176fc9f4d7defe6a9d5b513902c97f56d732b323
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10
11 #include <linux/module.h>
12
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/if_bridge.h>
37 #include <linux/rtc.h>
38 #include <linux/bpf.h>
39 #include <net/ip.h>
40 #include <net/tcp.h>
41 #include <net/udp.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <net/udp_tunnel.h>
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52 #include <linux/cpumask.h>
53 #include <net/pkt_cls.h>
54
55 #include "bnxt_hsi.h"
56 #include "bnxt.h"
57 #include "bnxt_ulp.h"
58 #include "bnxt_sriov.h"
59 #include "bnxt_ethtool.h"
60 #include "bnxt_dcb.h"
61 #include "bnxt_xdp.h"
62 #include "bnxt_vfr.h"
63 #include "bnxt_tc.h"
64 #include "bnxt_devlink.h"
65 #include "bnxt_debugfs.h"
66
67 #define BNXT_TX_TIMEOUT         (5 * HZ)
68
69 static const char version[] =
70         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
71
72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
74 MODULE_VERSION(DRV_MODULE_VERSION);
75
76 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
77 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
78 #define BNXT_RX_COPY_THRESH 256
79
80 #define BNXT_TX_PUSH_THRESH 164
81
82 enum board_idx {
83         BCM57301,
84         BCM57302,
85         BCM57304,
86         BCM57417_NPAR,
87         BCM58700,
88         BCM57311,
89         BCM57312,
90         BCM57402,
91         BCM57404,
92         BCM57406,
93         BCM57402_NPAR,
94         BCM57407,
95         BCM57412,
96         BCM57414,
97         BCM57416,
98         BCM57417,
99         BCM57412_NPAR,
100         BCM57314,
101         BCM57417_SFP,
102         BCM57416_SFP,
103         BCM57404_NPAR,
104         BCM57406_NPAR,
105         BCM57407_SFP,
106         BCM57407_NPAR,
107         BCM57414_NPAR,
108         BCM57416_NPAR,
109         BCM57452,
110         BCM57454,
111         BCM5745x_NPAR,
112         BCM58802,
113         BCM58804,
114         BCM58808,
115         NETXTREME_E_VF,
116         NETXTREME_C_VF,
117         NETXTREME_S_VF,
118 };
119
120 /* indexed by enum above */
121 static const struct {
122         char *name;
123 } board_info[] = {
124         [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
125         [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
126         [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
127         [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
128         [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
129         [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
130         [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
131         [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
132         [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
133         [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
134         [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
135         [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
136         [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
137         [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
138         [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
139         [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
140         [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
141         [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
142         [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
143         [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
144         [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
145         [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
146         [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
147         [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
148         [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
149         [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
150         [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
151         [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
152         [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
153         [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
154         [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
155         [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
156         [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
157         [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
158         [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
159 };
160
161 static const struct pci_device_id bnxt_pci_tbl[] = {
162         { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
163         { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
164         { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
165         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
166         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
167         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
168         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
169         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
170         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
171         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
172         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
173         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
174         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
175         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
176         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
177         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
178         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
179         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
180         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
181         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
182         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
183         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
184         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
185         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
186         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
187         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
188         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
189         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
190         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
191         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
192         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
193         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
194         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
195         { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
196         { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
197         { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
198         { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
199 #ifdef CONFIG_BNXT_SRIOV
200         { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
201         { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
202         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
203         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
204         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
205         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
206         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
207         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
208         { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
209 #endif
210         { 0 }
211 };
212
213 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
214
215 static const u16 bnxt_vf_req_snif[] = {
216         HWRM_FUNC_CFG,
217         HWRM_FUNC_VF_CFG,
218         HWRM_PORT_PHY_QCFG,
219         HWRM_CFA_L2_FILTER_ALLOC,
220 };
221
222 static const u16 bnxt_async_events_arr[] = {
223         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
224         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
225         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
226         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
227         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
228 };
229
230 static struct workqueue_struct *bnxt_pf_wq;
231
232 static bool bnxt_vf_pciid(enum board_idx idx)
233 {
234         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
235                 idx == NETXTREME_S_VF);
236 }
237
238 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
239 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
240 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
241
242 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
243                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
244
245 #define BNXT_CP_DB(db, raw_cons)                                        \
246                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
247
248 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
249                 writel(DB_CP_IRQ_DIS_FLAGS, db)
250
251 const u16 bnxt_lhint_arr[] = {
252         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
253         TX_BD_FLAGS_LHINT_512_TO_1023,
254         TX_BD_FLAGS_LHINT_1024_TO_2047,
255         TX_BD_FLAGS_LHINT_1024_TO_2047,
256         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
257         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
258         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
259         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
260         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
261         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
262         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
263         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
264         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
265         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
266         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
267         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
268         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
269         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
270         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
271 };
272
273 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
274 {
275         struct metadata_dst *md_dst = skb_metadata_dst(skb);
276
277         if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
278                 return 0;
279
280         return md_dst->u.port_info.port_id;
281 }
282
283 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
284 {
285         struct bnxt *bp = netdev_priv(dev);
286         struct tx_bd *txbd;
287         struct tx_bd_ext *txbd1;
288         struct netdev_queue *txq;
289         int i;
290         dma_addr_t mapping;
291         unsigned int length, pad = 0;
292         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
293         u16 prod, last_frag;
294         struct pci_dev *pdev = bp->pdev;
295         struct bnxt_tx_ring_info *txr;
296         struct bnxt_sw_tx_bd *tx_buf;
297
298         i = skb_get_queue_mapping(skb);
299         if (unlikely(i >= bp->tx_nr_rings)) {
300                 dev_kfree_skb_any(skb);
301                 return NETDEV_TX_OK;
302         }
303
304         txq = netdev_get_tx_queue(dev, i);
305         txr = &bp->tx_ring[bp->tx_ring_map[i]];
306         prod = txr->tx_prod;
307
308         free_size = bnxt_tx_avail(bp, txr);
309         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
310                 netif_tx_stop_queue(txq);
311                 return NETDEV_TX_BUSY;
312         }
313
314         length = skb->len;
315         len = skb_headlen(skb);
316         last_frag = skb_shinfo(skb)->nr_frags;
317
318         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
319
320         txbd->tx_bd_opaque = prod;
321
322         tx_buf = &txr->tx_buf_ring[prod];
323         tx_buf->skb = skb;
324         tx_buf->nr_frags = last_frag;
325
326         vlan_tag_flags = 0;
327         cfa_action = bnxt_xmit_get_cfa_action(skb);
328         if (skb_vlan_tag_present(skb)) {
329                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
330                                  skb_vlan_tag_get(skb);
331                 /* Currently supports 8021Q, 8021AD vlan offloads
332                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
333                  */
334                 if (skb->vlan_proto == htons(ETH_P_8021Q))
335                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
336         }
337
338         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
339                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
340                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
341                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
342                 void *pdata = tx_push_buf->data;
343                 u64 *end;
344                 int j, push_len;
345
346                 /* Set COAL_NOW to be ready quickly for the next push */
347                 tx_push->tx_bd_len_flags_type =
348                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
349                                         TX_BD_TYPE_LONG_TX_BD |
350                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
351                                         TX_BD_FLAGS_COAL_NOW |
352                                         TX_BD_FLAGS_PACKET_END |
353                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
354
355                 if (skb->ip_summed == CHECKSUM_PARTIAL)
356                         tx_push1->tx_bd_hsize_lflags =
357                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
358                 else
359                         tx_push1->tx_bd_hsize_lflags = 0;
360
361                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
362                 tx_push1->tx_bd_cfa_action =
363                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
364
365                 end = pdata + length;
366                 end = PTR_ALIGN(end, 8) - 1;
367                 *end = 0;
368
369                 skb_copy_from_linear_data(skb, pdata, len);
370                 pdata += len;
371                 for (j = 0; j < last_frag; j++) {
372                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
373                         void *fptr;
374
375                         fptr = skb_frag_address_safe(frag);
376                         if (!fptr)
377                                 goto normal_tx;
378
379                         memcpy(pdata, fptr, skb_frag_size(frag));
380                         pdata += skb_frag_size(frag);
381                 }
382
383                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
384                 txbd->tx_bd_haddr = txr->data_mapping;
385                 prod = NEXT_TX(prod);
386                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
387                 memcpy(txbd, tx_push1, sizeof(*txbd));
388                 prod = NEXT_TX(prod);
389                 tx_push->doorbell =
390                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
391                 txr->tx_prod = prod;
392
393                 tx_buf->is_push = 1;
394                 netdev_tx_sent_queue(txq, skb->len);
395                 wmb();  /* Sync is_push and byte queue before pushing data */
396
397                 push_len = (length + sizeof(*tx_push) + 7) / 8;
398                 if (push_len > 16) {
399                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
400                         __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
401                                          (push_len - 16) << 1);
402                 } else {
403                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
404                                          push_len);
405                 }
406
407                 goto tx_done;
408         }
409
410 normal_tx:
411         if (length < BNXT_MIN_PKT_SIZE) {
412                 pad = BNXT_MIN_PKT_SIZE - length;
413                 if (skb_pad(skb, pad)) {
414                         /* SKB already freed. */
415                         tx_buf->skb = NULL;
416                         return NETDEV_TX_OK;
417                 }
418                 length = BNXT_MIN_PKT_SIZE;
419         }
420
421         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
422
423         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
424                 dev_kfree_skb_any(skb);
425                 tx_buf->skb = NULL;
426                 return NETDEV_TX_OK;
427         }
428
429         dma_unmap_addr_set(tx_buf, mapping, mapping);
430         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
431                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
432
433         txbd->tx_bd_haddr = cpu_to_le64(mapping);
434
435         prod = NEXT_TX(prod);
436         txbd1 = (struct tx_bd_ext *)
437                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
438
439         txbd1->tx_bd_hsize_lflags = 0;
440         if (skb_is_gso(skb)) {
441                 u32 hdr_len;
442
443                 if (skb->encapsulation)
444                         hdr_len = skb_inner_network_offset(skb) +
445                                 skb_inner_network_header_len(skb) +
446                                 inner_tcp_hdrlen(skb);
447                 else
448                         hdr_len = skb_transport_offset(skb) +
449                                 tcp_hdrlen(skb);
450
451                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
452                                         TX_BD_FLAGS_T_IPID |
453                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
454                 length = skb_shinfo(skb)->gso_size;
455                 txbd1->tx_bd_mss = cpu_to_le32(length);
456                 length += hdr_len;
457         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
458                 txbd1->tx_bd_hsize_lflags =
459                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
460                 txbd1->tx_bd_mss = 0;
461         }
462
463         length >>= 9;
464         flags |= bnxt_lhint_arr[length];
465         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
466
467         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
468         txbd1->tx_bd_cfa_action =
469                         cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
470         for (i = 0; i < last_frag; i++) {
471                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
472
473                 prod = NEXT_TX(prod);
474                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
475
476                 len = skb_frag_size(frag);
477                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
478                                            DMA_TO_DEVICE);
479
480                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
481                         goto tx_dma_error;
482
483                 tx_buf = &txr->tx_buf_ring[prod];
484                 dma_unmap_addr_set(tx_buf, mapping, mapping);
485
486                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
487
488                 flags = len << TX_BD_LEN_SHIFT;
489                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
490         }
491
492         flags &= ~TX_BD_LEN;
493         txbd->tx_bd_len_flags_type =
494                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
495                             TX_BD_FLAGS_PACKET_END);
496
497         netdev_tx_sent_queue(txq, skb->len);
498
499         /* Sync BD data before updating doorbell */
500         wmb();
501
502         prod = NEXT_TX(prod);
503         txr->tx_prod = prod;
504
505         if (!skb->xmit_more || netif_xmit_stopped(txq))
506                 bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
507
508 tx_done:
509
510         mmiowb();
511
512         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
513                 if (skb->xmit_more && !tx_buf->is_push)
514                         bnxt_db_write(bp, txr->tx_doorbell, DB_KEY_TX | prod);
515
516                 netif_tx_stop_queue(txq);
517
518                 /* netif_tx_stop_queue() must be done before checking
519                  * tx index in bnxt_tx_avail() below, because in
520                  * bnxt_tx_int(), we update tx index before checking for
521                  * netif_tx_queue_stopped().
522                  */
523                 smp_mb();
524                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
525                         netif_tx_wake_queue(txq);
526         }
527         return NETDEV_TX_OK;
528
529 tx_dma_error:
530         last_frag = i;
531
532         /* start back at beginning and unmap skb */
533         prod = txr->tx_prod;
534         tx_buf = &txr->tx_buf_ring[prod];
535         tx_buf->skb = NULL;
536         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
537                          skb_headlen(skb), PCI_DMA_TODEVICE);
538         prod = NEXT_TX(prod);
539
540         /* unmap remaining mapped pages */
541         for (i = 0; i < last_frag; i++) {
542                 prod = NEXT_TX(prod);
543                 tx_buf = &txr->tx_buf_ring[prod];
544                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
545                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
546                                PCI_DMA_TODEVICE);
547         }
548
549         dev_kfree_skb_any(skb);
550         return NETDEV_TX_OK;
551 }
552
553 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
554 {
555         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
556         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
557         u16 cons = txr->tx_cons;
558         struct pci_dev *pdev = bp->pdev;
559         int i;
560         unsigned int tx_bytes = 0;
561
562         for (i = 0; i < nr_pkts; i++) {
563                 struct bnxt_sw_tx_bd *tx_buf;
564                 struct sk_buff *skb;
565                 int j, last;
566
567                 tx_buf = &txr->tx_buf_ring[cons];
568                 cons = NEXT_TX(cons);
569                 skb = tx_buf->skb;
570                 tx_buf->skb = NULL;
571
572                 if (tx_buf->is_push) {
573                         tx_buf->is_push = 0;
574                         goto next_tx_int;
575                 }
576
577                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
578                                  skb_headlen(skb), PCI_DMA_TODEVICE);
579                 last = tx_buf->nr_frags;
580
581                 for (j = 0; j < last; j++) {
582                         cons = NEXT_TX(cons);
583                         tx_buf = &txr->tx_buf_ring[cons];
584                         dma_unmap_page(
585                                 &pdev->dev,
586                                 dma_unmap_addr(tx_buf, mapping),
587                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
588                                 PCI_DMA_TODEVICE);
589                 }
590
591 next_tx_int:
592                 cons = NEXT_TX(cons);
593
594                 tx_bytes += skb->len;
595                 dev_kfree_skb_any(skb);
596         }
597
598         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
599         txr->tx_cons = cons;
600
601         /* Need to make the tx_cons update visible to bnxt_start_xmit()
602          * before checking for netif_tx_queue_stopped().  Without the
603          * memory barrier, there is a small possibility that bnxt_start_xmit()
604          * will miss it and cause the queue to be stopped forever.
605          */
606         smp_mb();
607
608         if (unlikely(netif_tx_queue_stopped(txq)) &&
609             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
610                 __netif_tx_lock(txq, smp_processor_id());
611                 if (netif_tx_queue_stopped(txq) &&
612                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
613                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
614                         netif_tx_wake_queue(txq);
615                 __netif_tx_unlock(txq);
616         }
617 }
618
619 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
620                                          gfp_t gfp)
621 {
622         struct device *dev = &bp->pdev->dev;
623         struct page *page;
624
625         page = alloc_page(gfp);
626         if (!page)
627                 return NULL;
628
629         *mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
630                                       DMA_ATTR_WEAK_ORDERING);
631         if (dma_mapping_error(dev, *mapping)) {
632                 __free_page(page);
633                 return NULL;
634         }
635         *mapping += bp->rx_dma_offset;
636         return page;
637 }
638
639 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
640                                        gfp_t gfp)
641 {
642         u8 *data;
643         struct pci_dev *pdev = bp->pdev;
644
645         data = kmalloc(bp->rx_buf_size, gfp);
646         if (!data)
647                 return NULL;
648
649         *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
650                                         bp->rx_buf_use_size, bp->rx_dir,
651                                         DMA_ATTR_WEAK_ORDERING);
652
653         if (dma_mapping_error(&pdev->dev, *mapping)) {
654                 kfree(data);
655                 data = NULL;
656         }
657         return data;
658 }
659
660 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
661                        u16 prod, gfp_t gfp)
662 {
663         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
664         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
665         dma_addr_t mapping;
666
667         if (BNXT_RX_PAGE_MODE(bp)) {
668                 struct page *page = __bnxt_alloc_rx_page(bp, &mapping, gfp);
669
670                 if (!page)
671                         return -ENOMEM;
672
673                 rx_buf->data = page;
674                 rx_buf->data_ptr = page_address(page) + bp->rx_offset;
675         } else {
676                 u8 *data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
677
678                 if (!data)
679                         return -ENOMEM;
680
681                 rx_buf->data = data;
682                 rx_buf->data_ptr = data + bp->rx_offset;
683         }
684         rx_buf->mapping = mapping;
685
686         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
687         return 0;
688 }
689
690 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
691 {
692         u16 prod = rxr->rx_prod;
693         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
694         struct rx_bd *cons_bd, *prod_bd;
695
696         prod_rx_buf = &rxr->rx_buf_ring[prod];
697         cons_rx_buf = &rxr->rx_buf_ring[cons];
698
699         prod_rx_buf->data = data;
700         prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
701
702         prod_rx_buf->mapping = cons_rx_buf->mapping;
703
704         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
705         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
706
707         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
708 }
709
710 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
711 {
712         u16 next, max = rxr->rx_agg_bmap_size;
713
714         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
715         if (next >= max)
716                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
717         return next;
718 }
719
720 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
721                                      struct bnxt_rx_ring_info *rxr,
722                                      u16 prod, gfp_t gfp)
723 {
724         struct rx_bd *rxbd =
725                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
726         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
727         struct pci_dev *pdev = bp->pdev;
728         struct page *page;
729         dma_addr_t mapping;
730         u16 sw_prod = rxr->rx_sw_agg_prod;
731         unsigned int offset = 0;
732
733         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
734                 page = rxr->rx_page;
735                 if (!page) {
736                         page = alloc_page(gfp);
737                         if (!page)
738                                 return -ENOMEM;
739                         rxr->rx_page = page;
740                         rxr->rx_page_offset = 0;
741                 }
742                 offset = rxr->rx_page_offset;
743                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
744                 if (rxr->rx_page_offset == PAGE_SIZE)
745                         rxr->rx_page = NULL;
746                 else
747                         get_page(page);
748         } else {
749                 page = alloc_page(gfp);
750                 if (!page)
751                         return -ENOMEM;
752         }
753
754         mapping = dma_map_page_attrs(&pdev->dev, page, offset,
755                                      BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE,
756                                      DMA_ATTR_WEAK_ORDERING);
757         if (dma_mapping_error(&pdev->dev, mapping)) {
758                 __free_page(page);
759                 return -EIO;
760         }
761
762         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
763                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
764
765         __set_bit(sw_prod, rxr->rx_agg_bmap);
766         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
767         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
768
769         rx_agg_buf->page = page;
770         rx_agg_buf->offset = offset;
771         rx_agg_buf->mapping = mapping;
772         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
773         rxbd->rx_bd_opaque = sw_prod;
774         return 0;
775 }
776
777 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
778                                    u32 agg_bufs)
779 {
780         struct bnxt *bp = bnapi->bp;
781         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
782         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
783         u16 prod = rxr->rx_agg_prod;
784         u16 sw_prod = rxr->rx_sw_agg_prod;
785         u32 i;
786
787         for (i = 0; i < agg_bufs; i++) {
788                 u16 cons;
789                 struct rx_agg_cmp *agg;
790                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
791                 struct rx_bd *prod_bd;
792                 struct page *page;
793
794                 agg = (struct rx_agg_cmp *)
795                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
796                 cons = agg->rx_agg_cmp_opaque;
797                 __clear_bit(cons, rxr->rx_agg_bmap);
798
799                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
800                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
801
802                 __set_bit(sw_prod, rxr->rx_agg_bmap);
803                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
804                 cons_rx_buf = &rxr->rx_agg_ring[cons];
805
806                 /* It is possible for sw_prod to be equal to cons, so
807                  * set cons_rx_buf->page to NULL first.
808                  */
809                 page = cons_rx_buf->page;
810                 cons_rx_buf->page = NULL;
811                 prod_rx_buf->page = page;
812                 prod_rx_buf->offset = cons_rx_buf->offset;
813
814                 prod_rx_buf->mapping = cons_rx_buf->mapping;
815
816                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
817
818                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
819                 prod_bd->rx_bd_opaque = sw_prod;
820
821                 prod = NEXT_RX_AGG(prod);
822                 sw_prod = NEXT_RX_AGG(sw_prod);
823                 cp_cons = NEXT_CMP(cp_cons);
824         }
825         rxr->rx_agg_prod = prod;
826         rxr->rx_sw_agg_prod = sw_prod;
827 }
828
829 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
830                                         struct bnxt_rx_ring_info *rxr,
831                                         u16 cons, void *data, u8 *data_ptr,
832                                         dma_addr_t dma_addr,
833                                         unsigned int offset_and_len)
834 {
835         unsigned int payload = offset_and_len >> 16;
836         unsigned int len = offset_and_len & 0xffff;
837         struct skb_frag_struct *frag;
838         struct page *page = data;
839         u16 prod = rxr->rx_prod;
840         struct sk_buff *skb;
841         int off, err;
842
843         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
844         if (unlikely(err)) {
845                 bnxt_reuse_rx_data(rxr, cons, data);
846                 return NULL;
847         }
848         dma_addr -= bp->rx_dma_offset;
849         dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
850                              DMA_ATTR_WEAK_ORDERING);
851
852         if (unlikely(!payload))
853                 payload = eth_get_headlen(data_ptr, len);
854
855         skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
856         if (!skb) {
857                 __free_page(page);
858                 return NULL;
859         }
860
861         off = (void *)data_ptr - page_address(page);
862         skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
863         memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
864                payload + NET_IP_ALIGN);
865
866         frag = &skb_shinfo(skb)->frags[0];
867         skb_frag_size_sub(frag, payload);
868         frag->page_offset += payload;
869         skb->data_len -= payload;
870         skb->tail += payload;
871
872         return skb;
873 }
874
875 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
876                                    struct bnxt_rx_ring_info *rxr, u16 cons,
877                                    void *data, u8 *data_ptr,
878                                    dma_addr_t dma_addr,
879                                    unsigned int offset_and_len)
880 {
881         u16 prod = rxr->rx_prod;
882         struct sk_buff *skb;
883         int err;
884
885         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
886         if (unlikely(err)) {
887                 bnxt_reuse_rx_data(rxr, cons, data);
888                 return NULL;
889         }
890
891         skb = build_skb(data, 0);
892         dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
893                                bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
894         if (!skb) {
895                 kfree(data);
896                 return NULL;
897         }
898
899         skb_reserve(skb, bp->rx_offset);
900         skb_put(skb, offset_and_len & 0xffff);
901         return skb;
902 }
903
904 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
905                                      struct sk_buff *skb, u16 cp_cons,
906                                      u32 agg_bufs)
907 {
908         struct pci_dev *pdev = bp->pdev;
909         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
910         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
911         u16 prod = rxr->rx_agg_prod;
912         u32 i;
913
914         for (i = 0; i < agg_bufs; i++) {
915                 u16 cons, frag_len;
916                 struct rx_agg_cmp *agg;
917                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
918                 struct page *page;
919                 dma_addr_t mapping;
920
921                 agg = (struct rx_agg_cmp *)
922                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
923                 cons = agg->rx_agg_cmp_opaque;
924                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
925                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
926
927                 cons_rx_buf = &rxr->rx_agg_ring[cons];
928                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
929                                    cons_rx_buf->offset, frag_len);
930                 __clear_bit(cons, rxr->rx_agg_bmap);
931
932                 /* It is possible for bnxt_alloc_rx_page() to allocate
933                  * a sw_prod index that equals the cons index, so we
934                  * need to clear the cons entry now.
935                  */
936                 mapping = cons_rx_buf->mapping;
937                 page = cons_rx_buf->page;
938                 cons_rx_buf->page = NULL;
939
940                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
941                         struct skb_shared_info *shinfo;
942                         unsigned int nr_frags;
943
944                         shinfo = skb_shinfo(skb);
945                         nr_frags = --shinfo->nr_frags;
946                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
947
948                         dev_kfree_skb(skb);
949
950                         cons_rx_buf->page = page;
951
952                         /* Update prod since possibly some pages have been
953                          * allocated already.
954                          */
955                         rxr->rx_agg_prod = prod;
956                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
957                         return NULL;
958                 }
959
960                 dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
961                                      PCI_DMA_FROMDEVICE,
962                                      DMA_ATTR_WEAK_ORDERING);
963
964                 skb->data_len += frag_len;
965                 skb->len += frag_len;
966                 skb->truesize += PAGE_SIZE;
967
968                 prod = NEXT_RX_AGG(prod);
969                 cp_cons = NEXT_CMP(cp_cons);
970         }
971         rxr->rx_agg_prod = prod;
972         return skb;
973 }
974
975 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
976                                u8 agg_bufs, u32 *raw_cons)
977 {
978         u16 last;
979         struct rx_agg_cmp *agg;
980
981         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
982         last = RING_CMP(*raw_cons);
983         agg = (struct rx_agg_cmp *)
984                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
985         return RX_AGG_CMP_VALID(agg, *raw_cons);
986 }
987
988 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
989                                             unsigned int len,
990                                             dma_addr_t mapping)
991 {
992         struct bnxt *bp = bnapi->bp;
993         struct pci_dev *pdev = bp->pdev;
994         struct sk_buff *skb;
995
996         skb = napi_alloc_skb(&bnapi->napi, len);
997         if (!skb)
998                 return NULL;
999
1000         dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1001                                 bp->rx_dir);
1002
1003         memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1004                len + NET_IP_ALIGN);
1005
1006         dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1007                                    bp->rx_dir);
1008
1009         skb_put(skb, len);
1010         return skb;
1011 }
1012
1013 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
1014                            u32 *raw_cons, void *cmp)
1015 {
1016         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1017         struct rx_cmp *rxcmp = cmp;
1018         u32 tmp_raw_cons = *raw_cons;
1019         u8 cmp_type, agg_bufs = 0;
1020
1021         cmp_type = RX_CMP_TYPE(rxcmp);
1022
1023         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1024                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1025                             RX_CMP_AGG_BUFS) >>
1026                            RX_CMP_AGG_BUFS_SHIFT;
1027         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1028                 struct rx_tpa_end_cmp *tpa_end = cmp;
1029
1030                 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1031                             RX_TPA_END_CMP_AGG_BUFS) >>
1032                            RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1033         }
1034
1035         if (agg_bufs) {
1036                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1037                         return -EBUSY;
1038         }
1039         *raw_cons = tmp_raw_cons;
1040         return 0;
1041 }
1042
1043 static void bnxt_queue_sp_work(struct bnxt *bp)
1044 {
1045         if (BNXT_PF(bp))
1046                 queue_work(bnxt_pf_wq, &bp->sp_task);
1047         else
1048                 schedule_work(&bp->sp_task);
1049 }
1050
1051 static void bnxt_cancel_sp_work(struct bnxt *bp)
1052 {
1053         if (BNXT_PF(bp))
1054                 flush_workqueue(bnxt_pf_wq);
1055         else
1056                 cancel_work_sync(&bp->sp_task);
1057 }
1058
1059 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1060 {
1061         if (!rxr->bnapi->in_reset) {
1062                 rxr->bnapi->in_reset = true;
1063                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1064                 bnxt_queue_sp_work(bp);
1065         }
1066         rxr->rx_next_cons = 0xffff;
1067 }
1068
1069 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1070                            struct rx_tpa_start_cmp *tpa_start,
1071                            struct rx_tpa_start_cmp_ext *tpa_start1)
1072 {
1073         u8 agg_id = TPA_START_AGG_ID(tpa_start);
1074         u16 cons, prod;
1075         struct bnxt_tpa_info *tpa_info;
1076         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1077         struct rx_bd *prod_bd;
1078         dma_addr_t mapping;
1079
1080         cons = tpa_start->rx_tpa_start_cmp_opaque;
1081         prod = rxr->rx_prod;
1082         cons_rx_buf = &rxr->rx_buf_ring[cons];
1083         prod_rx_buf = &rxr->rx_buf_ring[prod];
1084         tpa_info = &rxr->rx_tpa[agg_id];
1085
1086         if (unlikely(cons != rxr->rx_next_cons)) {
1087                 bnxt_sched_reset(bp, rxr);
1088                 return;
1089         }
1090         /* Store cfa_code in tpa_info to use in tpa_end
1091          * completion processing.
1092          */
1093         tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1094         prod_rx_buf->data = tpa_info->data;
1095         prod_rx_buf->data_ptr = tpa_info->data_ptr;
1096
1097         mapping = tpa_info->mapping;
1098         prod_rx_buf->mapping = mapping;
1099
1100         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1101
1102         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1103
1104         tpa_info->data = cons_rx_buf->data;
1105         tpa_info->data_ptr = cons_rx_buf->data_ptr;
1106         cons_rx_buf->data = NULL;
1107         tpa_info->mapping = cons_rx_buf->mapping;
1108
1109         tpa_info->len =
1110                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1111                                 RX_TPA_START_CMP_LEN_SHIFT;
1112         if (likely(TPA_START_HASH_VALID(tpa_start))) {
1113                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1114
1115                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
1116                 tpa_info->gso_type = SKB_GSO_TCPV4;
1117                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1118                 if (hash_type == 3)
1119                         tpa_info->gso_type = SKB_GSO_TCPV6;
1120                 tpa_info->rss_hash =
1121                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1122         } else {
1123                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1124                 tpa_info->gso_type = 0;
1125                 if (netif_msg_rx_err(bp))
1126                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
1127         }
1128         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1129         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1130         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1131
1132         rxr->rx_prod = NEXT_RX(prod);
1133         cons = NEXT_RX(cons);
1134         rxr->rx_next_cons = NEXT_RX(cons);
1135         cons_rx_buf = &rxr->rx_buf_ring[cons];
1136
1137         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1138         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1139         cons_rx_buf->data = NULL;
1140 }
1141
1142 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1143                            u16 cp_cons, u32 agg_bufs)
1144 {
1145         if (agg_bufs)
1146                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1147 }
1148
1149 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1150                                            int payload_off, int tcp_ts,
1151                                            struct sk_buff *skb)
1152 {
1153 #ifdef CONFIG_INET
1154         struct tcphdr *th;
1155         int len, nw_off;
1156         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1157         u32 hdr_info = tpa_info->hdr_info;
1158         bool loopback = false;
1159
1160         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1161         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1162         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1163
1164         /* If the packet is an internal loopback packet, the offsets will
1165          * have an extra 4 bytes.
1166          */
1167         if (inner_mac_off == 4) {
1168                 loopback = true;
1169         } else if (inner_mac_off > 4) {
1170                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1171                                             ETH_HLEN - 2));
1172
1173                 /* We only support inner iPv4/ipv6.  If we don't see the
1174                  * correct protocol ID, it must be a loopback packet where
1175                  * the offsets are off by 4.
1176                  */
1177                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1178                         loopback = true;
1179         }
1180         if (loopback) {
1181                 /* internal loopback packet, subtract all offsets by 4 */
1182                 inner_ip_off -= 4;
1183                 inner_mac_off -= 4;
1184                 outer_ip_off -= 4;
1185         }
1186
1187         nw_off = inner_ip_off - ETH_HLEN;
1188         skb_set_network_header(skb, nw_off);
1189         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1190                 struct ipv6hdr *iph = ipv6_hdr(skb);
1191
1192                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1193                 len = skb->len - skb_transport_offset(skb);
1194                 th = tcp_hdr(skb);
1195                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1196         } else {
1197                 struct iphdr *iph = ip_hdr(skb);
1198
1199                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1200                 len = skb->len - skb_transport_offset(skb);
1201                 th = tcp_hdr(skb);
1202                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1203         }
1204
1205         if (inner_mac_off) { /* tunnel */
1206                 struct udphdr *uh = NULL;
1207                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1208                                             ETH_HLEN - 2));
1209
1210                 if (proto == htons(ETH_P_IP)) {
1211                         struct iphdr *iph = (struct iphdr *)skb->data;
1212
1213                         if (iph->protocol == IPPROTO_UDP)
1214                                 uh = (struct udphdr *)(iph + 1);
1215                 } else {
1216                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1217
1218                         if (iph->nexthdr == IPPROTO_UDP)
1219                                 uh = (struct udphdr *)(iph + 1);
1220                 }
1221                 if (uh) {
1222                         if (uh->check)
1223                                 skb_shinfo(skb)->gso_type |=
1224                                         SKB_GSO_UDP_TUNNEL_CSUM;
1225                         else
1226                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1227                 }
1228         }
1229 #endif
1230         return skb;
1231 }
1232
1233 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1234 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1235
1236 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1237                                            int payload_off, int tcp_ts,
1238                                            struct sk_buff *skb)
1239 {
1240 #ifdef CONFIG_INET
1241         struct tcphdr *th;
1242         int len, nw_off, tcp_opt_len = 0;
1243
1244         if (tcp_ts)
1245                 tcp_opt_len = 12;
1246
1247         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1248                 struct iphdr *iph;
1249
1250                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1251                          ETH_HLEN;
1252                 skb_set_network_header(skb, nw_off);
1253                 iph = ip_hdr(skb);
1254                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1255                 len = skb->len - skb_transport_offset(skb);
1256                 th = tcp_hdr(skb);
1257                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1258         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1259                 struct ipv6hdr *iph;
1260
1261                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1262                          ETH_HLEN;
1263                 skb_set_network_header(skb, nw_off);
1264                 iph = ipv6_hdr(skb);
1265                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1266                 len = skb->len - skb_transport_offset(skb);
1267                 th = tcp_hdr(skb);
1268                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1269         } else {
1270                 dev_kfree_skb_any(skb);
1271                 return NULL;
1272         }
1273
1274         if (nw_off) { /* tunnel */
1275                 struct udphdr *uh = NULL;
1276
1277                 if (skb->protocol == htons(ETH_P_IP)) {
1278                         struct iphdr *iph = (struct iphdr *)skb->data;
1279
1280                         if (iph->protocol == IPPROTO_UDP)
1281                                 uh = (struct udphdr *)(iph + 1);
1282                 } else {
1283                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1284
1285                         if (iph->nexthdr == IPPROTO_UDP)
1286                                 uh = (struct udphdr *)(iph + 1);
1287                 }
1288                 if (uh) {
1289                         if (uh->check)
1290                                 skb_shinfo(skb)->gso_type |=
1291                                         SKB_GSO_UDP_TUNNEL_CSUM;
1292                         else
1293                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1294                 }
1295         }
1296 #endif
1297         return skb;
1298 }
1299
1300 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1301                                            struct bnxt_tpa_info *tpa_info,
1302                                            struct rx_tpa_end_cmp *tpa_end,
1303                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1304                                            struct sk_buff *skb)
1305 {
1306 #ifdef CONFIG_INET
1307         int payload_off;
1308         u16 segs;
1309
1310         segs = TPA_END_TPA_SEGS(tpa_end);
1311         if (segs == 1)
1312                 return skb;
1313
1314         NAPI_GRO_CB(skb)->count = segs;
1315         skb_shinfo(skb)->gso_size =
1316                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1317         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1318         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1319                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1320                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1321         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1322         if (likely(skb))
1323                 tcp_gro_complete(skb);
1324 #endif
1325         return skb;
1326 }
1327
1328 /* Given the cfa_code of a received packet determine which
1329  * netdev (vf-rep or PF) the packet is destined to.
1330  */
1331 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1332 {
1333         struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1334
1335         /* if vf-rep dev is NULL, the must belongs to the PF */
1336         return dev ? dev : bp->dev;
1337 }
1338
1339 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1340                                            struct bnxt_napi *bnapi,
1341                                            u32 *raw_cons,
1342                                            struct rx_tpa_end_cmp *tpa_end,
1343                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1344                                            u8 *event)
1345 {
1346         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1347         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1348         u8 agg_id = TPA_END_AGG_ID(tpa_end);
1349         u8 *data_ptr, agg_bufs;
1350         u16 cp_cons = RING_CMP(*raw_cons);
1351         unsigned int len;
1352         struct bnxt_tpa_info *tpa_info;
1353         dma_addr_t mapping;
1354         struct sk_buff *skb;
1355         void *data;
1356
1357         if (unlikely(bnapi->in_reset)) {
1358                 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1359
1360                 if (rc < 0)
1361                         return ERR_PTR(-EBUSY);
1362                 return NULL;
1363         }
1364
1365         tpa_info = &rxr->rx_tpa[agg_id];
1366         data = tpa_info->data;
1367         data_ptr = tpa_info->data_ptr;
1368         prefetch(data_ptr);
1369         len = tpa_info->len;
1370         mapping = tpa_info->mapping;
1371
1372         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1373                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1374
1375         if (agg_bufs) {
1376                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1377                         return ERR_PTR(-EBUSY);
1378
1379                 *event |= BNXT_AGG_EVENT;
1380                 cp_cons = NEXT_CMP(cp_cons);
1381         }
1382
1383         if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1384                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1385                 if (agg_bufs > MAX_SKB_FRAGS)
1386                         netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1387                                     agg_bufs, (int)MAX_SKB_FRAGS);
1388                 return NULL;
1389         }
1390
1391         if (len <= bp->rx_copy_thresh) {
1392                 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1393                 if (!skb) {
1394                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1395                         return NULL;
1396                 }
1397         } else {
1398                 u8 *new_data;
1399                 dma_addr_t new_mapping;
1400
1401                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1402                 if (!new_data) {
1403                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1404                         return NULL;
1405                 }
1406
1407                 tpa_info->data = new_data;
1408                 tpa_info->data_ptr = new_data + bp->rx_offset;
1409                 tpa_info->mapping = new_mapping;
1410
1411                 skb = build_skb(data, 0);
1412                 dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1413                                        bp->rx_buf_use_size, bp->rx_dir,
1414                                        DMA_ATTR_WEAK_ORDERING);
1415
1416                 if (!skb) {
1417                         kfree(data);
1418                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1419                         return NULL;
1420                 }
1421                 skb_reserve(skb, bp->rx_offset);
1422                 skb_put(skb, len);
1423         }
1424
1425         if (agg_bufs) {
1426                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1427                 if (!skb) {
1428                         /* Page reuse already handled by bnxt_rx_pages(). */
1429                         return NULL;
1430                 }
1431         }
1432
1433         skb->protocol =
1434                 eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1435
1436         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1437                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1438
1439         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1440             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1441                 u16 vlan_proto = tpa_info->metadata >>
1442                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1443                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1444
1445                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1446         }
1447
1448         skb_checksum_none_assert(skb);
1449         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1450                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1451                 skb->csum_level =
1452                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1453         }
1454
1455         if (TPA_END_GRO(tpa_end))
1456                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1457
1458         return skb;
1459 }
1460
1461 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1462                              struct sk_buff *skb)
1463 {
1464         if (skb->dev != bp->dev) {
1465                 /* this packet belongs to a vf-rep */
1466                 bnxt_vf_rep_rx(bp, skb);
1467                 return;
1468         }
1469         skb_record_rx_queue(skb, bnapi->index);
1470         napi_gro_receive(&bnapi->napi, skb);
1471 }
1472
1473 /* returns the following:
1474  * 1       - 1 packet successfully received
1475  * 0       - successful TPA_START, packet not completed yet
1476  * -EBUSY  - completion ring does not have all the agg buffers yet
1477  * -ENOMEM - packet aborted due to out of memory
1478  * -EIO    - packet aborted due to hw error indicated in BD
1479  */
1480 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1481                        u8 *event)
1482 {
1483         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1484         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1485         struct net_device *dev = bp->dev;
1486         struct rx_cmp *rxcmp;
1487         struct rx_cmp_ext *rxcmp1;
1488         u32 tmp_raw_cons = *raw_cons;
1489         u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1490         struct bnxt_sw_rx_bd *rx_buf;
1491         unsigned int len;
1492         u8 *data_ptr, agg_bufs, cmp_type;
1493         dma_addr_t dma_addr;
1494         struct sk_buff *skb;
1495         void *data;
1496         int rc = 0;
1497         u32 misc;
1498
1499         rxcmp = (struct rx_cmp *)
1500                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1501
1502         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1503         cp_cons = RING_CMP(tmp_raw_cons);
1504         rxcmp1 = (struct rx_cmp_ext *)
1505                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1506
1507         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1508                 return -EBUSY;
1509
1510         cmp_type = RX_CMP_TYPE(rxcmp);
1511
1512         prod = rxr->rx_prod;
1513
1514         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1515                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1516                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1517
1518                 *event |= BNXT_RX_EVENT;
1519                 goto next_rx_no_prod_no_len;
1520
1521         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1522                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1523                                    (struct rx_tpa_end_cmp *)rxcmp,
1524                                    (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1525
1526                 if (IS_ERR(skb))
1527                         return -EBUSY;
1528
1529                 rc = -ENOMEM;
1530                 if (likely(skb)) {
1531                         bnxt_deliver_skb(bp, bnapi, skb);
1532                         rc = 1;
1533                 }
1534                 *event |= BNXT_RX_EVENT;
1535                 goto next_rx_no_prod_no_len;
1536         }
1537
1538         cons = rxcmp->rx_cmp_opaque;
1539         rx_buf = &rxr->rx_buf_ring[cons];
1540         data = rx_buf->data;
1541         data_ptr = rx_buf->data_ptr;
1542         if (unlikely(cons != rxr->rx_next_cons)) {
1543                 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1544
1545                 bnxt_sched_reset(bp, rxr);
1546                 return rc1;
1547         }
1548         prefetch(data_ptr);
1549
1550         misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1551         agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1552
1553         if (agg_bufs) {
1554                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1555                         return -EBUSY;
1556
1557                 cp_cons = NEXT_CMP(cp_cons);
1558                 *event |= BNXT_AGG_EVENT;
1559         }
1560         *event |= BNXT_RX_EVENT;
1561
1562         rx_buf->data = NULL;
1563         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1564                 bnxt_reuse_rx_data(rxr, cons, data);
1565                 if (agg_bufs)
1566                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1567
1568                 rc = -EIO;
1569                 goto next_rx;
1570         }
1571
1572         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1573         dma_addr = rx_buf->mapping;
1574
1575         if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1576                 rc = 1;
1577                 goto next_rx;
1578         }
1579
1580         if (len <= bp->rx_copy_thresh) {
1581                 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1582                 bnxt_reuse_rx_data(rxr, cons, data);
1583                 if (!skb) {
1584                         rc = -ENOMEM;
1585                         goto next_rx;
1586                 }
1587         } else {
1588                 u32 payload;
1589
1590                 if (rx_buf->data_ptr == data_ptr)
1591                         payload = misc & RX_CMP_PAYLOAD_OFFSET;
1592                 else
1593                         payload = 0;
1594                 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1595                                       payload | len);
1596                 if (!skb) {
1597                         rc = -ENOMEM;
1598                         goto next_rx;
1599                 }
1600         }
1601
1602         if (agg_bufs) {
1603                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1604                 if (!skb) {
1605                         rc = -ENOMEM;
1606                         goto next_rx;
1607                 }
1608         }
1609
1610         if (RX_CMP_HASH_VALID(rxcmp)) {
1611                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1612                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1613
1614                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1615                 if (hash_type != 1 && hash_type != 3)
1616                         type = PKT_HASH_TYPE_L3;
1617                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1618         }
1619
1620         cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1621         skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1622
1623         if ((rxcmp1->rx_cmp_flags2 &
1624              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1625             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1626                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1627                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1628                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1629
1630                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1631         }
1632
1633         skb_checksum_none_assert(skb);
1634         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1635                 if (dev->features & NETIF_F_RXCSUM) {
1636                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1637                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1638                 }
1639         } else {
1640                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1641                         if (dev->features & NETIF_F_RXCSUM)
1642                                 cpr->rx_l4_csum_errors++;
1643                 }
1644         }
1645
1646         bnxt_deliver_skb(bp, bnapi, skb);
1647         rc = 1;
1648
1649 next_rx:
1650         rxr->rx_prod = NEXT_RX(prod);
1651         rxr->rx_next_cons = NEXT_RX(cons);
1652
1653         cpr->rx_packets += 1;
1654         cpr->rx_bytes += len;
1655
1656 next_rx_no_prod_no_len:
1657         *raw_cons = tmp_raw_cons;
1658
1659         return rc;
1660 }
1661
1662 /* In netpoll mode, if we are using a combined completion ring, we need to
1663  * discard the rx packets and recycle the buffers.
1664  */
1665 static int bnxt_force_rx_discard(struct bnxt *bp, struct bnxt_napi *bnapi,
1666                                  u32 *raw_cons, u8 *event)
1667 {
1668         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1669         u32 tmp_raw_cons = *raw_cons;
1670         struct rx_cmp_ext *rxcmp1;
1671         struct rx_cmp *rxcmp;
1672         u16 cp_cons;
1673         u8 cmp_type;
1674
1675         cp_cons = RING_CMP(tmp_raw_cons);
1676         rxcmp = (struct rx_cmp *)
1677                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1678
1679         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1680         cp_cons = RING_CMP(tmp_raw_cons);
1681         rxcmp1 = (struct rx_cmp_ext *)
1682                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1683
1684         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1685                 return -EBUSY;
1686
1687         cmp_type = RX_CMP_TYPE(rxcmp);
1688         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1689                 rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1690                         cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1691         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1692                 struct rx_tpa_end_cmp_ext *tpa_end1;
1693
1694                 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1695                 tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1696                         cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1697         }
1698         return bnxt_rx_pkt(bp, bnapi, raw_cons, event);
1699 }
1700
1701 #define BNXT_GET_EVENT_PORT(data)       \
1702         ((data) &                       \
1703          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1704
1705 static int bnxt_async_event_process(struct bnxt *bp,
1706                                     struct hwrm_async_event_cmpl *cmpl)
1707 {
1708         u16 event_id = le16_to_cpu(cmpl->event_id);
1709
1710         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1711         switch (event_id) {
1712         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1713                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1714                 struct bnxt_link_info *link_info = &bp->link_info;
1715
1716                 if (BNXT_VF(bp))
1717                         goto async_event_process_exit;
1718
1719                 /* print unsupported speed warning in forced speed mode only */
1720                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
1721                     (data1 & 0x20000)) {
1722                         u16 fw_speed = link_info->force_link_speed;
1723                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1724
1725                         if (speed != SPEED_UNKNOWN)
1726                                 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1727                                             speed);
1728                 }
1729                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1730                 /* fall thru */
1731         }
1732         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1733                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1734                 break;
1735         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1736                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1737                 break;
1738         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1739                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1740                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1741
1742                 if (BNXT_VF(bp))
1743                         break;
1744
1745                 if (bp->pf.port_id != port_id)
1746                         break;
1747
1748                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1749                 break;
1750         }
1751         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1752                 if (BNXT_PF(bp))
1753                         goto async_event_process_exit;
1754                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1755                 break;
1756         default:
1757                 goto async_event_process_exit;
1758         }
1759         bnxt_queue_sp_work(bp);
1760 async_event_process_exit:
1761         bnxt_ulp_async_events(bp, cmpl);
1762         return 0;
1763 }
1764
1765 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1766 {
1767         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1768         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1769         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1770                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1771
1772         switch (cmpl_type) {
1773         case CMPL_BASE_TYPE_HWRM_DONE:
1774                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1775                 if (seq_id == bp->hwrm_intr_seq_id)
1776                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1777                 else
1778                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1779                 break;
1780
1781         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1782                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1783
1784                 if ((vf_id < bp->pf.first_vf_id) ||
1785                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1786                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1787                                    vf_id);
1788                         return -EINVAL;
1789                 }
1790
1791                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1792                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1793                 bnxt_queue_sp_work(bp);
1794                 break;
1795
1796         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1797                 bnxt_async_event_process(bp,
1798                                          (struct hwrm_async_event_cmpl *)txcmp);
1799
1800         default:
1801                 break;
1802         }
1803
1804         return 0;
1805 }
1806
1807 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1808 {
1809         struct bnxt_napi *bnapi = dev_instance;
1810         struct bnxt *bp = bnapi->bp;
1811         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1812         u32 cons = RING_CMP(cpr->cp_raw_cons);
1813
1814         cpr->event_ctr++;
1815         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1816         napi_schedule(&bnapi->napi);
1817         return IRQ_HANDLED;
1818 }
1819
1820 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1821 {
1822         u32 raw_cons = cpr->cp_raw_cons;
1823         u16 cons = RING_CMP(raw_cons);
1824         struct tx_cmp *txcmp;
1825
1826         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1827
1828         return TX_CMP_VALID(txcmp, raw_cons);
1829 }
1830
1831 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1832 {
1833         struct bnxt_napi *bnapi = dev_instance;
1834         struct bnxt *bp = bnapi->bp;
1835         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1836         u32 cons = RING_CMP(cpr->cp_raw_cons);
1837         u32 int_status;
1838
1839         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1840
1841         if (!bnxt_has_work(bp, cpr)) {
1842                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1843                 /* return if erroneous interrupt */
1844                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1845                         return IRQ_NONE;
1846         }
1847
1848         /* disable ring IRQ */
1849         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1850
1851         /* Return here if interrupt is shared and is disabled. */
1852         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1853                 return IRQ_HANDLED;
1854
1855         napi_schedule(&bnapi->napi);
1856         return IRQ_HANDLED;
1857 }
1858
1859 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1860 {
1861         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1862         u32 raw_cons = cpr->cp_raw_cons;
1863         u32 cons;
1864         int tx_pkts = 0;
1865         int rx_pkts = 0;
1866         u8 event = 0;
1867         struct tx_cmp *txcmp;
1868
1869         while (1) {
1870                 int rc;
1871
1872                 cons = RING_CMP(raw_cons);
1873                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1874
1875                 if (!TX_CMP_VALID(txcmp, raw_cons))
1876                         break;
1877
1878                 /* The valid test of the entry must be done first before
1879                  * reading any further.
1880                  */
1881                 dma_rmb();
1882                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1883                         tx_pkts++;
1884                         /* return full budget so NAPI will complete. */
1885                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1886                                 rx_pkts = budget;
1887                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1888                         if (likely(budget))
1889                                 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1890                         else
1891                                 rc = bnxt_force_rx_discard(bp, bnapi, &raw_cons,
1892                                                            &event);
1893                         if (likely(rc >= 0))
1894                                 rx_pkts += rc;
1895                         /* Increment rx_pkts when rc is -ENOMEM to count towards
1896                          * the NAPI budget.  Otherwise, we may potentially loop
1897                          * here forever if we consistently cannot allocate
1898                          * buffers.
1899                          */
1900                         else if (rc == -ENOMEM && budget)
1901                                 rx_pkts++;
1902                         else if (rc == -EBUSY)  /* partial completion */
1903                                 break;
1904                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1905                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1906                                     (TX_CMP_TYPE(txcmp) ==
1907                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1908                                     (TX_CMP_TYPE(txcmp) ==
1909                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1910                         bnxt_hwrm_handler(bp, txcmp);
1911                 }
1912                 raw_cons = NEXT_RAW_CMP(raw_cons);
1913
1914                 if (rx_pkts == budget)
1915                         break;
1916         }
1917
1918         if (event & BNXT_TX_EVENT) {
1919                 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
1920                 void __iomem *db = txr->tx_doorbell;
1921                 u16 prod = txr->tx_prod;
1922
1923                 /* Sync BD data before updating doorbell */
1924                 wmb();
1925
1926                 bnxt_db_write_relaxed(bp, db, DB_KEY_TX | prod);
1927         }
1928
1929         cpr->cp_raw_cons = raw_cons;
1930         /* ACK completion ring before freeing tx ring and producing new
1931          * buffers in rx/agg rings to prevent overflowing the completion
1932          * ring.
1933          */
1934         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1935
1936         if (tx_pkts)
1937                 bnapi->tx_int(bp, bnapi, tx_pkts);
1938
1939         if (event & BNXT_RX_EVENT) {
1940                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1941
1942                 bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
1943                 if (event & BNXT_AGG_EVENT)
1944                         bnxt_db_write(bp, rxr->rx_agg_doorbell,
1945                                       DB_KEY_RX | rxr->rx_agg_prod);
1946         }
1947         return rx_pkts;
1948 }
1949
1950 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1951 {
1952         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1953         struct bnxt *bp = bnapi->bp;
1954         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1955         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1956         struct tx_cmp *txcmp;
1957         struct rx_cmp_ext *rxcmp1;
1958         u32 cp_cons, tmp_raw_cons;
1959         u32 raw_cons = cpr->cp_raw_cons;
1960         u32 rx_pkts = 0;
1961         u8 event = 0;
1962
1963         while (1) {
1964                 int rc;
1965
1966                 cp_cons = RING_CMP(raw_cons);
1967                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1968
1969                 if (!TX_CMP_VALID(txcmp, raw_cons))
1970                         break;
1971
1972                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1973                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1974                         cp_cons = RING_CMP(tmp_raw_cons);
1975                         rxcmp1 = (struct rx_cmp_ext *)
1976                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1977
1978                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1979                                 break;
1980
1981                         /* force an error to recycle the buffer */
1982                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1983                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1984
1985                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &event);
1986                         if (likely(rc == -EIO) && budget)
1987                                 rx_pkts++;
1988                         else if (rc == -EBUSY)  /* partial completion */
1989                                 break;
1990                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1991                                     CMPL_BASE_TYPE_HWRM_DONE)) {
1992                         bnxt_hwrm_handler(bp, txcmp);
1993                 } else {
1994                         netdev_err(bp->dev,
1995                                    "Invalid completion received on special ring\n");
1996                 }
1997                 raw_cons = NEXT_RAW_CMP(raw_cons);
1998
1999                 if (rx_pkts == budget)
2000                         break;
2001         }
2002
2003         cpr->cp_raw_cons = raw_cons;
2004         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
2005         bnxt_db_write(bp, rxr->rx_doorbell, DB_KEY_RX | rxr->rx_prod);
2006
2007         if (event & BNXT_AGG_EVENT)
2008                 bnxt_db_write(bp, rxr->rx_agg_doorbell,
2009                               DB_KEY_RX | rxr->rx_agg_prod);
2010
2011         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2012                 napi_complete_done(napi, rx_pkts);
2013                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
2014         }
2015         return rx_pkts;
2016 }
2017
2018 static int bnxt_poll(struct napi_struct *napi, int budget)
2019 {
2020         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2021         struct bnxt *bp = bnapi->bp;
2022         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2023         int work_done = 0;
2024
2025         while (1) {
2026                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
2027
2028                 if (work_done >= budget)
2029                         break;
2030
2031                 if (!bnxt_has_work(bp, cpr)) {
2032                         if (napi_complete_done(napi, work_done))
2033                                 BNXT_CP_DB_REARM(cpr->cp_doorbell,
2034                                                  cpr->cp_raw_cons);
2035                         break;
2036                 }
2037         }
2038         if (bp->flags & BNXT_FLAG_DIM) {
2039                 struct net_dim_sample dim_sample;
2040
2041                 net_dim_sample(cpr->event_ctr,
2042                                cpr->rx_packets,
2043                                cpr->rx_bytes,
2044                                &dim_sample);
2045                 net_dim(&cpr->dim, dim_sample);
2046         }
2047         mmiowb();
2048         return work_done;
2049 }
2050
2051 static void bnxt_free_tx_skbs(struct bnxt *bp)
2052 {
2053         int i, max_idx;
2054         struct pci_dev *pdev = bp->pdev;
2055
2056         if (!bp->tx_ring)
2057                 return;
2058
2059         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2060         for (i = 0; i < bp->tx_nr_rings; i++) {
2061                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2062                 int j;
2063
2064                 for (j = 0; j < max_idx;) {
2065                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2066                         struct sk_buff *skb = tx_buf->skb;
2067                         int k, last;
2068
2069                         if (!skb) {
2070                                 j++;
2071                                 continue;
2072                         }
2073
2074                         tx_buf->skb = NULL;
2075
2076                         if (tx_buf->is_push) {
2077                                 dev_kfree_skb(skb);
2078                                 j += 2;
2079                                 continue;
2080                         }
2081
2082                         dma_unmap_single(&pdev->dev,
2083                                          dma_unmap_addr(tx_buf, mapping),
2084                                          skb_headlen(skb),
2085                                          PCI_DMA_TODEVICE);
2086
2087                         last = tx_buf->nr_frags;
2088                         j += 2;
2089                         for (k = 0; k < last; k++, j++) {
2090                                 int ring_idx = j & bp->tx_ring_mask;
2091                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2092
2093                                 tx_buf = &txr->tx_buf_ring[ring_idx];
2094                                 dma_unmap_page(
2095                                         &pdev->dev,
2096                                         dma_unmap_addr(tx_buf, mapping),
2097                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
2098                         }
2099                         dev_kfree_skb(skb);
2100                 }
2101                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2102         }
2103 }
2104
2105 static void bnxt_free_rx_skbs(struct bnxt *bp)
2106 {
2107         int i, max_idx, max_agg_idx;
2108         struct pci_dev *pdev = bp->pdev;
2109
2110         if (!bp->rx_ring)
2111                 return;
2112
2113         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2114         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2115         for (i = 0; i < bp->rx_nr_rings; i++) {
2116                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2117                 int j;
2118
2119                 if (rxr->rx_tpa) {
2120                         for (j = 0; j < MAX_TPA; j++) {
2121                                 struct bnxt_tpa_info *tpa_info =
2122                                                         &rxr->rx_tpa[j];
2123                                 u8 *data = tpa_info->data;
2124
2125                                 if (!data)
2126                                         continue;
2127
2128                                 dma_unmap_single_attrs(&pdev->dev,
2129                                                        tpa_info->mapping,
2130                                                        bp->rx_buf_use_size,
2131                                                        bp->rx_dir,
2132                                                        DMA_ATTR_WEAK_ORDERING);
2133
2134                                 tpa_info->data = NULL;
2135
2136                                 kfree(data);
2137                         }
2138                 }
2139
2140                 for (j = 0; j < max_idx; j++) {
2141                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
2142                         dma_addr_t mapping = rx_buf->mapping;
2143                         void *data = rx_buf->data;
2144
2145                         if (!data)
2146                                 continue;
2147
2148                         rx_buf->data = NULL;
2149
2150                         if (BNXT_RX_PAGE_MODE(bp)) {
2151                                 mapping -= bp->rx_dma_offset;
2152                                 dma_unmap_page_attrs(&pdev->dev, mapping,
2153                                                      PAGE_SIZE, bp->rx_dir,
2154                                                      DMA_ATTR_WEAK_ORDERING);
2155                                 __free_page(data);
2156                         } else {
2157                                 dma_unmap_single_attrs(&pdev->dev, mapping,
2158                                                        bp->rx_buf_use_size,
2159                                                        bp->rx_dir,
2160                                                        DMA_ATTR_WEAK_ORDERING);
2161                                 kfree(data);
2162                         }
2163                 }
2164
2165                 for (j = 0; j < max_agg_idx; j++) {
2166                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
2167                                 &rxr->rx_agg_ring[j];
2168                         struct page *page = rx_agg_buf->page;
2169
2170                         if (!page)
2171                                 continue;
2172
2173                         dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2174                                              BNXT_RX_PAGE_SIZE,
2175                                              PCI_DMA_FROMDEVICE,
2176                                              DMA_ATTR_WEAK_ORDERING);
2177
2178                         rx_agg_buf->page = NULL;
2179                         __clear_bit(j, rxr->rx_agg_bmap);
2180
2181                         __free_page(page);
2182                 }
2183                 if (rxr->rx_page) {
2184                         __free_page(rxr->rx_page);
2185                         rxr->rx_page = NULL;
2186                 }
2187         }
2188 }
2189
2190 static void bnxt_free_skbs(struct bnxt *bp)
2191 {
2192         bnxt_free_tx_skbs(bp);
2193         bnxt_free_rx_skbs(bp);
2194 }
2195
2196 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2197 {
2198         struct pci_dev *pdev = bp->pdev;
2199         int i;
2200
2201         for (i = 0; i < ring->nr_pages; i++) {
2202                 if (!ring->pg_arr[i])
2203                         continue;
2204
2205                 dma_free_coherent(&pdev->dev, ring->page_size,
2206                                   ring->pg_arr[i], ring->dma_arr[i]);
2207
2208                 ring->pg_arr[i] = NULL;
2209         }
2210         if (ring->pg_tbl) {
2211                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
2212                                   ring->pg_tbl, ring->pg_tbl_map);
2213                 ring->pg_tbl = NULL;
2214         }
2215         if (ring->vmem_size && *ring->vmem) {
2216                 vfree(*ring->vmem);
2217                 *ring->vmem = NULL;
2218         }
2219 }
2220
2221 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
2222 {
2223         int i;
2224         struct pci_dev *pdev = bp->pdev;
2225
2226         if (ring->nr_pages > 1) {
2227                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
2228                                                   ring->nr_pages * 8,
2229                                                   &ring->pg_tbl_map,
2230                                                   GFP_KERNEL);
2231                 if (!ring->pg_tbl)
2232                         return -ENOMEM;
2233         }
2234
2235         for (i = 0; i < ring->nr_pages; i++) {
2236                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2237                                                      ring->page_size,
2238                                                      &ring->dma_arr[i],
2239                                                      GFP_KERNEL);
2240                 if (!ring->pg_arr[i])
2241                         return -ENOMEM;
2242
2243                 if (ring->nr_pages > 1)
2244                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2245         }
2246
2247         if (ring->vmem_size) {
2248                 *ring->vmem = vzalloc(ring->vmem_size);
2249                 if (!(*ring->vmem))
2250                         return -ENOMEM;
2251         }
2252         return 0;
2253 }
2254
2255 static void bnxt_free_rx_rings(struct bnxt *bp)
2256 {
2257         int i;
2258
2259         if (!bp->rx_ring)
2260                 return;
2261
2262         for (i = 0; i < bp->rx_nr_rings; i++) {
2263                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2264                 struct bnxt_ring_struct *ring;
2265
2266                 if (rxr->xdp_prog)
2267                         bpf_prog_put(rxr->xdp_prog);
2268
2269                 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
2270                         xdp_rxq_info_unreg(&rxr->xdp_rxq);
2271
2272                 kfree(rxr->rx_tpa);
2273                 rxr->rx_tpa = NULL;
2274
2275                 kfree(rxr->rx_agg_bmap);
2276                 rxr->rx_agg_bmap = NULL;
2277
2278                 ring = &rxr->rx_ring_struct;
2279                 bnxt_free_ring(bp, ring);
2280
2281                 ring = &rxr->rx_agg_ring_struct;
2282                 bnxt_free_ring(bp, ring);
2283         }
2284 }
2285
2286 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2287 {
2288         int i, rc, agg_rings = 0, tpa_rings = 0;
2289
2290         if (!bp->rx_ring)
2291                 return -ENOMEM;
2292
2293         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2294                 agg_rings = 1;
2295
2296         if (bp->flags & BNXT_FLAG_TPA)
2297                 tpa_rings = 1;
2298
2299         for (i = 0; i < bp->rx_nr_rings; i++) {
2300                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2301                 struct bnxt_ring_struct *ring;
2302
2303                 ring = &rxr->rx_ring_struct;
2304
2305                 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i);
2306                 if (rc < 0)
2307                         return rc;
2308
2309                 rc = bnxt_alloc_ring(bp, ring);
2310                 if (rc)
2311                         return rc;
2312
2313                 if (agg_rings) {
2314                         u16 mem_size;
2315
2316                         ring = &rxr->rx_agg_ring_struct;
2317                         rc = bnxt_alloc_ring(bp, ring);
2318                         if (rc)
2319                                 return rc;
2320
2321                         ring->grp_idx = i;
2322                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2323                         mem_size = rxr->rx_agg_bmap_size / 8;
2324                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2325                         if (!rxr->rx_agg_bmap)
2326                                 return -ENOMEM;
2327
2328                         if (tpa_rings) {
2329                                 rxr->rx_tpa = kcalloc(MAX_TPA,
2330                                                 sizeof(struct bnxt_tpa_info),
2331                                                 GFP_KERNEL);
2332                                 if (!rxr->rx_tpa)
2333                                         return -ENOMEM;
2334                         }
2335                 }
2336         }
2337         return 0;
2338 }
2339
2340 static void bnxt_free_tx_rings(struct bnxt *bp)
2341 {
2342         int i;
2343         struct pci_dev *pdev = bp->pdev;
2344
2345         if (!bp->tx_ring)
2346                 return;
2347
2348         for (i = 0; i < bp->tx_nr_rings; i++) {
2349                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2350                 struct bnxt_ring_struct *ring;
2351
2352                 if (txr->tx_push) {
2353                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2354                                           txr->tx_push, txr->tx_push_mapping);
2355                         txr->tx_push = NULL;
2356                 }
2357
2358                 ring = &txr->tx_ring_struct;
2359
2360                 bnxt_free_ring(bp, ring);
2361         }
2362 }
2363
2364 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2365 {
2366         int i, j, rc;
2367         struct pci_dev *pdev = bp->pdev;
2368
2369         bp->tx_push_size = 0;
2370         if (bp->tx_push_thresh) {
2371                 int push_size;
2372
2373                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2374                                         bp->tx_push_thresh);
2375
2376                 if (push_size > 256) {
2377                         push_size = 0;
2378                         bp->tx_push_thresh = 0;
2379                 }
2380
2381                 bp->tx_push_size = push_size;
2382         }
2383
2384         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2385                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2386                 struct bnxt_ring_struct *ring;
2387                 u8 qidx;
2388
2389                 ring = &txr->tx_ring_struct;
2390
2391                 rc = bnxt_alloc_ring(bp, ring);
2392                 if (rc)
2393                         return rc;
2394
2395                 ring->grp_idx = txr->bnapi->index;
2396                 if (bp->tx_push_size) {
2397                         dma_addr_t mapping;
2398
2399                         /* One pre-allocated DMA buffer to backup
2400                          * TX push operation
2401                          */
2402                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2403                                                 bp->tx_push_size,
2404                                                 &txr->tx_push_mapping,
2405                                                 GFP_KERNEL);
2406
2407                         if (!txr->tx_push)
2408                                 return -ENOMEM;
2409
2410                         mapping = txr->tx_push_mapping +
2411                                 sizeof(struct tx_push_bd);
2412                         txr->data_mapping = cpu_to_le64(mapping);
2413
2414                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2415                 }
2416                 qidx = bp->tc_to_qidx[j];
2417                 ring->queue_id = bp->q_info[qidx].queue_id;
2418                 if (i < bp->tx_nr_rings_xdp)
2419                         continue;
2420                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2421                         j++;
2422         }
2423         return 0;
2424 }
2425
2426 static void bnxt_free_cp_rings(struct bnxt *bp)
2427 {
2428         int i;
2429
2430         if (!bp->bnapi)
2431                 return;
2432
2433         for (i = 0; i < bp->cp_nr_rings; i++) {
2434                 struct bnxt_napi *bnapi = bp->bnapi[i];
2435                 struct bnxt_cp_ring_info *cpr;
2436                 struct bnxt_ring_struct *ring;
2437
2438                 if (!bnapi)
2439                         continue;
2440
2441                 cpr = &bnapi->cp_ring;
2442                 ring = &cpr->cp_ring_struct;
2443
2444                 bnxt_free_ring(bp, ring);
2445         }
2446 }
2447
2448 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2449 {
2450         int i, rc, ulp_base_vec, ulp_msix;
2451
2452         ulp_msix = bnxt_get_ulp_msix_num(bp);
2453         ulp_base_vec = bnxt_get_ulp_msix_base(bp);
2454         for (i = 0; i < bp->cp_nr_rings; i++) {
2455                 struct bnxt_napi *bnapi = bp->bnapi[i];
2456                 struct bnxt_cp_ring_info *cpr;
2457                 struct bnxt_ring_struct *ring;
2458
2459                 if (!bnapi)
2460                         continue;
2461
2462                 cpr = &bnapi->cp_ring;
2463                 ring = &cpr->cp_ring_struct;
2464
2465                 rc = bnxt_alloc_ring(bp, ring);
2466                 if (rc)
2467                         return rc;
2468
2469                 if (ulp_msix && i >= ulp_base_vec)
2470                         ring->map_idx = i + ulp_msix;
2471                 else
2472                         ring->map_idx = i;
2473         }
2474         return 0;
2475 }
2476
2477 static void bnxt_init_ring_struct(struct bnxt *bp)
2478 {
2479         int i;
2480
2481         for (i = 0; i < bp->cp_nr_rings; i++) {
2482                 struct bnxt_napi *bnapi = bp->bnapi[i];
2483                 struct bnxt_cp_ring_info *cpr;
2484                 struct bnxt_rx_ring_info *rxr;
2485                 struct bnxt_tx_ring_info *txr;
2486                 struct bnxt_ring_struct *ring;
2487
2488                 if (!bnapi)
2489                         continue;
2490
2491                 cpr = &bnapi->cp_ring;
2492                 ring = &cpr->cp_ring_struct;
2493                 ring->nr_pages = bp->cp_nr_pages;
2494                 ring->page_size = HW_CMPD_RING_SIZE;
2495                 ring->pg_arr = (void **)cpr->cp_desc_ring;
2496                 ring->dma_arr = cpr->cp_desc_mapping;
2497                 ring->vmem_size = 0;
2498
2499                 rxr = bnapi->rx_ring;
2500                 if (!rxr)
2501                         goto skip_rx;
2502
2503                 ring = &rxr->rx_ring_struct;
2504                 ring->nr_pages = bp->rx_nr_pages;
2505                 ring->page_size = HW_RXBD_RING_SIZE;
2506                 ring->pg_arr = (void **)rxr->rx_desc_ring;
2507                 ring->dma_arr = rxr->rx_desc_mapping;
2508                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2509                 ring->vmem = (void **)&rxr->rx_buf_ring;
2510
2511                 ring = &rxr->rx_agg_ring_struct;
2512                 ring->nr_pages = bp->rx_agg_nr_pages;
2513                 ring->page_size = HW_RXBD_RING_SIZE;
2514                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2515                 ring->dma_arr = rxr->rx_agg_desc_mapping;
2516                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2517                 ring->vmem = (void **)&rxr->rx_agg_ring;
2518
2519 skip_rx:
2520                 txr = bnapi->tx_ring;
2521                 if (!txr)
2522                         continue;
2523
2524                 ring = &txr->tx_ring_struct;
2525                 ring->nr_pages = bp->tx_nr_pages;
2526                 ring->page_size = HW_RXBD_RING_SIZE;
2527                 ring->pg_arr = (void **)txr->tx_desc_ring;
2528                 ring->dma_arr = txr->tx_desc_mapping;
2529                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2530                 ring->vmem = (void **)&txr->tx_buf_ring;
2531         }
2532 }
2533
2534 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2535 {
2536         int i;
2537         u32 prod;
2538         struct rx_bd **rx_buf_ring;
2539
2540         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2541         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2542                 int j;
2543                 struct rx_bd *rxbd;
2544
2545                 rxbd = rx_buf_ring[i];
2546                 if (!rxbd)
2547                         continue;
2548
2549                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2550                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2551                         rxbd->rx_bd_opaque = prod;
2552                 }
2553         }
2554 }
2555
2556 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2557 {
2558         struct net_device *dev = bp->dev;
2559         struct bnxt_rx_ring_info *rxr;
2560         struct bnxt_ring_struct *ring;
2561         u32 prod, type;
2562         int i;
2563
2564         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2565                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2566
2567         if (NET_IP_ALIGN == 2)
2568                 type |= RX_BD_FLAGS_SOP;
2569
2570         rxr = &bp->rx_ring[ring_nr];
2571         ring = &rxr->rx_ring_struct;
2572         bnxt_init_rxbd_pages(ring, type);
2573
2574         if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
2575                 rxr->xdp_prog = bpf_prog_add(bp->xdp_prog, 1);
2576                 if (IS_ERR(rxr->xdp_prog)) {
2577                         int rc = PTR_ERR(rxr->xdp_prog);
2578
2579                         rxr->xdp_prog = NULL;
2580                         return rc;
2581                 }
2582         }
2583         prod = rxr->rx_prod;
2584         for (i = 0; i < bp->rx_ring_size; i++) {
2585                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2586                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2587                                     ring_nr, i, bp->rx_ring_size);
2588                         break;
2589                 }
2590                 prod = NEXT_RX(prod);
2591         }
2592         rxr->rx_prod = prod;
2593         ring->fw_ring_id = INVALID_HW_RING_ID;
2594
2595         ring = &rxr->rx_agg_ring_struct;
2596         ring->fw_ring_id = INVALID_HW_RING_ID;
2597
2598         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2599                 return 0;
2600
2601         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2602                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2603
2604         bnxt_init_rxbd_pages(ring, type);
2605
2606         prod = rxr->rx_agg_prod;
2607         for (i = 0; i < bp->rx_agg_ring_size; i++) {
2608                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2609                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2610                                     ring_nr, i, bp->rx_ring_size);
2611                         break;
2612                 }
2613                 prod = NEXT_RX_AGG(prod);
2614         }
2615         rxr->rx_agg_prod = prod;
2616
2617         if (bp->flags & BNXT_FLAG_TPA) {
2618                 if (rxr->rx_tpa) {
2619                         u8 *data;
2620                         dma_addr_t mapping;
2621
2622                         for (i = 0; i < MAX_TPA; i++) {
2623                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2624                                                             GFP_KERNEL);
2625                                 if (!data)
2626                                         return -ENOMEM;
2627
2628                                 rxr->rx_tpa[i].data = data;
2629                                 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
2630                                 rxr->rx_tpa[i].mapping = mapping;
2631                         }
2632                 } else {
2633                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2634                         return -ENOMEM;
2635                 }
2636         }
2637
2638         return 0;
2639 }
2640
2641 static void bnxt_init_cp_rings(struct bnxt *bp)
2642 {
2643         int i;
2644
2645         for (i = 0; i < bp->cp_nr_rings; i++) {
2646                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
2647                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
2648
2649                 ring->fw_ring_id = INVALID_HW_RING_ID;
2650                 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
2651                 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
2652         }
2653 }
2654
2655 static int bnxt_init_rx_rings(struct bnxt *bp)
2656 {
2657         int i, rc = 0;
2658
2659         if (BNXT_RX_PAGE_MODE(bp)) {
2660                 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
2661                 bp->rx_dma_offset = XDP_PACKET_HEADROOM;
2662         } else {
2663                 bp->rx_offset = BNXT_RX_OFFSET;
2664                 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
2665         }
2666
2667         for (i = 0; i < bp->rx_nr_rings; i++) {
2668                 rc = bnxt_init_one_rx_ring(bp, i);
2669                 if (rc)
2670                         break;
2671         }
2672
2673         return rc;
2674 }
2675
2676 static int bnxt_init_tx_rings(struct bnxt *bp)
2677 {
2678         u16 i;
2679
2680         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2681                                    MAX_SKB_FRAGS + 1);
2682
2683         for (i = 0; i < bp->tx_nr_rings; i++) {
2684                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2685                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2686
2687                 ring->fw_ring_id = INVALID_HW_RING_ID;
2688         }
2689
2690         return 0;
2691 }
2692
2693 static void bnxt_free_ring_grps(struct bnxt *bp)
2694 {
2695         kfree(bp->grp_info);
2696         bp->grp_info = NULL;
2697 }
2698
2699 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2700 {
2701         int i;
2702
2703         if (irq_re_init) {
2704                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2705                                        sizeof(struct bnxt_ring_grp_info),
2706                                        GFP_KERNEL);
2707                 if (!bp->grp_info)
2708                         return -ENOMEM;
2709         }
2710         for (i = 0; i < bp->cp_nr_rings; i++) {
2711                 if (irq_re_init)
2712                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2713                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2714                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2715                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2716                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2717         }
2718         return 0;
2719 }
2720
2721 static void bnxt_free_vnics(struct bnxt *bp)
2722 {
2723         kfree(bp->vnic_info);
2724         bp->vnic_info = NULL;
2725         bp->nr_vnics = 0;
2726 }
2727
2728 static int bnxt_alloc_vnics(struct bnxt *bp)
2729 {
2730         int num_vnics = 1;
2731
2732 #ifdef CONFIG_RFS_ACCEL
2733         if (bp->flags & BNXT_FLAG_RFS)
2734                 num_vnics += bp->rx_nr_rings;
2735 #endif
2736
2737         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2738                 num_vnics++;
2739
2740         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2741                                 GFP_KERNEL);
2742         if (!bp->vnic_info)
2743                 return -ENOMEM;
2744
2745         bp->nr_vnics = num_vnics;
2746         return 0;
2747 }
2748
2749 static void bnxt_init_vnics(struct bnxt *bp)
2750 {
2751         int i;
2752
2753         for (i = 0; i < bp->nr_vnics; i++) {
2754                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2755
2756                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2757                 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2758                 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2759                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2760
2761                 if (bp->vnic_info[i].rss_hash_key) {
2762                         if (i == 0)
2763                                 prandom_bytes(vnic->rss_hash_key,
2764                                               HW_HASH_KEY_SIZE);
2765                         else
2766                                 memcpy(vnic->rss_hash_key,
2767                                        bp->vnic_info[0].rss_hash_key,
2768                                        HW_HASH_KEY_SIZE);
2769                 }
2770         }
2771 }
2772
2773 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2774 {
2775         int pages;
2776
2777         pages = ring_size / desc_per_pg;
2778
2779         if (!pages)
2780                 return 1;
2781
2782         pages++;
2783
2784         while (pages & (pages - 1))
2785                 pages++;
2786
2787         return pages;
2788 }
2789
2790 void bnxt_set_tpa_flags(struct bnxt *bp)
2791 {
2792         bp->flags &= ~BNXT_FLAG_TPA;
2793         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
2794                 return;
2795         if (bp->dev->features & NETIF_F_LRO)
2796                 bp->flags |= BNXT_FLAG_LRO;
2797         else if (bp->dev->features & NETIF_F_GRO_HW)
2798                 bp->flags |= BNXT_FLAG_GRO;
2799 }
2800
2801 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2802  * be set on entry.
2803  */
2804 void bnxt_set_ring_params(struct bnxt *bp)
2805 {
2806         u32 ring_size, rx_size, rx_space;
2807         u32 agg_factor = 0, agg_ring_size = 0;
2808
2809         /* 8 for CRC and VLAN */
2810         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2811
2812         rx_space = rx_size + NET_SKB_PAD +
2813                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2814
2815         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2816         ring_size = bp->rx_ring_size;
2817         bp->rx_agg_ring_size = 0;
2818         bp->rx_agg_nr_pages = 0;
2819
2820         if (bp->flags & BNXT_FLAG_TPA)
2821                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2822
2823         bp->flags &= ~BNXT_FLAG_JUMBO;
2824         if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
2825                 u32 jumbo_factor;
2826
2827                 bp->flags |= BNXT_FLAG_JUMBO;
2828                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2829                 if (jumbo_factor > agg_factor)
2830                         agg_factor = jumbo_factor;
2831         }
2832         agg_ring_size = ring_size * agg_factor;
2833
2834         if (agg_ring_size) {
2835                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2836                                                         RX_DESC_CNT);
2837                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2838                         u32 tmp = agg_ring_size;
2839
2840                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2841                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2842                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2843                                     tmp, agg_ring_size);
2844                 }
2845                 bp->rx_agg_ring_size = agg_ring_size;
2846                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2847                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2848                 rx_space = rx_size + NET_SKB_PAD +
2849                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2850         }
2851
2852         bp->rx_buf_use_size = rx_size;
2853         bp->rx_buf_size = rx_space;
2854
2855         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2856         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2857
2858         ring_size = bp->tx_ring_size;
2859         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2860         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2861
2862         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2863         bp->cp_ring_size = ring_size;
2864
2865         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2866         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2867                 bp->cp_nr_pages = MAX_CP_PAGES;
2868                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2869                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2870                             ring_size, bp->cp_ring_size);
2871         }
2872         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2873         bp->cp_ring_mask = bp->cp_bit - 1;
2874 }
2875
2876 /* Changing allocation mode of RX rings.
2877  * TODO: Update when extending xdp_rxq_info to support allocation modes.
2878  */
2879 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
2880 {
2881         if (page_mode) {
2882                 if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
2883                         return -EOPNOTSUPP;
2884                 bp->dev->max_mtu =
2885                         min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
2886                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
2887                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
2888                 bp->rx_dir = DMA_BIDIRECTIONAL;
2889                 bp->rx_skb_func = bnxt_rx_page_skb;
2890                 /* Disable LRO or GRO_HW */
2891                 netdev_update_features(bp->dev);
2892         } else {
2893                 bp->dev->max_mtu = bp->max_mtu;
2894                 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
2895                 bp->rx_dir = DMA_FROM_DEVICE;
2896                 bp->rx_skb_func = bnxt_rx_skb;
2897         }
2898         return 0;
2899 }
2900
2901 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2902 {
2903         int i;
2904         struct bnxt_vnic_info *vnic;
2905         struct pci_dev *pdev = bp->pdev;
2906
2907         if (!bp->vnic_info)
2908                 return;
2909
2910         for (i = 0; i < bp->nr_vnics; i++) {
2911                 vnic = &bp->vnic_info[i];
2912
2913                 kfree(vnic->fw_grp_ids);
2914                 vnic->fw_grp_ids = NULL;
2915
2916                 kfree(vnic->uc_list);
2917                 vnic->uc_list = NULL;
2918
2919                 if (vnic->mc_list) {
2920                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2921                                           vnic->mc_list, vnic->mc_list_mapping);
2922                         vnic->mc_list = NULL;
2923                 }
2924
2925                 if (vnic->rss_table) {
2926                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2927                                           vnic->rss_table,
2928                                           vnic->rss_table_dma_addr);
2929                         vnic->rss_table = NULL;
2930                 }
2931
2932                 vnic->rss_hash_key = NULL;
2933                 vnic->flags = 0;
2934         }
2935 }
2936
2937 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2938 {
2939         int i, rc = 0, size;
2940         struct bnxt_vnic_info *vnic;
2941         struct pci_dev *pdev = bp->pdev;
2942         int max_rings;
2943
2944         for (i = 0; i < bp->nr_vnics; i++) {
2945                 vnic = &bp->vnic_info[i];
2946
2947                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2948                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2949
2950                         if (mem_size > 0) {
2951                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2952                                 if (!vnic->uc_list) {
2953                                         rc = -ENOMEM;
2954                                         goto out;
2955                                 }
2956                         }
2957                 }
2958
2959                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2960                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2961                         vnic->mc_list =
2962                                 dma_alloc_coherent(&pdev->dev,
2963                                                    vnic->mc_list_size,
2964                                                    &vnic->mc_list_mapping,
2965                                                    GFP_KERNEL);
2966                         if (!vnic->mc_list) {
2967                                 rc = -ENOMEM;
2968                                 goto out;
2969                         }
2970                 }
2971
2972                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2973                         max_rings = bp->rx_nr_rings;
2974                 else
2975                         max_rings = 1;
2976
2977                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2978                 if (!vnic->fw_grp_ids) {
2979                         rc = -ENOMEM;
2980                         goto out;
2981                 }
2982
2983                 if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
2984                     !(vnic->flags & BNXT_VNIC_RSS_FLAG))
2985                         continue;
2986
2987                 /* Allocate rss table and hash key */
2988                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2989                                                      &vnic->rss_table_dma_addr,
2990                                                      GFP_KERNEL);
2991                 if (!vnic->rss_table) {
2992                         rc = -ENOMEM;
2993                         goto out;
2994                 }
2995
2996                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2997
2998                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2999                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3000         }
3001         return 0;
3002
3003 out:
3004         return rc;
3005 }
3006
3007 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3008 {
3009         struct pci_dev *pdev = bp->pdev;
3010
3011         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
3012                           bp->hwrm_cmd_resp_dma_addr);
3013
3014         bp->hwrm_cmd_resp_addr = NULL;
3015         if (bp->hwrm_dbg_resp_addr) {
3016                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
3017                                   bp->hwrm_dbg_resp_addr,
3018                                   bp->hwrm_dbg_resp_dma_addr);
3019
3020                 bp->hwrm_dbg_resp_addr = NULL;
3021         }
3022 }
3023
3024 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3025 {
3026         struct pci_dev *pdev = bp->pdev;
3027
3028         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3029                                                    &bp->hwrm_cmd_resp_dma_addr,
3030                                                    GFP_KERNEL);
3031         if (!bp->hwrm_cmd_resp_addr)
3032                 return -ENOMEM;
3033         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
3034                                                     HWRM_DBG_REG_BUF_SIZE,
3035                                                     &bp->hwrm_dbg_resp_dma_addr,
3036                                                     GFP_KERNEL);
3037         if (!bp->hwrm_dbg_resp_addr)
3038                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
3039
3040         return 0;
3041 }
3042
3043 static void bnxt_free_hwrm_short_cmd_req(struct bnxt *bp)
3044 {
3045         if (bp->hwrm_short_cmd_req_addr) {
3046                 struct pci_dev *pdev = bp->pdev;
3047
3048                 dma_free_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3049                                   bp->hwrm_short_cmd_req_addr,
3050                                   bp->hwrm_short_cmd_req_dma_addr);
3051                 bp->hwrm_short_cmd_req_addr = NULL;
3052         }
3053 }
3054
3055 static int bnxt_alloc_hwrm_short_cmd_req(struct bnxt *bp)
3056 {
3057         struct pci_dev *pdev = bp->pdev;
3058
3059         bp->hwrm_short_cmd_req_addr =
3060                 dma_alloc_coherent(&pdev->dev, BNXT_HWRM_MAX_REQ_LEN,
3061                                    &bp->hwrm_short_cmd_req_dma_addr,
3062                                    GFP_KERNEL);
3063         if (!bp->hwrm_short_cmd_req_addr)
3064                 return -ENOMEM;
3065
3066         return 0;
3067 }
3068
3069 static void bnxt_free_stats(struct bnxt *bp)
3070 {
3071         u32 size, i;
3072         struct pci_dev *pdev = bp->pdev;
3073
3074         bp->flags &= ~BNXT_FLAG_PORT_STATS;
3075         bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
3076
3077         if (bp->hw_rx_port_stats) {
3078                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
3079                                   bp->hw_rx_port_stats,
3080                                   bp->hw_rx_port_stats_map);
3081                 bp->hw_rx_port_stats = NULL;
3082         }
3083
3084         if (bp->hw_rx_port_stats_ext) {
3085                 dma_free_coherent(&pdev->dev, sizeof(struct rx_port_stats_ext),
3086                                   bp->hw_rx_port_stats_ext,
3087                                   bp->hw_rx_port_stats_ext_map);
3088                 bp->hw_rx_port_stats_ext = NULL;
3089         }
3090
3091         if (!bp->bnapi)
3092                 return;
3093
3094         size = sizeof(struct ctx_hw_stats);
3095
3096         for (i = 0; i < bp->cp_nr_rings; i++) {
3097                 struct bnxt_napi *bnapi = bp->bnapi[i];
3098                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3099
3100                 if (cpr->hw_stats) {
3101                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
3102                                           cpr->hw_stats_map);
3103                         cpr->hw_stats = NULL;
3104                 }
3105         }
3106 }
3107
3108 static int bnxt_alloc_stats(struct bnxt *bp)
3109 {
3110         u32 size, i;
3111         struct pci_dev *pdev = bp->pdev;
3112
3113         size = sizeof(struct ctx_hw_stats);
3114
3115         for (i = 0; i < bp->cp_nr_rings; i++) {
3116                 struct bnxt_napi *bnapi = bp->bnapi[i];
3117                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3118
3119                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
3120                                                    &cpr->hw_stats_map,
3121                                                    GFP_KERNEL);
3122                 if (!cpr->hw_stats)
3123                         return -ENOMEM;
3124
3125                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3126         }
3127
3128         if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
3129                 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
3130                                          sizeof(struct tx_port_stats) + 1024;
3131
3132                 bp->hw_rx_port_stats =
3133                         dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
3134                                            &bp->hw_rx_port_stats_map,
3135                                            GFP_KERNEL);
3136                 if (!bp->hw_rx_port_stats)
3137                         return -ENOMEM;
3138
3139                 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
3140                                        512;
3141                 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
3142                                            sizeof(struct rx_port_stats) + 512;
3143                 bp->flags |= BNXT_FLAG_PORT_STATS;
3144
3145                 /* Display extended statistics only if FW supports it */
3146                 if (bp->hwrm_spec_code < 0x10804 ||
3147                     bp->hwrm_spec_code == 0x10900)
3148                         return 0;
3149
3150                 bp->hw_rx_port_stats_ext =
3151                         dma_zalloc_coherent(&pdev->dev,
3152                                             sizeof(struct rx_port_stats_ext),
3153                                             &bp->hw_rx_port_stats_ext_map,
3154                                             GFP_KERNEL);
3155                 if (!bp->hw_rx_port_stats_ext)
3156                         return 0;
3157
3158                 bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
3159         }
3160         return 0;
3161 }
3162
3163 static void bnxt_clear_ring_indices(struct bnxt *bp)
3164 {
3165         int i;
3166
3167         if (!bp->bnapi)
3168                 return;
3169
3170         for (i = 0; i < bp->cp_nr_rings; i++) {
3171                 struct bnxt_napi *bnapi = bp->bnapi[i];
3172                 struct bnxt_cp_ring_info *cpr;
3173                 struct bnxt_rx_ring_info *rxr;
3174                 struct bnxt_tx_ring_info *txr;
3175
3176                 if (!bnapi)
3177                         continue;
3178
3179                 cpr = &bnapi->cp_ring;
3180                 cpr->cp_raw_cons = 0;
3181
3182                 txr = bnapi->tx_ring;
3183                 if (txr) {
3184                         txr->tx_prod = 0;
3185                         txr->tx_cons = 0;
3186                 }
3187
3188                 rxr = bnapi->rx_ring;
3189                 if (rxr) {
3190                         rxr->rx_prod = 0;
3191                         rxr->rx_agg_prod = 0;
3192                         rxr->rx_sw_agg_prod = 0;
3193                         rxr->rx_next_cons = 0;
3194                 }
3195         }
3196 }
3197
3198 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
3199 {
3200 #ifdef CONFIG_RFS_ACCEL
3201         int i;
3202
3203         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
3204          * safe to delete the hash table.
3205          */
3206         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
3207                 struct hlist_head *head;
3208                 struct hlist_node *tmp;
3209                 struct bnxt_ntuple_filter *fltr;
3210
3211                 head = &bp->ntp_fltr_hash_tbl[i];
3212                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
3213                         hlist_del(&fltr->hash);
3214                         kfree(fltr);
3215                 }
3216         }
3217         if (irq_reinit) {
3218                 kfree(bp->ntp_fltr_bmap);
3219                 bp->ntp_fltr_bmap = NULL;
3220         }
3221         bp->ntp_fltr_count = 0;
3222 #endif
3223 }
3224
3225 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
3226 {
3227 #ifdef CONFIG_RFS_ACCEL
3228         int i, rc = 0;
3229
3230         if (!(bp->flags & BNXT_FLAG_RFS))
3231                 return 0;
3232
3233         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
3234                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
3235
3236         bp->ntp_fltr_count = 0;
3237         bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
3238                                     sizeof(long),
3239                                     GFP_KERNEL);
3240
3241         if (!bp->ntp_fltr_bmap)
3242                 rc = -ENOMEM;
3243
3244         return rc;
3245 #else
3246         return 0;
3247 #endif
3248 }
3249
3250 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
3251 {
3252         bnxt_free_vnic_attributes(bp);
3253         bnxt_free_tx_rings(bp);
3254         bnxt_free_rx_rings(bp);
3255         bnxt_free_cp_rings(bp);
3256         bnxt_free_ntp_fltrs(bp, irq_re_init);
3257         if (irq_re_init) {
3258                 bnxt_free_stats(bp);
3259                 bnxt_free_ring_grps(bp);
3260                 bnxt_free_vnics(bp);
3261                 kfree(bp->tx_ring_map);
3262                 bp->tx_ring_map = NULL;
3263                 kfree(bp->tx_ring);
3264                 bp->tx_ring = NULL;
3265                 kfree(bp->rx_ring);
3266                 bp->rx_ring = NULL;
3267                 kfree(bp->bnapi);
3268                 bp->bnapi = NULL;
3269         } else {
3270                 bnxt_clear_ring_indices(bp);
3271         }
3272 }
3273
3274 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
3275 {
3276         int i, j, rc, size, arr_size;
3277         void *bnapi;
3278
3279         if (irq_re_init) {
3280                 /* Allocate bnapi mem pointer array and mem block for
3281                  * all queues
3282                  */
3283                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
3284                                 bp->cp_nr_rings);
3285                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
3286                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
3287                 if (!bnapi)
3288                         return -ENOMEM;
3289
3290                 bp->bnapi = bnapi;
3291                 bnapi += arr_size;
3292                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
3293                         bp->bnapi[i] = bnapi;
3294                         bp->bnapi[i]->index = i;
3295                         bp->bnapi[i]->bp = bp;
3296                 }
3297
3298                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
3299                                       sizeof(struct bnxt_rx_ring_info),
3300                                       GFP_KERNEL);
3301                 if (!bp->rx_ring)
3302                         return -ENOMEM;
3303
3304                 for (i = 0; i < bp->rx_nr_rings; i++) {
3305                         bp->rx_ring[i].bnapi = bp->bnapi[i];
3306                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
3307                 }
3308
3309                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
3310                                       sizeof(struct bnxt_tx_ring_info),
3311                                       GFP_KERNEL);
3312                 if (!bp->tx_ring)
3313                         return -ENOMEM;
3314
3315                 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
3316                                           GFP_KERNEL);
3317
3318                 if (!bp->tx_ring_map)
3319                         return -ENOMEM;
3320
3321                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
3322                         j = 0;
3323                 else
3324                         j = bp->rx_nr_rings;
3325
3326                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
3327                         bp->tx_ring[i].bnapi = bp->bnapi[j];
3328                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
3329                         bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
3330                         if (i >= bp->tx_nr_rings_xdp) {
3331                                 bp->tx_ring[i].txq_index = i -
3332                                         bp->tx_nr_rings_xdp;
3333                                 bp->bnapi[j]->tx_int = bnxt_tx_int;
3334                         } else {
3335                                 bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
3336                                 bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
3337                         }
3338                 }
3339
3340                 rc = bnxt_alloc_stats(bp);
3341                 if (rc)
3342                         goto alloc_mem_err;
3343
3344                 rc = bnxt_alloc_ntp_fltrs(bp);
3345                 if (rc)
3346                         goto alloc_mem_err;
3347
3348                 rc = bnxt_alloc_vnics(bp);
3349                 if (rc)
3350                         goto alloc_mem_err;
3351         }
3352
3353         bnxt_init_ring_struct(bp);
3354
3355         rc = bnxt_alloc_rx_rings(bp);
3356         if (rc)
3357                 goto alloc_mem_err;
3358
3359         rc = bnxt_alloc_tx_rings(bp);
3360         if (rc)
3361                 goto alloc_mem_err;
3362
3363         rc = bnxt_alloc_cp_rings(bp);
3364         if (rc)
3365                 goto alloc_mem_err;
3366
3367         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
3368                                   BNXT_VNIC_UCAST_FLAG;
3369         rc = bnxt_alloc_vnic_attributes(bp);
3370         if (rc)
3371                 goto alloc_mem_err;
3372         return 0;
3373
3374 alloc_mem_err:
3375         bnxt_free_mem(bp, true);
3376         return rc;
3377 }
3378
3379 static void bnxt_disable_int(struct bnxt *bp)
3380 {
3381         int i;
3382
3383         if (!bp->bnapi)
3384                 return;
3385
3386         for (i = 0; i < bp->cp_nr_rings; i++) {
3387                 struct bnxt_napi *bnapi = bp->bnapi[i];
3388                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3389                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3390
3391                 if (ring->fw_ring_id != INVALID_HW_RING_ID)
3392                         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3393         }
3394 }
3395
3396 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
3397 {
3398         struct bnxt_napi *bnapi = bp->bnapi[n];
3399         struct bnxt_cp_ring_info *cpr;
3400
3401         cpr = &bnapi->cp_ring;
3402         return cpr->cp_ring_struct.map_idx;
3403 }
3404
3405 static void bnxt_disable_int_sync(struct bnxt *bp)
3406 {
3407         int i;
3408
3409         atomic_inc(&bp->intr_sem);
3410
3411         bnxt_disable_int(bp);
3412         for (i = 0; i < bp->cp_nr_rings; i++) {
3413                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
3414
3415                 synchronize_irq(bp->irq_tbl[map_idx].vector);
3416         }
3417 }
3418
3419 static void bnxt_enable_int(struct bnxt *bp)
3420 {
3421         int i;
3422
3423         atomic_set(&bp->intr_sem, 0);
3424         for (i = 0; i < bp->cp_nr_rings; i++) {
3425                 struct bnxt_napi *bnapi = bp->bnapi[i];
3426                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3427
3428                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
3429         }
3430 }
3431
3432 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
3433                             u16 cmpl_ring, u16 target_id)
3434 {
3435         struct input *req = request;
3436
3437         req->req_type = cpu_to_le16(req_type);
3438         req->cmpl_ring = cpu_to_le16(cmpl_ring);
3439         req->target_id = cpu_to_le16(target_id);
3440         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3441 }
3442
3443 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3444                                  int timeout, bool silent)
3445 {
3446         int i, intr_process, rc, tmo_count;
3447         struct input *req = msg;
3448         u32 *data = msg;
3449         __le32 *resp_len;
3450         u8 *valid;
3451         u16 cp_ring_id, len = 0;
3452         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3453         u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN;
3454         struct hwrm_short_input short_input = {0};
3455
3456         req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3457         memset(resp, 0, PAGE_SIZE);
3458         cp_ring_id = le16_to_cpu(req->cmpl_ring);
3459         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3460
3461         if (bp->flags & BNXT_FLAG_SHORT_CMD) {
3462                 void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
3463
3464                 memcpy(short_cmd_req, req, msg_len);
3465                 memset(short_cmd_req + msg_len, 0, BNXT_HWRM_MAX_REQ_LEN -
3466                                                    msg_len);
3467
3468                 short_input.req_type = req->req_type;
3469                 short_input.signature =
3470                                 cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD);
3471                 short_input.size = cpu_to_le16(msg_len);
3472                 short_input.req_addr =
3473                         cpu_to_le64(bp->hwrm_short_cmd_req_dma_addr);
3474
3475                 data = (u32 *)&short_input;
3476                 msg_len = sizeof(short_input);
3477
3478                 /* Sync memory write before updating doorbell */
3479                 wmb();
3480
3481                 max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
3482         }
3483
3484         /* Write request msg to hwrm channel */
3485         __iowrite32_copy(bp->bar0, data, msg_len / 4);
3486
3487         for (i = msg_len; i < max_req_len; i += 4)
3488                 writel(0, bp->bar0 + i);
3489
3490         /* currently supports only one outstanding message */
3491         if (intr_process)
3492                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3493
3494         /* Ring channel doorbell */
3495         writel(1, bp->bar0 + 0x100);
3496
3497         if (!timeout)
3498                 timeout = DFLT_HWRM_CMD_TIMEOUT;
3499         /* convert timeout to usec */
3500         timeout *= 1000;
3501
3502         i = 0;
3503         /* Short timeout for the first few iterations:
3504          * number of loops = number of loops for short timeout +
3505          * number of loops for standard timeout.
3506          */
3507         tmo_count = HWRM_SHORT_TIMEOUT_COUNTER;
3508         timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER;
3509         tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT);
3510         resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3511         if (intr_process) {
3512                 /* Wait until hwrm response cmpl interrupt is processed */
3513                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3514                        i++ < tmo_count) {
3515                         /* on first few passes, just barely sleep */
3516                         if (i < HWRM_SHORT_TIMEOUT_COUNTER)
3517                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3518                                              HWRM_SHORT_MAX_TIMEOUT);
3519                         else
3520                                 usleep_range(HWRM_MIN_TIMEOUT,
3521                                              HWRM_MAX_TIMEOUT);
3522                 }
3523
3524                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3525                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3526                                    le16_to_cpu(req->req_type));
3527                         return -1;
3528                 }
3529                 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3530                       HWRM_RESP_LEN_SFT;
3531                 valid = bp->hwrm_cmd_resp_addr + len - 1;
3532         } else {
3533                 int j;
3534
3535                 /* Check if response len is updated */
3536                 for (i = 0; i < tmo_count; i++) {
3537                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3538                               HWRM_RESP_LEN_SFT;
3539                         if (len)
3540                                 break;
3541                         /* on first few passes, just barely sleep */
3542                         if (i < DFLT_HWRM_CMD_TIMEOUT)
3543                                 usleep_range(HWRM_SHORT_MIN_TIMEOUT,
3544                                              HWRM_SHORT_MAX_TIMEOUT);
3545                         else
3546                                 usleep_range(HWRM_MIN_TIMEOUT,
3547                                              HWRM_MAX_TIMEOUT);
3548                 }
3549
3550                 if (i >= tmo_count) {
3551                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3552                                    HWRM_TOTAL_TIMEOUT(i),
3553                                    le16_to_cpu(req->req_type),
3554                                    le16_to_cpu(req->seq_id), len);
3555                         return -1;
3556                 }
3557
3558                 /* Last byte of resp contains valid bit */
3559                 valid = bp->hwrm_cmd_resp_addr + len - 1;
3560                 for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; j++) {
3561                         /* make sure we read from updated DMA memory */
3562                         dma_rmb();
3563                         if (*valid)
3564                                 break;
3565                         udelay(1);
3566                 }
3567
3568                 if (j >= HWRM_VALID_BIT_DELAY_USEC) {
3569                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3570                                    HWRM_TOTAL_TIMEOUT(i),
3571                                    le16_to_cpu(req->req_type),
3572                                    le16_to_cpu(req->seq_id), len, *valid);
3573                         return -1;
3574                 }
3575         }
3576
3577         /* Zero valid bit for compatibility.  Valid bit in an older spec
3578          * may become a new field in a newer spec.  We must make sure that
3579          * a new field not implemented by old spec will read zero.
3580          */
3581         *valid = 0;
3582         rc = le16_to_cpu(resp->error_code);
3583         if (rc && !silent)
3584                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3585                            le16_to_cpu(resp->req_type),
3586                            le16_to_cpu(resp->seq_id), rc);
3587         return rc;
3588 }
3589
3590 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3591 {
3592         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3593 }
3594
3595 int _hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3596                               int timeout)
3597 {
3598         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3599 }
3600
3601 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3602 {
3603         int rc;
3604
3605         mutex_lock(&bp->hwrm_cmd_lock);
3606         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3607         mutex_unlock(&bp->hwrm_cmd_lock);
3608         return rc;
3609 }
3610
3611 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3612                              int timeout)
3613 {
3614         int rc;
3615
3616         mutex_lock(&bp->hwrm_cmd_lock);
3617         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3618         mutex_unlock(&bp->hwrm_cmd_lock);
3619         return rc;
3620 }
3621
3622 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3623                                      int bmap_size)
3624 {
3625         struct hwrm_func_drv_rgtr_input req = {0};
3626         DECLARE_BITMAP(async_events_bmap, 256);
3627         u32 *events = (u32 *)async_events_bmap;
3628         int i;
3629
3630         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3631
3632         req.enables =
3633                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3634
3635         memset(async_events_bmap, 0, sizeof(async_events_bmap));
3636         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3637                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3638
3639         if (bmap && bmap_size) {
3640                 for (i = 0; i < bmap_size; i++) {
3641                         if (test_bit(i, bmap))
3642                                 __set_bit(i, async_events_bmap);
3643                 }
3644         }
3645
3646         for (i = 0; i < 8; i++)
3647                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3648
3649         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3650 }
3651
3652 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3653 {
3654         struct hwrm_func_drv_rgtr_input req = {0};
3655
3656         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3657
3658         req.enables =
3659                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3660                             FUNC_DRV_RGTR_REQ_ENABLES_VER);
3661
3662         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3663         req.flags = cpu_to_le32(FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE);
3664         req.ver_maj_8b = DRV_VER_MAJ;
3665         req.ver_min_8b = DRV_VER_MIN;
3666         req.ver_upd_8b = DRV_VER_UPD;
3667         req.ver_maj = cpu_to_le16(DRV_VER_MAJ);
3668         req.ver_min = cpu_to_le16(DRV_VER_MIN);
3669         req.ver_upd = cpu_to_le16(DRV_VER_UPD);
3670
3671         if (BNXT_PF(bp)) {
3672                 u32 data[8];
3673                 int i;
3674
3675                 memset(data, 0, sizeof(data));
3676                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
3677                         u16 cmd = bnxt_vf_req_snif[i];
3678                         unsigned int bit, idx;
3679
3680                         idx = cmd / 32;
3681                         bit = cmd % 32;
3682                         data[idx] |= 1 << bit;
3683                 }
3684
3685                 for (i = 0; i < 8; i++)
3686                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3687
3688                 req.enables |=
3689                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3690         }
3691
3692         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3693 }
3694
3695 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3696 {
3697         struct hwrm_func_drv_unrgtr_input req = {0};
3698
3699         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3700         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3701 }
3702
3703 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3704 {
3705         u32 rc = 0;
3706         struct hwrm_tunnel_dst_port_free_input req = {0};
3707
3708         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3709         req.tunnel_type = tunnel_type;
3710
3711         switch (tunnel_type) {
3712         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3713                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3714                 break;
3715         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3716                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3717                 break;
3718         default:
3719                 break;
3720         }
3721
3722         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3723         if (rc)
3724                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3725                            rc);
3726         return rc;
3727 }
3728
3729 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3730                                            u8 tunnel_type)
3731 {
3732         u32 rc = 0;
3733         struct hwrm_tunnel_dst_port_alloc_input req = {0};
3734         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3735
3736         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3737
3738         req.tunnel_type = tunnel_type;
3739         req.tunnel_dst_port_val = port;
3740
3741         mutex_lock(&bp->hwrm_cmd_lock);
3742         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3743         if (rc) {
3744                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3745                            rc);
3746                 goto err_out;
3747         }
3748
3749         switch (tunnel_type) {
3750         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3751                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3752                 break;
3753         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3754                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3755                 break;
3756         default:
3757                 break;
3758         }
3759
3760 err_out:
3761         mutex_unlock(&bp->hwrm_cmd_lock);
3762         return rc;
3763 }
3764
3765 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3766 {
3767         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3768         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3769
3770         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3771         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3772
3773         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3774         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3775         req.mask = cpu_to_le32(vnic->rx_mask);
3776         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3777 }
3778
3779 #ifdef CONFIG_RFS_ACCEL
3780 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3781                                             struct bnxt_ntuple_filter *fltr)
3782 {
3783         struct hwrm_cfa_ntuple_filter_free_input req = {0};
3784
3785         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3786         req.ntuple_filter_id = fltr->filter_id;
3787         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3788 }
3789
3790 #define BNXT_NTP_FLTR_FLAGS                                     \
3791         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
3792          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
3793          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
3794          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
3795          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
3796          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
3797          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
3798          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
3799          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
3800          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
3801          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
3802          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
3803          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
3804          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3805
3806 #define BNXT_NTP_TUNNEL_FLTR_FLAG                               \
3807                 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
3808
3809 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3810                                              struct bnxt_ntuple_filter *fltr)
3811 {
3812         int rc = 0;
3813         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3814         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3815                 bp->hwrm_cmd_resp_addr;
3816         struct flow_keys *keys = &fltr->fkeys;
3817         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3818
3819         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3820         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3821
3822         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3823
3824         req.ethertype = htons(ETH_P_IP);
3825         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3826         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3827         req.ip_protocol = keys->basic.ip_proto;
3828
3829         if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
3830                 int i;
3831
3832                 req.ethertype = htons(ETH_P_IPV6);
3833                 req.ip_addr_type =
3834                         CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
3835                 *(struct in6_addr *)&req.src_ipaddr[0] =
3836                         keys->addrs.v6addrs.src;
3837                 *(struct in6_addr *)&req.dst_ipaddr[0] =
3838                         keys->addrs.v6addrs.dst;
3839                 for (i = 0; i < 4; i++) {
3840                         req.src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3841                         req.dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
3842                 }
3843         } else {
3844                 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3845                 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3846                 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3847                 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3848         }
3849         if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
3850                 req.enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
3851                 req.tunnel_type =
3852                         CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
3853         }
3854
3855         req.src_port = keys->ports.src;
3856         req.src_port_mask = cpu_to_be16(0xffff);
3857         req.dst_port = keys->ports.dst;
3858         req.dst_port_mask = cpu_to_be16(0xffff);
3859
3860         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3861         mutex_lock(&bp->hwrm_cmd_lock);
3862         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3863         if (!rc)
3864                 fltr->filter_id = resp->ntuple_filter_id;
3865         mutex_unlock(&bp->hwrm_cmd_lock);
3866         return rc;
3867 }
3868 #endif
3869
3870 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3871                                      u8 *mac_addr)
3872 {
3873         u32 rc = 0;
3874         struct hwrm_cfa_l2_filter_alloc_input req = {0};
3875         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3876
3877         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3878         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3879         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3880                 req.flags |=
3881                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3882         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3883         req.enables =
3884                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3885                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3886                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3887         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3888         req.l2_addr_mask[0] = 0xff;
3889         req.l2_addr_mask[1] = 0xff;
3890         req.l2_addr_mask[2] = 0xff;
3891         req.l2_addr_mask[3] = 0xff;
3892         req.l2_addr_mask[4] = 0xff;
3893         req.l2_addr_mask[5] = 0xff;
3894
3895         mutex_lock(&bp->hwrm_cmd_lock);
3896         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3897         if (!rc)
3898                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3899                                                         resp->l2_filter_id;
3900         mutex_unlock(&bp->hwrm_cmd_lock);
3901         return rc;
3902 }
3903
3904 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3905 {
3906         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3907         int rc = 0;
3908
3909         /* Any associated ntuple filters will also be cleared by firmware. */
3910         mutex_lock(&bp->hwrm_cmd_lock);
3911         for (i = 0; i < num_of_vnics; i++) {
3912                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3913
3914                 for (j = 0; j < vnic->uc_filter_count; j++) {
3915                         struct hwrm_cfa_l2_filter_free_input req = {0};
3916
3917                         bnxt_hwrm_cmd_hdr_init(bp, &req,
3918                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
3919
3920                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
3921
3922                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3923                                                 HWRM_CMD_TIMEOUT);
3924                 }
3925                 vnic->uc_filter_count = 0;
3926         }
3927         mutex_unlock(&bp->hwrm_cmd_lock);
3928
3929         return rc;
3930 }
3931
3932 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3933 {
3934         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3935         struct hwrm_vnic_tpa_cfg_input req = {0};
3936
3937         if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
3938                 return 0;
3939
3940         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3941
3942         if (tpa_flags) {
3943                 u16 mss = bp->dev->mtu - 40;
3944                 u32 nsegs, n, segs = 0, flags;
3945
3946                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3947                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3948                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3949                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3950                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3951                 if (tpa_flags & BNXT_FLAG_GRO)
3952                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3953
3954                 req.flags = cpu_to_le32(flags);
3955
3956                 req.enables =
3957                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3958                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3959                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3960
3961                 /* Number of segs are log2 units, and first packet is not
3962                  * included as part of this units.
3963                  */
3964                 if (mss <= BNXT_RX_PAGE_SIZE) {
3965                         n = BNXT_RX_PAGE_SIZE / mss;
3966                         nsegs = (MAX_SKB_FRAGS - 1) * n;
3967                 } else {
3968                         n = mss / BNXT_RX_PAGE_SIZE;
3969                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
3970                                 n++;
3971                         nsegs = (MAX_SKB_FRAGS - n) / n;
3972                 }
3973
3974                 segs = ilog2(nsegs);
3975                 req.max_agg_segs = cpu_to_le16(segs);
3976                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3977
3978                 req.min_agg_len = cpu_to_le32(512);
3979         }
3980         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3981
3982         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3983 }
3984
3985 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3986 {
3987         u32 i, j, max_rings;
3988         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3989         struct hwrm_vnic_rss_cfg_input req = {0};
3990
3991         if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3992                 return 0;
3993
3994         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3995         if (set_rss) {
3996                 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3997                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3998                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3999                                 max_rings = bp->rx_nr_rings - 1;
4000                         else
4001                                 max_rings = bp->rx_nr_rings;
4002                 } else {
4003                         max_rings = 1;
4004                 }
4005
4006                 /* Fill the RSS indirection table with ring group ids */
4007                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
4008                         if (j == max_rings)
4009                                 j = 0;
4010                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
4011                 }
4012
4013                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
4014                 req.hash_key_tbl_addr =
4015                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
4016         }
4017         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4018         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4019 }
4020
4021 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
4022 {
4023         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4024         struct hwrm_vnic_plcmodes_cfg_input req = {0};
4025
4026         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
4027         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
4028                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
4029                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
4030         req.enables =
4031                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
4032                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
4033         /* thresholds not implemented in firmware yet */
4034         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
4035         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
4036         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4037         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4038 }
4039
4040 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
4041                                         u16 ctx_idx)
4042 {
4043         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
4044
4045         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
4046         req.rss_cos_lb_ctx_id =
4047                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
4048
4049         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4050         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
4051 }
4052
4053 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
4054 {
4055         int i, j;
4056
4057         for (i = 0; i < bp->nr_vnics; i++) {
4058                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4059
4060                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
4061                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
4062                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
4063                 }
4064         }
4065         bp->rsscos_nr_ctxs = 0;
4066 }
4067
4068 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
4069 {
4070         int rc;
4071         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
4072         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
4073                                                 bp->hwrm_cmd_resp_addr;
4074
4075         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
4076                                -1);
4077
4078         mutex_lock(&bp->hwrm_cmd_lock);
4079         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4080         if (!rc)
4081                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
4082                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
4083         mutex_unlock(&bp->hwrm_cmd_lock);
4084
4085         return rc;
4086 }
4087
4088 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
4089 {
4090         if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
4091                 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
4092         return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
4093 }
4094
4095 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
4096 {
4097         unsigned int ring = 0, grp_idx;
4098         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4099         struct hwrm_vnic_cfg_input req = {0};
4100         u16 def_vlan = 0;
4101
4102         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
4103
4104         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
4105         /* Only RSS support for now TBD: COS & LB */
4106         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
4107                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
4108                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4109                                            VNIC_CFG_REQ_ENABLES_MRU);
4110         } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
4111                 req.rss_rule =
4112                         cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
4113                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
4114                                            VNIC_CFG_REQ_ENABLES_MRU);
4115                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
4116         } else {
4117                 req.rss_rule = cpu_to_le16(0xffff);
4118         }
4119
4120         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
4121             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
4122                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
4123                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
4124         } else {
4125                 req.cos_rule = cpu_to_le16(0xffff);
4126         }
4127
4128         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
4129                 ring = 0;
4130         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
4131                 ring = vnic_id - 1;
4132         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
4133                 ring = bp->rx_nr_rings - 1;
4134
4135         grp_idx = bp->rx_ring[ring].bnapi->index;
4136         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4137         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
4138
4139         req.lb_rule = cpu_to_le16(0xffff);
4140         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
4141                               VLAN_HLEN);
4142
4143 #ifdef CONFIG_BNXT_SRIOV
4144         if (BNXT_VF(bp))
4145                 def_vlan = bp->vf.vlan;
4146 #endif
4147         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
4148                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
4149         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
4150                 req.flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
4151
4152         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4153 }
4154
4155 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
4156 {
4157         u32 rc = 0;
4158
4159         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
4160                 struct hwrm_vnic_free_input req = {0};
4161
4162                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
4163                 req.vnic_id =
4164                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
4165
4166                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4167                 if (rc)
4168                         return rc;
4169                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
4170         }
4171         return rc;
4172 }
4173
4174 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
4175 {
4176         u16 i;
4177
4178         for (i = 0; i < bp->nr_vnics; i++)
4179                 bnxt_hwrm_vnic_free_one(bp, i);
4180 }
4181
4182 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
4183                                 unsigned int start_rx_ring_idx,
4184                                 unsigned int nr_rings)
4185 {
4186         int rc = 0;
4187         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
4188         struct hwrm_vnic_alloc_input req = {0};
4189         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4190
4191         /* map ring groups to this vnic */
4192         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
4193                 grp_idx = bp->rx_ring[i].bnapi->index;
4194                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
4195                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
4196                                    j, nr_rings);
4197                         break;
4198                 }
4199                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
4200                                         bp->grp_info[grp_idx].fw_grp_id;
4201         }
4202
4203         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
4204         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
4205         if (vnic_id == 0)
4206                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
4207
4208         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
4209
4210         mutex_lock(&bp->hwrm_cmd_lock);
4211         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4212         if (!rc)
4213                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
4214         mutex_unlock(&bp->hwrm_cmd_lock);
4215         return rc;
4216 }
4217
4218 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
4219 {
4220         struct hwrm_vnic_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4221         struct hwrm_vnic_qcaps_input req = {0};
4222         int rc;
4223
4224         if (bp->hwrm_spec_code < 0x10600)
4225                 return 0;
4226
4227         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_QCAPS, -1, -1);
4228         mutex_lock(&bp->hwrm_cmd_lock);
4229         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4230         if (!rc) {
4231                 u32 flags = le32_to_cpu(resp->flags);
4232
4233                 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)
4234                         bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
4235                 if (flags &
4236                     VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
4237                         bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
4238         }
4239         mutex_unlock(&bp->hwrm_cmd_lock);
4240         return rc;
4241 }
4242
4243 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
4244 {
4245         u16 i;
4246         u32 rc = 0;
4247
4248         mutex_lock(&bp->hwrm_cmd_lock);
4249         for (i = 0; i < bp->rx_nr_rings; i++) {
4250                 struct hwrm_ring_grp_alloc_input req = {0};
4251                 struct hwrm_ring_grp_alloc_output *resp =
4252                                         bp->hwrm_cmd_resp_addr;
4253                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
4254
4255                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
4256
4257                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4258                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
4259                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
4260                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
4261
4262                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4263                                         HWRM_CMD_TIMEOUT);
4264                 if (rc)
4265                         break;
4266
4267                 bp->grp_info[grp_idx].fw_grp_id =
4268                         le32_to_cpu(resp->ring_group_id);
4269         }
4270         mutex_unlock(&bp->hwrm_cmd_lock);
4271         return rc;
4272 }
4273
4274 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
4275 {
4276         u16 i;
4277         u32 rc = 0;
4278         struct hwrm_ring_grp_free_input req = {0};
4279
4280         if (!bp->grp_info)
4281                 return 0;
4282
4283         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
4284
4285         mutex_lock(&bp->hwrm_cmd_lock);
4286         for (i = 0; i < bp->cp_nr_rings; i++) {
4287                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
4288                         continue;
4289                 req.ring_group_id =
4290                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
4291
4292                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4293                                         HWRM_CMD_TIMEOUT);
4294                 if (rc)
4295                         break;
4296                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
4297         }
4298         mutex_unlock(&bp->hwrm_cmd_lock);
4299         return rc;
4300 }
4301
4302 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
4303                                     struct bnxt_ring_struct *ring,
4304                                     u32 ring_type, u32 map_index)
4305 {
4306         int rc = 0, err = 0;
4307         struct hwrm_ring_alloc_input req = {0};
4308         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4309         struct bnxt_ring_grp_info *grp_info;
4310         u16 ring_id;
4311
4312         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
4313
4314         req.enables = 0;
4315         if (ring->nr_pages > 1) {
4316                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
4317                 /* Page size is in log2 units */
4318                 req.page_size = BNXT_PAGE_SHIFT;
4319                 req.page_tbl_depth = 1;
4320         } else {
4321                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
4322         }
4323         req.fbo = 0;
4324         /* Association of ring index with doorbell index and MSIX number */
4325         req.logical_id = cpu_to_le16(map_index);
4326
4327         switch (ring_type) {
4328         case HWRM_RING_ALLOC_TX:
4329                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
4330                 /* Association of transmit ring with completion ring */
4331                 grp_info = &bp->grp_info[ring->grp_idx];
4332                 req.cmpl_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
4333                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
4334                 req.stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
4335                 req.queue_id = cpu_to_le16(ring->queue_id);
4336                 break;
4337         case HWRM_RING_ALLOC_RX:
4338                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4339                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
4340                 break;
4341         case HWRM_RING_ALLOC_AGG:
4342                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
4343                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
4344                 break;
4345         case HWRM_RING_ALLOC_CMPL:
4346                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
4347                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
4348                 if (bp->flags & BNXT_FLAG_USING_MSIX)
4349                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
4350                 break;
4351         default:
4352                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
4353                            ring_type);
4354                 return -1;
4355         }
4356
4357         mutex_lock(&bp->hwrm_cmd_lock);
4358         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4359         err = le16_to_cpu(resp->error_code);
4360         ring_id = le16_to_cpu(resp->ring_id);
4361         mutex_unlock(&bp->hwrm_cmd_lock);
4362
4363         if (rc || err) {
4364                 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
4365                            ring_type, rc, err);
4366                 return -EIO;
4367         }
4368         ring->fw_ring_id = ring_id;
4369         return rc;
4370 }
4371
4372 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
4373 {
4374         int rc;
4375
4376         if (BNXT_PF(bp)) {
4377                 struct hwrm_func_cfg_input req = {0};
4378
4379                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
4380                 req.fid = cpu_to_le16(0xffff);
4381                 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4382                 req.async_event_cr = cpu_to_le16(idx);
4383                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4384         } else {
4385                 struct hwrm_func_vf_cfg_input req = {0};
4386
4387                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
4388                 req.enables =
4389                         cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
4390                 req.async_event_cr = cpu_to_le16(idx);
4391                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4392         }
4393         return rc;
4394 }
4395
4396 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
4397 {
4398         int i, rc = 0;
4399
4400         for (i = 0; i < bp->cp_nr_rings; i++) {
4401                 struct bnxt_napi *bnapi = bp->bnapi[i];
4402                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4403                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4404                 u32 map_idx = ring->map_idx;
4405
4406                 cpr->cp_doorbell = bp->bar1 + map_idx * 0x80;
4407                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL,
4408                                               map_idx);
4409                 if (rc)
4410                         goto err_out;
4411                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4412                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
4413
4414                 if (!i) {
4415                         rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
4416                         if (rc)
4417                                 netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
4418                 }
4419         }
4420
4421         for (i = 0; i < bp->tx_nr_rings; i++) {
4422                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4423                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4424                 u32 map_idx = i;
4425
4426                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
4427                                               map_idx);
4428                 if (rc)
4429                         goto err_out;
4430                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
4431         }
4432
4433         for (i = 0; i < bp->rx_nr_rings; i++) {
4434                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4435                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4436                 u32 map_idx = rxr->bnapi->index;
4437
4438                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
4439                                               map_idx);
4440                 if (rc)
4441                         goto err_out;
4442                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
4443                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
4444                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
4445         }
4446
4447         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4448                 for (i = 0; i < bp->rx_nr_rings; i++) {
4449                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4450                         struct bnxt_ring_struct *ring =
4451                                                 &rxr->rx_agg_ring_struct;
4452                         u32 grp_idx = ring->grp_idx;
4453                         u32 map_idx = grp_idx + bp->rx_nr_rings;
4454
4455                         rc = hwrm_ring_alloc_send_msg(bp, ring,
4456                                                       HWRM_RING_ALLOC_AGG,
4457                                                       map_idx);
4458                         if (rc)
4459                                 goto err_out;
4460
4461                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
4462                         writel(DB_KEY_RX | rxr->rx_agg_prod,
4463                                rxr->rx_agg_doorbell);
4464                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
4465                 }
4466         }
4467 err_out:
4468         return rc;
4469 }
4470
4471 static int hwrm_ring_free_send_msg(struct bnxt *bp,
4472                                    struct bnxt_ring_struct *ring,
4473                                    u32 ring_type, int cmpl_ring_id)
4474 {
4475         int rc;
4476         struct hwrm_ring_free_input req = {0};
4477         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
4478         u16 error_code;
4479
4480         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
4481         req.ring_type = ring_type;
4482         req.ring_id = cpu_to_le16(ring->fw_ring_id);
4483
4484         mutex_lock(&bp->hwrm_cmd_lock);
4485         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4486         error_code = le16_to_cpu(resp->error_code);
4487         mutex_unlock(&bp->hwrm_cmd_lock);
4488
4489         if (rc || error_code) {
4490                 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
4491                            ring_type, rc, error_code);
4492                 return -EIO;
4493         }
4494         return 0;
4495 }
4496
4497 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
4498 {
4499         int i;
4500
4501         if (!bp->bnapi)
4502                 return;
4503
4504         for (i = 0; i < bp->tx_nr_rings; i++) {
4505                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4506                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
4507                 u32 grp_idx = txr->bnapi->index;
4508                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4509
4510                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4511                         hwrm_ring_free_send_msg(bp, ring,
4512                                                 RING_FREE_REQ_RING_TYPE_TX,
4513                                                 close_path ? cmpl_ring_id :
4514                                                 INVALID_HW_RING_ID);
4515                         ring->fw_ring_id = INVALID_HW_RING_ID;
4516                 }
4517         }
4518
4519         for (i = 0; i < bp->rx_nr_rings; i++) {
4520                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4521                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
4522                 u32 grp_idx = rxr->bnapi->index;
4523                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4524
4525                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4526                         hwrm_ring_free_send_msg(bp, ring,
4527                                                 RING_FREE_REQ_RING_TYPE_RX,
4528                                                 close_path ? cmpl_ring_id :
4529                                                 INVALID_HW_RING_ID);
4530                         ring->fw_ring_id = INVALID_HW_RING_ID;
4531                         bp->grp_info[grp_idx].rx_fw_ring_id =
4532                                 INVALID_HW_RING_ID;
4533                 }
4534         }
4535
4536         for (i = 0; i < bp->rx_nr_rings; i++) {
4537                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4538                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
4539                 u32 grp_idx = rxr->bnapi->index;
4540                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
4541
4542                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4543                         hwrm_ring_free_send_msg(bp, ring,
4544                                                 RING_FREE_REQ_RING_TYPE_RX,
4545                                                 close_path ? cmpl_ring_id :
4546                                                 INVALID_HW_RING_ID);
4547                         ring->fw_ring_id = INVALID_HW_RING_ID;
4548                         bp->grp_info[grp_idx].agg_fw_ring_id =
4549                                 INVALID_HW_RING_ID;
4550                 }
4551         }
4552
4553         /* The completion rings are about to be freed.  After that the
4554          * IRQ doorbell will not work anymore.  So we need to disable
4555          * IRQ here.
4556          */
4557         bnxt_disable_int_sync(bp);
4558
4559         for (i = 0; i < bp->cp_nr_rings; i++) {
4560                 struct bnxt_napi *bnapi = bp->bnapi[i];
4561                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4562                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4563
4564                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
4565                         hwrm_ring_free_send_msg(bp, ring,
4566                                                 RING_FREE_REQ_RING_TYPE_L2_CMPL,
4567                                                 INVALID_HW_RING_ID);
4568                         ring->fw_ring_id = INVALID_HW_RING_ID;
4569                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
4570                 }
4571         }
4572 }
4573
4574 static int bnxt_hwrm_get_rings(struct bnxt *bp)
4575 {
4576         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4577         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4578         struct hwrm_func_qcfg_input req = {0};
4579         int rc;
4580
4581         if (bp->hwrm_spec_code < 0x10601)
4582                 return 0;
4583
4584         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4585         req.fid = cpu_to_le16(0xffff);
4586         mutex_lock(&bp->hwrm_cmd_lock);
4587         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4588         if (rc) {
4589                 mutex_unlock(&bp->hwrm_cmd_lock);
4590                 return -EIO;
4591         }
4592
4593         hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4594         if (bp->flags & BNXT_FLAG_NEW_RM) {
4595                 u16 cp, stats;
4596
4597                 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
4598                 hw_resc->resv_hw_ring_grps =
4599                         le32_to_cpu(resp->alloc_hw_ring_grps);
4600                 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
4601                 cp = le16_to_cpu(resp->alloc_cmpl_rings);
4602                 stats = le16_to_cpu(resp->alloc_stat_ctx);
4603                 cp = min_t(u16, cp, stats);
4604                 hw_resc->resv_cp_rings = cp;
4605         }
4606         mutex_unlock(&bp->hwrm_cmd_lock);
4607         return 0;
4608 }
4609
4610 /* Caller must hold bp->hwrm_cmd_lock */
4611 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
4612 {
4613         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4614         struct hwrm_func_qcfg_input req = {0};
4615         int rc;
4616
4617         if (bp->hwrm_spec_code < 0x10601)
4618                 return 0;
4619
4620         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4621         req.fid = cpu_to_le16(fid);
4622         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4623         if (!rc)
4624                 *tx_rings = le16_to_cpu(resp->alloc_tx_rings);
4625
4626         return rc;
4627 }
4628
4629 static void
4630 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct hwrm_func_cfg_input *req,
4631                              int tx_rings, int rx_rings, int ring_grps,
4632                              int cp_rings, int vnics)
4633 {
4634         u32 enables = 0;
4635
4636         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_CFG, -1, -1);
4637         req->fid = cpu_to_le16(0xffff);
4638         enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4639         req->num_tx_rings = cpu_to_le16(tx_rings);
4640         if (bp->flags & BNXT_FLAG_NEW_RM) {
4641                 enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4642                 enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4643                                       FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4644                 enables |= ring_grps ?
4645                            FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4646                 enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4647
4648                 req->num_rx_rings = cpu_to_le16(rx_rings);
4649                 req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4650                 req->num_cmpl_rings = cpu_to_le16(cp_rings);
4651                 req->num_stat_ctxs = req->num_cmpl_rings;
4652                 req->num_vnics = cpu_to_le16(vnics);
4653         }
4654         req->enables = cpu_to_le32(enables);
4655 }
4656
4657 static void
4658 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp,
4659                              struct hwrm_func_vf_cfg_input *req, int tx_rings,
4660                              int rx_rings, int ring_grps, int cp_rings,
4661                              int vnics)
4662 {
4663         u32 enables = 0;
4664
4665         bnxt_hwrm_cmd_hdr_init(bp, req, HWRM_FUNC_VF_CFG, -1, -1);
4666         enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
4667         enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
4668         enables |= cp_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
4669                               FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
4670         enables |= ring_grps ? FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
4671         enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
4672
4673         req->num_tx_rings = cpu_to_le16(tx_rings);
4674         req->num_rx_rings = cpu_to_le16(rx_rings);
4675         req->num_hw_ring_grps = cpu_to_le16(ring_grps);
4676         req->num_cmpl_rings = cpu_to_le16(cp_rings);
4677         req->num_stat_ctxs = req->num_cmpl_rings;
4678         req->num_vnics = cpu_to_le16(vnics);
4679
4680         req->enables = cpu_to_le32(enables);
4681 }
4682
4683 static int
4684 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4685                            int ring_grps, int cp_rings, int vnics)
4686 {
4687         struct hwrm_func_cfg_input req = {0};
4688         int rc;
4689
4690         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4691                                      cp_rings, vnics);
4692         if (!req.enables)
4693                 return 0;
4694
4695         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4696         if (rc)
4697                 return -ENOMEM;
4698
4699         if (bp->hwrm_spec_code < 0x10601)
4700                 bp->hw_resc.resv_tx_rings = tx_rings;
4701
4702         rc = bnxt_hwrm_get_rings(bp);
4703         return rc;
4704 }
4705
4706 static int
4707 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4708                            int ring_grps, int cp_rings, int vnics)
4709 {
4710         struct hwrm_func_vf_cfg_input req = {0};
4711         int rc;
4712
4713         if (!(bp->flags & BNXT_FLAG_NEW_RM)) {
4714                 bp->hw_resc.resv_tx_rings = tx_rings;
4715                 return 0;
4716         }
4717
4718         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4719                                      cp_rings, vnics);
4720         req.enables |= cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
4721                                    FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS);
4722         req.num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
4723         req.num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
4724         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4725         if (rc)
4726                 return -ENOMEM;
4727
4728         rc = bnxt_hwrm_get_rings(bp);
4729         return rc;
4730 }
4731
4732 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
4733                                    int cp, int vnic)
4734 {
4735         if (BNXT_PF(bp))
4736                 return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, vnic);
4737         else
4738                 return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, vnic);
4739 }
4740
4741 static int bnxt_cp_rings_in_use(struct bnxt *bp)
4742 {
4743         int cp = bp->cp_nr_rings;
4744         int ulp_msix, ulp_base;
4745
4746         ulp_msix = bnxt_get_ulp_msix_num(bp);
4747         if (ulp_msix) {
4748                 ulp_base = bnxt_get_ulp_msix_base(bp);
4749                 cp += ulp_msix;
4750                 if ((ulp_base + ulp_msix) > cp)
4751                         cp = ulp_base + ulp_msix;
4752         }
4753         return cp;
4754 }
4755
4756 static bool bnxt_need_reserve_rings(struct bnxt *bp)
4757 {
4758         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4759         int cp = bnxt_cp_rings_in_use(bp);
4760         int rx = bp->rx_nr_rings;
4761         int vnic = 1, grp = rx;
4762
4763         if (bp->hwrm_spec_code < 0x10601)
4764                 return false;
4765
4766         if (hw_resc->resv_tx_rings != bp->tx_nr_rings)
4767                 return true;
4768
4769         if (bp->flags & BNXT_FLAG_RFS)
4770                 vnic = rx + 1;
4771         if (bp->flags & BNXT_FLAG_AGG_RINGS)
4772                 rx <<= 1;
4773         if ((bp->flags & BNXT_FLAG_NEW_RM) &&
4774             (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
4775              hw_resc->resv_hw_ring_grps != grp || hw_resc->resv_vnics != vnic))
4776                 return true;
4777         return false;
4778 }
4779
4780 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4781                            bool shared);
4782
4783 static int __bnxt_reserve_rings(struct bnxt *bp)
4784 {
4785         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
4786         int cp = bnxt_cp_rings_in_use(bp);
4787         int tx = bp->tx_nr_rings;
4788         int rx = bp->rx_nr_rings;
4789         int grp, rx_rings, rc;
4790         bool sh = false;
4791         int vnic = 1;
4792
4793         if (!bnxt_need_reserve_rings(bp))
4794                 return 0;
4795
4796         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4797                 sh = true;
4798         if (bp->flags & BNXT_FLAG_RFS)
4799                 vnic = rx + 1;
4800         if (bp->flags & BNXT_FLAG_AGG_RINGS)
4801                 rx <<= 1;
4802         grp = bp->rx_nr_rings;
4803
4804         rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, vnic);
4805         if (rc)
4806                 return rc;
4807
4808         tx = hw_resc->resv_tx_rings;
4809         if (bp->flags & BNXT_FLAG_NEW_RM) {
4810                 rx = hw_resc->resv_rx_rings;
4811                 cp = hw_resc->resv_cp_rings;
4812                 grp = hw_resc->resv_hw_ring_grps;
4813                 vnic = hw_resc->resv_vnics;
4814         }
4815
4816         rx_rings = rx;
4817         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4818                 if (rx >= 2) {
4819                         rx_rings = rx >> 1;
4820                 } else {
4821                         if (netif_running(bp->dev))
4822                                 return -ENOMEM;
4823
4824                         bp->flags &= ~BNXT_FLAG_AGG_RINGS;
4825                         bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
4826                         bp->dev->hw_features &= ~NETIF_F_LRO;
4827                         bp->dev->features &= ~NETIF_F_LRO;
4828                         bnxt_set_ring_params(bp);
4829                 }
4830         }
4831         rx_rings = min_t(int, rx_rings, grp);
4832         rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
4833         if (bp->flags & BNXT_FLAG_AGG_RINGS)
4834                 rx = rx_rings << 1;
4835         cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
4836         bp->tx_nr_rings = tx;
4837         bp->rx_nr_rings = rx_rings;
4838         bp->cp_nr_rings = cp;
4839
4840         if (!tx || !rx || !cp || !grp || !vnic)
4841                 return -ENOMEM;
4842
4843         return rc;
4844 }
4845
4846 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4847                                     int ring_grps, int cp_rings, int vnics)
4848 {
4849         struct hwrm_func_vf_cfg_input req = {0};
4850         u32 flags;
4851         int rc;
4852
4853         if (!(bp->flags & BNXT_FLAG_NEW_RM))
4854                 return 0;
4855
4856         __bnxt_hwrm_reserve_vf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4857                                      cp_rings, vnics);
4858         flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
4859                 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4860                 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4861                 FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4862                 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4863                 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4864
4865         req.flags = cpu_to_le32(flags);
4866         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4867         if (rc)
4868                 return -ENOMEM;
4869         return 0;
4870 }
4871
4872 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4873                                     int ring_grps, int cp_rings, int vnics)
4874 {
4875         struct hwrm_func_cfg_input req = {0};
4876         u32 flags;
4877         int rc;
4878
4879         __bnxt_hwrm_reserve_pf_rings(bp, &req, tx_rings, rx_rings, ring_grps,
4880                                      cp_rings, vnics);
4881         flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
4882         if (bp->flags & BNXT_FLAG_NEW_RM)
4883                 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
4884                          FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
4885                          FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST |
4886                          FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
4887                          FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
4888
4889         req.flags = cpu_to_le32(flags);
4890         rc = hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4891         if (rc)
4892                 return -ENOMEM;
4893         return 0;
4894 }
4895
4896 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
4897                                  int ring_grps, int cp_rings, int vnics)
4898 {
4899         if (bp->hwrm_spec_code < 0x10801)
4900                 return 0;
4901
4902         if (BNXT_PF(bp))
4903                 return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
4904                                                 ring_grps, cp_rings, vnics);
4905
4906         return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
4907                                         cp_rings, vnics);
4908 }
4909
4910 static void bnxt_hwrm_set_coal_params(struct bnxt_coal *hw_coal,
4911         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
4912 {
4913         u16 val, tmr, max, flags;
4914
4915         max = hw_coal->bufs_per_record * 128;
4916         if (hw_coal->budget)
4917                 max = hw_coal->bufs_per_record * hw_coal->budget;
4918
4919         val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
4920         req->num_cmpl_aggr_int = cpu_to_le16(val);
4921
4922         /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4923         val = min_t(u16, val, 63);
4924         req->num_cmpl_dma_aggr = cpu_to_le16(val);
4925
4926         /* This is a 6-bit value and must not be 0, or we'll get non stop IRQ */
4927         val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 63);
4928         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
4929
4930         tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks);
4931         tmr = max_t(u16, tmr, 1);
4932         req->int_lat_tmr_max = cpu_to_le16(tmr);
4933
4934         /* min timer set to 1/2 of interrupt timer */
4935         val = tmr / 2;
4936         req->int_lat_tmr_min = cpu_to_le16(val);
4937
4938         /* buf timer set to 1/4 of interrupt timer */
4939         val = max_t(u16, tmr / 4, 1);
4940         req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
4941
4942         tmr = BNXT_USEC_TO_COAL_TIMER(hw_coal->coal_ticks_irq);
4943         tmr = max_t(u16, tmr, 1);
4944         req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(tmr);
4945
4946         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4947         if (hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
4948                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4949         req->flags = cpu_to_le16(flags);
4950 }
4951
4952 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
4953 {
4954         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0};
4955         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4956         struct bnxt_coal coal;
4957         unsigned int grp_idx;
4958
4959         /* Tick values in micro seconds.
4960          * 1 coal_buf x bufs_per_record = 1 completion record.
4961          */
4962         memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
4963
4964         coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
4965         coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
4966
4967         if (!bnapi->rx_ring)
4968                 return -ENODEV;
4969
4970         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4971                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4972
4973         bnxt_hwrm_set_coal_params(&coal, &req_rx);
4974
4975         grp_idx = bnapi->index;
4976         req_rx.ring_id = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
4977
4978         return hwrm_send_message(bp, &req_rx, sizeof(req_rx),
4979                                  HWRM_CMD_TIMEOUT);
4980 }
4981
4982 int bnxt_hwrm_set_coal(struct bnxt *bp)
4983 {
4984         int i, rc = 0;
4985         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4986                                                            req_tx = {0}, *req;
4987
4988         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4989                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4990         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4991                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4992
4993         bnxt_hwrm_set_coal_params(&bp->rx_coal, &req_rx);
4994         bnxt_hwrm_set_coal_params(&bp->tx_coal, &req_tx);
4995
4996         mutex_lock(&bp->hwrm_cmd_lock);
4997         for (i = 0; i < bp->cp_nr_rings; i++) {
4998                 struct bnxt_napi *bnapi = bp->bnapi[i];
4999
5000                 req = &req_rx;
5001                 if (!bnapi->rx_ring)
5002                         req = &req_tx;
5003                 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
5004
5005                 rc = _hwrm_send_message(bp, req, sizeof(*req),
5006                                         HWRM_CMD_TIMEOUT);
5007                 if (rc)
5008                         break;
5009         }
5010         mutex_unlock(&bp->hwrm_cmd_lock);
5011         return rc;
5012 }
5013
5014 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
5015 {
5016         int rc = 0, i;
5017         struct hwrm_stat_ctx_free_input req = {0};
5018
5019         if (!bp->bnapi)
5020                 return 0;
5021
5022         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5023                 return 0;
5024
5025         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
5026
5027         mutex_lock(&bp->hwrm_cmd_lock);
5028         for (i = 0; i < bp->cp_nr_rings; i++) {
5029                 struct bnxt_napi *bnapi = bp->bnapi[i];
5030                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5031
5032                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
5033                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
5034
5035                         rc = _hwrm_send_message(bp, &req, sizeof(req),
5036                                                 HWRM_CMD_TIMEOUT);
5037                         if (rc)
5038                                 break;
5039
5040                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
5041                 }
5042         }
5043         mutex_unlock(&bp->hwrm_cmd_lock);
5044         return rc;
5045 }
5046
5047 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
5048 {
5049         int rc = 0, i;
5050         struct hwrm_stat_ctx_alloc_input req = {0};
5051         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
5052
5053         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5054                 return 0;
5055
5056         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
5057
5058         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
5059
5060         mutex_lock(&bp->hwrm_cmd_lock);
5061         for (i = 0; i < bp->cp_nr_rings; i++) {
5062                 struct bnxt_napi *bnapi = bp->bnapi[i];
5063                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5064
5065                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
5066
5067                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5068                                         HWRM_CMD_TIMEOUT);
5069                 if (rc)
5070                         break;
5071
5072                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
5073
5074                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
5075         }
5076         mutex_unlock(&bp->hwrm_cmd_lock);
5077         return rc;
5078 }
5079
5080 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
5081 {
5082         struct hwrm_func_qcfg_input req = {0};
5083         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5084         u16 flags;
5085         int rc;
5086
5087         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
5088         req.fid = cpu_to_le16(0xffff);
5089         mutex_lock(&bp->hwrm_cmd_lock);
5090         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5091         if (rc)
5092                 goto func_qcfg_exit;
5093
5094 #ifdef CONFIG_BNXT_SRIOV
5095         if (BNXT_VF(bp)) {
5096                 struct bnxt_vf_info *vf = &bp->vf;
5097
5098                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
5099         }
5100 #endif
5101         flags = le16_to_cpu(resp->flags);
5102         if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
5103                      FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
5104                 bp->flags |= BNXT_FLAG_FW_LLDP_AGENT;
5105                 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
5106                         bp->flags |= BNXT_FLAG_FW_DCBX_AGENT;
5107         }
5108         if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
5109                 bp->flags |= BNXT_FLAG_MULTI_HOST;
5110
5111         switch (resp->port_partition_type) {
5112         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
5113         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
5114         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
5115                 bp->port_partition_type = resp->port_partition_type;
5116                 break;
5117         }
5118         if (bp->hwrm_spec_code < 0x10707 ||
5119             resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
5120                 bp->br_mode = BRIDGE_MODE_VEB;
5121         else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
5122                 bp->br_mode = BRIDGE_MODE_VEPA;
5123         else
5124                 bp->br_mode = BRIDGE_MODE_UNDEF;
5125
5126         bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
5127         if (!bp->max_mtu)
5128                 bp->max_mtu = BNXT_MAX_MTU;
5129
5130 func_qcfg_exit:
5131         mutex_unlock(&bp->hwrm_cmd_lock);
5132         return rc;
5133 }
5134
5135 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
5136 {
5137         struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5138         struct hwrm_func_resource_qcaps_input req = {0};
5139         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5140         int rc;
5141
5142         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESOURCE_QCAPS, -1, -1);
5143         req.fid = cpu_to_le16(0xffff);
5144
5145         mutex_lock(&bp->hwrm_cmd_lock);
5146         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5147         if (rc) {
5148                 rc = -EIO;
5149                 goto hwrm_func_resc_qcaps_exit;
5150         }
5151
5152         hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
5153         if (!all)
5154                 goto hwrm_func_resc_qcaps_exit;
5155
5156         hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
5157         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5158         hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
5159         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5160         hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
5161         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5162         hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
5163         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5164         hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
5165         hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
5166         hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
5167         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5168         hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
5169         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5170         hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
5171         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5172
5173         if (BNXT_PF(bp)) {
5174                 struct bnxt_pf_info *pf = &bp->pf;
5175
5176                 pf->vf_resv_strategy =
5177                         le16_to_cpu(resp->vf_reservation_strategy);
5178                 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL)
5179                         pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
5180         }
5181 hwrm_func_resc_qcaps_exit:
5182         mutex_unlock(&bp->hwrm_cmd_lock);
5183         return rc;
5184 }
5185
5186 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
5187 {
5188         int rc = 0;
5189         struct hwrm_func_qcaps_input req = {0};
5190         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5191         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5192         u32 flags;
5193
5194         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
5195         req.fid = cpu_to_le16(0xffff);
5196
5197         mutex_lock(&bp->hwrm_cmd_lock);
5198         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5199         if (rc)
5200                 goto hwrm_func_qcaps_exit;
5201
5202         flags = le32_to_cpu(resp->flags);
5203         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
5204                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
5205         if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
5206                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
5207
5208         bp->tx_push_thresh = 0;
5209         if (flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED)
5210                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
5211
5212         hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
5213         hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
5214         hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
5215         hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
5216         hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
5217         if (!hw_resc->max_hw_ring_grps)
5218                 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
5219         hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
5220         hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
5221         hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
5222
5223         if (BNXT_PF(bp)) {
5224                 struct bnxt_pf_info *pf = &bp->pf;
5225
5226                 pf->fw_fid = le16_to_cpu(resp->fid);
5227                 pf->port_id = le16_to_cpu(resp->port_id);
5228                 bp->dev->dev_port = pf->port_id;
5229                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
5230                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
5231                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
5232                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
5233                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
5234                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
5235                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
5236                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
5237                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
5238                 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
5239                         bp->flags |= BNXT_FLAG_WOL_CAP;
5240         } else {
5241 #ifdef CONFIG_BNXT_SRIOV
5242                 struct bnxt_vf_info *vf = &bp->vf;
5243
5244                 vf->fw_fid = le16_to_cpu(resp->fid);
5245                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
5246 #endif
5247         }
5248
5249 hwrm_func_qcaps_exit:
5250         mutex_unlock(&bp->hwrm_cmd_lock);
5251         return rc;
5252 }
5253
5254 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
5255 {
5256         int rc;
5257
5258         rc = __bnxt_hwrm_func_qcaps(bp);
5259         if (rc)
5260                 return rc;
5261         if (bp->hwrm_spec_code >= 0x10803) {
5262                 rc = bnxt_hwrm_func_resc_qcaps(bp, true);
5263                 if (!rc)
5264                         bp->flags |= BNXT_FLAG_NEW_RM;
5265         }
5266         return 0;
5267 }
5268
5269 static int bnxt_hwrm_func_reset(struct bnxt *bp)
5270 {
5271         struct hwrm_func_reset_input req = {0};
5272
5273         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
5274         req.enables = 0;
5275
5276         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
5277 }
5278
5279 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
5280 {
5281         int rc = 0;
5282         struct hwrm_queue_qportcfg_input req = {0};
5283         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
5284         u8 i, *qptr;
5285
5286         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
5287
5288         mutex_lock(&bp->hwrm_cmd_lock);
5289         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5290         if (rc)
5291                 goto qportcfg_exit;
5292
5293         if (!resp->max_configurable_queues) {
5294                 rc = -EINVAL;
5295                 goto qportcfg_exit;
5296         }
5297         bp->max_tc = resp->max_configurable_queues;
5298         bp->max_lltc = resp->max_configurable_lossless_queues;
5299         if (bp->max_tc > BNXT_MAX_QUEUE)
5300                 bp->max_tc = BNXT_MAX_QUEUE;
5301
5302         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
5303                 bp->max_tc = 1;
5304
5305         if (bp->max_lltc > bp->max_tc)
5306                 bp->max_lltc = bp->max_tc;
5307
5308         qptr = &resp->queue_id0;
5309         for (i = 0; i < bp->max_tc; i++) {
5310                 bp->q_info[i].queue_id = *qptr++;
5311                 bp->q_info[i].queue_profile = *qptr++;
5312                 bp->tc_to_qidx[i] = i;
5313         }
5314
5315 qportcfg_exit:
5316         mutex_unlock(&bp->hwrm_cmd_lock);
5317         return rc;
5318 }
5319
5320 static int bnxt_hwrm_ver_get(struct bnxt *bp)
5321 {
5322         int rc;
5323         struct hwrm_ver_get_input req = {0};
5324         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
5325         u32 dev_caps_cfg;
5326
5327         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
5328         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
5329         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
5330         req.hwrm_intf_min = HWRM_VERSION_MINOR;
5331         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
5332         mutex_lock(&bp->hwrm_cmd_lock);
5333         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5334         if (rc)
5335                 goto hwrm_ver_get_exit;
5336
5337         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
5338
5339         bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
5340                              resp->hwrm_intf_min_8b << 8 |
5341                              resp->hwrm_intf_upd_8b;
5342         if (resp->hwrm_intf_maj_8b < 1) {
5343                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
5344                             resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
5345                             resp->hwrm_intf_upd_8b);
5346                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
5347         }
5348         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d.%d",
5349                  resp->hwrm_fw_maj_8b, resp->hwrm_fw_min_8b,
5350                  resp->hwrm_fw_bld_8b, resp->hwrm_fw_rsvd_8b);
5351
5352         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
5353         if (!bp->hwrm_cmd_timeout)
5354                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
5355
5356         if (resp->hwrm_intf_maj_8b >= 1)
5357                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
5358
5359         bp->chip_num = le16_to_cpu(resp->chip_num);
5360         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
5361             !resp->chip_metal)
5362                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
5363
5364         dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
5365         if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
5366             (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
5367                 bp->flags |= BNXT_FLAG_SHORT_CMD;
5368
5369 hwrm_ver_get_exit:
5370         mutex_unlock(&bp->hwrm_cmd_lock);
5371         return rc;
5372 }
5373
5374 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
5375 {
5376         struct hwrm_fw_set_time_input req = {0};
5377         struct tm tm;
5378         time64_t now = ktime_get_real_seconds();
5379
5380         if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
5381             bp->hwrm_spec_code < 0x10400)
5382                 return -EOPNOTSUPP;
5383
5384         time64_to_tm(now, 0, &tm);
5385         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
5386         req.year = cpu_to_le16(1900 + tm.tm_year);
5387         req.month = 1 + tm.tm_mon;
5388         req.day = tm.tm_mday;
5389         req.hour = tm.tm_hour;
5390         req.minute = tm.tm_min;
5391         req.second = tm.tm_sec;
5392         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5393 }
5394
5395 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
5396 {
5397         int rc;
5398         struct bnxt_pf_info *pf = &bp->pf;
5399         struct hwrm_port_qstats_input req = {0};
5400
5401         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
5402                 return 0;
5403
5404         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
5405         req.port_id = cpu_to_le16(pf->port_id);
5406         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
5407         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
5408         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5409         return rc;
5410 }
5411
5412 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp)
5413 {
5414         struct hwrm_port_qstats_ext_input req = {0};
5415         struct bnxt_pf_info *pf = &bp->pf;
5416
5417         if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
5418                 return 0;
5419
5420         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS_EXT, -1, -1);
5421         req.port_id = cpu_to_le16(pf->port_id);
5422         req.rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
5423         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_ext_map);
5424         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5425 }
5426
5427 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
5428 {
5429         if (bp->vxlan_port_cnt) {
5430                 bnxt_hwrm_tunnel_dst_port_free(
5431                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5432         }
5433         bp->vxlan_port_cnt = 0;
5434         if (bp->nge_port_cnt) {
5435                 bnxt_hwrm_tunnel_dst_port_free(
5436                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
5437         }
5438         bp->nge_port_cnt = 0;
5439 }
5440
5441 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
5442 {
5443         int rc, i;
5444         u32 tpa_flags = 0;
5445
5446         if (set_tpa)
5447                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
5448         for (i = 0; i < bp->nr_vnics; i++) {
5449                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
5450                 if (rc) {
5451                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
5452                                    i, rc);
5453                         return rc;
5454                 }
5455         }
5456         return 0;
5457 }
5458
5459 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
5460 {
5461         int i;
5462
5463         for (i = 0; i < bp->nr_vnics; i++)
5464                 bnxt_hwrm_vnic_set_rss(bp, i, false);
5465 }
5466
5467 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
5468                                     bool irq_re_init)
5469 {
5470         if (bp->vnic_info) {
5471                 bnxt_hwrm_clear_vnic_filter(bp);
5472                 /* clear all RSS setting before free vnic ctx */
5473                 bnxt_hwrm_clear_vnic_rss(bp);
5474                 bnxt_hwrm_vnic_ctx_free(bp);
5475                 /* before free the vnic, undo the vnic tpa settings */
5476                 if (bp->flags & BNXT_FLAG_TPA)
5477                         bnxt_set_tpa(bp, false);
5478                 bnxt_hwrm_vnic_free(bp);
5479         }
5480         bnxt_hwrm_ring_free(bp, close_path);
5481         bnxt_hwrm_ring_grp_free(bp);
5482         if (irq_re_init) {
5483                 bnxt_hwrm_stat_ctx_free(bp);
5484                 bnxt_hwrm_free_tunnel_ports(bp);
5485         }
5486 }
5487
5488 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
5489 {
5490         struct hwrm_func_cfg_input req = {0};
5491         int rc;
5492
5493         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5494         req.fid = cpu_to_le16(0xffff);
5495         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
5496         if (br_mode == BRIDGE_MODE_VEB)
5497                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
5498         else if (br_mode == BRIDGE_MODE_VEPA)
5499                 req.evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
5500         else
5501                 return -EINVAL;
5502         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5503         if (rc)
5504                 rc = -EIO;
5505         return rc;
5506 }
5507
5508 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
5509 {
5510         struct hwrm_func_cfg_input req = {0};
5511         int rc;
5512
5513         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
5514                 return 0;
5515
5516         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
5517         req.fid = cpu_to_le16(0xffff);
5518         req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
5519         req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
5520         if (size == 128)
5521                 req.options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
5522
5523         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5524         if (rc)
5525                 rc = -EIO;
5526         return rc;
5527 }
5528
5529 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
5530 {
5531         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5532         int rc;
5533
5534         if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
5535                 goto skip_rss_ctx;
5536
5537         /* allocate context for vnic */
5538         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
5539         if (rc) {
5540                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5541                            vnic_id, rc);
5542                 goto vnic_setup_err;
5543         }
5544         bp->rsscos_nr_ctxs++;
5545
5546         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5547                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
5548                 if (rc) {
5549                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
5550                                    vnic_id, rc);
5551                         goto vnic_setup_err;
5552                 }
5553                 bp->rsscos_nr_ctxs++;
5554         }
5555
5556 skip_rss_ctx:
5557         /* configure default vnic, ring grp */
5558         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
5559         if (rc) {
5560                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
5561                            vnic_id, rc);
5562                 goto vnic_setup_err;
5563         }
5564
5565         /* Enable RSS hashing on vnic */
5566         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
5567         if (rc) {
5568                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
5569                            vnic_id, rc);
5570                 goto vnic_setup_err;
5571         }
5572
5573         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
5574                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
5575                 if (rc) {
5576                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
5577                                    vnic_id, rc);
5578                 }
5579         }
5580
5581 vnic_setup_err:
5582         return rc;
5583 }
5584
5585 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
5586 {
5587 #ifdef CONFIG_RFS_ACCEL
5588         int i, rc = 0;
5589
5590         for (i = 0; i < bp->rx_nr_rings; i++) {
5591                 struct bnxt_vnic_info *vnic;
5592                 u16 vnic_id = i + 1;
5593                 u16 ring_id = i;
5594
5595                 if (vnic_id >= bp->nr_vnics)
5596                         break;
5597
5598                 vnic = &bp->vnic_info[vnic_id];
5599                 vnic->flags |= BNXT_VNIC_RFS_FLAG;
5600                 if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
5601                         vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
5602                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
5603                 if (rc) {
5604                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
5605                                    vnic_id, rc);
5606                         break;
5607                 }
5608                 rc = bnxt_setup_vnic(bp, vnic_id);
5609                 if (rc)
5610                         break;
5611         }
5612         return rc;
5613 #else
5614         return 0;
5615 #endif
5616 }
5617
5618 /* Allow PF and VF with default VLAN to be in promiscuous mode */
5619 static bool bnxt_promisc_ok(struct bnxt *bp)
5620 {
5621 #ifdef CONFIG_BNXT_SRIOV
5622         if (BNXT_VF(bp) && !bp->vf.vlan)
5623                 return false;
5624 #endif
5625         return true;
5626 }
5627
5628 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
5629 {
5630         unsigned int rc = 0;
5631
5632         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
5633         if (rc) {
5634                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5635                            rc);
5636                 return rc;
5637         }
5638
5639         rc = bnxt_hwrm_vnic_cfg(bp, 1);
5640         if (rc) {
5641                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
5642                            rc);
5643                 return rc;
5644         }
5645         return rc;
5646 }
5647
5648 static int bnxt_cfg_rx_mode(struct bnxt *);
5649 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
5650
5651 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
5652 {
5653         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5654         int rc = 0;
5655         unsigned int rx_nr_rings = bp->rx_nr_rings;
5656
5657         if (irq_re_init) {
5658                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
5659                 if (rc) {
5660                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
5661                                    rc);
5662                         goto err_out;
5663                 }
5664         }
5665
5666         rc = bnxt_hwrm_ring_alloc(bp);
5667         if (rc) {
5668                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
5669                 goto err_out;
5670         }
5671
5672         rc = bnxt_hwrm_ring_grp_alloc(bp);
5673         if (rc) {
5674                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
5675                 goto err_out;
5676         }
5677
5678         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5679                 rx_nr_rings--;
5680
5681         /* default vnic 0 */
5682         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
5683         if (rc) {
5684                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
5685                 goto err_out;
5686         }
5687
5688         rc = bnxt_setup_vnic(bp, 0);
5689         if (rc)
5690                 goto err_out;
5691
5692         if (bp->flags & BNXT_FLAG_RFS) {
5693                 rc = bnxt_alloc_rfs_vnics(bp);
5694                 if (rc)
5695                         goto err_out;
5696         }
5697
5698         if (bp->flags & BNXT_FLAG_TPA) {
5699                 rc = bnxt_set_tpa(bp, true);
5700                 if (rc)
5701                         goto err_out;
5702         }
5703
5704         if (BNXT_VF(bp))
5705                 bnxt_update_vf_mac(bp);
5706
5707         /* Filter for default vnic 0 */
5708         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
5709         if (rc) {
5710                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
5711                 goto err_out;
5712         }
5713         vnic->uc_filter_count = 1;
5714
5715         vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
5716
5717         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5718                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5719
5720         if (bp->dev->flags & IFF_ALLMULTI) {
5721                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5722                 vnic->mc_list_count = 0;
5723         } else {
5724                 u32 mask = 0;
5725
5726                 bnxt_mc_list_updated(bp, &mask);
5727                 vnic->rx_mask |= mask;
5728         }
5729
5730         rc = bnxt_cfg_rx_mode(bp);
5731         if (rc)
5732                 goto err_out;
5733
5734         rc = bnxt_hwrm_set_coal(bp);
5735         if (rc)
5736                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
5737                                 rc);
5738
5739         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5740                 rc = bnxt_setup_nitroa0_vnic(bp);
5741                 if (rc)
5742                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
5743                                    rc);
5744         }
5745
5746         if (BNXT_VF(bp)) {
5747                 bnxt_hwrm_func_qcfg(bp);
5748                 netdev_update_features(bp->dev);
5749         }
5750
5751         return 0;
5752
5753 err_out:
5754         bnxt_hwrm_resource_free(bp, 0, true);
5755
5756         return rc;
5757 }
5758
5759 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
5760 {
5761         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
5762         return 0;
5763 }
5764
5765 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
5766 {
5767         bnxt_init_cp_rings(bp);
5768         bnxt_init_rx_rings(bp);
5769         bnxt_init_tx_rings(bp);
5770         bnxt_init_ring_grps(bp, irq_re_init);
5771         bnxt_init_vnics(bp);
5772
5773         return bnxt_init_chip(bp, irq_re_init);
5774 }
5775
5776 static int bnxt_set_real_num_queues(struct bnxt *bp)
5777 {
5778         int rc;
5779         struct net_device *dev = bp->dev;
5780
5781         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
5782                                           bp->tx_nr_rings_xdp);
5783         if (rc)
5784                 return rc;
5785
5786         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
5787         if (rc)
5788                 return rc;
5789
5790 #ifdef CONFIG_RFS_ACCEL
5791         if (bp->flags & BNXT_FLAG_RFS)
5792                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
5793 #endif
5794
5795         return rc;
5796 }
5797
5798 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5799                            bool shared)
5800 {
5801         int _rx = *rx, _tx = *tx;
5802
5803         if (shared) {
5804                 *rx = min_t(int, _rx, max);
5805                 *tx = min_t(int, _tx, max);
5806         } else {
5807                 if (max < 2)
5808                         return -ENOMEM;
5809
5810                 while (_rx + _tx > max) {
5811                         if (_rx > _tx && _rx > 1)
5812                                 _rx--;
5813                         else if (_tx > 1)
5814                                 _tx--;
5815                 }
5816                 *rx = _rx;
5817                 *tx = _tx;
5818         }
5819         return 0;
5820 }
5821
5822 static void bnxt_setup_msix(struct bnxt *bp)
5823 {
5824         const int len = sizeof(bp->irq_tbl[0].name);
5825         struct net_device *dev = bp->dev;
5826         int tcs, i;
5827
5828         tcs = netdev_get_num_tc(dev);
5829         if (tcs > 1) {
5830                 int i, off, count;
5831
5832                 for (i = 0; i < tcs; i++) {
5833                         count = bp->tx_nr_rings_per_tc;
5834                         off = i * count;
5835                         netdev_set_tc_queue(dev, i, count, off);
5836                 }
5837         }
5838
5839         for (i = 0; i < bp->cp_nr_rings; i++) {
5840                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
5841                 char *attr;
5842
5843                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5844                         attr = "TxRx";
5845                 else if (i < bp->rx_nr_rings)
5846                         attr = "rx";
5847                 else
5848                         attr = "tx";
5849
5850                 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
5851                          attr, i);
5852                 bp->irq_tbl[map_idx].handler = bnxt_msix;
5853         }
5854 }
5855
5856 static void bnxt_setup_inta(struct bnxt *bp)
5857 {
5858         const int len = sizeof(bp->irq_tbl[0].name);
5859
5860         if (netdev_get_num_tc(bp->dev))
5861                 netdev_reset_tc(bp->dev);
5862
5863         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
5864                  0);
5865         bp->irq_tbl[0].handler = bnxt_inta;
5866 }
5867
5868 static int bnxt_setup_int_mode(struct bnxt *bp)
5869 {
5870         int rc;
5871
5872         if (bp->flags & BNXT_FLAG_USING_MSIX)
5873                 bnxt_setup_msix(bp);
5874         else
5875                 bnxt_setup_inta(bp);
5876
5877         rc = bnxt_set_real_num_queues(bp);
5878         return rc;
5879 }
5880
5881 #ifdef CONFIG_RFS_ACCEL
5882 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
5883 {
5884         return bp->hw_resc.max_rsscos_ctxs;
5885 }
5886
5887 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
5888 {
5889         return bp->hw_resc.max_vnics;
5890 }
5891 #endif
5892
5893 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
5894 {
5895         return bp->hw_resc.max_stat_ctxs;
5896 }
5897
5898 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
5899 {
5900         bp->hw_resc.max_stat_ctxs = max;
5901 }
5902
5903 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
5904 {
5905         return bp->hw_resc.max_cp_rings;
5906 }
5907
5908 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
5909 {
5910         bp->hw_resc.max_cp_rings = max;
5911 }
5912
5913 unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
5914 {
5915         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5916
5917         return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
5918 }
5919
5920 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
5921 {
5922         bp->hw_resc.max_irqs = max_irqs;
5923 }
5924
5925 int bnxt_get_avail_msix(struct bnxt *bp, int num)
5926 {
5927         int max_cp = bnxt_get_max_func_cp_rings(bp);
5928         int max_irq = bnxt_get_max_func_irqs(bp);
5929         int total_req = bp->cp_nr_rings + num;
5930         int max_idx, avail_msix;
5931
5932         max_idx = min_t(int, bp->total_irqs, max_cp);
5933         avail_msix = max_idx - bp->cp_nr_rings;
5934         if (!(bp->flags & BNXT_FLAG_NEW_RM) || avail_msix >= num)
5935                 return avail_msix;
5936
5937         if (max_irq < total_req) {
5938                 num = max_irq - bp->cp_nr_rings;
5939                 if (num <= 0)
5940                         return 0;
5941         }
5942         return num;
5943 }
5944
5945 static int bnxt_get_num_msix(struct bnxt *bp)
5946 {
5947         if (!(bp->flags & BNXT_FLAG_NEW_RM))
5948                 return bnxt_get_max_func_irqs(bp);
5949
5950         return bnxt_cp_rings_in_use(bp);
5951 }
5952
5953 static int bnxt_init_msix(struct bnxt *bp)
5954 {
5955         int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
5956         struct msix_entry *msix_ent;
5957
5958         total_vecs = bnxt_get_num_msix(bp);
5959         max = bnxt_get_max_func_irqs(bp);
5960         if (total_vecs > max)
5961                 total_vecs = max;
5962
5963         if (!total_vecs)
5964                 return 0;
5965
5966         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
5967         if (!msix_ent)
5968                 return -ENOMEM;
5969
5970         for (i = 0; i < total_vecs; i++) {
5971                 msix_ent[i].entry = i;
5972                 msix_ent[i].vector = 0;
5973         }
5974
5975         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
5976                 min = 2;
5977
5978         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
5979         ulp_msix = bnxt_get_ulp_msix_num(bp);
5980         if (total_vecs < 0 || total_vecs < ulp_msix) {
5981                 rc = -ENODEV;
5982                 goto msix_setup_exit;
5983         }
5984
5985         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
5986         if (bp->irq_tbl) {
5987                 for (i = 0; i < total_vecs; i++)
5988                         bp->irq_tbl[i].vector = msix_ent[i].vector;
5989
5990                 bp->total_irqs = total_vecs;
5991                 /* Trim rings based upon num of vectors allocated */
5992                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
5993                                      total_vecs - ulp_msix, min == 1);
5994                 if (rc)
5995                         goto msix_setup_exit;
5996
5997                 bp->cp_nr_rings = (min == 1) ?
5998                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5999                                   bp->tx_nr_rings + bp->rx_nr_rings;
6000
6001         } else {
6002                 rc = -ENOMEM;
6003                 goto msix_setup_exit;
6004         }
6005         bp->flags |= BNXT_FLAG_USING_MSIX;
6006         kfree(msix_ent);
6007         return 0;
6008
6009 msix_setup_exit:
6010         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
6011         kfree(bp->irq_tbl);
6012         bp->irq_tbl = NULL;
6013         pci_disable_msix(bp->pdev);
6014         kfree(msix_ent);
6015         return rc;
6016 }
6017
6018 static int bnxt_init_inta(struct bnxt *bp)
6019 {
6020         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
6021         if (!bp->irq_tbl)
6022                 return -ENOMEM;
6023
6024         bp->total_irqs = 1;
6025         bp->rx_nr_rings = 1;
6026         bp->tx_nr_rings = 1;
6027         bp->cp_nr_rings = 1;
6028         bp->flags |= BNXT_FLAG_SHARED_RINGS;
6029         bp->irq_tbl[0].vector = bp->pdev->irq;
6030         return 0;
6031 }
6032
6033 static int bnxt_init_int_mode(struct bnxt *bp)
6034 {
6035         int rc = 0;
6036
6037         if (bp->flags & BNXT_FLAG_MSIX_CAP)
6038                 rc = bnxt_init_msix(bp);
6039
6040         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
6041                 /* fallback to INTA */
6042                 rc = bnxt_init_inta(bp);
6043         }
6044         return rc;
6045 }
6046
6047 static void bnxt_clear_int_mode(struct bnxt *bp)
6048 {
6049         if (bp->flags & BNXT_FLAG_USING_MSIX)
6050                 pci_disable_msix(bp->pdev);
6051
6052         kfree(bp->irq_tbl);
6053         bp->irq_tbl = NULL;
6054         bp->flags &= ~BNXT_FLAG_USING_MSIX;
6055 }
6056
6057 int bnxt_reserve_rings(struct bnxt *bp)
6058 {
6059         int tcs = netdev_get_num_tc(bp->dev);
6060         int rc;
6061
6062         if (!bnxt_need_reserve_rings(bp))
6063                 return 0;
6064
6065         rc = __bnxt_reserve_rings(bp);
6066         if (rc) {
6067                 netdev_err(bp->dev, "ring reservation failure rc: %d\n", rc);
6068                 return rc;
6069         }
6070         if ((bp->flags & BNXT_FLAG_NEW_RM) &&
6071             (bnxt_get_num_msix(bp) != bp->total_irqs)) {
6072                 bnxt_ulp_irq_stop(bp);
6073                 bnxt_clear_int_mode(bp);
6074                 rc = bnxt_init_int_mode(bp);
6075                 bnxt_ulp_irq_restart(bp, rc);
6076                 if (rc)
6077                         return rc;
6078         }
6079         if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
6080                 netdev_err(bp->dev, "tx ring reservation failure\n");
6081                 netdev_reset_tc(bp->dev);
6082                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
6083                 return -ENOMEM;
6084         }
6085         bp->num_stat_ctxs = bp->cp_nr_rings;
6086         return 0;
6087 }
6088
6089 static void bnxt_free_irq(struct bnxt *bp)
6090 {
6091         struct bnxt_irq *irq;
6092         int i;
6093
6094 #ifdef CONFIG_RFS_ACCEL
6095         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
6096         bp->dev->rx_cpu_rmap = NULL;
6097 #endif
6098         if (!bp->irq_tbl || !bp->bnapi)
6099                 return;
6100
6101         for (i = 0; i < bp->cp_nr_rings; i++) {
6102                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6103
6104                 irq = &bp->irq_tbl[map_idx];
6105                 if (irq->requested) {
6106                         if (irq->have_cpumask) {
6107                                 irq_set_affinity_hint(irq->vector, NULL);
6108                                 free_cpumask_var(irq->cpu_mask);
6109                                 irq->have_cpumask = 0;
6110                         }
6111                         free_irq(irq->vector, bp->bnapi[i]);
6112                 }
6113
6114                 irq->requested = 0;
6115         }
6116 }
6117
6118 static int bnxt_request_irq(struct bnxt *bp)
6119 {
6120         int i, j, rc = 0;
6121         unsigned long flags = 0;
6122 #ifdef CONFIG_RFS_ACCEL
6123         struct cpu_rmap *rmap;
6124 #endif
6125
6126         rc = bnxt_setup_int_mode(bp);
6127         if (rc) {
6128                 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
6129                            rc);
6130                 return rc;
6131         }
6132 #ifdef CONFIG_RFS_ACCEL
6133         rmap = bp->dev->rx_cpu_rmap;
6134 #endif
6135         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
6136                 flags = IRQF_SHARED;
6137
6138         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
6139                 int map_idx = bnxt_cp_num_to_irq_num(bp, i);
6140                 struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
6141
6142 #ifdef CONFIG_RFS_ACCEL
6143                 if (rmap && bp->bnapi[i]->rx_ring) {
6144                         rc = irq_cpu_rmap_add(rmap, irq->vector);
6145                         if (rc)
6146                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
6147                                             j);
6148                         j++;
6149                 }
6150 #endif
6151                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6152                                  bp->bnapi[i]);
6153                 if (rc)
6154                         break;
6155
6156                 irq->requested = 1;
6157
6158                 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
6159                         int numa_node = dev_to_node(&bp->pdev->dev);
6160
6161                         irq->have_cpumask = 1;
6162                         cpumask_set_cpu(cpumask_local_spread(i, numa_node),
6163                                         irq->cpu_mask);
6164                         rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
6165                         if (rc) {
6166                                 netdev_warn(bp->dev,
6167                                             "Set affinity failed, IRQ = %d\n",
6168                                             irq->vector);
6169                                 break;
6170                         }
6171                 }
6172         }
6173         return rc;
6174 }
6175
6176 static void bnxt_del_napi(struct bnxt *bp)
6177 {
6178         int i;
6179
6180         if (!bp->bnapi)
6181                 return;
6182
6183         for (i = 0; i < bp->cp_nr_rings; i++) {
6184                 struct bnxt_napi *bnapi = bp->bnapi[i];
6185
6186                 napi_hash_del(&bnapi->napi);
6187                 netif_napi_del(&bnapi->napi);
6188         }
6189         /* We called napi_hash_del() before netif_napi_del(), we need
6190          * to respect an RCU grace period before freeing napi structures.
6191          */
6192         synchronize_net();
6193 }
6194
6195 static void bnxt_init_napi(struct bnxt *bp)
6196 {
6197         int i;
6198         unsigned int cp_nr_rings = bp->cp_nr_rings;
6199         struct bnxt_napi *bnapi;
6200
6201         if (bp->flags & BNXT_FLAG_USING_MSIX) {
6202                 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6203                         cp_nr_rings--;
6204                 for (i = 0; i < cp_nr_rings; i++) {
6205                         bnapi = bp->bnapi[i];
6206                         netif_napi_add(bp->dev, &bnapi->napi,
6207                                        bnxt_poll, 64);
6208                 }
6209                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6210                         bnapi = bp->bnapi[cp_nr_rings];
6211                         netif_napi_add(bp->dev, &bnapi->napi,
6212                                        bnxt_poll_nitroa0, 64);
6213                 }
6214         } else {
6215                 bnapi = bp->bnapi[0];
6216                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
6217         }
6218 }
6219
6220 static void bnxt_disable_napi(struct bnxt *bp)
6221 {
6222         int i;
6223
6224         if (!bp->bnapi)
6225                 return;
6226
6227         for (i = 0; i < bp->cp_nr_rings; i++) {
6228                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6229
6230                 if (bp->bnapi[i]->rx_ring)
6231                         cancel_work_sync(&cpr->dim.work);
6232
6233                 napi_disable(&bp->bnapi[i]->napi);
6234         }
6235 }
6236
6237 static void bnxt_enable_napi(struct bnxt *bp)
6238 {
6239         int i;
6240
6241         for (i = 0; i < bp->cp_nr_rings; i++) {
6242                 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
6243                 bp->bnapi[i]->in_reset = false;
6244
6245                 if (bp->bnapi[i]->rx_ring) {
6246                         INIT_WORK(&cpr->dim.work, bnxt_dim_work);
6247                         cpr->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6248                 }
6249                 napi_enable(&bp->bnapi[i]->napi);
6250         }
6251 }
6252
6253 void bnxt_tx_disable(struct bnxt *bp)
6254 {
6255         int i;
6256         struct bnxt_tx_ring_info *txr;
6257
6258         if (bp->tx_ring) {
6259                 for (i = 0; i < bp->tx_nr_rings; i++) {
6260                         txr = &bp->tx_ring[i];
6261                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
6262                 }
6263         }
6264         /* Stop all TX queues */
6265         netif_tx_disable(bp->dev);
6266         netif_carrier_off(bp->dev);
6267 }
6268
6269 void bnxt_tx_enable(struct bnxt *bp)
6270 {
6271         int i;
6272         struct bnxt_tx_ring_info *txr;
6273
6274         for (i = 0; i < bp->tx_nr_rings; i++) {
6275                 txr = &bp->tx_ring[i];
6276                 txr->dev_state = 0;
6277         }
6278         netif_tx_wake_all_queues(bp->dev);
6279         if (bp->link_info.link_up)
6280                 netif_carrier_on(bp->dev);
6281 }
6282
6283 static void bnxt_report_link(struct bnxt *bp)
6284 {
6285         if (bp->link_info.link_up) {
6286                 const char *duplex;
6287                 const char *flow_ctrl;
6288                 u32 speed;
6289                 u16 fec;
6290
6291                 netif_carrier_on(bp->dev);
6292                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
6293                         duplex = "full";
6294                 else
6295                         duplex = "half";
6296                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
6297                         flow_ctrl = "ON - receive & transmit";
6298                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
6299                         flow_ctrl = "ON - transmit";
6300                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
6301                         flow_ctrl = "ON - receive";
6302                 else
6303                         flow_ctrl = "none";
6304                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
6305                 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s duplex, Flow control: %s\n",
6306                             speed, duplex, flow_ctrl);
6307                 if (bp->flags & BNXT_FLAG_EEE_CAP)
6308                         netdev_info(bp->dev, "EEE is %s\n",
6309                                     bp->eee.eee_active ? "active" :
6310                                                          "not active");
6311                 fec = bp->link_info.fec_cfg;
6312                 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
6313                         netdev_info(bp->dev, "FEC autoneg %s encodings: %s\n",
6314                                     (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
6315                                     (fec & BNXT_FEC_ENC_BASE_R) ? "BaseR" :
6316                                      (fec & BNXT_FEC_ENC_RS) ? "RS" : "None");
6317         } else {
6318                 netif_carrier_off(bp->dev);
6319                 netdev_err(bp->dev, "NIC Link is Down\n");
6320         }
6321 }
6322
6323 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
6324 {
6325         int rc = 0;
6326         struct hwrm_port_phy_qcaps_input req = {0};
6327         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6328         struct bnxt_link_info *link_info = &bp->link_info;
6329
6330         if (bp->hwrm_spec_code < 0x10201)
6331                 return 0;
6332
6333         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
6334
6335         mutex_lock(&bp->hwrm_cmd_lock);
6336         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6337         if (rc)
6338                 goto hwrm_phy_qcaps_exit;
6339
6340         if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
6341                 struct ethtool_eee *eee = &bp->eee;
6342                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
6343
6344                 bp->flags |= BNXT_FLAG_EEE_CAP;
6345                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6346                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
6347                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
6348                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
6349                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
6350         }
6351         if (resp->supported_speeds_auto_mode)
6352                 link_info->support_auto_speeds =
6353                         le16_to_cpu(resp->supported_speeds_auto_mode);
6354
6355         bp->port_count = resp->port_cnt;
6356
6357 hwrm_phy_qcaps_exit:
6358         mutex_unlock(&bp->hwrm_cmd_lock);
6359         return rc;
6360 }
6361
6362 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
6363 {
6364         int rc = 0;
6365         struct bnxt_link_info *link_info = &bp->link_info;
6366         struct hwrm_port_phy_qcfg_input req = {0};
6367         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6368         u8 link_up = link_info->link_up;
6369         u16 diff;
6370
6371         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
6372
6373         mutex_lock(&bp->hwrm_cmd_lock);
6374         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6375         if (rc) {
6376                 mutex_unlock(&bp->hwrm_cmd_lock);
6377                 return rc;
6378         }
6379
6380         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
6381         link_info->phy_link_status = resp->link;
6382         link_info->duplex = resp->duplex_cfg;
6383         if (bp->hwrm_spec_code >= 0x10800)
6384                 link_info->duplex = resp->duplex_state;
6385         link_info->pause = resp->pause;
6386         link_info->auto_mode = resp->auto_mode;
6387         link_info->auto_pause_setting = resp->auto_pause;
6388         link_info->lp_pause = resp->link_partner_adv_pause;
6389         link_info->force_pause_setting = resp->force_pause;
6390         link_info->duplex_setting = resp->duplex_cfg;
6391         if (link_info->phy_link_status == BNXT_LINK_LINK)
6392                 link_info->link_speed = le16_to_cpu(resp->link_speed);
6393         else
6394                 link_info->link_speed = 0;
6395         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
6396         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
6397         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
6398         link_info->lp_auto_link_speeds =
6399                 le16_to_cpu(resp->link_partner_adv_speeds);
6400         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
6401         link_info->phy_ver[0] = resp->phy_maj;
6402         link_info->phy_ver[1] = resp->phy_min;
6403         link_info->phy_ver[2] = resp->phy_bld;
6404         link_info->media_type = resp->media_type;
6405         link_info->phy_type = resp->phy_type;
6406         link_info->transceiver = resp->xcvr_pkg_type;
6407         link_info->phy_addr = resp->eee_config_phy_addr &
6408                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
6409         link_info->module_status = resp->module_status;
6410
6411         if (bp->flags & BNXT_FLAG_EEE_CAP) {
6412                 struct ethtool_eee *eee = &bp->eee;
6413                 u16 fw_speeds;
6414
6415                 eee->eee_active = 0;
6416                 if (resp->eee_config_phy_addr &
6417                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
6418                         eee->eee_active = 1;
6419                         fw_speeds = le16_to_cpu(
6420                                 resp->link_partner_adv_eee_link_speed_mask);
6421                         eee->lp_advertised =
6422                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6423                 }
6424
6425                 /* Pull initial EEE config */
6426                 if (!chng_link_state) {
6427                         if (resp->eee_config_phy_addr &
6428                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
6429                                 eee->eee_enabled = 1;
6430
6431                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
6432                         eee->advertised =
6433                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
6434
6435                         if (resp->eee_config_phy_addr &
6436                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
6437                                 __le32 tmr;
6438
6439                                 eee->tx_lpi_enabled = 1;
6440                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
6441                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
6442                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
6443                         }
6444                 }
6445         }
6446
6447         link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
6448         if (bp->hwrm_spec_code >= 0x10504)
6449                 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
6450
6451         /* TODO: need to add more logic to report VF link */
6452         if (chng_link_state) {
6453                 if (link_info->phy_link_status == BNXT_LINK_LINK)
6454                         link_info->link_up = 1;
6455                 else
6456                         link_info->link_up = 0;
6457                 if (link_up != link_info->link_up)
6458                         bnxt_report_link(bp);
6459         } else {
6460                 /* alwasy link down if not require to update link state */
6461                 link_info->link_up = 0;
6462         }
6463         mutex_unlock(&bp->hwrm_cmd_lock);
6464
6465         if (!BNXT_SINGLE_PF(bp))
6466                 return 0;
6467
6468         diff = link_info->support_auto_speeds ^ link_info->advertising;
6469         if ((link_info->support_auto_speeds | diff) !=
6470             link_info->support_auto_speeds) {
6471                 /* An advertised speed is no longer supported, so we need to
6472                  * update the advertisement settings.  Caller holds RTNL
6473                  * so we can modify link settings.
6474                  */
6475                 link_info->advertising = link_info->support_auto_speeds;
6476                 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
6477                         bnxt_hwrm_set_link_setting(bp, true, false);
6478         }
6479         return 0;
6480 }
6481
6482 static void bnxt_get_port_module_status(struct bnxt *bp)
6483 {
6484         struct bnxt_link_info *link_info = &bp->link_info;
6485         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
6486         u8 module_status;
6487
6488         if (bnxt_update_link(bp, true))
6489                 return;
6490
6491         module_status = link_info->module_status;
6492         switch (module_status) {
6493         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
6494         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
6495         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
6496                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
6497                             bp->pf.port_id);
6498                 if (bp->hwrm_spec_code >= 0x10201) {
6499                         netdev_warn(bp->dev, "Module part number %s\n",
6500                                     resp->phy_vendor_partnumber);
6501                 }
6502                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
6503                         netdev_warn(bp->dev, "TX is disabled\n");
6504                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
6505                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
6506         }
6507 }
6508
6509 static void
6510 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
6511 {
6512         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
6513                 if (bp->hwrm_spec_code >= 0x10201)
6514                         req->auto_pause =
6515                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
6516                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6517                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
6518                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6519                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
6520                 req->enables |=
6521                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6522         } else {
6523                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
6524                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
6525                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
6526                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
6527                 req->enables |=
6528                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
6529                 if (bp->hwrm_spec_code >= 0x10201) {
6530                         req->auto_pause = req->force_pause;
6531                         req->enables |= cpu_to_le32(
6532                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
6533                 }
6534         }
6535 }
6536
6537 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
6538                                       struct hwrm_port_phy_cfg_input *req)
6539 {
6540         u8 autoneg = bp->link_info.autoneg;
6541         u16 fw_link_speed = bp->link_info.req_link_speed;
6542         u16 advertising = bp->link_info.advertising;
6543
6544         if (autoneg & BNXT_AUTONEG_SPEED) {
6545                 req->auto_mode |=
6546                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
6547
6548                 req->enables |= cpu_to_le32(
6549                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
6550                 req->auto_link_speed_mask = cpu_to_le16(advertising);
6551
6552                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
6553                 req->flags |=
6554                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
6555         } else {
6556                 req->force_link_speed = cpu_to_le16(fw_link_speed);
6557                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
6558         }
6559
6560         /* tell chimp that the setting takes effect immediately */
6561         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
6562 }
6563
6564 int bnxt_hwrm_set_pause(struct bnxt *bp)
6565 {
6566         struct hwrm_port_phy_cfg_input req = {0};
6567         int rc;
6568
6569         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6570         bnxt_hwrm_set_pause_common(bp, &req);
6571
6572         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
6573             bp->link_info.force_link_chng)
6574                 bnxt_hwrm_set_link_common(bp, &req);
6575
6576         mutex_lock(&bp->hwrm_cmd_lock);
6577         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6578         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
6579                 /* since changing of pause setting doesn't trigger any link
6580                  * change event, the driver needs to update the current pause
6581                  * result upon successfully return of the phy_cfg command
6582                  */
6583                 bp->link_info.pause =
6584                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
6585                 bp->link_info.auto_pause_setting = 0;
6586                 if (!bp->link_info.force_link_chng)
6587                         bnxt_report_link(bp);
6588         }
6589         bp->link_info.force_link_chng = false;
6590         mutex_unlock(&bp->hwrm_cmd_lock);
6591         return rc;
6592 }
6593
6594 static void bnxt_hwrm_set_eee(struct bnxt *bp,
6595                               struct hwrm_port_phy_cfg_input *req)
6596 {
6597         struct ethtool_eee *eee = &bp->eee;
6598
6599         if (eee->eee_enabled) {
6600                 u16 eee_speeds;
6601                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
6602
6603                 if (eee->tx_lpi_enabled)
6604                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
6605                 else
6606                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
6607
6608                 req->flags |= cpu_to_le32(flags);
6609                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
6610                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
6611                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
6612         } else {
6613                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
6614         }
6615 }
6616
6617 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
6618 {
6619         struct hwrm_port_phy_cfg_input req = {0};
6620
6621         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6622         if (set_pause)
6623                 bnxt_hwrm_set_pause_common(bp, &req);
6624
6625         bnxt_hwrm_set_link_common(bp, &req);
6626
6627         if (set_eee)
6628                 bnxt_hwrm_set_eee(bp, &req);
6629         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6630 }
6631
6632 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
6633 {
6634         struct hwrm_port_phy_cfg_input req = {0};
6635
6636         if (!BNXT_SINGLE_PF(bp))
6637                 return 0;
6638
6639         if (pci_num_vf(bp->pdev))
6640                 return 0;
6641
6642         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
6643         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
6644         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6645 }
6646
6647 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
6648 {
6649         struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
6650         struct hwrm_port_led_qcaps_input req = {0};
6651         struct bnxt_pf_info *pf = &bp->pf;
6652         int rc;
6653
6654         if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
6655                 return 0;
6656
6657         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_LED_QCAPS, -1, -1);
6658         req.port_id = cpu_to_le16(pf->port_id);
6659         mutex_lock(&bp->hwrm_cmd_lock);
6660         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6661         if (rc) {
6662                 mutex_unlock(&bp->hwrm_cmd_lock);
6663                 return rc;
6664         }
6665         if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
6666                 int i;
6667
6668                 bp->num_leds = resp->num_leds;
6669                 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
6670                                                  bp->num_leds);
6671                 for (i = 0; i < bp->num_leds; i++) {
6672                         struct bnxt_led_info *led = &bp->leds[i];
6673                         __le16 caps = led->led_state_caps;
6674
6675                         if (!led->led_group_id ||
6676                             !BNXT_LED_ALT_BLINK_CAP(caps)) {
6677                                 bp->num_leds = 0;
6678                                 break;
6679                         }
6680                 }
6681         }
6682         mutex_unlock(&bp->hwrm_cmd_lock);
6683         return 0;
6684 }
6685
6686 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
6687 {
6688         struct hwrm_wol_filter_alloc_input req = {0};
6689         struct hwrm_wol_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
6690         int rc;
6691
6692         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_ALLOC, -1, -1);
6693         req.port_id = cpu_to_le16(bp->pf.port_id);
6694         req.wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
6695         req.enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
6696         memcpy(req.mac_address, bp->dev->dev_addr, ETH_ALEN);
6697         mutex_lock(&bp->hwrm_cmd_lock);
6698         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6699         if (!rc)
6700                 bp->wol_filter_id = resp->wol_filter_id;
6701         mutex_unlock(&bp->hwrm_cmd_lock);
6702         return rc;
6703 }
6704
6705 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
6706 {
6707         struct hwrm_wol_filter_free_input req = {0};
6708         int rc;
6709
6710         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_FREE, -1, -1);
6711         req.port_id = cpu_to_le16(bp->pf.port_id);
6712         req.enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
6713         req.wol_filter_id = bp->wol_filter_id;
6714         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6715         return rc;
6716 }
6717
6718 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
6719 {
6720         struct hwrm_wol_filter_qcfg_input req = {0};
6721         struct hwrm_wol_filter_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
6722         u16 next_handle = 0;
6723         int rc;
6724
6725         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_WOL_FILTER_QCFG, -1, -1);
6726         req.port_id = cpu_to_le16(bp->pf.port_id);
6727         req.handle = cpu_to_le16(handle);
6728         mutex_lock(&bp->hwrm_cmd_lock);
6729         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
6730         if (!rc) {
6731                 next_handle = le16_to_cpu(resp->next_handle);
6732                 if (next_handle != 0) {
6733                         if (resp->wol_type ==
6734                             WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
6735                                 bp->wol = 1;
6736                                 bp->wol_filter_id = resp->wol_filter_id;
6737                         }
6738                 }
6739         }
6740         mutex_unlock(&bp->hwrm_cmd_lock);
6741         return next_handle;
6742 }
6743
6744 static void bnxt_get_wol_settings(struct bnxt *bp)
6745 {
6746         u16 handle = 0;
6747
6748         if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
6749                 return;
6750
6751         do {
6752                 handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
6753         } while (handle && handle != 0xffff);
6754 }
6755
6756 static bool bnxt_eee_config_ok(struct bnxt *bp)
6757 {
6758         struct ethtool_eee *eee = &bp->eee;
6759         struct bnxt_link_info *link_info = &bp->link_info;
6760
6761         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
6762                 return true;
6763
6764         if (eee->eee_enabled) {
6765                 u32 advertising =
6766                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
6767
6768                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6769                         eee->eee_enabled = 0;
6770                         return false;
6771                 }
6772                 if (eee->advertised & ~advertising) {
6773                         eee->advertised = advertising & eee->supported;
6774                         return false;
6775                 }
6776         }
6777         return true;
6778 }
6779
6780 static int bnxt_update_phy_setting(struct bnxt *bp)
6781 {
6782         int rc;
6783         bool update_link = false;
6784         bool update_pause = false;
6785         bool update_eee = false;
6786         struct bnxt_link_info *link_info = &bp->link_info;
6787
6788         rc = bnxt_update_link(bp, true);
6789         if (rc) {
6790                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
6791                            rc);
6792                 return rc;
6793         }
6794         if (!BNXT_SINGLE_PF(bp))
6795                 return 0;
6796
6797         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6798             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
6799             link_info->req_flow_ctrl)
6800                 update_pause = true;
6801         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
6802             link_info->force_pause_setting != link_info->req_flow_ctrl)
6803                 update_pause = true;
6804         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
6805                 if (BNXT_AUTO_MODE(link_info->auto_mode))
6806                         update_link = true;
6807                 if (link_info->req_link_speed != link_info->force_link_speed)
6808                         update_link = true;
6809                 if (link_info->req_duplex != link_info->duplex_setting)
6810                         update_link = true;
6811         } else {
6812                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
6813                         update_link = true;
6814                 if (link_info->advertising != link_info->auto_link_speeds)
6815                         update_link = true;
6816         }
6817
6818         /* The last close may have shutdown the link, so need to call
6819          * PHY_CFG to bring it back up.
6820          */
6821         if (!netif_carrier_ok(bp->dev))
6822                 update_link = true;
6823
6824         if (!bnxt_eee_config_ok(bp))
6825                 update_eee = true;
6826
6827         if (update_link)
6828                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
6829         else if (update_pause)
6830                 rc = bnxt_hwrm_set_pause(bp);
6831         if (rc) {
6832                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
6833                            rc);
6834                 return rc;
6835         }
6836
6837         return rc;
6838 }
6839
6840 /* Common routine to pre-map certain register block to different GRC window.
6841  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
6842  * in PF and 3 windows in VF that can be customized to map in different
6843  * register blocks.
6844  */
6845 static void bnxt_preset_reg_win(struct bnxt *bp)
6846 {
6847         if (BNXT_PF(bp)) {
6848                 /* CAG registers map to GRC window #4 */
6849                 writel(BNXT_CAG_REG_BASE,
6850                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
6851         }
6852 }
6853
6854 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
6855
6856 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6857 {
6858         int rc = 0;
6859
6860         bnxt_preset_reg_win(bp);
6861         netif_carrier_off(bp->dev);
6862         if (irq_re_init) {
6863                 /* Reserve rings now if none were reserved at driver probe. */
6864                 rc = bnxt_init_dflt_ring_mode(bp);
6865                 if (rc) {
6866                         netdev_err(bp->dev, "Failed to reserve default rings at open\n");
6867                         return rc;
6868                 }
6869                 rc = bnxt_reserve_rings(bp);
6870                 if (rc)
6871                         return rc;
6872         }
6873         if ((bp->flags & BNXT_FLAG_RFS) &&
6874             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
6875                 /* disable RFS if falling back to INTA */
6876                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
6877                 bp->flags &= ~BNXT_FLAG_RFS;
6878         }
6879
6880         rc = bnxt_alloc_mem(bp, irq_re_init);
6881         if (rc) {
6882                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6883                 goto open_err_free_mem;
6884         }
6885
6886         if (irq_re_init) {
6887                 bnxt_init_napi(bp);
6888                 rc = bnxt_request_irq(bp);
6889                 if (rc) {
6890                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
6891                         goto open_err;
6892                 }
6893         }
6894
6895         bnxt_enable_napi(bp);
6896         bnxt_debug_dev_init(bp);
6897
6898         rc = bnxt_init_nic(bp, irq_re_init);
6899         if (rc) {
6900                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6901                 goto open_err;
6902         }
6903
6904         if (link_re_init) {
6905                 mutex_lock(&bp->link_lock);
6906                 rc = bnxt_update_phy_setting(bp);
6907                 mutex_unlock(&bp->link_lock);
6908                 if (rc)
6909                         netdev_warn(bp->dev, "failed to update phy settings\n");
6910         }
6911
6912         if (irq_re_init)
6913                 udp_tunnel_get_rx_info(bp->dev);
6914
6915         set_bit(BNXT_STATE_OPEN, &bp->state);
6916         bnxt_enable_int(bp);
6917         /* Enable TX queues */
6918         bnxt_tx_enable(bp);
6919         mod_timer(&bp->timer, jiffies + bp->current_interval);
6920         /* Poll link status and check for SFP+ module status */
6921         bnxt_get_port_module_status(bp);
6922
6923         /* VF-reps may need to be re-opened after the PF is re-opened */
6924         if (BNXT_PF(bp))
6925                 bnxt_vf_reps_open(bp);
6926         return 0;
6927
6928 open_err:
6929         bnxt_debug_dev_exit(bp);
6930         bnxt_disable_napi(bp);
6931         bnxt_del_napi(bp);
6932
6933 open_err_free_mem:
6934         bnxt_free_skbs(bp);
6935         bnxt_free_irq(bp);
6936         bnxt_free_mem(bp, true);
6937         return rc;
6938 }
6939
6940 /* rtnl_lock held */
6941 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
6942 {
6943         int rc = 0;
6944
6945         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
6946         if (rc) {
6947                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
6948                 dev_close(bp->dev);
6949         }
6950         return rc;
6951 }
6952
6953 /* rtnl_lock held, open the NIC half way by allocating all resources, but
6954  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
6955  * self tests.
6956  */
6957 int bnxt_half_open_nic(struct bnxt *bp)
6958 {
6959         int rc = 0;
6960
6961         rc = bnxt_alloc_mem(bp, false);
6962         if (rc) {
6963                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
6964                 goto half_open_err;
6965         }
6966         rc = bnxt_init_nic(bp, false);
6967         if (rc) {
6968                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
6969                 goto half_open_err;
6970         }
6971         return 0;
6972
6973 half_open_err:
6974         bnxt_free_skbs(bp);
6975         bnxt_free_mem(bp, false);
6976         dev_close(bp->dev);
6977         return rc;
6978 }
6979
6980 /* rtnl_lock held, this call can only be made after a previous successful
6981  * call to bnxt_half_open_nic().
6982  */
6983 void bnxt_half_close_nic(struct bnxt *bp)
6984 {
6985         bnxt_hwrm_resource_free(bp, false, false);
6986         bnxt_free_skbs(bp);
6987         bnxt_free_mem(bp, false);
6988 }
6989
6990 static int bnxt_open(struct net_device *dev)
6991 {
6992         struct bnxt *bp = netdev_priv(dev);
6993
6994         return __bnxt_open_nic(bp, true, true);
6995 }
6996
6997 static bool bnxt_drv_busy(struct bnxt *bp)
6998 {
6999         return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
7000                 test_bit(BNXT_STATE_READ_STATS, &bp->state));
7001 }
7002
7003 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
7004                              bool link_re_init)
7005 {
7006         /* Close the VF-reps before closing PF */
7007         if (BNXT_PF(bp))
7008                 bnxt_vf_reps_close(bp);
7009
7010         /* Change device state to avoid TX queue wake up's */
7011         bnxt_tx_disable(bp);
7012
7013         clear_bit(BNXT_STATE_OPEN, &bp->state);
7014         smp_mb__after_atomic();
7015         while (bnxt_drv_busy(bp))
7016                 msleep(20);
7017
7018         /* Flush rings and and disable interrupts */
7019         bnxt_shutdown_nic(bp, irq_re_init);
7020
7021         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
7022
7023         bnxt_debug_dev_exit(bp);
7024         bnxt_disable_napi(bp);
7025         del_timer_sync(&bp->timer);
7026         bnxt_free_skbs(bp);
7027
7028         if (irq_re_init) {
7029                 bnxt_free_irq(bp);
7030                 bnxt_del_napi(bp);
7031         }
7032         bnxt_free_mem(bp, irq_re_init);
7033 }
7034
7035 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
7036 {
7037         int rc = 0;
7038
7039 #ifdef CONFIG_BNXT_SRIOV
7040         if (bp->sriov_cfg) {
7041                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
7042                                                       !bp->sriov_cfg,
7043                                                       BNXT_SRIOV_CFG_WAIT_TMO);
7044                 if (rc)
7045                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
7046         }
7047 #endif
7048         __bnxt_close_nic(bp, irq_re_init, link_re_init);
7049         return rc;
7050 }
7051
7052 static int bnxt_close(struct net_device *dev)
7053 {
7054         struct bnxt *bp = netdev_priv(dev);
7055
7056         bnxt_close_nic(bp, true, true);
7057         bnxt_hwrm_shutdown_link(bp);
7058         return 0;
7059 }
7060
7061 /* rtnl_lock held */
7062 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7063 {
7064         switch (cmd) {
7065         case SIOCGMIIPHY:
7066                 /* fallthru */
7067         case SIOCGMIIREG: {
7068                 if (!netif_running(dev))
7069                         return -EAGAIN;
7070
7071                 return 0;
7072         }
7073
7074         case SIOCSMIIREG:
7075                 if (!netif_running(dev))
7076                         return -EAGAIN;
7077
7078                 return 0;
7079
7080         default:
7081                 /* do nothing */
7082                 break;
7083         }
7084         return -EOPNOTSUPP;
7085 }
7086
7087 static void
7088 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
7089 {
7090         u32 i;
7091         struct bnxt *bp = netdev_priv(dev);
7092
7093         set_bit(BNXT_STATE_READ_STATS, &bp->state);
7094         /* Make sure bnxt_close_nic() sees that we are reading stats before
7095          * we check the BNXT_STATE_OPEN flag.
7096          */
7097         smp_mb__after_atomic();
7098         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7099                 clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7100                 return;
7101         }
7102
7103         /* TODO check if we need to synchronize with bnxt_close path */
7104         for (i = 0; i < bp->cp_nr_rings; i++) {
7105                 struct bnxt_napi *bnapi = bp->bnapi[i];
7106                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7107                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
7108
7109                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
7110                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
7111                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
7112
7113                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
7114                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
7115                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
7116
7117                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
7118                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
7119                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
7120
7121                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
7122                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
7123                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
7124
7125                 stats->rx_missed_errors +=
7126                         le64_to_cpu(hw_stats->rx_discard_pkts);
7127
7128                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
7129
7130                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
7131         }
7132
7133         if (bp->flags & BNXT_FLAG_PORT_STATS) {
7134                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
7135                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
7136
7137                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
7138                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
7139                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
7140                                           le64_to_cpu(rx->rx_ovrsz_frames) +
7141                                           le64_to_cpu(rx->rx_runt_frames);
7142                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
7143                                    le64_to_cpu(rx->rx_jbr_frames);
7144                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
7145                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
7146                 stats->tx_errors = le64_to_cpu(tx->tx_err);
7147         }
7148         clear_bit(BNXT_STATE_READ_STATS, &bp->state);
7149 }
7150
7151 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
7152 {
7153         struct net_device *dev = bp->dev;
7154         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7155         struct netdev_hw_addr *ha;
7156         u8 *haddr;
7157         int mc_count = 0;
7158         bool update = false;
7159         int off = 0;
7160
7161         netdev_for_each_mc_addr(ha, dev) {
7162                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
7163                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7164                         vnic->mc_list_count = 0;
7165                         return false;
7166                 }
7167                 haddr = ha->addr;
7168                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
7169                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
7170                         update = true;
7171                 }
7172                 off += ETH_ALEN;
7173                 mc_count++;
7174         }
7175         if (mc_count)
7176                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
7177
7178         if (mc_count != vnic->mc_list_count) {
7179                 vnic->mc_list_count = mc_count;
7180                 update = true;
7181         }
7182         return update;
7183 }
7184
7185 static bool bnxt_uc_list_updated(struct bnxt *bp)
7186 {
7187         struct net_device *dev = bp->dev;
7188         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7189         struct netdev_hw_addr *ha;
7190         int off = 0;
7191
7192         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
7193                 return true;
7194
7195         netdev_for_each_uc_addr(ha, dev) {
7196                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
7197                         return true;
7198
7199                 off += ETH_ALEN;
7200         }
7201         return false;
7202 }
7203
7204 static void bnxt_set_rx_mode(struct net_device *dev)
7205 {
7206         struct bnxt *bp = netdev_priv(dev);
7207         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7208         u32 mask = vnic->rx_mask;
7209         bool mc_update = false;
7210         bool uc_update;
7211
7212         if (!netif_running(dev))
7213                 return;
7214
7215         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
7216                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
7217                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
7218
7219         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
7220                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7221
7222         uc_update = bnxt_uc_list_updated(bp);
7223
7224         if (dev->flags & IFF_ALLMULTI) {
7225                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
7226                 vnic->mc_list_count = 0;
7227         } else {
7228                 mc_update = bnxt_mc_list_updated(bp, &mask);
7229         }
7230
7231         if (mask != vnic->rx_mask || uc_update || mc_update) {
7232                 vnic->rx_mask = mask;
7233
7234                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
7235                 bnxt_queue_sp_work(bp);
7236         }
7237 }
7238
7239 static int bnxt_cfg_rx_mode(struct bnxt *bp)
7240 {
7241         struct net_device *dev = bp->dev;
7242         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
7243         struct netdev_hw_addr *ha;
7244         int i, off = 0, rc;
7245         bool uc_update;
7246
7247         netif_addr_lock_bh(dev);
7248         uc_update = bnxt_uc_list_updated(bp);
7249         netif_addr_unlock_bh(dev);
7250
7251         if (!uc_update)
7252                 goto skip_uc;
7253
7254         mutex_lock(&bp->hwrm_cmd_lock);
7255         for (i = 1; i < vnic->uc_filter_count; i++) {
7256                 struct hwrm_cfa_l2_filter_free_input req = {0};
7257
7258                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
7259                                        -1);
7260
7261                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
7262
7263                 rc = _hwrm_send_message(bp, &req, sizeof(req),
7264                                         HWRM_CMD_TIMEOUT);
7265         }
7266         mutex_unlock(&bp->hwrm_cmd_lock);
7267
7268         vnic->uc_filter_count = 1;
7269
7270         netif_addr_lock_bh(dev);
7271         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
7272                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
7273         } else {
7274                 netdev_for_each_uc_addr(ha, dev) {
7275                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
7276                         off += ETH_ALEN;
7277                         vnic->uc_filter_count++;
7278                 }
7279         }
7280         netif_addr_unlock_bh(dev);
7281
7282         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
7283                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
7284                 if (rc) {
7285                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
7286                                    rc);
7287                         vnic->uc_filter_count = i;
7288                         return rc;
7289                 }
7290         }
7291
7292 skip_uc:
7293         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
7294         if (rc)
7295                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
7296                            rc);
7297
7298         return rc;
7299 }
7300
7301 static bool bnxt_can_reserve_rings(struct bnxt *bp)
7302 {
7303 #ifdef CONFIG_BNXT_SRIOV
7304         if ((bp->flags & BNXT_FLAG_NEW_RM) && BNXT_VF(bp)) {
7305                 struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7306
7307                 /* No minimum rings were provisioned by the PF.  Don't
7308                  * reserve rings by default when device is down.
7309                  */
7310                 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
7311                         return true;
7312
7313                 if (!netif_running(bp->dev))
7314                         return false;
7315         }
7316 #endif
7317         return true;
7318 }
7319
7320 /* If the chip and firmware supports RFS */
7321 static bool bnxt_rfs_supported(struct bnxt *bp)
7322 {
7323         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
7324                 return true;
7325         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7326                 return true;
7327         return false;
7328 }
7329
7330 /* If runtime conditions support RFS */
7331 static bool bnxt_rfs_capable(struct bnxt *bp)
7332 {
7333 #ifdef CONFIG_RFS_ACCEL
7334         int vnics, max_vnics, max_rss_ctxs;
7335
7336         if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
7337                 return false;
7338
7339         vnics = 1 + bp->rx_nr_rings;
7340         max_vnics = bnxt_get_max_func_vnics(bp);
7341         max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
7342
7343         /* RSS contexts not a limiting factor */
7344         if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
7345                 max_rss_ctxs = max_vnics;
7346         if (vnics > max_vnics || vnics > max_rss_ctxs) {
7347                 if (bp->rx_nr_rings > 1)
7348                         netdev_warn(bp->dev,
7349                                     "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
7350                                     min(max_rss_ctxs - 1, max_vnics - 1));
7351                 return false;
7352         }
7353
7354         if (!(bp->flags & BNXT_FLAG_NEW_RM))
7355                 return true;
7356
7357         if (vnics == bp->hw_resc.resv_vnics)
7358                 return true;
7359
7360         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, vnics);
7361         if (vnics <= bp->hw_resc.resv_vnics)
7362                 return true;
7363
7364         netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
7365         bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 1);
7366         return false;
7367 #else
7368         return false;
7369 #endif
7370 }
7371
7372 static netdev_features_t bnxt_fix_features(struct net_device *dev,
7373                                            netdev_features_t features)
7374 {
7375         struct bnxt *bp = netdev_priv(dev);
7376
7377         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
7378                 features &= ~NETIF_F_NTUPLE;
7379
7380         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7381                 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
7382
7383         if (!(features & NETIF_F_GRO))
7384                 features &= ~NETIF_F_GRO_HW;
7385
7386         if (features & NETIF_F_GRO_HW)
7387                 features &= ~NETIF_F_LRO;
7388
7389         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
7390          * turned on or off together.
7391          */
7392         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
7393             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
7394                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
7395                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7396                                       NETIF_F_HW_VLAN_STAG_RX);
7397                 else
7398                         features |= NETIF_F_HW_VLAN_CTAG_RX |
7399                                     NETIF_F_HW_VLAN_STAG_RX;
7400         }
7401 #ifdef CONFIG_BNXT_SRIOV
7402         if (BNXT_VF(bp)) {
7403                 if (bp->vf.vlan) {
7404                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
7405                                       NETIF_F_HW_VLAN_STAG_RX);
7406                 }
7407         }
7408 #endif
7409         return features;
7410 }
7411
7412 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
7413 {
7414         struct bnxt *bp = netdev_priv(dev);
7415         u32 flags = bp->flags;
7416         u32 changes;
7417         int rc = 0;
7418         bool re_init = false;
7419         bool update_tpa = false;
7420
7421         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
7422         if (features & NETIF_F_GRO_HW)
7423                 flags |= BNXT_FLAG_GRO;
7424         else if (features & NETIF_F_LRO)
7425                 flags |= BNXT_FLAG_LRO;
7426
7427         if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
7428                 flags &= ~BNXT_FLAG_TPA;
7429
7430         if (features & NETIF_F_HW_VLAN_CTAG_RX)
7431                 flags |= BNXT_FLAG_STRIP_VLAN;
7432
7433         if (features & NETIF_F_NTUPLE)
7434                 flags |= BNXT_FLAG_RFS;
7435
7436         changes = flags ^ bp->flags;
7437         if (changes & BNXT_FLAG_TPA) {
7438                 update_tpa = true;
7439                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
7440                     (flags & BNXT_FLAG_TPA) == 0)
7441                         re_init = true;
7442         }
7443
7444         if (changes & ~BNXT_FLAG_TPA)
7445                 re_init = true;
7446
7447         if (flags != bp->flags) {
7448                 u32 old_flags = bp->flags;
7449
7450                 bp->flags = flags;
7451
7452                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7453                         if (update_tpa)
7454                                 bnxt_set_ring_params(bp);
7455                         return rc;
7456                 }
7457
7458                 if (re_init) {
7459                         bnxt_close_nic(bp, false, false);
7460                         if (update_tpa)
7461                                 bnxt_set_ring_params(bp);
7462
7463                         return bnxt_open_nic(bp, false, false);
7464                 }
7465                 if (update_tpa) {
7466                         rc = bnxt_set_tpa(bp,
7467                                           (flags & BNXT_FLAG_TPA) ?
7468                                           true : false);
7469                         if (rc)
7470                                 bp->flags = old_flags;
7471                 }
7472         }
7473         return rc;
7474 }
7475
7476 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
7477 {
7478         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
7479         int i = bnapi->index;
7480
7481         if (!txr)
7482                 return;
7483
7484         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
7485                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
7486                     txr->tx_cons);
7487 }
7488
7489 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
7490 {
7491         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
7492         int i = bnapi->index;
7493
7494         if (!rxr)
7495                 return;
7496
7497         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
7498                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
7499                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
7500                     rxr->rx_sw_agg_prod);
7501 }
7502
7503 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
7504 {
7505         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
7506         int i = bnapi->index;
7507
7508         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
7509                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
7510 }
7511
7512 static void bnxt_dbg_dump_states(struct bnxt *bp)
7513 {
7514         int i;
7515         struct bnxt_napi *bnapi;
7516
7517         for (i = 0; i < bp->cp_nr_rings; i++) {
7518                 bnapi = bp->bnapi[i];
7519                 if (netif_msg_drv(bp)) {
7520                         bnxt_dump_tx_sw_state(bnapi);
7521                         bnxt_dump_rx_sw_state(bnapi);
7522                         bnxt_dump_cp_sw_state(bnapi);
7523                 }
7524         }
7525 }
7526
7527 static void bnxt_reset_task(struct bnxt *bp, bool silent)
7528 {
7529         if (!silent)
7530                 bnxt_dbg_dump_states(bp);
7531         if (netif_running(bp->dev)) {
7532                 int rc;
7533
7534                 if (!silent)
7535                         bnxt_ulp_stop(bp);
7536                 bnxt_close_nic(bp, false, false);
7537                 rc = bnxt_open_nic(bp, false, false);
7538                 if (!silent && !rc)
7539                         bnxt_ulp_start(bp);
7540         }
7541 }
7542
7543 static void bnxt_tx_timeout(struct net_device *dev)
7544 {
7545         struct bnxt *bp = netdev_priv(dev);
7546
7547         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
7548         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
7549         bnxt_queue_sp_work(bp);
7550 }
7551
7552 #ifdef CONFIG_NET_POLL_CONTROLLER
7553 static void bnxt_poll_controller(struct net_device *dev)
7554 {
7555         struct bnxt *bp = netdev_priv(dev);
7556         int i;
7557
7558         /* Only process tx rings/combined rings in netpoll mode. */
7559         for (i = 0; i < bp->tx_nr_rings; i++) {
7560                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
7561
7562                 napi_schedule(&txr->bnapi->napi);
7563         }
7564 }
7565 #endif
7566
7567 static void bnxt_timer(struct timer_list *t)
7568 {
7569         struct bnxt *bp = from_timer(bp, t, timer);
7570         struct net_device *dev = bp->dev;
7571
7572         if (!netif_running(dev))
7573                 return;
7574
7575         if (atomic_read(&bp->intr_sem) != 0)
7576                 goto bnxt_restart_timer;
7577
7578         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS) &&
7579             bp->stats_coal_ticks) {
7580                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
7581                 bnxt_queue_sp_work(bp);
7582         }
7583
7584         if (bnxt_tc_flower_enabled(bp)) {
7585                 set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
7586                 bnxt_queue_sp_work(bp);
7587         }
7588 bnxt_restart_timer:
7589         mod_timer(&bp->timer, jiffies + bp->current_interval);
7590 }
7591
7592 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
7593 {
7594         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
7595          * set.  If the device is being closed, bnxt_close() may be holding
7596          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
7597          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
7598          */
7599         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7600         rtnl_lock();
7601 }
7602
7603 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
7604 {
7605         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7606         rtnl_unlock();
7607 }
7608
7609 /* Only called from bnxt_sp_task() */
7610 static void bnxt_reset(struct bnxt *bp, bool silent)
7611 {
7612         bnxt_rtnl_lock_sp(bp);
7613         if (test_bit(BNXT_STATE_OPEN, &bp->state))
7614                 bnxt_reset_task(bp, silent);
7615         bnxt_rtnl_unlock_sp(bp);
7616 }
7617
7618 static void bnxt_cfg_ntp_filters(struct bnxt *);
7619
7620 static void bnxt_sp_task(struct work_struct *work)
7621 {
7622         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
7623
7624         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7625         smp_mb__after_atomic();
7626         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
7627                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7628                 return;
7629         }
7630
7631         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
7632                 bnxt_cfg_rx_mode(bp);
7633
7634         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
7635                 bnxt_cfg_ntp_filters(bp);
7636         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
7637                 bnxt_hwrm_exec_fwd_req(bp);
7638         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7639                 bnxt_hwrm_tunnel_dst_port_alloc(
7640                         bp, bp->vxlan_port,
7641                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7642         }
7643         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7644                 bnxt_hwrm_tunnel_dst_port_free(
7645                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
7646         }
7647         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
7648                 bnxt_hwrm_tunnel_dst_port_alloc(
7649                         bp, bp->nge_port,
7650                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7651         }
7652         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
7653                 bnxt_hwrm_tunnel_dst_port_free(
7654                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
7655         }
7656         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
7657                 bnxt_hwrm_port_qstats(bp);
7658                 bnxt_hwrm_port_qstats_ext(bp);
7659         }
7660
7661         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
7662                 int rc;
7663
7664                 mutex_lock(&bp->link_lock);
7665                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
7666                                        &bp->sp_event))
7667                         bnxt_hwrm_phy_qcaps(bp);
7668
7669                 rc = bnxt_update_link(bp, true);
7670                 mutex_unlock(&bp->link_lock);
7671                 if (rc)
7672                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
7673                                    rc);
7674         }
7675         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
7676                 mutex_lock(&bp->link_lock);
7677                 bnxt_get_port_module_status(bp);
7678                 mutex_unlock(&bp->link_lock);
7679         }
7680
7681         if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
7682                 bnxt_tc_flow_stats_work(bp);
7683
7684         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
7685          * must be the last functions to be called before exiting.
7686          */
7687         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
7688                 bnxt_reset(bp, false);
7689
7690         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
7691                 bnxt_reset(bp, true);
7692
7693         smp_mb__before_atomic();
7694         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
7695 }
7696
7697 /* Under rtnl_lock */
7698 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
7699                      int tx_xdp)
7700 {
7701         int max_rx, max_tx, tx_sets = 1;
7702         int tx_rings_needed;
7703         int rx_rings = rx;
7704         int cp, vnics, rc;
7705
7706         if (tcs)
7707                 tx_sets = tcs;
7708
7709         rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
7710         if (rc)
7711                 return rc;
7712
7713         if (max_rx < rx)
7714                 return -ENOMEM;
7715
7716         tx_rings_needed = tx * tx_sets + tx_xdp;
7717         if (max_tx < tx_rings_needed)
7718                 return -ENOMEM;
7719
7720         vnics = 1;
7721         if (bp->flags & BNXT_FLAG_RFS)
7722                 vnics += rx_rings;
7723
7724         if (bp->flags & BNXT_FLAG_AGG_RINGS)
7725                 rx_rings <<= 1;
7726         cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
7727         if (bp->flags & BNXT_FLAG_NEW_RM)
7728                 cp += bnxt_get_ulp_msix_num(bp);
7729         return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
7730                                      vnics);
7731 }
7732
7733 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
7734 {
7735         if (bp->bar2) {
7736                 pci_iounmap(pdev, bp->bar2);
7737                 bp->bar2 = NULL;
7738         }
7739
7740         if (bp->bar1) {
7741                 pci_iounmap(pdev, bp->bar1);
7742                 bp->bar1 = NULL;
7743         }
7744
7745         if (bp->bar0) {
7746                 pci_iounmap(pdev, bp->bar0);
7747                 bp->bar0 = NULL;
7748         }
7749 }
7750
7751 static void bnxt_cleanup_pci(struct bnxt *bp)
7752 {
7753         bnxt_unmap_bars(bp, bp->pdev);
7754         pci_release_regions(bp->pdev);
7755         pci_disable_device(bp->pdev);
7756 }
7757
7758 static void bnxt_init_dflt_coal(struct bnxt *bp)
7759 {
7760         struct bnxt_coal *coal;
7761
7762         /* Tick values in micro seconds.
7763          * 1 coal_buf x bufs_per_record = 1 completion record.
7764          */
7765         coal = &bp->rx_coal;
7766         coal->coal_ticks = 14;
7767         coal->coal_bufs = 30;
7768         coal->coal_ticks_irq = 1;
7769         coal->coal_bufs_irq = 2;
7770         coal->idle_thresh = 50;
7771         coal->bufs_per_record = 2;
7772         coal->budget = 64;              /* NAPI budget */
7773
7774         coal = &bp->tx_coal;
7775         coal->coal_ticks = 28;
7776         coal->coal_bufs = 30;
7777         coal->coal_ticks_irq = 2;
7778         coal->coal_bufs_irq = 2;
7779         coal->bufs_per_record = 1;
7780
7781         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
7782 }
7783
7784 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
7785 {
7786         int rc;
7787         struct bnxt *bp = netdev_priv(dev);
7788
7789         SET_NETDEV_DEV(dev, &pdev->dev);
7790
7791         /* enable device (incl. PCI PM wakeup), and bus-mastering */
7792         rc = pci_enable_device(pdev);
7793         if (rc) {
7794                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
7795                 goto init_err;
7796         }
7797
7798         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7799                 dev_err(&pdev->dev,
7800                         "Cannot find PCI device base address, aborting\n");
7801                 rc = -ENODEV;
7802                 goto init_err_disable;
7803         }
7804
7805         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7806         if (rc) {
7807                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
7808                 goto init_err_disable;
7809         }
7810
7811         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
7812             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
7813                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
7814                 goto init_err_disable;
7815         }
7816
7817         pci_set_master(pdev);
7818
7819         bp->dev = dev;
7820         bp->pdev = pdev;
7821
7822         bp->bar0 = pci_ioremap_bar(pdev, 0);
7823         if (!bp->bar0) {
7824                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
7825                 rc = -ENOMEM;
7826                 goto init_err_release;
7827         }
7828
7829         bp->bar1 = pci_ioremap_bar(pdev, 2);
7830         if (!bp->bar1) {
7831                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
7832                 rc = -ENOMEM;
7833                 goto init_err_release;
7834         }
7835
7836         bp->bar2 = pci_ioremap_bar(pdev, 4);
7837         if (!bp->bar2) {
7838                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
7839                 rc = -ENOMEM;
7840                 goto init_err_release;
7841         }
7842
7843         pci_enable_pcie_error_reporting(pdev);
7844
7845         INIT_WORK(&bp->sp_task, bnxt_sp_task);
7846
7847         spin_lock_init(&bp->ntp_fltr_lock);
7848
7849         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
7850         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
7851
7852         bnxt_init_dflt_coal(bp);
7853
7854         timer_setup(&bp->timer, bnxt_timer, 0);
7855         bp->current_interval = BNXT_TIMER_INTERVAL;
7856
7857         clear_bit(BNXT_STATE_OPEN, &bp->state);
7858         return 0;
7859
7860 init_err_release:
7861         bnxt_unmap_bars(bp, pdev);
7862         pci_release_regions(pdev);
7863
7864 init_err_disable:
7865         pci_disable_device(pdev);
7866
7867 init_err:
7868         return rc;
7869 }
7870
7871 /* rtnl_lock held */
7872 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
7873 {
7874         struct sockaddr *addr = p;
7875         struct bnxt *bp = netdev_priv(dev);
7876         int rc = 0;
7877
7878         if (!is_valid_ether_addr(addr->sa_data))
7879                 return -EADDRNOTAVAIL;
7880
7881         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
7882                 return 0;
7883
7884         rc = bnxt_approve_mac(bp, addr->sa_data);
7885         if (rc)
7886                 return rc;
7887
7888         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7889         if (netif_running(dev)) {
7890                 bnxt_close_nic(bp, false, false);
7891                 rc = bnxt_open_nic(bp, false, false);
7892         }
7893
7894         return rc;
7895 }
7896
7897 /* rtnl_lock held */
7898 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
7899 {
7900         struct bnxt *bp = netdev_priv(dev);
7901
7902         if (netif_running(dev))
7903                 bnxt_close_nic(bp, false, false);
7904
7905         dev->mtu = new_mtu;
7906         bnxt_set_ring_params(bp);
7907
7908         if (netif_running(dev))
7909                 return bnxt_open_nic(bp, false, false);
7910
7911         return 0;
7912 }
7913
7914 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
7915 {
7916         struct bnxt *bp = netdev_priv(dev);
7917         bool sh = false;
7918         int rc;
7919
7920         if (tc > bp->max_tc) {
7921                 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
7922                            tc, bp->max_tc);
7923                 return -EINVAL;
7924         }
7925
7926         if (netdev_get_num_tc(dev) == tc)
7927                 return 0;
7928
7929         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
7930                 sh = true;
7931
7932         rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
7933                               sh, tc, bp->tx_nr_rings_xdp);
7934         if (rc)
7935                 return rc;
7936
7937         /* Needs to close the device and do hw resource re-allocations */
7938         if (netif_running(bp->dev))
7939                 bnxt_close_nic(bp, true, false);
7940
7941         if (tc) {
7942                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
7943                 netdev_set_num_tc(dev, tc);
7944         } else {
7945                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
7946                 netdev_reset_tc(dev);
7947         }
7948         bp->tx_nr_rings += bp->tx_nr_rings_xdp;
7949         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
7950                                bp->tx_nr_rings + bp->rx_nr_rings;
7951         bp->num_stat_ctxs = bp->cp_nr_rings;
7952
7953         if (netif_running(bp->dev))
7954                 return bnxt_open_nic(bp, true, false);
7955
7956         return 0;
7957 }
7958
7959 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7960                                   void *cb_priv)
7961 {
7962         struct bnxt *bp = cb_priv;
7963
7964         if (!bnxt_tc_flower_enabled(bp) ||
7965             !tc_cls_can_offload_and_chain0(bp->dev, type_data))
7966                 return -EOPNOTSUPP;
7967
7968         switch (type) {
7969         case TC_SETUP_CLSFLOWER:
7970                 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
7971         default:
7972                 return -EOPNOTSUPP;
7973         }
7974 }
7975
7976 static int bnxt_setup_tc_block(struct net_device *dev,
7977                                struct tc_block_offload *f)
7978 {
7979         struct bnxt *bp = netdev_priv(dev);
7980
7981         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7982                 return -EOPNOTSUPP;
7983
7984         switch (f->command) {
7985         case TC_BLOCK_BIND:
7986                 return tcf_block_cb_register(f->block, bnxt_setup_tc_block_cb,
7987                                              bp, bp);
7988         case TC_BLOCK_UNBIND:
7989                 tcf_block_cb_unregister(f->block, bnxt_setup_tc_block_cb, bp);
7990                 return 0;
7991         default:
7992                 return -EOPNOTSUPP;
7993         }
7994 }
7995
7996 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
7997                          void *type_data)
7998 {
7999         switch (type) {
8000         case TC_SETUP_BLOCK:
8001                 return bnxt_setup_tc_block(dev, type_data);
8002         case TC_SETUP_QDISC_MQPRIO: {
8003                 struct tc_mqprio_qopt *mqprio = type_data;
8004
8005                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
8006
8007                 return bnxt_setup_mq_tc(dev, mqprio->num_tc);
8008         }
8009         default:
8010                 return -EOPNOTSUPP;
8011         }
8012 }
8013
8014 #ifdef CONFIG_RFS_ACCEL
8015 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
8016                             struct bnxt_ntuple_filter *f2)
8017 {
8018         struct flow_keys *keys1 = &f1->fkeys;
8019         struct flow_keys *keys2 = &f2->fkeys;
8020
8021         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
8022             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
8023             keys1->ports.ports == keys2->ports.ports &&
8024             keys1->basic.ip_proto == keys2->basic.ip_proto &&
8025             keys1->basic.n_proto == keys2->basic.n_proto &&
8026             keys1->control.flags == keys2->control.flags &&
8027             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
8028             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
8029                 return true;
8030
8031         return false;
8032 }
8033
8034 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
8035                               u16 rxq_index, u32 flow_id)
8036 {
8037         struct bnxt *bp = netdev_priv(dev);
8038         struct bnxt_ntuple_filter *fltr, *new_fltr;
8039         struct flow_keys *fkeys;
8040         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
8041         int rc = 0, idx, bit_id, l2_idx = 0;
8042         struct hlist_head *head;
8043
8044         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
8045                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8046                 int off = 0, j;
8047
8048                 netif_addr_lock_bh(dev);
8049                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
8050                         if (ether_addr_equal(eth->h_dest,
8051                                              vnic->uc_list + off)) {
8052                                 l2_idx = j + 1;
8053                                 break;
8054                         }
8055                 }
8056                 netif_addr_unlock_bh(dev);
8057                 if (!l2_idx)
8058                         return -EINVAL;
8059         }
8060         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
8061         if (!new_fltr)
8062                 return -ENOMEM;
8063
8064         fkeys = &new_fltr->fkeys;
8065         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
8066                 rc = -EPROTONOSUPPORT;
8067                 goto err_free;
8068         }
8069
8070         if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
8071              fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
8072             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
8073              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
8074                 rc = -EPROTONOSUPPORT;
8075                 goto err_free;
8076         }
8077         if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
8078             bp->hwrm_spec_code < 0x10601) {
8079                 rc = -EPROTONOSUPPORT;
8080                 goto err_free;
8081         }
8082         if ((fkeys->control.flags & FLOW_DIS_ENCAPSULATION) &&
8083             bp->hwrm_spec_code < 0x10601) {
8084                 rc = -EPROTONOSUPPORT;
8085                 goto err_free;
8086         }
8087
8088         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
8089         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
8090
8091         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
8092         head = &bp->ntp_fltr_hash_tbl[idx];
8093         rcu_read_lock();
8094         hlist_for_each_entry_rcu(fltr, head, hash) {
8095                 if (bnxt_fltr_match(fltr, new_fltr)) {
8096                         rcu_read_unlock();
8097                         rc = 0;
8098                         goto err_free;
8099                 }
8100         }
8101         rcu_read_unlock();
8102
8103         spin_lock_bh(&bp->ntp_fltr_lock);
8104         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
8105                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
8106         if (bit_id < 0) {
8107                 spin_unlock_bh(&bp->ntp_fltr_lock);
8108                 rc = -ENOMEM;
8109                 goto err_free;
8110         }
8111
8112         new_fltr->sw_id = (u16)bit_id;
8113         new_fltr->flow_id = flow_id;
8114         new_fltr->l2_fltr_idx = l2_idx;
8115         new_fltr->rxq = rxq_index;
8116         hlist_add_head_rcu(&new_fltr->hash, head);
8117         bp->ntp_fltr_count++;
8118         spin_unlock_bh(&bp->ntp_fltr_lock);
8119
8120         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
8121         bnxt_queue_sp_work(bp);
8122
8123         return new_fltr->sw_id;
8124
8125 err_free:
8126         kfree(new_fltr);
8127         return rc;
8128 }
8129
8130 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8131 {
8132         int i;
8133
8134         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
8135                 struct hlist_head *head;
8136                 struct hlist_node *tmp;
8137                 struct bnxt_ntuple_filter *fltr;
8138                 int rc;
8139
8140                 head = &bp->ntp_fltr_hash_tbl[i];
8141                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
8142                         bool del = false;
8143
8144                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
8145                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
8146                                                         fltr->flow_id,
8147                                                         fltr->sw_id)) {
8148                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
8149                                                                          fltr);
8150                                         del = true;
8151                                 }
8152                         } else {
8153                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
8154                                                                        fltr);
8155                                 if (rc)
8156                                         del = true;
8157                                 else
8158                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
8159                         }
8160
8161                         if (del) {
8162                                 spin_lock_bh(&bp->ntp_fltr_lock);
8163                                 hlist_del_rcu(&fltr->hash);
8164                                 bp->ntp_fltr_count--;
8165                                 spin_unlock_bh(&bp->ntp_fltr_lock);
8166                                 synchronize_rcu();
8167                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
8168                                 kfree(fltr);
8169                         }
8170                 }
8171         }
8172         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
8173                 netdev_info(bp->dev, "Receive PF driver unload event!");
8174 }
8175
8176 #else
8177
8178 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
8179 {
8180 }
8181
8182 #endif /* CONFIG_RFS_ACCEL */
8183
8184 static void bnxt_udp_tunnel_add(struct net_device *dev,
8185                                 struct udp_tunnel_info *ti)
8186 {
8187         struct bnxt *bp = netdev_priv(dev);
8188
8189         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8190                 return;
8191
8192         if (!netif_running(dev))
8193                 return;
8194
8195         switch (ti->type) {
8196         case UDP_TUNNEL_TYPE_VXLAN:
8197                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
8198                         return;
8199
8200                 bp->vxlan_port_cnt++;
8201                 if (bp->vxlan_port_cnt == 1) {
8202                         bp->vxlan_port = ti->port;
8203                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
8204                         bnxt_queue_sp_work(bp);
8205                 }
8206                 break;
8207         case UDP_TUNNEL_TYPE_GENEVE:
8208                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
8209                         return;
8210
8211                 bp->nge_port_cnt++;
8212                 if (bp->nge_port_cnt == 1) {
8213                         bp->nge_port = ti->port;
8214                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
8215                 }
8216                 break;
8217         default:
8218                 return;
8219         }
8220
8221         bnxt_queue_sp_work(bp);
8222 }
8223
8224 static void bnxt_udp_tunnel_del(struct net_device *dev,
8225                                 struct udp_tunnel_info *ti)
8226 {
8227         struct bnxt *bp = netdev_priv(dev);
8228
8229         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
8230                 return;
8231
8232         if (!netif_running(dev))
8233                 return;
8234
8235         switch (ti->type) {
8236         case UDP_TUNNEL_TYPE_VXLAN:
8237                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
8238                         return;
8239                 bp->vxlan_port_cnt--;
8240
8241                 if (bp->vxlan_port_cnt != 0)
8242                         return;
8243
8244                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
8245                 break;
8246         case UDP_TUNNEL_TYPE_GENEVE:
8247                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
8248                         return;
8249                 bp->nge_port_cnt--;
8250
8251                 if (bp->nge_port_cnt != 0)
8252                         return;
8253
8254                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
8255                 break;
8256         default:
8257                 return;
8258         }
8259
8260         bnxt_queue_sp_work(bp);
8261 }
8262
8263 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8264                                struct net_device *dev, u32 filter_mask,
8265                                int nlflags)
8266 {
8267         struct bnxt *bp = netdev_priv(dev);
8268
8269         return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
8270                                        nlflags, filter_mask, NULL);
8271 }
8272
8273 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8274                                u16 flags)
8275 {
8276         struct bnxt *bp = netdev_priv(dev);
8277         struct nlattr *attr, *br_spec;
8278         int rem, rc = 0;
8279
8280         if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
8281                 return -EOPNOTSUPP;
8282
8283         br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8284         if (!br_spec)
8285                 return -EINVAL;
8286
8287         nla_for_each_nested(attr, br_spec, rem) {
8288                 u16 mode;
8289
8290                 if (nla_type(attr) != IFLA_BRIDGE_MODE)
8291                         continue;
8292
8293                 if (nla_len(attr) < sizeof(mode))
8294                         return -EINVAL;
8295
8296                 mode = nla_get_u16(attr);
8297                 if (mode == bp->br_mode)
8298                         break;
8299
8300                 rc = bnxt_hwrm_set_br_mode(bp, mode);
8301                 if (!rc)
8302                         bp->br_mode = mode;
8303                 break;
8304         }
8305         return rc;
8306 }
8307
8308 static int bnxt_get_phys_port_name(struct net_device *dev, char *buf,
8309                                    size_t len)
8310 {
8311         struct bnxt *bp = netdev_priv(dev);
8312         int rc;
8313
8314         /* The PF and it's VF-reps only support the switchdev framework */
8315         if (!BNXT_PF(bp))
8316                 return -EOPNOTSUPP;
8317
8318         rc = snprintf(buf, len, "p%d", bp->pf.port_id);
8319
8320         if (rc >= len)
8321                 return -EOPNOTSUPP;
8322         return 0;
8323 }
8324
8325 int bnxt_port_attr_get(struct bnxt *bp, struct switchdev_attr *attr)
8326 {
8327         if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
8328                 return -EOPNOTSUPP;
8329
8330         /* The PF and it's VF-reps only support the switchdev framework */
8331         if (!BNXT_PF(bp))
8332                 return -EOPNOTSUPP;
8333
8334         switch (attr->id) {
8335         case SWITCHDEV_ATTR_ID_PORT_PARENT_ID:
8336                 attr->u.ppid.id_len = sizeof(bp->switch_id);
8337                 memcpy(attr->u.ppid.id, bp->switch_id, attr->u.ppid.id_len);
8338                 break;
8339         default:
8340                 return -EOPNOTSUPP;
8341         }
8342         return 0;
8343 }
8344
8345 static int bnxt_swdev_port_attr_get(struct net_device *dev,
8346                                     struct switchdev_attr *attr)
8347 {
8348         return bnxt_port_attr_get(netdev_priv(dev), attr);
8349 }
8350
8351 static const struct switchdev_ops bnxt_switchdev_ops = {
8352         .switchdev_port_attr_get        = bnxt_swdev_port_attr_get
8353 };
8354
8355 static const struct net_device_ops bnxt_netdev_ops = {
8356         .ndo_open               = bnxt_open,
8357         .ndo_start_xmit         = bnxt_start_xmit,
8358         .ndo_stop               = bnxt_close,
8359         .ndo_get_stats64        = bnxt_get_stats64,
8360         .ndo_set_rx_mode        = bnxt_set_rx_mode,
8361         .ndo_do_ioctl           = bnxt_ioctl,
8362         .ndo_validate_addr      = eth_validate_addr,
8363         .ndo_set_mac_address    = bnxt_change_mac_addr,
8364         .ndo_change_mtu         = bnxt_change_mtu,
8365         .ndo_fix_features       = bnxt_fix_features,
8366         .ndo_set_features       = bnxt_set_features,
8367         .ndo_tx_timeout         = bnxt_tx_timeout,
8368 #ifdef CONFIG_BNXT_SRIOV
8369         .ndo_get_vf_config      = bnxt_get_vf_config,
8370         .ndo_set_vf_mac         = bnxt_set_vf_mac,
8371         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
8372         .ndo_set_vf_rate        = bnxt_set_vf_bw,
8373         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
8374         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
8375         .ndo_set_vf_trust       = bnxt_set_vf_trust,
8376 #endif
8377 #ifdef CONFIG_NET_POLL_CONTROLLER
8378         .ndo_poll_controller    = bnxt_poll_controller,
8379 #endif
8380         .ndo_setup_tc           = bnxt_setup_tc,
8381 #ifdef CONFIG_RFS_ACCEL
8382         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
8383 #endif
8384         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
8385         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
8386         .ndo_bpf                = bnxt_xdp,
8387         .ndo_bridge_getlink     = bnxt_bridge_getlink,
8388         .ndo_bridge_setlink     = bnxt_bridge_setlink,
8389         .ndo_get_phys_port_name = bnxt_get_phys_port_name
8390 };
8391
8392 static void bnxt_remove_one(struct pci_dev *pdev)
8393 {
8394         struct net_device *dev = pci_get_drvdata(pdev);
8395         struct bnxt *bp = netdev_priv(dev);
8396
8397         if (BNXT_PF(bp)) {
8398                 bnxt_sriov_disable(bp);
8399                 bnxt_dl_unregister(bp);
8400         }
8401
8402         pci_disable_pcie_error_reporting(pdev);
8403         unregister_netdev(dev);
8404         bnxt_shutdown_tc(bp);
8405         bnxt_cancel_sp_work(bp);
8406         bp->sp_event = 0;
8407
8408         bnxt_clear_int_mode(bp);
8409         bnxt_hwrm_func_drv_unrgtr(bp);
8410         bnxt_free_hwrm_resources(bp);
8411         bnxt_free_hwrm_short_cmd_req(bp);
8412         bnxt_ethtool_free(bp);
8413         bnxt_dcb_free(bp);
8414         kfree(bp->edev);
8415         bp->edev = NULL;
8416         bnxt_cleanup_pci(bp);
8417         free_netdev(dev);
8418 }
8419
8420 static int bnxt_probe_phy(struct bnxt *bp)
8421 {
8422         int rc = 0;
8423         struct bnxt_link_info *link_info = &bp->link_info;
8424
8425         rc = bnxt_hwrm_phy_qcaps(bp);
8426         if (rc) {
8427                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
8428                            rc);
8429                 return rc;
8430         }
8431         mutex_init(&bp->link_lock);
8432
8433         rc = bnxt_update_link(bp, false);
8434         if (rc) {
8435                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
8436                            rc);
8437                 return rc;
8438         }
8439
8440         /* Older firmware does not have supported_auto_speeds, so assume
8441          * that all supported speeds can be autonegotiated.
8442          */
8443         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
8444                 link_info->support_auto_speeds = link_info->support_speeds;
8445
8446         /*initialize the ethool setting copy with NVM settings */
8447         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
8448                 link_info->autoneg = BNXT_AUTONEG_SPEED;
8449                 if (bp->hwrm_spec_code >= 0x10201) {
8450                         if (link_info->auto_pause_setting &
8451                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
8452                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8453                 } else {
8454                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
8455                 }
8456                 link_info->advertising = link_info->auto_link_speeds;
8457         } else {
8458                 link_info->req_link_speed = link_info->force_link_speed;
8459                 link_info->req_duplex = link_info->duplex_setting;
8460         }
8461         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
8462                 link_info->req_flow_ctrl =
8463                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
8464         else
8465                 link_info->req_flow_ctrl = link_info->force_pause_setting;
8466         return rc;
8467 }
8468
8469 static int bnxt_get_max_irq(struct pci_dev *pdev)
8470 {
8471         u16 ctrl;
8472
8473         if (!pdev->msix_cap)
8474                 return 1;
8475
8476         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
8477         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
8478 }
8479
8480 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8481                                 int *max_cp)
8482 {
8483         struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8484         int max_ring_grps = 0;
8485
8486         *max_tx = hw_resc->max_tx_rings;
8487         *max_rx = hw_resc->max_rx_rings;
8488         *max_cp = min_t(int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8489         *max_cp = min_t(int, *max_cp, hw_resc->max_stat_ctxs);
8490         max_ring_grps = hw_resc->max_hw_ring_grps;
8491         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
8492                 *max_cp -= 1;
8493                 *max_rx -= 2;
8494         }
8495         if (bp->flags & BNXT_FLAG_AGG_RINGS)
8496                 *max_rx >>= 1;
8497         *max_rx = min_t(int, *max_rx, max_ring_grps);
8498 }
8499
8500 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
8501 {
8502         int rx, tx, cp;
8503
8504         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
8505         if (!rx || !tx || !cp)
8506                 return -ENOMEM;
8507
8508         *max_rx = rx;
8509         *max_tx = tx;
8510         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
8511 }
8512
8513 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
8514                                bool shared)
8515 {
8516         int rc;
8517
8518         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8519         if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
8520                 /* Not enough rings, try disabling agg rings. */
8521                 bp->flags &= ~BNXT_FLAG_AGG_RINGS;
8522                 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
8523                 if (rc)
8524                         return rc;
8525                 bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
8526                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8527                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
8528                 bnxt_set_ring_params(bp);
8529         }
8530
8531         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
8532                 int max_cp, max_stat, max_irq;
8533
8534                 /* Reserve minimum resources for RoCE */
8535                 max_cp = bnxt_get_max_func_cp_rings(bp);
8536                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
8537                 max_irq = bnxt_get_max_func_irqs(bp);
8538                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
8539                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
8540                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
8541                         return 0;
8542
8543                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
8544                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
8545                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
8546                 max_cp = min_t(int, max_cp, max_irq);
8547                 max_cp = min_t(int, max_cp, max_stat);
8548                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
8549                 if (rc)
8550                         rc = 0;
8551         }
8552         return rc;
8553 }
8554
8555 /* In initial default shared ring setting, each shared ring must have a
8556  * RX/TX ring pair.
8557  */
8558 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
8559 {
8560         bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
8561         bp->rx_nr_rings = bp->cp_nr_rings;
8562         bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
8563         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8564 }
8565
8566 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
8567 {
8568         int dflt_rings, max_rx_rings, max_tx_rings, rc;
8569
8570         if (!bnxt_can_reserve_rings(bp))
8571                 return 0;
8572
8573         if (sh)
8574                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
8575         dflt_rings = netif_get_num_default_rss_queues();
8576         /* Reduce default rings on multi-port cards so that total default
8577          * rings do not exceed CPU count.
8578          */
8579         if (bp->port_count > 1) {
8580                 int max_rings =
8581                         max_t(int, num_online_cpus() / bp->port_count, 1);
8582
8583                 dflt_rings = min_t(int, dflt_rings, max_rings);
8584         }
8585         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
8586         if (rc)
8587                 return rc;
8588         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
8589         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
8590         if (sh)
8591                 bnxt_trim_dflt_sh_rings(bp);
8592         else
8593                 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
8594         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
8595
8596         rc = __bnxt_reserve_rings(bp);
8597         if (rc)
8598                 netdev_warn(bp->dev, "Unable to reserve tx rings\n");
8599         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8600         if (sh)
8601                 bnxt_trim_dflt_sh_rings(bp);
8602
8603         /* Rings may have been trimmed, re-reserve the trimmed rings. */
8604         if (bnxt_need_reserve_rings(bp)) {
8605                 rc = __bnxt_reserve_rings(bp);
8606                 if (rc)
8607                         netdev_warn(bp->dev, "2nd rings reservation failed.\n");
8608                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8609         }
8610         bp->num_stat_ctxs = bp->cp_nr_rings;
8611         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8612                 bp->rx_nr_rings++;
8613                 bp->cp_nr_rings++;
8614         }
8615         return rc;
8616 }
8617
8618 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
8619 {
8620         int rc;
8621
8622         if (bp->tx_nr_rings)
8623                 return 0;
8624
8625         rc = bnxt_set_dflt_rings(bp, true);
8626         if (rc) {
8627                 netdev_err(bp->dev, "Not enough rings available.\n");
8628                 return rc;
8629         }
8630         rc = bnxt_init_int_mode(bp);
8631         if (rc)
8632                 return rc;
8633         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8634         if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
8635                 bp->flags |= BNXT_FLAG_RFS;
8636                 bp->dev->features |= NETIF_F_NTUPLE;
8637         }
8638         return 0;
8639 }
8640
8641 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
8642 {
8643         int rc;
8644
8645         ASSERT_RTNL();
8646         bnxt_hwrm_func_qcaps(bp);
8647
8648         if (netif_running(bp->dev))
8649                 __bnxt_close_nic(bp, true, false);
8650
8651         bnxt_ulp_irq_stop(bp);
8652         bnxt_clear_int_mode(bp);
8653         rc = bnxt_init_int_mode(bp);
8654         bnxt_ulp_irq_restart(bp, rc);
8655
8656         if (netif_running(bp->dev)) {
8657                 if (rc)
8658                         dev_close(bp->dev);
8659                 else
8660                         rc = bnxt_open_nic(bp, true, false);
8661         }
8662
8663         return rc;
8664 }
8665
8666 static int bnxt_init_mac_addr(struct bnxt *bp)
8667 {
8668         int rc = 0;
8669
8670         if (BNXT_PF(bp)) {
8671                 memcpy(bp->dev->dev_addr, bp->pf.mac_addr, ETH_ALEN);
8672         } else {
8673 #ifdef CONFIG_BNXT_SRIOV
8674                 struct bnxt_vf_info *vf = &bp->vf;
8675
8676                 if (is_valid_ether_addr(vf->mac_addr)) {
8677                         /* overwrite netdev dev_addr with admin VF MAC */
8678                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
8679                 } else {
8680                         eth_hw_addr_random(bp->dev);
8681                 }
8682                 rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
8683 #endif
8684         }
8685         return rc;
8686 }
8687
8688 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8689 {
8690         static int version_printed;
8691         struct net_device *dev;
8692         struct bnxt *bp;
8693         int rc, max_irqs;
8694
8695         if (pci_is_bridge(pdev))
8696                 return -ENODEV;
8697
8698         if (version_printed++ == 0)
8699                 pr_info("%s", version);
8700
8701         max_irqs = bnxt_get_max_irq(pdev);
8702         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
8703         if (!dev)
8704                 return -ENOMEM;
8705
8706         bp = netdev_priv(dev);
8707
8708         if (bnxt_vf_pciid(ent->driver_data))
8709                 bp->flags |= BNXT_FLAG_VF;
8710
8711         if (pdev->msix_cap)
8712                 bp->flags |= BNXT_FLAG_MSIX_CAP;
8713
8714         rc = bnxt_init_board(pdev, dev);
8715         if (rc < 0)
8716                 goto init_err_free;
8717
8718         dev->netdev_ops = &bnxt_netdev_ops;
8719         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
8720         dev->ethtool_ops = &bnxt_ethtool_ops;
8721         SWITCHDEV_SET_OPS(dev, &bnxt_switchdev_ops);
8722         pci_set_drvdata(pdev, dev);
8723
8724         rc = bnxt_alloc_hwrm_resources(bp);
8725         if (rc)
8726                 goto init_err_pci_clean;
8727
8728         mutex_init(&bp->hwrm_cmd_lock);
8729         rc = bnxt_hwrm_ver_get(bp);
8730         if (rc)
8731                 goto init_err_pci_clean;
8732
8733         if (bp->flags & BNXT_FLAG_SHORT_CMD) {
8734                 rc = bnxt_alloc_hwrm_short_cmd_req(bp);
8735                 if (rc)
8736                         goto init_err_pci_clean;
8737         }
8738
8739         rc = bnxt_hwrm_func_reset(bp);
8740         if (rc)
8741                 goto init_err_pci_clean;
8742
8743         bnxt_hwrm_fw_set_time(bp);
8744
8745         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8746                            NETIF_F_TSO | NETIF_F_TSO6 |
8747                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8748                            NETIF_F_GSO_IPXIP4 |
8749                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8750                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
8751                            NETIF_F_RXCSUM | NETIF_F_GRO;
8752
8753         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8754                 dev->hw_features |= NETIF_F_LRO;
8755
8756         dev->hw_enc_features =
8757                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
8758                         NETIF_F_TSO | NETIF_F_TSO6 |
8759                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
8760                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
8761                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
8762         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
8763                                     NETIF_F_GSO_GRE_CSUM;
8764         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
8765         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
8766                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
8767         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
8768                 dev->hw_features |= NETIF_F_GRO_HW;
8769         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
8770         if (dev->features & NETIF_F_GRO_HW)
8771                 dev->features &= ~NETIF_F_LRO;
8772         dev->priv_flags |= IFF_UNICAST_FLT;
8773
8774 #ifdef CONFIG_BNXT_SRIOV
8775         init_waitqueue_head(&bp->sriov_cfg_wait);
8776         mutex_init(&bp->sriov_lock);
8777 #endif
8778         bp->gro_func = bnxt_gro_func_5730x;
8779         if (BNXT_CHIP_P4_PLUS(bp))
8780                 bp->gro_func = bnxt_gro_func_5731x;
8781         else
8782                 bp->flags |= BNXT_FLAG_DOUBLE_DB;
8783
8784         rc = bnxt_hwrm_func_drv_rgtr(bp);
8785         if (rc)
8786                 goto init_err_pci_clean;
8787
8788         rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
8789         if (rc)
8790                 goto init_err_pci_clean;
8791
8792         bp->ulp_probe = bnxt_ulp_probe;
8793
8794         /* Get the MAX capabilities for this function */
8795         rc = bnxt_hwrm_func_qcaps(bp);
8796         if (rc) {
8797                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
8798                            rc);
8799                 rc = -1;
8800                 goto init_err_pci_clean;
8801         }
8802         rc = bnxt_init_mac_addr(bp);
8803         if (rc) {
8804                 dev_err(&pdev->dev, "Unable to initialize mac address.\n");
8805                 rc = -EADDRNOTAVAIL;
8806                 goto init_err_pci_clean;
8807         }
8808         rc = bnxt_hwrm_queue_qportcfg(bp);
8809         if (rc) {
8810                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
8811                            rc);
8812                 rc = -1;
8813                 goto init_err_pci_clean;
8814         }
8815
8816         bnxt_hwrm_func_qcfg(bp);
8817         bnxt_hwrm_port_led_qcaps(bp);
8818         bnxt_ethtool_init(bp);
8819         bnxt_dcb_init(bp);
8820
8821         /* MTU range: 60 - FW defined max */
8822         dev->min_mtu = ETH_ZLEN;
8823         dev->max_mtu = bp->max_mtu;
8824
8825         rc = bnxt_probe_phy(bp);
8826         if (rc)
8827                 goto init_err_pci_clean;
8828
8829         bnxt_set_rx_skb_mode(bp, false);
8830         bnxt_set_tpa_flags(bp);
8831         bnxt_set_ring_params(bp);
8832         bnxt_set_max_func_irqs(bp, max_irqs);
8833         rc = bnxt_set_dflt_rings(bp, true);
8834         if (rc) {
8835                 netdev_err(bp->dev, "Not enough rings available.\n");
8836                 rc = -ENOMEM;
8837                 goto init_err_pci_clean;
8838         }
8839
8840         /* Default RSS hash cfg. */
8841         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
8842                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
8843                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
8844                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
8845         if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
8846                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
8847                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
8848                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
8849         }
8850
8851         bnxt_hwrm_vnic_qcaps(bp);
8852         if (bnxt_rfs_supported(bp)) {
8853                 dev->hw_features |= NETIF_F_NTUPLE;
8854                 if (bnxt_rfs_capable(bp)) {
8855                         bp->flags |= BNXT_FLAG_RFS;
8856                         dev->features |= NETIF_F_NTUPLE;
8857                 }
8858         }
8859
8860         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
8861                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
8862
8863         rc = bnxt_init_int_mode(bp);
8864         if (rc)
8865                 goto init_err_pci_clean;
8866
8867         /* No TC has been set yet and rings may have been trimmed due to
8868          * limited MSIX, so we re-initialize the TX rings per TC.
8869          */
8870         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
8871
8872         bnxt_get_wol_settings(bp);
8873         if (bp->flags & BNXT_FLAG_WOL_CAP)
8874                 device_set_wakeup_enable(&pdev->dev, bp->wol);
8875         else
8876                 device_set_wakeup_capable(&pdev->dev, false);
8877
8878         bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
8879
8880         if (BNXT_PF(bp)) {
8881                 if (!bnxt_pf_wq) {
8882                         bnxt_pf_wq =
8883                                 create_singlethread_workqueue("bnxt_pf_wq");
8884                         if (!bnxt_pf_wq) {
8885                                 dev_err(&pdev->dev, "Unable to create workqueue.\n");
8886                                 goto init_err_pci_clean;
8887                         }
8888                 }
8889                 bnxt_init_tc(bp);
8890         }
8891
8892         rc = register_netdev(dev);
8893         if (rc)
8894                 goto init_err_cleanup_tc;
8895
8896         if (BNXT_PF(bp))
8897                 bnxt_dl_register(bp);
8898
8899         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
8900                     board_info[ent->driver_data].name,
8901                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
8902         pcie_print_link_status(pdev);
8903
8904         return 0;
8905
8906 init_err_cleanup_tc:
8907         bnxt_shutdown_tc(bp);
8908         bnxt_clear_int_mode(bp);
8909
8910 init_err_pci_clean:
8911         bnxt_cleanup_pci(bp);
8912
8913 init_err_free:
8914         free_netdev(dev);
8915         return rc;
8916 }
8917
8918 static void bnxt_shutdown(struct pci_dev *pdev)
8919 {
8920         struct net_device *dev = pci_get_drvdata(pdev);
8921         struct bnxt *bp;
8922
8923         if (!dev)
8924                 return;
8925
8926         rtnl_lock();
8927         bp = netdev_priv(dev);
8928         if (!bp)
8929                 goto shutdown_exit;
8930
8931         if (netif_running(dev))
8932                 dev_close(dev);
8933
8934         bnxt_ulp_shutdown(bp);
8935
8936         if (system_state == SYSTEM_POWER_OFF) {
8937                 bnxt_clear_int_mode(bp);
8938                 pci_wake_from_d3(pdev, bp->wol);
8939                 pci_set_power_state(pdev, PCI_D3hot);
8940         }
8941
8942 shutdown_exit:
8943         rtnl_unlock();
8944 }
8945
8946 #ifdef CONFIG_PM_SLEEP
8947 static int bnxt_suspend(struct device *device)
8948 {
8949         struct pci_dev *pdev = to_pci_dev(device);
8950         struct net_device *dev = pci_get_drvdata(pdev);
8951         struct bnxt *bp = netdev_priv(dev);
8952         int rc = 0;
8953
8954         rtnl_lock();
8955         if (netif_running(dev)) {
8956                 netif_device_detach(dev);
8957                 rc = bnxt_close(dev);
8958         }
8959         bnxt_hwrm_func_drv_unrgtr(bp);
8960         rtnl_unlock();
8961         return rc;
8962 }
8963
8964 static int bnxt_resume(struct device *device)
8965 {
8966         struct pci_dev *pdev = to_pci_dev(device);
8967         struct net_device *dev = pci_get_drvdata(pdev);
8968         struct bnxt *bp = netdev_priv(dev);
8969         int rc = 0;
8970
8971         rtnl_lock();
8972         if (bnxt_hwrm_ver_get(bp) || bnxt_hwrm_func_drv_rgtr(bp)) {
8973                 rc = -ENODEV;
8974                 goto resume_exit;
8975         }
8976         rc = bnxt_hwrm_func_reset(bp);
8977         if (rc) {
8978                 rc = -EBUSY;
8979                 goto resume_exit;
8980         }
8981         bnxt_get_wol_settings(bp);
8982         if (netif_running(dev)) {
8983                 rc = bnxt_open(dev);
8984                 if (!rc)
8985                         netif_device_attach(dev);
8986         }
8987
8988 resume_exit:
8989         rtnl_unlock();
8990         return rc;
8991 }
8992
8993 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
8994 #define BNXT_PM_OPS (&bnxt_pm_ops)
8995
8996 #else
8997
8998 #define BNXT_PM_OPS NULL
8999
9000 #endif /* CONFIG_PM_SLEEP */
9001
9002 /**
9003  * bnxt_io_error_detected - called when PCI error is detected
9004  * @pdev: Pointer to PCI device
9005  * @state: The current pci connection state
9006  *
9007  * This function is called after a PCI bus error affecting
9008  * this device has been detected.
9009  */
9010 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
9011                                                pci_channel_state_t state)
9012 {
9013         struct net_device *netdev = pci_get_drvdata(pdev);
9014         struct bnxt *bp = netdev_priv(netdev);
9015
9016         netdev_info(netdev, "PCI I/O error detected\n");
9017
9018         rtnl_lock();
9019         netif_device_detach(netdev);
9020
9021         bnxt_ulp_stop(bp);
9022
9023         if (state == pci_channel_io_perm_failure) {
9024                 rtnl_unlock();
9025                 return PCI_ERS_RESULT_DISCONNECT;
9026         }
9027
9028         if (netif_running(netdev))
9029                 bnxt_close(netdev);
9030
9031         pci_disable_device(pdev);
9032         rtnl_unlock();
9033
9034         /* Request a slot slot reset. */
9035         return PCI_ERS_RESULT_NEED_RESET;
9036 }
9037
9038 /**
9039  * bnxt_io_slot_reset - called after the pci bus has been reset.
9040  * @pdev: Pointer to PCI device
9041  *
9042  * Restart the card from scratch, as if from a cold-boot.
9043  * At this point, the card has exprienced a hard reset,
9044  * followed by fixups by BIOS, and has its config space
9045  * set up identically to what it was at cold boot.
9046  */
9047 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
9048 {
9049         struct net_device *netdev = pci_get_drvdata(pdev);
9050         struct bnxt *bp = netdev_priv(netdev);
9051         int err = 0;
9052         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
9053
9054         netdev_info(bp->dev, "PCI Slot Reset\n");
9055
9056         rtnl_lock();
9057
9058         if (pci_enable_device(pdev)) {
9059                 dev_err(&pdev->dev,
9060                         "Cannot re-enable PCI device after reset.\n");
9061         } else {
9062                 pci_set_master(pdev);
9063
9064                 err = bnxt_hwrm_func_reset(bp);
9065                 if (!err && netif_running(netdev))
9066                         err = bnxt_open(netdev);
9067
9068                 if (!err) {
9069                         result = PCI_ERS_RESULT_RECOVERED;
9070                         bnxt_ulp_start(bp);
9071                 }
9072         }
9073
9074         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
9075                 dev_close(netdev);
9076
9077         rtnl_unlock();
9078
9079         err = pci_cleanup_aer_uncorrect_error_status(pdev);
9080         if (err) {
9081                 dev_err(&pdev->dev,
9082                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
9083                          err); /* non-fatal, continue */
9084         }
9085
9086         return PCI_ERS_RESULT_RECOVERED;
9087 }
9088
9089 /**
9090  * bnxt_io_resume - called when traffic can start flowing again.
9091  * @pdev: Pointer to PCI device
9092  *
9093  * This callback is called when the error recovery driver tells
9094  * us that its OK to resume normal operation.
9095  */
9096 static void bnxt_io_resume(struct pci_dev *pdev)
9097 {
9098         struct net_device *netdev = pci_get_drvdata(pdev);
9099
9100         rtnl_lock();
9101
9102         netif_device_attach(netdev);
9103
9104         rtnl_unlock();
9105 }
9106
9107 static const struct pci_error_handlers bnxt_err_handler = {
9108         .error_detected = bnxt_io_error_detected,
9109         .slot_reset     = bnxt_io_slot_reset,
9110         .resume         = bnxt_io_resume
9111 };
9112
9113 static struct pci_driver bnxt_pci_driver = {
9114         .name           = DRV_MODULE_NAME,
9115         .id_table       = bnxt_pci_tbl,
9116         .probe          = bnxt_init_one,
9117         .remove         = bnxt_remove_one,
9118         .shutdown       = bnxt_shutdown,
9119         .driver.pm      = BNXT_PM_OPS,
9120         .err_handler    = &bnxt_err_handler,
9121 #if defined(CONFIG_BNXT_SRIOV)
9122         .sriov_configure = bnxt_sriov_configure,
9123 #endif
9124 };
9125
9126 static int __init bnxt_init(void)
9127 {
9128         bnxt_debug_init();
9129         return pci_register_driver(&bnxt_pci_driver);
9130 }
9131
9132 static void __exit bnxt_exit(void)
9133 {
9134         pci_unregister_driver(&bnxt_pci_driver);
9135         if (bnxt_pf_wq)
9136                 destroy_workqueue(bnxt_pf_wq);
9137         bnxt_debug_exit();
9138 }
9139
9140 module_init(bnxt_init);
9141 module_exit(bnxt_exit);