bnxt_en: Add a new BNXT_FW_RESET_STATE_POLL_FW_DOWN state.
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/ip.h>
41 #include <net/tcp.h>
42 #include <net/udp.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <net/udp_tunnel.h>
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 #include <linux/cpumask.h>
54 #include <net/pkt_cls.h>
55 #include <linux/hwmon.h>
56 #include <linux/hwmon-sysfs.h>
57 #include <net/page_pool.h>
58
59 #include "bnxt_hsi.h"
60 #include "bnxt.h"
61 #include "bnxt_ulp.h"
62 #include "bnxt_sriov.h"
63 #include "bnxt_ethtool.h"
64 #include "bnxt_dcb.h"
65 #include "bnxt_xdp.h"
66 #include "bnxt_vfr.h"
67 #include "bnxt_tc.h"
68 #include "bnxt_devlink.h"
69 #include "bnxt_debugfs.h"
70
71 #define BNXT_TX_TIMEOUT         (5 * HZ)
72
73 static const char version[] =
74         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
75
76 MODULE_LICENSE("GPL");
77 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
78 MODULE_VERSION(DRV_MODULE_VERSION);
79
80 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
81 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
82 #define BNXT_RX_COPY_THRESH 256
83
84 #define BNXT_TX_PUSH_THRESH 164
85
86 enum board_idx {
87         BCM57301,
88         BCM57302,
89         BCM57304,
90         BCM57417_NPAR,
91         BCM58700,
92         BCM57311,
93         BCM57312,
94         BCM57402,
95         BCM57404,
96         BCM57406,
97         BCM57402_NPAR,
98         BCM57407,
99         BCM57412,
100         BCM57414,
101         BCM57416,
102         BCM57417,
103         BCM57412_NPAR,
104         BCM57314,
105         BCM57417_SFP,
106         BCM57416_SFP,
107         BCM57404_NPAR,
108         BCM57406_NPAR,
109         BCM57407_SFP,
110         BCM57407_NPAR,
111         BCM57414_NPAR,
112         BCM57416_NPAR,
113         BCM57452,
114         BCM57454,
115         BCM5745x_NPAR,
116         BCM57508,
117         BCM57504,
118         BCM57502,
119         BCM57508_NPAR,
120         BCM57504_NPAR,
121         BCM57502_NPAR,
122         BCM58802,
123         BCM58804,
124         BCM58808,
125         NETXTREME_E_VF,
126         NETXTREME_C_VF,
127         NETXTREME_S_VF,
128         NETXTREME_E_P5_VF,
129 };
130
131 /* indexed by enum above */
132 static const struct {
133         char *name;
134 } board_info[] = {
135         [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
136         [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
137         [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
138         [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
139         [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
140         [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
141         [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
142         [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
143         [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
144         [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
145         [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
146         [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
147         [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
148         [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
149         [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
150         [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
151         [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
152         [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
153         [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
154         [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
155         [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
156         [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
157         [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
158         [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
159         [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
160         [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
161         [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
162         [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
163         [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
164         [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
165         [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
166         [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
167         [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
168         [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
169         [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
170         [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
171         [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
172         [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
173         [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
174         [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
175         [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
176         [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
177 };
178
179 static const struct pci_device_id bnxt_pci_tbl[] = {
180         { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
181         { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
182         { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
183         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
184         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
185         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
186         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
187         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
188         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
189         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
190         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
191         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
192         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
193         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
194         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
195         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
196         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
197         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
198         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
199         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
200         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
201         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
202         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
203         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
204         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
205         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
206         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
207         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
208         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
209         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
210         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
211         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
212         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
213         { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
214         { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
215         { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
216         { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
217         { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
218         { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
219         { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
220         { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
221         { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
222         { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
223         { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
224         { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
225         { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
226 #ifdef CONFIG_BNXT_SRIOV
227         { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
228         { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
229         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
230         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
231         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
232         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
233         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
234         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
235         { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
236         { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
237         { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
238 #endif
239         { 0 }
240 };
241
242 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
243
244 static const u16 bnxt_vf_req_snif[] = {
245         HWRM_FUNC_CFG,
246         HWRM_FUNC_VF_CFG,
247         HWRM_PORT_PHY_QCFG,
248         HWRM_CFA_L2_FILTER_ALLOC,
249 };
250
251 static const u16 bnxt_async_events_arr[] = {
252         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
253         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
254         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
255         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
256         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
257         ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
258         ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
259 };
260
261 static struct workqueue_struct *bnxt_pf_wq;
262
263 static bool bnxt_vf_pciid(enum board_idx idx)
264 {
265         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
266                 idx == NETXTREME_S_VF || idx == NETXTREME_E_P5_VF);
267 }
268
269 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
270 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
271 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
272
273 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
274                 writel(DB_CP_IRQ_DIS_FLAGS, db)
275
276 #define BNXT_DB_CQ(db, idx)                                             \
277         writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
278
279 #define BNXT_DB_NQ_P5(db, idx)                                          \
280         writeq((db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx), (db)->doorbell)
281
282 #define BNXT_DB_CQ_ARM(db, idx)                                         \
283         writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
284
285 #define BNXT_DB_NQ_ARM_P5(db, idx)                                      \
286         writeq((db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx), (db)->doorbell)
287
288 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
289 {
290         if (bp->flags & BNXT_FLAG_CHIP_P5)
291                 BNXT_DB_NQ_P5(db, idx);
292         else
293                 BNXT_DB_CQ(db, idx);
294 }
295
296 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
297 {
298         if (bp->flags & BNXT_FLAG_CHIP_P5)
299                 BNXT_DB_NQ_ARM_P5(db, idx);
300         else
301                 BNXT_DB_CQ_ARM(db, idx);
302 }
303
304 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
305 {
306         if (bp->flags & BNXT_FLAG_CHIP_P5)
307                 writeq(db->db_key64 | DBR_TYPE_CQ_ARMALL | RING_CMP(idx),
308                        db->doorbell);
309         else
310                 BNXT_DB_CQ(db, idx);
311 }
312
313 const u16 bnxt_lhint_arr[] = {
314         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
315         TX_BD_FLAGS_LHINT_512_TO_1023,
316         TX_BD_FLAGS_LHINT_1024_TO_2047,
317         TX_BD_FLAGS_LHINT_1024_TO_2047,
318         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
319         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
320         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
321         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
322         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
323         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
324         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
325         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
326         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
327         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
328         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
329         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
330         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
331         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
332         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
333 };
334
335 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
336 {
337         struct metadata_dst *md_dst = skb_metadata_dst(skb);
338
339         if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
340                 return 0;
341
342         return md_dst->u.port_info.port_id;
343 }
344
345 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
346 {
347         struct bnxt *bp = netdev_priv(dev);
348         struct tx_bd *txbd;
349         struct tx_bd_ext *txbd1;
350         struct netdev_queue *txq;
351         int i;
352         dma_addr_t mapping;
353         unsigned int length, pad = 0;
354         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
355         u16 prod, last_frag;
356         struct pci_dev *pdev = bp->pdev;
357         struct bnxt_tx_ring_info *txr;
358         struct bnxt_sw_tx_bd *tx_buf;
359
360         i = skb_get_queue_mapping(skb);
361         if (unlikely(i >= bp->tx_nr_rings)) {
362                 dev_kfree_skb_any(skb);
363                 return NETDEV_TX_OK;
364         }
365
366         txq = netdev_get_tx_queue(dev, i);
367         txr = &bp->tx_ring[bp->tx_ring_map[i]];
368         prod = txr->tx_prod;
369
370         free_size = bnxt_tx_avail(bp, txr);
371         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
372                 netif_tx_stop_queue(txq);
373                 return NETDEV_TX_BUSY;
374         }
375
376         length = skb->len;
377         len = skb_headlen(skb);
378         last_frag = skb_shinfo(skb)->nr_frags;
379
380         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
381
382         txbd->tx_bd_opaque = prod;
383
384         tx_buf = &txr->tx_buf_ring[prod];
385         tx_buf->skb = skb;
386         tx_buf->nr_frags = last_frag;
387
388         vlan_tag_flags = 0;
389         cfa_action = bnxt_xmit_get_cfa_action(skb);
390         if (skb_vlan_tag_present(skb)) {
391                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
392                                  skb_vlan_tag_get(skb);
393                 /* Currently supports 8021Q, 8021AD vlan offloads
394                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
395                  */
396                 if (skb->vlan_proto == htons(ETH_P_8021Q))
397                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
398         }
399
400         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
401                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
402                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
403                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
404                 void __iomem *db = txr->tx_db.doorbell;
405                 void *pdata = tx_push_buf->data;
406                 u64 *end;
407                 int j, push_len;
408
409                 /* Set COAL_NOW to be ready quickly for the next push */
410                 tx_push->tx_bd_len_flags_type =
411                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
412                                         TX_BD_TYPE_LONG_TX_BD |
413                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
414                                         TX_BD_FLAGS_COAL_NOW |
415                                         TX_BD_FLAGS_PACKET_END |
416                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
417
418                 if (skb->ip_summed == CHECKSUM_PARTIAL)
419                         tx_push1->tx_bd_hsize_lflags =
420                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
421                 else
422                         tx_push1->tx_bd_hsize_lflags = 0;
423
424                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
425                 tx_push1->tx_bd_cfa_action =
426                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
427
428                 end = pdata + length;
429                 end = PTR_ALIGN(end, 8) - 1;
430                 *end = 0;
431
432                 skb_copy_from_linear_data(skb, pdata, len);
433                 pdata += len;
434                 for (j = 0; j < last_frag; j++) {
435                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
436                         void *fptr;
437
438                         fptr = skb_frag_address_safe(frag);
439                         if (!fptr)
440                                 goto normal_tx;
441
442                         memcpy(pdata, fptr, skb_frag_size(frag));
443                         pdata += skb_frag_size(frag);
444                 }
445
446                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
447                 txbd->tx_bd_haddr = txr->data_mapping;
448                 prod = NEXT_TX(prod);
449                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
450                 memcpy(txbd, tx_push1, sizeof(*txbd));
451                 prod = NEXT_TX(prod);
452                 tx_push->doorbell =
453                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
454                 txr->tx_prod = prod;
455
456                 tx_buf->is_push = 1;
457                 netdev_tx_sent_queue(txq, skb->len);
458                 wmb();  /* Sync is_push and byte queue before pushing data */
459
460                 push_len = (length + sizeof(*tx_push) + 7) / 8;
461                 if (push_len > 16) {
462                         __iowrite64_copy(db, tx_push_buf, 16);
463                         __iowrite32_copy(db + 4, tx_push_buf + 1,
464                                          (push_len - 16) << 1);
465                 } else {
466                         __iowrite64_copy(db, tx_push_buf, push_len);
467                 }
468
469                 goto tx_done;
470         }
471
472 normal_tx:
473         if (length < BNXT_MIN_PKT_SIZE) {
474                 pad = BNXT_MIN_PKT_SIZE - length;
475                 if (skb_pad(skb, pad)) {
476                         /* SKB already freed. */
477                         tx_buf->skb = NULL;
478                         return NETDEV_TX_OK;
479                 }
480                 length = BNXT_MIN_PKT_SIZE;
481         }
482
483         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
484
485         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
486                 dev_kfree_skb_any(skb);
487                 tx_buf->skb = NULL;
488                 return NETDEV_TX_OK;
489         }
490
491         dma_unmap_addr_set(tx_buf, mapping, mapping);
492         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
493                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
494
495         txbd->tx_bd_haddr = cpu_to_le64(mapping);
496
497         prod = NEXT_TX(prod);
498         txbd1 = (struct tx_bd_ext *)
499                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
500
501         txbd1->tx_bd_hsize_lflags = 0;
502         if (skb_is_gso(skb)) {
503                 u32 hdr_len;
504
505                 if (skb->encapsulation)
506                         hdr_len = skb_inner_network_offset(skb) +
507                                 skb_inner_network_header_len(skb) +
508                                 inner_tcp_hdrlen(skb);
509                 else
510                         hdr_len = skb_transport_offset(skb) +
511                                 tcp_hdrlen(skb);
512
513                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
514                                         TX_BD_FLAGS_T_IPID |
515                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
516                 length = skb_shinfo(skb)->gso_size;
517                 txbd1->tx_bd_mss = cpu_to_le32(length);
518                 length += hdr_len;
519         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
520                 txbd1->tx_bd_hsize_lflags =
521                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
522                 txbd1->tx_bd_mss = 0;
523         }
524
525         length >>= 9;
526         if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
527                 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
528                                      skb->len);
529                 i = 0;
530                 goto tx_dma_error;
531         }
532         flags |= bnxt_lhint_arr[length];
533         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
534
535         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
536         txbd1->tx_bd_cfa_action =
537                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
538         for (i = 0; i < last_frag; i++) {
539                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
540
541                 prod = NEXT_TX(prod);
542                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
543
544                 len = skb_frag_size(frag);
545                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
546                                            DMA_TO_DEVICE);
547
548                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
549                         goto tx_dma_error;
550
551                 tx_buf = &txr->tx_buf_ring[prod];
552                 dma_unmap_addr_set(tx_buf, mapping, mapping);
553
554                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
555
556                 flags = len << TX_BD_LEN_SHIFT;
557                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
558         }
559
560         flags &= ~TX_BD_LEN;
561         txbd->tx_bd_len_flags_type =
562                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
563                             TX_BD_FLAGS_PACKET_END);
564
565         netdev_tx_sent_queue(txq, skb->len);
566
567         /* Sync BD data before updating doorbell */
568         wmb();
569
570         prod = NEXT_TX(prod);
571         txr->tx_prod = prod;
572
573         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
574                 bnxt_db_write(bp, &txr->tx_db, prod);
575
576 tx_done:
577
578         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
579                 if (netdev_xmit_more() && !tx_buf->is_push)
580                         bnxt_db_write(bp, &txr->tx_db, prod);
581
582                 netif_tx_stop_queue(txq);
583
584                 /* netif_tx_stop_queue() must be done before checking
585                  * tx index in bnxt_tx_avail() below, because in
586                  * bnxt_tx_int(), we update tx index before checking for
587                  * netif_tx_queue_stopped().
588                  */
589                 smp_mb();
590                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
591                         netif_tx_wake_queue(txq);
592         }
593         return NETDEV_TX_OK;
594
595 tx_dma_error:
596         last_frag = i;
597
598         /* start back at beginning and unmap skb */
599         prod = txr->tx_prod;
600         tx_buf = &txr->tx_buf_ring[prod];
601         tx_buf->skb = NULL;
602         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
603                          skb_headlen(skb), PCI_DMA_TODEVICE);
604         prod = NEXT_TX(prod);
605
606         /* unmap remaining mapped pages */
607         for (i = 0; i < last_frag; i++) {
608                 prod = NEXT_TX(prod);
609                 tx_buf = &txr->tx_buf_ring[prod];
610                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
611                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
612                                PCI_DMA_TODEVICE);
613         }
614
615         dev_kfree_skb_any(skb);
616         return NETDEV_TX_OK;
617 }
618
619 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
620 {
621         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
622         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
623         u16 cons = txr->tx_cons;
624         struct pci_dev *pdev = bp->pdev;
625         int i;
626         unsigned int tx_bytes = 0;
627
628         for (i = 0; i < nr_pkts; i++) {
629                 struct bnxt_sw_tx_bd *tx_buf;
630                 struct sk_buff *skb;
631                 int j, last;
632
633                 tx_buf = &txr->tx_buf_ring[cons];
634                 cons = NEXT_TX(cons);
635                 skb = tx_buf->skb;
636                 tx_buf->skb = NULL;
637
638                 if (tx_buf->is_push) {
639                         tx_buf->is_push = 0;
640                         goto next_tx_int;
641                 }
642
643                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
644                                  skb_headlen(skb), PCI_DMA_TODEVICE);
645                 last = tx_buf->nr_frags;
646
647                 for (j = 0; j < last; j++) {
648                         cons = NEXT_TX(cons);
649                         tx_buf = &txr->tx_buf_ring[cons];
650                         dma_unmap_page(
651                                 &pdev->dev,
652                                 dma_unmap_addr(tx_buf, mapping),
653                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
654                                 PCI_DMA_TODEVICE);
655                 }
656
657 next_tx_int:
658                 cons = NEXT_TX(cons);
659
660                 tx_bytes += skb->len;
661                 dev_kfree_skb_any(skb);
662         }
663
664         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
665         txr->tx_cons = cons;
666
667         /* Need to make the tx_cons update visible to bnxt_start_xmit()
668          * before checking for netif_tx_queue_stopped().  Without the
669          * memory barrier, there is a small possibility that bnxt_start_xmit()
670          * will miss it and cause the queue to be stopped forever.
671          */
672         smp_mb();
673
674         if (unlikely(netif_tx_queue_stopped(txq)) &&
675             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
676                 __netif_tx_lock(txq, smp_processor_id());
677                 if (netif_tx_queue_stopped(txq) &&
678                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
679                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
680                         netif_tx_wake_queue(txq);
681                 __netif_tx_unlock(txq);
682         }
683 }
684
685 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
686                                          struct bnxt_rx_ring_info *rxr,
687                                          gfp_t gfp)
688 {
689         struct device *dev = &bp->pdev->dev;
690         struct page *page;
691
692         page = page_pool_dev_alloc_pages(rxr->page_pool);
693         if (!page)
694                 return NULL;
695
696         *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
697                                       DMA_ATTR_WEAK_ORDERING);
698         if (dma_mapping_error(dev, *mapping)) {
699                 page_pool_recycle_direct(rxr->page_pool, page);
700                 return NULL;
701         }
702         *mapping += bp->rx_dma_offset;
703         return page;
704 }
705
706 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
707                                        gfp_t gfp)
708 {
709         u8 *data;
710         struct pci_dev *pdev = bp->pdev;
711
712         data = kmalloc(bp->rx_buf_size, gfp);
713         if (!data)
714                 return NULL;
715
716         *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
717                                         bp->rx_buf_use_size, bp->rx_dir,
718                                         DMA_ATTR_WEAK_ORDERING);
719
720         if (dma_mapping_error(&pdev->dev, *mapping)) {
721                 kfree(data);
722                 data = NULL;
723         }
724         return data;
725 }
726
727 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
728                        u16 prod, gfp_t gfp)
729 {
730         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
731         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
732         dma_addr_t mapping;
733
734         if (BNXT_RX_PAGE_MODE(bp)) {
735                 struct page *page =
736                         __bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
737
738                 if (!page)
739                         return -ENOMEM;
740
741                 rx_buf->data = page;
742                 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
743         } else {
744                 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
745
746                 if (!data)
747                         return -ENOMEM;
748
749                 rx_buf->data = data;
750                 rx_buf->data_ptr = data + bp->rx_offset;
751         }
752         rx_buf->mapping = mapping;
753
754         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
755         return 0;
756 }
757
758 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
759 {
760         u16 prod = rxr->rx_prod;
761         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
762         struct rx_bd *cons_bd, *prod_bd;
763
764         prod_rx_buf = &rxr->rx_buf_ring[prod];
765         cons_rx_buf = &rxr->rx_buf_ring[cons];
766
767         prod_rx_buf->data = data;
768         prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
769
770         prod_rx_buf->mapping = cons_rx_buf->mapping;
771
772         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
773         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
774
775         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
776 }
777
778 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
779 {
780         u16 next, max = rxr->rx_agg_bmap_size;
781
782         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
783         if (next >= max)
784                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
785         return next;
786 }
787
788 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
789                                      struct bnxt_rx_ring_info *rxr,
790                                      u16 prod, gfp_t gfp)
791 {
792         struct rx_bd *rxbd =
793                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
794         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
795         struct pci_dev *pdev = bp->pdev;
796         struct page *page;
797         dma_addr_t mapping;
798         u16 sw_prod = rxr->rx_sw_agg_prod;
799         unsigned int offset = 0;
800
801         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
802                 page = rxr->rx_page;
803                 if (!page) {
804                         page = alloc_page(gfp);
805                         if (!page)
806                                 return -ENOMEM;
807                         rxr->rx_page = page;
808                         rxr->rx_page_offset = 0;
809                 }
810                 offset = rxr->rx_page_offset;
811                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
812                 if (rxr->rx_page_offset == PAGE_SIZE)
813                         rxr->rx_page = NULL;
814                 else
815                         get_page(page);
816         } else {
817                 page = alloc_page(gfp);
818                 if (!page)
819                         return -ENOMEM;
820         }
821
822         mapping = dma_map_page_attrs(&pdev->dev, page, offset,
823                                      BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
824                                      DMA_ATTR_WEAK_ORDERING);
825         if (dma_mapping_error(&pdev->dev, mapping)) {
826                 __free_page(page);
827                 return -EIO;
828         }
829
830         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
831                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
832
833         __set_bit(sw_prod, rxr->rx_agg_bmap);
834         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
835         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
836
837         rx_agg_buf->page = page;
838         rx_agg_buf->offset = offset;
839         rx_agg_buf->mapping = mapping;
840         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
841         rxbd->rx_bd_opaque = sw_prod;
842         return 0;
843 }
844
845 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
846                                        struct bnxt_cp_ring_info *cpr,
847                                        u16 cp_cons, u16 curr)
848 {
849         struct rx_agg_cmp *agg;
850
851         cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
852         agg = (struct rx_agg_cmp *)
853                 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
854         return agg;
855 }
856
857 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
858                                               struct bnxt_rx_ring_info *rxr,
859                                               u16 agg_id, u16 curr)
860 {
861         struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
862
863         return &tpa_info->agg_arr[curr];
864 }
865
866 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
867                                    u16 start, u32 agg_bufs, bool tpa)
868 {
869         struct bnxt_napi *bnapi = cpr->bnapi;
870         struct bnxt *bp = bnapi->bp;
871         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
872         u16 prod = rxr->rx_agg_prod;
873         u16 sw_prod = rxr->rx_sw_agg_prod;
874         bool p5_tpa = false;
875         u32 i;
876
877         if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
878                 p5_tpa = true;
879
880         for (i = 0; i < agg_bufs; i++) {
881                 u16 cons;
882                 struct rx_agg_cmp *agg;
883                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
884                 struct rx_bd *prod_bd;
885                 struct page *page;
886
887                 if (p5_tpa)
888                         agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
889                 else
890                         agg = bnxt_get_agg(bp, cpr, idx, start + i);
891                 cons = agg->rx_agg_cmp_opaque;
892                 __clear_bit(cons, rxr->rx_agg_bmap);
893
894                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
895                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
896
897                 __set_bit(sw_prod, rxr->rx_agg_bmap);
898                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
899                 cons_rx_buf = &rxr->rx_agg_ring[cons];
900
901                 /* It is possible for sw_prod to be equal to cons, so
902                  * set cons_rx_buf->page to NULL first.
903                  */
904                 page = cons_rx_buf->page;
905                 cons_rx_buf->page = NULL;
906                 prod_rx_buf->page = page;
907                 prod_rx_buf->offset = cons_rx_buf->offset;
908
909                 prod_rx_buf->mapping = cons_rx_buf->mapping;
910
911                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
912
913                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
914                 prod_bd->rx_bd_opaque = sw_prod;
915
916                 prod = NEXT_RX_AGG(prod);
917                 sw_prod = NEXT_RX_AGG(sw_prod);
918         }
919         rxr->rx_agg_prod = prod;
920         rxr->rx_sw_agg_prod = sw_prod;
921 }
922
923 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
924                                         struct bnxt_rx_ring_info *rxr,
925                                         u16 cons, void *data, u8 *data_ptr,
926                                         dma_addr_t dma_addr,
927                                         unsigned int offset_and_len)
928 {
929         unsigned int payload = offset_and_len >> 16;
930         unsigned int len = offset_and_len & 0xffff;
931         skb_frag_t *frag;
932         struct page *page = data;
933         u16 prod = rxr->rx_prod;
934         struct sk_buff *skb;
935         int off, err;
936
937         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
938         if (unlikely(err)) {
939                 bnxt_reuse_rx_data(rxr, cons, data);
940                 return NULL;
941         }
942         dma_addr -= bp->rx_dma_offset;
943         dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
944                              DMA_ATTR_WEAK_ORDERING);
945
946         if (unlikely(!payload))
947                 payload = eth_get_headlen(bp->dev, data_ptr, len);
948
949         skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
950         if (!skb) {
951                 __free_page(page);
952                 return NULL;
953         }
954
955         off = (void *)data_ptr - page_address(page);
956         skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
957         memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
958                payload + NET_IP_ALIGN);
959
960         frag = &skb_shinfo(skb)->frags[0];
961         skb_frag_size_sub(frag, payload);
962         skb_frag_off_add(frag, payload);
963         skb->data_len -= payload;
964         skb->tail += payload;
965
966         return skb;
967 }
968
969 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
970                                    struct bnxt_rx_ring_info *rxr, u16 cons,
971                                    void *data, u8 *data_ptr,
972                                    dma_addr_t dma_addr,
973                                    unsigned int offset_and_len)
974 {
975         u16 prod = rxr->rx_prod;
976         struct sk_buff *skb;
977         int err;
978
979         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
980         if (unlikely(err)) {
981                 bnxt_reuse_rx_data(rxr, cons, data);
982                 return NULL;
983         }
984
985         skb = build_skb(data, 0);
986         dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
987                                bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
988         if (!skb) {
989                 kfree(data);
990                 return NULL;
991         }
992
993         skb_reserve(skb, bp->rx_offset);
994         skb_put(skb, offset_and_len & 0xffff);
995         return skb;
996 }
997
998 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
999                                      struct bnxt_cp_ring_info *cpr,
1000                                      struct sk_buff *skb, u16 idx,
1001                                      u32 agg_bufs, bool tpa)
1002 {
1003         struct bnxt_napi *bnapi = cpr->bnapi;
1004         struct pci_dev *pdev = bp->pdev;
1005         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1006         u16 prod = rxr->rx_agg_prod;
1007         bool p5_tpa = false;
1008         u32 i;
1009
1010         if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1011                 p5_tpa = true;
1012
1013         for (i = 0; i < agg_bufs; i++) {
1014                 u16 cons, frag_len;
1015                 struct rx_agg_cmp *agg;
1016                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1017                 struct page *page;
1018                 dma_addr_t mapping;
1019
1020                 if (p5_tpa)
1021                         agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1022                 else
1023                         agg = bnxt_get_agg(bp, cpr, idx, i);
1024                 cons = agg->rx_agg_cmp_opaque;
1025                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1026                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1027
1028                 cons_rx_buf = &rxr->rx_agg_ring[cons];
1029                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
1030                                    cons_rx_buf->offset, frag_len);
1031                 __clear_bit(cons, rxr->rx_agg_bmap);
1032
1033                 /* It is possible for bnxt_alloc_rx_page() to allocate
1034                  * a sw_prod index that equals the cons index, so we
1035                  * need to clear the cons entry now.
1036                  */
1037                 mapping = cons_rx_buf->mapping;
1038                 page = cons_rx_buf->page;
1039                 cons_rx_buf->page = NULL;
1040
1041                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1042                         struct skb_shared_info *shinfo;
1043                         unsigned int nr_frags;
1044
1045                         shinfo = skb_shinfo(skb);
1046                         nr_frags = --shinfo->nr_frags;
1047                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1048
1049                         dev_kfree_skb(skb);
1050
1051                         cons_rx_buf->page = page;
1052
1053                         /* Update prod since possibly some pages have been
1054                          * allocated already.
1055                          */
1056                         rxr->rx_agg_prod = prod;
1057                         bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1058                         return NULL;
1059                 }
1060
1061                 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1062                                      PCI_DMA_FROMDEVICE,
1063                                      DMA_ATTR_WEAK_ORDERING);
1064
1065                 skb->data_len += frag_len;
1066                 skb->len += frag_len;
1067                 skb->truesize += PAGE_SIZE;
1068
1069                 prod = NEXT_RX_AGG(prod);
1070         }
1071         rxr->rx_agg_prod = prod;
1072         return skb;
1073 }
1074
1075 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1076                                u8 agg_bufs, u32 *raw_cons)
1077 {
1078         u16 last;
1079         struct rx_agg_cmp *agg;
1080
1081         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1082         last = RING_CMP(*raw_cons);
1083         agg = (struct rx_agg_cmp *)
1084                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1085         return RX_AGG_CMP_VALID(agg, *raw_cons);
1086 }
1087
1088 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1089                                             unsigned int len,
1090                                             dma_addr_t mapping)
1091 {
1092         struct bnxt *bp = bnapi->bp;
1093         struct pci_dev *pdev = bp->pdev;
1094         struct sk_buff *skb;
1095
1096         skb = napi_alloc_skb(&bnapi->napi, len);
1097         if (!skb)
1098                 return NULL;
1099
1100         dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1101                                 bp->rx_dir);
1102
1103         memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1104                len + NET_IP_ALIGN);
1105
1106         dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1107                                    bp->rx_dir);
1108
1109         skb_put(skb, len);
1110         return skb;
1111 }
1112
1113 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1114                            u32 *raw_cons, void *cmp)
1115 {
1116         struct rx_cmp *rxcmp = cmp;
1117         u32 tmp_raw_cons = *raw_cons;
1118         u8 cmp_type, agg_bufs = 0;
1119
1120         cmp_type = RX_CMP_TYPE(rxcmp);
1121
1122         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1123                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1124                             RX_CMP_AGG_BUFS) >>
1125                            RX_CMP_AGG_BUFS_SHIFT;
1126         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1127                 struct rx_tpa_end_cmp *tpa_end = cmp;
1128
1129                 if (bp->flags & BNXT_FLAG_CHIP_P5)
1130                         return 0;
1131
1132                 agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1133         }
1134
1135         if (agg_bufs) {
1136                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1137                         return -EBUSY;
1138         }
1139         *raw_cons = tmp_raw_cons;
1140         return 0;
1141 }
1142
1143 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1144 {
1145         if (BNXT_PF(bp))
1146                 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1147         else
1148                 schedule_delayed_work(&bp->fw_reset_task, delay);
1149 }
1150
1151 static void bnxt_queue_sp_work(struct bnxt *bp)
1152 {
1153         if (BNXT_PF(bp))
1154                 queue_work(bnxt_pf_wq, &bp->sp_task);
1155         else
1156                 schedule_work(&bp->sp_task);
1157 }
1158
1159 static void bnxt_cancel_sp_work(struct bnxt *bp)
1160 {
1161         if (BNXT_PF(bp))
1162                 flush_workqueue(bnxt_pf_wq);
1163         else
1164                 cancel_work_sync(&bp->sp_task);
1165 }
1166
1167 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1168 {
1169         if (!rxr->bnapi->in_reset) {
1170                 rxr->bnapi->in_reset = true;
1171                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1172                 bnxt_queue_sp_work(bp);
1173         }
1174         rxr->rx_next_cons = 0xffff;
1175 }
1176
1177 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1178 {
1179         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1180         u16 idx = agg_id & MAX_TPA_P5_MASK;
1181
1182         if (test_bit(idx, map->agg_idx_bmap))
1183                 idx = find_first_zero_bit(map->agg_idx_bmap,
1184                                           BNXT_AGG_IDX_BMAP_SIZE);
1185         __set_bit(idx, map->agg_idx_bmap);
1186         map->agg_id_tbl[agg_id] = idx;
1187         return idx;
1188 }
1189
1190 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1191 {
1192         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1193
1194         __clear_bit(idx, map->agg_idx_bmap);
1195 }
1196
1197 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1198 {
1199         struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1200
1201         return map->agg_id_tbl[agg_id];
1202 }
1203
1204 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1205                            struct rx_tpa_start_cmp *tpa_start,
1206                            struct rx_tpa_start_cmp_ext *tpa_start1)
1207 {
1208         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1209         struct bnxt_tpa_info *tpa_info;
1210         u16 cons, prod, agg_id;
1211         struct rx_bd *prod_bd;
1212         dma_addr_t mapping;
1213
1214         if (bp->flags & BNXT_FLAG_CHIP_P5) {
1215                 agg_id = TPA_START_AGG_ID_P5(tpa_start);
1216                 agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1217         } else {
1218                 agg_id = TPA_START_AGG_ID(tpa_start);
1219         }
1220         cons = tpa_start->rx_tpa_start_cmp_opaque;
1221         prod = rxr->rx_prod;
1222         cons_rx_buf = &rxr->rx_buf_ring[cons];
1223         prod_rx_buf = &rxr->rx_buf_ring[prod];
1224         tpa_info = &rxr->rx_tpa[agg_id];
1225
1226         if (unlikely(cons != rxr->rx_next_cons ||
1227                      TPA_START_ERROR(tpa_start))) {
1228                 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1229                             cons, rxr->rx_next_cons,
1230                             TPA_START_ERROR_CODE(tpa_start1));
1231                 bnxt_sched_reset(bp, rxr);
1232                 return;
1233         }
1234         /* Store cfa_code in tpa_info to use in tpa_end
1235          * completion processing.
1236          */
1237         tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1238         prod_rx_buf->data = tpa_info->data;
1239         prod_rx_buf->data_ptr = tpa_info->data_ptr;
1240
1241         mapping = tpa_info->mapping;
1242         prod_rx_buf->mapping = mapping;
1243
1244         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1245
1246         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1247
1248         tpa_info->data = cons_rx_buf->data;
1249         tpa_info->data_ptr = cons_rx_buf->data_ptr;
1250         cons_rx_buf->data = NULL;
1251         tpa_info->mapping = cons_rx_buf->mapping;
1252
1253         tpa_info->len =
1254                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1255                                 RX_TPA_START_CMP_LEN_SHIFT;
1256         if (likely(TPA_START_HASH_VALID(tpa_start))) {
1257                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1258
1259                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1260                 tpa_info->gso_type = SKB_GSO_TCPV4;
1261                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1262                 if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1263                         tpa_info->gso_type = SKB_GSO_TCPV6;
1264                 tpa_info->rss_hash =
1265                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1266         } else {
1267                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1268                 tpa_info->gso_type = 0;
1269                 if (netif_msg_rx_err(bp))
1270                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
1271         }
1272         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1273         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1274         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1275         tpa_info->agg_count = 0;
1276
1277         rxr->rx_prod = NEXT_RX(prod);
1278         cons = NEXT_RX(cons);
1279         rxr->rx_next_cons = NEXT_RX(cons);
1280         cons_rx_buf = &rxr->rx_buf_ring[cons];
1281
1282         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1283         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1284         cons_rx_buf->data = NULL;
1285 }
1286
1287 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1288 {
1289         if (agg_bufs)
1290                 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1291 }
1292
1293 #ifdef CONFIG_INET
1294 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1295 {
1296         struct udphdr *uh = NULL;
1297
1298         if (ip_proto == htons(ETH_P_IP)) {
1299                 struct iphdr *iph = (struct iphdr *)skb->data;
1300
1301                 if (iph->protocol == IPPROTO_UDP)
1302                         uh = (struct udphdr *)(iph + 1);
1303         } else {
1304                 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1305
1306                 if (iph->nexthdr == IPPROTO_UDP)
1307                         uh = (struct udphdr *)(iph + 1);
1308         }
1309         if (uh) {
1310                 if (uh->check)
1311                         skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1312                 else
1313                         skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1314         }
1315 }
1316 #endif
1317
1318 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1319                                            int payload_off, int tcp_ts,
1320                                            struct sk_buff *skb)
1321 {
1322 #ifdef CONFIG_INET
1323         struct tcphdr *th;
1324         int len, nw_off;
1325         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1326         u32 hdr_info = tpa_info->hdr_info;
1327         bool loopback = false;
1328
1329         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1330         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1331         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1332
1333         /* If the packet is an internal loopback packet, the offsets will
1334          * have an extra 4 bytes.
1335          */
1336         if (inner_mac_off == 4) {
1337                 loopback = true;
1338         } else if (inner_mac_off > 4) {
1339                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1340                                             ETH_HLEN - 2));
1341
1342                 /* We only support inner iPv4/ipv6.  If we don't see the
1343                  * correct protocol ID, it must be a loopback packet where
1344                  * the offsets are off by 4.
1345                  */
1346                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1347                         loopback = true;
1348         }
1349         if (loopback) {
1350                 /* internal loopback packet, subtract all offsets by 4 */
1351                 inner_ip_off -= 4;
1352                 inner_mac_off -= 4;
1353                 outer_ip_off -= 4;
1354         }
1355
1356         nw_off = inner_ip_off - ETH_HLEN;
1357         skb_set_network_header(skb, nw_off);
1358         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1359                 struct ipv6hdr *iph = ipv6_hdr(skb);
1360
1361                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1362                 len = skb->len - skb_transport_offset(skb);
1363                 th = tcp_hdr(skb);
1364                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1365         } else {
1366                 struct iphdr *iph = ip_hdr(skb);
1367
1368                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1369                 len = skb->len - skb_transport_offset(skb);
1370                 th = tcp_hdr(skb);
1371                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1372         }
1373
1374         if (inner_mac_off) { /* tunnel */
1375                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1376                                             ETH_HLEN - 2));
1377
1378                 bnxt_gro_tunnel(skb, proto);
1379         }
1380 #endif
1381         return skb;
1382 }
1383
1384 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1385                                            int payload_off, int tcp_ts,
1386                                            struct sk_buff *skb)
1387 {
1388 #ifdef CONFIG_INET
1389         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1390         u32 hdr_info = tpa_info->hdr_info;
1391         int iphdr_len, nw_off;
1392
1393         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1394         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1395         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1396
1397         nw_off = inner_ip_off - ETH_HLEN;
1398         skb_set_network_header(skb, nw_off);
1399         iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1400                      sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1401         skb_set_transport_header(skb, nw_off + iphdr_len);
1402
1403         if (inner_mac_off) { /* tunnel */
1404                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1405                                             ETH_HLEN - 2));
1406
1407                 bnxt_gro_tunnel(skb, proto);
1408         }
1409 #endif
1410         return skb;
1411 }
1412
1413 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1414 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1415
1416 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1417                                            int payload_off, int tcp_ts,
1418                                            struct sk_buff *skb)
1419 {
1420 #ifdef CONFIG_INET
1421         struct tcphdr *th;
1422         int len, nw_off, tcp_opt_len = 0;
1423
1424         if (tcp_ts)
1425                 tcp_opt_len = 12;
1426
1427         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1428                 struct iphdr *iph;
1429
1430                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1431                          ETH_HLEN;
1432                 skb_set_network_header(skb, nw_off);
1433                 iph = ip_hdr(skb);
1434                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1435                 len = skb->len - skb_transport_offset(skb);
1436                 th = tcp_hdr(skb);
1437                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1438         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1439                 struct ipv6hdr *iph;
1440
1441                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1442                          ETH_HLEN;
1443                 skb_set_network_header(skb, nw_off);
1444                 iph = ipv6_hdr(skb);
1445                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1446                 len = skb->len - skb_transport_offset(skb);
1447                 th = tcp_hdr(skb);
1448                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1449         } else {
1450                 dev_kfree_skb_any(skb);
1451                 return NULL;
1452         }
1453
1454         if (nw_off) /* tunnel */
1455                 bnxt_gro_tunnel(skb, skb->protocol);
1456 #endif
1457         return skb;
1458 }
1459
1460 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1461                                            struct bnxt_tpa_info *tpa_info,
1462                                            struct rx_tpa_end_cmp *tpa_end,
1463                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1464                                            struct sk_buff *skb)
1465 {
1466 #ifdef CONFIG_INET
1467         int payload_off;
1468         u16 segs;
1469
1470         segs = TPA_END_TPA_SEGS(tpa_end);
1471         if (segs == 1)
1472                 return skb;
1473
1474         NAPI_GRO_CB(skb)->count = segs;
1475         skb_shinfo(skb)->gso_size =
1476                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1477         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1478         if (bp->flags & BNXT_FLAG_CHIP_P5)
1479                 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1480         else
1481                 payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1482         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1483         if (likely(skb))
1484                 tcp_gro_complete(skb);
1485 #endif
1486         return skb;
1487 }
1488
1489 /* Given the cfa_code of a received packet determine which
1490  * netdev (vf-rep or PF) the packet is destined to.
1491  */
1492 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1493 {
1494         struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1495
1496         /* if vf-rep dev is NULL, the must belongs to the PF */
1497         return dev ? dev : bp->dev;
1498 }
1499
1500 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1501                                            struct bnxt_cp_ring_info *cpr,
1502                                            u32 *raw_cons,
1503                                            struct rx_tpa_end_cmp *tpa_end,
1504                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1505                                            u8 *event)
1506 {
1507         struct bnxt_napi *bnapi = cpr->bnapi;
1508         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1509         u8 *data_ptr, agg_bufs;
1510         unsigned int len;
1511         struct bnxt_tpa_info *tpa_info;
1512         dma_addr_t mapping;
1513         struct sk_buff *skb;
1514         u16 idx = 0, agg_id;
1515         void *data;
1516         bool gro;
1517
1518         if (unlikely(bnapi->in_reset)) {
1519                 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1520
1521                 if (rc < 0)
1522                         return ERR_PTR(-EBUSY);
1523                 return NULL;
1524         }
1525
1526         if (bp->flags & BNXT_FLAG_CHIP_P5) {
1527                 agg_id = TPA_END_AGG_ID_P5(tpa_end);
1528                 agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1529                 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1530                 tpa_info = &rxr->rx_tpa[agg_id];
1531                 if (unlikely(agg_bufs != tpa_info->agg_count)) {
1532                         netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1533                                     agg_bufs, tpa_info->agg_count);
1534                         agg_bufs = tpa_info->agg_count;
1535                 }
1536                 tpa_info->agg_count = 0;
1537                 *event |= BNXT_AGG_EVENT;
1538                 bnxt_free_agg_idx(rxr, agg_id);
1539                 idx = agg_id;
1540                 gro = !!(bp->flags & BNXT_FLAG_GRO);
1541         } else {
1542                 agg_id = TPA_END_AGG_ID(tpa_end);
1543                 agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1544                 tpa_info = &rxr->rx_tpa[agg_id];
1545                 idx = RING_CMP(*raw_cons);
1546                 if (agg_bufs) {
1547                         if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1548                                 return ERR_PTR(-EBUSY);
1549
1550                         *event |= BNXT_AGG_EVENT;
1551                         idx = NEXT_CMP(idx);
1552                 }
1553                 gro = !!TPA_END_GRO(tpa_end);
1554         }
1555         data = tpa_info->data;
1556         data_ptr = tpa_info->data_ptr;
1557         prefetch(data_ptr);
1558         len = tpa_info->len;
1559         mapping = tpa_info->mapping;
1560
1561         if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1562                 bnxt_abort_tpa(cpr, idx, agg_bufs);
1563                 if (agg_bufs > MAX_SKB_FRAGS)
1564                         netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1565                                     agg_bufs, (int)MAX_SKB_FRAGS);
1566                 return NULL;
1567         }
1568
1569         if (len <= bp->rx_copy_thresh) {
1570                 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1571                 if (!skb) {
1572                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1573                         return NULL;
1574                 }
1575         } else {
1576                 u8 *new_data;
1577                 dma_addr_t new_mapping;
1578
1579                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1580                 if (!new_data) {
1581                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1582                         return NULL;
1583                 }
1584
1585                 tpa_info->data = new_data;
1586                 tpa_info->data_ptr = new_data + bp->rx_offset;
1587                 tpa_info->mapping = new_mapping;
1588
1589                 skb = build_skb(data, 0);
1590                 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1591                                        bp->rx_buf_use_size, bp->rx_dir,
1592                                        DMA_ATTR_WEAK_ORDERING);
1593
1594                 if (!skb) {
1595                         kfree(data);
1596                         bnxt_abort_tpa(cpr, idx, agg_bufs);
1597                         return NULL;
1598                 }
1599                 skb_reserve(skb, bp->rx_offset);
1600                 skb_put(skb, len);
1601         }
1602
1603         if (agg_bufs) {
1604                 skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1605                 if (!skb) {
1606                         /* Page reuse already handled by bnxt_rx_pages(). */
1607                         return NULL;
1608                 }
1609         }
1610
1611         skb->protocol =
1612                 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1613
1614         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1615                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1616
1617         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1618             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1619                 u16 vlan_proto = tpa_info->metadata >>
1620                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1621                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1622
1623                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1624         }
1625
1626         skb_checksum_none_assert(skb);
1627         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1628                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1629                 skb->csum_level =
1630                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1631         }
1632
1633         if (gro)
1634                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1635
1636         return skb;
1637 }
1638
1639 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1640                          struct rx_agg_cmp *rx_agg)
1641 {
1642         u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1643         struct bnxt_tpa_info *tpa_info;
1644
1645         agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1646         tpa_info = &rxr->rx_tpa[agg_id];
1647         BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1648         tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1649 }
1650
1651 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1652                              struct sk_buff *skb)
1653 {
1654         if (skb->dev != bp->dev) {
1655                 /* this packet belongs to a vf-rep */
1656                 bnxt_vf_rep_rx(bp, skb);
1657                 return;
1658         }
1659         skb_record_rx_queue(skb, bnapi->index);
1660         napi_gro_receive(&bnapi->napi, skb);
1661 }
1662
1663 /* returns the following:
1664  * 1       - 1 packet successfully received
1665  * 0       - successful TPA_START, packet not completed yet
1666  * -EBUSY  - completion ring does not have all the agg buffers yet
1667  * -ENOMEM - packet aborted due to out of memory
1668  * -EIO    - packet aborted due to hw error indicated in BD
1669  */
1670 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1671                        u32 *raw_cons, u8 *event)
1672 {
1673         struct bnxt_napi *bnapi = cpr->bnapi;
1674         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1675         struct net_device *dev = bp->dev;
1676         struct rx_cmp *rxcmp;
1677         struct rx_cmp_ext *rxcmp1;
1678         u32 tmp_raw_cons = *raw_cons;
1679         u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1680         struct bnxt_sw_rx_bd *rx_buf;
1681         unsigned int len;
1682         u8 *data_ptr, agg_bufs, cmp_type;
1683         dma_addr_t dma_addr;
1684         struct sk_buff *skb;
1685         void *data;
1686         int rc = 0;
1687         u32 misc;
1688
1689         rxcmp = (struct rx_cmp *)
1690                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1691
1692         cmp_type = RX_CMP_TYPE(rxcmp);
1693
1694         if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1695                 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1696                 goto next_rx_no_prod_no_len;
1697         }
1698
1699         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1700         cp_cons = RING_CMP(tmp_raw_cons);
1701         rxcmp1 = (struct rx_cmp_ext *)
1702                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1703
1704         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1705                 return -EBUSY;
1706
1707         prod = rxr->rx_prod;
1708
1709         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1710                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1711                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1712
1713                 *event |= BNXT_RX_EVENT;
1714                 goto next_rx_no_prod_no_len;
1715
1716         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1717                 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1718                                    (struct rx_tpa_end_cmp *)rxcmp,
1719                                    (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1720
1721                 if (IS_ERR(skb))
1722                         return -EBUSY;
1723
1724                 rc = -ENOMEM;
1725                 if (likely(skb)) {
1726                         bnxt_deliver_skb(bp, bnapi, skb);
1727                         rc = 1;
1728                 }
1729                 *event |= BNXT_RX_EVENT;
1730                 goto next_rx_no_prod_no_len;
1731         }
1732
1733         cons = rxcmp->rx_cmp_opaque;
1734         if (unlikely(cons != rxr->rx_next_cons)) {
1735                 int rc1 = bnxt_discard_rx(bp, cpr, raw_cons, rxcmp);
1736
1737                 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1738                             cons, rxr->rx_next_cons);
1739                 bnxt_sched_reset(bp, rxr);
1740                 return rc1;
1741         }
1742         rx_buf = &rxr->rx_buf_ring[cons];
1743         data = rx_buf->data;
1744         data_ptr = rx_buf->data_ptr;
1745         prefetch(data_ptr);
1746
1747         misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1748         agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1749
1750         if (agg_bufs) {
1751                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1752                         return -EBUSY;
1753
1754                 cp_cons = NEXT_CMP(cp_cons);
1755                 *event |= BNXT_AGG_EVENT;
1756         }
1757         *event |= BNXT_RX_EVENT;
1758
1759         rx_buf->data = NULL;
1760         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1761                 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1762
1763                 bnxt_reuse_rx_data(rxr, cons, data);
1764                 if (agg_bufs)
1765                         bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1766                                                false);
1767
1768                 rc = -EIO;
1769                 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1770                         netdev_warn(bp->dev, "RX buffer error %x\n", rx_err);
1771                         bnxt_sched_reset(bp, rxr);
1772                 }
1773                 goto next_rx_no_len;
1774         }
1775
1776         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1777         dma_addr = rx_buf->mapping;
1778
1779         if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1780                 rc = 1;
1781                 goto next_rx;
1782         }
1783
1784         if (len <= bp->rx_copy_thresh) {
1785                 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1786                 bnxt_reuse_rx_data(rxr, cons, data);
1787                 if (!skb) {
1788                         if (agg_bufs)
1789                                 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1790                                                        agg_bufs, false);
1791                         rc = -ENOMEM;
1792                         goto next_rx;
1793                 }
1794         } else {
1795                 u32 payload;
1796
1797                 if (rx_buf->data_ptr == data_ptr)
1798                         payload = misc & RX_CMP_PAYLOAD_OFFSET;
1799                 else
1800                         payload = 0;
1801                 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1802                                       payload | len);
1803                 if (!skb) {
1804                         rc = -ENOMEM;
1805                         goto next_rx;
1806                 }
1807         }
1808
1809         if (agg_bufs) {
1810                 skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1811                 if (!skb) {
1812                         rc = -ENOMEM;
1813                         goto next_rx;
1814                 }
1815         }
1816
1817         if (RX_CMP_HASH_VALID(rxcmp)) {
1818                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1819                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1820
1821                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1822                 if (hash_type != 1 && hash_type != 3)
1823                         type = PKT_HASH_TYPE_L3;
1824                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1825         }
1826
1827         cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1828         skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1829
1830         if ((rxcmp1->rx_cmp_flags2 &
1831              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1832             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1833                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1834                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1835                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1836
1837                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1838         }
1839
1840         skb_checksum_none_assert(skb);
1841         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1842                 if (dev->features & NETIF_F_RXCSUM) {
1843                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1844                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1845                 }
1846         } else {
1847                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1848                         if (dev->features & NETIF_F_RXCSUM)
1849                                 bnapi->cp_ring.rx_l4_csum_errors++;
1850                 }
1851         }
1852
1853         bnxt_deliver_skb(bp, bnapi, skb);
1854         rc = 1;
1855
1856 next_rx:
1857         cpr->rx_packets += 1;
1858         cpr->rx_bytes += len;
1859
1860 next_rx_no_len:
1861         rxr->rx_prod = NEXT_RX(prod);
1862         rxr->rx_next_cons = NEXT_RX(cons);
1863
1864 next_rx_no_prod_no_len:
1865         *raw_cons = tmp_raw_cons;
1866
1867         return rc;
1868 }
1869
1870 /* In netpoll mode, if we are using a combined completion ring, we need to
1871  * discard the rx packets and recycle the buffers.
1872  */
1873 static int bnxt_force_rx_discard(struct bnxt *bp,
1874                                  struct bnxt_cp_ring_info *cpr,
1875                                  u32 *raw_cons, u8 *event)
1876 {
1877         u32 tmp_raw_cons = *raw_cons;
1878         struct rx_cmp_ext *rxcmp1;
1879         struct rx_cmp *rxcmp;
1880         u16 cp_cons;
1881         u8 cmp_type;
1882
1883         cp_cons = RING_CMP(tmp_raw_cons);
1884         rxcmp = (struct rx_cmp *)
1885                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1886
1887         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1888         cp_cons = RING_CMP(tmp_raw_cons);
1889         rxcmp1 = (struct rx_cmp_ext *)
1890                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1891
1892         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1893                 return -EBUSY;
1894
1895         cmp_type = RX_CMP_TYPE(rxcmp);
1896         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1897                 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1898                         cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1899         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1900                 struct rx_tpa_end_cmp_ext *tpa_end1;
1901
1902                 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1903                 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1904                         cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1905         }
1906         return bnxt_rx_pkt(bp, cpr, raw_cons, event);
1907 }
1908
1909 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
1910 {
1911         struct bnxt_fw_health *fw_health = bp->fw_health;
1912         u32 reg = fw_health->regs[reg_idx];
1913         u32 reg_type, reg_off, val = 0;
1914
1915         reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
1916         reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
1917         switch (reg_type) {
1918         case BNXT_FW_HEALTH_REG_TYPE_CFG:
1919                 pci_read_config_dword(bp->pdev, reg_off, &val);
1920                 break;
1921         case BNXT_FW_HEALTH_REG_TYPE_GRC:
1922                 reg_off = fw_health->mapped_regs[reg_idx];
1923                 /* fall through */
1924         case BNXT_FW_HEALTH_REG_TYPE_BAR0:
1925                 val = readl(bp->bar0 + reg_off);
1926                 break;
1927         case BNXT_FW_HEALTH_REG_TYPE_BAR1:
1928                 val = readl(bp->bar1 + reg_off);
1929                 break;
1930         }
1931         if (reg_idx == BNXT_FW_RESET_INPROG_REG)
1932                 val &= fw_health->fw_reset_inprog_reg_mask;
1933         return val;
1934 }
1935
1936 #define BNXT_GET_EVENT_PORT(data)       \
1937         ((data) &                       \
1938          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1939
1940 static int bnxt_async_event_process(struct bnxt *bp,
1941                                     struct hwrm_async_event_cmpl *cmpl)
1942 {
1943         u16 event_id = le16_to_cpu(cmpl->event_id);
1944
1945         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1946         switch (event_id) {
1947         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1948                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1949                 struct bnxt_link_info *link_info = &bp->link_info;
1950
1951                 if (BNXT_VF(bp))
1952                         goto async_event_process_exit;
1953
1954                 /* print unsupported speed warning in forced speed mode only */
1955                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1956                     (data1 & 0x20000)) {
1957                         u16 fw_speed = link_info->force_link_speed;
1958                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1959
1960                         if (speed != SPEED_UNKNOWN)
1961                                 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1962                                             speed);
1963                 }
1964                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1965         }
1966         /* fall through */
1967         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1968                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1969                 break;
1970         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1971                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1972                 break;
1973         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1974                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1975                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1976
1977                 if (BNXT_VF(bp))
1978                         break;
1979
1980                 if (bp->pf.port_id != port_id)
1981                         break;
1982
1983                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1984                 break;
1985         }
1986         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1987                 if (BNXT_PF(bp))
1988                         goto async_event_process_exit;
1989                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1990                 break;
1991         case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
1992                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1993
1994                 bp->fw_reset_timestamp = jiffies;
1995                 bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
1996                 if (!bp->fw_reset_min_dsecs)
1997                         bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
1998                 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
1999                 if (!bp->fw_reset_max_dsecs)
2000                         bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2001                 if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2002                         netdev_warn(bp->dev, "Firmware fatal reset event received\n");
2003                         set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2004                 } else {
2005                         netdev_warn(bp->dev, "Firmware non-fatal reset event received, max wait time %d msec\n",
2006                                     bp->fw_reset_max_dsecs * 100);
2007                 }
2008                 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2009                 break;
2010         }
2011         case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2012                 struct bnxt_fw_health *fw_health = bp->fw_health;
2013                 u32 data1 = le32_to_cpu(cmpl->event_data1);
2014
2015                 if (!fw_health)
2016                         goto async_event_process_exit;
2017
2018                 fw_health->enabled = EVENT_DATA1_RECOVERY_ENABLED(data1);
2019                 fw_health->master = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2020                 if (!fw_health->enabled)
2021                         break;
2022
2023                 if (netif_msg_drv(bp))
2024                         netdev_info(bp->dev, "Error recovery info: error recovery[%d], master[%d], reset count[0x%x], health status: 0x%x\n",
2025                                     fw_health->enabled, fw_health->master,
2026                                     bnxt_fw_health_readl(bp,
2027                                                          BNXT_FW_RESET_CNT_REG),
2028                                     bnxt_fw_health_readl(bp,
2029                                                          BNXT_FW_HEALTH_REG));
2030                 fw_health->tmr_multiplier =
2031                         DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2032                                      bp->current_interval * 10);
2033                 fw_health->tmr_counter = fw_health->tmr_multiplier;
2034                 fw_health->last_fw_heartbeat =
2035                         bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2036                 fw_health->last_fw_reset_cnt =
2037                         bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2038                 goto async_event_process_exit;
2039         }
2040         default:
2041                 goto async_event_process_exit;
2042         }
2043         bnxt_queue_sp_work(bp);
2044 async_event_process_exit:
2045         bnxt_ulp_async_events(bp, cmpl);
2046         return 0;
2047 }
2048
2049 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2050 {
2051         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2052         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2053         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2054                                 (struct hwrm_fwd_req_cmpl *)txcmp;
2055
2056         switch (cmpl_type) {
2057         case CMPL_BASE_TYPE_HWRM_DONE:
2058                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
2059                 if (seq_id == bp->hwrm_intr_seq_id)
2060                         bp->hwrm_intr_seq_id = (u16)~bp->hwrm_intr_seq_id;
2061                 else
2062                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
2063                 break;
2064
2065         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2066                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2067
2068                 if ((vf_id < bp->pf.first_vf_id) ||
2069                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2070                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2071                                    vf_id);
2072                         return -EINVAL;
2073                 }
2074
2075                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2076                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2077                 bnxt_queue_sp_work(bp);
2078                 break;
2079
2080         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2081                 bnxt_async_event_process(bp,
2082                                          (struct hwrm_async_event_cmpl *)txcmp);
2083
2084         default:
2085                 break;
2086         }
2087
2088         return 0;
2089 }
2090
2091 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2092 {
2093         struct bnxt_napi *bnapi = dev_instance;
2094         struct bnxt *bp = bnapi->bp;
2095         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2096         u32 cons = RING_CMP(cpr->cp_raw_cons);
2097
2098         cpr->event_ctr++;
2099         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2100         napi_schedule(&bnapi->napi);
2101         return IRQ_HANDLED;
2102 }
2103
2104 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2105 {
2106         u32 raw_cons = cpr->cp_raw_cons;
2107         u16 cons = RING_CMP(raw_cons);
2108         struct tx_cmp *txcmp;
2109
2110         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2111
2112         return TX_CMP_VALID(txcmp, raw_cons);
2113 }
2114
2115 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2116 {
2117         struct bnxt_napi *bnapi = dev_instance;
2118         struct bnxt *bp = bnapi->bp;
2119         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2120         u32 cons = RING_CMP(cpr->cp_raw_cons);
2121         u32 int_status;
2122
2123         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2124
2125         if (!bnxt_has_work(bp, cpr)) {
2126                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2127                 /* return if erroneous interrupt */
2128                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2129                         return IRQ_NONE;
2130         }
2131
2132         /* disable ring IRQ */
2133         BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2134
2135         /* Return here if interrupt is shared and is disabled. */
2136         if (unlikely(atomic_read(&bp->intr_sem) != 0))
2137                 return IRQ_HANDLED;
2138
2139         napi_schedule(&bnapi->napi);
2140         return IRQ_HANDLED;
2141 }
2142
2143 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2144                             int budget)
2145 {
2146         struct bnxt_napi *bnapi = cpr->bnapi;
2147         u32 raw_cons = cpr->cp_raw_cons;
2148         u32 cons;
2149         int tx_pkts = 0;
2150         int rx_pkts = 0;
2151         u8 event = 0;
2152         struct tx_cmp *txcmp;
2153
2154         cpr->has_more_work = 0;
2155         while (1) {
2156                 int rc;
2157
2158                 cons = RING_CMP(raw_cons);
2159                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2160
2161                 if (!TX_CMP_VALID(txcmp, raw_cons))
2162                         break;
2163
2164                 /* The valid test of the entry must be done first before
2165                  * reading any further.
2166                  */
2167                 dma_rmb();
2168                 cpr->had_work_done = 1;
2169                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2170                         tx_pkts++;
2171                         /* return full budget so NAPI will complete. */
2172                         if (unlikely(tx_pkts > bp->tx_wake_thresh)) {
2173                                 rx_pkts = budget;
2174                                 raw_cons = NEXT_RAW_CMP(raw_cons);
2175                                 if (budget)
2176                                         cpr->has_more_work = 1;
2177                                 break;
2178                         }
2179                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2180                         if (likely(budget))
2181                                 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2182                         else
2183                                 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2184                                                            &event);
2185                         if (likely(rc >= 0))
2186                                 rx_pkts += rc;
2187                         /* Increment rx_pkts when rc is -ENOMEM to count towards
2188                          * the NAPI budget.  Otherwise, we may potentially loop
2189                          * here forever if we consistently cannot allocate
2190                          * buffers.
2191                          */
2192                         else if (rc == -ENOMEM && budget)
2193                                 rx_pkts++;
2194                         else if (rc == -EBUSY)  /* partial completion */
2195                                 break;
2196                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
2197                                      CMPL_BASE_TYPE_HWRM_DONE) ||
2198                                     (TX_CMP_TYPE(txcmp) ==
2199                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2200                                     (TX_CMP_TYPE(txcmp) ==
2201                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2202                         bnxt_hwrm_handler(bp, txcmp);
2203                 }
2204                 raw_cons = NEXT_RAW_CMP(raw_cons);
2205
2206                 if (rx_pkts && rx_pkts == budget) {
2207                         cpr->has_more_work = 1;
2208                         break;
2209                 }
2210         }
2211
2212         if (event & BNXT_REDIRECT_EVENT)
2213                 xdp_do_flush_map();
2214
2215         if (event & BNXT_TX_EVENT) {
2216                 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2217                 u16 prod = txr->tx_prod;
2218
2219                 /* Sync BD data before updating doorbell */
2220                 wmb();
2221
2222                 bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2223         }
2224
2225         cpr->cp_raw_cons = raw_cons;
2226         bnapi->tx_pkts += tx_pkts;
2227         bnapi->events |= event;
2228         return rx_pkts;
2229 }
2230
2231 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2232 {
2233         if (bnapi->tx_pkts) {
2234                 bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2235                 bnapi->tx_pkts = 0;
2236         }
2237
2238         if (bnapi->events & BNXT_RX_EVENT) {
2239                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2240
2241                 if (bnapi->events & BNXT_AGG_EVENT)
2242                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2243                 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2244         }
2245         bnapi->events = 0;
2246 }
2247
2248 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2249                           int budget)
2250 {
2251         struct bnxt_napi *bnapi = cpr->bnapi;
2252         int rx_pkts;
2253
2254         rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2255
2256         /* ACK completion ring before freeing tx ring and producing new
2257          * buffers in rx/agg rings to prevent overflowing the completion
2258          * ring.
2259          */
2260         bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2261
2262         __bnxt_poll_work_done(bp, bnapi);
2263         return rx_pkts;
2264 }
2265
2266 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2267 {
2268         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2269         struct bnxt *bp = bnapi->bp;
2270         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2271         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2272         struct tx_cmp *txcmp;
2273         struct rx_cmp_ext *rxcmp1;
2274         u32 cp_cons, tmp_raw_cons;
2275         u32 raw_cons = cpr->cp_raw_cons;
2276         u32 rx_pkts = 0;
2277         u8 event = 0;
2278
2279         while (1) {
2280                 int rc;
2281
2282                 cp_cons = RING_CMP(raw_cons);
2283                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2284
2285                 if (!TX_CMP_VALID(txcmp, raw_cons))
2286                         break;
2287
2288                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2289                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2290                         cp_cons = RING_CMP(tmp_raw_cons);
2291                         rxcmp1 = (struct rx_cmp_ext *)
2292                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2293
2294                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2295                                 break;
2296
2297                         /* force an error to recycle the buffer */
2298                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2299                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2300
2301                         rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2302                         if (likely(rc == -EIO) && budget)
2303                                 rx_pkts++;
2304                         else if (rc == -EBUSY)  /* partial completion */
2305                                 break;
2306                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
2307                                     CMPL_BASE_TYPE_HWRM_DONE)) {
2308                         bnxt_hwrm_handler(bp, txcmp);
2309                 } else {
2310                         netdev_err(bp->dev,
2311                                    "Invalid completion received on special ring\n");
2312                 }
2313                 raw_cons = NEXT_RAW_CMP(raw_cons);
2314
2315                 if (rx_pkts == budget)
2316                         break;
2317         }
2318
2319         cpr->cp_raw_cons = raw_cons;
2320         BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2321         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2322
2323         if (event & BNXT_AGG_EVENT)
2324                 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2325
2326         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2327                 napi_complete_done(napi, rx_pkts);
2328                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2329         }
2330         return rx_pkts;
2331 }
2332
2333 static int bnxt_poll(struct napi_struct *napi, int budget)
2334 {
2335         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2336         struct bnxt *bp = bnapi->bp;
2337         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2338         int work_done = 0;
2339
2340         while (1) {
2341                 work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2342
2343                 if (work_done >= budget) {
2344                         if (!budget)
2345                                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2346                         break;
2347                 }
2348
2349                 if (!bnxt_has_work(bp, cpr)) {
2350                         if (napi_complete_done(napi, work_done))
2351                                 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2352                         break;
2353                 }
2354         }
2355         if (bp->flags & BNXT_FLAG_DIM) {
2356                 struct dim_sample dim_sample = {};
2357
2358                 dim_update_sample(cpr->event_ctr,
2359                                   cpr->rx_packets,
2360                                   cpr->rx_bytes,
2361                                   &dim_sample);
2362                 net_dim(&cpr->dim, dim_sample);
2363         }
2364         return work_done;
2365 }
2366
2367 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2368 {
2369         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2370         int i, work_done = 0;
2371
2372         for (i = 0; i < 2; i++) {
2373                 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2374
2375                 if (cpr2) {
2376                         work_done += __bnxt_poll_work(bp, cpr2,
2377                                                       budget - work_done);
2378                         cpr->has_more_work |= cpr2->has_more_work;
2379                 }
2380         }
2381         return work_done;
2382 }
2383
2384 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2385                                  u64 dbr_type, bool all)
2386 {
2387         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2388         int i;
2389
2390         for (i = 0; i < 2; i++) {
2391                 struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2392                 struct bnxt_db_info *db;
2393
2394                 if (cpr2 && (all || cpr2->had_work_done)) {
2395                         db = &cpr2->cp_db;
2396                         writeq(db->db_key64 | dbr_type |
2397                                RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2398                         cpr2->had_work_done = 0;
2399                 }
2400         }
2401         __bnxt_poll_work_done(bp, bnapi);
2402 }
2403
2404 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2405 {
2406         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2407         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2408         u32 raw_cons = cpr->cp_raw_cons;
2409         struct bnxt *bp = bnapi->bp;
2410         struct nqe_cn *nqcmp;
2411         int work_done = 0;
2412         u32 cons;
2413
2414         if (cpr->has_more_work) {
2415                 cpr->has_more_work = 0;
2416                 work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2417                 if (cpr->has_more_work) {
2418                         __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, false);
2419                         return work_done;
2420                 }
2421                 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, true);
2422                 if (napi_complete_done(napi, work_done))
2423                         BNXT_DB_NQ_ARM_P5(&cpr->cp_db, cpr->cp_raw_cons);
2424                 return work_done;
2425         }
2426         while (1) {
2427                 cons = RING_CMP(raw_cons);
2428                 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2429
2430                 if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2431                         __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL,
2432                                              false);
2433                         cpr->cp_raw_cons = raw_cons;
2434                         if (napi_complete_done(napi, work_done))
2435                                 BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2436                                                   cpr->cp_raw_cons);
2437                         return work_done;
2438                 }
2439
2440                 /* The valid test of the entry must be done first before
2441                  * reading any further.
2442                  */
2443                 dma_rmb();
2444
2445                 if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2446                         u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2447                         struct bnxt_cp_ring_info *cpr2;
2448
2449                         cpr2 = cpr->cp_ring_arr[idx];
2450                         work_done += __bnxt_poll_work(bp, cpr2,
2451                                                       budget - work_done);
2452                         cpr->has_more_work = cpr2->has_more_work;
2453                 } else {
2454                         bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2455                 }
2456                 raw_cons = NEXT_RAW_CMP(raw_cons);
2457                 if (cpr->has_more_work)
2458                         break;
2459         }
2460         __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, true);
2461         cpr->cp_raw_cons = raw_cons;
2462         return work_done;
2463 }
2464
2465 static void bnxt_free_tx_skbs(struct bnxt *bp)
2466 {
2467         int i, max_idx;
2468         struct pci_dev *pdev = bp->pdev;
2469
2470         if (!bp->tx_ring)
2471                 return;
2472
2473         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2474         for (i = 0; i < bp->tx_nr_rings; i++) {
2475                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2476                 int j;
2477
2478                 for (j = 0; j < max_idx;) {
2479                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2480                         struct sk_buff *skb;
2481                         int k, last;
2482
2483                         if (i < bp->tx_nr_rings_xdp &&
2484                             tx_buf->action == XDP_REDIRECT) {
2485                                 dma_unmap_single(&pdev->dev,
2486                                         dma_unmap_addr(tx_buf, mapping),
2487                                         dma_unmap_len(tx_buf, len),
2488                                         PCI_DMA_TODEVICE);
2489                                 xdp_return_frame(tx_buf->xdpf);
2490                                 tx_buf->action = 0;
2491                                 tx_buf->xdpf = NULL;
2492                                 j++;
2493                                 continue;
2494                         }
2495
2496                         skb = tx_buf->skb;
2497                         if (!skb) {
2498                                 j++;
2499                                 continue;
2500                         }
2501
2502                         tx_buf->skb = NULL;
2503
2504                         if (tx_buf->is_push) {
2505                                 dev_kfree_skb(skb);
2506                                 j += 2;
2507                                 continue;
2508                         }
2509
2510                         dma_unmap_single(&pdev->dev,
2511                                          dma_unmap_addr(tx_buf, mapping),
2512                                          skb_headlen(skb),
2513                                          PCI_DMA_TODEVICE);
2514
2515                         last = tx_buf->nr_frags;
2516                         j += 2;
2517                         for (k = 0; k < last; k++, j++) {
2518                                 int ring_idx = j & bp->tx_ring_mask;
2519                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2520
2521                                 tx_buf = &txr->tx_buf_ring[ring_idx];
2522                                 dma_unmap_page(
2523                                         &pdev->dev,
2524                                         dma_unmap_addr(tx_buf, mapping),
2525                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
2526                         }
2527                         dev_kfree_skb(skb);
2528                 }
2529                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2530         }
2531 }
2532
2533 static void bnxt_free_rx_skbs(struct bnxt *bp)
2534 {
2535         int i, max_idx, max_agg_idx;
2536         struct pci_dev *pdev = bp->pdev;
2537
2538         if (!bp->rx_ring)
2539                 return;
2540
2541         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2542         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2543         for (i = 0; i < bp->rx_nr_rings; i++) {
2544                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2545                 struct bnxt_tpa_idx_map *map;
2546                 int j;
2547
2548                 if (rxr->rx_tpa) {
2549                         for (j = 0; j < bp->max_tpa; j++) {
2550                                 struct bnxt_tpa_info *tpa_info =
2551                                                         &rxr->rx_tpa[j];
2552                                 u8 *data = tpa_info->data;
2553
2554                                 if (!data)
2555                                         continue;
2556
2557                                 dma_unmap_single_attrs(&pdev->dev,
2558                                                        tpa_info->mapping,
2559                                                        bp->rx_buf_use_size,
2560                                                        bp->rx_dir,
2561                                                        DMA_ATTR_WEAK_ORDERING);
2562
2563                                 tpa_info->data = NULL;
2564
2565                                 kfree(data);
2566                         }
2567                 }
2568
2569                 for (j = 0; j < max_idx; j++) {
2570                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2571                         dma_addr_t mapping = rx_buf->mapping;
2572                         void *data = rx_buf->data;
2573
2574                         if (!data)
2575                                 continue;
2576
2577                         rx_buf->data = NULL;
2578
2579                         if (BNXT_RX_PAGE_MODE(bp)) {
2580                                 mapping -= bp->rx_dma_offset;
2581                                 dma_unmap_page_attrs(&pdev->dev, mapping,
2582                                                      PAGE_SIZE, bp->rx_dir,
2583                                                      DMA_ATTR_WEAK_ORDERING);
2584                                 page_pool_recycle_direct(rxr->page_pool, data);
2585                         } else {
2586                                 dma_unmap_single_attrs(&pdev->dev, mapping,
2587                                                        bp->rx_buf_use_size,
2588                                                        bp->rx_dir,
2589                                                        DMA_ATTR_WEAK_ORDERING);
2590                                 kfree(data);
2591                         }
2592                 }
2593
2594                 for (j = 0; j < max_agg_idx; j++) {
2595                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2596                                 &rxr->rx_agg_ring[j];
2597                         struct page *page = rx_agg_buf->page;
2598
2599                         if (!page)
2600                                 continue;
2601
2602                         dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2603                                              BNXT_RX_PAGE_SIZE,
2604                                              PCI_DMA_FROMDEVICE,
2605                                              DMA_ATTR_WEAK_ORDERING);
2606
2607                         rx_agg_buf->page = NULL;
2608                         __clear_bit(j, rxr->rx_agg_bmap);
2609
2610                         __free_page(page);
2611                 }
2612                 if (rxr->rx_page) {
2613                         __free_page(rxr->rx_page);
2614                         rxr->rx_page = NULL;
2615                 }
2616                 map = rxr->rx_tpa_idx_map;
2617                 if (map)
2618                         memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2619         }
2620 }
2621
2622 static void bnxt_free_skbs(struct bnxt *bp)
2623 {
2624         bnxt_free_tx_skbs(bp);
2625         bnxt_free_rx_skbs(bp);
2626 }
2627
2628 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2629 {
2630         struct pci_dev *pdev = bp->pdev;
2631         int i;
2632
2633         for (i = 0; i < rmem->nr_pages; i++) {
2634                 if (!rmem->pg_arr[i])
2635                         continue;
2636
2637                 dma_free_coherent(&pdev->dev, rmem->page_size,
2638                                   rmem->pg_arr[i], rmem->dma_arr[i]);
2639
2640                 rmem->pg_arr[i] = NULL;
2641         }
2642         if (rmem->pg_tbl) {
2643                 size_t pg_tbl_size = rmem->nr_pages * 8;
2644
2645                 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2646                         pg_tbl_size = rmem->page_size;
2647                 dma_free_coherent(&pdev->dev, pg_tbl_size,
2648                                   rmem->pg_tbl, rmem->pg_tbl_map);
2649                 rmem->pg_tbl = NULL;
2650         }
2651         if (rmem->vmem_size && *rmem->vmem) {
2652                 vfree(*rmem->vmem);
2653                 *rmem->vmem = NULL;
2654         }
2655 }
2656
2657 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2658 {
2659         struct pci_dev *pdev = bp->pdev;
2660         u64 valid_bit = 0;
2661         int i;
2662
2663         if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2664                 valid_bit = PTU_PTE_VALID;
2665         if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2666                 size_t pg_tbl_size = rmem->nr_pages * 8;
2667
2668                 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2669                         pg_tbl_size = rmem->page_size;
2670                 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2671                                                   &rmem->pg_tbl_map,
2672                                                   GFP_KERNEL);
2673                 if (!rmem->pg_tbl)
2674                         return -ENOMEM;
2675         }
2676
2677         for (i = 0; i < rmem->nr_pages; i++) {
2678                 u64 extra_bits = valid_bit;
2679
2680                 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2681                                                      rmem->page_size,
2682                                                      &rmem->dma_arr[i],
2683                                                      GFP_KERNEL);
2684                 if (!rmem->pg_arr[i])
2685                         return -ENOMEM;
2686
2687                 if (rmem->nr_pages > 1 || rmem->depth > 0) {
2688                         if (i == rmem->nr_pages - 2 &&
2689                             (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2690                                 extra_bits |= PTU_PTE_NEXT_TO_LAST;
2691                         else if (i == rmem->nr_pages - 1 &&
2692                                  (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2693                                 extra_bits |= PTU_PTE_LAST;
2694                         rmem->pg_tbl[i] =
2695                                 cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2696                 }
2697         }
2698
2699         if (rmem->vmem_size) {
2700                 *rmem->vmem = vzalloc(rmem->vmem_size);
2701                 if (!(*rmem->vmem))
2702                         return -ENOMEM;
2703         }
2704         return 0;
2705 }
2706
2707 static void bnxt_free_tpa_info(struct bnxt *bp)
2708 {
2709         int i;
2710
2711         for (i = 0; i < bp->rx_nr_rings; i++) {
2712                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2713
2714                 kfree(rxr->rx_tpa_idx_map);
2715                 rxr->rx_tpa_idx_map = NULL;
2716                 if (rxr->rx_tpa) {
2717                         kfree(rxr->rx_tpa[0].agg_arr);
2718                         rxr->rx_tpa[0].agg_arr = NULL;
2719                 }
2720                 kfree(rxr->rx_tpa);
2721                 rxr->rx_tpa = NULL;
2722         }
2723 }
2724
2725 static int bnxt_alloc_tpa_info(struct bnxt *bp)
2726 {
2727         int i, j, total_aggs = 0;
2728
2729         bp->max_tpa = MAX_TPA;
2730         if (bp->flags & BNXT_FLAG_CHIP_P5) {
2731                 if (!bp->max_tpa_v2)
2732                         return 0;
2733                 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
2734                 total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
2735         }
2736
2737         for (i = 0; i < bp->rx_nr_rings; i++) {
2738                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2739                 struct rx_agg_cmp *agg;
2740
2741                 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
2742                                       GFP_KERNEL);
2743                 if (!rxr->rx_tpa)
2744                         return -ENOMEM;
2745
2746                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
2747                         continue;
2748                 agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
2749                 rxr->rx_tpa[0].agg_arr = agg;
2750                 if (!agg)
2751                         return -ENOMEM;
2752                 for (j = 1; j < bp->max_tpa; j++)
2753                         rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
2754                 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
2755                                               GFP_KERNEL);
2756                 if (!rxr->rx_tpa_idx_map)
2757                         return -ENOMEM;
2758         }
2759         return 0;
2760 }
2761
2762 static void bnxt_free_rx_rings(struct bnxt *bp)
2763 {
2764         int i;
2765
2766         if (!bp->rx_ring)
2767                 return;
2768
2769         bnxt_free_tpa_info(bp);
2770         for (i = 0; i < bp->rx_nr_rings; i++) {
2771                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2772                 struct bnxt_ring_struct *ring;
2773
2774                 if (rxr->xdp_prog)
2775                         bpf_prog_put(rxr->xdp_prog);
2776
2777                 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2778                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
2779
2780                 page_pool_destroy(rxr->page_pool);
2781                 rxr->page_pool = NULL;
2782
2783                 kfree(rxr->rx_agg_bmap);
2784                 rxr->rx_agg_bmap = NULL;
2785
2786                 ring = &rxr->rx_ring_struct;
2787                 bnxt_free_ring(bp, &ring->ring_mem);
2788
2789                 ring = &rxr->rx_agg_ring_struct;
2790                 bnxt_free_ring(bp, &ring->ring_mem);
2791         }
2792 }
2793
2794 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
2795                                    struct bnxt_rx_ring_info *rxr)
2796 {
2797         struct page_pool_params pp = { 0 };
2798
2799         pp.pool_size = bp->rx_ring_size;
2800         pp.nid = dev_to_node(&bp->pdev->dev);
2801         pp.dev = &bp->pdev->dev;
2802         pp.dma_dir = DMA_BIDIRECTIONAL;
2803
2804         rxr->page_pool = page_pool_create(&pp);
2805         if (IS_ERR(rxr->page_pool)) {
2806                 int err = PTR_ERR(rxr->page_pool);
2807
2808                 rxr->page_pool = NULL;
2809                 return err;
2810         }
2811         return 0;
2812 }
2813
2814 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2815 {
2816         int i, rc = 0, agg_rings = 0;
2817
2818         if (!bp->rx_ring)
2819                 return -ENOMEM;
2820
2821         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2822                 agg_rings = 1;
2823
2824         for (i = 0; i < bp->rx_nr_rings; i++) {
2825                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2826                 struct bnxt_ring_struct *ring;
2827
2828                 ring = &rxr->rx_ring_struct;
2829
2830                 rc = bnxt_alloc_rx_page_pool(bp, rxr);
2831                 if (rc)
2832                         return rc;
2833
2834                 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2835                 if (rc < 0)
2836                         return rc;
2837
2838                 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
2839                                                 MEM_TYPE_PAGE_POOL,
2840                                                 rxr->page_pool);
2841                 if (rc) {
2842                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
2843                         return rc;
2844                 }
2845
2846                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2847                 if (rc)
2848                         return rc;
2849
2850                 ring->grp_idx = i;
2851                 if (agg_rings) {
2852                         u16 mem_size;
2853
2854                         ring = &rxr->rx_agg_ring_struct;
2855                         rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2856                         if (rc)
2857                                 return rc;
2858
2859                         ring->grp_idx = i;
2860                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2861                         mem_size = rxr->rx_agg_bmap_size / 8;
2862                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2863                         if (!rxr->rx_agg_bmap)
2864                                 return -ENOMEM;
2865                 }
2866         }
2867         if (bp->flags & BNXT_FLAG_TPA)
2868                 rc = bnxt_alloc_tpa_info(bp);
2869         return rc;
2870 }
2871
2872 static void bnxt_free_tx_rings(struct bnxt *bp)
2873 {
2874         int i;
2875         struct pci_dev *pdev = bp->pdev;
2876
2877         if (!bp->tx_ring)
2878                 return;
2879
2880         for (i = 0; i < bp->tx_nr_rings; i++) {
2881                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2882                 struct bnxt_ring_struct *ring;
2883
2884                 if (txr->tx_push) {
2885                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2886                                           txr->tx_push, txr->tx_push_mapping);
2887                         txr->tx_push = NULL;
2888                 }
2889
2890                 ring = &txr->tx_ring_struct;
2891
2892                 bnxt_free_ring(bp, &ring->ring_mem);
2893         }
2894 }
2895
2896 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2897 {
2898         int i, j, rc;
2899         struct pci_dev *pdev = bp->pdev;
2900
2901         bp->tx_push_size = 0;
2902         if (bp->tx_push_thresh) {
2903                 int push_size;
2904
2905                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2906                                         bp->tx_push_thresh);
2907
2908                 if (push_size > 256) {
2909                         push_size = 0;
2910                         bp->tx_push_thresh = 0;
2911                 }
2912
2913                 bp->tx_push_size = push_size;
2914         }
2915
2916         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2917                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2918                 struct bnxt_ring_struct *ring;
2919                 u8 qidx;
2920
2921                 ring = &txr->tx_ring_struct;
2922
2923                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
2924                 if (rc)
2925                         return rc;
2926
2927                 ring->grp_idx = txr->bnapi->index;
2928                 if (bp->tx_push_size) {
2929                         dma_addr_t mapping;
2930
2931                         /* One pre-allocated DMA buffer to backup
2932                          * TX push operation
2933                          */
2934                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2935                                                 bp->tx_push_size,
2936                                                 &txr->tx_push_mapping,
2937                                                 GFP_KERNEL);
2938
2939                         if (!txr->tx_push)
2940                                 return -ENOMEM;
2941
2942                         mapping = txr->tx_push_mapping +
2943                                 sizeof(struct tx_push_bd);
2944                         txr->data_mapping = cpu_to_le64(mapping);
2945                 }
2946                 qidx = bp->tc_to_qidx[j];
2947                 ring->queue_id = bp->q_info[qidx].queue_id;
2948                 if (i < bp->tx_nr_rings_xdp)
2949                         continue;
2950                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2951                         j++;
2952         }
2953         return 0;
2954 }
2955
2956 static void bnxt_free_cp_rings(struct bnxt *bp)
2957 {
2958         int i;
2959
2960         if (!bp->bnapi)
2961                 return;
2962
2963         for (i = 0; i < bp->cp_nr_rings; i++) {
2964                 struct bnxt_napi *bnapi = bp->bnapi[i];
2965                 struct bnxt_cp_ring_info *cpr;
2966                 struct bnxt_ring_struct *ring;
2967                 int j;
2968
2969                 if (!bnapi)
2970                         continue;
2971
2972                 cpr = &bnapi->cp_ring;
2973                 ring = &cpr->cp_ring_struct;
2974
2975                 bnxt_free_ring(bp, &ring->ring_mem);
2976
2977                 for (j = 0; j < 2; j++) {
2978                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
2979
2980                         if (cpr2) {
2981                                 ring = &cpr2->cp_ring_struct;
2982                                 bnxt_free_ring(bp, &ring->ring_mem);
2983                                 kfree(cpr2);
2984                                 cpr->cp_ring_arr[j] = NULL;
2985                         }
2986                 }
2987         }
2988 }
2989
2990 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
2991 {
2992         struct bnxt_ring_mem_info *rmem;
2993         struct bnxt_ring_struct *ring;
2994         struct bnxt_cp_ring_info *cpr;
2995         int rc;
2996
2997         cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
2998         if (!cpr)
2999                 return NULL;
3000
3001         ring = &cpr->cp_ring_struct;
3002         rmem = &ring->ring_mem;
3003         rmem->nr_pages = bp->cp_nr_pages;
3004         rmem->page_size = HW_CMPD_RING_SIZE;
3005         rmem->pg_arr = (void **)cpr->cp_desc_ring;
3006         rmem->dma_arr = cpr->cp_desc_mapping;
3007         rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3008         rc = bnxt_alloc_ring(bp, rmem);
3009         if (rc) {
3010                 bnxt_free_ring(bp, rmem);
3011                 kfree(cpr);
3012                 cpr = NULL;
3013         }
3014         return cpr;
3015 }
3016
3017 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3018 {
3019         bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3020         int i, rc, ulp_base_vec, ulp_msix;
3021
3022         ulp_msix = bnxt_get_ulp_msix_num(bp);
3023         ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3024         for (i = 0; i < bp->cp_nr_rings; i++) {
3025                 struct bnxt_napi *bnapi = bp->bnapi[i];
3026                 struct bnxt_cp_ring_info *cpr;
3027                 struct bnxt_ring_struct *ring;
3028
3029                 if (!bnapi)
3030                         continue;
3031
3032                 cpr = &bnapi->cp_ring;
3033                 cpr->bnapi = bnapi;
3034                 ring = &cpr->cp_ring_struct;
3035
3036                 rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3037                 if (rc)
3038                         return rc;
3039
3040                 if (ulp_msix && i >= ulp_base_vec)
3041                         ring->map_idx = i + ulp_msix;
3042                 else
3043                         ring->map_idx = i;
3044
3045                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3046                         continue;
3047
3048                 if (i < bp->rx_nr_rings) {
3049                         struct bnxt_cp_ring_info *cpr2 =
3050                                 bnxt_alloc_cp_sub_ring(bp);
3051
3052                         cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3053                         if (!cpr2)
3054                                 return -ENOMEM;
3055                         cpr2->bnapi = bnapi;
3056                 }
3057                 if ((sh && i < bp->tx_nr_rings) ||
3058                     (!sh && i >= bp->rx_nr_rings)) {
3059                         struct bnxt_cp_ring_info *cpr2 =
3060                                 bnxt_alloc_cp_sub_ring(bp);
3061
3062                         cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3063                         if (!cpr2)
3064                                 return -ENOMEM;
3065                         cpr2->bnapi = bnapi;
3066                 }
3067         }
3068         return 0;
3069 }
3070
3071 static void bnxt_init_ring_struct(struct bnxt *bp)
3072 {
3073         int i;
3074
3075         for (i = 0; i < bp->cp_nr_rings; i++) {
3076                 struct bnxt_napi *bnapi = bp->bnapi[i];
3077                 struct bnxt_ring_mem_info *rmem;
3078                 struct bnxt_cp_ring_info *cpr;
3079                 struct bnxt_rx_ring_info *rxr;
3080                 struct bnxt_tx_ring_info *txr;
3081                 struct bnxt_ring_struct *ring;
3082
3083                 if (!bnapi)
3084                         continue;
3085
3086                 cpr = &bnapi->cp_ring;
3087                 ring = &cpr->cp_ring_struct;
3088                 rmem = &ring->ring_mem;
3089                 rmem->nr_pages = bp->cp_nr_pages;
3090                 rmem->page_size = HW_CMPD_RING_SIZE;
3091                 rmem->pg_arr = (void **)cpr->cp_desc_ring;
3092                 rmem->dma_arr = cpr->cp_desc_mapping;
3093                 rmem->vmem_size = 0;
3094
3095                 rxr = bnapi->rx_ring;
3096                 if (!rxr)
3097                         goto skip_rx;
3098
3099                 ring = &rxr->rx_ring_struct;
3100                 rmem = &ring->ring_mem;
3101                 rmem->nr_pages = bp->rx_nr_pages;
3102                 rmem->page_size = HW_RXBD_RING_SIZE;
3103                 rmem->pg_arr = (void **)rxr->rx_desc_ring;
3104                 rmem->dma_arr = rxr->rx_desc_mapping;
3105                 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3106                 rmem->vmem = (void **)&rxr->rx_buf_ring;
3107
3108                 ring = &rxr->rx_agg_ring_struct;
3109                 rmem = &ring->ring_mem;
3110                 rmem->nr_pages = bp->rx_agg_nr_pages;
3111                 rmem->page_size = HW_RXBD_RING_SIZE;
3112                 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3113                 rmem->dma_arr = rxr->rx_agg_desc_mapping;
3114                 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3115                 rmem->vmem = (void **)&rxr->rx_agg_ring;
3116
3117 skip_rx:
3118                 txr = bnapi->tx_ring;
3119                 if (!txr)
3120                         continue;
3121
3122                 ring = &txr->tx_ring_struct;
3123                 rmem = &ring->ring_mem;
3124                 rmem->nr_pages = bp->tx_nr_pages;
3125                 rmem->page_size = HW_RXBD_RING_SIZE;
3126                 rmem->pg_arr = (void **)txr->tx_desc_ring;
3127                 rmem->dma_arr = txr->tx_desc_mapping;
3128                 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3129                 rmem->vmem = (void **)&txr->tx_buf_ring;
3130         }
3131 }
3132
3133 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3134 {
3135         int i;
3136         u32 prod;
3137         struct rx_bd **rx_buf_ring;
3138
3139         rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3140         for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3141                 int j;
3142                 struct rx_bd *rxbd;
3143
3144                 rxbd = rx_buf_ring[i];
3145                 if (!rxbd)
3146                         continue;
3147
3148                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3149                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3150                         rxbd->rx_bd_opaque = prod;
3151                 }
3152         }
3153 }
3154
3155 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3156 {
3157         struct net_device *dev = bp->dev;
3158         struct bnxt_rx_ring_info *rxr;
3159         struct bnxt_ring_struct *ring;
3160         u32 prod, type;
3161         int i;
3162
3163         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3164                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3165
3166         if (NET_IP_ALIGN == 2)
3167                 type |= RX_BD_FLAGS_SOP;
3168
3169         rxr = &bp->rx_ring[ring_nr];
3170         ring = &rxr->rx_ring_struct;
3171         bnxt_init_rxbd_pages(ring, type);
3172
3173         if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3174                 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
3175                 if (IS_ERR(rxr->xdp_prog)) {
3176                         int rc = PTR_ERR(rxr->xdp_prog);
3177
3178                         rxr->xdp_prog = NULL;
3179                         return rc;
3180                 }
3181         }
3182         prod = rxr->rx_prod;
3183         for (i = 0; i < bp->rx_ring_size; i++) {
3184                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
3185                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3186                                     ring_nr, i, bp->rx_ring_size);
3187                         break;
3188                 }
3189                 prod = NEXT_RX(prod);
3190         }
3191         rxr->rx_prod = prod;
3192         ring->fw_ring_id = INVALID_HW_RING_ID;
3193
3194         ring = &rxr->rx_agg_ring_struct;
3195         ring->fw_ring_id = INVALID_HW_RING_ID;
3196
3197         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3198                 return 0;
3199
3200         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3201                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3202
3203         bnxt_init_rxbd_pages(ring, type);
3204
3205         prod = rxr->rx_agg_prod;
3206         for (i = 0; i < bp->rx_agg_ring_size; i++) {
3207                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
3208                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3209                                     ring_nr, i, bp->rx_ring_size);
3210                         break;
3211                 }
3212                 prod = NEXT_RX_AGG(prod);
3213         }
3214         rxr->rx_agg_prod = prod;
3215
3216         if (bp->flags & BNXT_FLAG_TPA) {
3217                 if (rxr->rx_tpa) {
3218                         u8 *data;
3219                         dma_addr_t mapping;
3220
3221                         for (i = 0; i < bp->max_tpa; i++) {
3222                                 data = __bnxt_alloc_rx_data(bp, &mapping,
3223                                                             GFP_KERNEL);
3224                                 if (!data)
3225                                         return -ENOMEM;
3226
3227                                 rxr->rx_tpa[i].data = data;
3228                                 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3229                                 rxr->rx_tpa[i].mapping = mapping;
3230                         }
3231                 } else {
3232                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
3233                         return -ENOMEM;
3234                 }
3235         }
3236
3237         return 0;
3238 }
3239
3240 static void bnxt_init_cp_rings(struct bnxt *bp)
3241 {
3242         int i, j;
3243
3244         for (i = 0; i < bp->cp_nr_rings; i++) {
3245                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3246                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3247
3248                 ring->fw_ring_id = INVALID_HW_RING_ID;
3249                 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3250                 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3251                 for (j = 0; j < 2; j++) {
3252                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3253
3254                         if (!cpr2)
3255                                 continue;
3256
3257                         ring = &cpr2->cp_ring_struct;
3258                         ring->fw_ring_id = INVALID_HW_RING_ID;
3259                         cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3260                         cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3261                 }
3262         }
3263 }
3264
3265 static int bnxt_init_rx_rings(struct bnxt *bp)
3266 {
3267         int i, rc = 0;
3268
3269         if (BNXT_RX_PAGE_MODE(bp)) {
3270                 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3271                 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3272         } else {
3273                 bp->rx_offset = BNXT_RX_OFFSET;
3274                 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3275         }
3276
3277         for (i = 0; i < bp->rx_nr_rings; i++) {
3278                 rc = bnxt_init_one_rx_ring(bp, i);
3279                 if (rc)
3280                         break;
3281         }
3282
3283         return rc;
3284 }
3285
3286 static int bnxt_init_tx_rings(struct bnxt *bp)
3287 {
3288         u16 i;
3289
3290         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3291                                    MAX_SKB_FRAGS + 1);
3292
3293         for (i = 0; i < bp->tx_nr_rings; i++) {
3294                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3295                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3296
3297                 ring->fw_ring_id = INVALID_HW_RING_ID;
3298         }
3299
3300         return 0;
3301 }
3302
3303 static void bnxt_free_ring_grps(struct bnxt *bp)
3304 {
3305         kfree(bp->grp_info);
3306         bp->grp_info = NULL;
3307 }
3308
3309 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3310 {
3311         int i;
3312
3313         if (irq_re_init) {
3314                 bp->grp_info = kcalloc(bp->cp_nr_rings,
3315                                        sizeof(struct bnxt_ring_grp_info),
3316                                        GFP_KERNEL);
3317                 if (!bp->grp_info)
3318                         return -ENOMEM;
3319         }
3320         for (i = 0; i < bp->cp_nr_rings; i++) {
3321                 if (irq_re_init)
3322                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3323                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3324                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3325                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3326                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3327         }
3328         return 0;
3329 }
3330
3331 static void bnxt_free_vnics(struct bnxt *bp)
3332 {
3333         kfree(bp->vnic_info);
3334         bp->vnic_info = NULL;
3335         bp->nr_vnics = 0;
3336 }
3337
3338 static int bnxt_alloc_vnics(struct bnxt *bp)
3339 {
3340         int num_vnics = 1;
3341
3342 #ifdef CONFIG_RFS_ACCEL
3343         if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3344                 num_vnics += bp->rx_nr_rings;
3345 #endif
3346
3347         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3348                 num_vnics++;
3349
3350         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3351                                 GFP_KERNEL);
3352         if (!bp->vnic_info)
3353                 return -ENOMEM;
3354
3355         bp->nr_vnics = num_vnics;
3356         return 0;
3357 }
3358
3359 static void bnxt_init_vnics(struct bnxt *bp)
3360 {
3361         int i;
3362
3363         for (i = 0; i < bp->nr_vnics; i++) {
3364                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3365                 int j;
3366
3367                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
3368                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3369                         vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3370
3371                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3372
3373                 if (bp->vnic_info[i].rss_hash_key) {
3374                         if (i == 0)
3375                                 prandom_bytes(vnic->rss_hash_key,
3376                                               HW_HASH_KEY_SIZE);
3377                         else
3378                                 memcpy(vnic->rss_hash_key,
3379                                        bp->vnic_info[0].rss_hash_key,
3380                                        HW_HASH_KEY_SIZE);
3381                 }
3382         }
3383 }
3384
3385 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3386 {
3387         int pages;
3388
3389         pages = ring_size / desc_per_pg;
3390
3391         if (!pages)
3392                 return 1;
3393
3394         pages++;
3395
3396         while (pages & (pages - 1))
3397                 pages++;
3398
3399         return pages;
3400 }
3401
3402 void bnxt_set_tpa_flags(struct bnxt *bp)
3403 {
3404         bp->flags &= ~BNXT_FLAG_TPA;
3405         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3406                 return;
3407         if (bp->dev->features & NETIF_F_LRO)
3408                 bp->flags |= BNXT_FLAG_LRO;
3409         else if (bp->dev->features & NETIF_F_GRO_HW)
3410                 bp->flags |= BNXT_FLAG_GRO;
3411 }
3412
3413 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3414  * be set on entry.
3415  */
3416 void bnxt_set_ring_params(struct bnxt *bp)
3417 {
3418         u32 ring_size, rx_size, rx_space;
3419         u32 agg_factor = 0, agg_ring_size = 0;
3420
3421         /* 8 for CRC and VLAN */
3422         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3423
3424         rx_space = rx_size + NET_SKB_PAD +
3425                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3426
3427         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3428         ring_size = bp->rx_ring_size;
3429         bp->rx_agg_ring_size = 0;
3430         bp->rx_agg_nr_pages = 0;
3431
3432         if (bp->flags & BNXT_FLAG_TPA)
3433                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3434
3435         bp->flags &= ~BNXT_FLAG_JUMBO;
3436         if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3437                 u32 jumbo_factor;
3438
3439                 bp->flags |= BNXT_FLAG_JUMBO;
3440                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3441                 if (jumbo_factor > agg_factor)
3442                         agg_factor = jumbo_factor;
3443         }
3444         agg_ring_size = ring_size * agg_factor;
3445
3446         if (agg_ring_size) {
3447                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3448                                                         RX_DESC_CNT);
3449                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3450                         u32 tmp = agg_ring_size;
3451
3452                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3453                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3454                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3455                                     tmp, agg_ring_size);
3456                 }
3457                 bp->rx_agg_ring_size = agg_ring_size;
3458                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3459                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3460                 rx_space = rx_size + NET_SKB_PAD +
3461                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3462         }
3463
3464         bp->rx_buf_use_size = rx_size;
3465         bp->rx_buf_size = rx_space;
3466
3467         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3468         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3469
3470         ring_size = bp->tx_ring_size;
3471         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3472         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3473
3474         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
3475         bp->cp_ring_size = ring_size;
3476
3477         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3478         if (bp->cp_nr_pages > MAX_CP_PAGES) {
3479                 bp->cp_nr_pages = MAX_CP_PAGES;
3480                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3481                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3482                             ring_size, bp->cp_ring_size);
3483         }
3484         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3485         bp->cp_ring_mask = bp->cp_bit - 1;
3486 }
3487
3488 /* Changing allocation mode of RX rings.
3489  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3490  */
3491 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3492 {
3493         if (page_mode) {
3494                 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3495                         return -EOPNOTSUPP;
3496                 bp->dev->max_mtu =
3497                         min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3498                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3499                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3500                 bp->rx_dir = DMA_BIDIRECTIONAL;
3501                 bp->rx_skb_func = bnxt_rx_page_skb;
3502                 /* Disable LRO or GRO_HW */
3503                 netdev_update_features(bp->dev);
3504         } else {
3505                 bp->dev->max_mtu = bp->max_mtu;
3506                 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3507                 bp->rx_dir = DMA_FROM_DEVICE;
3508                 bp->rx_skb_func = bnxt_rx_skb;
3509         }
3510         return 0;
3511 }
3512
3513 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3514 {
3515         int i;
3516         struct bnxt_vnic_info *vnic;
3517         struct pci_dev *pdev = bp->pdev;
3518
3519         if (!bp->vnic_info)
3520                 return;
3521
3522         for (i = 0; i < bp->nr_vnics; i++) {
3523                 vnic = &bp->vnic_info[i];
3524
3525                 kfree(vnic->fw_grp_ids);
3526                 vnic->fw_grp_ids = NULL;
3527
3528                 kfree(vnic->uc_list);
3529                 vnic->uc_list = NULL;
3530
3531                 if (vnic->mc_list) {
3532                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3533                                           vnic->mc_list, vnic->mc_list_mapping);
3534                         vnic->mc_list = NULL;
3535                 }
3536
3537                 if (vnic->rss_table) {
3538                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
3539                                           vnic->rss_table,
3540                                           vnic->rss_table_dma_addr);
3541                         vnic->rss_table = NULL;
3542                 }
3543
3544                 vnic->rss_hash_key = NULL;
3545                 vnic->flags = 0;
3546         }
3547 }
3548
3549 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3550 {
3551         int i, rc = 0, size;
3552         struct bnxt_vnic_info *vnic;
3553         struct pci_dev *pdev = bp->pdev;
3554         int max_rings;
3555
3556         for (i = 0; i < bp->nr_vnics; i++) {
3557                 vnic = &bp->vnic_info[i];
3558
3559                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3560                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3561
3562                         if (mem_size > 0) {
3563                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3564                                 if (!vnic->uc_list) {
3565                                         rc = -ENOMEM;
3566                                         goto out;
3567                                 }
3568                         }
3569                 }
3570
3571                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3572                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3573                         vnic->mc_list =
3574                                 dma_alloc_coherent(&pdev->dev,
3575                                                    vnic->mc_list_size,
3576                                                    &vnic->mc_list_mapping,
3577                                                    GFP_KERNEL);
3578                         if (!vnic->mc_list) {
3579                                 rc = -ENOMEM;
3580                                 goto out;
3581                         }
3582                 }
3583
3584                 if (bp->flags & BNXT_FLAG_CHIP_P5)
3585                         goto vnic_skip_grps;
3586
3587                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3588                         max_rings = bp->rx_nr_rings;
3589                 else
3590                         max_rings = 1;
3591
3592                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3593                 if (!vnic->fw_grp_ids) {
3594                         rc = -ENOMEM;
3595                         goto out;
3596                 }
3597 vnic_skip_grps:
3598                 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3599                     !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3600                         continue;
3601
3602                 /* Allocate rss table and hash key */
3603                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3604                                                      &vnic->rss_table_dma_addr,
3605                                                      GFP_KERNEL);
3606                 if (!vnic->rss_table) {
3607                         rc = -ENOMEM;
3608                         goto out;
3609                 }
3610
3611                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3612
3613                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3614                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3615         }
3616         return 0;
3617
3618 out:
3619         return rc;
3620 }
3621
3622 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3623 {
3624         struct pci_dev *pdev = bp->pdev;
3625
3626         if (bp->hwrm_cmd_resp_addr) {
3627                 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3628                                   bp->hwrm_cmd_resp_dma_addr);
3629                 bp->hwrm_cmd_resp_addr = NULL;
3630         }
3631
3632         if (bp->hwrm_cmd_kong_resp_addr) {
3633                 dma_free_coherent(&pdev->dev, PAGE_SIZE,
3634                                   bp->hwrm_cmd_kong_resp_addr,
3635                                   bp->hwrm_cmd_kong_resp_dma_addr);
3636                 bp->hwrm_cmd_kong_resp_addr = NULL;
3637         }
3638 }
3639
3640 static int bnxt_alloc_kong_hwrm_resources(struct bnxt *bp)
3641 {
3642         struct pci_dev *pdev = bp->pdev;
3643
3644         if (bp->hwrm_cmd_kong_resp_addr)
3645                 return 0;
3646
3647         bp->hwrm_cmd_kong_resp_addr =
3648                 dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3649                                    &bp->hwrm_cmd_kong_resp_dma_addr,
3650                                    GFP_KERNEL);
3651         if (!bp->hwrm_cmd_kong_resp_addr)
3652                 return -ENOMEM;
3653
3654         return 0;
3655 }
3656
3657 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3658 {
3659         struct pci_dev *pdev = bp->pdev;
3660
3661         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3662                                                    &bp->hwrm_cmd_resp_dma_addr,
3663                                                    GFP_KERNEL);
3664         if (!bp->hwrm_cmd_resp_addr)
3665                 return -ENOMEM;
3666
3667         return 0;
3668 }
3669
3670 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3671 {
3672         if (bp->hwrm_short_cmd_req_addr) {
3673                 struct pci_dev *pdev = bp->pdev;
3674
3675                 dma_free_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3676                                   bp->hwrm_short_cmd_req_addr,
3677                                   bp->hwrm_short_cmd_req_dma_addr);
3678                 bp->hwrm_short_cmd_req_addr = NULL;
3679         }
3680 }
3681
3682 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3683 {
3684         struct pci_dev *pdev = bp->pdev;
3685
3686         if (bp->hwrm_short_cmd_req_addr)
3687                 return 0;
3688
3689         bp->hwrm_short_cmd_req_addr =
3690                 dma_alloc_coherent(&pdev->dev, bp->hwrm_max_ext_req_len,
3691                                    &bp->hwrm_short_cmd_req_dma_addr,
3692                                    GFP_KERNEL);
3693         if (!bp->hwrm_short_cmd_req_addr)
3694                 return -ENOMEM;
3695
3696         return 0;
3697 }
3698
3699 static void bnxt_free_port_stats(struct bnxt *bp)
3700 {
3701         struct pci_dev *pdev = bp->pdev;
3702
3703         bp->flags &= ~BNXT_FLAG_PORT_STATS;
3704         bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3705
3706         if (bp->hw_rx_port_stats) {
3707                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3708                                   bp->hw_rx_port_stats,
3709                                   bp->hw_rx_port_stats_map);
3710                 bp->hw_rx_port_stats = NULL;
3711         }
3712
3713         if (bp->hw_tx_port_stats_ext) {
3714                 dma_free_coherent(&pdev->dev, sizeof(struct tx_port_stats_ext),
3715                                   bp->hw_tx_port_stats_ext,
3716                                   bp->hw_tx_port_stats_ext_map);
3717                 bp->hw_tx_port_stats_ext = NULL;
3718         }
3719
3720         if (bp->hw_rx_port_stats_ext) {
3721                 dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3722                                   bp->hw_rx_port_stats_ext,
3723                                   bp->hw_rx_port_stats_ext_map);
3724                 bp->hw_rx_port_stats_ext = NULL;
3725         }
3726
3727         if (bp->hw_pcie_stats) {
3728                 dma_free_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3729                                   bp->hw_pcie_stats, bp->hw_pcie_stats_map);
3730                 bp->hw_pcie_stats = NULL;
3731         }
3732 }
3733
3734 static void bnxt_free_ring_stats(struct bnxt *bp)
3735 {
3736         struct pci_dev *pdev = bp->pdev;
3737         int size, i;
3738
3739         if (!bp->bnapi)
3740                 return;
3741
3742         size = bp->hw_ring_stats_size;
3743
3744         for (i = 0; i < bp->cp_nr_rings; i++) {
3745                 struct bnxt_napi *bnapi = bp->bnapi[i];
3746                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3747
3748                 if (cpr->hw_stats) {
3749                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3750                                           cpr->hw_stats_map);
3751                         cpr->hw_stats = NULL;
3752                 }
3753         }
3754 }
3755
3756 static int bnxt_alloc_stats(struct bnxt *bp)
3757 {
3758         u32 size, i;
3759         struct pci_dev *pdev = bp->pdev;
3760
3761         size = bp->hw_ring_stats_size;
3762
3763         for (i = 0; i < bp->cp_nr_rings; i++) {
3764                 struct bnxt_napi *bnapi = bp->bnapi[i];
3765                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3766
3767                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3768                                                    &cpr->hw_stats_map,
3769                                                    GFP_KERNEL);
3770                 if (!cpr->hw_stats)
3771                         return -ENOMEM;
3772
3773                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3774         }
3775
3776         if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
3777                 return 0;
3778
3779         if (bp->hw_rx_port_stats)
3780                 goto alloc_ext_stats;
3781
3782         bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3783                                  sizeof(struct tx_port_stats) + 1024;
3784
3785         bp->hw_rx_port_stats =
3786                 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3787                                    &bp->hw_rx_port_stats_map,
3788                                    GFP_KERNEL);
3789         if (!bp->hw_rx_port_stats)
3790                 return -ENOMEM;
3791
3792         bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) + 512;
3793         bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3794                                    sizeof(struct rx_port_stats) + 512;
3795         bp->flags |= BNXT_FLAG_PORT_STATS;
3796
3797 alloc_ext_stats:
3798         /* Display extended statistics only if FW supports it */
3799         if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
3800                 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
3801                         return 0;
3802
3803         if (bp->hw_rx_port_stats_ext)
3804                 goto alloc_tx_ext_stats;
3805
3806         bp->hw_rx_port_stats_ext =
3807                 dma_alloc_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3808                                    &bp->hw_rx_port_stats_ext_map, GFP_KERNEL);
3809         if (!bp->hw_rx_port_stats_ext)
3810                 return 0;
3811
3812 alloc_tx_ext_stats:
3813         if (bp->hw_tx_port_stats_ext)
3814                 goto alloc_pcie_stats;
3815
3816         if (bp->hwrm_spec_code >= 0x10902 ||
3817             (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
3818                 bp->hw_tx_port_stats_ext =
3819                         dma_alloc_coherent(&pdev->dev,
3820                                            sizeof(struct tx_port_stats_ext),
3821                                            &bp->hw_tx_port_stats_ext_map,
3822                                            GFP_KERNEL);
3823         }
3824         bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3825
3826 alloc_pcie_stats:
3827         if (bp->hw_pcie_stats ||
3828             !(bp->fw_cap & BNXT_FW_CAP_PCIE_STATS_SUPPORTED))
3829                 return 0;
3830
3831         bp->hw_pcie_stats =
3832                 dma_alloc_coherent(&pdev->dev, sizeof(struct pcie_ctx_hw_stats),
3833                                    &bp->hw_pcie_stats_map, GFP_KERNEL);
3834         if (!bp->hw_pcie_stats)
3835                 return 0;
3836
3837         bp->flags |= BNXT_FLAG_PCIE_STATS;
3838         return 0;
3839 }
3840
3841 static void bnxt_clear_ring_indices(struct bnxt *bp)
3842 {
3843         int i;
3844
3845         if (!bp->bnapi)
3846                 return;
3847
3848         for (i = 0; i < bp->cp_nr_rings; i++) {
3849                 struct bnxt_napi *bnapi = bp->bnapi[i];
3850                 struct bnxt_cp_ring_info *cpr;
3851                 struct bnxt_rx_ring_info *rxr;
3852                 struct bnxt_tx_ring_info *txr;
3853
3854                 if (!bnapi)
3855                         continue;
3856
3857                 cpr = &bnapi->cp_ring;
3858                 cpr->cp_raw_cons = 0;
3859
3860                 txr = bnapi->tx_ring;
3861                 if (txr) {
3862                         txr->tx_prod = 0;
3863                         txr->tx_cons = 0;
3864                 }
3865
3866                 rxr = bnapi->rx_ring;
3867                 if (rxr) {
3868                         rxr->rx_prod = 0;
3869                         rxr->rx_agg_prod = 0;
3870                         rxr->rx_sw_agg_prod = 0;
3871                         rxr->rx_next_cons = 0;
3872                 }
3873         }
3874 }
3875
3876 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3877 {
3878 #ifdef CONFIG_RFS_ACCEL
3879         int i;
3880
3881         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
3882          * safe to delete the hash table.
3883          */
3884         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3885                 struct hlist_head *head;
3886                 struct hlist_node *tmp;
3887                 struct bnxt_ntuple_filter *fltr;
3888
3889                 head = &bp->ntp_fltr_hash_tbl[i];
3890                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3891                         hlist_del(&fltr->hash);
3892                         kfree(fltr);
3893                 }
3894         }
3895         if (irq_reinit) {
3896                 kfree(bp->ntp_fltr_bmap);
3897                 bp->ntp_fltr_bmap = NULL;
3898         }
3899         bp->ntp_fltr_count = 0;
3900 #endif
3901 }
3902
3903 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3904 {
3905 #ifdef CONFIG_RFS_ACCEL
3906         int i, rc = 0;
3907
3908         if (!(bp->flags & BNXT_FLAG_RFS))
3909                 return 0;
3910
3911         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3912                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3913
3914         bp->ntp_fltr_count = 0;
3915         bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3916                                     sizeof(long),
3917                                     GFP_KERNEL);
3918
3919         if (!bp->ntp_fltr_bmap)
3920                 rc = -ENOMEM;
3921
3922         return rc;
3923 #else
3924         return 0;
3925 #endif
3926 }
3927
3928 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3929 {
3930         bnxt_free_vnic_attributes(bp);
3931         bnxt_free_tx_rings(bp);
3932         bnxt_free_rx_rings(bp);
3933         bnxt_free_cp_rings(bp);
3934         bnxt_free_ntp_fltrs(bp, irq_re_init);
3935         if (irq_re_init) {
3936                 bnxt_free_ring_stats(bp);
3937                 bnxt_free_ring_grps(bp);
3938                 bnxt_free_vnics(bp);
3939                 kfree(bp->tx_ring_map);
3940                 bp->tx_ring_map = NULL;
3941                 kfree(bp->tx_ring);
3942                 bp->tx_ring = NULL;
3943                 kfree(bp->rx_ring);
3944                 bp->rx_ring = NULL;
3945                 kfree(bp->bnapi);
3946                 bp->bnapi = NULL;
3947         } else {
3948                 bnxt_clear_ring_indices(bp);
3949         }
3950 }
3951
3952 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3953 {
3954         int i, j, rc, size, arr_size;
3955         void *bnapi;
3956
3957         if (irq_re_init) {
3958                 /* Allocate bnapi mem pointer array and mem block for
3959                  * all queues
3960                  */
3961                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3962                                 bp->cp_nr_rings);
3963                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3964                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3965                 if (!bnapi)
3966                         return -ENOMEM;
3967
3968                 bp->bnapi = bnapi;
3969                 bnapi += arr_size;
3970                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3971                         bp->bnapi[i] = bnapi;
3972                         bp->bnapi[i]->index = i;
3973                         bp->bnapi[i]->bp = bp;
3974                         if (bp->flags & BNXT_FLAG_CHIP_P5) {
3975                                 struct bnxt_cp_ring_info *cpr =
3976                                         &bp->bnapi[i]->cp_ring;
3977
3978                                 cpr->cp_ring_struct.ring_mem.flags =
3979                                         BNXT_RMEM_RING_PTE_FLAG;
3980                         }
3981                 }
3982
3983                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3984                                       sizeof(struct bnxt_rx_ring_info),
3985                                       GFP_KERNEL);
3986                 if (!bp->rx_ring)
3987                         return -ENOMEM;
3988
3989                 for (i = 0; i < bp->rx_nr_rings; i++) {
3990                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3991
3992                         if (bp->flags & BNXT_FLAG_CHIP_P5) {
3993                                 rxr->rx_ring_struct.ring_mem.flags =
3994                                         BNXT_RMEM_RING_PTE_FLAG;
3995                                 rxr->rx_agg_ring_struct.ring_mem.flags =
3996                                         BNXT_RMEM_RING_PTE_FLAG;
3997                         }
3998                         rxr->bnapi = bp->bnapi[i];
3999                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4000                 }
4001
4002                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
4003                                       sizeof(struct bnxt_tx_ring_info),
4004                                       GFP_KERNEL);
4005                 if (!bp->tx_ring)
4006                         return -ENOMEM;
4007
4008                 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4009                                           GFP_KERNEL);
4010
4011                 if (!bp->tx_ring_map)
4012                         return -ENOMEM;
4013
4014                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4015                         j = 0;
4016                 else
4017                         j = bp->rx_nr_rings;
4018
4019                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4020                         struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4021
4022                         if (bp->flags & BNXT_FLAG_CHIP_P5)
4023                                 txr->tx_ring_struct.ring_mem.flags =
4024                                         BNXT_RMEM_RING_PTE_FLAG;
4025                         txr->bnapi = bp->bnapi[j];
4026                         bp->bnapi[j]->tx_ring = txr;
4027                         bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4028                         if (i >= bp->tx_nr_rings_xdp) {
4029                                 txr->txq_index = i - bp->tx_nr_rings_xdp;
4030                                 bp->bnapi[j]->tx_int = bnxt_tx_int;
4031                         } else {
4032                                 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4033                                 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4034                         }
4035                 }
4036
4037                 rc = bnxt_alloc_stats(bp);
4038                 if (rc)
4039                         goto alloc_mem_err;
4040
4041                 rc = bnxt_alloc_ntp_fltrs(bp);
4042                 if (rc)
4043                         goto alloc_mem_err;
4044
4045                 rc = bnxt_alloc_vnics(bp);
4046                 if (rc)
4047                         goto alloc_mem_err;
4048         }
4049
4050         bnxt_init_ring_struct(bp);
4051
4052         rc = bnxt_alloc_rx_rings(bp);
4053         if (rc)
4054                 goto alloc_mem_err;
4055
4056         rc = bnxt_alloc_tx_rings(bp);
4057         if (rc)
4058                 goto alloc_mem_err;
4059
4060         rc = bnxt_alloc_cp_rings(bp);
4061         if (rc)
4062                 goto alloc_mem_err;
4063
4064         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4065                                   BNXT_VNIC_UCAST_FLAG;
4066         rc = bnxt_alloc_vnic_attributes(bp);
4067         if (rc)
4068                 goto alloc_mem_err;
4069         return 0;
4070
4071 alloc_mem_err:
4072         bnxt_free_mem(bp, true);
4073         return rc;
4074 }
4075
4076 static void bnxt_disable_int(struct bnxt *bp)
4077 {
4078         int i;
4079
4080         if (!bp->bnapi)
4081                 return;
4082
4083         for (i = 0; i < bp->cp_nr_rings; i++) {
4084                 struct bnxt_napi *bnapi = bp->bnapi[i];
4085                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4086                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4087
4088                 if (ring->fw_ring_id != INVALID_HW_RING_ID)
4089                         bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4090         }
4091 }
4092
4093 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4094 {
4095         struct bnxt_napi *bnapi = bp->bnapi[n];
4096         struct bnxt_cp_ring_info *cpr;
4097
4098         cpr = &bnapi->cp_ring;
4099         return cpr->cp_ring_struct.map_idx;
4100 }
4101
4102 static void bnxt_disable_int_sync(struct bnxt *bp)
4103 {
4104         int i;
4105
4106         atomic_inc(&bp->intr_sem);
4107
4108         bnxt_disable_int(bp);
4109         for (i = 0; i < bp->cp_nr_rings; i++) {
4110                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4111
4112                 synchronize_irq(bp->irq_tbl[map_idx].vector);
4113         }
4114 }
4115
4116 static void bnxt_enable_int(struct bnxt *bp)
4117 {
4118         int i;
4119
4120         atomic_set(&bp->intr_sem, 0);
4121         for (i = 0; i < bp->cp_nr_rings; i++) {
4122                 struct bnxt_napi *bnapi = bp->bnapi[i];
4123                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4124
4125                 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4126         }
4127 }
4128
4129 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
4130                             u16 cmpl_ring, u16 target_id)
4131 {
4132         struct input *req = request;
4133
4134         req->req_type = cpu_to_le16(req_type);
4135         req->cmpl_ring = cpu_to_le16(cmpl_ring);
4136         req->target_id = cpu_to_le16(target_id);
4137         if (bnxt_kong_hwrm_message(bp, req))
4138                 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
4139         else
4140                 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
4141 }
4142
4143 static int bnxt_hwrm_to_stderr(u32 hwrm_err)
4144 {
4145         switch (hwrm_err) {
4146         case HWRM_ERR_CODE_SUCCESS:
4147                 return 0;
4148         case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED:
4149                 return -EACCES;
4150         case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR:
4151                 return -ENOSPC;
4152         case HWRM_ERR_CODE_INVALID_PARAMS:
4153         case HWRM_ERR_CODE_INVALID_FLAGS:
4154         case HWRM_ERR_CODE_INVALID_ENABLES:
4155         case HWRM_ERR_CODE_UNSUPPORTED_TLV:
4156         case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR:
4157                 return -EINVAL;
4158         case HWRM_ERR_CODE_NO_BUFFER:
4159                 return -ENOMEM;
4160         case HWRM_ERR_CODE_HOT_RESET_PROGRESS:
4161                 return -EAGAIN;
4162         case HWRM_ERR_CODE_CMD_NOT_SUPPORTED:
4163                 return -EOPNOTSUPP;
4164         default:
4165                 return -EIO;
4166         }
4167 }
4168
4169 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
4170                                  int timeout, bool silent)
4171 {
4172         int i, intr_process, rc, tmo_count;
4173         struct input *req = msg;
4174         u32 *data = msg;
4175         __le32 *resp_len;
4176         u8 *valid;
4177         u16 cp_ring_id, len = 0;
4178         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
4179         u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
4180         struct hwrm_short_input short_input = {0};
4181         u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER;
4182         u8 *resp_addr = (u8 *)bp->hwrm_cmd_resp_addr;
4183         u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM;
4184         u16 dst = BNXT_HWRM_CHNL_CHIMP;
4185
4186         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
4187                 return -EBUSY;
4188
4189         if (msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4190                 if (msg_len > bp->hwrm_max_ext_req_len ||
4191                     !bp->hwrm_short_cmd_req_addr)
4192                         return -EINVAL;
4193         }
4194
4195         if (bnxt_hwrm_kong_chnl(bp, req)) {
4196                 dst = BNXT_HWRM_CHNL_KONG;
4197                 bar_offset = BNXT_GRCPF_REG_KONG_COMM;
4198                 doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER;
4199                 resp = bp->hwrm_cmd_kong_resp_addr;
4200                 resp_addr = (u8 *)bp->hwrm_cmd_kong_resp_addr;
4201         }
4202
4203         memset(resp, 0, PAGE_SIZE);
4204         cp_ring_id = le16_to_cpu(req->cmpl_ring);
4205         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
4206
4207         req->seq_id = cpu_to_le16(bnxt_get_hwrm_seq_id(bp, dst));
4208         /* currently supports only one outstanding message */
4209         if (intr_process)
4210                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
4211
4212         if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
4213             msg_len > BNXT_HWRM_MAX_REQ_LEN) {
4214                 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
4215                 u16 max_msg_len;
4216
4217                 /* Set boundary for maximum extended request length for short
4218                  * cmd format. If passed up from device use the max supported
4219                  * internal req length.
4220                  */
4221                 max_msg_len = bp->hwrm_max_ext_req_len;
4222
4223                 memcpy(short_cmd_req, req, msg_len);
4224                 if (msg_len < max_msg_len)
4225                         memset(short_cmd_req + msg_len, 0,
4226                                max_msg_len - msg_len);
4227
4228                 short_input.req_type = req->req_type;
4229                 short_input.signature =
4230                                 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
4231                 short_input.size = cpu_to_le16(msg_len);
4232                 short_input.req_addr =
4233                         cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
4234
4235                 data = (u32 *)&short_input;
4236                 msg_len = sizeof(short_input);
4237
4238                 /* Sync memory write before updating doorbell */
4239                 wmb();
4240
4241                 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
4242         }
4243
4244         /* Write request msg to hwrm channel */
4245         __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4);
4246
4247         for (i = msg_len; i < max_req_len; i += 4)
4248                 writel(0, bp->bar0 + bar_offset + i);
4249
4250         /* Ring channel doorbell */
4251         writel(1, bp->bar0 + doorbell_offset);
4252
4253         if (!pci_is_enabled(bp->pdev))
4254                 return 0;
4255
4256         if (!timeout)
4257                 timeout = DFLT_HWRM_CMD_TIMEOUT;
4258         /* convert timeout to usec */
4259         timeout *= 1000;
4260
4261         i = 0;
4262         /* Short timeout for the first few iterations:
4263          * number of loops = number of loops for short timeout +
4264          * number of loops for standard timeout.
4265          */
4266         tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
4267         timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
4268         tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
4269         resp_len = (__le32 *)(resp_addr + HWRM_RESP_LEN_OFFSET);
4270
4271         if (intr_process) {
4272                 u16 seq_id = bp->hwrm_intr_seq_id;
4273
4274                 /* Wait until hwrm response cmpl interrupt is processed */
4275                 while (bp->hwrm_intr_seq_id != (u16)~seq_id &&
4276                        i++ < tmo_count) {
4277                         /* on first few passes, just barely sleep */
4278                         if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4279                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4280                                              HWRM_SHORT_MAX_TIMEOUT);
4281                         else
4282                                 usleep_range(HWRM_MIN_TIMEOUT,
4283                                              HWRM_MAX_TIMEOUT);
4284                 }
4285
4286                 if (bp->hwrm_intr_seq_id != (u16)~seq_id) {
4287                         if (!silent)
4288                                 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
4289                                            le16_to_cpu(req->req_type));
4290                         return -EBUSY;
4291                 }
4292                 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
4293                       HWRM_RESP_LEN_SFT;
4294                 valid = resp_addr + len - 1;
4295         } else {
4296                 int j;
4297
4298                 /* Check if response len is updated */
4299                 for (i = 0; i < tmo_count; i++) {
4300                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
4301                               HWRM_RESP_LEN_SFT;
4302                         if (len)
4303                                 break;
4304                         /* on first few passes, just barely sleep */
4305                         if (i < HWRM_SHORT_TIMEOUT_COUNTER)
4306                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
4307                                              HWRM_SHORT_MAX_TIMEOUT);
4308                         else
4309                                 usleep_range(HWRM_MIN_TIMEOUT,
4310                                              HWRM_MAX_TIMEOUT);
4311                 }
4312
4313                 if (i >= tmo_count) {
4314                         if (!silent)
4315                                 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
4316                                            HWRM_TOTAL_TIMEOUT(i),
4317                                            le16_to_cpu(req->req_type),
4318                                            le16_to_cpu(req->seq_id), len);
4319                         return -EBUSY;
4320                 }
4321
4322                 /* Last byte of resp contains valid bit */
4323                 valid = resp_addr + len - 1;
4324                 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
4325                         /* make sure we read from updated DMA memory */
4326                         dma_rmb();
4327                         if (*valid)
4328                                 break;
4329                         usleep_range(1, 5);
4330                 }
4331
4332                 if (j >= HWRM_VALID_BIT_DELAY_USEC) {
4333                         if (!silent)
4334                                 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
4335                                            HWRM_TOTAL_TIMEOUT(i),
4336                                            le16_to_cpu(req->req_type),
4337                                            le16_to_cpu(req->seq_id), len,
4338                                            *valid);
4339                         return -EBUSY;
4340                 }
4341         }
4342
4343         /* Zero valid bit for compatibility.  Valid bit in an older spec
4344          * may become a new field in a newer spec.  We must make sure that
4345          * a new field not implemented by old spec will read zero.
4346          */
4347         *valid = 0;
4348         rc = le16_to_cpu(resp->error_code);
4349         if (rc && !silent)
4350                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
4351                            le16_to_cpu(resp->req_type),
4352                            le16_to_cpu(resp->seq_id), rc);
4353         return bnxt_hwrm_to_stderr(rc);
4354 }
4355
4356 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4357 {
4358         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
4359 }
4360
4361 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4362                               int timeout)
4363 {
4364         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4365 }
4366
4367 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
4368 {
4369         int rc;
4370
4371         mutex_lock(&bp->hwrm_cmd_lock);
4372         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
4373         mutex_unlock(&bp->hwrm_cmd_lock);
4374         return rc;
4375 }
4376
4377 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
4378                              int timeout)
4379 {
4380         int rc;
4381
4382         mutex_lock(&bp->hwrm_cmd_lock);
4383         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
4384         mutex_unlock(&bp->hwrm_cmd_lock);
4385         return rc;
4386 }
4387
4388 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
4389                                      int bmap_size)
4390 {
4391         struct hwrm_func_drv_rgtr_input req = {0};
4392         DECLARE_BITMAP(async_events_bmap, 256);
4393         u32 *events = (u32 *)async_events_bmap;
4394         int i;
4395
4396         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4397
4398         req.enables =
4399                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4400
4401         memset(async_events_bmap, 0, sizeof(async_events_bmap));
4402         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4403                 u16 event_id = bnxt_async_events_arr[i];
4404
4405                 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4406                     !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4407                         continue;
4408                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
4409         }
4410         if (bmap && bmap_size) {
4411                 for (i = 0; i < bmap_size; i++) {
4412                         if (test_bit(i, bmap))
4413                                 __set_bit(i, async_events_bmap);
4414                 }
4415         }
4416
4417         for (i = 0; i < 8; i++)
4418                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
4419
4420         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4421 }
4422
4423 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
4424 {
4425         struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
4426         struct hwrm_func_drv_rgtr_input req = {0};
4427         u32 flags;
4428         int rc;
4429
4430         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
4431
4432         req.enables =
4433                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4434                             FUNC_DRV_RGTR_REQ_ENABLES_VER);
4435
4436         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4437         flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE |
4438                 FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4439         if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4440                 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT;
4441         req.flags = cpu_to_le32(flags);
4442         req.ver_maj_8b = DRV_VER_MAJ;
4443         req.ver_min_8b = DRV_VER_MIN;
4444         req.ver_upd_8b = DRV_VER_UPD;
4445         req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
4446         req.ver_min = cpu_to_le16(DRV_VER_MIN);
4447         req.ver_upd = cpu_to_le16(DRV_VER_UPD);
4448
4449         if (BNXT_PF(bp)) {
4450                 u32 data[8];
4451                 int i;
4452
4453                 memset(data, 0, sizeof(data));
4454                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4455                         u16 cmd = bnxt_vf_req_snif[i];
4456                         unsigned int bit, idx;
4457
4458                         idx = cmd / 32;
4459                         bit = cmd % 32;
4460                         data[idx] |= 1 << bit;
4461                 }
4462
4463                 for (i = 0; i < 8; i++)
4464                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
4465
4466                 req.enables |=
4467                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4468         }
4469
4470         if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4471                 req.flags |= cpu_to_le32(
4472                         FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4473
4474         mutex_lock(&bp->hwrm_cmd_lock);
4475         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4476         if (!rc && (resp->flags &
4477                     cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)))
4478                 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4479         mutex_unlock(&bp->hwrm_cmd_lock);
4480         return rc;
4481 }
4482
4483 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4484 {
4485         struct hwrm_func_drv_unrgtr_input req = {0};
4486
4487         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
4488         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4489 }
4490
4491 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4492 {
4493         u32 rc = 0;
4494         struct hwrm_tunnel_dst_port_free_input req = {0};
4495
4496         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
4497         req.tunnel_type = tunnel_type;
4498
4499         switch (tunnel_type) {
4500         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4501                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
4502                 break;
4503         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4504                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
4505                 break;
4506         default:
4507                 break;
4508         }
4509
4510         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4511         if (rc)
4512                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4513                            rc);
4514         return rc;
4515 }
4516
4517 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4518                                            u8 tunnel_type)
4519 {
4520         u32 rc = 0;
4521         struct hwrm_tunnel_dst_port_alloc_input req = {0};
4522         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4523
4524         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
4525
4526         req.tunnel_type = tunnel_type;
4527         req.tunnel_dst_port_val = port;
4528
4529         mutex_lock(&bp->hwrm_cmd_lock);
4530         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4531         if (rc) {
4532                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4533                            rc);
4534                 goto err_out;
4535         }
4536
4537         switch (tunnel_type) {
4538         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4539                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
4540                 break;
4541         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4542                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
4543                 break;
4544         default:
4545                 break;
4546         }
4547
4548 err_out:
4549         mutex_unlock(&bp->hwrm_cmd_lock);
4550         return rc;
4551 }
4552
4553 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4554 {
4555         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
4556         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4557
4558         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
4559         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4560
4561         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4562         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4563         req.mask = cpu_to_le32(vnic->rx_mask);
4564         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4565 }
4566
4567 #ifdef CONFIG_RFS_ACCEL
4568 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4569                                             struct bnxt_ntuple_filter *fltr)
4570 {
4571         struct hwrm_cfa_ntuple_filter_free_input req = {0};
4572
4573         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
4574         req.ntuple_filter_id = fltr->filter_id;
4575         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4576 }
4577
4578 #define BNXT_NTP_FLTR_FLAGS                                     \
4579         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
4580          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
4581          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
4582          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
4583          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
4584          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
4585          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
4586          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
4587          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
4588          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
4589          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
4590          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
4591          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
4592          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4593
4594 #define BNXT_NTP_TUNNEL_FLTR_FLAG                               \
4595                 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4596
4597 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4598                                              struct bnxt_ntuple_filter *fltr)
4599 {
4600         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
4601         struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4602         struct flow_keys *keys = &fltr->fkeys;
4603         struct bnxt_vnic_info *vnic;
4604         u32 dst_ena = 0;
4605         int rc = 0;
4606
4607         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
4608         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4609
4610         if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX) {
4611                 dst_ena = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX;
4612                 req.rfs_ring_tbl_idx = cpu_to_le16(fltr->rxq);
4613                 vnic = &bp->vnic_info[0];
4614         } else {
4615                 vnic = &bp->vnic_info[fltr->rxq + 1];
4616         }
4617         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
4618         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS | dst_ena);
4619
4620         req.ethertype = htons(ETH_P_IP);
4621         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4622         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4623         req.ip_protocol = keys->basic.ip_proto;
4624
4625         if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4626                 int i;
4627
4628                 req.ethertype = htons(ETH_P_IPV6);
4629                 req.ip_addr_type =
4630                         CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4631                 *(struct in6_addr *)&req.src_ipaddr[0] =
4632                         keys->addrs.v6addrs.src;
4633                 *(struct in6_addr *)&req.dst_ipaddr[0] =
4634                         keys->addrs.v6addrs.dst;
4635                 for (i = 0; i < 4; i++) {
4636                         req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4637                         req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4638                 }
4639         } else {
4640                 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
4641                 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4642                 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4643                 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4644         }
4645         if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4646                 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4647                 req.tunnel_type =
4648                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4649         }
4650
4651         req.src_port = keys->ports.src;
4652         req.src_port_mask = cpu_to_be16(0xffff);
4653         req.dst_port = keys->ports.dst;
4654         req.dst_port_mask = cpu_to_be16(0xffff);
4655
4656         mutex_lock(&bp->hwrm_cmd_lock);
4657         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4658         if (!rc) {
4659                 resp = bnxt_get_hwrm_resp_addr(bp, &req);
4660                 fltr->filter_id = resp->ntuple_filter_id;
4661         }
4662         mutex_unlock(&bp->hwrm_cmd_lock);
4663         return rc;
4664 }
4665 #endif
4666
4667 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4668                                      u8 *mac_addr)
4669 {
4670         u32 rc = 0;
4671         struct hwrm_cfa_l2_filter_alloc_input req = {0};
4672         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4673
4674         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
4675         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4676         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4677                 req.flags |=
4678                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4679         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4680         req.enables =
4681                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4682                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4683                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4684         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
4685         req.l2_addr_mask[0] = 0xff;
4686         req.l2_addr_mask[1] = 0xff;
4687         req.l2_addr_mask[2] = 0xff;
4688         req.l2_addr_mask[3] = 0xff;
4689         req.l2_addr_mask[4] = 0xff;
4690         req.l2_addr_mask[5] = 0xff;
4691
4692         mutex_lock(&bp->hwrm_cmd_lock);
4693         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4694         if (!rc)
4695                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4696                                                         resp->l2_filter_id;
4697         mutex_unlock(&bp->hwrm_cmd_lock);
4698         return rc;
4699 }
4700
4701 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4702 {
4703         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4704         int rc = 0;
4705
4706         /* Any associated ntuple filters will also be cleared by firmware. */
4707         mutex_lock(&bp->hwrm_cmd_lock);
4708         for (i = 0; i < num_of_vnics; i++) {
4709                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4710
4711                 for (j = 0; j < vnic->uc_filter_count; j++) {
4712                         struct hwrm_cfa_l2_filter_free_input req = {0};
4713
4714                         bnxt_hwrm_cmd_hdr_init(bp, &req,
4715                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
4716
4717                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
4718
4719                         rc = _hwrm_send_message(bp, &req, sizeof(req),
4720                                                 HWRM_CMD_TIMEOUT);
4721                 }
4722                 vnic->uc_filter_count = 0;
4723         }
4724         mutex_unlock(&bp->hwrm_cmd_lock);
4725
4726         return rc;
4727 }
4728
4729 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4730 {
4731         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4732         u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4733         struct hwrm_vnic_tpa_cfg_input req = {0};
4734
4735         if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4736                 return 0;
4737
4738         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
4739
4740         if (tpa_flags) {
4741                 u16 mss = bp->dev->mtu - 40;
4742                 u32 nsegs, n, segs = 0, flags;
4743
4744                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4745                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4746                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4747                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4748                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4749                 if (tpa_flags & BNXT_FLAG_GRO)
4750                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4751
4752                 req.flags = cpu_to_le32(flags);
4753
4754                 req.enables =
4755                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4756                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4757                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4758
4759                 /* Number of segs are log2 units, and first packet is not
4760                  * included as part of this units.
4761                  */
4762                 if (mss <= BNXT_RX_PAGE_SIZE) {
4763                         n = BNXT_RX_PAGE_SIZE / mss;
4764                         nsegs = (MAX_SKB_FRAGS - 1) * n;
4765                 } else {
4766                         n = mss / BNXT_RX_PAGE_SIZE;
4767                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
4768                                 n++;
4769                         nsegs = (MAX_SKB_FRAGS - n) / n;
4770                 }
4771
4772                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
4773                         segs = MAX_TPA_SEGS_P5;
4774                         max_aggs = bp->max_tpa;
4775                 } else {
4776                         segs = ilog2(nsegs);
4777                 }
4778                 req.max_agg_segs = cpu_to_le16(segs);
4779                 req.max_aggs = cpu_to_le16(max_aggs);
4780
4781                 req.min_agg_len = cpu_to_le32(512);
4782         }
4783         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4784
4785         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4786 }
4787
4788 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4789 {
4790         struct bnxt_ring_grp_info *grp_info;
4791
4792         grp_info = &bp->grp_info[ring->grp_idx];
4793         return grp_info->cp_fw_ring_id;
4794 }
4795
4796 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4797 {
4798         if (bp->flags & BNXT_FLAG_CHIP_P5) {
4799                 struct bnxt_napi *bnapi = rxr->bnapi;
4800                 struct bnxt_cp_ring_info *cpr;
4801
4802                 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
4803                 return cpr->cp_ring_struct.fw_ring_id;
4804         } else {
4805                 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
4806         }
4807 }
4808
4809 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
4810 {
4811         if (bp->flags & BNXT_FLAG_CHIP_P5) {
4812                 struct bnxt_napi *bnapi = txr->bnapi;
4813                 struct bnxt_cp_ring_info *cpr;
4814
4815                 cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
4816                 return cpr->cp_ring_struct.fw_ring_id;
4817         } else {
4818                 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
4819         }
4820 }
4821
4822 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
4823 {
4824         u32 i, j, max_rings;
4825         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4826         struct hwrm_vnic_rss_cfg_input req = {0};
4827
4828         if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
4829             vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
4830                 return 0;
4831
4832         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4833         if (set_rss) {
4834                 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4835                 req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4836                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
4837                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4838                                 max_rings = bp->rx_nr_rings - 1;
4839                         else
4840                                 max_rings = bp->rx_nr_rings;
4841                 } else {
4842                         max_rings = 1;
4843                 }
4844
4845                 /* Fill the RSS indirection table with ring group ids */
4846                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4847                         if (j == max_rings)
4848                                 j = 0;
4849                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4850                 }
4851
4852                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4853                 req.hash_key_tbl_addr =
4854                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
4855         }
4856         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4857         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4858 }
4859
4860 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
4861 {
4862         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4863         u32 i, j, k, nr_ctxs, max_rings = bp->rx_nr_rings;
4864         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4865         struct hwrm_vnic_rss_cfg_input req = {0};
4866
4867         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
4868         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4869         if (!set_rss) {
4870                 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4871                 return 0;
4872         }
4873         req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
4874         req.hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
4875         req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4876         req.hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
4877         nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
4878         for (i = 0, k = 0; i < nr_ctxs; i++) {
4879                 __le16 *ring_tbl = vnic->rss_table;
4880                 int rc;
4881
4882                 req.ring_table_pair_index = i;
4883                 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
4884                 for (j = 0; j < 64; j++) {
4885                         u16 ring_id;
4886
4887                         ring_id = rxr->rx_ring_struct.fw_ring_id;
4888                         *ring_tbl++ = cpu_to_le16(ring_id);
4889                         ring_id = bnxt_cp_ring_for_rx(bp, rxr);
4890                         *ring_tbl++ = cpu_to_le16(ring_id);
4891                         rxr++;
4892                         k++;
4893                         if (k == max_rings) {
4894                                 k = 0;
4895                                 rxr = &bp->rx_ring[0];
4896                         }
4897                 }
4898                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4899                 if (rc)
4900                         return rc;
4901         }
4902         return 0;
4903 }
4904
4905 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4906 {
4907         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4908         struct hwrm_vnic_plcmodes_cfg_input req = {0};
4909
4910         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4911         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4912                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4913                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4914         req.enables =
4915                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4916                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4917         /* thresholds not implemented in firmware yet */
4918         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4919         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4920         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4921         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4922 }
4923
4924 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4925                                         u16 ctx_idx)
4926 {
4927         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4928
4929         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4930         req.rss_cos_lb_ctx_id =
4931                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4932
4933         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4934         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4935 }
4936
4937 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4938 {
4939         int i, j;
4940
4941         for (i = 0; i < bp->nr_vnics; i++) {
4942                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4943
4944                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4945                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4946                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4947                 }
4948         }
4949         bp->rsscos_nr_ctxs = 0;
4950 }
4951
4952 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4953 {
4954         int rc;
4955         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4956         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4957                                                 bp->hwrm_cmd_resp_addr;
4958
4959         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4960                                -1);
4961
4962         mutex_lock(&bp->hwrm_cmd_lock);
4963         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4964         if (!rc)
4965                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4966                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
4967         mutex_unlock(&bp->hwrm_cmd_lock);
4968
4969         return rc;
4970 }
4971
4972 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4973 {
4974         if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4975                 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4976         return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4977 }
4978
4979 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4980 {
4981         unsigned int ring = 0, grp_idx;
4982         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4983         struct hwrm_vnic_cfg_input req = {0};
4984         u16 def_vlan = 0;
4985
4986         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4987
4988         if (bp->flags & BNXT_FLAG_CHIP_P5) {
4989                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
4990
4991                 req.default_rx_ring_id =
4992                         cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
4993                 req.default_cmpl_ring_id =
4994                         cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
4995                 req.enables =
4996                         cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
4997                                     VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
4998                 goto vnic_mru;
4999         }
5000         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5001         /* Only RSS support for now TBD: COS & LB */
5002         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5003                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5004                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5005                                            VNIC_CFG_REQ_ENABLES_MRU);
5006         } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5007                 req.rss_rule =
5008                         cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5009                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5010                                            VNIC_CFG_REQ_ENABLES_MRU);
5011                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5012         } else {
5013                 req.rss_rule = cpu_to_le16(0xffff);
5014         }
5015
5016         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5017             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5018                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5019                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5020         } else {
5021                 req.cos_rule = cpu_to_le16(0xffff);
5022         }
5023
5024         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5025                 ring = 0;
5026         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5027                 ring = vnic_id - 1;
5028         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5029                 ring = bp->rx_nr_rings - 1;
5030
5031         grp_idx = bp->rx_ring[ring].bnapi->index;
5032         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5033         req.lb_rule = cpu_to_le16(0xffff);
5034 vnic_mru:
5035         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
5036                               VLAN_HLEN);
5037
5038         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5039 #ifdef CONFIG_BNXT_SRIOV
5040         if (BNXT_VF(bp))
5041                 def_vlan = bp->vf.vlan;
5042 #endif
5043         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5044                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5045         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5046                 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5047
5048         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5049 }
5050
5051 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5052 {
5053         u32 rc = 0;
5054
5055         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5056                 struct hwrm_vnic_free_input req = {0};
5057
5058                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
5059                 req.vnic_id =
5060                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5061
5062                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5063                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5064         }
5065         return rc;
5066 }
5067
5068 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5069 {
5070         u16 i;
5071
5072         for (i = 0; i < bp->nr_vnics; i++)
5073                 bnxt_hwrm_vnic_free_one(bp, i);
5074 }
5075
5076 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5077                                 unsigned int start_rx_ring_idx,
5078                                 unsigned int nr_rings)
5079 {
5080         int rc = 0;
5081         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5082         struct hwrm_vnic_alloc_input req = {0};
5083         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5084         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5085
5086         if (bp->flags & BNXT_FLAG_CHIP_P5)
5087                 goto vnic_no_ring_grps;
5088
5089         /* map ring groups to this vnic */
5090         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5091                 grp_idx = bp->rx_ring[i].bnapi->index;
5092                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5093                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5094                                    j, nr_rings);
5095                         break;
5096                 }
5097                 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5098         }
5099
5100 vnic_no_ring_grps:
5101         for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5102                 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5103         if (vnic_id == 0)
5104                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5105
5106         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
5107
5108         mutex_lock(&bp->hwrm_cmd_lock);
5109         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5110         if (!rc)
5111                 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5112         mutex_unlock(&bp->hwrm_cmd_lock);
5113         return rc;
5114 }
5115
5116 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5117 {
5118         struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5119         struct hwrm_vnic_qcaps_input req = {0};
5120         int rc;
5121
5122         bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5123         bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5124         if (bp->hwrm_spec_code < 0x10600)
5125                 return 0;
5126
5127         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
5128         mutex_lock(&bp->hwrm_cmd_lock);
5129         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5130         if (!rc) {
5131                 u32 flags = le32_to_cpu(resp->flags);
5132
5133                 if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5134                     (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5135                         bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5136                 if (flags &
5137                     VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5138                         bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5139                 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5140                 if (bp->max_tpa_v2)
5141                         bp->hw_ring_stats_size =
5142                                 sizeof(struct ctx_hw_stats_ext);
5143         }
5144         mutex_unlock(&bp->hwrm_cmd_lock);
5145         return rc;
5146 }
5147
5148 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5149 {
5150         u16 i;
5151         u32 rc = 0;
5152
5153         if (bp->flags & BNXT_FLAG_CHIP_P5)
5154                 return 0;
5155
5156         mutex_lock(&bp->hwrm_cmd_lock);
5157         for (i = 0; i < bp->rx_nr_rings; i++) {
5158                 struct hwrm_ring_grp_alloc_input req = {0};
5159                 struct hwrm_ring_grp_alloc_output *resp =
5160                                         bp->hwrm_cmd_resp_addr;
5161                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5162
5163                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
5164
5165                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5166                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5167                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5168                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5169
5170                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5171                                         HWRM_CMD_TIMEOUT);
5172                 if (rc)
5173                         break;
5174
5175                 bp->grp_info[grp_idx].fw_grp_id =
5176                         le32_to_cpu(resp->ring_group_id);
5177         }
5178         mutex_unlock(&bp->hwrm_cmd_lock);
5179         return rc;
5180 }
5181
5182 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5183 {
5184         u16 i;
5185         u32 rc = 0;
5186         struct hwrm_ring_grp_free_input req = {0};
5187
5188         if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5189                 return 0;
5190
5191         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
5192
5193         mutex_lock(&bp->hwrm_cmd_lock);
5194         for (i = 0; i < bp->cp_nr_rings; i++) {
5195                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5196                         continue;
5197                 req.ring_group_id =
5198                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
5199
5200                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5201                                         HWRM_CMD_TIMEOUT);
5202                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5203         }
5204         mutex_unlock(&bp->hwrm_cmd_lock);
5205         return rc;
5206 }
5207
5208 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5209                                     struct bnxt_ring_struct *ring,
5210                                     u32 ring_type, u32 map_index)
5211 {
5212         int rc = 0, err = 0;
5213         struct hwrm_ring_alloc_input req = {0};
5214         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5215         struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5216         struct bnxt_ring_grp_info *grp_info;
5217         u16 ring_id;
5218
5219         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
5220
5221         req.enables = 0;
5222         if (rmem->nr_pages > 1) {
5223                 req.page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5224                 /* Page size is in log2 units */
5225                 req.page_size = BNXT_PAGE_SHIFT;
5226                 req.page_tbl_depth = 1;
5227         } else {
5228                 req.page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5229         }
5230         req.fbo = 0;
5231         /* Association of ring index with doorbell index and MSIX number */
5232         req.logical_id = cpu_to_le16(map_index);
5233
5234         switch (ring_type) {
5235         case HWRM_RING_ALLOC_TX: {
5236                 struct bnxt_tx_ring_info *txr;
5237
5238                 txr = container_of(ring, struct bnxt_tx_ring_info,
5239                                    tx_ring_struct);
5240                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5241                 /* Association of transmit ring with completion ring */
5242                 grp_info = &bp->grp_info[ring->grp_idx];
5243                 req.cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5244                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
5245                 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5246                 req.queue_id = cpu_to_le16(ring->queue_id);
5247                 break;
5248         }
5249         case HWRM_RING_ALLOC_RX:
5250                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5251                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
5252                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5253                         u16 flags = 0;
5254
5255                         /* Association of rx ring with stats context */
5256                         grp_info = &bp->grp_info[ring->grp_idx];
5257                         req.rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5258                         req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5259                         req.enables |= cpu_to_le32(
5260                                 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5261                         if (NET_IP_ALIGN == 2)
5262                                 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5263                         req.flags = cpu_to_le16(flags);
5264                 }
5265                 break;
5266         case HWRM_RING_ALLOC_AGG:
5267                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5268                         req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5269                         /* Association of agg ring with rx ring */
5270                         grp_info = &bp->grp_info[ring->grp_idx];
5271                         req.rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5272                         req.rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5273                         req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5274                         req.enables |= cpu_to_le32(
5275                                 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5276                                 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5277                 } else {
5278                         req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5279                 }
5280                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5281                 break;
5282         case HWRM_RING_ALLOC_CMPL:
5283                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5284                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5285                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5286                         /* Association of cp ring with nq */
5287                         grp_info = &bp->grp_info[map_index];
5288                         req.nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5289                         req.cq_handle = cpu_to_le64(ring->handle);
5290                         req.enables |= cpu_to_le32(
5291                                 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5292                 } else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5293                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5294                 }
5295                 break;
5296         case HWRM_RING_ALLOC_NQ:
5297                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5298                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
5299                 if (bp->flags & BNXT_FLAG_USING_MSIX)
5300                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5301                 break;
5302         default:
5303                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5304                            ring_type);
5305                 return -1;
5306         }
5307
5308         mutex_lock(&bp->hwrm_cmd_lock);
5309         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5310         err = le16_to_cpu(resp->error_code);
5311         ring_id = le16_to_cpu(resp->ring_id);
5312         mutex_unlock(&bp->hwrm_cmd_lock);
5313
5314         if (rc || err) {
5315                 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5316                            ring_type, rc, err);
5317                 return -EIO;
5318         }
5319         ring->fw_ring_id = ring_id;
5320         return rc;
5321 }
5322
5323 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5324 {
5325         int rc;
5326
5327         if (BNXT_PF(bp)) {
5328                 struct hwrm_func_cfg_input req = {0};
5329
5330                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5331                 req.fid = cpu_to_le16(0xffff);
5332                 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5333                 req.async_event_cr = cpu_to_le16(idx);
5334                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5335         } else {
5336                 struct hwrm_func_vf_cfg_input req = {0};
5337
5338                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
5339                 req.enables =
5340                         cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5341                 req.async_event_cr = cpu_to_le16(idx);
5342                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5343         }
5344         return rc;
5345 }
5346
5347 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5348                         u32 map_idx, u32 xid)
5349 {
5350         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5351                 if (BNXT_PF(bp))
5352                         db->doorbell = bp->bar1 + 0x10000;
5353                 else
5354                         db->doorbell = bp->bar1 + 0x4000;
5355                 switch (ring_type) {
5356                 case HWRM_RING_ALLOC_TX:
5357                         db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5358                         break;
5359                 case HWRM_RING_ALLOC_RX:
5360                 case HWRM_RING_ALLOC_AGG:
5361                         db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5362                         break;
5363                 case HWRM_RING_ALLOC_CMPL:
5364                         db->db_key64 = DBR_PATH_L2;
5365                         break;
5366                 case HWRM_RING_ALLOC_NQ:
5367                         db->db_key64 = DBR_PATH_L2;
5368                         break;
5369                 }
5370                 db->db_key64 |= (u64)xid << DBR_XID_SFT;
5371         } else {
5372                 db->doorbell = bp->bar1 + map_idx * 0x80;
5373                 switch (ring_type) {
5374                 case HWRM_RING_ALLOC_TX:
5375                         db->db_key32 = DB_KEY_TX;
5376                         break;
5377                 case HWRM_RING_ALLOC_RX:
5378                 case HWRM_RING_ALLOC_AGG:
5379                         db->db_key32 = DB_KEY_RX;
5380                         break;
5381                 case HWRM_RING_ALLOC_CMPL:
5382                         db->db_key32 = DB_KEY_CP;
5383                         break;
5384                 }
5385         }
5386 }
5387
5388 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5389 {
5390         bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5391         int i, rc = 0;
5392         u32 type;
5393
5394         if (bp->flags & BNXT_FLAG_CHIP_P5)
5395                 type = HWRM_RING_ALLOC_NQ;
5396         else
5397                 type = HWRM_RING_ALLOC_CMPL;
5398         for (i = 0; i < bp->cp_nr_rings; i++) {
5399                 struct bnxt_napi *bnapi = bp->bnapi[i];
5400                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5401                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5402                 u32 map_idx = ring->map_idx;
5403                 unsigned int vector;
5404
5405                 vector = bp->irq_tbl[map_idx].vector;
5406                 disable_irq_nosync(vector);
5407                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5408                 if (rc) {
5409                         enable_irq(vector);
5410                         goto err_out;
5411                 }
5412                 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5413                 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5414                 enable_irq(vector);
5415                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5416
5417                 if (!i) {
5418                         rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5419                         if (rc)
5420                                 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5421                 }
5422         }
5423
5424         type = HWRM_RING_ALLOC_TX;
5425         for (i = 0; i < bp->tx_nr_rings; i++) {
5426                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5427                 struct bnxt_ring_struct *ring;
5428                 u32 map_idx;
5429
5430                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5431                         struct bnxt_napi *bnapi = txr->bnapi;
5432                         struct bnxt_cp_ring_info *cpr, *cpr2;
5433                         u32 type2 = HWRM_RING_ALLOC_CMPL;
5434
5435                         cpr = &bnapi->cp_ring;
5436                         cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5437                         ring = &cpr2->cp_ring_struct;
5438                         ring->handle = BNXT_TX_HDL;
5439                         map_idx = bnapi->index;
5440                         rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5441                         if (rc)
5442                                 goto err_out;
5443                         bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5444                                     ring->fw_ring_id);
5445                         bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5446                 }
5447                 ring = &txr->tx_ring_struct;
5448                 map_idx = i;
5449                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5450                 if (rc)
5451                         goto err_out;
5452                 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5453         }
5454
5455         type = HWRM_RING_ALLOC_RX;
5456         for (i = 0; i < bp->rx_nr_rings; i++) {
5457                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5458                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5459                 struct bnxt_napi *bnapi = rxr->bnapi;
5460                 u32 map_idx = bnapi->index;
5461
5462                 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5463                 if (rc)
5464                         goto err_out;
5465                 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5466                 /* If we have agg rings, post agg buffers first. */
5467                 if (!agg_rings)
5468                         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5469                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5470                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5471                         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5472                         u32 type2 = HWRM_RING_ALLOC_CMPL;
5473                         struct bnxt_cp_ring_info *cpr2;
5474
5475                         cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5476                         ring = &cpr2->cp_ring_struct;
5477                         ring->handle = BNXT_RX_HDL;
5478                         rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5479                         if (rc)
5480                                 goto err_out;
5481                         bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5482                                     ring->fw_ring_id);
5483                         bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5484                 }
5485         }
5486
5487         if (agg_rings) {
5488                 type = HWRM_RING_ALLOC_AGG;
5489                 for (i = 0; i < bp->rx_nr_rings; i++) {
5490                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5491                         struct bnxt_ring_struct *ring =
5492                                                 &rxr->rx_agg_ring_struct;
5493                         u32 grp_idx = ring->grp_idx;
5494                         u32 map_idx = grp_idx + bp->rx_nr_rings;
5495
5496                         rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5497                         if (rc)
5498                                 goto err_out;
5499
5500                         bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5501                                     ring->fw_ring_id);
5502                         bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5503                         bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5504                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5505                 }
5506         }
5507 err_out:
5508         return rc;
5509 }
5510
5511 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5512                                    struct bnxt_ring_struct *ring,
5513                                    u32 ring_type, int cmpl_ring_id)
5514 {
5515         int rc;
5516         struct hwrm_ring_free_input req = {0};
5517         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
5518         u16 error_code;
5519
5520         if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
5521                 return 0;
5522
5523         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
5524         req.ring_type = ring_type;
5525         req.ring_id = cpu_to_le16(ring->fw_ring_id);
5526
5527         mutex_lock(&bp->hwrm_cmd_lock);
5528         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5529         error_code = le16_to_cpu(resp->error_code);
5530         mutex_unlock(&bp->hwrm_cmd_lock);
5531
5532         if (rc || error_code) {
5533                 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5534                            ring_type, rc, error_code);
5535                 return -EIO;
5536         }
5537         return 0;
5538 }
5539
5540 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5541 {
5542         u32 type;
5543         int i;
5544
5545         if (!bp->bnapi)
5546                 return;
5547
5548         for (i = 0; i < bp->tx_nr_rings; i++) {
5549                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5550                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5551
5552                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5553                         u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5554
5555                         hwrm_ring_free_send_msg(bp, ring,
5556                                                 RING_FREE_REQ_RING_TYPE_TX,
5557                                                 close_path ? cmpl_ring_id :
5558                                                 INVALID_HW_RING_ID);
5559                         ring->fw_ring_id = INVALID_HW_RING_ID;
5560                 }
5561         }
5562
5563         for (i = 0; i < bp->rx_nr_rings; i++) {
5564                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5565                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5566                 u32 grp_idx = rxr->bnapi->index;
5567
5568                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5569                         u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5570
5571                         hwrm_ring_free_send_msg(bp, ring,
5572                                                 RING_FREE_REQ_RING_TYPE_RX,
5573                                                 close_path ? cmpl_ring_id :
5574                                                 INVALID_HW_RING_ID);
5575                         ring->fw_ring_id = INVALID_HW_RING_ID;
5576                         bp->grp_info[grp_idx].rx_fw_ring_id =
5577                                 INVALID_HW_RING_ID;
5578                 }
5579         }
5580
5581         if (bp->flags & BNXT_FLAG_CHIP_P5)
5582                 type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5583         else
5584                 type = RING_FREE_REQ_RING_TYPE_RX;
5585         for (i = 0; i < bp->rx_nr_rings; i++) {
5586                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5587                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5588                 u32 grp_idx = rxr->bnapi->index;
5589
5590                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5591                         u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5592
5593                         hwrm_ring_free_send_msg(bp, ring, type,
5594                                                 close_path ? cmpl_ring_id :
5595                                                 INVALID_HW_RING_ID);
5596                         ring->fw_ring_id = INVALID_HW_RING_ID;
5597                         bp->grp_info[grp_idx].agg_fw_ring_id =
5598                                 INVALID_HW_RING_ID;
5599                 }
5600         }
5601
5602         /* The completion rings are about to be freed.  After that the
5603          * IRQ doorbell will not work anymore.  So we need to disable
5604          * IRQ here.
5605          */
5606         bnxt_disable_int_sync(bp);
5607
5608         if (bp->flags & BNXT_FLAG_CHIP_P5)
5609                 type = RING_FREE_REQ_RING_TYPE_NQ;
5610         else
5611                 type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5612         for (i = 0; i < bp->cp_nr_rings; i++) {
5613                 struct bnxt_napi *bnapi = bp->bnapi[i];
5614                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5615                 struct bnxt_ring_struct *ring;
5616                 int j;
5617
5618                 for (j = 0; j < 2; j++) {
5619                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5620
5621                         if (cpr2) {
5622                                 ring = &cpr2->cp_ring_struct;
5623                                 if (ring->fw_ring_id == INVALID_HW_RING_ID)
5624                                         continue;
5625                                 hwrm_ring_free_send_msg(bp, ring,
5626                                         RING_FREE_REQ_RING_TYPE_L2_CMPL,
5627                                         INVALID_HW_RING_ID);
5628                                 ring->fw_ring_id = INVALID_HW_RING_ID;
5629                         }
5630                 }
5631                 ring = &cpr->cp_ring_struct;
5632                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5633                         hwrm_ring_free_send_msg(bp, ring, type,
5634                                                 INVALID_HW_RING_ID);
5635                         ring->fw_ring_id = INVALID_HW_RING_ID;
5636                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5637                 }
5638         }
5639 }
5640
5641 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5642                            bool shared);
5643
5644 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5645 {
5646         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5647         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5648         struct hwrm_func_qcfg_input req = {0};
5649         int rc;
5650
5651         if (bp->hwrm_spec_code < 0x10601)
5652                 return 0;
5653
5654         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5655         req.fid = cpu_to_le16(0xffff);
5656         mutex_lock(&bp->hwrm_cmd_lock);
5657         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5658         if (rc) {
5659                 mutex_unlock(&bp->hwrm_cmd_lock);
5660                 return rc;
5661         }
5662
5663         hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5664         if (BNXT_NEW_RM(bp)) {
5665                 u16 cp, stats;
5666
5667                 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5668                 hw_resc->resv_hw_ring_grps =
5669                         le32_to_cpu(resp->alloc_hw_ring_grps);
5670                 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5671                 cp = le16_to_cpu(resp->alloc_cmpl_rings);
5672                 stats = le16_to_cpu(resp->alloc_stat_ctx);
5673                 hw_resc->resv_irqs = cp;
5674                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5675                         int rx = hw_resc->resv_rx_rings;
5676                         int tx = hw_resc->resv_tx_rings;
5677
5678                         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5679                                 rx >>= 1;
5680                         if (cp < (rx + tx)) {
5681                                 bnxt_trim_rings(bp, &rx, &tx, cp, false);
5682                                 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5683                                         rx <<= 1;
5684                                 hw_resc->resv_rx_rings = rx;
5685                                 hw_resc->resv_tx_rings = tx;
5686                         }
5687                         hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
5688                         hw_resc->resv_hw_ring_grps = rx;
5689                 }
5690                 hw_resc->resv_cp_rings = cp;
5691                 hw_resc->resv_stat_ctxs = stats;
5692         }
5693         mutex_unlock(&bp->hwrm_cmd_lock);
5694         return 0;
5695 }
5696
5697 /* Caller must hold bp->hwrm_cmd_lock */
5698 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
5699 {
5700         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5701         struct hwrm_func_qcfg_input req = {0};
5702         int rc;
5703
5704         if (bp->hwrm_spec_code < 0x10601)
5705                 return 0;
5706
5707         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5708         req.fid = cpu_to_le16(fid);
5709         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5710         if (!rc)
5711                 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5712
5713         return rc;
5714 }
5715
5716 static bool bnxt_rfs_supported(struct bnxt *bp);
5717
5718 static void
5719 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
5720                              int tx_rings, int rx_rings, int ring_grps,
5721                              int cp_rings, int stats, int vnics)
5722 {
5723         u32 enables = 0;
5724
5725         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
5726         req->fid = cpu_to_le16(0xffff);
5727         enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5728         req->num_tx_rings = cpu_to_le16(tx_rings);
5729         if (BNXT_NEW_RM(bp)) {
5730                 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
5731                 enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5732                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5733                         enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
5734                         enables |= tx_rings + ring_grps ?
5735                                    FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5736                         enables |= rx_rings ?
5737                                 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5738                 } else {
5739                         enables |= cp_rings ?
5740                                    FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5741                         enables |= ring_grps ?
5742                                    FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
5743                                    FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5744                 }
5745                 enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
5746
5747                 req->num_rx_rings = cpu_to_le16(rx_rings);
5748                 if (bp->flags & BNXT_FLAG_CHIP_P5) {
5749                         req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5750                         req->num_msix = cpu_to_le16(cp_rings);
5751                         req->num_rsscos_ctxs =
5752                                 cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5753                 } else {
5754                         req->num_cmpl_rings = cpu_to_le16(cp_rings);
5755                         req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5756                         req->num_rsscos_ctxs = cpu_to_le16(1);
5757                         if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
5758                             bnxt_rfs_supported(bp))
5759                                 req->num_rsscos_ctxs =
5760                                         cpu_to_le16(ring_grps + 1);
5761                 }
5762                 req->num_stat_ctxs = cpu_to_le16(stats);
5763                 req->num_vnics = cpu_to_le16(vnics);
5764         }
5765         req->enables = cpu_to_le32(enables);
5766 }
5767
5768 static void
5769 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
5770                              struct hwrm_func_vf_cfg_input *req, int tx_rings,
5771                              int rx_rings, int ring_grps, int cp_rings,
5772                              int stats, int vnics)
5773 {
5774         u32 enables = 0;
5775
5776         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
5777         enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
5778         enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
5779                               FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
5780         enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
5781         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5782                 enables |= tx_rings + ring_grps ?
5783                            FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5784         } else {
5785                 enables |= cp_rings ?
5786                            FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
5787                 enables |= ring_grps ?
5788                            FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
5789         }
5790         enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
5791         enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
5792
5793         req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
5794         req->num_tx_rings = cpu_to_le16(tx_rings);
5795         req->num_rx_rings = cpu_to_le16(rx_rings);
5796         if (bp->flags & BNXT_FLAG_CHIP_P5) {
5797                 req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
5798                 req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
5799         } else {
5800                 req->num_cmpl_rings = cpu_to_le16(cp_rings);
5801                 req->num_hw_ring_grps = cpu_to_le16(ring_grps);
5802                 req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
5803         }
5804         req->num_stat_ctxs = cpu_to_le16(stats);
5805         req->num_vnics = cpu_to_le16(vnics);
5806
5807         req->enables = cpu_to_le32(enables);
5808 }
5809
5810 static int
5811 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5812                            int ring_grps, int cp_rings, int stats, int vnics)
5813 {
5814         struct hwrm_func_cfg_input req = {0};
5815         int rc;
5816
5817         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5818                                      cp_rings, stats, vnics);
5819         if (!req.enables)
5820                 return 0;
5821
5822         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5823         if (rc)
5824                 return rc;
5825
5826         if (bp->hwrm_spec_code < 0x10601)
5827                 bp->hw_resc.resv_tx_rings = tx_rings;
5828
5829         rc = bnxt_hwrm_get_rings(bp);
5830         return rc;
5831 }
5832
5833 static int
5834 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
5835                            int ring_grps, int cp_rings, int stats, int vnics)
5836 {
5837         struct hwrm_func_vf_cfg_input req = {0};
5838         int rc;
5839
5840         if (!BNXT_NEW_RM(bp)) {
5841                 bp->hw_resc.resv_tx_rings = tx_rings;
5842                 return 0;
5843         }
5844
5845         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
5846                                      cp_rings, stats, vnics);
5847         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5848         if (rc)
5849                 return rc;
5850
5851         rc = bnxt_hwrm_get_rings(bp);
5852         return rc;
5853 }
5854
5855 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
5856                                    int cp, int stat, int vnic)
5857 {
5858         if (BNXT_PF(bp))
5859                 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
5860                                                   vnic);
5861         else
5862                 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
5863                                                   vnic);
5864 }
5865
5866 int bnxt_nq_rings_in_use(struct bnxt *bp)
5867 {
5868         int cp = bp->cp_nr_rings;
5869         int ulp_msix, ulp_base;
5870
5871         ulp_msix = bnxt_get_ulp_msix_num(bp);
5872         if (ulp_msix) {
5873                 ulp_base = bnxt_get_ulp_msix_base(bp);
5874                 cp += ulp_msix;
5875                 if ((ulp_base + ulp_msix) > cp)
5876                         cp = ulp_base + ulp_msix;
5877         }
5878         return cp;
5879 }
5880
5881 static int bnxt_cp_rings_in_use(struct bnxt *bp)
5882 {
5883         int cp;
5884
5885         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
5886                 return bnxt_nq_rings_in_use(bp);
5887
5888         cp = bp->tx_nr_rings + bp->rx_nr_rings;
5889         return cp;
5890 }
5891
5892 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
5893 {
5894         int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
5895         int cp = bp->cp_nr_rings;
5896
5897         if (!ulp_stat)
5898                 return cp;
5899
5900         if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
5901                 return bnxt_get_ulp_msix_base(bp) + ulp_stat;
5902
5903         return cp + ulp_stat;
5904 }
5905
5906 static bool bnxt_need_reserve_rings(struct bnxt *bp)
5907 {
5908         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5909         int cp = bnxt_cp_rings_in_use(bp);
5910         int nq = bnxt_nq_rings_in_use(bp);
5911         int rx = bp->rx_nr_rings, stat;
5912         int vnic = 1, grp = rx;
5913
5914         if (bp->hwrm_spec_code < 0x10601)
5915                 return false;
5916
5917         if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
5918                 return true;
5919
5920         if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5921                 vnic = rx + 1;
5922         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5923                 rx <<= 1;
5924         stat = bnxt_get_func_stat_ctxs(bp);
5925         if (BNXT_NEW_RM(bp) &&
5926             (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
5927              hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
5928              (hw_resc->resv_hw_ring_grps != grp &&
5929               !(bp->flags & BNXT_FLAG_CHIP_P5))))
5930                 return true;
5931         if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
5932             hw_resc->resv_irqs != nq)
5933                 return true;
5934         return false;
5935 }
5936
5937 static int __bnxt_reserve_rings(struct bnxt *bp)
5938 {
5939         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5940         int cp = bnxt_nq_rings_in_use(bp);
5941         int tx = bp->tx_nr_rings;
5942         int rx = bp->rx_nr_rings;
5943         int grp, rx_rings, rc;
5944         int vnic = 1, stat;
5945         bool sh = false;
5946
5947         if (!bnxt_need_reserve_rings(bp))
5948                 return 0;
5949
5950         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5951                 sh = true;
5952         if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
5953                 vnic = rx + 1;
5954         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5955                 rx <<= 1;
5956         grp = bp->rx_nr_rings;
5957         stat = bnxt_get_func_stat_ctxs(bp);
5958
5959         rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
5960         if (rc)
5961                 return rc;
5962
5963         tx = hw_resc->resv_tx_rings;
5964         if (BNXT_NEW_RM(bp)) {
5965                 rx = hw_resc->resv_rx_rings;
5966                 cp = hw_resc->resv_irqs;
5967                 grp = hw_resc->resv_hw_ring_grps;
5968                 vnic = hw_resc->resv_vnics;
5969                 stat = hw_resc->resv_stat_ctxs;
5970         }
5971
5972         rx_rings = rx;
5973         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5974                 if (rx >= 2) {
5975                         rx_rings = rx >> 1;
5976                 } else {
5977                         if (netif_running(bp->dev))
5978                                 return -ENOMEM;
5979
5980                         bp->flags &= ~BNXT_FLAG_AGG_RINGS;
5981                         bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
5982                         bp->dev->hw_features &= ~NETIF_F_LRO;
5983                         bp->dev->features &= ~NETIF_F_LRO;
5984                         bnxt_set_ring_params(bp);
5985                 }
5986         }
5987         rx_rings = min_t(int, rx_rings, grp);
5988         cp = min_t(int, cp, bp->cp_nr_rings);
5989         if (stat > bnxt_get_ulp_stat_ctxs(bp))
5990                 stat -= bnxt_get_ulp_stat_ctxs(bp);
5991         cp = min_t(int, cp, stat);
5992         rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
5993         if (bp->flags & BNXT_FLAG_AGG_RINGS)
5994                 rx = rx_rings << 1;
5995         cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
5996         bp->tx_nr_rings = tx;
5997         bp->rx_nr_rings = rx_rings;
5998         bp->cp_nr_rings = cp;
5999
6000         if (!tx || !rx || !cp || !grp || !vnic || !stat)
6001                 return -ENOMEM;
6002
6003         return rc;
6004 }
6005
6006 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6007                                     int ring_grps, int cp_rings, int stats,
6008                                     int vnics)
6009 {
6010         struct hwrm_func_vf_cfg_input req = {0};
6011         u32 flags;
6012         int rc;
6013
6014         if (!BNXT_NEW_RM(bp))
6015                 return 0;
6016
6017         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6018                                      cp_rings, stats, vnics);
6019         flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6020                 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6021                 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6022                 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6023                 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6024                 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6025         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6026                 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6027
6028         req.flags = cpu_to_le32(flags);
6029         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6030         return rc;
6031 }
6032
6033 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6034                                     int ring_grps, int cp_rings, int stats,
6035                                     int vnics)
6036 {
6037         struct hwrm_func_cfg_input req = {0};
6038         u32 flags;
6039         int rc;
6040
6041         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
6042                                      cp_rings, stats, vnics);
6043         flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6044         if (BNXT_NEW_RM(bp)) {
6045                 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6046                          FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6047                          FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6048                          FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6049                 if (bp->flags & BNXT_FLAG_CHIP_P5)
6050                         flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6051                                  FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6052                 else
6053                         flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6054         }
6055
6056         req.flags = cpu_to_le32(flags);
6057         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6058         return rc;
6059 }
6060
6061 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6062                                  int ring_grps, int cp_rings, int stats,
6063                                  int vnics)
6064 {
6065         if (bp->hwrm_spec_code < 0x10801)
6066                 return 0;
6067
6068         if (BNXT_PF(bp))
6069                 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6070                                                 ring_grps, cp_rings, stats,
6071                                                 vnics);
6072
6073         return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6074                                         cp_rings, stats, vnics);
6075 }
6076
6077 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6078 {
6079         struct hwrm_ring_aggint_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6080         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6081         struct hwrm_ring_aggint_qcaps_input req = {0};
6082         int rc;
6083
6084         coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6085         coal_cap->num_cmpl_dma_aggr_max = 63;
6086         coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6087         coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6088         coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6089         coal_cap->int_lat_tmr_min_max = 65535;
6090         coal_cap->int_lat_tmr_max_max = 65535;
6091         coal_cap->num_cmpl_aggr_int_max = 65535;
6092         coal_cap->timer_units = 80;
6093
6094         if (bp->hwrm_spec_code < 0x10902)
6095                 return;
6096
6097         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_AGGINT_QCAPS, -1, -1);
6098         mutex_lock(&bp->hwrm_cmd_lock);
6099         rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6100         if (!rc) {
6101                 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6102                 coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6103                 coal_cap->num_cmpl_dma_aggr_max =
6104                         le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6105                 coal_cap->num_cmpl_dma_aggr_during_int_max =
6106                         le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6107                 coal_cap->cmpl_aggr_dma_tmr_max =
6108                         le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6109                 coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6110                         le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6111                 coal_cap->int_lat_tmr_min_max =
6112                         le16_to_cpu(resp->int_lat_tmr_min_max);
6113                 coal_cap->int_lat_tmr_max_max =
6114                         le16_to_cpu(resp->int_lat_tmr_max_max);
6115                 coal_cap->num_cmpl_aggr_int_max =
6116                         le16_to_cpu(resp->num_cmpl_aggr_int_max);
6117                 coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6118         }
6119         mutex_unlock(&bp->hwrm_cmd_lock);
6120 }
6121
6122 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6123 {
6124         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6125
6126         return usec * 1000 / coal_cap->timer_units;
6127 }
6128
6129 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6130         struct bnxt_coal *hw_coal,
6131         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6132 {
6133         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6134         u32 cmpl_params = coal_cap->cmpl_params;
6135         u16 val, tmr, max, flags = 0;
6136
6137         max = hw_coal->bufs_per_record * 128;
6138         if (hw_coal->budget)
6139                 max = hw_coal->bufs_per_record * hw_coal->budget;
6140         max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6141
6142         val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6143         req->num_cmpl_aggr_int = cpu_to_le16(val);
6144
6145         val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6146         req->num_cmpl_dma_aggr = cpu_to_le16(val);
6147
6148         val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6149                       coal_cap->num_cmpl_dma_aggr_during_int_max);
6150         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6151
6152         tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6153         tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6154         req->int_lat_tmr_max = cpu_to_le16(tmr);
6155
6156         /* min timer set to 1/2 of interrupt timer */
6157         if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6158                 val = tmr / 2;
6159                 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6160                 req->int_lat_tmr_min = cpu_to_le16(val);
6161                 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6162         }
6163
6164         /* buf timer set to 1/4 of interrupt timer */
6165         val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6166         req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6167
6168         if (cmpl_params &
6169             RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6170                 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6171                 val = clamp_t(u16, tmr, 1,
6172                               coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6173                 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
6174                 req->enables |=
6175                         cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6176         }
6177
6178         if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
6179                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
6180         if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6181             hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6182                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6183         req->flags = cpu_to_le16(flags);
6184         req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6185 }
6186
6187 /* Caller holds bp->hwrm_cmd_lock */
6188 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6189                                    struct bnxt_coal *hw_coal)
6190 {
6191         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
6192         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6193         struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6194         u32 nq_params = coal_cap->nq_params;
6195         u16 tmr;
6196
6197         if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6198                 return 0;
6199
6200         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
6201                                -1, -1);
6202         req.ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6203         req.flags =
6204                 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6205
6206         tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6207         tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6208         req.int_lat_tmr_min = cpu_to_le16(tmr);
6209         req.enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6210         return _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6211 }
6212
6213 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6214 {
6215         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
6216         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6217         struct bnxt_coal coal;
6218
6219         /* Tick values in micro seconds.
6220          * 1 coal_buf x bufs_per_record = 1 completion record.
6221          */
6222         memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6223
6224         coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6225         coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6226
6227         if (!bnapi->rx_ring)
6228                 return -ENODEV;
6229
6230         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6231                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6232
6233         bnxt_hwrm_set_coal_params(bp, &coal, &req_rx);
6234
6235         req_rx.ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6236
6237         return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
6238                                  HWRM_CMD_TIMEOUT);
6239 }
6240
6241 int bnxt_hwrm_set_coal(struct bnxt *bp)
6242 {
6243         int i, rc = 0;
6244         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
6245                                                            req_tx = {0}, *req;
6246
6247         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
6248                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6249         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
6250                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
6251
6252         bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, &req_rx);
6253         bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, &req_tx);
6254
6255         mutex_lock(&bp->hwrm_cmd_lock);
6256         for (i = 0; i < bp->cp_nr_rings; i++) {
6257                 struct bnxt_napi *bnapi = bp->bnapi[i];
6258                 struct bnxt_coal *hw_coal;
6259                 u16 ring_id;
6260
6261                 req = &req_rx;
6262                 if (!bnapi->rx_ring) {
6263                         ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6264                         req = &req_tx;
6265                 } else {
6266                         ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6267                 }
6268                 req->ring_id = cpu_to_le16(ring_id);
6269
6270                 rc = _hwrm_send_message(bp, req, sizeof(*req),
6271                                         HWRM_CMD_TIMEOUT);
6272                 if (rc)
6273                         break;
6274
6275                 if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6276                         continue;
6277
6278                 if (bnapi->rx_ring && bnapi->tx_ring) {
6279                         req = &req_tx;
6280                         ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6281                         req->ring_id = cpu_to_le16(ring_id);
6282                         rc = _hwrm_send_message(bp, req, sizeof(*req),
6283                                                 HWRM_CMD_TIMEOUT);
6284                         if (rc)
6285                                 break;
6286                 }
6287                 if (bnapi->rx_ring)
6288                         hw_coal = &bp->rx_coal;
6289                 else
6290                         hw_coal = &bp->tx_coal;
6291                 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6292         }
6293         mutex_unlock(&bp->hwrm_cmd_lock);
6294         return rc;
6295 }
6296
6297 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6298 {
6299         int rc = 0, i;
6300         struct hwrm_stat_ctx_free_input req = {0};
6301
6302         if (!bp->bnapi)
6303                 return 0;
6304
6305         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6306                 return 0;
6307
6308         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
6309
6310         mutex_lock(&bp->hwrm_cmd_lock);
6311         for (i = 0; i < bp->cp_nr_rings; i++) {
6312                 struct bnxt_napi *bnapi = bp->bnapi[i];
6313                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6314
6315                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6316                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6317
6318                         rc = _hwrm_send_message(bp, &req, sizeof(req),
6319                                                 HWRM_CMD_TIMEOUT);
6320
6321                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6322                 }
6323         }
6324         mutex_unlock(&bp->hwrm_cmd_lock);
6325         return rc;
6326 }
6327
6328 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6329 {
6330         int rc = 0, i;
6331         struct hwrm_stat_ctx_alloc_input req = {0};
6332         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6333
6334         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6335                 return 0;
6336
6337         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
6338
6339         req.stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6340         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6341
6342         mutex_lock(&bp->hwrm_cmd_lock);
6343         for (i = 0; i < bp->cp_nr_rings; i++) {
6344                 struct bnxt_napi *bnapi = bp->bnapi[i];
6345                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6346
6347                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
6348
6349                 rc = _hwrm_send_message(bp, &req, sizeof(req),
6350                                         HWRM_CMD_TIMEOUT);
6351                 if (rc)
6352                         break;
6353
6354                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6355
6356                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6357         }
6358         mutex_unlock(&bp->hwrm_cmd_lock);
6359         return rc;
6360 }
6361
6362 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6363 {
6364         struct hwrm_func_qcfg_input req = {0};
6365         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6366         u16 flags;
6367         int rc;
6368
6369         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
6370         req.fid = cpu_to_le16(0xffff);
6371         mutex_lock(&bp->hwrm_cmd_lock);
6372         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6373         if (rc)
6374                 goto func_qcfg_exit;
6375
6376 #ifdef CONFIG_BNXT_SRIOV
6377         if (BNXT_VF(bp)) {
6378                 struct bnxt_vf_info *vf = &bp->vf;
6379
6380                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6381         } else {
6382                 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6383         }
6384 #endif
6385         flags = le16_to_cpu(resp->flags);
6386         if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6387                      FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6388                 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6389                 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6390                         bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6391         }
6392         if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6393                 bp->flags |= BNXT_FLAG_MULTI_HOST;
6394
6395         switch (resp->port_partition_type) {
6396         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6397         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6398         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6399                 bp->port_partition_type = resp->port_partition_type;
6400                 break;
6401         }
6402         if (bp->hwrm_spec_code < 0x10707 ||
6403             resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6404                 bp->br_mode = BRIDGE_MODE_VEB;
6405         else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6406                 bp->br_mode = BRIDGE_MODE_VEPA;
6407         else
6408                 bp->br_mode = BRIDGE_MODE_UNDEF;
6409
6410         bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6411         if (!bp->max_mtu)
6412                 bp->max_mtu = BNXT_MAX_MTU;
6413
6414 func_qcfg_exit:
6415         mutex_unlock(&bp->hwrm_cmd_lock);
6416         return rc;
6417 }
6418
6419 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6420 {
6421         struct hwrm_func_backing_store_qcaps_input req = {0};
6422         struct hwrm_func_backing_store_qcaps_output *resp =
6423                 bp->hwrm_cmd_resp_addr;
6424         int rc;
6425
6426         if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6427                 return 0;
6428
6429         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
6430         mutex_lock(&bp->hwrm_cmd_lock);
6431         rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6432         if (!rc) {
6433                 struct bnxt_ctx_pg_info *ctx_pg;
6434                 struct bnxt_ctx_mem_info *ctx;
6435                 int i;
6436
6437                 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6438                 if (!ctx) {
6439                         rc = -ENOMEM;
6440                         goto ctx_err;
6441                 }
6442                 ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
6443                 if (!ctx_pg) {
6444                         kfree(ctx);
6445                         rc = -ENOMEM;
6446                         goto ctx_err;
6447                 }
6448                 for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
6449                         ctx->tqm_mem[i] = ctx_pg;
6450
6451                 bp->ctx = ctx;
6452                 ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6453                 ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6454                 ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6455                 ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6456                 ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6457                 ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6458                 ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6459                 ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6460                 ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6461                 ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6462                 ctx->vnic_max_vnic_entries =
6463                         le16_to_cpu(resp->vnic_max_vnic_entries);
6464                 ctx->vnic_max_ring_table_entries =
6465                         le16_to_cpu(resp->vnic_max_ring_table_entries);
6466                 ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6467                 ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6468                 ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6469                 ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6470                 ctx->tqm_min_entries_per_ring =
6471                         le32_to_cpu(resp->tqm_min_entries_per_ring);
6472                 ctx->tqm_max_entries_per_ring =
6473                         le32_to_cpu(resp->tqm_max_entries_per_ring);
6474                 ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6475                 if (!ctx->tqm_entries_multiple)
6476                         ctx->tqm_entries_multiple = 1;
6477                 ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6478                 ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6479                 ctx->mrav_num_entries_units =
6480                         le16_to_cpu(resp->mrav_num_entries_units);
6481                 ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6482                 ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6483         } else {
6484                 rc = 0;
6485         }
6486 ctx_err:
6487         mutex_unlock(&bp->hwrm_cmd_lock);
6488         return rc;
6489 }
6490
6491 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6492                                   __le64 *pg_dir)
6493 {
6494         u8 pg_size = 0;
6495
6496         if (BNXT_PAGE_SHIFT == 13)
6497                 pg_size = 1 << 4;
6498         else if (BNXT_PAGE_SIZE == 16)
6499                 pg_size = 2 << 4;
6500
6501         *pg_attr = pg_size;
6502         if (rmem->depth >= 1) {
6503                 if (rmem->depth == 2)
6504                         *pg_attr |= 2;
6505                 else
6506                         *pg_attr |= 1;
6507                 *pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6508         } else {
6509                 *pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6510         }
6511 }
6512
6513 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES                 \
6514         (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |                \
6515          FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |               \
6516          FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |                \
6517          FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |              \
6518          FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6519
6520 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6521 {
6522         struct hwrm_func_backing_store_cfg_input req = {0};
6523         struct bnxt_ctx_mem_info *ctx = bp->ctx;
6524         struct bnxt_ctx_pg_info *ctx_pg;
6525         __le32 *num_entries;
6526         __le64 *pg_dir;
6527         u32 flags = 0;
6528         u8 *pg_attr;
6529         int i, rc;
6530         u32 ena;
6531
6532         if (!ctx)
6533                 return 0;
6534
6535         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_CFG, -1, -1);
6536         req.enables = cpu_to_le32(enables);
6537
6538         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6539                 ctx_pg = &ctx->qp_mem;
6540                 req.qp_num_entries = cpu_to_le32(ctx_pg->entries);
6541                 req.qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6542                 req.qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
6543                 req.qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
6544                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6545                                       &req.qpc_pg_size_qpc_lvl,
6546                                       &req.qpc_page_dir);
6547         }
6548         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
6549                 ctx_pg = &ctx->srq_mem;
6550                 req.srq_num_entries = cpu_to_le32(ctx_pg->entries);
6551                 req.srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
6552                 req.srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
6553                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6554                                       &req.srq_pg_size_srq_lvl,
6555                                       &req.srq_page_dir);
6556         }
6557         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
6558                 ctx_pg = &ctx->cq_mem;
6559                 req.cq_num_entries = cpu_to_le32(ctx_pg->entries);
6560                 req.cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
6561                 req.cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
6562                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, &req.cq_pg_size_cq_lvl,
6563                                       &req.cq_page_dir);
6564         }
6565         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
6566                 ctx_pg = &ctx->vnic_mem;
6567                 req.vnic_num_vnic_entries =
6568                         cpu_to_le16(ctx->vnic_max_vnic_entries);
6569                 req.vnic_num_ring_table_entries =
6570                         cpu_to_le16(ctx->vnic_max_ring_table_entries);
6571                 req.vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
6572                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6573                                       &req.vnic_pg_size_vnic_lvl,
6574                                       &req.vnic_page_dir);
6575         }
6576         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
6577                 ctx_pg = &ctx->stat_mem;
6578                 req.stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
6579                 req.stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
6580                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6581                                       &req.stat_pg_size_stat_lvl,
6582                                       &req.stat_page_dir);
6583         }
6584         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
6585                 ctx_pg = &ctx->mrav_mem;
6586                 req.mrav_num_entries = cpu_to_le32(ctx_pg->entries);
6587                 if (ctx->mrav_num_entries_units)
6588                         flags |=
6589                         FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
6590                 req.mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
6591                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6592                                       &req.mrav_pg_size_mrav_lvl,
6593                                       &req.mrav_page_dir);
6594         }
6595         if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
6596                 ctx_pg = &ctx->tim_mem;
6597                 req.tim_num_entries = cpu_to_le32(ctx_pg->entries);
6598                 req.tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
6599                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
6600                                       &req.tim_pg_size_tim_lvl,
6601                                       &req.tim_page_dir);
6602         }
6603         for (i = 0, num_entries = &req.tqm_sp_num_entries,
6604              pg_attr = &req.tqm_sp_pg_size_tqm_sp_lvl,
6605              pg_dir = &req.tqm_sp_page_dir,
6606              ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
6607              i < 9; i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
6608                 if (!(enables & ena))
6609                         continue;
6610
6611                 req.tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
6612                 ctx_pg = ctx->tqm_mem[i];
6613                 *num_entries = cpu_to_le32(ctx_pg->entries);
6614                 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
6615         }
6616         req.flags = cpu_to_le32(flags);
6617         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6618         return rc;
6619 }
6620
6621 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
6622                                   struct bnxt_ctx_pg_info *ctx_pg)
6623 {
6624         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6625
6626         rmem->page_size = BNXT_PAGE_SIZE;
6627         rmem->pg_arr = ctx_pg->ctx_pg_arr;
6628         rmem->dma_arr = ctx_pg->ctx_dma_arr;
6629         rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
6630         if (rmem->depth >= 1)
6631                 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
6632         return bnxt_alloc_ring(bp, rmem);
6633 }
6634
6635 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
6636                                   struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
6637                                   u8 depth)
6638 {
6639         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6640         int rc;
6641
6642         if (!mem_size)
6643                 return 0;
6644
6645         ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6646         if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
6647                 ctx_pg->nr_pages = 0;
6648                 return -EINVAL;
6649         }
6650         if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
6651                 int nr_tbls, i;
6652
6653                 rmem->depth = 2;
6654                 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
6655                                              GFP_KERNEL);
6656                 if (!ctx_pg->ctx_pg_tbl)
6657                         return -ENOMEM;
6658                 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
6659                 rmem->nr_pages = nr_tbls;
6660                 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6661                 if (rc)
6662                         return rc;
6663                 for (i = 0; i < nr_tbls; i++) {
6664                         struct bnxt_ctx_pg_info *pg_tbl;
6665
6666                         pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
6667                         if (!pg_tbl)
6668                                 return -ENOMEM;
6669                         ctx_pg->ctx_pg_tbl[i] = pg_tbl;
6670                         rmem = &pg_tbl->ring_mem;
6671                         rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
6672                         rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
6673                         rmem->depth = 1;
6674                         rmem->nr_pages = MAX_CTX_PAGES;
6675                         if (i == (nr_tbls - 1)) {
6676                                 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
6677
6678                                 if (rem)
6679                                         rmem->nr_pages = rem;
6680                         }
6681                         rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
6682                         if (rc)
6683                                 break;
6684                 }
6685         } else {
6686                 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
6687                 if (rmem->nr_pages > 1 || depth)
6688                         rmem->depth = 1;
6689                 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
6690         }
6691         return rc;
6692 }
6693
6694 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
6695                                   struct bnxt_ctx_pg_info *ctx_pg)
6696 {
6697         struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
6698
6699         if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
6700             ctx_pg->ctx_pg_tbl) {
6701                 int i, nr_tbls = rmem->nr_pages;
6702
6703                 for (i = 0; i < nr_tbls; i++) {
6704                         struct bnxt_ctx_pg_info *pg_tbl;
6705                         struct bnxt_ring_mem_info *rmem2;
6706
6707                         pg_tbl = ctx_pg->ctx_pg_tbl[i];
6708                         if (!pg_tbl)
6709                                 continue;
6710                         rmem2 = &pg_tbl->ring_mem;
6711                         bnxt_free_ring(bp, rmem2);
6712                         ctx_pg->ctx_pg_arr[i] = NULL;
6713                         kfree(pg_tbl);
6714                         ctx_pg->ctx_pg_tbl[i] = NULL;
6715                 }
6716                 kfree(ctx_pg->ctx_pg_tbl);
6717                 ctx_pg->ctx_pg_tbl = NULL;
6718         }
6719         bnxt_free_ring(bp, rmem);
6720         ctx_pg->nr_pages = 0;
6721 }
6722
6723 static void bnxt_free_ctx_mem(struct bnxt *bp)
6724 {
6725         struct bnxt_ctx_mem_info *ctx = bp->ctx;
6726         int i;
6727
6728         if (!ctx)
6729                 return;
6730
6731         if (ctx->tqm_mem[0]) {
6732                 for (i = 0; i < bp->max_q + 1; i++)
6733                         bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
6734                 kfree(ctx->tqm_mem[0]);
6735                 ctx->tqm_mem[0] = NULL;
6736         }
6737
6738         bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
6739         bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
6740         bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
6741         bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
6742         bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
6743         bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
6744         bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
6745         ctx->flags &= ~BNXT_CTX_FLAG_INITED;
6746 }
6747
6748 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
6749 {
6750         struct bnxt_ctx_pg_info *ctx_pg;
6751         struct bnxt_ctx_mem_info *ctx;
6752         u32 mem_size, ena, entries;
6753         u32 num_mr, num_ah;
6754         u32 extra_srqs = 0;
6755         u32 extra_qps = 0;
6756         u8 pg_lvl = 1;
6757         int i, rc;
6758
6759         rc = bnxt_hwrm_func_backing_store_qcaps(bp);
6760         if (rc) {
6761                 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
6762                            rc);
6763                 return rc;
6764         }
6765         ctx = bp->ctx;
6766         if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
6767                 return 0;
6768
6769         if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
6770                 pg_lvl = 2;
6771                 extra_qps = 65536;
6772                 extra_srqs = 8192;
6773         }
6774
6775         ctx_pg = &ctx->qp_mem;
6776         ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
6777                           extra_qps;
6778         mem_size = ctx->qp_entry_size * ctx_pg->entries;
6779         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6780         if (rc)
6781                 return rc;
6782
6783         ctx_pg = &ctx->srq_mem;
6784         ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
6785         mem_size = ctx->srq_entry_size * ctx_pg->entries;
6786         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6787         if (rc)
6788                 return rc;
6789
6790         ctx_pg = &ctx->cq_mem;
6791         ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
6792         mem_size = ctx->cq_entry_size * ctx_pg->entries;
6793         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl);
6794         if (rc)
6795                 return rc;
6796
6797         ctx_pg = &ctx->vnic_mem;
6798         ctx_pg->entries = ctx->vnic_max_vnic_entries +
6799                           ctx->vnic_max_ring_table_entries;
6800         mem_size = ctx->vnic_entry_size * ctx_pg->entries;
6801         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6802         if (rc)
6803                 return rc;
6804
6805         ctx_pg = &ctx->stat_mem;
6806         ctx_pg->entries = ctx->stat_max_entries;
6807         mem_size = ctx->stat_entry_size * ctx_pg->entries;
6808         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6809         if (rc)
6810                 return rc;
6811
6812         ena = 0;
6813         if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
6814                 goto skip_rdma;
6815
6816         ctx_pg = &ctx->mrav_mem;
6817         /* 128K extra is needed to accommodate static AH context
6818          * allocation by f/w.
6819          */
6820         num_mr = 1024 * 256;
6821         num_ah = 1024 * 128;
6822         ctx_pg->entries = num_mr + num_ah;
6823         mem_size = ctx->mrav_entry_size * ctx_pg->entries;
6824         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2);
6825         if (rc)
6826                 return rc;
6827         ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
6828         if (ctx->mrav_num_entries_units)
6829                 ctx_pg->entries =
6830                         ((num_mr / ctx->mrav_num_entries_units) << 16) |
6831                          (num_ah / ctx->mrav_num_entries_units);
6832
6833         ctx_pg = &ctx->tim_mem;
6834         ctx_pg->entries = ctx->qp_mem.entries;
6835         mem_size = ctx->tim_entry_size * ctx_pg->entries;
6836         rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6837         if (rc)
6838                 return rc;
6839         ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
6840
6841 skip_rdma:
6842         entries = ctx->qp_max_l2_entries + extra_qps;
6843         entries = roundup(entries, ctx->tqm_entries_multiple);
6844         entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
6845                           ctx->tqm_max_entries_per_ring);
6846         for (i = 0; i < bp->max_q + 1; i++) {
6847                 ctx_pg = ctx->tqm_mem[i];
6848                 ctx_pg->entries = entries;
6849                 mem_size = ctx->tqm_entry_size * entries;
6850                 rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1);
6851                 if (rc)
6852                         return rc;
6853                 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
6854         }
6855         ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
6856         rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
6857         if (rc)
6858                 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
6859                            rc);
6860         else
6861                 ctx->flags |= BNXT_CTX_FLAG_INITED;
6862
6863         return 0;
6864 }
6865
6866 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
6867 {
6868         struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6869         struct hwrm_func_resource_qcaps_input req = {0};
6870         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6871         int rc;
6872
6873         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
6874         req.fid = cpu_to_le16(0xffff);
6875
6876         mutex_lock(&bp->hwrm_cmd_lock);
6877         rc = _hwrm_send_message_silent(bp, &req, sizeof(req),
6878                                        HWRM_CMD_TIMEOUT);
6879         if (rc)
6880                 goto hwrm_func_resc_qcaps_exit;
6881
6882         hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
6883         if (!all)
6884                 goto hwrm_func_resc_qcaps_exit;
6885
6886         hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
6887         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6888         hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
6889         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6890         hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
6891         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6892         hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
6893         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6894         hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
6895         hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
6896         hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
6897         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6898         hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
6899         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6900         hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
6901         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6902
6903         if (bp->flags & BNXT_FLAG_CHIP_P5) {
6904                 u16 max_msix = le16_to_cpu(resp->max_msix);
6905
6906                 hw_resc->max_nqs = max_msix;
6907                 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
6908         }
6909
6910         if (BNXT_PF(bp)) {
6911                 struct bnxt_pf_info *pf = &bp->pf;
6912
6913                 pf->vf_resv_strategy =
6914                         le16_to_cpu(resp->vf_reservation_strategy);
6915                 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
6916                         pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
6917         }
6918 hwrm_func_resc_qcaps_exit:
6919         mutex_unlock(&bp->hwrm_cmd_lock);
6920         return rc;
6921 }
6922
6923 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
6924 {
6925         int rc = 0;
6926         struct hwrm_func_qcaps_input req = {0};
6927         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6928         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6929         u32 flags;
6930
6931         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
6932         req.fid = cpu_to_le16(0xffff);
6933
6934         mutex_lock(&bp->hwrm_cmd_lock);
6935         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6936         if (rc)
6937                 goto hwrm_func_qcaps_exit;
6938
6939         flags = le32_to_cpu(resp->flags);
6940         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
6941                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
6942         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
6943                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
6944         if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
6945                 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
6946         if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
6947                 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
6948         if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
6949                 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
6950         if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
6951                 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
6952
6953         bp->tx_push_thresh = 0;
6954         if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
6955                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
6956
6957         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
6958         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
6959         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
6960         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
6961         hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
6962         if (!hw_resc->max_hw_ring_grps)
6963                 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
6964         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
6965         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
6966         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
6967
6968         if (BNXT_PF(bp)) {
6969                 struct bnxt_pf_info *pf = &bp->pf;
6970
6971                 pf->fw_fid = le16_to_cpu(resp->fid);
6972                 pf->port_id = le16_to_cpu(resp->port_id);
6973                 bp->dev->dev_port = pf->port_id;
6974                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
6975                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
6976                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
6977                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
6978                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
6979                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
6980                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
6981                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
6982                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
6983                 bp->flags &= ~BNXT_FLAG_WOL_CAP;
6984                 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
6985                         bp->flags |= BNXT_FLAG_WOL_CAP;
6986         } else {
6987 #ifdef CONFIG_BNXT_SRIOV
6988                 struct bnxt_vf_info *vf = &bp->vf;
6989
6990                 vf->fw_fid = le16_to_cpu(resp->fid);
6991                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
6992 #endif
6993         }
6994
6995 hwrm_func_qcaps_exit:
6996         mutex_unlock(&bp->hwrm_cmd_lock);
6997         return rc;
6998 }
6999
7000 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7001
7002 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7003 {
7004         int rc;
7005
7006         rc = __bnxt_hwrm_func_qcaps(bp);
7007         if (rc)
7008                 return rc;
7009         rc = bnxt_hwrm_queue_qportcfg(bp);
7010         if (rc) {
7011                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7012                 return rc;
7013         }
7014         if (bp->hwrm_spec_code >= 0x10803) {
7015                 rc = bnxt_alloc_ctx_mem(bp);
7016                 if (rc)
7017                         return rc;
7018                 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7019                 if (!rc)
7020                         bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7021         }
7022         return 0;
7023 }
7024
7025 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7026 {
7027         struct hwrm_cfa_adv_flow_mgnt_qcaps_input req = {0};
7028         struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7029         int rc = 0;
7030         u32 flags;
7031
7032         if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7033                 return 0;
7034
7035         resp = bp->hwrm_cmd_resp_addr;
7036         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS, -1, -1);
7037
7038         mutex_lock(&bp->hwrm_cmd_lock);
7039         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7040         if (rc)
7041                 goto hwrm_cfa_adv_qcaps_exit;
7042
7043         flags = le32_to_cpu(resp->flags);
7044         if (flags &
7045             CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_SUPPORTED)
7046                 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX;
7047
7048 hwrm_cfa_adv_qcaps_exit:
7049         mutex_unlock(&bp->hwrm_cmd_lock);
7050         return rc;
7051 }
7052
7053 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7054 {
7055         struct bnxt_fw_health *fw_health = bp->fw_health;
7056         u32 reg_base = 0xffffffff;
7057         int i;
7058
7059         /* Only pre-map the monitoring GRC registers using window 3 */
7060         for (i = 0; i < 4; i++) {
7061                 u32 reg = fw_health->regs[i];
7062
7063                 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7064                         continue;
7065                 if (reg_base == 0xffffffff)
7066                         reg_base = reg & BNXT_GRC_BASE_MASK;
7067                 if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7068                         return -ERANGE;
7069                 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_BASE +
7070                                             (reg & BNXT_GRC_OFFSET_MASK);
7071         }
7072         if (reg_base == 0xffffffff)
7073                 return 0;
7074
7075         writel(reg_base, bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7076                          BNXT_FW_HEALTH_WIN_MAP_OFF);
7077         return 0;
7078 }
7079
7080 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7081 {
7082         struct hwrm_error_recovery_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
7083         struct bnxt_fw_health *fw_health = bp->fw_health;
7084         struct hwrm_error_recovery_qcfg_input req = {0};
7085         int rc, i;
7086
7087         if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7088                 return 0;
7089
7090         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_ERROR_RECOVERY_QCFG, -1, -1);
7091         mutex_lock(&bp->hwrm_cmd_lock);
7092         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7093         if (rc)
7094                 goto err_recovery_out;
7095         if (!fw_health) {
7096                 fw_health = kzalloc(sizeof(*fw_health), GFP_KERNEL);
7097                 bp->fw_health = fw_health;
7098                 if (!fw_health) {
7099                         rc = -ENOMEM;
7100                         goto err_recovery_out;
7101                 }
7102         }
7103         fw_health->flags = le32_to_cpu(resp->flags);
7104         if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7105             !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7106                 rc = -EINVAL;
7107                 goto err_recovery_out;
7108         }
7109         fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7110         fw_health->master_func_wait_dsecs =
7111                 le32_to_cpu(resp->master_func_wait_period);
7112         fw_health->normal_func_wait_dsecs =
7113                 le32_to_cpu(resp->normal_func_wait_period);
7114         fw_health->post_reset_wait_dsecs =
7115                 le32_to_cpu(resp->master_func_wait_period_after_reset);
7116         fw_health->post_reset_max_wait_dsecs =
7117                 le32_to_cpu(resp->max_bailout_time_after_reset);
7118         fw_health->regs[BNXT_FW_HEALTH_REG] =
7119                 le32_to_cpu(resp->fw_health_status_reg);
7120         fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7121                 le32_to_cpu(resp->fw_heartbeat_reg);
7122         fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7123                 le32_to_cpu(resp->fw_reset_cnt_reg);
7124         fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7125                 le32_to_cpu(resp->reset_inprogress_reg);
7126         fw_health->fw_reset_inprog_reg_mask =
7127                 le32_to_cpu(resp->reset_inprogress_reg_mask);
7128         fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7129         if (fw_health->fw_reset_seq_cnt >= 16) {
7130                 rc = -EINVAL;
7131                 goto err_recovery_out;
7132         }
7133         for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7134                 fw_health->fw_reset_seq_regs[i] =
7135                         le32_to_cpu(resp->reset_reg[i]);
7136                 fw_health->fw_reset_seq_vals[i] =
7137                         le32_to_cpu(resp->reset_reg_val[i]);
7138                 fw_health->fw_reset_seq_delay_msec[i] =
7139                         resp->delay_after_reset[i];
7140         }
7141 err_recovery_out:
7142         mutex_unlock(&bp->hwrm_cmd_lock);
7143         if (!rc)
7144                 rc = bnxt_map_fw_health_regs(bp);
7145         if (rc)
7146                 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7147         return rc;
7148 }
7149
7150 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7151 {
7152         struct hwrm_func_reset_input req = {0};
7153
7154         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
7155         req.enables = 0;
7156
7157         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
7158 }
7159
7160 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7161 {
7162         int rc = 0;
7163         struct hwrm_queue_qportcfg_input req = {0};
7164         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
7165         u8 i, j, *qptr;
7166         bool no_rdma;
7167
7168         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
7169
7170         mutex_lock(&bp->hwrm_cmd_lock);
7171         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7172         if (rc)
7173                 goto qportcfg_exit;
7174
7175         if (!resp->max_configurable_queues) {
7176                 rc = -EINVAL;
7177                 goto qportcfg_exit;
7178         }
7179         bp->max_tc = resp->max_configurable_queues;
7180         bp->max_lltc = resp->max_configurable_lossless_queues;
7181         if (bp->max_tc > BNXT_MAX_QUEUE)
7182                 bp->max_tc = BNXT_MAX_QUEUE;
7183
7184         no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7185         qptr = &resp->queue_id0;
7186         for (i = 0, j = 0; i < bp->max_tc; i++) {
7187                 bp->q_info[j].queue_id = *qptr;
7188                 bp->q_ids[i] = *qptr++;
7189                 bp->q_info[j].queue_profile = *qptr++;
7190                 bp->tc_to_qidx[j] = j;
7191                 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7192                     (no_rdma && BNXT_PF(bp)))
7193                         j++;
7194         }
7195         bp->max_q = bp->max_tc;
7196         bp->max_tc = max_t(u8, j, 1);
7197
7198         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7199                 bp->max_tc = 1;
7200
7201         if (bp->max_lltc > bp->max_tc)
7202                 bp->max_lltc = bp->max_tc;
7203
7204 qportcfg_exit:
7205         mutex_unlock(&bp->hwrm_cmd_lock);
7206         return rc;
7207 }
7208
7209 static int __bnxt_hwrm_ver_get(struct bnxt *bp, bool silent)
7210 {
7211         struct hwrm_ver_get_input req = {0};
7212         int rc;
7213
7214         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
7215         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
7216         req.hwrm_intf_min = HWRM_VERSION_MINOR;
7217         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
7218
7219         rc = bnxt_hwrm_do_send_msg(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT,
7220                                    silent);
7221         return rc;
7222 }
7223
7224 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7225 {
7226         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
7227         u32 dev_caps_cfg;
7228         int rc;
7229
7230         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7231         mutex_lock(&bp->hwrm_cmd_lock);
7232         rc = __bnxt_hwrm_ver_get(bp, false);
7233         if (rc)
7234                 goto hwrm_ver_get_exit;
7235
7236         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7237
7238         bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7239                              resp->hwrm_intf_min_8b << 8 |
7240                              resp->hwrm_intf_upd_8b;
7241         if (resp->hwrm_intf_maj_8b < 1) {
7242                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7243                             resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7244                             resp->hwrm_intf_upd_8b);
7245                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7246         }
7247         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
7248                  resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
7249                  resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
7250
7251         if (strlen(resp->active_pkg_name)) {
7252                 int fw_ver_len = strlen(bp->fw_ver_str);
7253
7254                 snprintf(bp->fw_ver_str + fw_ver_len,
7255                          FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
7256                          resp->active_pkg_name);
7257                 bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
7258         }
7259
7260         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
7261         if (!bp->hwrm_cmd_timeout)
7262                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
7263
7264         if (resp->hwrm_intf_maj_8b >= 1) {
7265                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
7266                 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
7267         }
7268         if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
7269                 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
7270
7271         bp->chip_num = le16_to_cpu(resp->chip_num);
7272         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
7273             !resp->chip_metal)
7274                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
7275
7276         dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
7277         if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
7278             (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
7279                 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
7280
7281         if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
7282                 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
7283
7284         if (dev_caps_cfg &
7285             VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
7286                 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
7287
7288         if (dev_caps_cfg &
7289             VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
7290                 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
7291
7292         if (dev_caps_cfg &
7293             VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
7294                 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
7295
7296 hwrm_ver_get_exit:
7297         mutex_unlock(&bp->hwrm_cmd_lock);
7298         return rc;
7299 }
7300
7301 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
7302 {
7303         struct hwrm_fw_set_time_input req = {0};
7304         struct tm tm;
7305         time64_t now = ktime_get_real_seconds();
7306
7307         if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
7308             bp->hwrm_spec_code < 0x10400)
7309                 return -EOPNOTSUPP;
7310
7311         time64_to_tm(now, 0, &tm);
7312         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
7313         req.year = cpu_to_le16(1900 + tm.tm_year);
7314         req.month = 1 + tm.tm_mon;
7315         req.day = tm.tm_mday;
7316         req.hour = tm.tm_hour;
7317         req.minute = tm.tm_min;
7318         req.second = tm.tm_sec;
7319         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7320 }
7321
7322 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
7323 {
7324         int rc;
7325         struct bnxt_pf_info *pf = &bp->pf;
7326         struct hwrm_port_qstats_input req = {0};
7327
7328         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
7329                 return 0;
7330
7331         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
7332         req.port_id = cpu_to_le16(pf->port_id);
7333         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
7334         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
7335         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7336         return rc;
7337 }
7338
7339 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
7340 {
7341         struct hwrm_port_qstats_ext_output *resp = bp->hwrm_cmd_resp_addr;
7342         struct hwrm_queue_pri2cos_qcfg_input req2 = {0};
7343         struct hwrm_port_qstats_ext_input req = {0};
7344         struct bnxt_pf_info *pf = &bp->pf;
7345         u32 tx_stat_size;
7346         int rc;
7347
7348         if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
7349                 return 0;
7350
7351         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
7352         req.port_id = cpu_to_le16(pf->port_id);
7353         req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
7354         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
7355         tx_stat_size = bp->hw_tx_port_stats_ext ?
7356                        sizeof(*bp->hw_tx_port_stats_ext) : 0;
7357         req.tx_stat_size = cpu_to_le16(tx_stat_size);
7358         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_ext_map);
7359         mutex_lock(&bp->hwrm_cmd_lock);
7360         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7361         if (!rc) {
7362                 bp->fw_rx_stats_ext_size = le16_to_cpu(resp->rx_stat_size) / 8;
7363                 bp->fw_tx_stats_ext_size = tx_stat_size ?
7364                         le16_to_cpu(resp->tx_stat_size) / 8 : 0;
7365         } else {
7366                 bp->fw_rx_stats_ext_size = 0;
7367                 bp->fw_tx_stats_ext_size = 0;
7368         }
7369         if (bp->fw_tx_stats_ext_size <=
7370             offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
7371                 mutex_unlock(&bp->hwrm_cmd_lock);
7372                 bp->pri2cos_valid = 0;
7373                 return rc;
7374         }
7375
7376         bnxt_hwrm_cmd_hdr_init(bp, &req2, HWRM_QUEUE_PRI2COS_QCFG, -1, -1);
7377         req2.flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
7378
7379         rc = _hwrm_send_message(bp, &req2, sizeof(req2), HWRM_CMD_TIMEOUT);
7380         if (!rc) {
7381                 struct hwrm_queue_pri2cos_qcfg_output *resp2;
7382                 u8 *pri2cos;
7383                 int i, j;
7384
7385                 resp2 = bp->hwrm_cmd_resp_addr;
7386                 pri2cos = &resp2->pri0_cos_queue_id;
7387                 for (i = 0; i < 8; i++) {
7388                         u8 queue_id = pri2cos[i];
7389
7390                         for (j = 0; j < bp->max_q; j++) {
7391                                 if (bp->q_ids[j] == queue_id)
7392                                         bp->pri2cos[i] = j;
7393                         }
7394                 }
7395                 bp->pri2cos_valid = 1;
7396         }
7397         mutex_unlock(&bp->hwrm_cmd_lock);
7398         return rc;
7399 }
7400
7401 static int bnxt_hwrm_pcie_qstats(struct bnxt *bp)
7402 {
7403         struct hwrm_pcie_qstats_input req = {0};
7404
7405         if (!(bp->flags & BNXT_FLAG_PCIE_STATS))
7406                 return 0;
7407
7408         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PCIE_QSTATS, -1, -1);
7409         req.pcie_stat_size = cpu_to_le16(sizeof(struct pcie_ctx_hw_stats));
7410         req.pcie_stat_host_addr = cpu_to_le64(bp->hw_pcie_stats_map);
7411         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7412 }
7413
7414 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
7415 {
7416         if (bp->vxlan_port_cnt) {
7417                 bnxt_hwrm_tunnel_dst_port_free(
7418                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7419         }
7420         bp->vxlan_port_cnt = 0;
7421         if (bp->nge_port_cnt) {
7422                 bnxt_hwrm_tunnel_dst_port_free(
7423                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7424         }
7425         bp->nge_port_cnt = 0;
7426 }
7427
7428 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
7429 {
7430         int rc, i;
7431         u32 tpa_flags = 0;
7432
7433         if (set_tpa)
7434                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
7435         else if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
7436                 return 0;
7437         for (i = 0; i < bp->nr_vnics; i++) {
7438                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
7439                 if (rc) {
7440                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
7441                                    i, rc);
7442                         return rc;
7443                 }
7444         }
7445         return 0;
7446 }
7447
7448 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
7449 {
7450         int i;
7451
7452         for (i = 0; i < bp->nr_vnics; i++)
7453                 bnxt_hwrm_vnic_set_rss(bp, i, false);
7454 }
7455
7456 static void bnxt_clear_vnic(struct bnxt *bp)
7457 {
7458         if (!bp->vnic_info)
7459                 return;
7460
7461         bnxt_hwrm_clear_vnic_filter(bp);
7462         if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
7463                 /* clear all RSS setting before free vnic ctx */
7464                 bnxt_hwrm_clear_vnic_rss(bp);
7465                 bnxt_hwrm_vnic_ctx_free(bp);
7466         }
7467         /* before free the vnic, undo the vnic tpa settings */
7468         if (bp->flags & BNXT_FLAG_TPA)
7469                 bnxt_set_tpa(bp, false);
7470         bnxt_hwrm_vnic_free(bp);
7471         if (bp->flags & BNXT_FLAG_CHIP_P5)
7472                 bnxt_hwrm_vnic_ctx_free(bp);
7473 }
7474
7475 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
7476                                     bool irq_re_init)
7477 {
7478         bnxt_clear_vnic(bp);
7479         bnxt_hwrm_ring_free(bp, close_path);
7480         bnxt_hwrm_ring_grp_free(bp);
7481         if (irq_re_init) {
7482                 bnxt_hwrm_stat_ctx_free(bp);
7483                 bnxt_hwrm_free_tunnel_ports(bp);
7484         }
7485 }
7486
7487 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
7488 {
7489         struct hwrm_func_cfg_input req = {0};
7490         int rc;
7491
7492         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7493         req.fid = cpu_to_le16(0xffff);
7494         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
7495         if (br_mode == BRIDGE_MODE_VEB)
7496                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
7497         else if (br_mode == BRIDGE_MODE_VEPA)
7498                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
7499         else
7500                 return -EINVAL;
7501         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7502         return rc;
7503 }
7504
7505 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
7506 {
7507         struct hwrm_func_cfg_input req = {0};
7508         int rc;
7509
7510         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
7511                 return 0;
7512
7513         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
7514         req.fid = cpu_to_le16(0xffff);
7515         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
7516         req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
7517         if (size == 128)
7518                 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
7519
7520         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
7521         return rc;
7522 }
7523
7524 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7525 {
7526         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
7527         int rc;
7528
7529         if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
7530                 goto skip_rss_ctx;
7531
7532         /* allocate context for vnic */
7533         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
7534         if (rc) {
7535                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7536                            vnic_id, rc);
7537                 goto vnic_setup_err;
7538         }
7539         bp->rsscos_nr_ctxs++;
7540
7541         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7542                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
7543                 if (rc) {
7544                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
7545                                    vnic_id, rc);
7546                         goto vnic_setup_err;
7547                 }
7548                 bp->rsscos_nr_ctxs++;
7549         }
7550
7551 skip_rss_ctx:
7552         /* configure default vnic, ring grp */
7553         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7554         if (rc) {
7555                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7556                            vnic_id, rc);
7557                 goto vnic_setup_err;
7558         }
7559
7560         /* Enable RSS hashing on vnic */
7561         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
7562         if (rc) {
7563                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
7564                            vnic_id, rc);
7565                 goto vnic_setup_err;
7566         }
7567
7568         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7569                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7570                 if (rc) {
7571                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7572                                    vnic_id, rc);
7573                 }
7574         }
7575
7576 vnic_setup_err:
7577         return rc;
7578 }
7579
7580 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
7581 {
7582         int rc, i, nr_ctxs;
7583
7584         nr_ctxs = DIV_ROUND_UP(bp->rx_nr_rings, 64);
7585         for (i = 0; i < nr_ctxs; i++) {
7586                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
7587                 if (rc) {
7588                         netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
7589                                    vnic_id, i, rc);
7590                         break;
7591                 }
7592                 bp->rsscos_nr_ctxs++;
7593         }
7594         if (i < nr_ctxs)
7595                 return -ENOMEM;
7596
7597         rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
7598         if (rc) {
7599                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
7600                            vnic_id, rc);
7601                 return rc;
7602         }
7603         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
7604         if (rc) {
7605                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
7606                            vnic_id, rc);
7607                 return rc;
7608         }
7609         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
7610                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
7611                 if (rc) {
7612                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
7613                                    vnic_id, rc);
7614                 }
7615         }
7616         return rc;
7617 }
7618
7619 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
7620 {
7621         if (bp->flags & BNXT_FLAG_CHIP_P5)
7622                 return __bnxt_setup_vnic_p5(bp, vnic_id);
7623         else
7624                 return __bnxt_setup_vnic(bp, vnic_id);
7625 }
7626
7627 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
7628 {
7629 #ifdef CONFIG_RFS_ACCEL
7630         int i, rc = 0;
7631
7632         if (bp->flags & BNXT_FLAG_CHIP_P5)
7633                 return 0;
7634
7635         for (i = 0; i < bp->rx_nr_rings; i++) {
7636                 struct bnxt_vnic_info *vnic;
7637                 u16 vnic_id = i + 1;
7638                 u16 ring_id = i;
7639
7640                 if (vnic_id >= bp->nr_vnics)
7641                         break;
7642
7643                 vnic = &bp->vnic_info[vnic_id];
7644                 vnic->flags |= BNXT_VNIC_RFS_FLAG;
7645                 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7646                         vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
7647                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
7648                 if (rc) {
7649                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
7650                                    vnic_id, rc);
7651                         break;
7652                 }
7653                 rc = bnxt_setup_vnic(bp, vnic_id);
7654                 if (rc)
7655                         break;
7656         }
7657         return rc;
7658 #else
7659         return 0;
7660 #endif
7661 }
7662
7663 /* Allow PF and VF with default VLAN to be in promiscuous mode */
7664 static bool bnxt_promisc_ok(struct bnxt *bp)
7665 {
7666 #ifdef CONFIG_BNXT_SRIOV
7667         if (BNXT_VF(bp) && !bp->vf.vlan)
7668                 return false;
7669 #endif
7670         return true;
7671 }
7672
7673 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
7674 {
7675         unsigned int rc = 0;
7676
7677         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
7678         if (rc) {
7679                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7680                            rc);
7681                 return rc;
7682         }
7683
7684         rc = bnxt_hwrm_vnic_cfg(bp, 1);
7685         if (rc) {
7686                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
7687                            rc);
7688                 return rc;
7689         }
7690         return rc;
7691 }
7692
7693 static int bnxt_cfg_rx_mode(struct bnxt *);
7694 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
7695
7696 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
7697 {
7698         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7699         int rc = 0;
7700         unsigned int rx_nr_rings = bp->rx_nr_rings;
7701
7702         if (irq_re_init) {
7703                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
7704                 if (rc) {
7705                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
7706                                    rc);
7707                         goto err_out;
7708                 }
7709         }
7710
7711         rc = bnxt_hwrm_ring_alloc(bp);
7712         if (rc) {
7713                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
7714                 goto err_out;
7715         }
7716
7717         rc = bnxt_hwrm_ring_grp_alloc(bp);
7718         if (rc) {
7719                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
7720                 goto err_out;
7721         }
7722
7723         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
7724                 rx_nr_rings--;
7725
7726         /* default vnic 0 */
7727         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
7728         if (rc) {
7729                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
7730                 goto err_out;
7731         }
7732
7733         rc = bnxt_setup_vnic(bp, 0);
7734         if (rc)
7735                 goto err_out;
7736
7737         if (bp->flags & BNXT_FLAG_RFS) {
7738                 rc = bnxt_alloc_rfs_vnics(bp);
7739                 if (rc)
7740                         goto err_out;
7741         }
7742
7743         if (bp->flags & BNXT_FLAG_TPA) {
7744                 rc = bnxt_set_tpa(bp, true);
7745                 if (rc)
7746                         goto err_out;
7747         }
7748
7749         if (BNXT_VF(bp))
7750                 bnxt_update_vf_mac(bp);
7751
7752         /* Filter for default vnic 0 */
7753         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
7754         if (rc) {
7755                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
7756                 goto err_out;
7757         }
7758         vnic->uc_filter_count = 1;
7759
7760         vnic->rx_mask = 0;
7761         if (bp->dev->flags & IFF_BROADCAST)
7762                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
7763
7764         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7765                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7766
7767         if (bp->dev->flags & IFF_ALLMULTI) {
7768                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7769                 vnic->mc_list_count = 0;
7770         } else {
7771                 u32 mask = 0;
7772
7773                 bnxt_mc_list_updated(bp, &mask);
7774                 vnic->rx_mask |= mask;
7775         }
7776
7777         rc = bnxt_cfg_rx_mode(bp);
7778         if (rc)
7779                 goto err_out;
7780
7781         rc = bnxt_hwrm_set_coal(bp);
7782         if (rc)
7783                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
7784                                 rc);
7785
7786         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7787                 rc = bnxt_setup_nitroa0_vnic(bp);
7788                 if (rc)
7789                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
7790                                    rc);
7791         }
7792
7793         if (BNXT_VF(bp)) {
7794                 bnxt_hwrm_func_qcfg(bp);
7795                 netdev_update_features(bp->dev);
7796         }
7797
7798         return 0;
7799
7800 err_out:
7801         bnxt_hwrm_resource_free(bp, 0, true);
7802
7803         return rc;
7804 }
7805
7806 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
7807 {
7808         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
7809         return 0;
7810 }
7811
7812 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
7813 {
7814         bnxt_init_cp_rings(bp);
7815         bnxt_init_rx_rings(bp);
7816         bnxt_init_tx_rings(bp);
7817         bnxt_init_ring_grps(bp, irq_re_init);
7818         bnxt_init_vnics(bp);
7819
7820         return bnxt_init_chip(bp, irq_re_init);
7821 }
7822
7823 static int bnxt_set_real_num_queues(struct bnxt *bp)
7824 {
7825         int rc;
7826         struct net_device *dev = bp->dev;
7827
7828         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
7829                                           bp->tx_nr_rings_xdp);
7830         if (rc)
7831                 return rc;
7832
7833         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
7834         if (rc)
7835                 return rc;
7836
7837 #ifdef CONFIG_RFS_ACCEL
7838         if (bp->flags & BNXT_FLAG_RFS)
7839                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
7840 #endif
7841
7842         return rc;
7843 }
7844
7845 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
7846                            bool shared)
7847 {
7848         int _rx = *rx, _tx = *tx;
7849
7850         if (shared) {
7851                 *rx = min_t(int, _rx, max);
7852                 *tx = min_t(int, _tx, max);
7853         } else {
7854                 if (max < 2)
7855                         return -ENOMEM;
7856
7857                 while (_rx + _tx > max) {
7858                         if (_rx > _tx && _rx > 1)
7859                                 _rx--;
7860                         else if (_tx > 1)
7861                                 _tx--;
7862                 }
7863                 *rx = _rx;
7864                 *tx = _tx;
7865         }
7866         return 0;
7867 }
7868
7869 static void bnxt_setup_msix(struct bnxt *bp)
7870 {
7871         const int len = sizeof(bp->irq_tbl[0].name);
7872         struct net_device *dev = bp->dev;
7873         int tcs, i;
7874
7875         tcs = netdev_get_num_tc(dev);
7876         if (tcs > 1) {
7877                 int i, off, count;
7878
7879                 for (i = 0; i < tcs; i++) {
7880                         count = bp->tx_nr_rings_per_tc;
7881                         off = i * count;
7882                         netdev_set_tc_queue(dev, i, count, off);
7883                 }
7884         }
7885
7886         for (i = 0; i < bp->cp_nr_rings; i++) {
7887                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
7888                 char *attr;
7889
7890                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7891                         attr = "TxRx";
7892                 else if (i < bp->rx_nr_rings)
7893                         attr = "rx";
7894                 else
7895                         attr = "tx";
7896
7897                 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
7898                          attr, i);
7899                 bp->irq_tbl[map_idx].handler = bnxt_msix;
7900         }
7901 }
7902
7903 static void bnxt_setup_inta(struct bnxt *bp)
7904 {
7905         const int len = sizeof(bp->irq_tbl[0].name);
7906
7907         if (netdev_get_num_tc(bp->dev))
7908                 netdev_reset_tc(bp->dev);
7909
7910         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
7911                  0);
7912         bp->irq_tbl[0].handler = bnxt_inta;
7913 }
7914
7915 static int bnxt_setup_int_mode(struct bnxt *bp)
7916 {
7917         int rc;
7918
7919         if (bp->flags & BNXT_FLAG_USING_MSIX)
7920                 bnxt_setup_msix(bp);
7921         else
7922                 bnxt_setup_inta(bp);
7923
7924         rc = bnxt_set_real_num_queues(bp);
7925         return rc;
7926 }
7927
7928 #ifdef CONFIG_RFS_ACCEL
7929 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
7930 {
7931         return bp->hw_resc.max_rsscos_ctxs;
7932 }
7933
7934 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
7935 {
7936         return bp->hw_resc.max_vnics;
7937 }
7938 #endif
7939
7940 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
7941 {
7942         return bp->hw_resc.max_stat_ctxs;
7943 }
7944
7945 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
7946 {
7947         return bp->hw_resc.max_cp_rings;
7948 }
7949
7950 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
7951 {
7952         unsigned int cp = bp->hw_resc.max_cp_rings;
7953
7954         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
7955                 cp -= bnxt_get_ulp_msix_num(bp);
7956
7957         return cp;
7958 }
7959
7960 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
7961 {
7962         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7963
7964         if (bp->flags & BNXT_FLAG_CHIP_P5)
7965                 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
7966
7967         return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
7968 }
7969
7970 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
7971 {
7972         bp->hw_resc.max_irqs = max_irqs;
7973 }
7974
7975 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
7976 {
7977         unsigned int cp;
7978
7979         cp = bnxt_get_max_func_cp_rings_for_en(bp);
7980         if (bp->flags & BNXT_FLAG_CHIP_P5)
7981                 return cp - bp->rx_nr_rings - bp->tx_nr_rings;
7982         else
7983                 return cp - bp->cp_nr_rings;
7984 }
7985
7986 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
7987 {
7988         return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
7989 }
7990
7991 int bnxt_get_avail_msix(struct bnxt *bp, int num)
7992 {
7993         int max_cp = bnxt_get_max_func_cp_rings(bp);
7994         int max_irq = bnxt_get_max_func_irqs(bp);
7995         int total_req = bp->cp_nr_rings + num;
7996         int max_idx, avail_msix;
7997
7998         max_idx = bp->total_irqs;
7999         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8000                 max_idx = min_t(int, bp->total_irqs, max_cp);
8001         avail_msix = max_idx - bp->cp_nr_rings;
8002         if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8003                 return avail_msix;
8004
8005         if (max_irq < total_req) {
8006                 num = max_irq - bp->cp_nr_rings;
8007                 if (num <= 0)
8008                         return 0;
8009         }
8010         return num;
8011 }
8012
8013 static int bnxt_get_num_msix(struct bnxt *bp)
8014 {
8015         if (!BNXT_NEW_RM(bp))
8016                 return bnxt_get_max_func_irqs(bp);
8017
8018         return bnxt_nq_rings_in_use(bp);
8019 }
8020
8021 static int bnxt_init_msix(struct bnxt *bp)
8022 {
8023         int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8024         struct msix_entry *msix_ent;
8025
8026         total_vecs = bnxt_get_num_msix(bp);
8027         max = bnxt_get_max_func_irqs(bp);
8028         if (total_vecs > max)
8029                 total_vecs = max;
8030
8031         if (!total_vecs)
8032                 return 0;
8033
8034         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8035         if (!msix_ent)
8036                 return -ENOMEM;
8037
8038         for (i = 0; i < total_vecs; i++) {
8039                 msix_ent[i].entry = i;
8040                 msix_ent[i].vector = 0;
8041         }
8042
8043         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8044                 min = 2;
8045
8046         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8047         ulp_msix = bnxt_get_ulp_msix_num(bp);
8048         if (total_vecs < 0 || total_vecs < ulp_msix) {
8049                 rc = -ENODEV;
8050                 goto msix_setup_exit;
8051         }
8052
8053         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8054         if (bp->irq_tbl) {
8055                 for (i = 0; i < total_vecs; i++)
8056                         bp->irq_tbl[i].vector = msix_ent[i].vector;
8057
8058                 bp->total_irqs = total_vecs;
8059                 /* Trim rings based upon num of vectors allocated */
8060                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8061                                      total_vecs - ulp_msix, min == 1);
8062                 if (rc)
8063                         goto msix_setup_exit;
8064
8065                 bp->cp_nr_rings = (min == 1) ?
8066                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8067                                   bp->tx_nr_rings + bp->rx_nr_rings;
8068
8069         } else {
8070                 rc = -ENOMEM;
8071                 goto msix_setup_exit;
8072         }
8073         bp->flags |= BNXT_FLAG_USING_MSIX;
8074         kfree(msix_ent);
8075         return 0;
8076
8077 msix_setup_exit:
8078         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8079         kfree(bp->irq_tbl);
8080         bp->irq_tbl = NULL;
8081         pci_disable_msix(bp->pdev);
8082         kfree(msix_ent);
8083         return rc;
8084 }
8085
8086 static int bnxt_init_inta(struct bnxt *bp)
8087 {
8088         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
8089         if (!bp->irq_tbl)
8090                 return -ENOMEM;
8091
8092         bp->total_irqs = 1;
8093         bp->rx_nr_rings = 1;
8094         bp->tx_nr_rings = 1;
8095         bp->cp_nr_rings = 1;
8096         bp->flags |= BNXT_FLAG_SHARED_RINGS;
8097         bp->irq_tbl[0].vector = bp->pdev->irq;
8098         return 0;
8099 }
8100
8101 static int bnxt_init_int_mode(struct bnxt *bp)
8102 {
8103         int rc = 0;
8104
8105         if (bp->flags & BNXT_FLAG_MSIX_CAP)
8106                 rc = bnxt_init_msix(bp);
8107
8108         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8109                 /* fallback to INTA */
8110                 rc = bnxt_init_inta(bp);
8111         }
8112         return rc;
8113 }
8114
8115 static void bnxt_clear_int_mode(struct bnxt *bp)
8116 {
8117         if (bp->flags & BNXT_FLAG_USING_MSIX)
8118                 pci_disable_msix(bp->pdev);
8119
8120         kfree(bp->irq_tbl);
8121         bp->irq_tbl = NULL;
8122         bp->flags &= ~BNXT_FLAG_USING_MSIX;
8123 }
8124
8125 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
8126 {
8127         int tcs = netdev_get_num_tc(bp->dev);
8128         bool irq_cleared = false;
8129         int rc;
8130
8131         if (!bnxt_need_reserve_rings(bp))
8132                 return 0;
8133
8134         if (irq_re_init && BNXT_NEW_RM(bp) &&
8135             bnxt_get_num_msix(bp) != bp->total_irqs) {
8136                 bnxt_ulp_irq_stop(bp);
8137                 bnxt_clear_int_mode(bp);
8138                 irq_cleared = true;
8139         }
8140         rc = __bnxt_reserve_rings(bp);
8141         if (irq_cleared) {
8142                 if (!rc)
8143                         rc = bnxt_init_int_mode(bp);
8144                 bnxt_ulp_irq_restart(bp, rc);
8145         }
8146         if (rc) {
8147                 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
8148                 return rc;
8149         }
8150         if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
8151                 netdev_err(bp->dev, "tx ring reservation failure\n");
8152                 netdev_reset_tc(bp->dev);
8153                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8154                 return -ENOMEM;
8155         }
8156         return 0;
8157 }
8158
8159 static void bnxt_free_irq(struct bnxt *bp)
8160 {
8161         struct bnxt_irq *irq;
8162         int i;
8163
8164 #ifdef CONFIG_RFS_ACCEL
8165         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
8166         bp->dev->rx_cpu_rmap = NULL;
8167 #endif
8168         if (!bp->irq_tbl || !bp->bnapi)
8169                 return;
8170
8171         for (i = 0; i < bp->cp_nr_rings; i++) {
8172                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8173
8174                 irq = &bp->irq_tbl[map_idx];
8175                 if (irq->requested) {
8176                         if (irq->have_cpumask) {
8177                                 irq_set_affinity_hint(irq->vector, NULL);
8178                                 free_cpumask_var(irq->cpu_mask);
8179                                 irq->have_cpumask = 0;
8180                         }
8181                         free_irq(irq->vector, bp->bnapi[i]);
8182                 }
8183
8184                 irq->requested = 0;
8185         }
8186 }
8187
8188 static int bnxt_request_irq(struct bnxt *bp)
8189 {
8190         int i, j, rc = 0;
8191         unsigned long flags = 0;
8192 #ifdef CONFIG_RFS_ACCEL
8193         struct cpu_rmap *rmap;
8194 #endif
8195
8196         rc = bnxt_setup_int_mode(bp);
8197         if (rc) {
8198                 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
8199                            rc);
8200                 return rc;
8201         }
8202 #ifdef CONFIG_RFS_ACCEL
8203         rmap = bp->dev->rx_cpu_rmap;
8204 #endif
8205         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
8206                 flags = IRQF_SHARED;
8207
8208         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
8209                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8210                 struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
8211
8212 #ifdef CONFIG_RFS_ACCEL
8213                 if (rmap && bp->bnapi[i]->rx_ring) {
8214                         rc = irq_cpu_rmap_add(rmap, irq->vector);
8215                         if (rc)
8216                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
8217                                             j);
8218                         j++;
8219                 }
8220 #endif
8221                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
8222                                  bp->bnapi[i]);
8223                 if (rc)
8224                         break;
8225
8226                 irq->requested = 1;
8227
8228                 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
8229                         int numa_node = dev_to_node(&bp->pdev->dev);
8230
8231                         irq->have_cpumask = 1;
8232                         cpumask_set_cpu(cpumask_local_spread(i, numa_node),
8233                                         irq->cpu_mask);
8234                         rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
8235                         if (rc) {
8236                                 netdev_warn(bp->dev,
8237                                             "Set affinity failed, IRQ = %d\n",
8238                                             irq->vector);
8239                                 break;
8240                         }
8241                 }
8242         }
8243         return rc;
8244 }
8245
8246 static void bnxt_del_napi(struct bnxt *bp)
8247 {
8248         int i;
8249
8250         if (!bp->bnapi)
8251                 return;
8252
8253         for (i = 0; i < bp->cp_nr_rings; i++) {
8254                 struct bnxt_napi *bnapi = bp->bnapi[i];
8255
8256                 napi_hash_del(&bnapi->napi);
8257                 netif_napi_del(&bnapi->napi);
8258         }
8259         /* We called napi_hash_del() before netif_napi_del(), we need
8260          * to respect an RCU grace period before freeing napi structures.
8261          */
8262         synchronize_net();
8263 }
8264
8265 static void bnxt_init_napi(struct bnxt *bp)
8266 {
8267         int i;
8268         unsigned int cp_nr_rings = bp->cp_nr_rings;
8269         struct bnxt_napi *bnapi;
8270
8271         if (bp->flags & BNXT_FLAG_USING_MSIX) {
8272                 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
8273
8274                 if (bp->flags & BNXT_FLAG_CHIP_P5)
8275                         poll_fn = bnxt_poll_p5;
8276                 else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8277                         cp_nr_rings--;
8278                 for (i = 0; i < cp_nr_rings; i++) {
8279                         bnapi = bp->bnapi[i];
8280                         netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
8281                 }
8282                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8283                         bnapi = bp->bnapi[cp_nr_rings];
8284                         netif_napi_add(bp->dev, &bnapi->napi,
8285                                        bnxt_poll_nitroa0, 64);
8286                 }
8287         } else {
8288                 bnapi = bp->bnapi[0];
8289                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
8290         }
8291 }
8292
8293 static void bnxt_disable_napi(struct bnxt *bp)
8294 {
8295         int i;
8296
8297         if (!bp->bnapi)
8298                 return;
8299
8300         for (i = 0; i < bp->cp_nr_rings; i++) {
8301                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8302
8303                 if (bp->bnapi[i]->rx_ring)
8304                         cancel_work_sync(&cpr->dim.work);
8305
8306                 napi_disable(&bp->bnapi[i]->napi);
8307         }
8308 }
8309
8310 static void bnxt_enable_napi(struct bnxt *bp)
8311 {
8312         int i;
8313
8314         for (i = 0; i < bp->cp_nr_rings; i++) {
8315                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
8316                 bp->bnapi[i]->in_reset = false;
8317
8318                 if (bp->bnapi[i]->rx_ring) {
8319                         INIT_WORK(&cpr->dim.work, bnxt_dim_work);
8320                         cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
8321                 }
8322                 napi_enable(&bp->bnapi[i]->napi);
8323         }
8324 }
8325
8326 void bnxt_tx_disable(struct bnxt *bp)
8327 {
8328         int i;
8329         struct bnxt_tx_ring_info *txr;
8330
8331         if (bp->tx_ring) {
8332                 for (i = 0; i < bp->tx_nr_rings; i++) {
8333                         txr = &bp->tx_ring[i];
8334                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
8335                 }
8336         }
8337         /* Stop all TX queues */
8338         netif_tx_disable(bp->dev);
8339         netif_carrier_off(bp->dev);
8340 }
8341
8342 void bnxt_tx_enable(struct bnxt *bp)
8343 {
8344         int i;
8345         struct bnxt_tx_ring_info *txr;
8346
8347         for (i = 0; i < bp->tx_nr_rings; i++) {
8348                 txr = &bp->tx_ring[i];
8349                 txr->dev_state = 0;
8350         }
8351         netif_tx_wake_all_queues(bp->dev);
8352         if (bp->link_info.link_up)
8353                 netif_carrier_on(bp->dev);
8354 }
8355
8356 static void bnxt_report_link(struct bnxt *bp)
8357 {
8358         if (bp->link_info.link_up) {
8359                 const char *duplex;
8360                 const char *flow_ctrl;
8361                 u32 speed;
8362                 u16 fec;
8363
8364                 netif_carrier_on(bp->dev);
8365                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
8366                         duplex = "full";
8367                 else
8368                         duplex = "half";
8369                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
8370                         flow_ctrl = "ON - receive & transmit";
8371                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
8372                         flow_ctrl = "ON - transmit";
8373                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
8374                         flow_ctrl = "ON - receive";
8375                 else
8376                         flow_ctrl = "none";
8377                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
8378                 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
8379                             speed, duplex, flow_ctrl);
8380                 if (bp->flags & BNXT_FLAG_EEE_CAP)
8381                         netdev_info(bp->dev, "EEE is %s\n",
8382                                     bp->eee.eee_active ? "active" :
8383                                                          "not active");
8384                 fec = bp->link_info.fec_cfg;
8385                 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
8386                         netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
8387                                     (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
8388                                     (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
8389                                      (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
8390         } else {
8391                 netif_carrier_off(bp->dev);
8392                 netdev_err(bp->dev, "NIC Link is Down\n");
8393         }
8394 }
8395
8396 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
8397 {
8398         int rc = 0;
8399         struct hwrm_port_phy_qcaps_input req = {0};
8400         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8401         struct bnxt_link_info *link_info = &bp->link_info;
8402
8403         bp->flags &= ~BNXT_FLAG_EEE_CAP;
8404         if (bp->test_info)
8405                 bp->test_info->flags &= ~BNXT_TEST_FL_EXT_LPBK;
8406         if (bp->hwrm_spec_code < 0x10201)
8407                 return 0;
8408
8409         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
8410
8411         mutex_lock(&bp->hwrm_cmd_lock);
8412         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8413         if (rc)
8414                 goto hwrm_phy_qcaps_exit;
8415
8416         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
8417                 struct ethtool_eee *eee = &bp->eee;
8418                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
8419
8420                 bp->flags |= BNXT_FLAG_EEE_CAP;
8421                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8422                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
8423                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
8424                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
8425                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
8426         }
8427         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EXTERNAL_LPBK_SUPPORTED) {
8428                 if (bp->test_info)
8429                         bp->test_info->flags |= BNXT_TEST_FL_EXT_LPBK;
8430         }
8431         if (resp->supported_speeds_auto_mode)
8432                 link_info->support_auto_speeds =
8433                         le16_to_cpu(resp->supported_speeds_auto_mode);
8434
8435         bp->port_count = resp->port_cnt;
8436
8437 hwrm_phy_qcaps_exit:
8438         mutex_unlock(&bp->hwrm_cmd_lock);
8439         return rc;
8440 }
8441
8442 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
8443 {
8444         int rc = 0;
8445         struct bnxt_link_info *link_info = &bp->link_info;
8446         struct hwrm_port_phy_qcfg_input req = {0};
8447         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8448         u8 link_up = link_info->link_up;
8449         u16 diff;
8450
8451         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
8452
8453         mutex_lock(&bp->hwrm_cmd_lock);
8454         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8455         if (rc) {
8456                 mutex_unlock(&bp->hwrm_cmd_lock);
8457                 return rc;
8458         }
8459
8460         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
8461         link_info->phy_link_status = resp->link;
8462         link_info->duplex = resp->duplex_cfg;
8463         if (bp->hwrm_spec_code >= 0x10800)
8464                 link_info->duplex = resp->duplex_state;
8465         link_info->pause = resp->pause;
8466         link_info->auto_mode = resp->auto_mode;
8467         link_info->auto_pause_setting = resp->auto_pause;
8468         link_info->lp_pause = resp->link_partner_adv_pause;
8469         link_info->force_pause_setting = resp->force_pause;
8470         link_info->duplex_setting = resp->duplex_cfg;
8471         if (link_info->phy_link_status == BNXT_LINK_LINK)
8472                 link_info->link_speed = le16_to_cpu(resp->link_speed);
8473         else
8474                 link_info->link_speed = 0;
8475         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
8476         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
8477         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
8478         link_info->lp_auto_link_speeds =
8479                 le16_to_cpu(resp->link_partner_adv_speeds);
8480         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
8481         link_info->phy_ver[0] = resp->phy_maj;
8482         link_info->phy_ver[1] = resp->phy_min;
8483         link_info->phy_ver[2] = resp->phy_bld;
8484         link_info->media_type = resp->media_type;
8485         link_info->phy_type = resp->phy_type;
8486         link_info->transceiver = resp->xcvr_pkg_type;
8487         link_info->phy_addr = resp->eee_config_phy_addr &
8488                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
8489         link_info->module_status = resp->module_status;
8490
8491         if (bp->flags & BNXT_FLAG_EEE_CAP) {
8492                 struct ethtool_eee *eee = &bp->eee;
8493                 u16 fw_speeds;
8494
8495                 eee->eee_active = 0;
8496                 if (resp->eee_config_phy_addr &
8497                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
8498                         eee->eee_active = 1;
8499                         fw_speeds = le16_to_cpu(
8500                                 resp->link_partner_adv_eee_link_speed_mask);
8501                         eee->lp_advertised =
8502                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8503                 }
8504
8505                 /* Pull initial EEE config */
8506                 if (!chng_link_state) {
8507                         if (resp->eee_config_phy_addr &
8508                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
8509                                 eee->eee_enabled = 1;
8510
8511                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
8512                         eee->advertised =
8513                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
8514
8515                         if (resp->eee_config_phy_addr &
8516                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
8517                                 __le32 tmr;
8518
8519                                 eee->tx_lpi_enabled = 1;
8520                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
8521                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
8522                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
8523                         }
8524                 }
8525         }
8526
8527         link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
8528         if (bp->hwrm_spec_code >= 0x10504)
8529                 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
8530
8531         /* TODO: need to add more logic to report VF link */
8532         if (chng_link_state) {
8533                 if (link_info->phy_link_status == BNXT_LINK_LINK)
8534                         link_info->link_up = 1;
8535                 else
8536                         link_info->link_up = 0;
8537                 if (link_up != link_info->link_up)
8538                         bnxt_report_link(bp);
8539         } else {
8540                 /* alwasy link down if not require to update link state */
8541                 link_info->link_up = 0;
8542         }
8543         mutex_unlock(&bp->hwrm_cmd_lock);
8544
8545         if (!BNXT_SINGLE_PF(bp))
8546                 return 0;
8547
8548         diff = link_info->support_auto_speeds ^ link_info->advertising;
8549         if ((link_info->support_auto_speeds | diff) !=
8550             link_info->support_auto_speeds) {
8551                 /* An advertised speed is no longer supported, so we need to
8552                  * update the advertisement settings.  Caller holds RTNL
8553                  * so we can modify link settings.
8554                  */
8555                 link_info->advertising = link_info->support_auto_speeds;
8556                 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
8557                         bnxt_hwrm_set_link_setting(bp, true, false);
8558         }
8559         return 0;
8560 }
8561
8562 static void bnxt_get_port_module_status(struct bnxt *bp)
8563 {
8564         struct bnxt_link_info *link_info = &bp->link_info;
8565         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
8566         u8 module_status;
8567
8568         if (bnxt_update_link(bp, true))
8569                 return;
8570
8571         module_status = link_info->module_status;
8572         switch (module_status) {
8573         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
8574         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
8575         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
8576                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
8577                             bp->pf.port_id);
8578                 if (bp->hwrm_spec_code >= 0x10201) {
8579                         netdev_warn(bp->dev, "Module part number %s\n",
8580                                     resp->phy_vendor_partnumber);
8581                 }
8582                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
8583                         netdev_warn(bp->dev, "TX is disabled\n");
8584                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
8585                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
8586         }
8587 }
8588
8589 static void
8590 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
8591 {
8592         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
8593                 if (bp->hwrm_spec_code >= 0x10201)
8594                         req->auto_pause =
8595                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
8596                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8597                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
8598                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8599                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
8600                 req->enables |=
8601                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8602         } else {
8603                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
8604                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
8605                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
8606                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
8607                 req->enables |=
8608                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
8609                 if (bp->hwrm_spec_code >= 0x10201) {
8610                         req->auto_pause = req->force_pause;
8611                         req->enables |= cpu_to_le32(
8612                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
8613                 }
8614         }
8615 }
8616
8617 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
8618                                       struct hwrm_port_phy_cfg_input *req)
8619 {
8620         u8 autoneg = bp->link_info.autoneg;
8621         u16 fw_link_speed = bp->link_info.req_link_speed;
8622         u16 advertising = bp->link_info.advertising;
8623
8624         if (autoneg & BNXT_AUTONEG_SPEED) {
8625                 req->auto_mode |=
8626                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
8627
8628                 req->enables |= cpu_to_le32(
8629                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
8630                 req->auto_link_speed_mask = cpu_to_le16(advertising);
8631
8632                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
8633                 req->flags |=
8634                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
8635         } else {
8636                 req->force_link_speed = cpu_to_le16(fw_link_speed);
8637                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
8638         }
8639
8640         /* tell chimp that the setting takes effect immediately */
8641         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
8642 }
8643
8644 int bnxt_hwrm_set_pause(struct bnxt *bp)
8645 {
8646         struct hwrm_port_phy_cfg_input req = {0};
8647         int rc;
8648
8649         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8650         bnxt_hwrm_set_pause_common(bp, &req);
8651
8652         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
8653             bp->link_info.force_link_chng)
8654                 bnxt_hwrm_set_link_common(bp, &req);
8655
8656         mutex_lock(&bp->hwrm_cmd_lock);
8657         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8658         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
8659                 /* since changing of pause setting doesn't trigger any link
8660                  * change event, the driver needs to update the current pause
8661                  * result upon successfully return of the phy_cfg command
8662                  */
8663                 bp->link_info.pause =
8664                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
8665                 bp->link_info.auto_pause_setting = 0;
8666                 if (!bp->link_info.force_link_chng)
8667                         bnxt_report_link(bp);
8668         }
8669         bp->link_info.force_link_chng = false;
8670         mutex_unlock(&bp->hwrm_cmd_lock);
8671         return rc;
8672 }
8673
8674 static void bnxt_hwrm_set_eee(struct bnxt *bp,
8675                               struct hwrm_port_phy_cfg_input *req)
8676 {
8677         struct ethtool_eee *eee = &bp->eee;
8678
8679         if (eee->eee_enabled) {
8680                 u16 eee_speeds;
8681                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
8682
8683                 if (eee->tx_lpi_enabled)
8684                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
8685                 else
8686                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
8687
8688                 req->flags |= cpu_to_le32(flags);
8689                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
8690                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
8691                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
8692         } else {
8693                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
8694         }
8695 }
8696
8697 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
8698 {
8699         struct hwrm_port_phy_cfg_input req = {0};
8700
8701         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8702         if (set_pause)
8703                 bnxt_hwrm_set_pause_common(bp, &req);
8704
8705         bnxt_hwrm_set_link_common(bp, &req);
8706
8707         if (set_eee)
8708                 bnxt_hwrm_set_eee(bp, &req);
8709         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8710 }
8711
8712 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
8713 {
8714         struct hwrm_port_phy_cfg_input req = {0};
8715
8716         if (!BNXT_SINGLE_PF(bp))
8717                 return 0;
8718
8719         if (pci_num_vf(bp->pdev))
8720                 return 0;
8721
8722         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
8723         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
8724         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8725 }
8726
8727 static int bnxt_fw_init_one(struct bnxt *bp);
8728
8729 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
8730 {
8731         struct hwrm_func_drv_if_change_output *resp = bp->hwrm_cmd_resp_addr;
8732         struct hwrm_func_drv_if_change_input req = {0};
8733         bool resc_reinit = false, fw_reset = false;
8734         u32 flags = 0;
8735         int rc;
8736
8737         if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
8738                 return 0;
8739
8740         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_IF_CHANGE, -1, -1);
8741         if (up)
8742                 req.flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
8743         mutex_lock(&bp->hwrm_cmd_lock);
8744         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8745         if (!rc)
8746                 flags = le32_to_cpu(resp->flags);
8747         mutex_unlock(&bp->hwrm_cmd_lock);
8748         if (rc)
8749                 return rc;
8750
8751         if (!up)
8752                 return 0;
8753
8754         if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
8755                 resc_reinit = true;
8756         if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
8757                 fw_reset = true;
8758
8759         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
8760                 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
8761                 return -ENODEV;
8762         }
8763         if (resc_reinit || fw_reset) {
8764                 if (fw_reset) {
8765                         rc = bnxt_fw_init_one(bp);
8766                         if (rc) {
8767                                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
8768                                 return rc;
8769                         }
8770                         bnxt_clear_int_mode(bp);
8771                         rc = bnxt_init_int_mode(bp);
8772                         if (rc) {
8773                                 netdev_err(bp->dev, "init int mode failed\n");
8774                                 return rc;
8775                         }
8776                         set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
8777                 }
8778                 if (BNXT_NEW_RM(bp)) {
8779                         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8780
8781                         rc = bnxt_hwrm_func_resc_qcaps(bp, true);
8782                         hw_resc->resv_cp_rings = 0;
8783                         hw_resc->resv_stat_ctxs = 0;
8784                         hw_resc->resv_irqs = 0;
8785                         hw_resc->resv_tx_rings = 0;
8786                         hw_resc->resv_rx_rings = 0;
8787                         hw_resc->resv_hw_ring_grps = 0;
8788                         hw_resc->resv_vnics = 0;
8789                         if (!fw_reset) {
8790                                 bp->tx_nr_rings = 0;
8791                                 bp->rx_nr_rings = 0;
8792                         }
8793                 }
8794         }
8795         return 0;
8796 }
8797
8798 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
8799 {
8800         struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
8801         struct hwrm_port_led_qcaps_input req = {0};
8802         struct bnxt_pf_info *pf = &bp->pf;
8803         int rc;
8804
8805         bp->num_leds = 0;
8806         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
8807                 return 0;
8808
8809         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
8810         req.port_id = cpu_to_le16(pf->port_id);
8811         mutex_lock(&bp->hwrm_cmd_lock);
8812         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8813         if (rc) {
8814                 mutex_unlock(&bp->hwrm_cmd_lock);
8815                 return rc;
8816         }
8817         if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
8818                 int i;
8819
8820                 bp->num_leds = resp->num_leds;
8821                 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
8822                                                  bp->num_leds);
8823                 for (i = 0; i < bp->num_leds; i++) {
8824                         struct bnxt_led_info *led = &bp->leds[i];
8825                         __le16 caps = led->led_state_caps;
8826
8827                         if (!led->led_group_id ||
8828                             !BNXT_LED_ALT_BLINK_CAP(caps)) {
8829                                 bp->num_leds = 0;
8830                                 break;
8831                         }
8832                 }
8833         }
8834         mutex_unlock(&bp->hwrm_cmd_lock);
8835         return 0;
8836 }
8837
8838 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
8839 {
8840         struct hwrm_wol_filter_alloc_input req = {0};
8841         struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
8842         int rc;
8843
8844         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
8845         req.port_id = cpu_to_le16(bp->pf.port_id);
8846         req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
8847         req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
8848         memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
8849         mutex_lock(&bp->hwrm_cmd_lock);
8850         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8851         if (!rc)
8852                 bp->wol_filter_id = resp->wol_filter_id;
8853         mutex_unlock(&bp->hwrm_cmd_lock);
8854         return rc;
8855 }
8856
8857 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
8858 {
8859         struct hwrm_wol_filter_free_input req = {0};
8860         int rc;
8861
8862         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
8863         req.port_id = cpu_to_le16(bp->pf.port_id);
8864         req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
8865         req.wol_filter_id = bp->wol_filter_id;
8866         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8867         return rc;
8868 }
8869
8870 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
8871 {
8872         struct hwrm_wol_filter_qcfg_input req = {0};
8873         struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
8874         u16 next_handle = 0;
8875         int rc;
8876
8877         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
8878         req.port_id = cpu_to_le16(bp->pf.port_id);
8879         req.handle = cpu_to_le16(handle);
8880         mutex_lock(&bp->hwrm_cmd_lock);
8881         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
8882         if (!rc) {
8883                 next_handle = le16_to_cpu(resp->next_handle);
8884                 if (next_handle != 0) {
8885                         if (resp->wol_type ==
8886                             WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
8887                                 bp->wol = 1;
8888                                 bp->wol_filter_id = resp->wol_filter_id;
8889                         }
8890                 }
8891         }
8892         mutex_unlock(&bp->hwrm_cmd_lock);
8893         return next_handle;
8894 }
8895
8896 static void bnxt_get_wol_settings(struct bnxt *bp)
8897 {
8898         u16 handle = 0;
8899
8900         bp->wol = 0;
8901         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
8902                 return;
8903
8904         do {
8905                 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
8906         } while (handle && handle != 0xffff);
8907 }
8908
8909 #ifdef CONFIG_BNXT_HWMON
8910 static ssize_t bnxt_show_temp(struct device *dev,
8911                               struct device_attribute *devattr, char *buf)
8912 {
8913         struct hwrm_temp_monitor_query_input req = {0};
8914         struct hwrm_temp_monitor_query_output *resp;
8915         struct bnxt *bp = dev_get_drvdata(dev);
8916         u32 temp = 0;
8917
8918         resp = bp->hwrm_cmd_resp_addr;
8919         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TEMP_MONITOR_QUERY, -1, -1);
8920         mutex_lock(&bp->hwrm_cmd_lock);
8921         if (!_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
8922                 temp = resp->temp * 1000; /* display millidegree */
8923         mutex_unlock(&bp->hwrm_cmd_lock);
8924
8925         return sprintf(buf, "%u\n", temp);
8926 }
8927 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
8928
8929 static struct attribute *bnxt_attrs[] = {
8930         &sensor_dev_attr_temp1_input.dev_attr.attr,
8931         NULL
8932 };
8933 ATTRIBUTE_GROUPS(bnxt);
8934
8935 static void bnxt_hwmon_close(struct bnxt *bp)
8936 {
8937         if (bp->hwmon_dev) {
8938                 hwmon_device_unregister(bp->hwmon_dev);
8939                 bp->hwmon_dev = NULL;
8940         }
8941 }
8942
8943 static void bnxt_hwmon_open(struct bnxt *bp)
8944 {
8945         struct pci_dev *pdev = bp->pdev;
8946
8947         if (bp->hwmon_dev)
8948                 return;
8949
8950         bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
8951                                                           DRV_MODULE_NAME, bp,
8952                                                           bnxt_groups);
8953         if (IS_ERR(bp->hwmon_dev)) {
8954                 bp->hwmon_dev = NULL;
8955                 dev_warn(&pdev->dev, "Cannot register hwmon device\n");
8956         }
8957 }
8958 #else
8959 static void bnxt_hwmon_close(struct bnxt *bp)
8960 {
8961 }
8962
8963 static void bnxt_hwmon_open(struct bnxt *bp)
8964 {
8965 }
8966 #endif
8967
8968 static bool bnxt_eee_config_ok(struct bnxt *bp)
8969 {
8970         struct ethtool_eee *eee = &bp->eee;
8971         struct bnxt_link_info *link_info = &bp->link_info;
8972
8973         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
8974                 return true;
8975
8976         if (eee->eee_enabled) {
8977                 u32 advertising =
8978                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
8979
8980                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
8981                         eee->eee_enabled = 0;
8982                         return false;
8983                 }
8984                 if (eee->advertised & ~advertising) {
8985                         eee->advertised = advertising & eee->supported;
8986                         return false;
8987                 }
8988         }
8989         return true;
8990 }
8991
8992 static int bnxt_update_phy_setting(struct bnxt *bp)
8993 {
8994         int rc;
8995         bool update_link = false;
8996         bool update_pause = false;
8997         bool update_eee = false;
8998         struct bnxt_link_info *link_info = &bp->link_info;
8999
9000         rc = bnxt_update_link(bp, true);
9001         if (rc) {
9002                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
9003                            rc);
9004                 return rc;
9005         }
9006         if (!BNXT_SINGLE_PF(bp))
9007                 return 0;
9008
9009         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9010             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
9011             link_info->req_flow_ctrl)
9012                 update_pause = true;
9013         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
9014             link_info->force_pause_setting != link_info->req_flow_ctrl)
9015                 update_pause = true;
9016         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
9017                 if (BNXT_AUTO_MODE(link_info->auto_mode))
9018                         update_link = true;
9019                 if (link_info->req_link_speed != link_info->force_link_speed)
9020                         update_link = true;
9021                 if (link_info->req_duplex != link_info->duplex_setting)
9022                         update_link = true;
9023         } else {
9024                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
9025                         update_link = true;
9026                 if (link_info->advertising != link_info->auto_link_speeds)
9027                         update_link = true;
9028         }
9029
9030         /* The last close may have shutdown the link, so need to call
9031          * PHY_CFG to bring it back up.
9032          */
9033         if (!netif_carrier_ok(bp->dev))
9034                 update_link = true;
9035
9036         if (!bnxt_eee_config_ok(bp))
9037                 update_eee = true;
9038
9039         if (update_link)
9040                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
9041         else if (update_pause)
9042                 rc = bnxt_hwrm_set_pause(bp);
9043         if (rc) {
9044                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
9045                            rc);
9046                 return rc;
9047         }
9048
9049         return rc;
9050 }
9051
9052 /* Common routine to pre-map certain register block to different GRC window.
9053  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
9054  * in PF and 3 windows in VF that can be customized to map in different
9055  * register blocks.
9056  */
9057 static void bnxt_preset_reg_win(struct bnxt *bp)
9058 {
9059         if (BNXT_PF(bp)) {
9060                 /* CAG registers map to GRC window #4 */
9061                 writel(BNXT_CAG_REG_BASE,
9062                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
9063         }
9064 }
9065
9066 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
9067
9068 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9069 {
9070         int rc = 0;
9071
9072         bnxt_preset_reg_win(bp);
9073         netif_carrier_off(bp->dev);
9074         if (irq_re_init) {
9075                 /* Reserve rings now if none were reserved at driver probe. */
9076                 rc = bnxt_init_dflt_ring_mode(bp);
9077                 if (rc) {
9078                         netdev_err(bp->dev, "Failed to reserve default rings at open\n");
9079                         return rc;
9080                 }
9081         }
9082         rc = bnxt_reserve_rings(bp, irq_re_init);
9083         if (rc)
9084                 return rc;
9085         if ((bp->flags & BNXT_FLAG_RFS) &&
9086             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
9087                 /* disable RFS if falling back to INTA */
9088                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
9089                 bp->flags &= ~BNXT_FLAG_RFS;
9090         }
9091
9092         rc = bnxt_alloc_mem(bp, irq_re_init);
9093         if (rc) {
9094                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9095                 goto open_err_free_mem;
9096         }
9097
9098         if (irq_re_init) {
9099                 bnxt_init_napi(bp);
9100                 rc = bnxt_request_irq(bp);
9101                 if (rc) {
9102                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
9103                         goto open_err_irq;
9104                 }
9105         }
9106
9107         bnxt_enable_napi(bp);
9108         bnxt_debug_dev_init(bp);
9109
9110         rc = bnxt_init_nic(bp, irq_re_init);
9111         if (rc) {
9112                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9113                 goto open_err;
9114         }
9115
9116         if (link_re_init) {
9117                 mutex_lock(&bp->link_lock);
9118                 rc = bnxt_update_phy_setting(bp);
9119                 mutex_unlock(&bp->link_lock);
9120                 if (rc) {
9121                         netdev_warn(bp->dev, "failed to update phy settings\n");
9122                         if (BNXT_SINGLE_PF(bp)) {
9123                                 bp->link_info.phy_retry = true;
9124                                 bp->link_info.phy_retry_expires =
9125                                         jiffies + 5 * HZ;
9126                         }
9127                 }
9128         }
9129
9130         if (irq_re_init)
9131                 udp_tunnel_get_rx_info(bp->dev);
9132
9133         set_bit(BNXT_STATE_OPEN, &bp->state);
9134         bnxt_enable_int(bp);
9135         /* Enable TX queues */
9136         bnxt_tx_enable(bp);
9137         mod_timer(&bp->timer, jiffies + bp->current_interval);
9138         /* Poll link status and check for SFP+ module status */
9139         bnxt_get_port_module_status(bp);
9140
9141         /* VF-reps may need to be re-opened after the PF is re-opened */
9142         if (BNXT_PF(bp))
9143                 bnxt_vf_reps_open(bp);
9144         return 0;
9145
9146 open_err:
9147         bnxt_debug_dev_exit(bp);
9148         bnxt_disable_napi(bp);
9149
9150 open_err_irq:
9151         bnxt_del_napi(bp);
9152
9153 open_err_free_mem:
9154         bnxt_free_skbs(bp);
9155         bnxt_free_irq(bp);
9156         bnxt_free_mem(bp, true);
9157         return rc;
9158 }
9159
9160 /* rtnl_lock held */
9161 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9162 {
9163         int rc = 0;
9164
9165         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
9166         if (rc) {
9167                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
9168                 dev_close(bp->dev);
9169         }
9170         return rc;
9171 }
9172
9173 /* rtnl_lock held, open the NIC half way by allocating all resources, but
9174  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
9175  * self tests.
9176  */
9177 int bnxt_half_open_nic(struct bnxt *bp)
9178 {
9179         int rc = 0;
9180
9181         rc = bnxt_alloc_mem(bp, false);
9182         if (rc) {
9183                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
9184                 goto half_open_err;
9185         }
9186         rc = bnxt_init_nic(bp, false);
9187         if (rc) {
9188                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
9189                 goto half_open_err;
9190         }
9191         return 0;
9192
9193 half_open_err:
9194         bnxt_free_skbs(bp);
9195         bnxt_free_mem(bp, false);
9196         dev_close(bp->dev);
9197         return rc;
9198 }
9199
9200 /* rtnl_lock held, this call can only be made after a previous successful
9201  * call to bnxt_half_open_nic().
9202  */
9203 void bnxt_half_close_nic(struct bnxt *bp)
9204 {
9205         bnxt_hwrm_resource_free(bp, false, false);
9206         bnxt_free_skbs(bp);
9207         bnxt_free_mem(bp, false);
9208 }
9209
9210 static int bnxt_open(struct net_device *dev)
9211 {
9212         struct bnxt *bp = netdev_priv(dev);
9213         int rc;
9214
9215         if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
9216                 netdev_err(bp->dev, "A previous firmware reset did not complete, aborting\n");
9217                 return -ENODEV;
9218         }
9219
9220         rc = bnxt_hwrm_if_change(bp, true);
9221         if (rc)
9222                 return rc;
9223         rc = __bnxt_open_nic(bp, true, true);
9224         if (rc) {
9225                 bnxt_hwrm_if_change(bp, false);
9226         } else {
9227                 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state) &&
9228                     BNXT_PF(bp)) {
9229                         struct bnxt_pf_info *pf = &bp->pf;
9230                         int n = pf->active_vfs;
9231
9232                         if (n)
9233                                 bnxt_cfg_hw_sriov(bp, &n, true);
9234                 }
9235                 bnxt_hwmon_open(bp);
9236         }
9237
9238         return rc;
9239 }
9240
9241 static bool bnxt_drv_busy(struct bnxt *bp)
9242 {
9243         return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
9244                 test_bit(BNXT_STATE_READ_STATS, &bp->state));
9245 }
9246
9247 static void bnxt_get_ring_stats(struct bnxt *bp,
9248                                 struct rtnl_link_stats64 *stats);
9249
9250 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
9251                              bool link_re_init)
9252 {
9253         /* Close the VF-reps before closing PF */
9254         if (BNXT_PF(bp))
9255                 bnxt_vf_reps_close(bp);
9256
9257         /* Change device state to avoid TX queue wake up's */
9258         bnxt_tx_disable(bp);
9259
9260         clear_bit(BNXT_STATE_OPEN, &bp->state);
9261         smp_mb__after_atomic();
9262         while (bnxt_drv_busy(bp))
9263                 msleep(20);
9264
9265         /* Flush rings and and disable interrupts */
9266         bnxt_shutdown_nic(bp, irq_re_init);
9267
9268         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
9269
9270         bnxt_debug_dev_exit(bp);
9271         bnxt_disable_napi(bp);
9272         del_timer_sync(&bp->timer);
9273         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) &&
9274             pci_is_enabled(bp->pdev))
9275                 pci_disable_device(bp->pdev);
9276
9277         bnxt_free_skbs(bp);
9278
9279         /* Save ring stats before shutdown */
9280         if (bp->bnapi)
9281                 bnxt_get_ring_stats(bp, &bp->net_stats_prev);
9282         if (irq_re_init) {
9283                 bnxt_free_irq(bp);
9284                 bnxt_del_napi(bp);
9285         }
9286         bnxt_free_mem(bp, irq_re_init);
9287 }
9288
9289 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
9290 {
9291         int rc = 0;
9292
9293         if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
9294                 /* If we get here, it means firmware reset is in progress
9295                  * while we are trying to close.  We can safely proceed with
9296                  * the close because we are holding rtnl_lock().  Some firmware
9297                  * messages may fail as we proceed to close.  We set the
9298                  * ABORT_ERR flag here so that the FW reset thread will later
9299                  * abort when it gets the rtnl_lock() and sees the flag.
9300                  */
9301                 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
9302                 set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9303         }
9304
9305 #ifdef CONFIG_BNXT_SRIOV
9306         if (bp->sriov_cfg) {
9307                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
9308                                                       !bp->sriov_cfg,
9309                                                       BNXT_SRIOV_CFG_WAIT_TMO);
9310                 if (rc)
9311                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
9312         }
9313 #endif
9314         __bnxt_close_nic(bp, irq_re_init, link_re_init);
9315         return rc;
9316 }
9317
9318 static int bnxt_close(struct net_device *dev)
9319 {
9320         struct bnxt *bp = netdev_priv(dev);
9321
9322         bnxt_hwmon_close(bp);
9323         bnxt_close_nic(bp, true, true);
9324         bnxt_hwrm_shutdown_link(bp);
9325         bnxt_hwrm_if_change(bp, false);
9326         return 0;
9327 }
9328
9329 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
9330                                    u16 *val)
9331 {
9332         struct hwrm_port_phy_mdio_read_output *resp = bp->hwrm_cmd_resp_addr;
9333         struct hwrm_port_phy_mdio_read_input req = {0};
9334         int rc;
9335
9336         if (bp->hwrm_spec_code < 0x10a00)
9337                 return -EOPNOTSUPP;
9338
9339         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_READ, -1, -1);
9340         req.port_id = cpu_to_le16(bp->pf.port_id);
9341         req.phy_addr = phy_addr;
9342         req.reg_addr = cpu_to_le16(reg & 0x1f);
9343         if (mdio_phy_id_is_c45(phy_addr)) {
9344                 req.cl45_mdio = 1;
9345                 req.phy_addr = mdio_phy_id_prtad(phy_addr);
9346                 req.dev_addr = mdio_phy_id_devad(phy_addr);
9347                 req.reg_addr = cpu_to_le16(reg);
9348         }
9349
9350         mutex_lock(&bp->hwrm_cmd_lock);
9351         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9352         if (!rc)
9353                 *val = le16_to_cpu(resp->reg_data);
9354         mutex_unlock(&bp->hwrm_cmd_lock);
9355         return rc;
9356 }
9357
9358 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
9359                                     u16 val)
9360 {
9361         struct hwrm_port_phy_mdio_write_input req = {0};
9362
9363         if (bp->hwrm_spec_code < 0x10a00)
9364                 return -EOPNOTSUPP;
9365
9366         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_MDIO_WRITE, -1, -1);
9367         req.port_id = cpu_to_le16(bp->pf.port_id);
9368         req.phy_addr = phy_addr;
9369         req.reg_addr = cpu_to_le16(reg & 0x1f);
9370         if (mdio_phy_id_is_c45(phy_addr)) {
9371                 req.cl45_mdio = 1;
9372                 req.phy_addr = mdio_phy_id_prtad(phy_addr);
9373                 req.dev_addr = mdio_phy_id_devad(phy_addr);
9374                 req.reg_addr = cpu_to_le16(reg);
9375         }
9376         req.reg_data = cpu_to_le16(val);
9377
9378         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9379 }
9380
9381 /* rtnl_lock held */
9382 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
9383 {
9384         struct mii_ioctl_data *mdio = if_mii(ifr);
9385         struct bnxt *bp = netdev_priv(dev);
9386         int rc;
9387
9388         switch (cmd) {
9389         case SIOCGMIIPHY:
9390                 mdio->phy_id = bp->link_info.phy_addr;
9391
9392                 /* fallthru */
9393         case SIOCGMIIREG: {
9394                 u16 mii_regval = 0;
9395
9396                 if (!netif_running(dev))
9397                         return -EAGAIN;
9398
9399                 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
9400                                              &mii_regval);
9401                 mdio->val_out = mii_regval;
9402                 return rc;
9403         }
9404
9405         case SIOCSMIIREG:
9406                 if (!netif_running(dev))
9407                         return -EAGAIN;
9408
9409                 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
9410                                                 mdio->val_in);
9411
9412         default:
9413                 /* do nothing */
9414                 break;
9415         }
9416         return -EOPNOTSUPP;
9417 }
9418
9419 static void bnxt_get_ring_stats(struct bnxt *bp,
9420                                 struct rtnl_link_stats64 *stats)
9421 {
9422         int i;
9423
9424
9425         for (i = 0; i < bp->cp_nr_rings; i++) {
9426                 struct bnxt_napi *bnapi = bp->bnapi[i];
9427                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9428                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
9429
9430                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
9431                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
9432                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
9433
9434                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
9435                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
9436                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
9437
9438                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
9439                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
9440                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
9441
9442                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
9443                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
9444                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
9445
9446                 stats->rx_missed_errors +=
9447                         le64_to_cpu(hw_stats->rx_discard_pkts);
9448
9449                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
9450
9451                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
9452         }
9453 }
9454
9455 static void bnxt_add_prev_stats(struct bnxt *bp,
9456                                 struct rtnl_link_stats64 *stats)
9457 {
9458         struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
9459
9460         stats->rx_packets += prev_stats->rx_packets;
9461         stats->tx_packets += prev_stats->tx_packets;
9462         stats->rx_bytes += prev_stats->rx_bytes;
9463         stats->tx_bytes += prev_stats->tx_bytes;
9464         stats->rx_missed_errors += prev_stats->rx_missed_errors;
9465         stats->multicast += prev_stats->multicast;
9466         stats->tx_dropped += prev_stats->tx_dropped;
9467 }
9468
9469 static void
9470 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
9471 {
9472         struct bnxt *bp = netdev_priv(dev);
9473
9474         set_bit(BNXT_STATE_READ_STATS, &bp->state);
9475         /* Make sure bnxt_close_nic() sees that we are reading stats before
9476          * we check the BNXT_STATE_OPEN flag.
9477          */
9478         smp_mb__after_atomic();
9479         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9480                 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9481                 *stats = bp->net_stats_prev;
9482                 return;
9483         }
9484
9485         bnxt_get_ring_stats(bp, stats);
9486         bnxt_add_prev_stats(bp, stats);
9487
9488         if (bp->flags & BNXT_FLAG_PORT_STATS) {
9489                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
9490                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
9491
9492                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
9493                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
9494                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
9495                                           le64_to_cpu(rx->rx_ovrsz_frames) +
9496                                           le64_to_cpu(rx->rx_runt_frames);
9497                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
9498                                    le64_to_cpu(rx->rx_jbr_frames);
9499                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
9500                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
9501                 stats->tx_errors = le64_to_cpu(tx->tx_err);
9502         }
9503         clear_bit(BNXT_STATE_READ_STATS, &bp->state);
9504 }
9505
9506 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
9507 {
9508         struct net_device *dev = bp->dev;
9509         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9510         struct netdev_hw_addr *ha;
9511         u8 *haddr;
9512         int mc_count = 0;
9513         bool update = false;
9514         int off = 0;
9515
9516         netdev_for_each_mc_addr(ha, dev) {
9517                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
9518                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9519                         vnic->mc_list_count = 0;
9520                         return false;
9521                 }
9522                 haddr = ha->addr;
9523                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
9524                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
9525                         update = true;
9526                 }
9527                 off += ETH_ALEN;
9528                 mc_count++;
9529         }
9530         if (mc_count)
9531                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
9532
9533         if (mc_count != vnic->mc_list_count) {
9534                 vnic->mc_list_count = mc_count;
9535                 update = true;
9536         }
9537         return update;
9538 }
9539
9540 static bool bnxt_uc_list_updated(struct bnxt *bp)
9541 {
9542         struct net_device *dev = bp->dev;
9543         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9544         struct netdev_hw_addr *ha;
9545         int off = 0;
9546
9547         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
9548                 return true;
9549
9550         netdev_for_each_uc_addr(ha, dev) {
9551                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
9552                         return true;
9553
9554                 off += ETH_ALEN;
9555         }
9556         return false;
9557 }
9558
9559 static void bnxt_set_rx_mode(struct net_device *dev)
9560 {
9561         struct bnxt *bp = netdev_priv(dev);
9562         struct bnxt_vnic_info *vnic;
9563         bool mc_update = false;
9564         bool uc_update;
9565         u32 mask;
9566
9567         if (!test_bit(BNXT_STATE_OPEN, &bp->state))
9568                 return;
9569
9570         vnic = &bp->vnic_info[0];
9571         mask = vnic->rx_mask;
9572         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
9573                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
9574                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
9575                   CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
9576
9577         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
9578                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9579
9580         uc_update = bnxt_uc_list_updated(bp);
9581
9582         if (dev->flags & IFF_BROADCAST)
9583                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
9584         if (dev->flags & IFF_ALLMULTI) {
9585                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9586                 vnic->mc_list_count = 0;
9587         } else {
9588                 mc_update = bnxt_mc_list_updated(bp, &mask);
9589         }
9590
9591         if (mask != vnic->rx_mask || uc_update || mc_update) {
9592                 vnic->rx_mask = mask;
9593
9594                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
9595                 bnxt_queue_sp_work(bp);
9596         }
9597 }
9598
9599 static int bnxt_cfg_rx_mode(struct bnxt *bp)
9600 {
9601         struct net_device *dev = bp->dev;
9602         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
9603         struct netdev_hw_addr *ha;
9604         int i, off = 0, rc;
9605         bool uc_update;
9606
9607         netif_addr_lock_bh(dev);
9608         uc_update = bnxt_uc_list_updated(bp);
9609         netif_addr_unlock_bh(dev);
9610
9611         if (!uc_update)
9612                 goto skip_uc;
9613
9614         mutex_lock(&bp->hwrm_cmd_lock);
9615         for (i = 1; i < vnic->uc_filter_count; i++) {
9616                 struct hwrm_cfa_l2_filter_free_input req = {0};
9617
9618                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
9619                                        -1);
9620
9621                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
9622
9623                 rc = _hwrm_send_message(bp, &req, sizeof(req),
9624                                         HWRM_CMD_TIMEOUT);
9625         }
9626         mutex_unlock(&bp->hwrm_cmd_lock);
9627
9628         vnic->uc_filter_count = 1;
9629
9630         netif_addr_lock_bh(dev);
9631         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
9632                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
9633         } else {
9634                 netdev_for_each_uc_addr(ha, dev) {
9635                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
9636                         off += ETH_ALEN;
9637                         vnic->uc_filter_count++;
9638                 }
9639         }
9640         netif_addr_unlock_bh(dev);
9641
9642         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
9643                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
9644                 if (rc) {
9645                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
9646                                    rc);
9647                         vnic->uc_filter_count = i;
9648                         return rc;
9649                 }
9650         }
9651
9652 skip_uc:
9653         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9654         if (rc && vnic->mc_list_count) {
9655                 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
9656                             rc);
9657                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
9658                 vnic->mc_list_count = 0;
9659                 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
9660         }
9661         if (rc)
9662                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
9663                            rc);
9664
9665         return rc;
9666 }
9667
9668 static bool bnxt_can_reserve_rings(struct bnxt *bp)
9669 {
9670 #ifdef CONFIG_BNXT_SRIOV
9671         if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
9672                 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9673
9674                 /* No minimum rings were provisioned by the PF.  Don't
9675                  * reserve rings by default when device is down.
9676                  */
9677                 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
9678                         return true;
9679
9680                 if (!netif_running(bp->dev))
9681                         return false;
9682         }
9683 #endif
9684         return true;
9685 }
9686
9687 /* If the chip and firmware supports RFS */
9688 static bool bnxt_rfs_supported(struct bnxt *bp)
9689 {
9690         if (bp->flags & BNXT_FLAG_CHIP_P5) {
9691                 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX)
9692                         return true;
9693                 return false;
9694         }
9695         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
9696                 return true;
9697         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9698                 return true;
9699         return false;
9700 }
9701
9702 /* If runtime conditions support RFS */
9703 static bool bnxt_rfs_capable(struct bnxt *bp)
9704 {
9705 #ifdef CONFIG_RFS_ACCEL
9706         int vnics, max_vnics, max_rss_ctxs;
9707
9708         if (bp->flags & BNXT_FLAG_CHIP_P5)
9709                 return bnxt_rfs_supported(bp);
9710         if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
9711                 return false;
9712
9713         vnics = 1 + bp->rx_nr_rings;
9714         max_vnics = bnxt_get_max_func_vnics(bp);
9715         max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
9716
9717         /* RSS contexts not a limiting factor */
9718         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
9719                 max_rss_ctxs = max_vnics;
9720         if (vnics > max_vnics || vnics > max_rss_ctxs) {
9721                 if (bp->rx_nr_rings > 1)
9722                         netdev_warn(bp->dev,
9723                                     "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
9724                                     min(max_rss_ctxs - 1, max_vnics - 1));
9725                 return false;
9726         }
9727
9728         if (!BNXT_NEW_RM(bp))
9729                 return true;
9730
9731         if (vnics == bp->hw_resc.resv_vnics)
9732                 return true;
9733
9734         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
9735         if (vnics <= bp->hw_resc.resv_vnics)
9736                 return true;
9737
9738         netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
9739         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
9740         return false;
9741 #else
9742         return false;
9743 #endif
9744 }
9745
9746 static netdev_features_t bnxt_fix_features(struct net_device *dev,
9747                                            netdev_features_t features)
9748 {
9749         struct bnxt *bp = netdev_priv(dev);
9750
9751         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
9752                 features &= ~NETIF_F_NTUPLE;
9753
9754         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9755                 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
9756
9757         if (!(features & NETIF_F_GRO))
9758                 features &= ~NETIF_F_GRO_HW;
9759
9760         if (features & NETIF_F_GRO_HW)
9761                 features &= ~NETIF_F_LRO;
9762
9763         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
9764          * turned on or off together.
9765          */
9766         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
9767             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
9768                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
9769                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9770                                       NETIF_F_HW_VLAN_STAG_RX);
9771                 else
9772                         features |= NETIF_F_HW_VLAN_CTAG_RX |
9773                                     NETIF_F_HW_VLAN_STAG_RX;
9774         }
9775 #ifdef CONFIG_BNXT_SRIOV
9776         if (BNXT_VF(bp)) {
9777                 if (bp->vf.vlan) {
9778                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
9779                                       NETIF_F_HW_VLAN_STAG_RX);
9780                 }
9781         }
9782 #endif
9783         return features;
9784 }
9785
9786 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
9787 {
9788         struct bnxt *bp = netdev_priv(dev);
9789         u32 flags = bp->flags;
9790         u32 changes;
9791         int rc = 0;
9792         bool re_init = false;
9793         bool update_tpa = false;
9794
9795         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
9796         if (features & NETIF_F_GRO_HW)
9797                 flags |= BNXT_FLAG_GRO;
9798         else if (features & NETIF_F_LRO)
9799                 flags |= BNXT_FLAG_LRO;
9800
9801         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
9802                 flags &= ~BNXT_FLAG_TPA;
9803
9804         if (features & NETIF_F_HW_VLAN_CTAG_RX)
9805                 flags |= BNXT_FLAG_STRIP_VLAN;
9806
9807         if (features & NETIF_F_NTUPLE)
9808                 flags |= BNXT_FLAG_RFS;
9809
9810         changes = flags ^ bp->flags;
9811         if (changes & BNXT_FLAG_TPA) {
9812                 update_tpa = true;
9813                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
9814                     (flags & BNXT_FLAG_TPA) == 0 ||
9815                     (bp->flags & BNXT_FLAG_CHIP_P5))
9816                         re_init = true;
9817         }
9818
9819         if (changes & ~BNXT_FLAG_TPA)
9820                 re_init = true;
9821
9822         if (flags != bp->flags) {
9823                 u32 old_flags = bp->flags;
9824
9825                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
9826                         bp->flags = flags;
9827                         if (update_tpa)
9828                                 bnxt_set_ring_params(bp);
9829                         return rc;
9830                 }
9831
9832                 if (re_init) {
9833                         bnxt_close_nic(bp, false, false);
9834                         bp->flags = flags;
9835                         if (update_tpa)
9836                                 bnxt_set_ring_params(bp);
9837
9838                         return bnxt_open_nic(bp, false, false);
9839                 }
9840                 if (update_tpa) {
9841                         bp->flags = flags;
9842                         rc = bnxt_set_tpa(bp,
9843                                           (flags & BNXT_FLAG_TPA) ?
9844                                           true : false);
9845                         if (rc)
9846                                 bp->flags = old_flags;
9847                 }
9848         }
9849         return rc;
9850 }
9851
9852 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
9853                                        u32 ring_id, u32 *prod, u32 *cons)
9854 {
9855         struct hwrm_dbg_ring_info_get_output *resp = bp->hwrm_cmd_resp_addr;
9856         struct hwrm_dbg_ring_info_get_input req = {0};
9857         int rc;
9858
9859         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_DBG_RING_INFO_GET, -1, -1);
9860         req.ring_type = ring_type;
9861         req.fw_ring_id = cpu_to_le32(ring_id);
9862         mutex_lock(&bp->hwrm_cmd_lock);
9863         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
9864         if (!rc) {
9865                 *prod = le32_to_cpu(resp->producer_index);
9866                 *cons = le32_to_cpu(resp->consumer_index);
9867         }
9868         mutex_unlock(&bp->hwrm_cmd_lock);
9869         return rc;
9870 }
9871
9872 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
9873 {
9874         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
9875         int i = bnapi->index;
9876
9877         if (!txr)
9878                 return;
9879
9880         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
9881                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
9882                     txr->tx_cons);
9883 }
9884
9885 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
9886 {
9887         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
9888         int i = bnapi->index;
9889
9890         if (!rxr)
9891                 return;
9892
9893         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
9894                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
9895                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
9896                     rxr->rx_sw_agg_prod);
9897 }
9898
9899 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
9900 {
9901         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
9902         int i = bnapi->index;
9903
9904         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
9905                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
9906 }
9907
9908 static void bnxt_dbg_dump_states(struct bnxt *bp)
9909 {
9910         int i;
9911         struct bnxt_napi *bnapi;
9912
9913         for (i = 0; i < bp->cp_nr_rings; i++) {
9914                 bnapi = bp->bnapi[i];
9915                 if (netif_msg_drv(bp)) {
9916                         bnxt_dump_tx_sw_state(bnapi);
9917                         bnxt_dump_rx_sw_state(bnapi);
9918                         bnxt_dump_cp_sw_state(bnapi);
9919                 }
9920         }
9921 }
9922
9923 static void bnxt_reset_task(struct bnxt *bp, bool silent)
9924 {
9925         if (!silent)
9926                 bnxt_dbg_dump_states(bp);
9927         if (netif_running(bp->dev)) {
9928                 int rc;
9929
9930                 if (!silent)
9931                         bnxt_ulp_stop(bp);
9932                 bnxt_close_nic(bp, false, false);
9933                 rc = bnxt_open_nic(bp, false, false);
9934                 if (!silent && !rc)
9935                         bnxt_ulp_start(bp);
9936         }
9937 }
9938
9939 static void bnxt_tx_timeout(struct net_device *dev)
9940 {
9941         struct bnxt *bp = netdev_priv(dev);
9942
9943         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
9944         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
9945         bnxt_queue_sp_work(bp);
9946 }
9947
9948 static void bnxt_fw_health_check(struct bnxt *bp)
9949 {
9950         struct bnxt_fw_health *fw_health = bp->fw_health;
9951         u32 val;
9952
9953         if (!fw_health || !fw_health->enabled ||
9954             test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9955                 return;
9956
9957         if (fw_health->tmr_counter) {
9958                 fw_health->tmr_counter--;
9959                 return;
9960         }
9961
9962         val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
9963         if (val == fw_health->last_fw_heartbeat)
9964                 goto fw_reset;
9965
9966         fw_health->last_fw_heartbeat = val;
9967
9968         val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
9969         if (val != fw_health->last_fw_reset_cnt)
9970                 goto fw_reset;
9971
9972         fw_health->tmr_counter = fw_health->tmr_multiplier;
9973         return;
9974
9975 fw_reset:
9976         set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
9977         bnxt_queue_sp_work(bp);
9978 }
9979
9980 static void bnxt_timer(struct timer_list *t)
9981 {
9982         struct bnxt *bp = from_timer(bp, t, timer);
9983         struct net_device *dev = bp->dev;
9984
9985         if (!netif_running(dev))
9986                 return;
9987
9988         if (atomic_read(&bp->intr_sem) != 0)
9989                 goto bnxt_restart_timer;
9990
9991         if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
9992                 bnxt_fw_health_check(bp);
9993
9994         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
9995             bp->stats_coal_ticks) {
9996                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
9997                 bnxt_queue_sp_work(bp);
9998         }
9999
10000         if (bnxt_tc_flower_enabled(bp)) {
10001                 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
10002                 bnxt_queue_sp_work(bp);
10003         }
10004
10005         if (bp->link_info.phy_retry) {
10006                 if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
10007                         bp->link_info.phy_retry = 0;
10008                         netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
10009                 } else {
10010                         set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
10011                         bnxt_queue_sp_work(bp);
10012                 }
10013         }
10014
10015         if ((bp->flags & BNXT_FLAG_CHIP_P5) && netif_carrier_ok(dev)) {
10016                 set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
10017                 bnxt_queue_sp_work(bp);
10018         }
10019 bnxt_restart_timer:
10020         mod_timer(&bp->timer, jiffies + bp->current_interval);
10021 }
10022
10023 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
10024 {
10025         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
10026          * set.  If the device is being closed, bnxt_close() may be holding
10027          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
10028          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
10029          */
10030         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10031         rtnl_lock();
10032 }
10033
10034 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
10035 {
10036         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10037         rtnl_unlock();
10038 }
10039
10040 /* Only called from bnxt_sp_task() */
10041 static void bnxt_reset(struct bnxt *bp, bool silent)
10042 {
10043         bnxt_rtnl_lock_sp(bp);
10044         if (test_bit(BNXT_STATE_OPEN, &bp->state))
10045                 bnxt_reset_task(bp, silent);
10046         bnxt_rtnl_unlock_sp(bp);
10047 }
10048
10049 static void bnxt_fw_reset_close(struct bnxt *bp)
10050 {
10051         __bnxt_close_nic(bp, true, false);
10052         bnxt_ulp_irq_stop(bp);
10053         bnxt_clear_int_mode(bp);
10054         bnxt_hwrm_func_drv_unrgtr(bp);
10055         bnxt_free_ctx_mem(bp);
10056         kfree(bp->ctx);
10057         bp->ctx = NULL;
10058 }
10059
10060 static bool is_bnxt_fw_ok(struct bnxt *bp)
10061 {
10062         struct bnxt_fw_health *fw_health = bp->fw_health;
10063         bool no_heartbeat = false, has_reset = false;
10064         u32 val;
10065
10066         val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
10067         if (val == fw_health->last_fw_heartbeat)
10068                 no_heartbeat = true;
10069
10070         val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
10071         if (val != fw_health->last_fw_reset_cnt)
10072                 has_reset = true;
10073
10074         if (!no_heartbeat && has_reset)
10075                 return true;
10076
10077         return false;
10078 }
10079
10080 /* rtnl_lock is acquired before calling this function */
10081 static void bnxt_force_fw_reset(struct bnxt *bp)
10082 {
10083         struct bnxt_fw_health *fw_health = bp->fw_health;
10084         u32 wait_dsecs;
10085
10086         if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
10087             test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10088                 return;
10089
10090         set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10091         bnxt_fw_reset_close(bp);
10092         wait_dsecs = fw_health->master_func_wait_dsecs;
10093         if (fw_health->master) {
10094                 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
10095                         wait_dsecs = 0;
10096                 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10097         } else {
10098                 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
10099                 wait_dsecs = fw_health->normal_func_wait_dsecs;
10100                 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10101         }
10102
10103         bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
10104         bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
10105         bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10106 }
10107
10108 void bnxt_fw_exception(struct bnxt *bp)
10109 {
10110         set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10111         bnxt_rtnl_lock_sp(bp);
10112         bnxt_force_fw_reset(bp);
10113         bnxt_rtnl_unlock_sp(bp);
10114 }
10115
10116 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
10117  * < 0 on error.
10118  */
10119 static int bnxt_get_registered_vfs(struct bnxt *bp)
10120 {
10121 #ifdef CONFIG_BNXT_SRIOV
10122         int rc;
10123
10124         if (!BNXT_PF(bp))
10125                 return 0;
10126
10127         rc = bnxt_hwrm_func_qcfg(bp);
10128         if (rc) {
10129                 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
10130                 return rc;
10131         }
10132         if (bp->pf.registered_vfs)
10133                 return bp->pf.registered_vfs;
10134         if (bp->sriov_cfg)
10135                 return 1;
10136 #endif
10137         return 0;
10138 }
10139
10140 void bnxt_fw_reset(struct bnxt *bp)
10141 {
10142         bnxt_rtnl_lock_sp(bp);
10143         if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
10144             !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10145                 int n = 0, tmo;
10146
10147                 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10148                 if (bp->pf.active_vfs &&
10149                     !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
10150                         n = bnxt_get_registered_vfs(bp);
10151                 if (n < 0) {
10152                         netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
10153                                    n);
10154                         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10155                         dev_close(bp->dev);
10156                         goto fw_reset_exit;
10157                 } else if (n > 0) {
10158                         u16 vf_tmo_dsecs = n * 10;
10159
10160                         if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
10161                                 bp->fw_reset_max_dsecs = vf_tmo_dsecs;
10162                         bp->fw_reset_state =
10163                                 BNXT_FW_RESET_STATE_POLL_VF;
10164                         bnxt_queue_fw_reset_work(bp, HZ / 10);
10165                         goto fw_reset_exit;
10166                 }
10167                 bnxt_fw_reset_close(bp);
10168                 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10169                         bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10170                         tmo = HZ / 10;
10171                 } else {
10172                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10173                         tmo = bp->fw_reset_min_dsecs * HZ / 10;
10174                 }
10175                 bnxt_queue_fw_reset_work(bp, tmo);
10176         }
10177 fw_reset_exit:
10178         bnxt_rtnl_unlock_sp(bp);
10179 }
10180
10181 static void bnxt_chk_missed_irq(struct bnxt *bp)
10182 {
10183         int i;
10184
10185         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
10186                 return;
10187
10188         for (i = 0; i < bp->cp_nr_rings; i++) {
10189                 struct bnxt_napi *bnapi = bp->bnapi[i];
10190                 struct bnxt_cp_ring_info *cpr;
10191                 u32 fw_ring_id;
10192                 int j;
10193
10194                 if (!bnapi)
10195                         continue;
10196
10197                 cpr = &bnapi->cp_ring;
10198                 for (j = 0; j < 2; j++) {
10199                         struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
10200                         u32 val[2];
10201
10202                         if (!cpr2 || cpr2->has_more_work ||
10203                             !bnxt_has_work(bp, cpr2))
10204                                 continue;
10205
10206                         if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
10207                                 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
10208                                 continue;
10209                         }
10210                         fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
10211                         bnxt_dbg_hwrm_ring_info_get(bp,
10212                                 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
10213                                 fw_ring_id, &val[0], &val[1]);
10214                         cpr->missed_irqs++;
10215                 }
10216         }
10217 }
10218
10219 static void bnxt_cfg_ntp_filters(struct bnxt *);
10220
10221 static void bnxt_sp_task(struct work_struct *work)
10222 {
10223         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
10224
10225         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10226         smp_mb__after_atomic();
10227         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10228                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10229                 return;
10230         }
10231
10232         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
10233                 bnxt_cfg_rx_mode(bp);
10234
10235         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
10236                 bnxt_cfg_ntp_filters(bp);
10237         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
10238                 bnxt_hwrm_exec_fwd_req(bp);
10239         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
10240                 bnxt_hwrm_tunnel_dst_port_alloc(
10241                         bp, bp->vxlan_port,
10242                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
10243         }
10244         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
10245                 bnxt_hwrm_tunnel_dst_port_free(
10246                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
10247         }
10248         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
10249                 bnxt_hwrm_tunnel_dst_port_alloc(
10250                         bp, bp->nge_port,
10251                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
10252         }
10253         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
10254                 bnxt_hwrm_tunnel_dst_port_free(
10255                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
10256         }
10257         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
10258                 bnxt_hwrm_port_qstats(bp);
10259                 bnxt_hwrm_port_qstats_ext(bp);
10260                 bnxt_hwrm_pcie_qstats(bp);
10261         }
10262
10263         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
10264                 int rc;
10265
10266                 mutex_lock(&bp->link_lock);
10267                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
10268                                        &bp->sp_event))
10269                         bnxt_hwrm_phy_qcaps(bp);
10270
10271                 rc = bnxt_update_link(bp, true);
10272                 mutex_unlock(&bp->link_lock);
10273                 if (rc)
10274                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
10275                                    rc);
10276         }
10277         if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
10278                 int rc;
10279
10280                 mutex_lock(&bp->link_lock);
10281                 rc = bnxt_update_phy_setting(bp);
10282                 mutex_unlock(&bp->link_lock);
10283                 if (rc) {
10284                         netdev_warn(bp->dev, "update phy settings retry failed\n");
10285                 } else {
10286                         bp->link_info.phy_retry = false;
10287                         netdev_info(bp->dev, "update phy settings retry succeeded\n");
10288                 }
10289         }
10290         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
10291                 mutex_lock(&bp->link_lock);
10292                 bnxt_get_port_module_status(bp);
10293                 mutex_unlock(&bp->link_lock);
10294         }
10295
10296         if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
10297                 bnxt_tc_flow_stats_work(bp);
10298
10299         if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
10300                 bnxt_chk_missed_irq(bp);
10301
10302         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
10303          * must be the last functions to be called before exiting.
10304          */
10305         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
10306                 bnxt_reset(bp, false);
10307
10308         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
10309                 bnxt_reset(bp, true);
10310
10311         if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event))
10312                 bnxt_devlink_health_report(bp, BNXT_FW_RESET_NOTIFY_SP_EVENT);
10313
10314         if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
10315                 if (!is_bnxt_fw_ok(bp))
10316                         bnxt_devlink_health_report(bp,
10317                                                    BNXT_FW_EXCEPTION_SP_EVENT);
10318         }
10319
10320         smp_mb__before_atomic();
10321         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
10322 }
10323
10324 /* Under rtnl_lock */
10325 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
10326                      int tx_xdp)
10327 {
10328         int max_rx, max_tx, tx_sets = 1;
10329         int tx_rings_needed, stats;
10330         int rx_rings = rx;
10331         int cp, vnics, rc;
10332
10333         if (tcs)
10334                 tx_sets = tcs;
10335
10336         rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
10337         if (rc)
10338                 return rc;
10339
10340         if (max_rx < rx)
10341                 return -ENOMEM;
10342
10343         tx_rings_needed = tx * tx_sets + tx_xdp;
10344         if (max_tx < tx_rings_needed)
10345                 return -ENOMEM;
10346
10347         vnics = 1;
10348         if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
10349                 vnics += rx_rings;
10350
10351         if (bp->flags & BNXT_FLAG_AGG_RINGS)
10352                 rx_rings <<= 1;
10353         cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
10354         stats = cp;
10355         if (BNXT_NEW_RM(bp)) {
10356                 cp += bnxt_get_ulp_msix_num(bp);
10357                 stats += bnxt_get_ulp_stat_ctxs(bp);
10358         }
10359         return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
10360                                      stats, vnics);
10361 }
10362
10363 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
10364 {
10365         if (bp->bar2) {
10366                 pci_iounmap(pdev, bp->bar2);
10367                 bp->bar2 = NULL;
10368         }
10369
10370         if (bp->bar1) {
10371                 pci_iounmap(pdev, bp->bar1);
10372                 bp->bar1 = NULL;
10373         }
10374
10375         if (bp->bar0) {
10376                 pci_iounmap(pdev, bp->bar0);
10377                 bp->bar0 = NULL;
10378         }
10379 }
10380
10381 static void bnxt_cleanup_pci(struct bnxt *bp)
10382 {
10383         bnxt_unmap_bars(bp, bp->pdev);
10384         pci_release_regions(bp->pdev);
10385         pci_disable_device(bp->pdev);
10386 }
10387
10388 static void bnxt_init_dflt_coal(struct bnxt *bp)
10389 {
10390         struct bnxt_coal *coal;
10391
10392         /* Tick values in micro seconds.
10393          * 1 coal_buf x bufs_per_record = 1 completion record.
10394          */
10395         coal = &bp->rx_coal;
10396         coal->coal_ticks = 10;
10397         coal->coal_bufs = 30;
10398         coal->coal_ticks_irq = 1;
10399         coal->coal_bufs_irq = 2;
10400         coal->idle_thresh = 50;
10401         coal->bufs_per_record = 2;
10402         coal->budget = 64;              /* NAPI budget */
10403
10404         coal = &bp->tx_coal;
10405         coal->coal_ticks = 28;
10406         coal->coal_bufs = 30;
10407         coal->coal_ticks_irq = 2;
10408         coal->coal_bufs_irq = 2;
10409         coal->bufs_per_record = 1;
10410
10411         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
10412 }
10413
10414 static int bnxt_fw_init_one_p1(struct bnxt *bp)
10415 {
10416         int rc;
10417
10418         bp->fw_cap = 0;
10419         rc = bnxt_hwrm_ver_get(bp);
10420         if (rc)
10421                 return rc;
10422
10423         if (bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL) {
10424                 rc = bnxt_alloc_kong_hwrm_resources(bp);
10425                 if (rc)
10426                         bp->fw_cap &= ~BNXT_FW_CAP_KONG_MB_CHNL;
10427         }
10428
10429         if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) ||
10430             bp->hwrm_max_ext_req_len > BNXT_HWRM_MAX_REQ_LEN) {
10431                 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
10432                 if (rc)
10433                         return rc;
10434         }
10435         rc = bnxt_hwrm_func_reset(bp);
10436         if (rc)
10437                 return -ENODEV;
10438
10439         bnxt_hwrm_fw_set_time(bp);
10440         return 0;
10441 }
10442
10443 static int bnxt_fw_init_one_p2(struct bnxt *bp)
10444 {
10445         int rc;
10446
10447         /* Get the MAX capabilities for this function */
10448         rc = bnxt_hwrm_func_qcaps(bp);
10449         if (rc) {
10450                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
10451                            rc);
10452                 return -ENODEV;
10453         }
10454
10455         rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
10456         if (rc)
10457                 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
10458                             rc);
10459
10460         rc = bnxt_hwrm_error_recovery_qcfg(bp);
10461         if (rc)
10462                 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
10463                             rc);
10464
10465         rc = bnxt_hwrm_func_drv_rgtr(bp);
10466         if (rc)
10467                 return -ENODEV;
10468
10469         rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
10470         if (rc)
10471                 return -ENODEV;
10472
10473         bnxt_hwrm_func_qcfg(bp);
10474         bnxt_hwrm_vnic_qcaps(bp);
10475         bnxt_hwrm_port_led_qcaps(bp);
10476         bnxt_ethtool_init(bp);
10477         bnxt_dcb_init(bp);
10478         return 0;
10479 }
10480
10481 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
10482 {
10483         bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
10484         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
10485                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
10486                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
10487                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
10488         if (BNXT_CHIP_P4(bp) && bp->hwrm_spec_code >= 0x10501) {
10489                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
10490                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
10491                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
10492         }
10493 }
10494
10495 static void bnxt_set_dflt_rfs(struct bnxt *bp)
10496 {
10497         struct net_device *dev = bp->dev;
10498
10499         dev->hw_features &= ~NETIF_F_NTUPLE;
10500         dev->features &= ~NETIF_F_NTUPLE;
10501         bp->flags &= ~BNXT_FLAG_RFS;
10502         if (bnxt_rfs_supported(bp)) {
10503                 dev->hw_features |= NETIF_F_NTUPLE;
10504                 if (bnxt_rfs_capable(bp)) {
10505                         bp->flags |= BNXT_FLAG_RFS;
10506                         dev->features |= NETIF_F_NTUPLE;
10507                 }
10508         }
10509 }
10510
10511 static void bnxt_fw_init_one_p3(struct bnxt *bp)
10512 {
10513         struct pci_dev *pdev = bp->pdev;
10514
10515         bnxt_set_dflt_rss_hash_type(bp);
10516         bnxt_set_dflt_rfs(bp);
10517
10518         bnxt_get_wol_settings(bp);
10519         if (bp->flags & BNXT_FLAG_WOL_CAP)
10520                 device_set_wakeup_enable(&pdev->dev, bp->wol);
10521         else
10522                 device_set_wakeup_capable(&pdev->dev, false);
10523
10524         bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
10525         bnxt_hwrm_coal_params_qcaps(bp);
10526 }
10527
10528 static int bnxt_fw_init_one(struct bnxt *bp)
10529 {
10530         int rc;
10531
10532         rc = bnxt_fw_init_one_p1(bp);
10533         if (rc) {
10534                 netdev_err(bp->dev, "Firmware init phase 1 failed\n");
10535                 return rc;
10536         }
10537         rc = bnxt_fw_init_one_p2(bp);
10538         if (rc) {
10539                 netdev_err(bp->dev, "Firmware init phase 2 failed\n");
10540                 return rc;
10541         }
10542         rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
10543         if (rc)
10544                 return rc;
10545         bnxt_fw_init_one_p3(bp);
10546         return 0;
10547 }
10548
10549 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
10550 {
10551         struct bnxt_fw_health *fw_health = bp->fw_health;
10552         u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
10553         u32 val = fw_health->fw_reset_seq_vals[reg_idx];
10554         u32 reg_type, reg_off, delay_msecs;
10555
10556         delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
10557         reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
10558         reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
10559         switch (reg_type) {
10560         case BNXT_FW_HEALTH_REG_TYPE_CFG:
10561                 pci_write_config_dword(bp->pdev, reg_off, val);
10562                 break;
10563         case BNXT_FW_HEALTH_REG_TYPE_GRC:
10564                 writel(reg_off & BNXT_GRC_BASE_MASK,
10565                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
10566                 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
10567                 /* fall through */
10568         case BNXT_FW_HEALTH_REG_TYPE_BAR0:
10569                 writel(val, bp->bar0 + reg_off);
10570                 break;
10571         case BNXT_FW_HEALTH_REG_TYPE_BAR1:
10572                 writel(val, bp->bar1 + reg_off);
10573                 break;
10574         }
10575         if (delay_msecs) {
10576                 pci_read_config_dword(bp->pdev, 0, &val);
10577                 msleep(delay_msecs);
10578         }
10579 }
10580
10581 static void bnxt_reset_all(struct bnxt *bp)
10582 {
10583         struct bnxt_fw_health *fw_health = bp->fw_health;
10584         int i;
10585
10586         if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
10587                 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
10588                         bnxt_fw_reset_writel(bp, i);
10589         } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
10590                 struct hwrm_fw_reset_input req = {0};
10591                 int rc;
10592
10593                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_RESET, -1, -1);
10594                 req.resp_addr = cpu_to_le64(bp->hwrm_cmd_kong_resp_dma_addr);
10595                 req.embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
10596                 req.selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
10597                 req.flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
10598                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
10599                 if (rc)
10600                         netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
10601         }
10602         bp->fw_reset_timestamp = jiffies;
10603 }
10604
10605 static void bnxt_fw_reset_task(struct work_struct *work)
10606 {
10607         struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
10608         int rc;
10609
10610         if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10611                 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
10612                 return;
10613         }
10614
10615         switch (bp->fw_reset_state) {
10616         case BNXT_FW_RESET_STATE_POLL_VF: {
10617                 int n = bnxt_get_registered_vfs(bp);
10618                 int tmo;
10619
10620                 if (n < 0) {
10621                         netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
10622                                    n, jiffies_to_msecs(jiffies -
10623                                    bp->fw_reset_timestamp));
10624                         goto fw_reset_abort;
10625                 } else if (n > 0) {
10626                         if (time_after(jiffies, bp->fw_reset_timestamp +
10627                                        (bp->fw_reset_max_dsecs * HZ / 10))) {
10628                                 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10629                                 bp->fw_reset_state = 0;
10630                                 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
10631                                            n);
10632                                 return;
10633                         }
10634                         bnxt_queue_fw_reset_work(bp, HZ / 10);
10635                         return;
10636                 }
10637                 bp->fw_reset_timestamp = jiffies;
10638                 rtnl_lock();
10639                 bnxt_fw_reset_close(bp);
10640                 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
10641                         bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
10642                         tmo = HZ / 10;
10643                 } else {
10644                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10645                         tmo = bp->fw_reset_min_dsecs * HZ / 10;
10646                 }
10647                 rtnl_unlock();
10648                 bnxt_queue_fw_reset_work(bp, tmo);
10649                 return;
10650         }
10651         case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
10652                 u32 val;
10653
10654                 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
10655                 if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
10656                     !time_after(jiffies, bp->fw_reset_timestamp +
10657                     (bp->fw_reset_max_dsecs * HZ / 10))) {
10658                         bnxt_queue_fw_reset_work(bp, HZ / 5);
10659                         return;
10660                 }
10661
10662                 if (!bp->fw_health->master) {
10663                         u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
10664
10665                         bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10666                         bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10667                         return;
10668                 }
10669                 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
10670         }
10671         /* fall through */
10672         case BNXT_FW_RESET_STATE_RESET_FW: {
10673                 u32 wait_dsecs = bp->fw_health->post_reset_wait_dsecs;
10674
10675                 bnxt_reset_all(bp);
10676                 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
10677                 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
10678                 return;
10679         }
10680         case BNXT_FW_RESET_STATE_ENABLE_DEV:
10681                 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
10682                     bp->fw_health) {
10683                         u32 val;
10684
10685                         val = bnxt_fw_health_readl(bp,
10686                                                    BNXT_FW_RESET_INPROG_REG);
10687                         if (val)
10688                                 netdev_warn(bp->dev, "FW reset inprog %x after min wait time.\n",
10689                                             val);
10690                 }
10691                 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
10692                 if (pci_enable_device(bp->pdev)) {
10693                         netdev_err(bp->dev, "Cannot re-enable PCI device\n");
10694                         goto fw_reset_abort;
10695                 }
10696                 pci_set_master(bp->pdev);
10697                 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
10698                 /* fall through */
10699         case BNXT_FW_RESET_STATE_POLL_FW:
10700                 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
10701                 rc = __bnxt_hwrm_ver_get(bp, true);
10702                 if (rc) {
10703                         if (time_after(jiffies, bp->fw_reset_timestamp +
10704                                        (bp->fw_reset_max_dsecs * HZ / 10))) {
10705                                 netdev_err(bp->dev, "Firmware reset aborted\n");
10706                                 goto fw_reset_abort;
10707                         }
10708                         bnxt_queue_fw_reset_work(bp, HZ / 5);
10709                         return;
10710                 }
10711                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
10712                 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
10713                 /* fall through */
10714         case BNXT_FW_RESET_STATE_OPENING:
10715                 while (!rtnl_trylock()) {
10716                         bnxt_queue_fw_reset_work(bp, HZ / 10);
10717                         return;
10718                 }
10719                 rc = bnxt_open(bp->dev);
10720                 if (rc) {
10721                         netdev_err(bp->dev, "bnxt_open_nic() failed\n");
10722                         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10723                         dev_close(bp->dev);
10724                 }
10725                 bnxt_ulp_irq_restart(bp, rc);
10726                 rtnl_unlock();
10727
10728                 bp->fw_reset_state = 0;
10729                 /* Make sure fw_reset_state is 0 before clearing the flag */
10730                 smp_mb__before_atomic();
10731                 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10732                 break;
10733         }
10734         return;
10735
10736 fw_reset_abort:
10737         clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
10738         bp->fw_reset_state = 0;
10739         rtnl_lock();
10740         dev_close(bp->dev);
10741         rtnl_unlock();
10742 }
10743
10744 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
10745 {
10746         int rc;
10747         struct bnxt *bp = netdev_priv(dev);
10748
10749         SET_NETDEV_DEV(dev, &pdev->dev);
10750
10751         /* enable device (incl. PCI PM wakeup), and bus-mastering */
10752         rc = pci_enable_device(pdev);
10753         if (rc) {
10754                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
10755                 goto init_err;
10756         }
10757
10758         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10759                 dev_err(&pdev->dev,
10760                         "Cannot find PCI device base address, aborting\n");
10761                 rc = -ENODEV;
10762                 goto init_err_disable;
10763         }
10764
10765         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10766         if (rc) {
10767                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
10768                 goto init_err_disable;
10769         }
10770
10771         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
10772             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
10773                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
10774                 goto init_err_disable;
10775         }
10776
10777         pci_set_master(pdev);
10778
10779         bp->dev = dev;
10780         bp->pdev = pdev;
10781
10782         bp->bar0 = pci_ioremap_bar(pdev, 0);
10783         if (!bp->bar0) {
10784                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
10785                 rc = -ENOMEM;
10786                 goto init_err_release;
10787         }
10788
10789         bp->bar1 = pci_ioremap_bar(pdev, 2);
10790         if (!bp->bar1) {
10791                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
10792                 rc = -ENOMEM;
10793                 goto init_err_release;
10794         }
10795
10796         bp->bar2 = pci_ioremap_bar(pdev, 4);
10797         if (!bp->bar2) {
10798                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
10799                 rc = -ENOMEM;
10800                 goto init_err_release;
10801         }
10802
10803         pci_enable_pcie_error_reporting(pdev);
10804
10805         INIT_WORK(&bp->sp_task, bnxt_sp_task);
10806         INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
10807
10808         spin_lock_init(&bp->ntp_fltr_lock);
10809 #if BITS_PER_LONG == 32
10810         spin_lock_init(&bp->db_lock);
10811 #endif
10812
10813         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
10814         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
10815
10816         bnxt_init_dflt_coal(bp);
10817
10818         timer_setup(&bp->timer, bnxt_timer, 0);
10819         bp->current_interval = BNXT_TIMER_INTERVAL;
10820
10821         clear_bit(BNXT_STATE_OPEN, &bp->state);
10822         return 0;
10823
10824 init_err_release:
10825         bnxt_unmap_bars(bp, pdev);
10826         pci_release_regions(pdev);
10827
10828 init_err_disable:
10829         pci_disable_device(pdev);
10830
10831 init_err:
10832         return rc;
10833 }
10834
10835 /* rtnl_lock held */
10836 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
10837 {
10838         struct sockaddr *addr = p;
10839         struct bnxt *bp = netdev_priv(dev);
10840         int rc = 0;
10841
10842         if (!is_valid_ether_addr(addr->sa_data))
10843                 return -EADDRNOTAVAIL;
10844
10845         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
10846                 return 0;
10847
10848         rc = bnxt_approve_mac(bp, addr->sa_data, true);
10849         if (rc)
10850                 return rc;
10851
10852         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
10853         if (netif_running(dev)) {
10854                 bnxt_close_nic(bp, false, false);
10855                 rc = bnxt_open_nic(bp, false, false);
10856         }
10857
10858         return rc;
10859 }
10860
10861 /* rtnl_lock held */
10862 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
10863 {
10864         struct bnxt *bp = netdev_priv(dev);
10865
10866         if (netif_running(dev))
10867                 bnxt_close_nic(bp, false, false);
10868
10869         dev->mtu = new_mtu;
10870         bnxt_set_ring_params(bp);
10871
10872         if (netif_running(dev))
10873                 return bnxt_open_nic(bp, false, false);
10874
10875         return 0;
10876 }
10877
10878 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
10879 {
10880         struct bnxt *bp = netdev_priv(dev);
10881         bool sh = false;
10882         int rc;
10883
10884         if (tc > bp->max_tc) {
10885                 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
10886                            tc, bp->max_tc);
10887                 return -EINVAL;
10888         }
10889
10890         if (netdev_get_num_tc(dev) == tc)
10891                 return 0;
10892
10893         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
10894                 sh = true;
10895
10896         rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
10897                               sh, tc, bp->tx_nr_rings_xdp);
10898         if (rc)
10899                 return rc;
10900
10901         /* Needs to close the device and do hw resource re-allocations */
10902         if (netif_running(bp->dev))
10903                 bnxt_close_nic(bp, true, false);
10904
10905         if (tc) {
10906                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
10907                 netdev_set_num_tc(dev, tc);
10908         } else {
10909                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
10910                 netdev_reset_tc(dev);
10911         }
10912         bp->tx_nr_rings += bp->tx_nr_rings_xdp;
10913         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
10914                                bp->tx_nr_rings + bp->rx_nr_rings;
10915
10916         if (netif_running(bp->dev))
10917                 return bnxt_open_nic(bp, true, false);
10918
10919         return 0;
10920 }
10921
10922 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
10923                                   void *cb_priv)
10924 {
10925         struct bnxt *bp = cb_priv;
10926
10927         if (!bnxt_tc_flower_enabled(bp) ||
10928             !tc_cls_can_offload_and_chain0(bp->dev, type_data))
10929                 return -EOPNOTSUPP;
10930
10931         switch (type) {
10932         case TC_SETUP_CLSFLOWER:
10933                 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
10934         default:
10935                 return -EOPNOTSUPP;
10936         }
10937 }
10938
10939 static LIST_HEAD(bnxt_block_cb_list);
10940
10941 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
10942                          void *type_data)
10943 {
10944         struct bnxt *bp = netdev_priv(dev);
10945
10946         switch (type) {
10947         case TC_SETUP_BLOCK:
10948                 return flow_block_cb_setup_simple(type_data,
10949                                                   &bnxt_block_cb_list,
10950                                                   bnxt_setup_tc_block_cb,
10951                                                   bp, bp, true);
10952         case TC_SETUP_QDISC_MQPRIO: {
10953                 struct tc_mqprio_qopt *mqprio = type_data;
10954
10955                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
10956
10957                 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
10958         }
10959         default:
10960                 return -EOPNOTSUPP;
10961         }
10962 }
10963
10964 #ifdef CONFIG_RFS_ACCEL
10965 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
10966                             struct bnxt_ntuple_filter *f2)
10967 {
10968         struct flow_keys *keys1 = &f1->fkeys;
10969         struct flow_keys *keys2 = &f2->fkeys;
10970
10971         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
10972             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
10973             keys1->ports.ports == keys2->ports.ports &&
10974             keys1->basic.ip_proto == keys2->basic.ip_proto &&
10975             keys1->basic.n_proto == keys2->basic.n_proto &&
10976             keys1->control.flags == keys2->control.flags &&
10977             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
10978             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
10979                 return true;
10980
10981         return false;
10982 }
10983
10984 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
10985                               u16 rxq_index, u32 flow_id)
10986 {
10987         struct bnxt *bp = netdev_priv(dev);
10988         struct bnxt_ntuple_filter *fltr, *new_fltr;
10989         struct flow_keys *fkeys;
10990         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
10991         int rc = 0, idx, bit_id, l2_idx = 0;
10992         struct hlist_head *head;
10993
10994         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
10995                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10996                 int off = 0, j;
10997
10998                 netif_addr_lock_bh(dev);
10999                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
11000                         if (ether_addr_equal(eth->h_dest,
11001                                              vnic->uc_list + off)) {
11002                                 l2_idx = j + 1;
11003                                 break;
11004                         }
11005                 }
11006                 netif_addr_unlock_bh(dev);
11007                 if (!l2_idx)
11008                         return -EINVAL;
11009         }
11010         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
11011         if (!new_fltr)
11012                 return -ENOMEM;
11013
11014         fkeys = &new_fltr->fkeys;
11015         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
11016                 rc = -EPROTONOSUPPORT;
11017                 goto err_free;
11018         }
11019
11020         if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
11021              fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
11022             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
11023              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
11024                 rc = -EPROTONOSUPPORT;
11025                 goto err_free;
11026         }
11027         if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
11028             bp->hwrm_spec_code < 0x10601) {
11029                 rc = -EPROTONOSUPPORT;
11030                 goto err_free;
11031         }
11032         if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
11033             bp->hwrm_spec_code < 0x10601) {
11034                 rc = -EPROTONOSUPPORT;
11035                 goto err_free;
11036         }
11037
11038         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
11039         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
11040
11041         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
11042         head = &bp->ntp_fltr_hash_tbl[idx];
11043         rcu_read_lock();
11044         hlist_for_each_entry_rcu(fltr, head, hash) {
11045                 if (bnxt_fltr_match(fltr, new_fltr)) {
11046                         rcu_read_unlock();
11047                         rc = 0;
11048                         goto err_free;
11049                 }
11050         }
11051         rcu_read_unlock();
11052
11053         spin_lock_bh(&bp->ntp_fltr_lock);
11054         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
11055                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
11056         if (bit_id < 0) {
11057                 spin_unlock_bh(&bp->ntp_fltr_lock);
11058                 rc = -ENOMEM;
11059                 goto err_free;
11060         }
11061
11062         new_fltr->sw_id = (u16)bit_id;
11063         new_fltr->flow_id = flow_id;
11064         new_fltr->l2_fltr_idx = l2_idx;
11065         new_fltr->rxq = rxq_index;
11066         hlist_add_head_rcu(&new_fltr->hash, head);
11067         bp->ntp_fltr_count++;
11068         spin_unlock_bh(&bp->ntp_fltr_lock);
11069
11070         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11071         bnxt_queue_sp_work(bp);
11072
11073         return new_fltr->sw_id;
11074
11075 err_free:
11076         kfree(new_fltr);
11077         return rc;
11078 }
11079
11080 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11081 {
11082         int i;
11083
11084         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
11085                 struct hlist_head *head;
11086                 struct hlist_node *tmp;
11087                 struct bnxt_ntuple_filter *fltr;
11088                 int rc;
11089
11090                 head = &bp->ntp_fltr_hash_tbl[i];
11091                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
11092                         bool del = false;
11093
11094                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
11095                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
11096                                                         fltr->flow_id,
11097                                                         fltr->sw_id)) {
11098                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
11099                                                                          fltr);
11100                                         del = true;
11101                                 }
11102                         } else {
11103                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
11104                                                                        fltr);
11105                                 if (rc)
11106                                         del = true;
11107                                 else
11108                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
11109                         }
11110
11111                         if (del) {
11112                                 spin_lock_bh(&bp->ntp_fltr_lock);
11113                                 hlist_del_rcu(&fltr->hash);
11114                                 bp->ntp_fltr_count--;
11115                                 spin_unlock_bh(&bp->ntp_fltr_lock);
11116                                 synchronize_rcu();
11117                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
11118                                 kfree(fltr);
11119                         }
11120                 }
11121         }
11122         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
11123                 netdev_info(bp->dev, "Receive PF driver unload event!");
11124 }
11125
11126 #else
11127
11128 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
11129 {
11130 }
11131
11132 #endif /* CONFIG_RFS_ACCEL */
11133
11134 static void bnxt_udp_tunnel_add(struct net_device *dev,
11135                                 struct udp_tunnel_info *ti)
11136 {
11137         struct bnxt *bp = netdev_priv(dev);
11138
11139         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
11140                 return;
11141
11142         if (!netif_running(dev))
11143                 return;
11144
11145         switch (ti->type) {
11146         case UDP_TUNNEL_TYPE_VXLAN:
11147                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
11148                         return;
11149
11150                 bp->vxlan_port_cnt++;
11151                 if (bp->vxlan_port_cnt == 1) {
11152                         bp->vxlan_port = ti->port;
11153                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
11154                         bnxt_queue_sp_work(bp);
11155                 }
11156                 break;
11157         case UDP_TUNNEL_TYPE_GENEVE:
11158                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
11159                         return;
11160
11161                 bp->nge_port_cnt++;
11162                 if (bp->nge_port_cnt == 1) {
11163                         bp->nge_port = ti->port;
11164                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
11165                 }
11166                 break;
11167         default:
11168                 return;
11169         }
11170
11171         bnxt_queue_sp_work(bp);
11172 }
11173
11174 static void bnxt_udp_tunnel_del(struct net_device *dev,
11175                                 struct udp_tunnel_info *ti)
11176 {
11177         struct bnxt *bp = netdev_priv(dev);
11178
11179         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
11180                 return;
11181
11182         if (!netif_running(dev))
11183                 return;
11184
11185         switch (ti->type) {
11186         case UDP_TUNNEL_TYPE_VXLAN:
11187                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
11188                         return;
11189                 bp->vxlan_port_cnt--;
11190
11191                 if (bp->vxlan_port_cnt != 0)
11192                         return;
11193
11194                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
11195                 break;
11196         case UDP_TUNNEL_TYPE_GENEVE:
11197                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
11198                         return;
11199                 bp->nge_port_cnt--;
11200
11201                 if (bp->nge_port_cnt != 0)
11202                         return;
11203
11204                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
11205                 break;
11206         default:
11207                 return;
11208         }
11209
11210         bnxt_queue_sp_work(bp);
11211 }
11212
11213 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11214                                struct net_device *dev, u32 filter_mask,
11215                                int nlflags)
11216 {
11217         struct bnxt *bp = netdev_priv(dev);
11218
11219         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
11220                                        nlflags, filter_mask, NULL);
11221 }
11222
11223 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
11224                                u16 flags, struct netlink_ext_ack *extack)
11225 {
11226         struct bnxt *bp = netdev_priv(dev);
11227         struct nlattr *attr, *br_spec;
11228         int rem, rc = 0;
11229
11230         if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
11231                 return -EOPNOTSUPP;
11232
11233         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
11234         if (!br_spec)
11235                 return -EINVAL;
11236
11237         nla_for_each_nested(attr, br_spec, rem) {
11238                 u16 mode;
11239
11240                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
11241                         continue;
11242
11243                 if (nla_len(attr) < sizeof(mode))
11244                         return -EINVAL;
11245
11246                 mode = nla_get_u16(attr);
11247                 if (mode == bp->br_mode)
11248                         break;
11249
11250                 rc = bnxt_hwrm_set_br_mode(bp, mode);
11251                 if (!rc)
11252                         bp->br_mode = mode;
11253                 break;
11254         }
11255         return rc;
11256 }
11257
11258 int bnxt_get_port_parent_id(struct net_device *dev,
11259                             struct netdev_phys_item_id *ppid)
11260 {
11261         struct bnxt *bp = netdev_priv(dev);
11262
11263         if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
11264                 return -EOPNOTSUPP;
11265
11266         /* The PF and it's VF-reps only support the switchdev framework */
11267         if (!BNXT_PF(bp))
11268                 return -EOPNOTSUPP;
11269
11270         ppid->id_len = sizeof(bp->switch_id);
11271         memcpy(ppid->id, bp->switch_id, ppid->id_len);
11272
11273         return 0;
11274 }
11275
11276 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
11277 {
11278         struct bnxt *bp = netdev_priv(dev);
11279
11280         return &bp->dl_port;
11281 }
11282
11283 static const struct net_device_ops bnxt_netdev_ops = {
11284         .ndo_open               = bnxt_open,
11285         .ndo_start_xmit         = bnxt_start_xmit,
11286         .ndo_stop               = bnxt_close,
11287         .ndo_get_stats64        = bnxt_get_stats64,
11288         .ndo_set_rx_mode        = bnxt_set_rx_mode,
11289         .ndo_do_ioctl           = bnxt_ioctl,
11290         .ndo_validate_addr      = eth_validate_addr,
11291         .ndo_set_mac_address    = bnxt_change_mac_addr,
11292         .ndo_change_mtu         = bnxt_change_mtu,
11293         .ndo_fix_features       = bnxt_fix_features,
11294         .ndo_set_features       = bnxt_set_features,
11295         .ndo_tx_timeout         = bnxt_tx_timeout,
11296 #ifdef CONFIG_BNXT_SRIOV
11297         .ndo_get_vf_config      = bnxt_get_vf_config,
11298         .ndo_set_vf_mac         = bnxt_set_vf_mac,
11299         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
11300         .ndo_set_vf_rate        = bnxt_set_vf_bw,
11301         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
11302         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
11303         .ndo_set_vf_trust       = bnxt_set_vf_trust,
11304 #endif
11305         .ndo_setup_tc           = bnxt_setup_tc,
11306 #ifdef CONFIG_RFS_ACCEL
11307         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
11308 #endif
11309         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
11310         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
11311         .ndo_bpf                = bnxt_xdp,
11312         .ndo_xdp_xmit           = bnxt_xdp_xmit,
11313         .ndo_bridge_getlink     = bnxt_bridge_getlink,
11314         .ndo_bridge_setlink     = bnxt_bridge_setlink,
11315         .ndo_get_devlink_port   = bnxt_get_devlink_port,
11316 };
11317
11318 static void bnxt_remove_one(struct pci_dev *pdev)
11319 {
11320         struct net_device *dev = pci_get_drvdata(pdev);
11321         struct bnxt *bp = netdev_priv(dev);
11322
11323         if (BNXT_PF(bp)) {
11324                 bnxt_sriov_disable(bp);
11325                 bnxt_dl_unregister(bp);
11326         }
11327
11328         pci_disable_pcie_error_reporting(pdev);
11329         unregister_netdev(dev);
11330         bnxt_shutdown_tc(bp);
11331         bnxt_cancel_sp_work(bp);
11332         bp->sp_event = 0;
11333
11334         bnxt_clear_int_mode(bp);
11335         bnxt_hwrm_func_drv_unrgtr(bp);
11336         bnxt_free_hwrm_resources(bp);
11337         bnxt_free_hwrm_short_cmd_req(bp);
11338         bnxt_ethtool_free(bp);
11339         bnxt_dcb_free(bp);
11340         kfree(bp->edev);
11341         bp->edev = NULL;
11342         bnxt_cleanup_pci(bp);
11343         bnxt_free_ctx_mem(bp);
11344         kfree(bp->ctx);
11345         bp->ctx = NULL;
11346         bnxt_free_port_stats(bp);
11347         free_netdev(dev);
11348 }
11349
11350 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
11351 {
11352         int rc = 0;
11353         struct bnxt_link_info *link_info = &bp->link_info;
11354
11355         rc = bnxt_hwrm_phy_qcaps(bp);
11356         if (rc) {
11357                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
11358                            rc);
11359                 return rc;
11360         }
11361         rc = bnxt_update_link(bp, false);
11362         if (rc) {
11363                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
11364                            rc);
11365                 return rc;
11366         }
11367
11368         /* Older firmware does not have supported_auto_speeds, so assume
11369          * that all supported speeds can be autonegotiated.
11370          */
11371         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
11372                 link_info->support_auto_speeds = link_info->support_speeds;
11373
11374         if (!fw_dflt)
11375                 return 0;
11376
11377         /*initialize the ethool setting copy with NVM settings */
11378         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11379                 link_info->autoneg = BNXT_AUTONEG_SPEED;
11380                 if (bp->hwrm_spec_code >= 0x10201) {
11381                         if (link_info->auto_pause_setting &
11382                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11383                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11384                 } else {
11385                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11386                 }
11387                 link_info->advertising = link_info->auto_link_speeds;
11388         } else {
11389                 link_info->req_link_speed = link_info->force_link_speed;
11390                 link_info->req_duplex = link_info->duplex_setting;
11391         }
11392         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11393                 link_info->req_flow_ctrl =
11394                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11395         else
11396                 link_info->req_flow_ctrl = link_info->force_pause_setting;
11397         return 0;
11398 }
11399
11400 static int bnxt_get_max_irq(struct pci_dev *pdev)
11401 {
11402         u16 ctrl;
11403
11404         if (!pdev->msix_cap)
11405                 return 1;
11406
11407         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
11408         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
11409 }
11410
11411 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11412                                 int *max_cp)
11413 {
11414         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
11415         int max_ring_grps = 0, max_irq;
11416
11417         *max_tx = hw_resc->max_tx_rings;
11418         *max_rx = hw_resc->max_rx_rings;
11419         *max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
11420         max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
11421                         bnxt_get_ulp_msix_num(bp),
11422                         hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
11423         if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11424                 *max_cp = min_t(int, *max_cp, max_irq);
11425         max_ring_grps = hw_resc->max_hw_ring_grps;
11426         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
11427                 *max_cp -= 1;
11428                 *max_rx -= 2;
11429         }
11430         if (bp->flags & BNXT_FLAG_AGG_RINGS)
11431                 *max_rx >>= 1;
11432         if (bp->flags & BNXT_FLAG_CHIP_P5) {
11433                 bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
11434                 /* On P5 chips, max_cp output param should be available NQs */
11435                 *max_cp = max_irq;
11436         }
11437         *max_rx = min_t(int, *max_rx, max_ring_grps);
11438 }
11439
11440 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
11441 {
11442         int rx, tx, cp;
11443
11444         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
11445         *max_rx = rx;
11446         *max_tx = tx;
11447         if (!rx || !tx || !cp)
11448                 return -ENOMEM;
11449
11450         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
11451 }
11452
11453 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
11454                                bool shared)
11455 {
11456         int rc;
11457
11458         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11459         if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
11460                 /* Not enough rings, try disabling agg rings. */
11461                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
11462                 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
11463                 if (rc) {
11464                         /* set BNXT_FLAG_AGG_RINGS back for consistency */
11465                         bp->flags |= BNXT_FLAG_AGG_RINGS;
11466                         return rc;
11467                 }
11468                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
11469                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11470                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
11471                 bnxt_set_ring_params(bp);
11472         }
11473
11474         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
11475                 int max_cp, max_stat, max_irq;
11476
11477                 /* Reserve minimum resources for RoCE */
11478                 max_cp = bnxt_get_max_func_cp_rings(bp);
11479                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
11480                 max_irq = bnxt_get_max_func_irqs(bp);
11481                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
11482                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
11483                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
11484                         return 0;
11485
11486                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
11487                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
11488                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
11489                 max_cp = min_t(int, max_cp, max_irq);
11490                 max_cp = min_t(int, max_cp, max_stat);
11491                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
11492                 if (rc)
11493                         rc = 0;
11494         }
11495         return rc;
11496 }
11497
11498 /* In initial default shared ring setting, each shared ring must have a
11499  * RX/TX ring pair.
11500  */
11501 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
11502 {
11503         bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
11504         bp->rx_nr_rings = bp->cp_nr_rings;
11505         bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
11506         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11507 }
11508
11509 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
11510 {
11511         int dflt_rings, max_rx_rings, max_tx_rings, rc;
11512
11513         if (!bnxt_can_reserve_rings(bp))
11514                 return 0;
11515
11516         if (sh)
11517                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
11518         dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
11519         /* Reduce default rings on multi-port cards so that total default
11520          * rings do not exceed CPU count.
11521          */
11522         if (bp->port_count > 1) {
11523                 int max_rings =
11524                         max_t(int, num_online_cpus() / bp->port_count, 1);
11525
11526                 dflt_rings = min_t(int, dflt_rings, max_rings);
11527         }
11528         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
11529         if (rc)
11530                 return rc;
11531         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
11532         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
11533         if (sh)
11534                 bnxt_trim_dflt_sh_rings(bp);
11535         else
11536                 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
11537         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
11538
11539         rc = __bnxt_reserve_rings(bp);
11540         if (rc)
11541                 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
11542         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11543         if (sh)
11544                 bnxt_trim_dflt_sh_rings(bp);
11545
11546         /* Rings may have been trimmed, re-reserve the trimmed rings. */
11547         if (bnxt_need_reserve_rings(bp)) {
11548                 rc = __bnxt_reserve_rings(bp);
11549                 if (rc)
11550                         netdev_warn(bp->dev, "2nd rings reservation failed.\n");
11551                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11552         }
11553         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
11554                 bp->rx_nr_rings++;
11555                 bp->cp_nr_rings++;
11556         }
11557         return rc;
11558 }
11559
11560 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
11561 {
11562         int rc;
11563
11564         if (bp->tx_nr_rings)
11565                 return 0;
11566
11567         bnxt_ulp_irq_stop(bp);
11568         bnxt_clear_int_mode(bp);
11569         rc = bnxt_set_dflt_rings(bp, true);
11570         if (rc) {
11571                 netdev_err(bp->dev, "Not enough rings available.\n");
11572                 goto init_dflt_ring_err;
11573         }
11574         rc = bnxt_init_int_mode(bp);
11575         if (rc)
11576                 goto init_dflt_ring_err;
11577
11578         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11579         if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
11580                 bp->flags |= BNXT_FLAG_RFS;
11581                 bp->dev->features |= NETIF_F_NTUPLE;
11582         }
11583 init_dflt_ring_err:
11584         bnxt_ulp_irq_restart(bp, rc);
11585         return rc;
11586 }
11587
11588 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
11589 {
11590         int rc;
11591
11592         ASSERT_RTNL();
11593         bnxt_hwrm_func_qcaps(bp);
11594
11595         if (netif_running(bp->dev))
11596                 __bnxt_close_nic(bp, true, false);
11597
11598         bnxt_ulp_irq_stop(bp);
11599         bnxt_clear_int_mode(bp);
11600         rc = bnxt_init_int_mode(bp);
11601         bnxt_ulp_irq_restart(bp, rc);
11602
11603         if (netif_running(bp->dev)) {
11604                 if (rc)
11605                         dev_close(bp->dev);
11606                 else
11607                         rc = bnxt_open_nic(bp, true, false);
11608         }
11609
11610         return rc;
11611 }
11612
11613 static int bnxt_init_mac_addr(struct bnxt *bp)
11614 {
11615         int rc = 0;
11616
11617         if (BNXT_PF(bp)) {
11618                 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
11619         } else {
11620 #ifdef CONFIG_BNXT_SRIOV
11621                 struct bnxt_vf_info *vf = &bp->vf;
11622                 bool strict_approval = true;
11623
11624                 if (is_valid_ether_addr(vf->mac_addr)) {
11625                         /* overwrite netdev dev_addr with admin VF MAC */
11626                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
11627                         /* Older PF driver or firmware may not approve this
11628                          * correctly.
11629                          */
11630                         strict_approval = false;
11631                 } else {
11632                         eth_hw_addr_random(bp->dev);
11633                 }
11634                 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
11635 #endif
11636         }
11637         return rc;
11638 }
11639
11640 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
11641 {
11642         struct pci_dev *pdev = bp->pdev;
11643         int pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
11644         u32 dw;
11645
11646         if (!pos) {
11647                 netdev_info(bp->dev, "Unable do read adapter's DSN");
11648                 return -EOPNOTSUPP;
11649         }
11650
11651         /* DSN (two dw) is at an offset of 4 from the cap pos */
11652         pos += 4;
11653         pci_read_config_dword(pdev, pos, &dw);
11654         put_unaligned_le32(dw, &dsn[0]);
11655         pci_read_config_dword(pdev, pos + 4, &dw);
11656         put_unaligned_le32(dw, &dsn[4]);
11657         return 0;
11658 }
11659
11660 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
11661 {
11662         static int version_printed;
11663         struct net_device *dev;
11664         struct bnxt *bp;
11665         int rc, max_irqs;
11666
11667         if (pci_is_bridge(pdev))
11668                 return -ENODEV;
11669
11670         if (version_printed++ == 0)
11671                 pr_info("%s", version);
11672
11673         max_irqs = bnxt_get_max_irq(pdev);
11674         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
11675         if (!dev)
11676                 return -ENOMEM;
11677
11678         bp = netdev_priv(dev);
11679         bnxt_set_max_func_irqs(bp, max_irqs);
11680
11681         if (bnxt_vf_pciid(ent->driver_data))
11682                 bp->flags |= BNXT_FLAG_VF;
11683
11684         if (pdev->msix_cap)
11685                 bp->flags |= BNXT_FLAG_MSIX_CAP;
11686
11687         rc = bnxt_init_board(pdev, dev);
11688         if (rc < 0)
11689                 goto init_err_free;
11690
11691         dev->netdev_ops = &bnxt_netdev_ops;
11692         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
11693         dev->ethtool_ops = &bnxt_ethtool_ops;
11694         pci_set_drvdata(pdev, dev);
11695
11696         rc = bnxt_alloc_hwrm_resources(bp);
11697         if (rc)
11698                 goto init_err_pci_clean;
11699
11700         mutex_init(&bp->hwrm_cmd_lock);
11701         mutex_init(&bp->link_lock);
11702
11703         rc = bnxt_fw_init_one_p1(bp);
11704         if (rc)
11705                 goto init_err_pci_clean;
11706
11707         if (BNXT_CHIP_P5(bp))
11708                 bp->flags |= BNXT_FLAG_CHIP_P5;
11709
11710         rc = bnxt_fw_init_one_p2(bp);
11711         if (rc)
11712                 goto init_err_pci_clean;
11713
11714         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
11715                            NETIF_F_TSO | NETIF_F_TSO6 |
11716                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
11717                            NETIF_F_GSO_IPXIP4 |
11718                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
11719                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
11720                            NETIF_F_RXCSUM | NETIF_F_GRO;
11721
11722         if (BNXT_SUPPORTS_TPA(bp))
11723                 dev->hw_features |= NETIF_F_LRO;
11724
11725         dev->hw_enc_features =
11726                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
11727                         NETIF_F_TSO | NETIF_F_TSO6 |
11728                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
11729                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
11730                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
11731         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
11732                                     NETIF_F_GSO_GRE_CSUM;
11733         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
11734         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
11735                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
11736         if (BNXT_SUPPORTS_TPA(bp))
11737                 dev->hw_features |= NETIF_F_GRO_HW;
11738         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
11739         if (dev->features & NETIF_F_GRO_HW)
11740                 dev->features &= ~NETIF_F_LRO;
11741         dev->priv_flags |= IFF_UNICAST_FLT;
11742
11743 #ifdef CONFIG_BNXT_SRIOV
11744         init_waitqueue_head(&bp->sriov_cfg_wait);
11745         mutex_init(&bp->sriov_lock);
11746 #endif
11747         if (BNXT_SUPPORTS_TPA(bp)) {
11748                 bp->gro_func = bnxt_gro_func_5730x;
11749                 if (BNXT_CHIP_P4(bp))
11750                         bp->gro_func = bnxt_gro_func_5731x;
11751                 else if (BNXT_CHIP_P5(bp))
11752                         bp->gro_func = bnxt_gro_func_5750x;
11753         }
11754         if (!BNXT_CHIP_P4_PLUS(bp))
11755                 bp->flags |= BNXT_FLAG_DOUBLE_DB;
11756
11757         bp->ulp_probe = bnxt_ulp_probe;
11758
11759         rc = bnxt_init_mac_addr(bp);
11760         if (rc) {
11761                 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
11762                 rc = -EADDRNOTAVAIL;
11763                 goto init_err_pci_clean;
11764         }
11765
11766         if (BNXT_PF(bp)) {
11767                 /* Read the adapter's DSN to use as the eswitch switch_id */
11768                 rc = bnxt_pcie_dsn_get(bp, bp->switch_id);
11769                 if (rc)
11770                         goto init_err_pci_clean;
11771         }
11772
11773         /* MTU range: 60 - FW defined max */
11774         dev->min_mtu = ETH_ZLEN;
11775         dev->max_mtu = bp->max_mtu;
11776
11777         rc = bnxt_probe_phy(bp, true);
11778         if (rc)
11779                 goto init_err_pci_clean;
11780
11781         bnxt_set_rx_skb_mode(bp, false);
11782         bnxt_set_tpa_flags(bp);
11783         bnxt_set_ring_params(bp);
11784         rc = bnxt_set_dflt_rings(bp, true);
11785         if (rc) {
11786                 netdev_err(bp->dev, "Not enough rings available.\n");
11787                 rc = -ENOMEM;
11788                 goto init_err_pci_clean;
11789         }
11790
11791         bnxt_fw_init_one_p3(bp);
11792
11793         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
11794                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
11795
11796         rc = bnxt_init_int_mode(bp);
11797         if (rc)
11798                 goto init_err_pci_clean;
11799
11800         /* No TC has been set yet and rings may have been trimmed due to
11801          * limited MSIX, so we re-initialize the TX rings per TC.
11802          */
11803         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
11804
11805         if (BNXT_PF(bp)) {
11806                 if (!bnxt_pf_wq) {
11807                         bnxt_pf_wq =
11808                                 create_singlethread_workqueue("bnxt_pf_wq");
11809                         if (!bnxt_pf_wq) {
11810                                 dev_err(&pdev->dev, "Unable to create workqueue.\n");
11811                                 goto init_err_pci_clean;
11812                         }
11813                 }
11814                 bnxt_init_tc(bp);
11815         }
11816
11817         rc = register_netdev(dev);
11818         if (rc)
11819                 goto init_err_cleanup_tc;
11820
11821         if (BNXT_PF(bp))
11822                 bnxt_dl_register(bp);
11823
11824         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
11825                     board_info[ent->driver_data].name,
11826                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
11827         pcie_print_link_status(pdev);
11828
11829         return 0;
11830
11831 init_err_cleanup_tc:
11832         bnxt_shutdown_tc(bp);
11833         bnxt_clear_int_mode(bp);
11834
11835 init_err_pci_clean:
11836         bnxt_free_hwrm_short_cmd_req(bp);
11837         bnxt_free_hwrm_resources(bp);
11838         bnxt_free_ctx_mem(bp);
11839         kfree(bp->ctx);
11840         bp->ctx = NULL;
11841         kfree(bp->fw_health);
11842         bp->fw_health = NULL;
11843         bnxt_cleanup_pci(bp);
11844
11845 init_err_free:
11846         free_netdev(dev);
11847         return rc;
11848 }
11849
11850 static void bnxt_shutdown(struct pci_dev *pdev)
11851 {
11852         struct net_device *dev = pci_get_drvdata(pdev);
11853         struct bnxt *bp;
11854
11855         if (!dev)
11856                 return;
11857
11858         rtnl_lock();
11859         bp = netdev_priv(dev);
11860         if (!bp)
11861                 goto shutdown_exit;
11862
11863         if (netif_running(dev))
11864                 dev_close(dev);
11865
11866         bnxt_ulp_shutdown(bp);
11867
11868         if (system_state == SYSTEM_POWER_OFF) {
11869                 bnxt_clear_int_mode(bp);
11870                 pci_disable_device(pdev);
11871                 pci_wake_from_d3(pdev, bp->wol);
11872                 pci_set_power_state(pdev, PCI_D3hot);
11873         }
11874
11875 shutdown_exit:
11876         rtnl_unlock();
11877 }
11878
11879 #ifdef CONFIG_PM_SLEEP
11880 static int bnxt_suspend(struct device *device)
11881 {
11882         struct net_device *dev = dev_get_drvdata(device);
11883         struct bnxt *bp = netdev_priv(dev);
11884         int rc = 0;
11885
11886         rtnl_lock();
11887         if (netif_running(dev)) {
11888                 netif_device_detach(dev);
11889                 rc = bnxt_close(dev);
11890         }
11891         bnxt_hwrm_func_drv_unrgtr(bp);
11892         rtnl_unlock();
11893         return rc;
11894 }
11895
11896 static int bnxt_resume(struct device *device)
11897 {
11898         struct net_device *dev = dev_get_drvdata(device);
11899         struct bnxt *bp = netdev_priv(dev);
11900         int rc = 0;
11901
11902         rtnl_lock();
11903         if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
11904                 rc = -ENODEV;
11905                 goto resume_exit;
11906         }
11907         rc = bnxt_hwrm_func_reset(bp);
11908         if (rc) {
11909                 rc = -EBUSY;
11910                 goto resume_exit;
11911         }
11912         bnxt_get_wol_settings(bp);
11913         if (netif_running(dev)) {
11914                 rc = bnxt_open(dev);
11915                 if (!rc)
11916                         netif_device_attach(dev);
11917         }
11918
11919 resume_exit:
11920         rtnl_unlock();
11921         return rc;
11922 }
11923
11924 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
11925 #define BNXT_PM_OPS (&bnxt_pm_ops)
11926
11927 #else
11928
11929 #define BNXT_PM_OPS NULL
11930
11931 #endif /* CONFIG_PM_SLEEP */
11932
11933 /**
11934  * bnxt_io_error_detected - called when PCI error is detected
11935  * @pdev: Pointer to PCI device
11936  * @state: The current pci connection state
11937  *
11938  * This function is called after a PCI bus error affecting
11939  * this device has been detected.
11940  */
11941 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
11942                                                pci_channel_state_t state)
11943 {
11944         struct net_device *netdev = pci_get_drvdata(pdev);
11945         struct bnxt *bp = netdev_priv(netdev);
11946
11947         netdev_info(netdev, "PCI I/O error detected\n");
11948
11949         rtnl_lock();
11950         netif_device_detach(netdev);
11951
11952         bnxt_ulp_stop(bp);
11953
11954         if (state == pci_channel_io_perm_failure) {
11955                 rtnl_unlock();
11956                 return PCI_ERS_RESULT_DISCONNECT;
11957         }
11958
11959         if (netif_running(netdev))
11960                 bnxt_close(netdev);
11961
11962         pci_disable_device(pdev);
11963         rtnl_unlock();
11964
11965         /* Request a slot slot reset. */
11966         return PCI_ERS_RESULT_NEED_RESET;
11967 }
11968
11969 /**
11970  * bnxt_io_slot_reset - called after the pci bus has been reset.
11971  * @pdev: Pointer to PCI device
11972  *
11973  * Restart the card from scratch, as if from a cold-boot.
11974  * At this point, the card has exprienced a hard reset,
11975  * followed by fixups by BIOS, and has its config space
11976  * set up identically to what it was at cold boot.
11977  */
11978 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
11979 {
11980         struct net_device *netdev = pci_get_drvdata(pdev);
11981         struct bnxt *bp = netdev_priv(netdev);
11982         int err = 0;
11983         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
11984
11985         netdev_info(bp->dev, "PCI Slot Reset\n");
11986
11987         rtnl_lock();
11988
11989         if (pci_enable_device(pdev)) {
11990                 dev_err(&pdev->dev,
11991                         "Cannot re-enable PCI device after reset.\n");
11992         } else {
11993                 pci_set_master(pdev);
11994
11995                 err = bnxt_hwrm_func_reset(bp);
11996                 if (!err && netif_running(netdev))
11997                         err = bnxt_open(netdev);
11998
11999                 if (!err) {
12000                         result = PCI_ERS_RESULT_RECOVERED;
12001                         bnxt_ulp_start(bp);
12002                 }
12003         }
12004
12005         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
12006                 dev_close(netdev);
12007
12008         rtnl_unlock();
12009
12010         return PCI_ERS_RESULT_RECOVERED;
12011 }
12012
12013 /**
12014  * bnxt_io_resume - called when traffic can start flowing again.
12015  * @pdev: Pointer to PCI device
12016  *
12017  * This callback is called when the error recovery driver tells
12018  * us that its OK to resume normal operation.
12019  */
12020 static void bnxt_io_resume(struct pci_dev *pdev)
12021 {
12022         struct net_device *netdev = pci_get_drvdata(pdev);
12023
12024         rtnl_lock();
12025
12026         netif_device_attach(netdev);
12027
12028         rtnl_unlock();
12029 }
12030
12031 static const struct pci_error_handlers bnxt_err_handler = {
12032         .error_detected = bnxt_io_error_detected,
12033         .slot_reset     = bnxt_io_slot_reset,
12034         .resume         = bnxt_io_resume
12035 };
12036
12037 static struct pci_driver bnxt_pci_driver = {
12038         .name           = DRV_MODULE_NAME,
12039         .id_table       = bnxt_pci_tbl,
12040         .probe          = bnxt_init_one,
12041         .remove         = bnxt_remove_one,
12042         .shutdown       = bnxt_shutdown,
12043         .driver.pm      = BNXT_PM_OPS,
12044         .err_handler    = &bnxt_err_handler,
12045 #if defined(CONFIG_BNXT_SRIOV)
12046         .sriov_configure = bnxt_sriov_configure,
12047 #endif
12048 };
12049
12050 static int __init bnxt_init(void)
12051 {
12052         bnxt_debug_init();
12053         return pci_register_driver(&bnxt_pci_driver);
12054 }
12055
12056 static void __exit bnxt_exit(void)
12057 {
12058         pci_unregister_driver(&bnxt_pci_driver);
12059         if (bnxt_pf_wq)
12060                 destroy_workqueue(bnxt_pf_wq);
12061         bnxt_debug_exit();
12062 }
12063
12064 module_init(bnxt_init);
12065 module_exit(bnxt_exit);