x38,
256         [DMA_RING4_TIMEOUT]     = 0x3c,
257         [DMA_RING5_TIMEOUT]     = 0x40,
258         [DMA_RING6_TIMEOUT]     = 0x44,
259         [DMA_RING7_TIMEOUT]     = 0x48,
260         [DMA_RING8_TIMEOUT]     = 0x4c,
261         [DMA_RING9_TIMEOUT]     = 0x50,
262         [DMA_RING10_TIMEOUT]    = 0x54,
263         [DMA_RING11_TIMEOUT]    = 0x58,
264         [DMA_RING12_TIMEOUT]    = 0x5c,
265         [DMA_RING13_TIMEOUT]    = 0x60,
266         [DMA_RING14_TIMEOUT]    = 0x64,
267         [DMA_RING15_TIMEOUT]    = 0x68,
268         [DMA_RING16_TIMEOUT]    = 0x6C,
269         [DMA_INDEX2RING_0]      = 0x70,
270         [DMA_INDEX2RING_1]      = 0x74,
271         [DMA_INDEX2RING_2]      = 0x78,
272         [DMA_INDEX2RING_3]      = 0x7C,
273         [DMA_INDEX2RING_4]      = 0x80,
274         [DMA_INDEX2RING_5]      = 0x84,
275         [DMA_INDEX2RING_6]      = 0x88,
276         [DMA_INDEX2RING_7]      = 0x8C,
277 };
278
279 static const u8 bcmgenet_dma_regs_v2[] = {
280         [DMA_RING_CFG]          = 0x00,
281         [DMA_CTRL]              = 0x04,
282         [DMA_STATUS]            = 0x08,
283         [DMA_SCB_BURST_SIZE]    = 0x0C,
284         [DMA_ARB_CTRL]          = 0x30,
285         [DMA_PRIORITY_0]        = 0x34,
286         [DMA_PRIORITY_1]        = 0x38,
287         [DMA_PRIORITY_2]        = 0x3C,
288         [DMA_RING0_TIMEOUT]     = 0x2C,
289         [DMA_RING1_TIMEOUT]     = 0x30,
290         [DMA_RING2_TIMEOUT]     = 0x34,
291         [DMA_RING3_TIMEOUT]     = 0x38,
292         [DMA_RING4_TIMEOUT]     = 0x3c,
293         [DMA_RING5_TIMEOUT]     = 0x40,
294         [DMA_RING6_TIMEOUT]     = 0x44,
295         [DMA_RING7_TIMEOUT]     = 0x48,
296         [DMA_RING8_TIMEOUT]     = 0x4c,
297         [DMA_RING9_TIMEOUT]     = 0x50,
298         [DMA_RING10_TIMEOUT]    = 0x54,
299         [DMA_RING11_TIMEOUT]    = 0x58,
300         [DMA_RING12_TIMEOUT]    = 0x5c,
301         [DMA_RING13_TIMEOUT]    = 0x60,
302         [DMA_RING14_TIMEOUT]    = 0x64,
303         [DMA_RING15_TIMEOUT]    = 0x68,
304         [DMA_RING16_TIMEOUT]    = 0x6C,
305 };
306
307 static const u8 bcmgenet_dma_regs_v1[] = {
308         [DMA_CTRL]              = 0x00,
309         [DMA_STATUS]            = 0x04,
310         [DMA_SCB_BURST_SIZE]    = 0x0C,
311         [DMA_ARB_CTRL]          = 0x30,
312         [DMA_PRIORITY_0]        = 0x34,
313         [DMA_PRIORITY_1]        = 0x38,
314         [DMA_PRIORITY_2]        = 0x3C,
315         [DMA_RING0_TIMEOUT]     = 0x2C,
316         [DMA_RING1_TIMEOUT]     = 0x30,
317         [DMA_RING2_TIMEOUT]     = 0x34,
318         [DMA_RING3_TIMEOUT]     = 0x38,
319         [DMA_RING4_TIMEOUT]     = 0x3c,
320         [DMA_RING5_TIMEOUT]     = 0x40,
321         [DMA_RING6_TIMEOUT]     = 0x44,
322         [DMA_RING7_TIMEOUT]     = 0x48,
323         [DMA_RING8_TIMEOUT]     = 0x4c,
324         [DMA_RING9_TIMEOUT]     = 0x50,
325         [DMA_RING10_TIMEOUT]    = 0x54,
326         [DMA_RING11_TIMEOUT]    = 0x58,
327         [DMA_RING12_TIMEOUT]    = 0x5c,
328         [DMA_RING13_TIMEOUT]    = 0x60,
329         [DMA_RING14_TIMEOUT]    = 0x64,
330         [DMA_RING15_TIMEOUT]    = 0x68,
331         [DMA_RING16_TIMEOUT]    = 0x6C,
332 };
333
334 /* Set at runtime once bcmgenet version is known */
335 static const u8 *bcmgenet_dma_regs;
336
337 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
338 {
339         return netdev_priv(dev_get_drvdata(dev));
340 }
341
342 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
343                                       enum dma_reg r)
344 {
345         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
346                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
350                                         u32 val, enum dma_reg r)
351 {
352         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
353                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
357                                       enum dma_reg r)
358 {
359         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
360                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
364                                         u32 val, enum dma_reg r)
365 {
366         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
367                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
368 }
369
370 /* RDMA/TDMA ring registers and accessors
371  * we merge the common fields and just prefix with T/D the registers
372  * having different meaning depending on the direction
373  */
374 enum dma_ring_reg {
375         TDMA_READ_PTR = 0,
376         RDMA_WRITE_PTR = TDMA_READ_PTR,
377         TDMA_READ_PTR_HI,
378         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
379         TDMA_CONS_INDEX,
380         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
381         TDMA_PROD_INDEX,
382         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
383         DMA_RING_BUF_SIZE,
384         DMA_START_ADDR,
385         DMA_START_ADDR_HI,
386         DMA_END_ADDR,
387         DMA_END_ADDR_HI,
388         DMA_MBUF_DONE_THRESH,
389         TDMA_FLOW_PERIOD,
390         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
391         TDMA_WRITE_PTR,
392         RDMA_READ_PTR = TDMA_WRITE_PTR,
393         TDMA_WRITE_PTR_HI,
394         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
395 };
396
397 /* GENET v4 supports 40-bits pointer addressing
398  * for obvious reasons the LO and HI word parts
399  * are contiguous, but this offsets the other
400  * registers.
401  */
402 static const u8 genet_dma_ring_regs_v4[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_READ_PTR_HI]              = 0x04,
405         [TDMA_CONS_INDEX]               = 0x08,
406         [TDMA_PROD_INDEX]               = 0x0C,
407         [DMA_RING_BUF_SIZE]             = 0x10,
408         [DMA_START_ADDR]                = 0x14,
409         [DMA_START_ADDR_HI]             = 0x18,
410         [DMA_END_ADDR]                  = 0x1C,
411         [DMA_END_ADDR_HI]               = 0x20,
412         [DMA_MBUF_DONE_THRESH]          = 0x24,
413         [TDMA_FLOW_PERIOD]              = 0x28,
414         [TDMA_WRITE_PTR]                = 0x2C,
415         [TDMA_WRITE_PTR_HI]             = 0x30,
416 };
417
418 static const u8 genet_dma_ring_regs_v123[] = {
419         [TDMA_READ_PTR]                 = 0x00,
420         [TDMA_CONS_INDEX]               = 0x04,
421         [TDMA_PROD_INDEX]               = 0x08,
422         [DMA_RING_BUF_SIZE]             = 0x0C,
423         [DMA_START_ADDR]                = 0x10,
424         [DMA_END_ADDR]                  = 0x14,
425         [DMA_MBUF_DONE_THRESH]          = 0x18,
426         [TDMA_FLOW_PERIOD]              = 0x1C,
427         [TDMA_WRITE_PTR]                = 0x20,
428 };
429
430 /* Set at runtime once GENET version is known */
431 static const u8 *genet_dma_ring_regs;
432
433 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
434                                            unsigned int ring,
435                                            enum dma_ring_reg r)
436 {
437         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
438                               (DMA_RING_SIZE * ring) +
439                               genet_dma_ring_regs[r]);
440 }
441
442 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
443                                              unsigned int ring, u32 val,
444                                              enum dma_ring_reg r)
445 {
446         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
447                         (DMA_RING_SIZE * ring) +
448                         genet_dma_ring_regs[r]);
449 }
450
451 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
452                                            unsigned int ring,
453                                            enum dma_ring_reg r)
454 {
455         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
456                               (DMA_RING_SIZE * ring) +
457                               genet_dma_ring_regs[r]);
458 }
459
460 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
461                                              unsigned int ring, u32 val,
462                                              enum dma_ring_reg r)
463 {
464         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
465                         (DMA_RING_SIZE * ring) +
466                         genet_dma_ring_regs[r]);
467 }
468
469 static int bcmgenet_begin(struct net_device *dev)
470 {
471         struct bcmgenet_priv *priv = netdev_priv(dev);
472
473         /* Turn on the clock */
474         return clk_prepare_enable(priv->clk);
475 }
476
477 static void bcmgenet_complete(struct net_device *dev)
478 {
479         struct bcmgenet_priv *priv = netdev_priv(dev);
480
481         /* Turn off the clock */
482         clk_disable_unprepare(priv->clk);
483 }
484
485 static int bcmgenet_get_link_ksettings(struct net_device *dev,
486                                        struct ethtool_link_ksettings *cmd)
487 {
488         if (!netif_running(dev))
489                 return -EINVAL;
490
491         if (!dev->phydev)
492                 return -ENODEV;
493
494         phy_ethtool_ksettings_get(dev->phydev, cmd);
495
496         return 0;
497 }
498
499 static int bcmgenet_set_link_ksettings(struct net_device *dev,
500                                        const struct ethtool_link_ksettings *cmd)
501 {
502         if (!netif_running(dev))
503                 return -EINVAL;
504
505         if (!dev->phydev)
506                 return -ENODEV;
507
508         return phy_ethtool_ksettings_set(dev->phydev, cmd);
509 }
510
511 static int bcmgenet_set_rx_csum(struct net_device *dev,
512                                 netdev_features_t wanted)
513 {
514         struct bcmgenet_priv *priv = netdev_priv(dev);
515         u32 rbuf_chk_ctrl;
516         bool rx_csum_en;
517
518         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
519
520         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
521
522         /* enable rx checksumming */
523         if (rx_csum_en)
524                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
525         else
526                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
527         priv->desc_rxchk_en = rx_csum_en;
528
529         /* If UniMAC forwards CRC, we need to skip over it to get
530          * a valid CHK bit to be set in the per-packet status word
531         */
532         if (rx_csum_en && priv->crc_fwd_en)
533                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
534         else
535                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
536
537         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
538
539         return 0;
540 }
541
542 static int bcmgenet_set_tx_csum(struct net_device *dev,
543                                 netdev_features_t wanted)
544 {
545         struct bcmgenet_priv *priv = netdev_priv(dev);
546         bool desc_64b_en;
547         u32 tbuf_ctrl, rbuf_ctrl;
548
549         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
550         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
551
552         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
553
554         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
555         if (desc_64b_en) {
556                 tbuf_ctrl |= RBUF_64B_EN;
557                 rbuf_ctrl |= RBUF_64B_EN;
558         } else {
559                 tbuf_ctrl &= ~RBUF_64B_EN;
560                 rbuf_ctrl &= ~RBUF_64B_EN;
561         }
562         priv->desc_64b_en = desc_64b_en;
563
564         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
565         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
566
567         return 0;
568 }
569
570 static int bcmgenet_set_features(struct net_device *dev,
571                                  netdev_features_t features)
572 {
573         netdev_features_t changed = features ^ dev->features;
574         netdev_features_t wanted = dev->wanted_features;
575         int ret = 0;
576
577         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
578                 ret = bcmgenet_set_tx_csum(dev, wanted);
579         if (changed & (NETIF_F_RXCSUM))
580                 ret = bcmgenet_set_rx_csum(dev, wanted);
581
582         return ret;
583 }
584
585 static u32 bcmgenet_get_msglevel(struct net_device *dev)
586 {
587         struct bcmgenet_priv *priv = netdev_priv(dev);
588
589         return priv->msg_enable;
590 }
591
592 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
593 {
594         struct bcmgenet_priv *priv = netdev_priv(dev);
595
596         priv->msg_enable = level;
597 }
598
599 static int bcmgenet_get_coalesce(struct net_device *dev,
600                                  struct ethtool_coalesce *ec)
601 {
602         struct bcmgenet_priv *priv = netdev_priv(dev);
603         struct bcmgenet_rx_ring *ring;
604         unsigned int i;
605
606         ec->tx_max_coalesced_frames =
607                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
608                                          DMA_MBUF_DONE_THRESH);
609         ec->rx_max_coalesced_frames =
610                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
611                                          DMA_MBUF_DONE_THRESH);
612         ec->rx_coalesce_usecs =
613                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
614
615         for (i = 0; i < priv->hw_params->rx_queues; i++) {
616                 ring = &priv->rx_rings[i];
617                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
618         }
619         ring = &priv->rx_rings[DESC_INDEX];
620         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
621
622         return 0;
623 }
624
625 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
626                                      u32 usecs, u32 pkts)
627 {
628         struct bcmgenet_priv *priv = ring->priv;
629         unsigned int i = ring->index;
630         u32 reg;
631
632         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
633
634         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
635         reg &= ~DMA_TIMEOUT_MASK;
636         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
637         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
638 }
639
640 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
641                                           struct ethtool_coalesce *ec)
642 {
643         struct net_dim_cq_moder moder;
644         u32 usecs, pkts;
645
646         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
647         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
648         usecs = ring->rx_coalesce_usecs;
649         pkts = ring->rx_max_coalesced_frames;
650
651         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
652                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
653                 usecs = moder.usec;
654                 pkts = moder.pkts;
655         }
656
657         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
658         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
659 }
660
661 static int bcmgenet_set_coalesce(struct net_device *dev,
662                                  struct ethtool_coalesce *ec)
663 {
664         struct bcmgenet_priv *priv = netdev_priv(dev);
665         unsigned int i;
666
667         /* Base system clock is 125Mhz, DMA timeout is this reference clock
668          * divided by 1024, which yields roughly 8.192us, our maximum value
669          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
670          */
671         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
672             ec->tx_max_coalesced_frames == 0 ||
673             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
674             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
675                 return -EINVAL;
676
677         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
678                 return -EINVAL;
679
680         /* GENET TDMA hardware does not support a configurable timeout, but will
681          * always generate an interrupt either after MBDONE packets have been
682          * transmitted, or when the ring is empty.
683          */
684         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
685             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
686             ec->use_adaptive_tx_coalesce)
687                 return -EOPNOTSUPP;
688
689         /* Program all TX queues with the same values, as there is no
690          * ethtool knob to do coalescing on a per-queue basis
691          */
692         for (i = 0; i < priv->hw_params->tx_queues; i++)
693                 bcmgenet_tdma_ring_writel(priv, i,
694                                           ec->tx_max_coalesced_frames,
695                                           DMA_MBUF_DONE_THRESH);
696         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
697                                   ec->tx_max_coalesced_frames,
698                                   DMA_MBUF_DONE_THRESH);
699
700         for (i = 0; i < priv->hw_params->rx_queues; i++)
701                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
702         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
703
704         return 0;
705 }
706
707 /* standard ethtool support functions. */
708 enum bcmgenet_stat_type {
709         BCMGENET_STAT_NETDEV = -1,
710         BCMGENET_STAT_MIB_RX,
711         BCMGENET_STAT_MIB_TX,
712         BCMGENET_STAT_RUNT,
713         BCMGENET_STAT_MISC,
714         BCMGENET_STAT_SOFT,
715 };
716
717 struct bcmgenet_stats {
718         char stat_string[ETH_GSTRING_LEN];
719         int stat_sizeof;
720         int stat_offset;
721         enum bcmgenet_stat_type type;
722         /* reg offset from UMAC base for misc counters */
723         u16 reg_offset;
724 };
725
726 #define STAT_NETDEV(m) { \
727         .stat_string = __stringify(m), \
728         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
729         .stat_offset = offsetof(struct net_device_stats, m), \
730         .type = BCMGENET_STAT_NETDEV, \
731 }
732
733 #define STAT_GENET_MIB(str, m, _type) { \
734         .stat_string = str, \
735         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
736         .stat_offset = offsetof(struct bcmgenet_priv, m), \
737         .type = _type, \
738 }
739
740 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
741 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
742 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
743 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
744
745 #define STAT_GENET_MISC(str, m, offset) { \
746         .stat_string = str, \
747         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
748         .stat_offset = offsetof(struct bcmgenet_priv, m), \
749         .type = BCMGENET_STAT_MISC, \
750         .reg_offset = offset, \
751 }
752
753 #define STAT_GENET_Q(num) \
754         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
755                         tx_rings[num].packets), \
756         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
757                         tx_rings[num].bytes), \
758         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
759                         rx_rings[num].bytes),    \
760         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
761                         rx_rings[num].packets), \
762         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
763                         rx_rings[num].errors), \
764         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
765                         rx_rings[num].dropped)
766
767 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
768  * between the end of TX stats and the beginning of the RX RUNT
769  */
770 #define BCMGENET_STAT_OFFSET    0xc
771
772 /* Hardware counters must be kept in sync because the order/offset
773  * is important here (order in structure declaration = order in hardware)
774  */
775 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
776         /* general stats */
777         STAT_NETDEV(rx_packets),
778         STAT_NETDEV(tx_packets),
779         STAT_NETDEV(rx_bytes),
780         STAT_NETDEV(tx_bytes),
781         STAT_NETDEV(rx_errors),
782         STAT_NETDEV(tx_errors),
783         STAT_NETDEV(rx_dropped),
784         STAT_NETDEV(tx_dropped),
785         STAT_NETDEV(multicast),
786         /* UniMAC RSV counters */
787         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
788         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
789         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
790         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
791         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
792         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
793         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
794         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
795         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
796         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
797         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
798         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
799         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
800         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
801         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
802         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
803         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
804         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
805         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
806         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
807         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
808         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
809         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
810         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
811         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
812         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
813         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
814         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
815         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
816         /* UniMAC TSV counters */
817         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
818         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
819         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
820         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
821         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
822         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
823         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
824         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
825         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
826         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
827         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
828         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
829         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
830         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
831         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
832         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
833         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
834         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
835         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
836         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
837         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
838         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
839         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
840         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
841         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
842         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
843         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
844         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
845         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
846         /* UniMAC RUNT counters */
847         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
848         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
849         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
850         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
851         /* Misc UniMAC counters */
852         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
853                         UMAC_RBUF_OVFL_CNT_V1),
854         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
855                         UMAC_RBUF_ERR_CNT_V1),
856         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
857         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
858         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
859         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
860         /* Per TX queues */
861         STAT_GENET_Q(0),
862         STAT_GENET_Q(1),
863         STAT_GENET_Q(2),
864         STAT_GENET_Q(3),
865         STAT_GENET_Q(16),
866 };
867
868 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
869
870 static void bcmgenet_get_drvinfo(struct net_device *dev,
871                                  struct ethtool_drvinfo *info)
872 {
873         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
874         strlcpy(info->version, "v2.0", sizeof(info->version));
875 }
876
877 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
878 {
879         switch (string_set) {
880         case ETH_SS_STATS:
881                 return BCMGENET_STATS_LEN;
882         default:
883                 return -EOPNOTSUPP;
884         }
885 }
886
887 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
888                                  u8 *data)
889 {
890         int i;
891
892         switch (stringset) {
893         case ETH_SS_STATS:
894                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
895                         memcpy(data + i * ETH_GSTRING_LEN,
896                                bcmgenet_gstrings_stats[i].stat_string,
897                                ETH_GSTRING_LEN);
898                 }
899                 break;
900         }
901 }
902
903 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
904 {
905         u16 new_offset;
906         u32 val;
907
908         switch (offset) {
909         case UMAC_RBUF_OVFL_CNT_V1:
910                 if (GENET_IS_V2(priv))
911                         new_offset = RBUF_OVFL_CNT_V2;
912                 else
913                         new_offset = RBUF_OVFL_CNT_V3PLUS;
914
915                 val = bcmgenet_rbuf_readl(priv, new_offset);
916                 /* clear if overflowed */
917                 if (val == ~0)
918                         bcmgenet_rbuf_writel(priv, 0, new_offset);
919                 break;
920         case UMAC_RBUF_ERR_CNT_V1:
921                 if (GENET_IS_V2(priv))
922                         new_offset = RBUF_ERR_CNT_V2;
923                 else
924                         new_offset = RBUF_ERR_CNT_V3PLUS;
925
926                 val = bcmgenet_rbuf_readl(priv, new_offset);
927                 /* clear if overflowed */
928                 if (val == ~0)
929                         bcmgenet_rbuf_writel(priv, 0, new_offset);
930                 break;
931         default:
932                 val = bcmgenet_umac_readl(priv, offset);
933                 /* clear if overflowed */
934                 if (val == ~0)
935                         bcmgenet_umac_writel(priv, 0, offset);
936                 break;
937         }
938
939         return val;
940 }
941
942 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
943 {
944         int i, j = 0;
945
946         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
947                 const struct bcmgenet_stats *s;
948                 u8 offset = 0;
949                 u32 val = 0;
950                 char *p;
951
952                 s = &bcmgenet_gstrings_stats[i];
953                 switch (s->type) {
954                 case BCMGENET_STAT_NETDEV:
955                 case BCMGENET_STAT_SOFT:
956                         continue;
957                 case BCMGENET_STAT_RUNT:
958                         offset += BCMGENET_STAT_OFFSET;
959                         /* fall through */
960                 case BCMGENET_STAT_MIB_TX:
961                         offset += BCMGENET_STAT_OFFSET;
962                         /* fall through */
963                 case BCMGENET_STAT_MIB_RX:
964                         val = bcmgenet_umac_readl(priv,
965                                                   UMAC_MIB_START + j + offset);
966                         offset = 0;     /* Reset Offset */
967                         break;
968                 case BCMGENET_STAT_MISC:
969                         if (GENET_IS_V1(priv)) {
970                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
971                                 /* clear if overflowed */
972                                 if (val == ~0)
973                                         bcmgenet_umac_writel(priv, 0,
974                                                              s->reg_offset);
975                         } else {
976                                 val = bcmgenet_update_stat_misc(priv,
977                                                                 s->reg_offset);
978                         }
979                         break;
980                 }
981
982                 j += s->stat_sizeof;
983                 p = (char *)priv + s->stat_offset;
984                 *(u32 *)p = val;
985         }
986 }
987
988 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
989                                        struct ethtool_stats *stats,
990                                        u64 *data)
991 {
992         struct bcmgenet_priv *priv = netdev_priv(dev);
993         int i;
994
995         if (netif_running(dev))
996                 bcmgenet_update_mib_counters(priv);
997
998         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
999                 const struct bcmgenet_stats *s;
1000                 char *p;
1001
1002                 s = &bcmgenet_gstrings_stats[i];
1003                 if (s->type == BCMGENET_STAT_NETDEV)
1004                         p = (char *)&dev->stats;
1005                 else
1006                         p = (char *)priv;
1007                 p += s->stat_offset;
1008                 if (sizeof(unsigned long) != sizeof(u32) &&
1009                     s->stat_sizeof == sizeof(unsigned long))
1010                         data[i] = *(unsigned long *)p;
1011                 else
1012                         data[i] = *(u32 *)p;
1013         }
1014 }
1015
1016 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1017 {
1018         struct bcmgenet_priv *priv = netdev_priv(dev);
1019         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1020         u32 reg;
1021
1022         if (enable && !priv->clk_eee_enabled) {
1023                 clk_prepare_enable(priv->clk_eee);
1024                 priv->clk_eee_enabled = true;
1025         }
1026
1027         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1028         if (enable)
1029                 reg |= EEE_EN;
1030         else
1031                 reg &= ~EEE_EN;
1032         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1033
1034         /* Enable EEE and switch to a 27Mhz clock automatically */
1035         reg = bcmgenet_readl(priv->base + off);
1036         if (enable)
1037                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1038         else
1039                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1040         bcmgenet_writel(reg, priv->base + off);
1041
1042         /* Do the same for thing for RBUF */
1043         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1044         if (enable)
1045                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1046         else
1047                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1048         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1049
1050         if (!enable && priv->clk_eee_enabled) {
1051                 clk_disable_unprepare(priv->clk_eee);
1052                 priv->clk_eee_enabled = false;
1053         }
1054
1055         priv->eee.eee_enabled = enable;
1056         priv->eee.eee_active = enable;
1057 }
1058
1059 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1060 {
1061         struct bcmgenet_priv *priv = netdev_priv(dev);
1062         struct ethtool_eee *p = &priv->eee;
1063
1064         if (GENET_IS_V1(priv))
1065                 return -EOPNOTSUPP;
1066
1067         if (!dev->phydev)
1068                 return -ENODEV;
1069
1070         e->eee_enabled = p->eee_enabled;
1071         e->eee_active = p->eee_active;
1072         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1073
1074         return phy_ethtool_get_eee(dev->phydev, e);
1075 }
1076
1077 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1078 {
1079         struct bcmgenet_priv *priv = netdev_priv(dev);
1080         struct ethtool_eee *p = &priv->eee;
1081         int ret = 0;
1082
1083         if (GENET_IS_V1(priv))
1084                 return -EOPNOTSUPP;
1085
1086         if (!dev->phydev)
1087                 return -ENODEV;
1088
1089         p->eee_enabled = e->eee_enabled;
1090
1091         if (!p->eee_enabled) {
1092                 bcmgenet_eee_enable_set(dev, false);
1093         } else {
1094                 ret = phy_init_eee(dev->phydev, 0);
1095                 if (ret) {
1096                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1097                         return ret;
1098                 }
1099
1100                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1101                 bcmgenet_eee_enable_set(dev, true);
1102         }
1103
1104         return phy_ethtool_set_eee(dev->phydev, e);
1105 }
1106
1107 /* standard ethtool support functions. */
1108 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1109         .begin                  = bcmgenet_begin,
1110         .complete               = bcmgenet_complete,
1111         .get_strings            = bcmgenet_get_strings,
1112         .get_sset_count         = bcmgenet_get_sset_count,
1113         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1114         .get_drvinfo            = bcmgenet_get_drvinfo,
1115         .get_link               = ethtool_op_get_link,
1116         .get_msglevel           = bcmgenet_get_msglevel,
1117         .set_msglevel           = bcmgenet_set_msglevel,
1118         .get_wol                = bcmgenet_get_wol,
1119         .set_wol                = bcmgenet_set_wol,
1120         .get_eee                = bcmgenet_get_eee,
1121         .set_eee                = bcmgenet_set_eee,
1122         .nway_reset             = phy_ethtool_nway_reset,
1123         .get_coalesce           = bcmgenet_get_coalesce,
1124         .set_coalesce           = bcmgenet_set_coalesce,
1125         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1126         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1127 };
1128
1129 /* Power down the unimac, based on mode. */
1130 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1131                                 enum bcmgenet_power_mode mode)
1132 {
1133         int ret = 0;
1134         u32 reg;
1135
1136         switch (mode) {
1137         case GENET_POWER_CABLE_SENSE:
1138                 phy_detach(priv->dev->phydev);
1139                 break;
1140
1141         case GENET_POWER_WOL_MAGIC:
1142                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1143                 break;
1144
1145         case GENET_POWER_PASSIVE:
1146                 /* Power down LED */
1147                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1148                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1149                         if (GENET_IS_V5(priv))
1150                                 reg |= EXT_PWR_DOWN_PHY_EN |
1151                                        EXT_PWR_DOWN_PHY_RD |
1152                                        EXT_PWR_DOWN_PHY_SD |
1153                                        EXT_PWR_DOWN_PHY_RX |
1154                                        EXT_PWR_DOWN_PHY_TX |
1155                                        EXT_IDDQ_GLBL_PWR;
1156                         else
1157                                 reg |= EXT_PWR_DOWN_PHY;
1158
1159                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1160                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1161
1162                         bcmgenet_phy_power_set(priv->dev, false);
1163                 }
1164                 break;
1165         default:
1166                 break;
1167         }
1168
1169         return ret;
1170 }
1171
1172 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1173                               enum bcmgenet_power_mode mode)
1174 {
1175         u32 reg;
1176
1177         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1178                 return;
1179
1180         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1181
1182         switch (mode) {
1183         case GENET_POWER_PASSIVE:
1184                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1185                 if (GENET_IS_V5(priv)) {
1186                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1187                                  EXT_PWR_DOWN_PHY_RD |
1188                                  EXT_PWR_DOWN_PHY_SD |
1189                                  EXT_PWR_DOWN_PHY_RX |
1190                                  EXT_PWR_DOWN_PHY_TX |
1191                                  EXT_IDDQ_GLBL_PWR);
1192                         reg |=   EXT_PHY_RESET;
1193                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1194                         mdelay(1);
1195
1196                         reg &=  ~EXT_PHY_RESET;
1197                 } else {
1198                         reg &= ~EXT_PWR_DOWN_PHY;
1199                         reg |= EXT_PWR_DN_EN_LD;
1200                 }
1201                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1202                 bcmgenet_phy_power_set(priv->dev, true);
1203                 break;
1204
1205         case GENET_POWER_CABLE_SENSE:
1206                 /* enable APD */
1207                 if (!GENET_IS_V5(priv)) {
1208                         reg |= EXT_PWR_DN_EN_LD;
1209                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1210                 }
1211                 break;
1212         case GENET_POWER_WOL_MAGIC:
1213                 bcmgenet_wol_power_up_cfg(priv, mode);
1214                 return;
1215         default:
1216                 break;
1217         }
1218 }
1219
1220 /* ioctl handle special commands that are not present in ethtool. */
1221 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1222 {
1223         if (!netif_running(dev))
1224                 return -EINVAL;
1225
1226         if (!dev->phydev)
1227                 return -ENODEV;
1228
1229         return phy_mii_ioctl(dev->phydev, rq, cmd);
1230 }
1231
1232 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1233                                          struct bcmgenet_tx_ring *ring)
1234 {
1235         struct enet_cb *tx_cb_ptr;
1236
1237         tx_cb_ptr = ring->cbs;
1238         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1239
1240         /* Advancing local write pointer */
1241         if (ring->write_ptr == ring->end_ptr)
1242                 ring->write_ptr = ring->cb_ptr;
1243         else
1244                 ring->write_ptr++;
1245
1246         return tx_cb_ptr;
1247 }
1248
1249 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1250                                          struct bcmgenet_tx_ring *ring)
1251 {
1252         struct enet_cb *tx_cb_ptr;
1253
1254         tx_cb_ptr = ring->cbs;
1255         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1256
1257         /* Rewinding local write pointer */
1258         if (ring->write_ptr == ring->cb_ptr)
1259                 ring->write_ptr = ring->end_ptr;
1260         else
1261                 ring->write_ptr--;
1262
1263         return tx_cb_ptr;
1264 }
1265
1266 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1267 {
1268         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1269                                  INTRL2_CPU_MASK_SET);
1270 }
1271
1272 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1273 {
1274         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1275                                  INTRL2_CPU_MASK_CLEAR);
1276 }
1277
1278 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1279 {
1280         bcmgenet_intrl2_1_writel(ring->priv,
1281                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1282                                  INTRL2_CPU_MASK_SET);
1283 }
1284
1285 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1286 {
1287         bcmgenet_intrl2_1_writel(ring->priv,
1288                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1289                                  INTRL2_CPU_MASK_CLEAR);
1290 }
1291
1292 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1293 {
1294         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1295                                  INTRL2_CPU_MASK_SET);
1296 }
1297
1298 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1299 {
1300         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1301                                  INTRL2_CPU_MASK_CLEAR);
1302 }
1303
1304 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1305 {
1306         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1307                                  INTRL2_CPU_MASK_CLEAR);
1308 }
1309
1310 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1311 {
1312         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1313                                  INTRL2_CPU_MASK_SET);
1314 }
1315
1316 /* Simple helper to free a transmit control block's resources
1317  * Returns an skb when the last transmit control block associated with the
1318  * skb is freed.  The skb should be freed by the caller if necessary.
1319  */
1320 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1321                                            struct enet_cb *cb)
1322 {
1323         struct sk_buff *skb;
1324
1325         skb = cb->skb;
1326
1327         if (skb) {
1328                 cb->skb = NULL;
1329                 if (cb == GENET_CB(skb)->first_cb)
1330                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1331                                          dma_unmap_len(cb, dma_len),
1332                                          DMA_TO_DEVICE);
1333                 else
1334                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1335                                        dma_unmap_len(cb, dma_len),
1336                                        DMA_TO_DEVICE);
1337                 dma_unmap_addr_set(cb, dma_addr, 0);
1338
1339                 if (cb == GENET_CB(skb)->last_cb)
1340                         return skb;
1341
1342         } else if (dma_unmap_addr(cb, dma_addr)) {
1343                 dma_unmap_page(dev,
1344                                dma_unmap_addr(cb, dma_addr),
1345                                dma_unmap_len(cb, dma_len),
1346                                DMA_TO_DEVICE);
1347                 dma_unmap_addr_set(cb, dma_addr, 0);
1348         }
1349
1350         return NULL;
1351 }
1352
1353 /* Simple helper to free a receive control block's resources */
1354 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1355                                            struct enet_cb *cb)
1356 {
1357         struct sk_buff *skb;
1358
1359         skb = cb->skb;
1360         cb->skb = NULL;
1361
1362         if (dma_unmap_addr(cb, dma_addr)) {
1363                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1364                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1365                 dma_unmap_addr_set(cb, dma_addr, 0);
1366         }
1367
1368         return skb;
1369 }
1370
1371 /* Unlocked version of the reclaim routine */
1372 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1373                                           struct bcmgenet_tx_ring *ring)
1374 {
1375         struct bcmgenet_priv *priv = netdev_priv(dev);
1376         unsigned int txbds_processed = 0;
1377         unsigned int bytes_compl = 0;
1378         unsigned int pkts_compl = 0;
1379         unsigned int txbds_ready;
1380         unsigned int c_index;
1381         struct sk_buff *skb;
1382
1383         /* Clear status before servicing to reduce spurious interrupts */
1384         if (ring->index == DESC_INDEX)
1385                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1386                                          INTRL2_CPU_CLEAR);
1387         else
1388                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1389                                          INTRL2_CPU_CLEAR);
1390
1391         /* Compute how many buffers are transmitted since last xmit call */
1392         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1393                 & DMA_C_INDEX_MASK;
1394         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1395
1396         netif_dbg(priv, tx_done, dev,
1397                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1398                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1399
1400         /* Reclaim transmitted buffers */
1401         while (txbds_processed < txbds_ready) {
1402                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1403                                           &priv->tx_cbs[ring->clean_ptr]);
1404                 if (skb) {
1405                         pkts_compl++;
1406                         bytes_compl += GENET_CB(skb)->bytes_sent;
1407                         dev_consume_skb_any(skb);
1408                 }
1409
1410                 txbds_processed++;
1411                 if (likely(ring->clean_ptr < ring->end_ptr))
1412                         ring->clean_ptr++;
1413                 else
1414                         ring->clean_ptr = ring->cb_ptr;
1415         }
1416
1417         ring->free_bds += txbds_processed;
1418         ring->c_index = c_index;
1419
1420         ring->packets += pkts_compl;
1421         ring->bytes += bytes_compl;
1422
1423         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1424                                   pkts_compl, bytes_compl);
1425
1426         return txbds_processed;
1427 }
1428
1429 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1430                                 struct bcmgenet_tx_ring *ring)
1431 {
1432         unsigned int released;
1433
1434         spin_lock_bh(&ring->lock);
1435         released = __bcmgenet_tx_reclaim(dev, ring);
1436         spin_unlock_bh(&ring->lock);
1437
1438         return released;
1439 }
1440
1441 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1442 {
1443         struct bcmgenet_tx_ring *ring =
1444                 container_of(napi, struct bcmgenet_tx_ring, napi);
1445         unsigned int work_done = 0;
1446         struct netdev_queue *txq;
1447
1448         spin_lock(&ring->lock);
1449         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1450         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1451                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1452                 netif_tx_wake_queue(txq);
1453         }
1454         spin_unlock(&ring->lock);
1455
1456         if (work_done == 0) {
1457                 napi_complete(napi);
1458                 ring->int_enable(ring);
1459
1460                 return 0;
1461         }
1462
1463         return budget;
1464 }
1465
1466 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1467 {
1468         struct bcmgenet_priv *priv = netdev_priv(dev);
1469         int i;
1470
1471         if (netif_is_multiqueue(dev)) {
1472                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1473                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1474         }
1475
1476         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1477 }
1478
1479 /* Reallocate the SKB to put enough headroom in front of it and insert
1480  * the transmit checksum offsets in the descriptors
1481  */
1482 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1483                                             struct sk_buff *skb)
1484 {
1485         struct status_64 *status = NULL;
1486         struct sk_buff *new_skb;
1487         u16 offset;
1488         u8 ip_proto;
1489         __be16 ip_ver;
1490         u32 tx_csum_info;
1491
1492         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1493                 /* If 64 byte status block enabled, must make sure skb has
1494                  * enough headroom for us to insert 64B status block.
1495                  */
1496                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1497                 dev_kfree_skb(skb);
1498                 if (!new_skb) {
1499                         dev->stats.tx_dropped++;
1500                         return NULL;
1501                 }
1502                 skb = new_skb;
1503         }
1504
1505         skb_push(skb, sizeof(*status));
1506         status = (struct status_64 *)skb->data;
1507
1508         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1509                 ip_ver = skb->protocol;
1510                 switch (ip_ver) {
1511                 case htons(ETH_P_IP):
1512                         ip_proto = ip_hdr(skb)->protocol;
1513                         break;
1514                 case htons(ETH_P_IPV6):
1515                         ip_proto = ipv6_hdr(skb)->nexthdr;
1516                         break;
1517                 default:
1518                         return skb;
1519                 }
1520
1521                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1522                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1523                                 (offset + skb->csum_offset);
1524
1525                 /* Set the length valid bit for TCP and UDP and just set
1526                  * the special UDP flag for IPv4, else just set to 0.
1527                  */
1528                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1529                         tx_csum_info |= STATUS_TX_CSUM_LV;
1530                         if (ip_proto == IPPROTO_UDP &&
1531                             ip_ver == htons(ETH_P_IP))
1532                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1533                 } else {
1534                         tx_csum_info = 0;
1535                 }
1536
1537                 status->tx_csum_info = tx_csum_info;
1538         }
1539
1540         return skb;
1541 }
1542
1543 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1544 {
1545         struct bcmgenet_priv *priv = netdev_priv(dev);
1546         struct device *kdev = &priv->pdev->dev;
1547         struct bcmgenet_tx_ring *ring = NULL;
1548         struct enet_cb *tx_cb_ptr;
1549         struct netdev_queue *txq;
1550         int nr_frags, index;
1551         dma_addr_t mapping;
1552         unsigned int size;
1553         skb_frag_t *frag;
1554         u32 len_stat;
1555         int ret;
1556         int i;
1557
1558         index = skb_get_queue_mapping(skb);
1559         /* Mapping strategy:
1560          * queue_mapping = 0, unclassified, packet xmited through ring16
1561          * queue_mapping = 1, goes to ring 0. (highest priority queue
1562          * queue_mapping = 2, goes to ring 1.
1563          * queue_mapping = 3, goes to ring 2.
1564          * queue_mapping = 4, goes to ring 3.
1565          */
1566         if (index == 0)
1567                 index = DESC_INDEX;
1568         else
1569                 index -= 1;
1570
1571         ring = &priv->tx_rings[index];
1572         txq = netdev_get_tx_queue(dev, ring->queue);
1573
1574         nr_frags = skb_shinfo(skb)->nr_frags;
1575
1576         spin_lock(&ring->lock);
1577         if (ring->free_bds <= (nr_frags + 1)) {
1578                 if (!netif_tx_queue_stopped(txq)) {
1579                         netif_tx_stop_queue(txq);
1580                         netdev_err(dev,
1581                                    "%s: tx ring %d full when queue %d awake\n",
1582                                    __func__, index, ring->queue);
1583                 }
1584                 ret = NETDEV_TX_BUSY;
1585                 goto out;
1586         }
1587
1588         if (skb_padto(skb, ETH_ZLEN)) {
1589                 ret = NETDEV_TX_OK;
1590                 goto out;
1591         }
1592
1593         /* Retain how many bytes will be sent on the wire, without TSB inserted
1594          * by transmit checksum offload
1595          */
1596         GENET_CB(skb)->bytes_sent = skb->len;
1597
1598         /* set the SKB transmit checksum */
1599         if (priv->desc_64b_en) {
1600                 skb = bcmgenet_put_tx_csum(dev, skb);
1601                 if (!skb) {
1602                         ret = NETDEV_TX_OK;
1603                         goto out;
1604                 }
1605         }
1606
1607         for (i = 0; i <= nr_frags; i++) {
1608                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1609
1610                 BUG_ON(!tx_cb_ptr);
1611
1612                 if (!i) {
1613                         /* Transmit single SKB or head of fragment list */
1614                         GENET_CB(skb)->first_cb = tx_cb_ptr;
1615                         size = skb_headlen(skb);
1616                         mapping = dma_map_single(kdev, skb->data, size,
1617                                                  DMA_TO_DEVICE);
1618                 } else {
1619                         /* xmit fragment */
1620                         frag = &skb_shinfo(skb)->frags[i - 1];
1621                         size = skb_frag_size(frag);
1622                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
1623                                                    DMA_TO_DEVICE);
1624                 }
1625
1626                 ret = dma_mapping_error(kdev, mapping);
1627                 if (ret) {
1628                         priv->mib.tx_dma_failed++;
1629                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1630                         ret = NETDEV_TX_OK;
1631                         goto out_unmap_frags;
1632                 }
1633                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1634                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1635
1636                 tx_cb_ptr->skb = skb;
1637
1638                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1639                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1640
1641                 if (!i) {
1642                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1643                         if (skb->ip_summed == CHECKSUM_PARTIAL)
1644                                 len_stat |= DMA_TX_DO_CSUM;
1645                 }
1646                 if (i == nr_frags)
1647                         len_stat |= DMA_EOP;
1648
1649                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1650         }
1651
1652         GENET_CB(skb)->last_cb = tx_cb_ptr;
1653         skb_tx_timestamp(skb);
1654
1655         /* Decrement total BD count and advance our write pointer */
1656         ring->free_bds -= nr_frags + 1;
1657         ring->prod_index += nr_frags + 1;
1658         ring->prod_index &= DMA_P_INDEX_MASK;
1659
1660         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1661
1662         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1663                 netif_tx_stop_queue(txq);
1664
1665         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1666                 /* Packets are ready, update producer index */
1667                 bcmgenet_tdma_ring_writel(priv, ring->index,
1668                                           ring->prod_index, TDMA_PROD_INDEX);
1669 out:
1670         spin_unlock(&ring->lock);
1671
1672         return ret;
1673
1674 out_unmap_frags:
1675         /* Back up for failed control block mapping */
1676         bcmgenet_put_txcb(priv, ring);
1677
1678         /* Unmap successfully mapped control blocks */
1679         while (i-- > 0) {
1680                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1681                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1682         }
1683
1684         dev_kfree_skb(skb);
1685         goto out;
1686 }
1687
1688 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1689                                           struct enet_cb *cb)
1690 {
1691         struct device *kdev = &priv->pdev->dev;
1692         struct sk_buff *skb;
1693         struct sk_buff *rx_skb;
1694         dma_addr_t mapping;
1695
1696         /* Allocate a new Rx skb */
1697         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1698         if (!skb) {
1699                 priv->mib.alloc_rx_buff_failed++;
1700                 netif_err(priv, rx_err, priv->dev,
1701                           "%s: Rx skb allocation failed\n", __func__);
1702                 return NULL;
1703         }
1704
1705         /* DMA-map the new Rx skb */
1706         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1707                                  DMA_FROM_DEVICE);
1708         if (dma_mapping_error(kdev, mapping)) {
1709                 priv->mib.rx_dma_failed++;
1710                 dev_kfree_skb_any(skb);
1711                 netif_err(priv, rx_err, priv->dev,
1712                           "%s: Rx skb DMA mapping failed\n", __func__);
1713                 return NULL;
1714         }
1715
1716         /* Grab the current Rx skb from the ring and DMA-unmap it */
1717         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1718
1719         /* Put the new Rx skb on the ring */
1720         cb->skb = skb;
1721         dma_unmap_addr_set(cb, dma_addr, mapping);
1722         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1723         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1724
1725         /* Return the current Rx skb to caller */
1726         return rx_skb;
1727 }
1728
1729 /* bcmgenet_desc_rx - descriptor based rx process.
1730  * this could be called from bottom half, or from NAPI polling method.
1731  */
1732 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1733                                      unsigned int budget)
1734 {
1735         struct bcmgenet_priv *priv = ring->priv;
1736         struct net_device *dev = priv->dev;
1737         struct enet_cb *cb;
1738         struct sk_buff *skb;
1739         u32 dma_length_status;
1740         unsigned long dma_flag;
1741         int len;
1742         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1743         unsigned int bytes_processed = 0;
1744         unsigned int p_index, mask;
1745         unsigned int discards;
1746         unsigned int chksum_ok = 0;
1747
1748         /* Clear status before servicing to reduce spurious interrupts */
1749         if (ring->index == DESC_INDEX) {
1750                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1751                                          INTRL2_CPU_CLEAR);
1752         } else {
1753                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1754                 bcmgenet_intrl2_1_writel(priv,
1755                                          mask,
1756                                          INTRL2_CPU_CLEAR);
1757         }
1758
1759         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1760
1761         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1762                    DMA_P_INDEX_DISCARD_CNT_MASK;
1763         if (discards > ring->old_discards) {
1764                 discards = discards - ring->old_discards;
1765                 ring->errors += discards;
1766                 ring->old_discards += discards;
1767
1768                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1769                 if (ring->old_discards >= 0xC000) {
1770                         ring->old_discards = 0;
1771                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1772                                                   RDMA_PROD_INDEX);
1773                 }
1774         }
1775
1776         p_index &= DMA_P_INDEX_MASK;
1777         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1778
1779         netif_dbg(priv, rx_status, dev,
1780                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1781
1782         while ((rxpktprocessed < rxpkttoprocess) &&
1783                (rxpktprocessed < budget)) {
1784                 cb = &priv->rx_cbs[ring->read_ptr];
1785                 skb = bcmgenet_rx_refill(priv, cb);
1786
1787                 if (unlikely(!skb)) {
1788                         ring->dropped++;
1789                         goto next;
1790                 }
1791
1792                 if (!priv->desc_64b_en) {
1793                         dma_length_status =
1794                                 dmadesc_get_length_status(priv, cb->bd_addr);
1795                 } else {
1796                         struct status_64 *status;
1797
1798                         status = (struct status_64 *)skb->data;
1799                         dma_length_status = status->length_status;
1800                 }
1801
1802                 /* DMA flags and length are still valid no matter how
1803                  * we got the Receive Status Vector (64B RSB or register)
1804                  */
1805                 dma_flag = dma_length_status & 0xffff;
1806                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1807
1808                 netif_dbg(priv, rx_status, dev,
1809                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1810                           __func__, p_index, ring->c_index,
1811                           ring->read_ptr, dma_length_status);
1812
1813                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1814                         netif_err(priv, rx_status, dev,
1815                                   "dropping fragmented packet!\n");
1816                         ring->errors++;
1817                         dev_kfree_skb_any(skb);
1818                         goto next;
1819                 }
1820
1821                 /* report errors */
1822                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1823                                                 DMA_RX_OV |
1824                                                 DMA_RX_NO |
1825                                                 DMA_RX_LG |
1826                                                 DMA_RX_RXER))) {
1827                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1828                                   (unsigned int)dma_flag);
1829                         if (dma_flag & DMA_RX_CRC_ERROR)
1830                                 dev->stats.rx_crc_errors++;
1831                         if (dma_flag & DMA_RX_OV)
1832                                 dev->stats.rx_over_errors++;
1833                         if (dma_flag & DMA_RX_NO)
1834                                 dev->stats.rx_frame_errors++;
1835                         if (dma_flag & DMA_RX_LG)
1836                                 dev->stats.rx_length_errors++;
1837                         dev->stats.rx_errors++;
1838                         dev_kfree_skb_any(skb);
1839                         goto next;
1840                 } /* error packet */
1841
1842                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1843                              priv->desc_rxchk_en;
1844
1845                 skb_put(skb, len);
1846                 if (priv->desc_64b_en) {
1847                         skb_pull(skb, 64);
1848                         len -= 64;
1849                 }
1850
1851                 if (likely(chksum_ok))
1852                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1853
1854                 /* remove hardware 2bytes added for IP alignment */
1855                 skb_pull(skb, 2);
1856                 len -= 2;
1857
1858                 if (priv->crc_fwd_en) {
1859                         skb_trim(skb, len - ETH_FCS_LEN);
1860                         len -= ETH_FCS_LEN;
1861                 }
1862
1863                 bytes_processed += len;
1864
1865                 /*Finish setting up the received SKB and send it to the kernel*/
1866                 skb->protocol = eth_type_trans(skb, priv->dev);
1867                 ring->packets++;
1868                 ring->bytes += len;
1869                 if (dma_flag & DMA_RX_MULT)
1870                         dev->stats.multicast++;
1871
1872                 /* Notify kernel */
1873                 napi_gro_receive(&ring->napi, skb);
1874                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1875
1876 next:
1877                 rxpktprocessed++;
1878                 if (likely(ring->read_ptr < ring->end_ptr))
1879                         ring->read_ptr++;
1880                 else
1881                         ring->read_ptr = ring->cb_ptr;
1882
1883                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1884                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1885         }
1886
1887         ring->dim.bytes = bytes_processed;
1888         ring->dim.packets = rxpktprocessed;
1889
1890         return rxpktprocessed;
1891 }
1892
1893 /* Rx NAPI polling method */
1894 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1895 {
1896         struct bcmgenet_rx_ring *ring = container_of(napi,
1897                         struct bcmgenet_rx_ring, napi);
1898         struct net_dim_sample dim_sample;
1899         unsigned int work_done;
1900
1901         work_done = bcmgenet_desc_rx(ring, budget);
1902
1903         if (work_done < budget) {
1904                 napi_complete_done(napi, work_done);
1905                 ring->int_enable(ring);
1906         }
1907
1908         if (ring->dim.use_dim) {
1909                 net_dim_sample(ring->dim.event_ctr, ring->dim.packets,
1910                                ring->dim.bytes, &dim_sample);
1911                 net_dim(&ring->dim.dim, dim_sample);
1912         }
1913
1914         return work_done;
1915 }
1916
1917 static void bcmgenet_dim_work(struct work_struct *work)
1918 {
1919         struct net_dim *dim = container_of(work, struct net_dim, work);
1920         struct bcmgenet_net_dim *ndim =
1921                         container_of(dim, struct bcmgenet_net_dim, dim);
1922         struct bcmgenet_rx_ring *ring =
1923                         container_of(ndim, struct bcmgenet_rx_ring, dim);
1924         struct net_dim_cq_moder cur_profile =
1925                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1926
1927         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1928         dim->state = NET_DIM_START_MEASURE;
1929 }
1930
1931 /* Assign skb to RX DMA descriptor. */
1932 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1933                                      struct bcmgenet_rx_ring *ring)
1934 {
1935         struct enet_cb *cb;
1936         struct sk_buff *skb;
1937         int i;
1938
1939         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1940
1941         /* loop here for each buffer needing assign */
1942         for (i = 0; i < ring->size; i++) {
1943                 cb = ring->cbs + i;
1944                 skb = bcmgenet_rx_refill(priv, cb);
1945                 if (skb)
1946                         dev_consume_skb_any(skb);
1947                 if (!cb->skb)
1948                         return -ENOMEM;
1949         }
1950
1951         return 0;
1952 }
1953
1954 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1955 {
1956         struct sk_buff *skb;
1957         struct enet_cb *cb;
1958         int i;
1959
1960         for (i = 0; i < priv->num_rx_bds; i++) {
1961                 cb = &priv->rx_cbs[i];
1962
1963                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1964                 if (skb)
1965                         dev_consume_skb_any(skb);
1966         }
1967 }
1968
1969 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1970 {
1971         u32 reg;
1972
1973         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1974         if (enable)
1975                 reg |= mask;
1976         else
1977                 reg &= ~mask;
1978         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1979
1980         /* UniMAC stops on a packet boundary, wait for a full-size packet
1981          * to be processed
1982          */
1983         if (enable == 0)
1984                 usleep_range(1000, 2000);
1985 }
1986
1987 static void reset_umac(struct bcmgenet_priv *priv)
1988 {
1989         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1990         bcmgenet_rbuf_ctrl_set(priv, 0);
1991         udelay(10);
1992
1993         /* disable MAC while updating its registers */
1994         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1995
1996         /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1997         bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
1998         udelay(2);
1999         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2000 }
2001
2002 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2003 {
2004         /* Mask all interrupts.*/
2005         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2006         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2007         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2008         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2009 }
2010
2011 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2012 {
2013         u32 int0_enable = 0;
2014
2015         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2016          * and MoCA PHY
2017          */
2018         if (priv->internal_phy) {
2019                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2020         } else if (priv->ext_phy) {
2021                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2022         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2023                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2024                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2025         }
2026         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2027 }
2028
2029 static void init_umac(struct bcmgenet_priv *priv)
2030 {
2031         struct device *kdev = &priv->pdev->dev;
2032         u32 reg;
2033         u32 int0_enable = 0;
2034
2035         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2036
2037         reset_umac(priv);
2038
2039         /* clear tx/rx counter */
2040         bcmgenet_umac_writel(priv,
2041                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2042                              UMAC_MIB_CTRL);
2043         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2044
2045         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2046
2047         /* init rx registers, enable ip header optimization */
2048         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2049         reg |= RBUF_ALIGN_2B;
2050         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2051
2052         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2053                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2054
2055         bcmgenet_intr_disable(priv);
2056
2057         /* Configure backpressure vectors for MoCA */
2058         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2059                 reg = bcmgenet_bp_mc_get(priv);
2060                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2061
2062                 /* bp_mask: back pressure mask */
2063                 if (netif_is_multiqueue(priv->dev))
2064                         reg |= priv->hw_params->bp_in_mask;
2065                 else
2066                         reg &= ~priv->hw_params->bp_in_mask;
2067                 bcmgenet_bp_mc_set(priv, reg);
2068         }
2069
2070         /* Enable MDIO interrupts on GENET v3+ */
2071         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2072                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2073
2074         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2075
2076         dev_dbg(kdev, "done init umac\n");
2077 }
2078
2079 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2080                               void (*cb)(struct work_struct *work))
2081 {
2082         struct bcmgenet_net_dim *dim = &ring->dim;
2083
2084         INIT_WORK(&dim->dim.work, cb);
2085         dim->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2086         dim->event_ctr = 0;
2087         dim->packets = 0;
2088         dim->bytes = 0;
2089 }
2090
2091 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2092 {
2093         struct bcmgenet_net_dim *dim = &ring->dim;
2094         struct net_dim_cq_moder moder;
2095         u32 usecs, pkts;
2096
2097         usecs = ring->rx_coalesce_usecs;
2098         pkts = ring->rx_max_coalesced_frames;
2099
2100         /* If DIM was enabled, re-apply default parameters */
2101         if (dim->use_dim) {
2102                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2103                 usecs = moder.usec;
2104                 pkts = moder.pkts;
2105         }
2106
2107         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2108 }
2109
2110 /* Initialize a Tx ring along with corresponding hardware registers */
2111 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2112                                   unsigned int index, unsigned int size,
2113                                   unsigned int start_ptr, unsigned int end_ptr)
2114 {
2115         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2116         u32 words_per_bd = WORDS_PER_BD(priv);
2117         u32 flow_period_val = 0;
2118
2119         spin_lock_init(&ring->lock);
2120         ring->priv = priv;
2121         ring->index = index;
2122         if (index == DESC_INDEX) {
2123                 ring->queue = 0;
2124                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2125                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2126         } else {
2127                 ring->queue = index + 1;
2128                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2129                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2130         }
2131         ring->cbs = priv->tx_cbs + start_ptr;
2132         ring->size = size;
2133         ring->clean_ptr = start_ptr;
2134         ring->c_index = 0;
2135         ring->free_bds = size;
2136         ring->write_ptr = start_ptr;
2137         ring->cb_ptr = start_ptr;
2138         ring->end_ptr = end_ptr - 1;
2139         ring->prod_index = 0;
2140
2141         /* Set flow period for ring != 16 */
2142         if (index != DESC_INDEX)
2143                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2144
2145         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2146         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2147         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2148         /* Disable rate control for now */
2149         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2150                                   TDMA_FLOW_PERIOD);
2151         bcmgenet_tdma_ring_writel(priv, index,
2152                                   ((size << DMA_RING_SIZE_SHIFT) |
2153                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2154
2155         /* Set start and end address, read and write pointers */
2156         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2157                                   DMA_START_ADDR);
2158         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2159                                   TDMA_READ_PTR);
2160         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2161                                   TDMA_WRITE_PTR);
2162         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2163                                   DMA_END_ADDR);
2164
2165         /* Initialize Tx NAPI */
2166         netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2167                        NAPI_POLL_WEIGHT);
2168 }
2169
2170 /* Initialize a RDMA ring */
2171 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2172                                  unsigned int index, unsigned int size,
2173                                  unsigned int start_ptr, unsigned int end_ptr)
2174 {
2175         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2176         u32 words_per_bd = WORDS_PER_BD(priv);
2177         int ret;
2178
2179         ring->priv = priv;
2180         ring->index = index;
2181         if (index == DESC_INDEX) {
2182                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2183                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2184         } else {
2185                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2186                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2187         }
2188         ring->cbs = priv->rx_cbs + start_ptr;
2189         ring->size = size;
2190         ring->c_index = 0;
2191         ring->read_ptr = start_ptr;
2192         ring->cb_ptr = start_ptr;
2193         ring->end_ptr = end_ptr - 1;
2194
2195         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2196         if (ret)
2197                 return ret;
2198
2199         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2200         bcmgenet_init_rx_coalesce(ring);
2201
2202         /* Initialize Rx NAPI */
2203         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2204                        NAPI_POLL_WEIGHT);
2205
2206         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2207         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2208         bcmgenet_rdma_ring_writel(priv, index,
2209                                   ((size << DMA_RING_SIZE_SHIFT) |
2210                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2211         bcmgenet_rdma_ring_writel(priv, index,
2212                                   (DMA_FC_THRESH_LO <<
2213                                    DMA_XOFF_THRESHOLD_SHIFT) |
2214                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2215
2216         /* Set start and end address, read and write pointers */
2217         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2218                                   DMA_START_ADDR);
2219         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2220                                   RDMA_READ_PTR);
2221         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2222                                   RDMA_WRITE_PTR);
2223         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2224                                   DMA_END_ADDR);
2225
2226         return ret;
2227 }
2228
2229 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2230 {
2231         unsigned int i;
2232         struct bcmgenet_tx_ring *ring;
2233
2234         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2235                 ring = &priv->tx_rings[i];
2236                 napi_enable(&ring->napi);
2237                 ring->int_enable(ring);
2238         }
2239
2240         ring = &priv->tx_rings[DESC_INDEX];
2241         napi_enable(&ring->napi);
2242         ring->int_enable(ring);
2243 }
2244
2245 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2246 {
2247         unsigned int i;
2248         struct bcmgenet_tx_ring *ring;
2249
2250         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2251                 ring = &priv->tx_rings[i];
2252                 napi_disable(&ring->napi);
2253         }
2254
2255         ring = &priv->tx_rings[DESC_INDEX];
2256         napi_disable(&ring->napi);
2257 }
2258
2259 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2260 {
2261         unsigned int i;
2262         struct bcmgenet_tx_ring *ring;
2263
2264         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2265                 ring = &priv->tx_rings[i];
2266                 netif_napi_del(&ring->napi);
2267         }
2268
2269         ring = &priv->tx_rings[DESC_INDEX];
2270         netif_napi_del(&ring->napi);
2271 }
2272
2273 /* Initialize Tx queues
2274  *
2275  * Queues 0-3 are priority-based, each one has 32 descriptors,
2276  * with queue 0 being the highest priority queue.
2277  *
2278  * Queue 16 is the default Tx queue with
2279  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2280  *
2281  * The transmit control block pool is then partitioned as follows:
2282  * - Tx queue 0 uses tx_cbs[0..31]
2283  * - Tx queue 1 uses tx_cbs[32..63]
2284  * - Tx queue 2 uses tx_cbs[64..95]
2285  * - Tx queue 3 uses tx_cbs[96..127]
2286  * - Tx queue 16 uses tx_cbs[128..255]
2287  */
2288 static void bcmgenet_init_tx_queues(struct net_device *dev)
2289 {
2290         struct bcmgenet_priv *priv = netdev_priv(dev);
2291         u32 i, dma_enable;
2292         u32 dma_ctrl, ring_cfg;
2293         u32 dma_priority[3] = {0, 0, 0};
2294
2295         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2296         dma_enable = dma_ctrl & DMA_EN;
2297         dma_ctrl &= ~DMA_EN;
2298         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2299
2300         dma_ctrl = 0;
2301         ring_cfg = 0;
2302
2303         /* Enable strict priority arbiter mode */
2304         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2305
2306         /* Initialize Tx priority queues */
2307         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2308                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2309                                       i * priv->hw_params->tx_bds_per_q,
2310                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2311                 ring_cfg |= (1 << i);
2312                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2313                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2314                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2315         }
2316
2317         /* Initialize Tx default queue 16 */
2318         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2319                               priv->hw_params->tx_queues *
2320                               priv->hw_params->tx_bds_per_q,
2321                               TOTAL_DESC);
2322         ring_cfg |= (1 << DESC_INDEX);
2323         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2324         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2325                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2326                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2327
2328         /* Set Tx queue priorities */
2329         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2330         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2331         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2332
2333         /* Enable Tx queues */
2334         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2335
2336         /* Enable Tx DMA */
2337         if (dma_enable)
2338                 dma_ctrl |= DMA_EN;
2339         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2340 }
2341
2342 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2343 {
2344         unsigned int i;
2345         struct bcmgenet_rx_ring *ring;
2346
2347         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2348                 ring = &priv->rx_rings[i];
2349                 napi_enable(&ring->napi);
2350                 ring->int_enable(ring);
2351         }
2352
2353         ring = &priv->rx_rings[DESC_INDEX];
2354         napi_enable(&ring->napi);
2355         ring->int_enable(ring);
2356 }
2357
2358 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2359 {
2360         unsigned int i;
2361         struct bcmgenet_rx_ring *ring;
2362
2363         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2364                 ring = &priv->rx_rings[i];
2365                 napi_disable(&ring->napi);
2366                 cancel_work_sync(&ring->dim.dim.work);
2367         }
2368
2369         ring = &priv->rx_rings[DESC_INDEX];
2370         napi_disable(&ring->napi);
2371         cancel_work_sync(&ring->dim.dim.work);
2372 }
2373
2374 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2375 {
2376         unsigned int i;
2377         struct bcmgenet_rx_ring *ring;
2378
2379         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2380                 ring = &priv->rx_rings[i];
2381                 netif_napi_del(&ring->napi);
2382         }
2383
2384         ring = &priv->rx_rings[DESC_INDEX];
2385         netif_napi_del(&ring->napi);
2386 }
2387
2388 /* Initialize Rx queues
2389  *
2390  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2391  * used to direct traffic to these queues.
2392  *
2393  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2394  */
2395 static int bcmgenet_init_rx_queues(struct net_device *dev)
2396 {
2397         struct bcmgenet_priv *priv = netdev_priv(dev);
2398         u32 i;
2399         u32 dma_enable;
2400         u32 dma_ctrl;
2401         u32 ring_cfg;
2402         int ret;
2403
2404         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2405         dma_enable = dma_ctrl & DMA_EN;
2406         dma_ctrl &= ~DMA_EN;
2407         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2408
2409         dma_ctrl = 0;
2410         ring_cfg = 0;
2411
2412         /* Initialize Rx priority queues */
2413         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2414                 ret = bcmgenet_init_rx_ring(priv, i,
2415                                             priv->hw_params->rx_bds_per_q,
2416                                             i * priv->hw_params->rx_bds_per_q,
2417                                             (i + 1) *
2418                                             priv->hw_params->rx_bds_per_q);
2419                 if (ret)
2420                         return ret;
2421
2422                 ring_cfg |= (1 << i);
2423                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2424         }
2425
2426         /* Initialize Rx default queue 16 */
2427         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2428                                     priv->hw_params->rx_queues *
2429                                     priv->hw_params->rx_bds_per_q,
2430                                     TOTAL_DESC);
2431         if (ret)
2432                 return ret;
2433
2434         ring_cfg |= (1 << DESC_INDEX);
2435         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2436
2437         /* Enable rings */
2438         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2439
2440         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2441         if (dma_enable)
2442                 dma_ctrl |= DMA_EN;
2443         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2444
2445         return 0;
2446 }
2447
2448 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2449 {
2450         int ret = 0;
2451         int timeout = 0;
2452         u32 reg;
2453         u32 dma_ctrl;
2454         int i;
2455
2456         /* Disable TDMA to stop add more frames in TX DMA */
2457         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2458         reg &= ~DMA_EN;
2459         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2460
2461         /* Check TDMA status register to confirm TDMA is disabled */
2462         while (timeout++ < DMA_TIMEOUT_VAL) {
2463                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2464                 if (reg & DMA_DISABLED)
2465                         break;
2466
2467                 udelay(1);
2468         }
2469
2470         if (timeout == DMA_TIMEOUT_VAL) {
2471                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2472                 ret = -ETIMEDOUT;
2473         }
2474
2475         /* Wait 10ms for packet drain in both tx and rx dma */
2476         usleep_range(10000, 20000);
2477
2478         /* Disable RDMA */
2479         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2480         reg &= ~DMA_EN;
2481         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2482
2483         timeout = 0;
2484         /* Check RDMA status register to confirm RDMA is disabled */
2485         while (timeout++ < DMA_TIMEOUT_VAL) {
2486                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2487                 if (reg & DMA_DISABLED)
2488                         break;
2489
2490                 udelay(1);
2491         }
2492
2493         if (timeout == DMA_TIMEOUT_VAL) {
2494                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2495                 ret = -ETIMEDOUT;
2496         }
2497
2498         dma_ctrl = 0;
2499         for (i = 0; i < priv->hw_params->rx_queues; i++)
2500                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2501         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2502         reg &= ~dma_ctrl;
2503         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2504
2505         dma_ctrl = 0;
2506         for (i = 0; i < priv->hw_params->tx_queues; i++)
2507                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2508         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2509         reg &= ~dma_ctrl;
2510         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2511
2512         return ret;
2513 }
2514
2515 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2516 {
2517         struct netdev_queue *txq;
2518         struct sk_buff *skb;
2519         struct enet_cb *cb;
2520         int i;
2521
2522         bcmgenet_fini_rx_napi(priv);
2523         bcmgenet_fini_tx_napi(priv);
2524
2525         for (i = 0; i < priv->num_tx_bds; i++) {
2526                 cb = priv->tx_cbs + i;
2527                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2528                 if (skb)
2529                         dev_kfree_skb(skb);
2530         }
2531
2532         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2533                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2534                 netdev_tx_reset_queue(txq);
2535         }
2536
2537         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2538         netdev_tx_reset_queue(txq);
2539
2540         bcmgenet_free_rx_buffers(priv);
2541         kfree(priv->rx_cbs);
2542         kfree(priv->tx_cbs);
2543 }
2544
2545 /* init_edma: Initialize DMA control register */
2546 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2547 {
2548         int ret;
2549         unsigned int i;
2550         struct enet_cb *cb;
2551
2552         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2553
2554         /* Initialize common Rx ring structures */
2555         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2556         priv->num_rx_bds = TOTAL_DESC;
2557         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2558                                GFP_KERNEL);
2559         if (!priv->rx_cbs)
2560                 return -ENOMEM;
2561
2562         for (i = 0; i < priv->num_rx_bds; i++) {
2563                 cb = priv->rx_cbs + i;
2564                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2565         }
2566
2567         /* Initialize common TX ring structures */
2568         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2569         priv->num_tx_bds = TOTAL_DESC;
2570         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2571                                GFP_KERNEL);
2572         if (!priv->tx_cbs) {
2573                 kfree(priv->rx_cbs);
2574                 return -ENOMEM;
2575         }
2576
2577         for (i = 0; i < priv->num_tx_bds; i++) {
2578                 cb = priv->tx_cbs + i;
2579                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2580         }
2581
2582         /* Init rDma */
2583         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2584
2585         /* Initialize Rx queues */
2586         ret = bcmgenet_init_rx_queues(priv->dev);
2587         if (ret) {
2588                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2589                 bcmgenet_free_rx_buffers(priv);
2590                 kfree(priv->rx_cbs);
2591                 kfree(priv->tx_cbs);
2592                 return ret;
2593         }
2594
2595         /* Init tDma */
2596         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2597
2598         /* Initialize Tx queues */
2599         bcmgenet_init_tx_queues(priv->dev);
2600
2601         return 0;
2602 }
2603
2604 /* Interrupt bottom half */
2605 static void bcmgenet_irq_task(struct work_struct *work)
2606 {
2607         unsigned int status;
2608         struct bcmgenet_priv *priv = container_of(
2609                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2610
2611         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2612
2613         spin_lock_irq(&priv->lock);
2614         status = priv->irq0_stat;
2615         priv->irq0_stat = 0;
2616         spin_unlock_irq(&priv->lock);
2617
2618         /* Link UP/DOWN event */
2619         if (status & UMAC_IRQ_LINK_EVENT) {
2620                 priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP);
2621                 phy_mac_interrupt(priv->dev->phydev);
2622         }
2623 }
2624
2625 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2626 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2627 {
2628         struct bcmgenet_priv *priv = dev_id;
2629         struct bcmgenet_rx_ring *rx_ring;
2630         struct bcmgenet_tx_ring *tx_ring;
2631         unsigned int index, status;
2632
2633         /* Read irq status */
2634         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2635                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2636
2637         /* clear interrupts */
2638         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2639
2640         netif_dbg(priv, intr, priv->dev,
2641                   "%s: IRQ=0x%x\n", __func__, status);
2642
2643         /* Check Rx priority queue interrupts */
2644         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2645                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2646                         continue;
2647
2648                 rx_ring = &priv->rx_rings[index];
2649                 rx_ring->dim.event_ctr++;
2650
2651                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2652                         rx_ring->int_disable(rx_ring);
2653                         __napi_schedule_irqoff(&rx_ring->napi);
2654                 }
2655         }
2656
2657         /* Check Tx priority queue interrupts */
2658         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2659                 if (!(status & BIT(index)))
2660                         continue;
2661
2662                 tx_ring = &priv->tx_rings[index];
2663
2664                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2665                         tx_ring->int_disable(tx_ring);
2666                         __napi_schedule_irqoff(&tx_ring->napi);
2667                 }
2668         }
2669
2670         return IRQ_HANDLED;
2671 }
2672
2673 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2674 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2675 {
2676         struct bcmgenet_priv *priv = dev_id;
2677         struct bcmgenet_rx_ring *rx_ring;
2678         struct bcmgenet_tx_ring *tx_ring;
2679         unsigned int status;
2680         unsigned long flags;
2681
2682         /* Read irq status */
2683         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2684                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2685
2686         /* clear interrupts */
2687         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2688
2689         netif_dbg(priv, intr, priv->dev,
2690                   "IRQ=0x%x\n", status);
2691
2692         if (status & UMAC_IRQ_RXDMA_DONE) {
2693                 rx_ring = &priv->rx_rings[DESC_INDEX];
2694                 rx_ring->dim.event_ctr++;
2695
2696                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2697                         rx_ring->int_disable(rx_ring);
2698                         __napi_schedule_irqoff(&rx_ring->napi);
2699                 }
2700         }
2701
2702         if (status & UMAC_IRQ_TXDMA_DONE) {
2703                 tx_ring = &priv->tx_rings[DESC_INDEX];
2704
2705                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2706                         tx_ring->int_disable(tx_ring);
2707                         __napi_schedule_irqoff(&tx_ring->napi);
2708                 }
2709         }
2710
2711         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2712                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2713                 wake_up(&priv->wq);
2714         }
2715
2716         /* all other interested interrupts handled in bottom half */
2717         status &= UMAC_IRQ_LINK_EVENT;
2718         if (status) {
2719                 /* Save irq status for bottom-half processing. */
2720                 spin_lock_irqsave(&priv->lock, flags);
2721                 priv->irq0_stat |= status;
2722                 spin_unlock_irqrestore(&priv->lock, flags);
2723
2724                 schedule_work(&priv->bcmgenet_irq_work);
2725         }
2726
2727         return IRQ_HANDLED;
2728 }
2729
2730 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2731 {
2732         struct bcmgenet_priv *priv = dev_id;
2733
2734         pm_wakeup_event(&priv->pdev->dev, 0);
2735
2736         return IRQ_HANDLED;
2737 }
2738
2739 #ifdef CONFIG_NET_POLL_CONTROLLER
2740 static void bcmgenet_poll_controller(struct net_device *dev)
2741 {
2742         struct bcmgenet_priv *priv = netdev_priv(dev);
2743
2744         /* Invoke the main RX/TX interrupt handler */
2745         disable_irq(priv->irq0);
2746         bcmgenet_isr0(priv->irq0, priv);
2747         enable_irq(priv->irq0);
2748
2749         /* And the interrupt handler for RX/TX priority queues */
2750         disable_irq(priv->irq1);
2751         bcmgenet_isr1(priv->irq1, priv);
2752         enable_irq(priv->irq1);
2753 }
2754 #endif
2755
2756 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2757 {
2758         u32 reg;
2759
2760         reg = bcmgenet_rbuf_ctrl_get(priv);
2761         reg |= BIT(1);
2762         bcmgenet_rbuf_ctrl_set(priv, reg);
2763         udelay(10);
2764
2765         reg &= ~BIT(1);
2766         bcmgenet_rbuf_ctrl_set(priv, reg);
2767         udelay(10);
2768 }
2769
2770 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2771                                  unsigned char *addr)
2772 {
2773         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2774                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2775         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2776 }
2777
2778 /* Returns a reusable dma control register value */
2779 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2780 {
2781         u32 reg;
2782         u32 dma_ctrl;
2783
2784         /* disable DMA */
2785         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2786         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2787         reg &= ~dma_ctrl;
2788         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2789
2790         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2791         reg &= ~dma_ctrl;
2792         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2793
2794         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2795         udelay(10);
2796         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2797
2798         return dma_ctrl;
2799 }
2800
2801 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2802 {
2803         u32 reg;
2804
2805         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2806         reg |= dma_ctrl;
2807         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2808
2809         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2810         reg |= dma_ctrl;
2811         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2812 }
2813
2814 /* bcmgenet_hfb_clear
2815  *
2816  * Clear Hardware Filter Block and disable all filtering.
2817  */
2818 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2819 {
2820         u32 i;
2821
2822         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2823         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2824         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2825
2826         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2827                 bcmgenet_rdma_writel(priv, 0x0, i);
2828
2829         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2830                 bcmgenet_hfb_reg_writel(priv, 0x0,
2831                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2832
2833         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2834                         priv->hw_params->hfb_filter_size; i++)
2835                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2836 }
2837
2838 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2839 {
2840         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2841                 return;
2842
2843         bcmgenet_hfb_clear(priv);
2844 }
2845
2846 static void bcmgenet_netif_start(struct net_device *dev)
2847 {
2848         struct bcmgenet_priv *priv = netdev_priv(dev);
2849
2850         /* Start the network engine */
2851         bcmgenet_enable_rx_napi(priv);
2852
2853         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2854
2855         bcmgenet_enable_tx_napi(priv);
2856
2857         /* Monitor link interrupts now */
2858         bcmgenet_link_intr_enable(priv);
2859
2860         phy_start(dev->phydev);
2861 }
2862
2863 static int bcmgenet_open(struct net_device *dev)
2864 {
2865         struct bcmgenet_priv *priv = netdev_priv(dev);
2866         unsigned long dma_ctrl;
2867         u32 reg;
2868         int ret;
2869
2870         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2871
2872         /* Turn on the clock */
2873         clk_prepare_enable(priv->clk);
2874
2875         /* If this is an internal GPHY, power it back on now, before UniMAC is
2876          * brought out of reset as absolutely no UniMAC activity is allowed
2877          */
2878         if (priv->internal_phy)
2879                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2880
2881         /* take MAC out of reset */
2882         bcmgenet_umac_reset(priv);
2883
2884         init_umac(priv);
2885
2886         /* Make sure we reflect the value of CRC_CMD_FWD */
2887         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2888         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2889
2890         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2891
2892         if (priv->internal_phy) {
2893                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2894                 reg |= EXT_ENERGY_DET_MASK;
2895                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2896         }
2897
2898         /* Disable RX/TX DMA and flush TX queues */
2899         dma_ctrl = bcmgenet_dma_disable(priv);
2900
2901         /* Reinitialize TDMA and RDMA and SW housekeeping */
2902         ret = bcmgenet_init_dma(priv);
2903         if (ret) {
2904                 netdev_err(dev, "failed to initialize DMA\n");
2905                 goto err_clk_disable;
2906         }
2907
2908         /* Always enable ring 16 - descriptor ring */
2909         bcmgenet_enable_dma(priv, dma_ctrl);
2910
2911         /* HFB init */
2912         bcmgenet_hfb_init(priv);
2913
2914         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2915                           dev->name, priv);
2916         if (ret < 0) {
2917                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2918                 goto err_fini_dma;
2919         }
2920
2921         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2922                           dev->name, priv);
2923         if (ret < 0) {
2924                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2925                 goto err_irq0;
2926         }
2927
2928         ret = bcmgenet_mii_probe(dev);
2929         if (ret) {
2930                 netdev_err(dev, "failed to connect to PHY\n");
2931                 goto err_irq1;
2932         }
2933
2934         bcmgenet_netif_start(dev);
2935
2936         netif_tx_start_all_queues(dev);
2937
2938         return 0;
2939
2940 err_irq1:
2941         free_irq(priv->irq1, priv);
2942 err_irq0:
2943         free_irq(priv->irq0, priv);
2944 err_fini_dma:
2945         bcmgenet_dma_teardown(priv);
2946         bcmgenet_fini_dma(priv);
2947 err_clk_disable:
2948         if (priv->internal_phy)
2949                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2950         clk_disable_unprepare(priv->clk);
2951         return ret;
2952 }
2953
2954 static void bcmgenet_netif_stop(struct net_device *dev)
2955 {
2956         struct bcmgenet_priv *priv = netdev_priv(dev);
2957
2958         bcmgenet_disable_tx_napi(priv);
2959         netif_tx_disable(dev);
2960
2961         /* Disable MAC receive */
2962         umac_enable_set(priv, CMD_RX_EN, false);
2963
2964         bcmgenet_dma_teardown(priv);
2965
2966         /* Disable MAC transmit. TX DMA disabled must be done before this */
2967         umac_enable_set(priv, CMD_TX_EN, false);
2968
2969         phy_stop(dev->phydev);
2970         bcmgenet_disable_rx_napi(priv);
2971         bcmgenet_intr_disable(priv);
2972
2973         /* Wait for pending work items to complete. Since interrupts are
2974          * disabled no new work will be scheduled.
2975          */
2976         cancel_work_sync(&priv->bcmgenet_irq_work);
2977
2978         priv->old_link = -1;
2979         priv->old_speed = -1;
2980         priv->old_duplex = -1;
2981         priv->old_pause = -1;
2982
2983         /* tx reclaim */
2984         bcmgenet_tx_reclaim_all(dev);
2985         bcmgenet_fini_dma(priv);
2986 }
2987
2988 static int bcmgenet_close(struct net_device *dev)
2989 {
2990         struct bcmgenet_priv *priv = netdev_priv(dev);
2991         int ret = 0;
2992
2993         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2994
2995         bcmgenet_netif_stop(dev);
2996
2997         /* Really kill the PHY state machine and disconnect from it */
2998         phy_disconnect(dev->phydev);
2999
3000         free_irq(priv->irq0, priv);
3001         free_irq(priv->irq1, priv);
3002
3003         if (priv->internal_phy)
3004                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3005
3006         clk_disable_unprepare(priv->clk);
3007
3008         return ret;
3009 }
3010
3011 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3012 {
3013         struct bcmgenet_priv *priv = ring->priv;
3014         u32 p_index, c_index, intsts, intmsk;
3015         struct netdev_queue *txq;
3016         unsigned int free_bds;
3017         bool txq_stopped;
3018
3019         if (!netif_msg_tx_err(priv))
3020                 return;
3021
3022         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3023
3024         spin_lock(&ring->lock);
3025         if (ring->index == DESC_INDEX) {
3026                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3027                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3028         } else {
3029                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3030                 intmsk = 1 << ring->index;
3031         }
3032         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3033         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3034         txq_stopped = netif_tx_queue_stopped(txq);
3035         free_bds = ring->free_bds;
3036         spin_unlock(&ring->lock);
3037
3038         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3039                   "TX queue status: %s, interrupts: %s\n"
3040                   "(sw)free_bds: %d (sw)size: %d\n"
3041                   "(sw)p_index: %d (hw)p_index: %d\n"
3042                   "(sw)c_index: %d (hw)c_index: %d\n"
3043                   "(sw)clean_p: %d (sw)write_p: %d\n"
3044                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3045                   ring->index, ring->queue,
3046                   txq_stopped ? "stopped" : "active",
3047                   intsts & intmsk ? "enabled" : "disabled",
3048                   free_bds, ring->size,
3049                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3050                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3051                   ring->clean_ptr, ring->write_ptr,
3052                   ring->cb_ptr, ring->end_ptr);
3053 }
3054
3055 static void bcmgenet_timeout(struct net_device *dev)
3056 {
3057         struct bcmgenet_priv *priv = netdev_priv(dev);
3058         u32 int0_enable = 0;
3059         u32 int1_enable = 0;
3060         unsigned int q;
3061
3062         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3063
3064         for (q = 0; q < priv->hw_params->tx_queues; q++)
3065                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3066         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3067
3068         bcmgenet_tx_reclaim_all(dev);
3069
3070         for (q = 0; q < priv->hw_params->tx_queues; q++)
3071                 int1_enable |= (1 << q);
3072
3073         int0_enable = UMAC_IRQ_TXDMA_DONE;
3074
3075         /* Re-enable TX interrupts if disabled */
3076         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3077         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3078
3079         netif_trans_update(dev);
3080
3081         dev->stats.tx_errors++;
3082
3083         netif_tx_wake_all_queues(dev);
3084 }
3085
3086 #define MAX_MC_COUNT    16
3087
3088 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3089                                          unsigned char *addr,
3090                                          int *i,
3091                                          int *mc)
3092 {
3093         u32 reg;
3094
3095         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3096                              UMAC_MDF_ADDR + (*i * 4));
3097         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3098                              addr[4] << 8 | addr[5],
3099                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3100         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3101         reg |= (1 << (MAX_MC_COUNT - *mc));
3102         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3103         *i += 2;
3104         (*mc)++;
3105 }
3106
3107 static void bcmgenet_set_rx_mode(struct net_device *dev)
3108 {
3109         struct bcmgenet_priv *priv = netdev_priv(dev);
3110         struct netdev_hw_addr *ha;
3111         int i, mc;
3112         u32 reg;
3113
3114         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3115
3116         /* Promiscuous mode */
3117         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3118         if (dev->flags & IFF_PROMISC) {
3119                 reg |= CMD_PROMISC;
3120                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3121                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3122                 return;
3123         } else {
3124                 reg &= ~CMD_PROMISC;
3125                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3126         }
3127
3128         /* UniMac doesn't support ALLMULTI */
3129         if (dev->flags & IFF_ALLMULTI) {
3130                 netdev_warn(dev, "ALLMULTI is not supported\n");
3131                 return;
3132         }
3133
3134         /* update MDF filter */
3135         i = 0;
3136         mc = 0;
3137         /* Broadcast */
3138         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3139         /* my own address.*/
3140         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3141         /* Unicast list*/
3142         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3143                 return;
3144
3145         if (!netdev_uc_empty(dev))
3146                 netdev_for_each_uc_addr(ha, dev)
3147                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3148         /* Multicast */
3149         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3150                 return;
3151
3152         netdev_for_each_mc_addr(ha, dev)
3153                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3154 }
3155
3156 /* Set the hardware MAC address. */
3157 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3158 {
3159         struct sockaddr *addr = p;
3160
3161         /* Setting the MAC address at the hardware level is not possible
3162          * without disabling the UniMAC RX/TX enable bits.
3163          */
3164         if (netif_running(dev))
3165                 return -EBUSY;
3166
3167         ether_addr_copy(dev->dev_addr, addr->sa_data);
3168
3169         return 0;
3170 }
3171
3172 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3173 {
3174         struct bcmgenet_priv *priv = netdev_priv(dev);
3175         unsigned long tx_bytes = 0, tx_packets = 0;
3176         unsigned long rx_bytes = 0, rx_packets = 0;
3177         unsigned long rx_errors = 0, rx_dropped = 0;
3178         struct bcmgenet_tx_ring *tx_ring;
3179         struct bcmgenet_rx_ring *rx_ring;
3180         unsigned int q;
3181
3182         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3183                 tx_ring = &priv->tx_rings[q];
3184                 tx_bytes += tx_ring->bytes;
3185                 tx_packets += tx_ring->packets;
3186         }
3187         tx_ring = &priv->tx_rings[DESC_INDEX];
3188         tx_bytes += tx_ring->bytes;
3189         tx_packets += tx_ring->packets;
3190
3191         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3192                 rx_ring = &priv->rx_rings[q];
3193
3194                 rx_bytes += rx_ring->bytes;
3195                 rx_packets += rx_ring->packets;
3196                 rx_errors += rx_ring->errors;
3197                 rx_dropped += rx_ring->dropped;
3198         }
3199         rx_ring = &priv->rx_rings[DESC_INDEX];
3200         rx_bytes += rx_ring->bytes;
3201         rx_packets += rx_ring->packets;
3202         rx_errors += rx_ring->errors;
3203         rx_dropped += rx_ring->dropped;
3204
3205         dev->stats.tx_bytes = tx_bytes;
3206         dev->stats.tx_packets = tx_packets;
3207         dev->stats.rx_bytes = rx_bytes;
3208         dev->stats.rx_packets = rx_packets;
3209         dev->stats.rx_errors = rx_errors;
3210         dev->stats.rx_missed_errors = rx_errors;
3211         return &dev->stats;
3212 }
3213
3214 static const struct net_device_ops bcmgenet_netdev_ops = {
3215         .ndo_open               = bcmgenet_open,
3216         .ndo_stop               = bcmgenet_close,
3217         .ndo_start_xmit         = bcmgenet_xmit,
3218         .ndo_tx_timeout         = bcmgenet_timeout,
3219         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3220         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3221         .ndo_do_ioctl           = bcmgenet_ioctl,
3222         .ndo_set_features       = bcmgenet_set_features,
3223 #ifdef CONFIG_NET_POLL_CONTROLLER
3224         .ndo_poll_controller    = bcmgenet_poll_controller,
3225 #endif
3226         .ndo_get_stats          = bcmgenet_get_stats,
3227 };
3228
3229 /* Array of GENET hardware parameters/characteristics */
3230 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3231         [GENET_V1] = {
3232                 .tx_queues = 0,
3233                 .tx_bds_per_q = 0,
3234                 .rx_queues = 0,
3235                 .rx_bds_per_q = 0,
3236                 .bp_in_en_shift = 16,
3237                 .bp_in_mask = 0xffff,
3238                 .hfb_filter_cnt = 16,
3239                 .qtag_mask = 0x1F,
3240                 .hfb_offset = 0x1000,
3241                 .rdma_offset = 0x2000,
3242                 .tdma_offset = 0x3000,
3243                 .words_per_bd = 2,
3244         },
3245         [GENET_V2] = {
3246                 .tx_queues = 4,
3247                 .tx_bds_per_q = 32,
3248                 .rx_queues = 0,
3249                 .rx_bds_per_q = 0,
3250                 .bp_in_en_shift = 16,
3251                 .bp_in_mask = 0xffff,
3252                 .hfb_filter_cnt = 16,
3253                 .qtag_mask = 0x1F,
3254                 .tbuf_offset = 0x0600,
3255                 .hfb_offset = 0x1000,
3256                 .hfb_reg_offset = 0x2000,
3257                 .rdma_offset = 0x3000,
3258                 .tdma_offset = 0x4000,
3259                 .words_per_bd = 2,
3260                 .flags = GENET_HAS_EXT,
3261         },
3262         [GENET_V3] = {
3263                 .tx_queues = 4,
3264                 .tx_bds_per_q = 32,
3265                 .rx_queues = 0,
3266                 .rx_bds_per_q = 0,
3267                 .bp_in_en_shift = 17,
3268                 .bp_in_mask = 0x1ffff,
3269                 .hfb_filter_cnt = 48,
3270                 .hfb_filter_size = 128,
3271                 .qtag_mask = 0x3F,
3272                 .tbuf_offset = 0x0600,
3273                 .hfb_offset = 0x8000,
3274                 .hfb_reg_offset = 0xfc00,
3275                 .rdma_offset = 0x10000,
3276                 .tdma_offset = 0x11000,
3277                 .words_per_bd = 2,
3278                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3279                          GENET_HAS_MOCA_LINK_DET,
3280         },
3281         [GENET_V4] = {
3282                 .tx_queues = 4,
3283                 .tx_bds_per_q = 32,
3284                 .rx_queues = 0,
3285                 .rx_bds_per_q = 0,
3286                 .bp_in_en_shift = 17,
3287                 .bp_in_mask = 0x1ffff,
3288                 .hfb_filter_cnt = 48,
3289                 .hfb_filter_size = 128,
3290                 .qtag_mask = 0x3F,
3291                 .tbuf_offset = 0x0600,
3292                 .hfb_offset = 0x8000,
3293                 .hfb_reg_offset = 0xfc00,
3294                 .rdma_offset = 0x2000,
3295                 .tdma_offset = 0x4000,
3296                 .words_per_bd = 3,
3297                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3298                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3299         },
3300         [GENET_V5] = {
3301                 .tx_queues = 4,
3302                 .tx_bds_per_q = 32,
3303                 .rx_queues = 0,
3304                 .rx_bds_per_q = 0,
3305                 .bp_in_en_shift = 17,
3306                 .bp_in_mask = 0x1ffff,
3307                 .hfb_filter_cnt = 48,
3308                 .hfb_filter_size = 128,
3309                 .qtag_mask = 0x3F,
3310                 .tbuf_offset = 0x0600,
3311                 .hfb_offset = 0x8000,
3312                 .hfb_reg_offset = 0xfc00,
3313                 .rdma_offset = 0x2000,
3314                 .tdma_offset = 0x4000,
3315                 .words_per_bd = 3,
3316                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3317                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3318         },
3319 };
3320
3321 /* Infer hardware parameters from the detected GENET version */
3322 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3323 {
3324         struct bcmgenet_hw_params *params;
3325         u32 reg;
3326         u8 major;
3327         u16 gphy_rev;
3328
3329         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3330                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3331                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3332                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3333         } else if (GENET_IS_V3(priv)) {
3334                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3335                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3336                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3337         } else if (GENET_IS_V2(priv)) {
3338                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3339                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3340                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3341         } else if (GENET_IS_V1(priv)) {
3342                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3343                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3344                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3345         }
3346
3347         /* enum genet_version starts at 1 */
3348         priv->hw_params = &bcmgenet_hw_params[priv->version];
3349         params = priv->hw_params;
3350
3351         /* Read GENET HW version */
3352         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3353         major = (reg >> 24 & 0x0f);
3354         if (major == 6)
3355                 major = 5;
3356         else if (major == 5)
3357                 major = 4;
3358         else if (major == 0)
3359                 major = 1;
3360         if (major != priv->version) {
3361                 dev_err(&priv->pdev->dev,
3362                         "GENET version mismatch, got: %d, configured for: %d\n",
3363                         major, priv->version);
3364         }
3365
3366         /* Print the GENET core version */
3367         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3368                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3369
3370         /* Store the integrated PHY revision for the MDIO probing function
3371          * to pass this information to the PHY driver. The PHY driver expects
3372          * to find the PHY major revision in bits 15:8 while the GENET register
3373          * stores that information in bits 7:0, account for that.
3374          *
3375          * On newer chips, starting with PHY revision G0, a new scheme is
3376          * deployed similar to the Starfighter 2 switch with GPHY major
3377          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3378          * is reserved as well as special value 0x01ff, we have a small
3379          * heuristic to check for the new GPHY revision and re-arrange things
3380          * so the GPHY driver is happy.
3381          */
3382         gphy_rev = reg & 0xffff;
3383
3384         if (GENET_IS_V5(priv)) {
3385                 /* The EPHY revision should come from the MDIO registers of
3386                  * the PHY not from GENET.
3387                  */
3388                 if (gphy_rev != 0) {
3389                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3390                                 gphy_rev);
3391                 }
3392         /* This is reserved so should require special treatment */
3393         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3394                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3395                 return;
3396         /* This is the good old scheme, just GPHY major, no minor nor patch */
3397         } else if ((gphy_rev & 0xf0) != 0) {
3398                 priv->gphy_rev = gphy_rev << 8;
3399         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3400         } else if ((gphy_rev & 0xff00) != 0) {
3401                 priv->gphy_rev = gphy_rev;
3402         }
3403
3404 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3405         if (!(params->flags & GENET_HAS_40BITS))
3406                 pr_warn("GENET does not support 40-bits PA\n");
3407 #endif
3408
3409         pr_debug("Configuration for version: %d\n"
3410                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3411                 "BP << en: %2d, BP msk: 0x%05x\n"
3412                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3413                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3414                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3415                 "Words/BD: %d\n",
3416                 priv->version,
3417                 params->tx_queues, params->tx_bds_per_q,
3418                 params->rx_queues, params->rx_bds_per_q,
3419                 params->bp_in_en_shift, params->bp_in_mask,
3420                 params->hfb_filter_cnt, params->qtag_mask,
3421                 params->tbuf_offset, params->hfb_offset,
3422                 params->hfb_reg_offset,
3423                 params->rdma_offset, params->tdma_offset,
3424                 params->words_per_bd);
3425 }
3426
3427 static const struct of_device_id bcmgenet_match[] = {
3428         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3429         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3430         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3431         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3432         { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3433         { },
3434 };
3435 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3436
3437 static int bcmgenet_probe(struct platform_device *pdev)
3438 {
3439         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3440         struct device_node *dn = pdev->dev.of_node;
3441         const struct of_device_id *of_id = NULL;
3442         struct bcmgenet_priv *priv;
3443         struct net_device *dev;
3444         const void *macaddr;
3445         struct resource *r;
3446         unsigned int i;
3447         int err = -EIO;
3448         const char *phy_mode_str;
3449
3450         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3451         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3452                                  GENET_MAX_MQ_CNT + 1);
3453         if (!dev) {
3454                 dev_err(&pdev->dev, "can't allocate net device\n");
3455                 return -ENOMEM;
3456         }
3457
3458         if (dn) {
3459                 of_id = of_match_node(bcmgenet_match, dn);
3460                 if (!of_id)
3461                         return -EINVAL;
3462         }
3463
3464         priv = netdev_priv(dev);
3465         priv->irq0 = platform_get_irq(pdev, 0);
3466         priv->irq1 = platform_get_irq(pdev, 1);
3467         priv->wol_irq = platform_get_irq(pdev, 2);
3468         if (!priv->irq0 || !priv->irq1) {
3469                 dev_err(&pdev->dev, "can't find IRQs\n");
3470                 err = -EINVAL;
3471                 goto err;
3472         }
3473
3474         if (dn) {
3475                 macaddr = of_get_mac_address(dn);
3476                 if (IS_ERR(macaddr)) {
3477                         dev_err(&pdev->dev, "can't find MAC address\n");
3478                         err = -EINVAL;
3479                         goto err;
3480                 }
3481         } else {
3482                 macaddr = pd->mac_address;
3483         }
3484
3485         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3486         priv->base = devm_ioremap_resource(&pdev->dev, r);
3487         if (IS_ERR(priv->base)) {
3488                 err = PTR_ERR(priv->base);
3489                 goto err;
3490         }
3491
3492         spin_lock_init(&priv->lock);
3493
3494         SET_NETDEV_DEV(dev, &pdev->dev);
3495         dev_set_drvdata(&pdev->dev, dev);
3496         ether_addr_copy(dev->dev_addr, macaddr);
3497         dev->watchdog_timeo = 2 * HZ;
3498         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3499         dev->netdev_ops = &bcmgenet_netdev_ops;
3500
3501         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3502
3503         /* Set hardware features */
3504         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3505                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3506
3507         /* Request the WOL interrupt and advertise suspend if available */
3508         priv->wol_irq_disabled = true;
3509         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3510                                dev->name, priv);
3511         if (!err)
3512                 device_set_wakeup_capable(&pdev->dev, 1);
3513
3514         /* Set the needed headroom to account for any possible
3515          * features enabling/disabling at runtime
3516          */
3517         dev->needed_headroom += 64;
3518
3519         netdev_boot_setup_check(dev);
3520
3521         priv->dev = dev;
3522         priv->pdev = pdev;
3523         if (of_id)
3524                 priv->version = (enum bcmgenet_version)of_id->data;
3525         else
3526                 priv->version = pd->genet_version;
3527
3528         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3529         if (IS_ERR(priv->clk)) {
3530                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3531                 priv->clk = NULL;
3532         }
3533
3534         clk_prepare_enable(priv->clk);
3535
3536         bcmgenet_set_hw_params(priv);
3537
3538         /* Mii wait queue */
3539         init_waitqueue_head(&priv->wq);
3540         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3541         priv->rx_buf_len = RX_BUF_LENGTH;
3542         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3543
3544         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3545         if (IS_ERR(priv->clk_wol)) {
3546                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3547                 priv->clk_wol = NULL;
3548         }
3549
3550         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3551         if (IS_ERR(priv->clk_eee)) {
3552                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3553                 priv->clk_eee = NULL;
3554         }
3555
3556         /* If this is an internal GPHY, power it on now, before UniMAC is
3557          * brought out of reset as absolutely no UniMAC activity is allowed
3558          */
3559         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3560             !strcasecmp(phy_mode_str, "internal"))
3561                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3562
3563         reset_umac(priv);
3564
3565         err = bcmgenet_mii_init(dev);
3566         if (err)
3567                 goto err_clk_disable;
3568
3569         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3570          * just the ring 16 descriptor based TX
3571          */
3572         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3573         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3574
3575         /* Set default coalescing parameters */
3576         for (i = 0; i < priv->hw_params->rx_queues; i++)
3577                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
3578         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3579
3580         /* libphy will determine the link state */
3581         netif_carrier_off(dev);
3582
3583         /* Turn off the main clock, WOL clock is handled separately */
3584         clk_disable_unprepare(priv->clk);
3585
3586         err = register_netdev(dev);
3587         if (err)
3588                 goto err;
3589
3590         return err;
3591
3592 err_clk_disable:
3593         clk_disable_unprepare(priv->clk);
3594 err:
3595         free_netdev(dev);
3596         return err;
3597 }
3598
3599 static int bcmgenet_remove(struct platform_device *pdev)
3600 {
3601         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3602
3603         dev_set_drvdata(&pdev->dev, NULL);
3604         unregister_netdev(priv->dev);
3605         bcmgenet_mii_exit(priv->dev);
3606         free_netdev(priv->dev);
3607
3608         return 0;
3609 }
3610
3611 #ifdef CONFIG_PM_SLEEP
3612 static int bcmgenet_resume(struct device *d)
3613 {
3614         struct net_device *dev = dev_get_drvdata(d);
3615         struct bcmgenet_priv *priv = netdev_priv(dev);
3616         unsigned long dma_ctrl;
3617         int ret;
3618         u32 reg;
3619
3620         if (!netif_running(dev))
3621                 return 0;
3622
3623         /* Turn on the clock */
3624         ret = clk_prepare_enable(priv->clk);
3625         if (ret)
3626                 return ret;
3627
3628         /* If this is an internal GPHY, power it back on now, before UniMAC is
3629          * brought out of reset as absolutely no UniMAC activity is allowed
3630          */
3631         if (priv->internal_phy)
3632                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3633
3634         bcmgenet_umac_reset(priv);
3635
3636         init_umac(priv);
3637
3638         /* From WOL-enabled suspend, switch to regular clock */
3639         if (priv->wolopts)
3640                 clk_disable_unprepare(priv->clk_wol);
3641
3642         phy_init_hw(dev->phydev);
3643
3644         /* Speed settings must be restored */
3645         bcmgenet_mii_config(priv->dev, false);
3646
3647         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3648
3649         if (priv->internal_phy) {
3650                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3651                 reg |= EXT_ENERGY_DET_MASK;
3652                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3653         }
3654
3655         if (priv->wolopts)
3656                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3657
3658         /* Disable RX/TX DMA and flush TX queues */
3659         dma_ctrl = bcmgenet_dma_disable(priv);
3660
3661         /* Reinitialize TDMA and RDMA and SW housekeeping */
3662         ret = bcmgenet_init_dma(priv);
3663         if (ret) {
3664                 netdev_err(dev, "failed to initialize DMA\n");
3665                 goto out_clk_disable;
3666         }
3667
3668         /* Always enable ring 16 - descriptor ring */
3669         bcmgenet_enable_dma(priv, dma_ctrl);
3670
3671         if (!device_may_wakeup(d))
3672                 phy_resume(dev->phydev);
3673
3674         if (priv->eee.eee_enabled)
3675                 bcmgenet_eee_enable_set(dev, true);
3676
3677         bcmgenet_netif_start(dev);
3678
3679         netif_device_attach(dev);
3680
3681         return 0;
3682
3683 out_clk_disable:
3684         if (priv->internal_phy)
3685                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3686         clk_disable_unprepare(priv->clk);
3687         return ret;
3688 }
3689
3690 static int bcmgenet_suspend(struct device *d)
3691 {
3692         struct net_device *dev = dev_get_drvdata(d);
3693         struct bcmgenet_priv *priv = netdev_priv(dev);
3694         int ret = 0;
3695
3696         if (!netif_running(dev))
3697                 return 0;
3698
3699         netif_device_detach(dev);
3700
3701         bcmgenet_netif_stop(dev);
3702
3703         if (!device_may_wakeup(d))
3704                 phy_suspend(dev->phydev);
3705
3706         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3707         if (device_may_wakeup(d) && priv->wolopts) {
3708                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3709                 clk_prepare_enable(priv->clk_wol);
3710         } else if (priv->internal_phy) {
3711                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3712         }
3713
3714         /* Turn off the clocks */
3715         clk_disable_unprepare(priv->clk);
3716
3717         if (ret)
3718                 bcmgenet_resume(d);
3719
3720         return ret;
3721 }
3722 #endif /* CONFIG_PM_SLEEP */
3723
3724 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3725
3726 static struct platform_driver bcmgenet_driver = {
3727         .probe  = bcmgenet_probe,
3728         .remove = bcmgenet_remove,
3729         .driver = {
3730                 .name   = "bcmgenet",
3731                 .of_match_table = bcmgenet_match,
3732                 .pm     = &bcmgenet_pm_ops,
3733         },
3734 };
3735 module_platform_driver(bcmgenet_driver);
3736
3737 MODULE_AUTHOR("Broadcom Corporation");
3738 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3739 MODULE_ALIAS("platform:bcmgenet");
3740 MODULE_LICENSE("GPL");