Merge branches 'acpi-pm', 'acpi-pci', 'acpi-sysfs' and 'acpi-tables'
[linux-2.6-microblaze.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION                                 \
73         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
74         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
75         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
76         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77
78 #define FW_FILE_VERSION_V15                             \
79         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
80         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
81         __stringify(BCM_5710_FW_REVISION_VERSION_V15) "."       \
82         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
83
84 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
87 #define FW_FILE_NAME_E1_V15     "bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E1H_V15    "bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
89 #define FW_FILE_NAME_E2_V15     "bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
90
91 /* Time in jiffies before concluding the transmitter is hung */
92 #define TX_TIMEOUT              (5*HZ)
93
94 MODULE_AUTHOR("Eliezer Tamir");
95 MODULE_DESCRIPTION("QLogic "
96                    "BCM57710/57711/57711E/"
97                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
98                    "57840/57840_MF Driver");
99 MODULE_LICENSE("GPL");
100 MODULE_FIRMWARE(FW_FILE_NAME_E1);
101 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
102 MODULE_FIRMWARE(FW_FILE_NAME_E2);
103 MODULE_FIRMWARE(FW_FILE_NAME_E1_V15);
104 MODULE_FIRMWARE(FW_FILE_NAME_E1H_V15);
105 MODULE_FIRMWARE(FW_FILE_NAME_E2_V15);
106
107 int bnx2x_num_queues;
108 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
109 MODULE_PARM_DESC(num_queues,
110                  " Set number of queues (default is as a number of CPUs)");
111
112 static int disable_tpa;
113 module_param(disable_tpa, int, 0444);
114 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
115
116 static int int_mode;
117 module_param(int_mode, int, 0444);
118 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
119                                 "(1 INT#x; 2 MSI)");
120
121 static int dropless_fc;
122 module_param(dropless_fc, int, 0444);
123 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
124
125 static int mrrs = -1;
126 module_param(mrrs, int, 0444);
127 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
128
129 static int debug;
130 module_param(debug, int, 0444);
131 MODULE_PARM_DESC(debug, " Default debug msglevel");
132
133 static struct workqueue_struct *bnx2x_wq;
134 struct workqueue_struct *bnx2x_iov_wq;
135
136 struct bnx2x_mac_vals {
137         u32 xmac_addr;
138         u32 xmac_val;
139         u32 emac_addr;
140         u32 emac_val;
141         u32 umac_addr[2];
142         u32 umac_val[2];
143         u32 bmac_addr;
144         u32 bmac_val[2];
145 };
146
147 enum bnx2x_board_type {
148         BCM57710 = 0,
149         BCM57711,
150         BCM57711E,
151         BCM57712,
152         BCM57712_MF,
153         BCM57712_VF,
154         BCM57800,
155         BCM57800_MF,
156         BCM57800_VF,
157         BCM57810,
158         BCM57810_MF,
159         BCM57810_VF,
160         BCM57840_4_10,
161         BCM57840_2_20,
162         BCM57840_MF,
163         BCM57840_VF,
164         BCM57811,
165         BCM57811_MF,
166         BCM57840_O,
167         BCM57840_MFO,
168         BCM57811_VF
169 };
170
171 /* indexed by board_type, above */
172 static struct {
173         char *name;
174 } board_info[] = {
175         [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
176         [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
177         [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
178         [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
179         [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
180         [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
181         [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
182         [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
183         [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
184         [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
185         [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
186         [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
187         [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
188         [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
189         [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
190         [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
191         [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
192         [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
193         [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
194         [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
195         [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
196 };
197
198 #ifndef PCI_DEVICE_ID_NX2_57710
199 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57711
202 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57711E
205 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57712
208 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57712_MF
211 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57712_VF
214 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57800
217 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57800_MF
220 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57800_VF
223 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810
226 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57810_MF
229 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57840_O
232 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57810_VF
235 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
238 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
241 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
244 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57840_MF
247 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57840_VF
250 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
251 #endif
252 #ifndef PCI_DEVICE_ID_NX2_57811
253 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
254 #endif
255 #ifndef PCI_DEVICE_ID_NX2_57811_MF
256 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
257 #endif
258 #ifndef PCI_DEVICE_ID_NX2_57811_VF
259 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
260 #endif
261
262 static const struct pci_device_id bnx2x_pci_tbl[] = {
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
274         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
275         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
276         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
277         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
278         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
279         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
280         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
281         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
282         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
283         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
284         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
285         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
286         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
287         { 0 }
288 };
289
290 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
291
292 const u32 dmae_reg_go_c[] = {
293         DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
294         DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
295         DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
296         DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
297 };
298
299 /* Global resources for unloading a previously loaded device */
300 #define BNX2X_PREV_WAIT_NEEDED 1
301 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
302 static LIST_HEAD(bnx2x_prev_list);
303
304 /* Forward declaration */
305 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
306 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
307 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
308
309 /****************************************************************************
310 * General service functions
311 ****************************************************************************/
312
313 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
314
315 static void __storm_memset_dma_mapping(struct bnx2x *bp,
316                                        u32 addr, dma_addr_t mapping)
317 {
318         REG_WR(bp,  addr, U64_LO(mapping));
319         REG_WR(bp,  addr + 4, U64_HI(mapping));
320 }
321
322 static void storm_memset_spq_addr(struct bnx2x *bp,
323                                   dma_addr_t mapping, u16 abs_fid)
324 {
325         u32 addr = XSEM_REG_FAST_MEMORY +
326                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
327
328         __storm_memset_dma_mapping(bp, addr, mapping);
329 }
330
331 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
332                                   u16 pf_id)
333 {
334         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
335                 pf_id);
336         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
337                 pf_id);
338         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
339                 pf_id);
340         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
341                 pf_id);
342 }
343
344 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
345                                  u8 enable)
346 {
347         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
348                 enable);
349         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
350                 enable);
351         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
352                 enable);
353         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
354                 enable);
355 }
356
357 static void storm_memset_eq_data(struct bnx2x *bp,
358                                  struct event_ring_data *eq_data,
359                                 u16 pfid)
360 {
361         size_t size = sizeof(struct event_ring_data);
362
363         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
364
365         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
366 }
367
368 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
369                                  u16 pfid)
370 {
371         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
372         REG_WR16(bp, addr, eq_prod);
373 }
374
375 /* used only at init
376  * locking is done by mcp
377  */
378 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
379 {
380         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
381         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
382         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
383                                PCICFG_VENDOR_ID_OFFSET);
384 }
385
386 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
387 {
388         u32 val;
389
390         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
391         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
392         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
393                                PCICFG_VENDOR_ID_OFFSET);
394
395         return val;
396 }
397
398 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
399 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
400 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
401 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
402 #define DMAE_DP_DST_NONE        "dst_addr [none]"
403
404 static void bnx2x_dp_dmae(struct bnx2x *bp,
405                           struct dmae_command *dmae, int msglvl)
406 {
407         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
408         int i;
409
410         switch (dmae->opcode & DMAE_COMMAND_DST) {
411         case DMAE_CMD_DST_PCI:
412                 if (src_type == DMAE_CMD_SRC_PCI)
413                         DP(msglvl, "DMAE: opcode 0x%08x\n"
414                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
415                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
416                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
417                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
418                            dmae->comp_addr_hi, dmae->comp_addr_lo,
419                            dmae->comp_val);
420                 else
421                         DP(msglvl, "DMAE: opcode 0x%08x\n"
422                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
423                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
424                            dmae->opcode, dmae->src_addr_lo >> 2,
425                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
426                            dmae->comp_addr_hi, dmae->comp_addr_lo,
427                            dmae->comp_val);
428                 break;
429         case DMAE_CMD_DST_GRC:
430                 if (src_type == DMAE_CMD_SRC_PCI)
431                         DP(msglvl, "DMAE: opcode 0x%08x\n"
432                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
433                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
434                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
435                            dmae->len, dmae->dst_addr_lo >> 2,
436                            dmae->comp_addr_hi, dmae->comp_addr_lo,
437                            dmae->comp_val);
438                 else
439                         DP(msglvl, "DMAE: opcode 0x%08x\n"
440                            "src [%08x], len [%d*4], dst [%08x]\n"
441                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
442                            dmae->opcode, dmae->src_addr_lo >> 2,
443                            dmae->len, dmae->dst_addr_lo >> 2,
444                            dmae->comp_addr_hi, dmae->comp_addr_lo,
445                            dmae->comp_val);
446                 break;
447         default:
448                 if (src_type == DMAE_CMD_SRC_PCI)
449                         DP(msglvl, "DMAE: opcode 0x%08x\n"
450                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
451                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
452                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
453                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
454                            dmae->comp_val);
455                 else
456                         DP(msglvl, "DMAE: opcode 0x%08x\n"
457                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
458                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
459                            dmae->opcode, dmae->src_addr_lo >> 2,
460                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
461                            dmae->comp_val);
462                 break;
463         }
464
465         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
466                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
467                    i, *(((u32 *)dmae) + i));
468 }
469
470 /* copy command into DMAE command memory and set DMAE command go */
471 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
472 {
473         u32 cmd_offset;
474         int i;
475
476         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
477         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
478                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
479         }
480         REG_WR(bp, dmae_reg_go_c[idx], 1);
481 }
482
483 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
484 {
485         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
486                            DMAE_CMD_C_ENABLE);
487 }
488
489 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
490 {
491         return opcode & ~DMAE_CMD_SRC_RESET;
492 }
493
494 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
495                              bool with_comp, u8 comp_type)
496 {
497         u32 opcode = 0;
498
499         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
500                    (dst_type << DMAE_COMMAND_DST_SHIFT));
501
502         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
503
504         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
505         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
506                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
507         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
508
509 #ifdef __BIG_ENDIAN
510         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
511 #else
512         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
513 #endif
514         if (with_comp)
515                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
516         return opcode;
517 }
518
519 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
520                                       struct dmae_command *dmae,
521                                       u8 src_type, u8 dst_type)
522 {
523         memset(dmae, 0, sizeof(struct dmae_command));
524
525         /* set the opcode */
526         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
527                                          true, DMAE_COMP_PCI);
528
529         /* fill in the completion parameters */
530         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
531         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
532         dmae->comp_val = DMAE_COMP_VAL;
533 }
534
535 /* issue a dmae command over the init-channel and wait for completion */
536 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
537                                u32 *comp)
538 {
539         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
540         int rc = 0;
541
542         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
543
544         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
545          * as long as this code is called both from syscall context and
546          * from ndo_set_rx_mode() flow that may be called from BH.
547          */
548
549         spin_lock_bh(&bp->dmae_lock);
550
551         /* reset completion */
552         *comp = 0;
553
554         /* post the command on the channel used for initializations */
555         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
556
557         /* wait for completion */
558         udelay(5);
559         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
560
561                 if (!cnt ||
562                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
563                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
564                         BNX2X_ERR("DMAE timeout!\n");
565                         rc = DMAE_TIMEOUT;
566                         goto unlock;
567                 }
568                 cnt--;
569                 udelay(50);
570         }
571         if (*comp & DMAE_PCI_ERR_FLAG) {
572                 BNX2X_ERR("DMAE PCI error!\n");
573                 rc = DMAE_PCI_ERROR;
574         }
575
576 unlock:
577
578         spin_unlock_bh(&bp->dmae_lock);
579
580         return rc;
581 }
582
583 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
584                       u32 len32)
585 {
586         int rc;
587         struct dmae_command dmae;
588
589         if (!bp->dmae_ready) {
590                 u32 *data = bnx2x_sp(bp, wb_data[0]);
591
592                 if (CHIP_IS_E1(bp))
593                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
594                 else
595                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
596                 return;
597         }
598
599         /* set opcode and fixed command fields */
600         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
601
602         /* fill in addresses and len */
603         dmae.src_addr_lo = U64_LO(dma_addr);
604         dmae.src_addr_hi = U64_HI(dma_addr);
605         dmae.dst_addr_lo = dst_addr >> 2;
606         dmae.dst_addr_hi = 0;
607         dmae.len = len32;
608
609         /* issue the command and wait for completion */
610         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
611         if (rc) {
612                 BNX2X_ERR("DMAE returned failure %d\n", rc);
613 #ifdef BNX2X_STOP_ON_ERROR
614                 bnx2x_panic();
615 #endif
616         }
617 }
618
619 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
620 {
621         int rc;
622         struct dmae_command dmae;
623
624         if (!bp->dmae_ready) {
625                 u32 *data = bnx2x_sp(bp, wb_data[0]);
626                 int i;
627
628                 if (CHIP_IS_E1(bp))
629                         for (i = 0; i < len32; i++)
630                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
631                 else
632                         for (i = 0; i < len32; i++)
633                                 data[i] = REG_RD(bp, src_addr + i*4);
634
635                 return;
636         }
637
638         /* set opcode and fixed command fields */
639         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
640
641         /* fill in addresses and len */
642         dmae.src_addr_lo = src_addr >> 2;
643         dmae.src_addr_hi = 0;
644         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
645         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
646         dmae.len = len32;
647
648         /* issue the command and wait for completion */
649         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
650         if (rc) {
651                 BNX2X_ERR("DMAE returned failure %d\n", rc);
652 #ifdef BNX2X_STOP_ON_ERROR
653                 bnx2x_panic();
654 #endif
655         }
656 }
657
658 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
659                                       u32 addr, u32 len)
660 {
661         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
662         int offset = 0;
663
664         while (len > dmae_wr_max) {
665                 bnx2x_write_dmae(bp, phys_addr + offset,
666                                  addr + offset, dmae_wr_max);
667                 offset += dmae_wr_max * 4;
668                 len -= dmae_wr_max;
669         }
670
671         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
672 }
673
674 enum storms {
675            XSTORM,
676            TSTORM,
677            CSTORM,
678            USTORM,
679            MAX_STORMS
680 };
681
682 #define STORMS_NUM 4
683 #define REGS_IN_ENTRY 4
684
685 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
686                                               enum storms storm,
687                                               int entry)
688 {
689         switch (storm) {
690         case XSTORM:
691                 return XSTORM_ASSERT_LIST_OFFSET(entry);
692         case TSTORM:
693                 return TSTORM_ASSERT_LIST_OFFSET(entry);
694         case CSTORM:
695                 return CSTORM_ASSERT_LIST_OFFSET(entry);
696         case USTORM:
697                 return USTORM_ASSERT_LIST_OFFSET(entry);
698         case MAX_STORMS:
699         default:
700                 BNX2X_ERR("unknown storm\n");
701         }
702         return -EINVAL;
703 }
704
705 static int bnx2x_mc_assert(struct bnx2x *bp)
706 {
707         char last_idx;
708         int i, j, rc = 0;
709         enum storms storm;
710         u32 regs[REGS_IN_ENTRY];
711         u32 bar_storm_intmem[STORMS_NUM] = {
712                 BAR_XSTRORM_INTMEM,
713                 BAR_TSTRORM_INTMEM,
714                 BAR_CSTRORM_INTMEM,
715                 BAR_USTRORM_INTMEM
716         };
717         u32 storm_assert_list_index[STORMS_NUM] = {
718                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
719                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
720                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
721                 USTORM_ASSERT_LIST_INDEX_OFFSET
722         };
723         char *storms_string[STORMS_NUM] = {
724                 "XSTORM",
725                 "TSTORM",
726                 "CSTORM",
727                 "USTORM"
728         };
729
730         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
731                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
732                                    storm_assert_list_index[storm]);
733                 if (last_idx)
734                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
735                                   storms_string[storm], last_idx);
736
737                 /* print the asserts */
738                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
739                         /* read a single assert entry */
740                         for (j = 0; j < REGS_IN_ENTRY; j++)
741                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
742                                           bnx2x_get_assert_list_entry(bp,
743                                                                       storm,
744                                                                       i) +
745                                           sizeof(u32) * j);
746
747                         /* log entry if it contains a valid assert */
748                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
749                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
750                                           storms_string[storm], i, regs[3],
751                                           regs[2], regs[1], regs[0]);
752                                 rc++;
753                         } else {
754                                 break;
755                         }
756                 }
757         }
758
759         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
760                   CHIP_IS_E1(bp) ? "everest1" :
761                   CHIP_IS_E1H(bp) ? "everest1h" :
762                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
763                   bp->fw_major, bp->fw_minor, bp->fw_rev);
764
765         return rc;
766 }
767
768 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
769 #define SCRATCH_BUFFER_SIZE(bp) \
770         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
771
772 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
773 {
774         u32 addr, val;
775         u32 mark, offset;
776         __be32 data[9];
777         int word;
778         u32 trace_shmem_base;
779         if (BP_NOMCP(bp)) {
780                 BNX2X_ERR("NO MCP - can not dump\n");
781                 return;
782         }
783         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
784                 (bp->common.bc_ver & 0xff0000) >> 16,
785                 (bp->common.bc_ver & 0xff00) >> 8,
786                 (bp->common.bc_ver & 0xff));
787
788         if (pci_channel_offline(bp->pdev)) {
789                 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
790                 return;
791         }
792
793         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
794         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
795                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
796
797         if (BP_PATH(bp) == 0)
798                 trace_shmem_base = bp->common.shmem_base;
799         else
800                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
801
802         /* sanity */
803         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
804             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
805                                 SCRATCH_BUFFER_SIZE(bp)) {
806                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
807                           trace_shmem_base);
808                 return;
809         }
810
811         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
812
813         /* validate TRCB signature */
814         mark = REG_RD(bp, addr);
815         if (mark != MFW_TRACE_SIGNATURE) {
816                 BNX2X_ERR("Trace buffer signature is missing.");
817                 return ;
818         }
819
820         /* read cyclic buffer pointer */
821         addr += 4;
822         mark = REG_RD(bp, addr);
823         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
824         if (mark >= trace_shmem_base || mark < addr + 4) {
825                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
826                 return;
827         }
828         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
829
830         printk("%s", lvl);
831
832         /* dump buffer after the mark */
833         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
834                 for (word = 0; word < 8; word++)
835                         data[word] = htonl(REG_RD(bp, offset + 4*word));
836                 data[8] = 0x0;
837                 pr_cont("%s", (char *)data);
838         }
839
840         /* dump buffer before the mark */
841         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
842                 for (word = 0; word < 8; word++)
843                         data[word] = htonl(REG_RD(bp, offset + 4*word));
844                 data[8] = 0x0;
845                 pr_cont("%s", (char *)data);
846         }
847         printk("%s" "end of fw dump\n", lvl);
848 }
849
850 static void bnx2x_fw_dump(struct bnx2x *bp)
851 {
852         bnx2x_fw_dump_lvl(bp, KERN_ERR);
853 }
854
855 static void bnx2x_hc_int_disable(struct bnx2x *bp)
856 {
857         int port = BP_PORT(bp);
858         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
859         u32 val = REG_RD(bp, addr);
860
861         /* in E1 we must use only PCI configuration space to disable
862          * MSI/MSIX capability
863          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
864          */
865         if (CHIP_IS_E1(bp)) {
866                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
867                  * Use mask register to prevent from HC sending interrupts
868                  * after we exit the function
869                  */
870                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
871
872                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
873                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
874                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
875         } else
876                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
877                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
878                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
879                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
880
881         DP(NETIF_MSG_IFDOWN,
882            "write %x to HC %d (addr 0x%x)\n",
883            val, port, addr);
884
885         REG_WR(bp, addr, val);
886         if (REG_RD(bp, addr) != val)
887                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
888 }
889
890 static void bnx2x_igu_int_disable(struct bnx2x *bp)
891 {
892         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
893
894         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
895                  IGU_PF_CONF_INT_LINE_EN |
896                  IGU_PF_CONF_ATTN_BIT_EN);
897
898         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
899
900         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
901         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
902                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
903 }
904
905 static void bnx2x_int_disable(struct bnx2x *bp)
906 {
907         if (bp->common.int_block == INT_BLOCK_HC)
908                 bnx2x_hc_int_disable(bp);
909         else
910                 bnx2x_igu_int_disable(bp);
911 }
912
913 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
914 {
915         int i;
916         u16 j;
917         struct hc_sp_status_block_data sp_sb_data;
918         int func = BP_FUNC(bp);
919 #ifdef BNX2X_STOP_ON_ERROR
920         u16 start = 0, end = 0;
921         u8 cos;
922 #endif
923         if (IS_PF(bp) && disable_int)
924                 bnx2x_int_disable(bp);
925
926         bp->stats_state = STATS_STATE_DISABLED;
927         bp->eth_stats.unrecoverable_error++;
928         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
929
930         BNX2X_ERR("begin crash dump -----------------\n");
931
932         /* Indices */
933         /* Common */
934         if (IS_PF(bp)) {
935                 struct host_sp_status_block *def_sb = bp->def_status_blk;
936                 int data_size, cstorm_offset;
937
938                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
939                           bp->def_idx, bp->def_att_idx, bp->attn_state,
940                           bp->spq_prod_idx, bp->stats_counter);
941                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
942                           def_sb->atten_status_block.attn_bits,
943                           def_sb->atten_status_block.attn_bits_ack,
944                           def_sb->atten_status_block.status_block_id,
945                           def_sb->atten_status_block.attn_bits_index);
946                 BNX2X_ERR("     def (");
947                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
948                         pr_cont("0x%x%s",
949                                 def_sb->sp_sb.index_values[i],
950                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
951
952                 data_size = sizeof(struct hc_sp_status_block_data) /
953                             sizeof(u32);
954                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
955                 for (i = 0; i < data_size; i++)
956                         *((u32 *)&sp_sb_data + i) =
957                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
958                                            i * sizeof(u32));
959
960                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
961                         sp_sb_data.igu_sb_id,
962                         sp_sb_data.igu_seg_id,
963                         sp_sb_data.p_func.pf_id,
964                         sp_sb_data.p_func.vnic_id,
965                         sp_sb_data.p_func.vf_id,
966                         sp_sb_data.p_func.vf_valid,
967                         sp_sb_data.state);
968         }
969
970         for_each_eth_queue(bp, i) {
971                 struct bnx2x_fastpath *fp = &bp->fp[i];
972                 int loop;
973                 struct hc_status_block_data_e2 sb_data_e2;
974                 struct hc_status_block_data_e1x sb_data_e1x;
975                 struct hc_status_block_sm  *hc_sm_p =
976                         CHIP_IS_E1x(bp) ?
977                         sb_data_e1x.common.state_machine :
978                         sb_data_e2.common.state_machine;
979                 struct hc_index_data *hc_index_p =
980                         CHIP_IS_E1x(bp) ?
981                         sb_data_e1x.index_data :
982                         sb_data_e2.index_data;
983                 u8 data_size, cos;
984                 u32 *sb_data_p;
985                 struct bnx2x_fp_txdata txdata;
986
987                 if (!bp->fp)
988                         break;
989
990                 if (!fp->rx_cons_sb)
991                         continue;
992
993                 /* Rx */
994                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
995                           i, fp->rx_bd_prod, fp->rx_bd_cons,
996                           fp->rx_comp_prod,
997                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
998                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
999                           fp->rx_sge_prod, fp->last_max_sge,
1000                           le16_to_cpu(fp->fp_hc_idx));
1001
1002                 /* Tx */
1003                 for_each_cos_in_tx_queue(fp, cos)
1004                 {
1005                         if (!fp->txdata_ptr[cos])
1006                                 break;
1007
1008                         txdata = *fp->txdata_ptr[cos];
1009
1010                         if (!txdata.tx_cons_sb)
1011                                 continue;
1012
1013                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1014                                   i, txdata.tx_pkt_prod,
1015                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1016                                   txdata.tx_bd_cons,
1017                                   le16_to_cpu(*txdata.tx_cons_sb));
1018                 }
1019
1020                 loop = CHIP_IS_E1x(bp) ?
1021                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1022
1023                 /* host sb data */
1024
1025                 if (IS_FCOE_FP(fp))
1026                         continue;
1027
1028                 BNX2X_ERR("     run indexes (");
1029                 for (j = 0; j < HC_SB_MAX_SM; j++)
1030                         pr_cont("0x%x%s",
1031                                fp->sb_running_index[j],
1032                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1033
1034                 BNX2X_ERR("     indexes (");
1035                 for (j = 0; j < loop; j++)
1036                         pr_cont("0x%x%s",
1037                                fp->sb_index_values[j],
1038                                (j == loop - 1) ? ")" : " ");
1039
1040                 /* VF cannot access FW refelection for status block */
1041                 if (IS_VF(bp))
1042                         continue;
1043
1044                 /* fw sb data */
1045                 data_size = CHIP_IS_E1x(bp) ?
1046                         sizeof(struct hc_status_block_data_e1x) :
1047                         sizeof(struct hc_status_block_data_e2);
1048                 data_size /= sizeof(u32);
1049                 sb_data_p = CHIP_IS_E1x(bp) ?
1050                         (u32 *)&sb_data_e1x :
1051                         (u32 *)&sb_data_e2;
1052                 /* copy sb data in here */
1053                 for (j = 0; j < data_size; j++)
1054                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1055                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1056                                 j * sizeof(u32));
1057
1058                 if (!CHIP_IS_E1x(bp)) {
1059                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1060                                 sb_data_e2.common.p_func.pf_id,
1061                                 sb_data_e2.common.p_func.vf_id,
1062                                 sb_data_e2.common.p_func.vf_valid,
1063                                 sb_data_e2.common.p_func.vnic_id,
1064                                 sb_data_e2.common.same_igu_sb_1b,
1065                                 sb_data_e2.common.state);
1066                 } else {
1067                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1068                                 sb_data_e1x.common.p_func.pf_id,
1069                                 sb_data_e1x.common.p_func.vf_id,
1070                                 sb_data_e1x.common.p_func.vf_valid,
1071                                 sb_data_e1x.common.p_func.vnic_id,
1072                                 sb_data_e1x.common.same_igu_sb_1b,
1073                                 sb_data_e1x.common.state);
1074                 }
1075
1076                 /* SB_SMs data */
1077                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1078                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1079                                 j, hc_sm_p[j].__flags,
1080                                 hc_sm_p[j].igu_sb_id,
1081                                 hc_sm_p[j].igu_seg_id,
1082                                 hc_sm_p[j].time_to_expire,
1083                                 hc_sm_p[j].timer_value);
1084                 }
1085
1086                 /* Indices data */
1087                 for (j = 0; j < loop; j++) {
1088                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1089                                hc_index_p[j].flags,
1090                                hc_index_p[j].timeout);
1091                 }
1092         }
1093
1094 #ifdef BNX2X_STOP_ON_ERROR
1095         if (IS_PF(bp)) {
1096                 /* event queue */
1097                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1098                 for (i = 0; i < NUM_EQ_DESC; i++) {
1099                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1100
1101                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1102                                   i, bp->eq_ring[i].message.opcode,
1103                                   bp->eq_ring[i].message.error);
1104                         BNX2X_ERR("data: %x %x %x\n",
1105                                   data[0], data[1], data[2]);
1106                 }
1107         }
1108
1109         /* Rings */
1110         /* Rx */
1111         for_each_valid_rx_queue(bp, i) {
1112                 struct bnx2x_fastpath *fp = &bp->fp[i];
1113
1114                 if (!bp->fp)
1115                         break;
1116
1117                 if (!fp->rx_cons_sb)
1118                         continue;
1119
1120                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1121                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1122                 for (j = start; j != end; j = RX_BD(j + 1)) {
1123                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1124                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1125
1126                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1127                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1128                 }
1129
1130                 start = RX_SGE(fp->rx_sge_prod);
1131                 end = RX_SGE(fp->last_max_sge);
1132                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1133                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1134                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1135
1136                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1137                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1138                 }
1139
1140                 start = RCQ_BD(fp->rx_comp_cons - 10);
1141                 end = RCQ_BD(fp->rx_comp_cons + 503);
1142                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1143                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1144
1145                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1146                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1147                 }
1148         }
1149
1150         /* Tx */
1151         for_each_valid_tx_queue(bp, i) {
1152                 struct bnx2x_fastpath *fp = &bp->fp[i];
1153
1154                 if (!bp->fp)
1155                         break;
1156
1157                 for_each_cos_in_tx_queue(fp, cos) {
1158                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1159
1160                         if (!fp->txdata_ptr[cos])
1161                                 break;
1162
1163                         if (!txdata->tx_cons_sb)
1164                                 continue;
1165
1166                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1167                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1168                         for (j = start; j != end; j = TX_BD(j + 1)) {
1169                                 struct sw_tx_bd *sw_bd =
1170                                         &txdata->tx_buf_ring[j];
1171
1172                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1173                                           i, cos, j, sw_bd->skb,
1174                                           sw_bd->first_bd);
1175                         }
1176
1177                         start = TX_BD(txdata->tx_bd_cons - 10);
1178                         end = TX_BD(txdata->tx_bd_cons + 254);
1179                         for (j = start; j != end; j = TX_BD(j + 1)) {
1180                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1181
1182                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1183                                           i, cos, j, tx_bd[0], tx_bd[1],
1184                                           tx_bd[2], tx_bd[3]);
1185                         }
1186                 }
1187         }
1188 #endif
1189         if (IS_PF(bp)) {
1190                 int tmp_msg_en = bp->msg_enable;
1191
1192                 bnx2x_fw_dump(bp);
1193                 bp->msg_enable |= NETIF_MSG_HW;
1194                 BNX2X_ERR("Idle check (1st round) ----------\n");
1195                 bnx2x_idle_chk(bp);
1196                 BNX2X_ERR("Idle check (2nd round) ----------\n");
1197                 bnx2x_idle_chk(bp);
1198                 bp->msg_enable = tmp_msg_en;
1199                 bnx2x_mc_assert(bp);
1200         }
1201
1202         BNX2X_ERR("end crash dump -----------------\n");
1203 }
1204
1205 /*
1206  * FLR Support for E2
1207  *
1208  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1209  * initialization.
1210  */
1211 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1212 #define FLR_WAIT_INTERVAL       50      /* usec */
1213 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1214
1215 struct pbf_pN_buf_regs {
1216         int pN;
1217         u32 init_crd;
1218         u32 crd;
1219         u32 crd_freed;
1220 };
1221
1222 struct pbf_pN_cmd_regs {
1223         int pN;
1224         u32 lines_occup;
1225         u32 lines_freed;
1226 };
1227
1228 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1229                                      struct pbf_pN_buf_regs *regs,
1230                                      u32 poll_count)
1231 {
1232         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1233         u32 cur_cnt = poll_count;
1234
1235         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1236         crd = crd_start = REG_RD(bp, regs->crd);
1237         init_crd = REG_RD(bp, regs->init_crd);
1238
1239         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1240         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1241         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1242
1243         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1244                (init_crd - crd_start))) {
1245                 if (cur_cnt--) {
1246                         udelay(FLR_WAIT_INTERVAL);
1247                         crd = REG_RD(bp, regs->crd);
1248                         crd_freed = REG_RD(bp, regs->crd_freed);
1249                 } else {
1250                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1251                            regs->pN);
1252                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1253                            regs->pN, crd);
1254                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1255                            regs->pN, crd_freed);
1256                         break;
1257                 }
1258         }
1259         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1260            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1261 }
1262
1263 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1264                                      struct pbf_pN_cmd_regs *regs,
1265                                      u32 poll_count)
1266 {
1267         u32 occup, to_free, freed, freed_start;
1268         u32 cur_cnt = poll_count;
1269
1270         occup = to_free = REG_RD(bp, regs->lines_occup);
1271         freed = freed_start = REG_RD(bp, regs->lines_freed);
1272
1273         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1274         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1275
1276         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1277                 if (cur_cnt--) {
1278                         udelay(FLR_WAIT_INTERVAL);
1279                         occup = REG_RD(bp, regs->lines_occup);
1280                         freed = REG_RD(bp, regs->lines_freed);
1281                 } else {
1282                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1283                            regs->pN);
1284                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1285                            regs->pN, occup);
1286                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1287                            regs->pN, freed);
1288                         break;
1289                 }
1290         }
1291         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1292            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1293 }
1294
1295 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1296                                     u32 expected, u32 poll_count)
1297 {
1298         u32 cur_cnt = poll_count;
1299         u32 val;
1300
1301         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1302                 udelay(FLR_WAIT_INTERVAL);
1303
1304         return val;
1305 }
1306
1307 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1308                                     char *msg, u32 poll_cnt)
1309 {
1310         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1311         if (val != 0) {
1312                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1313                 return 1;
1314         }
1315         return 0;
1316 }
1317
1318 /* Common routines with VF FLR cleanup */
1319 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1320 {
1321         /* adjust polling timeout */
1322         if (CHIP_REV_IS_EMUL(bp))
1323                 return FLR_POLL_CNT * 2000;
1324
1325         if (CHIP_REV_IS_FPGA(bp))
1326                 return FLR_POLL_CNT * 120;
1327
1328         return FLR_POLL_CNT;
1329 }
1330
1331 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1332 {
1333         struct pbf_pN_cmd_regs cmd_regs[] = {
1334                 {0, (CHIP_IS_E3B0(bp)) ?
1335                         PBF_REG_TQ_OCCUPANCY_Q0 :
1336                         PBF_REG_P0_TQ_OCCUPANCY,
1337                     (CHIP_IS_E3B0(bp)) ?
1338                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1339                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1340                 {1, (CHIP_IS_E3B0(bp)) ?
1341                         PBF_REG_TQ_OCCUPANCY_Q1 :
1342                         PBF_REG_P1_TQ_OCCUPANCY,
1343                     (CHIP_IS_E3B0(bp)) ?
1344                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1345                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1346                 {4, (CHIP_IS_E3B0(bp)) ?
1347                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1348                         PBF_REG_P4_TQ_OCCUPANCY,
1349                     (CHIP_IS_E3B0(bp)) ?
1350                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1351                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1352         };
1353
1354         struct pbf_pN_buf_regs buf_regs[] = {
1355                 {0, (CHIP_IS_E3B0(bp)) ?
1356                         PBF_REG_INIT_CRD_Q0 :
1357                         PBF_REG_P0_INIT_CRD ,
1358                     (CHIP_IS_E3B0(bp)) ?
1359                         PBF_REG_CREDIT_Q0 :
1360                         PBF_REG_P0_CREDIT,
1361                     (CHIP_IS_E3B0(bp)) ?
1362                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1363                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1364                 {1, (CHIP_IS_E3B0(bp)) ?
1365                         PBF_REG_INIT_CRD_Q1 :
1366                         PBF_REG_P1_INIT_CRD,
1367                     (CHIP_IS_E3B0(bp)) ?
1368                         PBF_REG_CREDIT_Q1 :
1369                         PBF_REG_P1_CREDIT,
1370                     (CHIP_IS_E3B0(bp)) ?
1371                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1372                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1373                 {4, (CHIP_IS_E3B0(bp)) ?
1374                         PBF_REG_INIT_CRD_LB_Q :
1375                         PBF_REG_P4_INIT_CRD,
1376                     (CHIP_IS_E3B0(bp)) ?
1377                         PBF_REG_CREDIT_LB_Q :
1378                         PBF_REG_P4_CREDIT,
1379                     (CHIP_IS_E3B0(bp)) ?
1380                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1381                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1382         };
1383
1384         int i;
1385
1386         /* Verify the command queues are flushed P0, P1, P4 */
1387         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1388                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1389
1390         /* Verify the transmission buffers are flushed P0, P1, P4 */
1391         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1392                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1393 }
1394
1395 #define OP_GEN_PARAM(param) \
1396         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1397
1398 #define OP_GEN_TYPE(type) \
1399         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1400
1401 #define OP_GEN_AGG_VECT(index) \
1402         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1403
1404 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1405 {
1406         u32 op_gen_command = 0;
1407         u32 comp_addr = BAR_CSTRORM_INTMEM +
1408                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1409
1410         if (REG_RD(bp, comp_addr)) {
1411                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1412                 return 1;
1413         }
1414
1415         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1416         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1417         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1418         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1419
1420         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1421         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1422
1423         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1424                 BNX2X_ERR("FW final cleanup did not succeed\n");
1425                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1426                    (REG_RD(bp, comp_addr)));
1427                 bnx2x_panic();
1428                 return 1;
1429         }
1430         /* Zero completion for next FLR */
1431         REG_WR(bp, comp_addr, 0);
1432
1433         return 0;
1434 }
1435
1436 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1437 {
1438         u16 status;
1439
1440         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1441         return status & PCI_EXP_DEVSTA_TRPND;
1442 }
1443
1444 /* PF FLR specific routines
1445 */
1446 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1447 {
1448         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1449         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1450                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1451                         "CFC PF usage counter timed out",
1452                         poll_cnt))
1453                 return 1;
1454
1455         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1456         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1457                         DORQ_REG_PF_USAGE_CNT,
1458                         "DQ PF usage counter timed out",
1459                         poll_cnt))
1460                 return 1;
1461
1462         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1463         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1464                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1465                         "QM PF usage counter timed out",
1466                         poll_cnt))
1467                 return 1;
1468
1469         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1470         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1471                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1472                         "Timers VNIC usage counter timed out",
1473                         poll_cnt))
1474                 return 1;
1475         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1476                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1477                         "Timers NUM_SCANS usage counter timed out",
1478                         poll_cnt))
1479                 return 1;
1480
1481         /* Wait DMAE PF usage counter to zero */
1482         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1483                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1484                         "DMAE command register timed out",
1485                         poll_cnt))
1486                 return 1;
1487
1488         return 0;
1489 }
1490
1491 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1492 {
1493         u32 val;
1494
1495         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1496         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1497
1498         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1499         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1500
1501         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1502         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1503
1504         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1505         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1506
1507         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1508         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1509
1510         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1511         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1512
1513         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1514         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1515
1516         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1517         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1518            val);
1519 }
1520
1521 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1522 {
1523         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1524
1525         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1526
1527         /* Re-enable PF target read access */
1528         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1529
1530         /* Poll HW usage counters */
1531         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1532         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1533                 return -EBUSY;
1534
1535         /* Zero the igu 'trailing edge' and 'leading edge' */
1536
1537         /* Send the FW cleanup command */
1538         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1539                 return -EBUSY;
1540
1541         /* ATC cleanup */
1542
1543         /* Verify TX hw is flushed */
1544         bnx2x_tx_hw_flushed(bp, poll_cnt);
1545
1546         /* Wait 100ms (not adjusted according to platform) */
1547         msleep(100);
1548
1549         /* Verify no pending pci transactions */
1550         if (bnx2x_is_pcie_pending(bp->pdev))
1551                 BNX2X_ERR("PCIE Transactions still pending\n");
1552
1553         /* Debug */
1554         bnx2x_hw_enable_status(bp);
1555
1556         /*
1557          * Master enable - Due to WB DMAE writes performed before this
1558          * register is re-initialized as part of the regular function init
1559          */
1560         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1561
1562         return 0;
1563 }
1564
1565 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1566 {
1567         int port = BP_PORT(bp);
1568         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1569         u32 val = REG_RD(bp, addr);
1570         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1571         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1572         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1573
1574         if (msix) {
1575                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1576                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1577                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1578                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1579                 if (single_msix)
1580                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1581         } else if (msi) {
1582                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1583                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1584                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1585                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1586         } else {
1587                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1588                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1589                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1590                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1591
1592                 if (!CHIP_IS_E1(bp)) {
1593                         DP(NETIF_MSG_IFUP,
1594                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1595
1596                         REG_WR(bp, addr, val);
1597
1598                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1599                 }
1600         }
1601
1602         if (CHIP_IS_E1(bp))
1603                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1604
1605         DP(NETIF_MSG_IFUP,
1606            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1607            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1608
1609         REG_WR(bp, addr, val);
1610         /*
1611          * Ensure that HC_CONFIG is written before leading/trailing edge config
1612          */
1613         barrier();
1614
1615         if (!CHIP_IS_E1(bp)) {
1616                 /* init leading/trailing edge */
1617                 if (IS_MF(bp)) {
1618                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1619                         if (bp->port.pmf)
1620                                 /* enable nig and gpio3 attention */
1621                                 val |= 0x1100;
1622                 } else
1623                         val = 0xffff;
1624
1625                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1626                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1627         }
1628 }
1629
1630 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1631 {
1632         u32 val;
1633         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1634         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1635         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1636
1637         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1638
1639         if (msix) {
1640                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1641                          IGU_PF_CONF_SINGLE_ISR_EN);
1642                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1643                         IGU_PF_CONF_ATTN_BIT_EN);
1644
1645                 if (single_msix)
1646                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1647         } else if (msi) {
1648                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1649                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1650                         IGU_PF_CONF_ATTN_BIT_EN |
1651                         IGU_PF_CONF_SINGLE_ISR_EN);
1652         } else {
1653                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1654                 val |= (IGU_PF_CONF_INT_LINE_EN |
1655                         IGU_PF_CONF_ATTN_BIT_EN |
1656                         IGU_PF_CONF_SINGLE_ISR_EN);
1657         }
1658
1659         /* Clean previous status - need to configure igu prior to ack*/
1660         if ((!msix) || single_msix) {
1661                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1662                 bnx2x_ack_int(bp);
1663         }
1664
1665         val |= IGU_PF_CONF_FUNC_EN;
1666
1667         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1668            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1669
1670         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1671
1672         if (val & IGU_PF_CONF_INT_LINE_EN)
1673                 pci_intx(bp->pdev, true);
1674
1675         barrier();
1676
1677         /* init leading/trailing edge */
1678         if (IS_MF(bp)) {
1679                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1680                 if (bp->port.pmf)
1681                         /* enable nig and gpio3 attention */
1682                         val |= 0x1100;
1683         } else
1684                 val = 0xffff;
1685
1686         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1687         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1688 }
1689
1690 void bnx2x_int_enable(struct bnx2x *bp)
1691 {
1692         if (bp->common.int_block == INT_BLOCK_HC)
1693                 bnx2x_hc_int_enable(bp);
1694         else
1695                 bnx2x_igu_int_enable(bp);
1696 }
1697
1698 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1699 {
1700         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1701         int i, offset;
1702
1703         if (disable_hw)
1704                 /* prevent the HW from sending interrupts */
1705                 bnx2x_int_disable(bp);
1706
1707         /* make sure all ISRs are done */
1708         if (msix) {
1709                 synchronize_irq(bp->msix_table[0].vector);
1710                 offset = 1;
1711                 if (CNIC_SUPPORT(bp))
1712                         offset++;
1713                 for_each_eth_queue(bp, i)
1714                         synchronize_irq(bp->msix_table[offset++].vector);
1715         } else
1716                 synchronize_irq(bp->pdev->irq);
1717
1718         /* make sure sp_task is not running */
1719         cancel_delayed_work(&bp->sp_task);
1720         cancel_delayed_work(&bp->period_task);
1721         flush_workqueue(bnx2x_wq);
1722 }
1723
1724 /* fast path */
1725
1726 /*
1727  * General service functions
1728  */
1729
1730 /* Return true if succeeded to acquire the lock */
1731 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1732 {
1733         u32 lock_status;
1734         u32 resource_bit = (1 << resource);
1735         int func = BP_FUNC(bp);
1736         u32 hw_lock_control_reg;
1737
1738         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1739            "Trying to take a lock on resource %d\n", resource);
1740
1741         /* Validating that the resource is within range */
1742         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1743                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1744                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1745                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1746                 return false;
1747         }
1748
1749         if (func <= 5)
1750                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1751         else
1752                 hw_lock_control_reg =
1753                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1754
1755         /* Try to acquire the lock */
1756         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1757         lock_status = REG_RD(bp, hw_lock_control_reg);
1758         if (lock_status & resource_bit)
1759                 return true;
1760
1761         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1762            "Failed to get a lock on resource %d\n", resource);
1763         return false;
1764 }
1765
1766 /**
1767  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1768  *
1769  * @bp: driver handle
1770  *
1771  * Returns the recovery leader resource id according to the engine this function
1772  * belongs to. Currently only only 2 engines is supported.
1773  */
1774 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1775 {
1776         if (BP_PATH(bp))
1777                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1778         else
1779                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1780 }
1781
1782 /**
1783  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1784  *
1785  * @bp: driver handle
1786  *
1787  * Tries to acquire a leader lock for current engine.
1788  */
1789 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1790 {
1791         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1792 }
1793
1794 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1795
1796 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1797 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1798 {
1799         /* Set the interrupt occurred bit for the sp-task to recognize it
1800          * must ack the interrupt and transition according to the IGU
1801          * state machine.
1802          */
1803         atomic_set(&bp->interrupt_occurred, 1);
1804
1805         /* The sp_task must execute only after this bit
1806          * is set, otherwise we will get out of sync and miss all
1807          * further interrupts. Hence, the barrier.
1808          */
1809         smp_wmb();
1810
1811         /* schedule sp_task to workqueue */
1812         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1813 }
1814
1815 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1816 {
1817         struct bnx2x *bp = fp->bp;
1818         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1819         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1820         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1821         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1822
1823         DP(BNX2X_MSG_SP,
1824            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1825            fp->index, cid, command, bp->state,
1826            rr_cqe->ramrod_cqe.ramrod_type);
1827
1828         /* If cid is within VF range, replace the slowpath object with the
1829          * one corresponding to this VF
1830          */
1831         if (cid >= BNX2X_FIRST_VF_CID  &&
1832             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1833                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1834
1835         switch (command) {
1836         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1837                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1838                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1839                 break;
1840
1841         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1842                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1843                 drv_cmd = BNX2X_Q_CMD_SETUP;
1844                 break;
1845
1846         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1847                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1848                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1849                 break;
1850
1851         case (RAMROD_CMD_ID_ETH_HALT):
1852                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1853                 drv_cmd = BNX2X_Q_CMD_HALT;
1854                 break;
1855
1856         case (RAMROD_CMD_ID_ETH_TERMINATE):
1857                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1858                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1859                 break;
1860
1861         case (RAMROD_CMD_ID_ETH_EMPTY):
1862                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1863                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1864                 break;
1865
1866         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1867                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1868                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1869                 break;
1870
1871         default:
1872                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1873                           command, fp->index);
1874                 return;
1875         }
1876
1877         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1878             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1879                 /* q_obj->complete_cmd() failure means that this was
1880                  * an unexpected completion.
1881                  *
1882                  * In this case we don't want to increase the bp->spq_left
1883                  * because apparently we haven't sent this command the first
1884                  * place.
1885                  */
1886 #ifdef BNX2X_STOP_ON_ERROR
1887                 bnx2x_panic();
1888 #else
1889                 return;
1890 #endif
1891
1892         smp_mb__before_atomic();
1893         atomic_inc(&bp->cq_spq_left);
1894         /* push the change in bp->spq_left and towards the memory */
1895         smp_mb__after_atomic();
1896
1897         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1898
1899         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1900             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1901                 /* if Q update ramrod is completed for last Q in AFEX vif set
1902                  * flow, then ACK MCP at the end
1903                  *
1904                  * mark pending ACK to MCP bit.
1905                  * prevent case that both bits are cleared.
1906                  * At the end of load/unload driver checks that
1907                  * sp_state is cleared, and this order prevents
1908                  * races
1909                  */
1910                 smp_mb__before_atomic();
1911                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1912                 wmb();
1913                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1914                 smp_mb__after_atomic();
1915
1916                 /* schedule the sp task as mcp ack is required */
1917                 bnx2x_schedule_sp_task(bp);
1918         }
1919
1920         return;
1921 }
1922
1923 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1924 {
1925         struct bnx2x *bp = netdev_priv(dev_instance);
1926         u16 status = bnx2x_ack_int(bp);
1927         u16 mask;
1928         int i;
1929         u8 cos;
1930
1931         /* Return here if interrupt is shared and it's not for us */
1932         if (unlikely(status == 0)) {
1933                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1934                 return IRQ_NONE;
1935         }
1936         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1937
1938 #ifdef BNX2X_STOP_ON_ERROR
1939         if (unlikely(bp->panic))
1940                 return IRQ_HANDLED;
1941 #endif
1942
1943         for_each_eth_queue(bp, i) {
1944                 struct bnx2x_fastpath *fp = &bp->fp[i];
1945
1946                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1947                 if (status & mask) {
1948                         /* Handle Rx or Tx according to SB id */
1949                         for_each_cos_in_tx_queue(fp, cos)
1950                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1951                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1952                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1953                         status &= ~mask;
1954                 }
1955         }
1956
1957         if (CNIC_SUPPORT(bp)) {
1958                 mask = 0x2;
1959                 if (status & (mask | 0x1)) {
1960                         struct cnic_ops *c_ops = NULL;
1961
1962                         rcu_read_lock();
1963                         c_ops = rcu_dereference(bp->cnic_ops);
1964                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1965                                       CNIC_DRV_STATE_HANDLES_IRQ))
1966                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1967                         rcu_read_unlock();
1968
1969                         status &= ~mask;
1970                 }
1971         }
1972
1973         if (unlikely(status & 0x1)) {
1974
1975                 /* schedule sp task to perform default status block work, ack
1976                  * attentions and enable interrupts.
1977                  */
1978                 bnx2x_schedule_sp_task(bp);
1979
1980                 status &= ~0x1;
1981                 if (!status)
1982                         return IRQ_HANDLED;
1983         }
1984
1985         if (unlikely(status))
1986                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1987                    status);
1988
1989         return IRQ_HANDLED;
1990 }
1991
1992 /* Link */
1993
1994 /*
1995  * General service functions
1996  */
1997
1998 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1999 {
2000         u32 lock_status;
2001         u32 resource_bit = (1 << resource);
2002         int func = BP_FUNC(bp);
2003         u32 hw_lock_control_reg;
2004         int cnt;
2005
2006         /* Validating that the resource is within range */
2007         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2008                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2009                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2010                 return -EINVAL;
2011         }
2012
2013         if (func <= 5) {
2014                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2015         } else {
2016                 hw_lock_control_reg =
2017                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2018         }
2019
2020         /* Validating that the resource is not already taken */
2021         lock_status = REG_RD(bp, hw_lock_control_reg);
2022         if (lock_status & resource_bit) {
2023                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2024                    lock_status, resource_bit);
2025                 return -EEXIST;
2026         }
2027
2028         /* Try for 5 second every 5ms */
2029         for (cnt = 0; cnt < 1000; cnt++) {
2030                 /* Try to acquire the lock */
2031                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2032                 lock_status = REG_RD(bp, hw_lock_control_reg);
2033                 if (lock_status & resource_bit)
2034                         return 0;
2035
2036                 usleep_range(5000, 10000);
2037         }
2038         BNX2X_ERR("Timeout\n");
2039         return -EAGAIN;
2040 }
2041
2042 int bnx2x_release_leader_lock(struct bnx2x *bp)
2043 {
2044         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2045 }
2046
2047 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2048 {
2049         u32 lock_status;
2050         u32 resource_bit = (1 << resource);
2051         int func = BP_FUNC(bp);
2052         u32 hw_lock_control_reg;
2053
2054         /* Validating that the resource is within range */
2055         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2056                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2057                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2058                 return -EINVAL;
2059         }
2060
2061         if (func <= 5) {
2062                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2063         } else {
2064                 hw_lock_control_reg =
2065                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2066         }
2067
2068         /* Validating that the resource is currently taken */
2069         lock_status = REG_RD(bp, hw_lock_control_reg);
2070         if (!(lock_status & resource_bit)) {
2071                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2072                           lock_status, resource_bit);
2073                 return -EFAULT;
2074         }
2075
2076         REG_WR(bp, hw_lock_control_reg, resource_bit);
2077         return 0;
2078 }
2079
2080 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2081 {
2082         /* The GPIO should be swapped if swap register is set and active */
2083         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2084                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2085         int gpio_shift = gpio_num +
2086                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2087         u32 gpio_mask = (1 << gpio_shift);
2088         u32 gpio_reg;
2089         int value;
2090
2091         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2092                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2093                 return -EINVAL;
2094         }
2095
2096         /* read GPIO value */
2097         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2098
2099         /* get the requested pin value */
2100         if ((gpio_reg & gpio_mask) == gpio_mask)
2101                 value = 1;
2102         else
2103                 value = 0;
2104
2105         return value;
2106 }
2107
2108 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2109 {
2110         /* The GPIO should be swapped if swap register is set and active */
2111         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2112                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2113         int gpio_shift = gpio_num +
2114                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2115         u32 gpio_mask = (1 << gpio_shift);
2116         u32 gpio_reg;
2117
2118         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2119                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2120                 return -EINVAL;
2121         }
2122
2123         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2124         /* read GPIO and mask except the float bits */
2125         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2126
2127         switch (mode) {
2128         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2129                 DP(NETIF_MSG_LINK,
2130                    "Set GPIO %d (shift %d) -> output low\n",
2131                    gpio_num, gpio_shift);
2132                 /* clear FLOAT and set CLR */
2133                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2134                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2135                 break;
2136
2137         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2138                 DP(NETIF_MSG_LINK,
2139                    "Set GPIO %d (shift %d) -> output high\n",
2140                    gpio_num, gpio_shift);
2141                 /* clear FLOAT and set SET */
2142                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2143                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2144                 break;
2145
2146         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2147                 DP(NETIF_MSG_LINK,
2148                    "Set GPIO %d (shift %d) -> input\n",
2149                    gpio_num, gpio_shift);
2150                 /* set FLOAT */
2151                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2152                 break;
2153
2154         default:
2155                 break;
2156         }
2157
2158         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2159         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2160
2161         return 0;
2162 }
2163
2164 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2165 {
2166         u32 gpio_reg = 0;
2167         int rc = 0;
2168
2169         /* Any port swapping should be handled by caller. */
2170
2171         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2172         /* read GPIO and mask except the float bits */
2173         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2174         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2175         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2176         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2177
2178         switch (mode) {
2179         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2180                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2181                 /* set CLR */
2182                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2183                 break;
2184
2185         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2186                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2187                 /* set SET */
2188                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2189                 break;
2190
2191         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2192                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2193                 /* set FLOAT */
2194                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2195                 break;
2196
2197         default:
2198                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2199                 rc = -EINVAL;
2200                 break;
2201         }
2202
2203         if (rc == 0)
2204                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2205
2206         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2207
2208         return rc;
2209 }
2210
2211 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2212 {
2213         /* The GPIO should be swapped if swap register is set and active */
2214         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2215                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2216         int gpio_shift = gpio_num +
2217                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2218         u32 gpio_mask = (1 << gpio_shift);
2219         u32 gpio_reg;
2220
2221         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2222                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2223                 return -EINVAL;
2224         }
2225
2226         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2227         /* read GPIO int */
2228         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2229
2230         switch (mode) {
2231         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2232                 DP(NETIF_MSG_LINK,
2233                    "Clear GPIO INT %d (shift %d) -> output low\n",
2234                    gpio_num, gpio_shift);
2235                 /* clear SET and set CLR */
2236                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238                 break;
2239
2240         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2241                 DP(NETIF_MSG_LINK,
2242                    "Set GPIO INT %d (shift %d) -> output high\n",
2243                    gpio_num, gpio_shift);
2244                 /* clear CLR and set SET */
2245                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2246                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2247                 break;
2248
2249         default:
2250                 break;
2251         }
2252
2253         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2254         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2255
2256         return 0;
2257 }
2258
2259 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2260 {
2261         u32 spio_reg;
2262
2263         /* Only 2 SPIOs are configurable */
2264         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2265                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2266                 return -EINVAL;
2267         }
2268
2269         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2270         /* read SPIO and mask except the float bits */
2271         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2272
2273         switch (mode) {
2274         case MISC_SPIO_OUTPUT_LOW:
2275                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2276                 /* clear FLOAT and set CLR */
2277                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2278                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2279                 break;
2280
2281         case MISC_SPIO_OUTPUT_HIGH:
2282                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2283                 /* clear FLOAT and set SET */
2284                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2285                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2286                 break;
2287
2288         case MISC_SPIO_INPUT_HI_Z:
2289                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2290                 /* set FLOAT */
2291                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2292                 break;
2293
2294         default:
2295                 break;
2296         }
2297
2298         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2299         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2300
2301         return 0;
2302 }
2303
2304 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2305 {
2306         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2307
2308         bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2309                                            ADVERTISED_Pause);
2310         switch (bp->link_vars.ieee_fc &
2311                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2312         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2313                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2314                                                   ADVERTISED_Pause);
2315                 break;
2316
2317         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2318                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2319                 break;
2320
2321         default:
2322                 break;
2323         }
2324 }
2325
2326 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2327 {
2328         /* Initialize link parameters structure variables
2329          * It is recommended to turn off RX FC for jumbo frames
2330          *  for better performance
2331          */
2332         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2333                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2334         else
2335                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2336 }
2337
2338 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2339 {
2340         u32 pause_enabled = 0;
2341
2342         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2343                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2344                         pause_enabled = 1;
2345
2346                 REG_WR(bp, BAR_USTRORM_INTMEM +
2347                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2348                        pause_enabled);
2349         }
2350
2351         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2352            pause_enabled ? "enabled" : "disabled");
2353 }
2354
2355 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2356 {
2357         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2358         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2359
2360         if (!BP_NOMCP(bp)) {
2361                 bnx2x_set_requested_fc(bp);
2362                 bnx2x_acquire_phy_lock(bp);
2363
2364                 if (load_mode == LOAD_DIAG) {
2365                         struct link_params *lp = &bp->link_params;
2366                         lp->loopback_mode = LOOPBACK_XGXS;
2367                         /* Prefer doing PHY loopback at highest speed */
2368                         if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2369                                 if (lp->speed_cap_mask[cfx_idx] &
2370                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2371                                         lp->req_line_speed[cfx_idx] =
2372                                         SPEED_20000;
2373                                 else if (lp->speed_cap_mask[cfx_idx] &
2374                                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2375                                                 lp->req_line_speed[cfx_idx] =
2376                                                 SPEED_10000;
2377                                 else
2378                                         lp->req_line_speed[cfx_idx] =
2379                                         SPEED_1000;
2380                         }
2381                 }
2382
2383                 if (load_mode == LOAD_LOOPBACK_EXT) {
2384                         struct link_params *lp = &bp->link_params;
2385                         lp->loopback_mode = LOOPBACK_EXT;
2386                 }
2387
2388                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2389
2390                 bnx2x_release_phy_lock(bp);
2391
2392                 bnx2x_init_dropless_fc(bp);
2393
2394                 bnx2x_calc_fc_adv(bp);
2395
2396                 if (bp->link_vars.link_up) {
2397                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2398                         bnx2x_link_report(bp);
2399                 }
2400                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2401                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2402                 return rc;
2403         }
2404         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2405         return -EINVAL;
2406 }
2407
2408 void bnx2x_link_set(struct bnx2x *bp)
2409 {
2410         if (!BP_NOMCP(bp)) {
2411                 bnx2x_acquire_phy_lock(bp);
2412                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2413                 bnx2x_release_phy_lock(bp);
2414
2415                 bnx2x_init_dropless_fc(bp);
2416
2417                 bnx2x_calc_fc_adv(bp);
2418         } else
2419                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2420 }
2421
2422 static void bnx2x__link_reset(struct bnx2x *bp)
2423 {
2424         if (!BP_NOMCP(bp)) {
2425                 bnx2x_acquire_phy_lock(bp);
2426                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2427                 bnx2x_release_phy_lock(bp);
2428         } else
2429                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2430 }
2431
2432 void bnx2x_force_link_reset(struct bnx2x *bp)
2433 {
2434         bnx2x_acquire_phy_lock(bp);
2435         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2436         bnx2x_release_phy_lock(bp);
2437 }
2438
2439 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2440 {
2441         u8 rc = 0;
2442
2443         if (!BP_NOMCP(bp)) {
2444                 bnx2x_acquire_phy_lock(bp);
2445                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2446                                      is_serdes);
2447                 bnx2x_release_phy_lock(bp);
2448         } else
2449                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2450
2451         return rc;
2452 }
2453
2454 /* Calculates the sum of vn_min_rates.
2455    It's needed for further normalizing of the min_rates.
2456    Returns:
2457      sum of vn_min_rates.
2458        or
2459      0 - if all the min_rates are 0.
2460      In the later case fairness algorithm should be deactivated.
2461      If not all min_rates are zero then those that are zeroes will be set to 1.
2462  */
2463 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2464                                       struct cmng_init_input *input)
2465 {
2466         int all_zero = 1;
2467         int vn;
2468
2469         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2470                 u32 vn_cfg = bp->mf_config[vn];
2471                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2472                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2473
2474                 /* Skip hidden vns */
2475                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2476                         vn_min_rate = 0;
2477                 /* If min rate is zero - set it to 1 */
2478                 else if (!vn_min_rate)
2479                         vn_min_rate = DEF_MIN_RATE;
2480                 else
2481                         all_zero = 0;
2482
2483                 input->vnic_min_rate[vn] = vn_min_rate;
2484         }
2485
2486         /* if ETS or all min rates are zeros - disable fairness */
2487         if (BNX2X_IS_ETS_ENABLED(bp)) {
2488                 input->flags.cmng_enables &=
2489                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2490                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2491         } else if (all_zero) {
2492                 input->flags.cmng_enables &=
2493                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2494                 DP(NETIF_MSG_IFUP,
2495                    "All MIN values are zeroes fairness will be disabled\n");
2496         } else
2497                 input->flags.cmng_enables |=
2498                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2499 }
2500
2501 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2502                                     struct cmng_init_input *input)
2503 {
2504         u16 vn_max_rate;
2505         u32 vn_cfg = bp->mf_config[vn];
2506
2507         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2508                 vn_max_rate = 0;
2509         else {
2510                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2511
2512                 if (IS_MF_PERCENT_BW(bp)) {
2513                         /* maxCfg in percents of linkspeed */
2514                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2515                 } else /* SD modes */
2516                         /* maxCfg is absolute in 100Mb units */
2517                         vn_max_rate = maxCfg * 100;
2518         }
2519
2520         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2521
2522         input->vnic_max_rate[vn] = vn_max_rate;
2523 }
2524
2525 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2526 {
2527         if (CHIP_REV_IS_SLOW(bp))
2528                 return CMNG_FNS_NONE;
2529         if (IS_MF(bp))
2530                 return CMNG_FNS_MINMAX;
2531
2532         return CMNG_FNS_NONE;
2533 }
2534
2535 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2536 {
2537         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2538
2539         if (BP_NOMCP(bp))
2540                 return; /* what should be the default value in this case */
2541
2542         /* For 2 port configuration the absolute function number formula
2543          * is:
2544          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2545          *
2546          *      and there are 4 functions per port
2547          *
2548          * For 4 port configuration it is
2549          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2550          *
2551          *      and there are 2 functions per port
2552          */
2553         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2554                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2555
2556                 if (func >= E1H_FUNC_MAX)
2557                         break;
2558
2559                 bp->mf_config[vn] =
2560                         MF_CFG_RD(bp, func_mf_config[func].config);
2561         }
2562         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2563                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2564                 bp->flags |= MF_FUNC_DIS;
2565         } else {
2566                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2567                 bp->flags &= ~MF_FUNC_DIS;
2568         }
2569 }
2570
2571 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2572 {
2573         struct cmng_init_input input;
2574         memset(&input, 0, sizeof(struct cmng_init_input));
2575
2576         input.port_rate = bp->link_vars.line_speed;
2577
2578         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2579                 int vn;
2580
2581                 /* read mf conf from shmem */
2582                 if (read_cfg)
2583                         bnx2x_read_mf_cfg(bp);
2584
2585                 /* vn_weight_sum and enable fairness if not 0 */
2586                 bnx2x_calc_vn_min(bp, &input);
2587
2588                 /* calculate and set min-max rate for each vn */
2589                 if (bp->port.pmf)
2590                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2591                                 bnx2x_calc_vn_max(bp, vn, &input);
2592
2593                 /* always enable rate shaping and fairness */
2594                 input.flags.cmng_enables |=
2595                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2596
2597                 bnx2x_init_cmng(&input, &bp->cmng);
2598                 return;
2599         }
2600
2601         /* rate shaping and fairness are disabled */
2602         DP(NETIF_MSG_IFUP,
2603            "rate shaping and fairness are disabled\n");
2604 }
2605
2606 static void storm_memset_cmng(struct bnx2x *bp,
2607                               struct cmng_init *cmng,
2608                               u8 port)
2609 {
2610         int vn;
2611         size_t size = sizeof(struct cmng_struct_per_port);
2612
2613         u32 addr = BAR_XSTRORM_INTMEM +
2614                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2615
2616         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2617
2618         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2619                 int func = func_by_vn(bp, vn);
2620
2621                 addr = BAR_XSTRORM_INTMEM +
2622                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2623                 size = sizeof(struct rate_shaping_vars_per_vn);
2624                 __storm_memset_struct(bp, addr, size,
2625                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2626
2627                 addr = BAR_XSTRORM_INTMEM +
2628                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2629                 size = sizeof(struct fairness_vars_per_vn);
2630                 __storm_memset_struct(bp, addr, size,
2631                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2632         }
2633 }
2634
2635 /* init cmng mode in HW according to local configuration */
2636 void bnx2x_set_local_cmng(struct bnx2x *bp)
2637 {
2638         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2639
2640         if (cmng_fns != CMNG_FNS_NONE) {
2641                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2642                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2643         } else {
2644                 /* rate shaping and fairness are disabled */
2645                 DP(NETIF_MSG_IFUP,
2646                    "single function mode without fairness\n");
2647         }
2648 }
2649
2650 /* This function is called upon link interrupt */
2651 static void bnx2x_link_attn(struct bnx2x *bp)
2652 {
2653         /* Make sure that we are synced with the current statistics */
2654         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2655
2656         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2657
2658         bnx2x_init_dropless_fc(bp);
2659
2660         if (bp->link_vars.link_up) {
2661
2662                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2663                         struct host_port_stats *pstats;
2664
2665                         pstats = bnx2x_sp(bp, port_stats);
2666                         /* reset old mac stats */
2667                         memset(&(pstats->mac_stx[0]), 0,
2668                                sizeof(struct mac_stx));
2669                 }
2670                 if (bp->state == BNX2X_STATE_OPEN)
2671                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2672         }
2673
2674         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2675                 bnx2x_set_local_cmng(bp);
2676
2677         __bnx2x_link_report(bp);
2678
2679         if (IS_MF(bp))
2680                 bnx2x_link_sync_notify(bp);
2681 }
2682
2683 void bnx2x__link_status_update(struct bnx2x *bp)
2684 {
2685         if (bp->state != BNX2X_STATE_OPEN)
2686                 return;
2687
2688         /* read updated dcb configuration */
2689         if (IS_PF(bp)) {
2690                 bnx2x_dcbx_pmf_update(bp);
2691                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2692                 if (bp->link_vars.link_up)
2693                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2694                 else
2695                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2696                         /* indicate link status */
2697                 bnx2x_link_report(bp);
2698
2699         } else { /* VF */
2700                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2701                                           SUPPORTED_10baseT_Full |
2702                                           SUPPORTED_100baseT_Half |
2703                                           SUPPORTED_100baseT_Full |
2704                                           SUPPORTED_1000baseT_Full |
2705                                           SUPPORTED_2500baseX_Full |
2706                                           SUPPORTED_10000baseT_Full |
2707                                           SUPPORTED_TP |
2708                                           SUPPORTED_FIBRE |
2709                                           SUPPORTED_Autoneg |
2710                                           SUPPORTED_Pause |
2711                                           SUPPORTED_Asym_Pause);
2712                 bp->port.advertising[0] = bp->port.supported[0];
2713
2714                 bp->link_params.bp = bp;
2715                 bp->link_params.port = BP_PORT(bp);
2716                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2717                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2718                 bp->link_params.req_line_speed[0] = SPEED_10000;
2719                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2720                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2721                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2722                 bp->link_vars.line_speed = SPEED_10000;
2723                 bp->link_vars.link_status =
2724                         (LINK_STATUS_LINK_UP |
2725                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2726                 bp->link_vars.link_up = 1;
2727                 bp->link_vars.duplex = DUPLEX_FULL;
2728                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2729                 __bnx2x_link_report(bp);
2730
2731                 bnx2x_sample_bulletin(bp);
2732
2733                 /* if bulletin board did not have an update for link status
2734                  * __bnx2x_link_report will report current status
2735                  * but it will NOT duplicate report in case of already reported
2736                  * during sampling bulletin board.
2737                  */
2738                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2739         }
2740 }
2741
2742 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2743                                   u16 vlan_val, u8 allowed_prio)
2744 {
2745         struct bnx2x_func_state_params func_params = {NULL};
2746         struct bnx2x_func_afex_update_params *f_update_params =
2747                 &func_params.params.afex_update;
2748
2749         func_params.f_obj = &bp->func_obj;
2750         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2751
2752         /* no need to wait for RAMROD completion, so don't
2753          * set RAMROD_COMP_WAIT flag
2754          */
2755
2756         f_update_params->vif_id = vifid;
2757         f_update_params->afex_default_vlan = vlan_val;
2758         f_update_params->allowed_priorities = allowed_prio;
2759
2760         /* if ramrod can not be sent, response to MCP immediately */
2761         if (bnx2x_func_state_change(bp, &func_params) < 0)
2762                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2763
2764         return 0;
2765 }
2766
2767 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2768                                           u16 vif_index, u8 func_bit_map)
2769 {
2770         struct bnx2x_func_state_params func_params = {NULL};
2771         struct bnx2x_func_afex_viflists_params *update_params =
2772                 &func_params.params.afex_viflists;
2773         int rc;
2774         u32 drv_msg_code;
2775
2776         /* validate only LIST_SET and LIST_GET are received from switch */
2777         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2778                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2779                           cmd_type);
2780
2781         func_params.f_obj = &bp->func_obj;
2782         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2783
2784         /* set parameters according to cmd_type */
2785         update_params->afex_vif_list_command = cmd_type;
2786         update_params->vif_list_index = vif_index;
2787         update_params->func_bit_map =
2788                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2789         update_params->func_to_clear = 0;
2790         drv_msg_code =
2791                 (cmd_type == VIF_LIST_RULE_GET) ?
2792                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2793                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2794
2795         /* if ramrod can not be sent, respond to MCP immediately for
2796          * SET and GET requests (other are not triggered from MCP)
2797          */
2798         rc = bnx2x_func_state_change(bp, &func_params);
2799         if (rc < 0)
2800                 bnx2x_fw_command(bp, drv_msg_code, 0);
2801
2802         return 0;
2803 }
2804
2805 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2806 {
2807         struct afex_stats afex_stats;
2808         u32 func = BP_ABS_FUNC(bp);
2809         u32 mf_config;
2810         u16 vlan_val;
2811         u32 vlan_prio;
2812         u16 vif_id;
2813         u8 allowed_prio;
2814         u8 vlan_mode;
2815         u32 addr_to_write, vifid, addrs, stats_type, i;
2816
2817         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2818                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2819                 DP(BNX2X_MSG_MCP,
2820                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2821                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2822         }
2823
2824         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2825                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2826                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2827                 DP(BNX2X_MSG_MCP,
2828                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2829                    vifid, addrs);
2830                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2831                                                addrs);
2832         }
2833
2834         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2835                 addr_to_write = SHMEM2_RD(bp,
2836                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2837                 stats_type = SHMEM2_RD(bp,
2838                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2839
2840                 DP(BNX2X_MSG_MCP,
2841                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2842                    addr_to_write);
2843
2844                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2845
2846                 /* write response to scratchpad, for MCP */
2847                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2848                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2849                                *(((u32 *)(&afex_stats))+i));
2850
2851                 /* send ack message to MCP */
2852                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2853         }
2854
2855         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2856                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2857                 bp->mf_config[BP_VN(bp)] = mf_config;
2858                 DP(BNX2X_MSG_MCP,
2859                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2860                    mf_config);
2861
2862                 /* if VIF_SET is "enabled" */
2863                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2864                         /* set rate limit directly to internal RAM */
2865                         struct cmng_init_input cmng_input;
2866                         struct rate_shaping_vars_per_vn m_rs_vn;
2867                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2868                         u32 addr = BAR_XSTRORM_INTMEM +
2869                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2870
2871                         bp->mf_config[BP_VN(bp)] = mf_config;
2872
2873                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2874                         m_rs_vn.vn_counter.rate =
2875                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2876                         m_rs_vn.vn_counter.quota =
2877                                 (m_rs_vn.vn_counter.rate *
2878                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2879
2880                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2881
2882                         /* read relevant values from mf_cfg struct in shmem */
2883                         vif_id =
2884                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2885                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2886                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2887                         vlan_val =
2888                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2889                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2890                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2891                         vlan_prio = (mf_config &
2892                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2893                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2894                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2895                         vlan_mode =
2896                                 (MF_CFG_RD(bp,
2897                                            func_mf_config[func].afex_config) &
2898                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2899                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2900                         allowed_prio =
2901                                 (MF_CFG_RD(bp,
2902                                            func_mf_config[func].afex_config) &
2903                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2904                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2905
2906                         /* send ramrod to FW, return in case of failure */
2907                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2908                                                    allowed_prio))
2909                                 return;
2910
2911                         bp->afex_def_vlan_tag = vlan_val;
2912                         bp->afex_vlan_mode = vlan_mode;
2913                 } else {
2914                         /* notify link down because BP->flags is disabled */
2915                         bnx2x_link_report(bp);
2916
2917                         /* send INVALID VIF ramrod to FW */
2918                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2919
2920                         /* Reset the default afex VLAN */
2921                         bp->afex_def_vlan_tag = -1;
2922                 }
2923         }
2924 }
2925
2926 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2927 {
2928         struct bnx2x_func_switch_update_params *switch_update_params;
2929         struct bnx2x_func_state_params func_params;
2930
2931         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2932         switch_update_params = &func_params.params.switch_update;
2933         func_params.f_obj = &bp->func_obj;
2934         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2935
2936         /* Prepare parameters for function state transitions */
2937         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2938         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2939
2940         if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2941                 int func = BP_ABS_FUNC(bp);
2942                 u32 val;
2943
2944                 /* Re-learn the S-tag from shmem */
2945                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2946                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2947                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2948                         bp->mf_ov = val;
2949                 } else {
2950                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2951                         goto fail;
2952                 }
2953
2954                 /* Configure new S-tag in LLH */
2955                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2956                        bp->mf_ov);
2957
2958                 /* Send Ramrod to update FW of change */
2959                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2960                           &switch_update_params->changes);
2961                 switch_update_params->vlan = bp->mf_ov;
2962
2963                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2964                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2965                                   bp->mf_ov);
2966                         goto fail;
2967                 } else {
2968                         DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2969                            bp->mf_ov);
2970                 }
2971         } else {
2972                 goto fail;
2973         }
2974
2975         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2976         return;
2977 fail:
2978         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2979 }
2980
2981 static void bnx2x_pmf_update(struct bnx2x *bp)
2982 {
2983         int port = BP_PORT(bp);
2984         u32 val;
2985
2986         bp->port.pmf = 1;
2987         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2988
2989         /*
2990          * We need the mb() to ensure the ordering between the writing to
2991          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2992          */
2993         smp_mb();
2994
2995         /* queue a periodic task */
2996         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2997
2998         bnx2x_dcbx_pmf_update(bp);
2999
3000         /* enable nig attention */
3001         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3002         if (bp->common.int_block == INT_BLOCK_HC) {
3003                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3004                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3005         } else if (!CHIP_IS_E1x(bp)) {
3006                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3007                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3008         }
3009
3010         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3011 }
3012
3013 /* end of Link */
3014
3015 /* slow path */
3016
3017 /*
3018  * General service functions
3019  */
3020
3021 /* send the MCP a request, block until there is a reply */
3022 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3023 {
3024         int mb_idx = BP_FW_MB_IDX(bp);
3025         u32 seq;
3026         u32 rc = 0;
3027         u32 cnt = 1;
3028         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3029
3030         mutex_lock(&bp->fw_mb_mutex);
3031         seq = ++bp->fw_seq;
3032         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3033         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3034
3035         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3036                         (command | seq), param);
3037
3038         do {
3039                 /* let the FW do it's magic ... */
3040                 msleep(delay);
3041
3042                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3043
3044                 /* Give the FW up to 5 second (500*10ms) */
3045         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3046
3047         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3048            cnt*delay, rc, seq);
3049
3050         /* is this a reply to our command? */
3051         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3052                 rc &= FW_MSG_CODE_MASK;
3053         else {
3054                 /* FW BUG! */
3055                 BNX2X_ERR("FW failed to respond!\n");
3056                 bnx2x_fw_dump(bp);
3057                 rc = 0;
3058         }
3059         mutex_unlock(&bp->fw_mb_mutex);
3060
3061         return rc;
3062 }
3063
3064 static void storm_memset_func_cfg(struct bnx2x *bp,
3065                                  struct tstorm_eth_function_common_config *tcfg,
3066                                  u16 abs_fid)
3067 {
3068         size_t size = sizeof(struct tstorm_eth_function_common_config);
3069
3070         u32 addr = BAR_TSTRORM_INTMEM +
3071                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3072
3073         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3074 }
3075
3076 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3077 {
3078         if (CHIP_IS_E1x(bp)) {
3079                 struct tstorm_eth_function_common_config tcfg = {0};
3080
3081                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3082         }
3083
3084         /* Enable the function in the FW */
3085         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3086         storm_memset_func_en(bp, p->func_id, 1);
3087
3088         /* spq */
3089         if (p->spq_active) {
3090                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3091                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3092                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3093         }
3094 }
3095
3096 /**
3097  * bnx2x_get_common_flags - Return common flags
3098  *
3099  * @bp:         device handle
3100  * @fp:         queue handle
3101  * @zero_stats: TRUE if statistics zeroing is needed
3102  *
3103  * Return the flags that are common for the Tx-only and not normal connections.
3104  */
3105 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3106                                             struct bnx2x_fastpath *fp,
3107                                             bool zero_stats)
3108 {
3109         unsigned long flags = 0;
3110
3111         /* PF driver will always initialize the Queue to an ACTIVE state */
3112         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3113
3114         /* tx only connections collect statistics (on the same index as the
3115          * parent connection). The statistics are zeroed when the parent
3116          * connection is initialized.
3117          */
3118
3119         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3120         if (zero_stats)
3121                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3122
3123         if (bp->flags & TX_SWITCHING)
3124                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3125
3126         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3127         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3128
3129 #ifdef BNX2X_STOP_ON_ERROR
3130         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3131 #endif
3132
3133         return flags;
3134 }
3135
3136 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3137                                        struct bnx2x_fastpath *fp,
3138                                        bool leading)
3139 {
3140         unsigned long flags = 0;
3141
3142         /* calculate other queue flags */
3143         if (IS_MF_SD(bp))
3144                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3145
3146         if (IS_FCOE_FP(fp)) {
3147                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3148                 /* For FCoE - force usage of default priority (for afex) */
3149                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3150         }
3151
3152         if (fp->mode != TPA_MODE_DISABLED) {
3153                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3154                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3155                 if (fp->mode == TPA_MODE_GRO)
3156                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3157         }
3158
3159         if (leading) {
3160                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3161                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3162         }
3163
3164         /* Always set HW VLAN stripping */
3165         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3166
3167         /* configure silent vlan removal */
3168         if (IS_MF_AFEX(bp))
3169                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3170
3171         return flags | bnx2x_get_common_flags(bp, fp, true);
3172 }
3173
3174 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3175         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3176         u8 cos)
3177 {
3178         gen_init->stat_id = bnx2x_stats_id(fp);
3179         gen_init->spcl_id = fp->cl_id;
3180
3181         /* Always use mini-jumbo MTU for FCoE L2 ring */
3182         if (IS_FCOE_FP(fp))
3183                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3184         else
3185                 gen_init->mtu = bp->dev->mtu;
3186
3187         gen_init->cos = cos;
3188
3189         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3190 }
3191
3192 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3193         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3194         struct bnx2x_rxq_setup_params *rxq_init)
3195 {
3196         u8 max_sge = 0;
3197         u16 sge_sz = 0;
3198         u16 tpa_agg_size = 0;
3199
3200         if (fp->mode != TPA_MODE_DISABLED) {
3201                 pause->sge_th_lo = SGE_TH_LO(bp);
3202                 pause->sge_th_hi = SGE_TH_HI(bp);
3203
3204                 /* validate SGE ring has enough to cross high threshold */
3205                 WARN_ON(bp->dropless_fc &&
3206                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3207                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3208
3209                 tpa_agg_size = TPA_AGG_SIZE;
3210                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3211                         SGE_PAGE_SHIFT;
3212                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3213                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3214                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3215         }
3216
3217         /* pause - not for e1 */
3218         if (!CHIP_IS_E1(bp)) {
3219                 pause->bd_th_lo = BD_TH_LO(bp);
3220                 pause->bd_th_hi = BD_TH_HI(bp);
3221
3222                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3223                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3224                 /*
3225                  * validate that rings have enough entries to cross
3226                  * high thresholds
3227                  */
3228                 WARN_ON(bp->dropless_fc &&
3229                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3230                                 bp->rx_ring_size);
3231                 WARN_ON(bp->dropless_fc &&
3232                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3233                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3234
3235                 pause->pri_map = 1;
3236         }
3237
3238         /* rxq setup */
3239         rxq_init->dscr_map = fp->rx_desc_mapping;
3240         rxq_init->sge_map = fp->rx_sge_mapping;
3241         rxq_init->rcq_map = fp->rx_comp_mapping;
3242         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3243
3244         /* This should be a maximum number of data bytes that may be
3245          * placed on the BD (not including paddings).
3246          */
3247         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3248                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3249
3250         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3251         rxq_init->tpa_agg_sz = tpa_agg_size;
3252         rxq_init->sge_buf_sz = sge_sz;
3253         rxq_init->max_sges_pkt = max_sge;
3254         rxq_init->rss_engine_id = BP_FUNC(bp);
3255         rxq_init->mcast_engine_id = BP_FUNC(bp);
3256
3257         /* Maximum number or simultaneous TPA aggregation for this Queue.
3258          *
3259          * For PF Clients it should be the maximum available number.
3260          * VF driver(s) may want to define it to a smaller value.
3261          */
3262         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3263
3264         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3265         rxq_init->fw_sb_id = fp->fw_sb_id;
3266
3267         if (IS_FCOE_FP(fp))
3268                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3269         else
3270                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3271         /* configure silent vlan removal
3272          * if multi function mode is afex, then mask default vlan
3273          */
3274         if (IS_MF_AFEX(bp)) {
3275                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3276                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3277         }
3278 }
3279
3280 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3281         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3282         u8 cos)
3283 {
3284         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3285         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3286         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3287         txq_init->fw_sb_id = fp->fw_sb_id;
3288
3289         /*
3290          * set the tss leading client id for TX classification ==
3291          * leading RSS client id
3292          */
3293         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3294
3295         if (IS_FCOE_FP(fp)) {
3296                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3297                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3298         }
3299 }
3300
3301 static void bnx2x_pf_init(struct bnx2x *bp)
3302 {
3303         struct bnx2x_func_init_params func_init = {0};
3304         struct event_ring_data eq_data = { {0} };
3305
3306         if (!CHIP_IS_E1x(bp)) {
3307                 /* reset IGU PF statistics: MSIX + ATTN */
3308                 /* PF */
3309                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3310                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3311                            (CHIP_MODE_IS_4_PORT(bp) ?
3312                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3313                 /* ATTN */
3314                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3315                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3316                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3317                            (CHIP_MODE_IS_4_PORT(bp) ?
3318                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3319         }
3320
3321         func_init.spq_active = true;
3322         func_init.pf_id = BP_FUNC(bp);
3323         func_init.func_id = BP_FUNC(bp);
3324         func_init.spq_map = bp->spq_mapping;
3325         func_init.spq_prod = bp->spq_prod_idx;
3326
3327         bnx2x_func_init(bp, &func_init);
3328
3329         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3330
3331         /*
3332          * Congestion management values depend on the link rate
3333          * There is no active link so initial link rate is set to 10 Gbps.
3334          * When the link comes up The congestion management values are
3335          * re-calculated according to the actual link rate.
3336          */
3337         bp->link_vars.line_speed = SPEED_10000;
3338         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3339
3340         /* Only the PMF sets the HW */
3341         if (bp->port.pmf)
3342                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3343
3344         /* init Event Queue - PCI bus guarantees correct endianity*/
3345         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3346         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3347         eq_data.producer = bp->eq_prod;
3348         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3349         eq_data.sb_id = DEF_SB_ID;
3350         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3351 }
3352
3353 static void bnx2x_e1h_disable(struct bnx2x *bp)
3354 {
3355         int port = BP_PORT(bp);
3356
3357         bnx2x_tx_disable(bp);
3358
3359         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3360 }
3361
3362 static void bnx2x_e1h_enable(struct bnx2x *bp)
3363 {
3364         int port = BP_PORT(bp);
3365
3366         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3367                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3368
3369         /* Tx queue should be only re-enabled */
3370         netif_tx_wake_all_queues(bp->dev);
3371
3372         /*
3373          * Should not call netif_carrier_on since it will be called if the link
3374          * is up when checking for link state
3375          */
3376 }
3377
3378 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3379
3380 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3381 {
3382         struct eth_stats_info *ether_stat =
3383                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3384         struct bnx2x_vlan_mac_obj *mac_obj =
3385                 &bp->sp_objs->mac_obj;
3386         int i;
3387
3388         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3389                 ETH_STAT_INFO_VERSION_LEN);
3390
3391         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3392          * mac_local field in ether_stat struct. The base address is offset by 2
3393          * bytes to account for the field being 8 bytes but a mac address is
3394          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3395          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3396          * allocated by the ether_stat struct, so the macs will land in their
3397          * proper positions.
3398          */
3399         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3400                 memset(ether_stat->mac_local + i, 0,
3401                        sizeof(ether_stat->mac_local[0]));
3402         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3403                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3404                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3405                                 ETH_ALEN);
3406         ether_stat->mtu_size = bp->dev->mtu;
3407         if (bp->dev->features & NETIF_F_RXCSUM)
3408                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3409         if (bp->dev->features & NETIF_F_TSO)
3410                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3411         ether_stat->feature_flags |= bp->common.boot_mode;
3412
3413         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3414
3415         ether_stat->txq_size = bp->tx_ring_size;
3416         ether_stat->rxq_size = bp->rx_ring_size;
3417
3418 #ifdef CONFIG_BNX2X_SRIOV
3419         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3420 #endif
3421 }
3422
3423 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3424 {
3425         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3426         struct fcoe_stats_info *fcoe_stat =
3427                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3428
3429         if (!CNIC_LOADED(bp))
3430                 return;
3431
3432         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3433
3434         fcoe_stat->qos_priority =
3435                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3436
3437         /* insert FCoE stats from ramrod response */
3438         if (!NO_FCOE(bp)) {
3439                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3440                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3441                         tstorm_queue_statistics;
3442
3443                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3444                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3445                         xstorm_queue_statistics;
3446
3447                 struct fcoe_statistics_params *fw_fcoe_stat =
3448                         &bp->fw_stats_data->fcoe;
3449
3450                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3451                           fcoe_stat->rx_bytes_lo,
3452                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3453
3454                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3455                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3456                           fcoe_stat->rx_bytes_lo,
3457                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3458
3459                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3460                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3461                           fcoe_stat->rx_bytes_lo,
3462                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3463
3464                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3465                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3466                           fcoe_stat->rx_bytes_lo,
3467                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3468
3469                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470                           fcoe_stat->rx_frames_lo,
3471                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3472
3473                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3474                           fcoe_stat->rx_frames_lo,
3475                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3476
3477                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3478                           fcoe_stat->rx_frames_lo,
3479                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3480
3481                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3482                           fcoe_stat->rx_frames_lo,
3483                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3484
3485                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3486                           fcoe_stat->tx_bytes_lo,
3487                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3488
3489                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3490                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3491                           fcoe_stat->tx_bytes_lo,
3492                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3493
3494                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3495                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3496                           fcoe_stat->tx_bytes_lo,
3497                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3498
3499                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3500                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3501                           fcoe_stat->tx_bytes_lo,
3502                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3503
3504                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505                           fcoe_stat->tx_frames_lo,
3506                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3507
3508                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3509                           fcoe_stat->tx_frames_lo,
3510                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3511
3512                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3513                           fcoe_stat->tx_frames_lo,
3514                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3515
3516                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3517                           fcoe_stat->tx_frames_lo,
3518                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3519         }
3520
3521         /* ask L5 driver to add data to the struct */
3522         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3523 }
3524
3525 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3526 {
3527         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3528         struct iscsi_stats_info *iscsi_stat =
3529                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3530
3531         if (!CNIC_LOADED(bp))
3532                 return;
3533
3534         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3535                ETH_ALEN);
3536
3537         iscsi_stat->qos_priority =
3538                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3539
3540         /* ask L5 driver to add data to the struct */
3541         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3542 }
3543
3544 /* called due to MCP event (on pmf):
3545  *      reread new bandwidth configuration
3546  *      configure FW
3547  *      notify others function about the change
3548  */
3549 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3550 {
3551         /* Workaround for MFW bug.
3552          * MFW is not supposed to generate BW attention in
3553          * single function mode.
3554          */
3555         if (!IS_MF(bp)) {
3556                 DP(BNX2X_MSG_MCP,
3557                    "Ignoring MF BW config in single function mode\n");
3558                 return;
3559         }
3560
3561         if (bp->link_vars.link_up) {
3562                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3563                 bnx2x_link_sync_notify(bp);
3564         }
3565         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3566 }
3567
3568 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3569 {
3570         bnx2x_config_mf_bw(bp);
3571         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3572 }
3573
3574 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3575 {
3576         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3577         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3578 }
3579
3580 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3581 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3582
3583 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3584 {
3585         enum drv_info_opcode op_code;
3586         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3587         bool release = false;
3588         int wait;
3589
3590         /* if drv_info version supported by MFW doesn't match - send NACK */
3591         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3592                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3593                 return;
3594         }
3595
3596         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3597                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3598
3599         /* Must prevent other flows from accessing drv_info_to_mcp */
3600         mutex_lock(&bp->drv_info_mutex);
3601
3602         memset(&bp->slowpath->drv_info_to_mcp, 0,
3603                sizeof(union drv_info_to_mcp));
3604
3605         switch (op_code) {
3606         case ETH_STATS_OPCODE:
3607                 bnx2x_drv_info_ether_stat(bp);
3608                 break;
3609         case FCOE_STATS_OPCODE:
3610                 bnx2x_drv_info_fcoe_stat(bp);
3611                 break;
3612         case ISCSI_STATS_OPCODE:
3613                 bnx2x_drv_info_iscsi_stat(bp);
3614                 break;
3615         default:
3616                 /* if op code isn't supported - send NACK */
3617                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3618                 goto out;
3619         }
3620
3621         /* if we got drv_info attn from MFW then these fields are defined in
3622          * shmem2 for sure
3623          */
3624         SHMEM2_WR(bp, drv_info_host_addr_lo,
3625                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3626         SHMEM2_WR(bp, drv_info_host_addr_hi,
3627                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3628
3629         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3630
3631         /* Since possible management wants both this and get_driver_version
3632          * need to wait until management notifies us it finished utilizing
3633          * the buffer.
3634          */
3635         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3636                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3637         } else if (!bp->drv_info_mng_owner) {
3638                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3639
3640                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3641                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3642
3643                         /* Management is done; need to clear indication */
3644                         if (indication & bit) {
3645                                 SHMEM2_WR(bp, mfw_drv_indication,
3646                                           indication & ~bit);
3647                                 release = true;
3648                                 break;
3649                         }
3650
3651                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3652                 }
3653         }
3654         if (!release) {
3655                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3656                 bp->drv_info_mng_owner = true;
3657         }
3658
3659 out:
3660         mutex_unlock(&bp->drv_info_mutex);
3661 }
3662
3663 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3664 {
3665         u8 vals[4];
3666         int i = 0;
3667
3668         if (bnx2x_format) {
3669                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3670                            &vals[0], &vals[1], &vals[2], &vals[3]);
3671                 if (i > 0)
3672                         vals[0] -= '0';
3673         } else {
3674                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3675                            &vals[0], &vals[1], &vals[2], &vals[3]);
3676         }
3677
3678         while (i < 4)
3679                 vals[i++] = 0;
3680
3681         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3682 }
3683
3684 void bnx2x_update_mng_version(struct bnx2x *bp)
3685 {
3686         u32 iscsiver = DRV_VER_NOT_LOADED;
3687         u32 fcoever = DRV_VER_NOT_LOADED;
3688         u32 ethver = DRV_VER_NOT_LOADED;
3689         int idx = BP_FW_MB_IDX(bp);
3690         u8 *version;
3691
3692         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3693                 return;
3694
3695         mutex_lock(&bp->drv_info_mutex);
3696         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3697         if (bp->drv_info_mng_owner)
3698                 goto out;
3699
3700         if (bp->state != BNX2X_STATE_OPEN)
3701                 goto out;
3702
3703         /* Parse ethernet driver version */
3704         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3705         if (!CNIC_LOADED(bp))
3706                 goto out;
3707
3708         /* Try getting storage driver version via cnic */
3709         memset(&bp->slowpath->drv_info_to_mcp, 0,
3710                sizeof(union drv_info_to_mcp));
3711         bnx2x_drv_info_iscsi_stat(bp);
3712         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3713         iscsiver = bnx2x_update_mng_version_utility(version, false);
3714
3715         memset(&bp->slowpath->drv_info_to_mcp, 0,
3716                sizeof(union drv_info_to_mcp));
3717         bnx2x_drv_info_fcoe_stat(bp);
3718         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3719         fcoever = bnx2x_update_mng_version_utility(version, false);
3720
3721 out:
3722         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3723         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3724         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3725
3726         mutex_unlock(&bp->drv_info_mutex);
3727
3728         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3729            ethver, iscsiver, fcoever);
3730 }
3731
3732 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3733 {
3734         u32 drv_ver;
3735         u32 valid_dump;
3736
3737         if (!SHMEM2_HAS(bp, drv_info))
3738                 return;
3739
3740         /* Update Driver load time, possibly broken in y2038 */
3741         SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3742
3743         drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3744         SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3745
3746         SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3747
3748         /* Check & notify On-Chip dump. */
3749         valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3750
3751         if (valid_dump & FIRST_DUMP_VALID)
3752                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3753
3754         if (valid_dump & SECOND_DUMP_VALID)
3755                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3756 }
3757
3758 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3759 {
3760         u32 cmd_ok, cmd_fail;
3761
3762         /* sanity */
3763         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3764             event & DRV_STATUS_OEM_EVENT_MASK) {
3765                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3766                 return;
3767         }
3768
3769         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3770                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3771                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3772         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3773                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3774                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3775         }
3776
3777         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3778
3779         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3780                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3781                 /* This is the only place besides the function initialization
3782                  * where the bp->flags can change so it is done without any
3783                  * locks
3784                  */
3785                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3786                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3787                         bp->flags |= MF_FUNC_DIS;
3788
3789                         bnx2x_e1h_disable(bp);
3790                 } else {
3791                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3792                         bp->flags &= ~MF_FUNC_DIS;
3793
3794                         bnx2x_e1h_enable(bp);
3795                 }
3796                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3797                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3798         }
3799
3800         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3801                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3802                 bnx2x_config_mf_bw(bp);
3803                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3804                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3805         }
3806
3807         /* Report results to MCP */
3808         if (event)
3809                 bnx2x_fw_command(bp, cmd_fail, 0);
3810         else
3811                 bnx2x_fw_command(bp, cmd_ok, 0);
3812 }
3813
3814 /* must be called under the spq lock */
3815 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3816 {
3817         struct eth_spe *next_spe = bp->spq_prod_bd;
3818
3819         if (bp->spq_prod_bd == bp->spq_last_bd) {
3820                 bp->spq_prod_bd = bp->spq;
3821                 bp->spq_prod_idx = 0;
3822                 DP(BNX2X_MSG_SP, "end of spq\n");
3823         } else {
3824                 bp->spq_prod_bd++;
3825                 bp->spq_prod_idx++;
3826         }
3827         return next_spe;
3828 }
3829
3830 /* must be called under the spq lock */
3831 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3832 {
3833         int func = BP_FUNC(bp);
3834
3835         /*
3836          * Make sure that BD data is updated before writing the producer:
3837          * BD data is written to the memory, the producer is read from the
3838          * memory, thus we need a full memory barrier to ensure the ordering.
3839          */
3840         mb();
3841
3842         REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3843                          bp->spq_prod_idx);
3844 }
3845
3846 /**
3847  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3848  *
3849  * @cmd:        command to check
3850  * @cmd_type:   command type
3851  */
3852 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3853 {
3854         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3855             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3856             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3857             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3858             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3859             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3860             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3861                 return true;
3862         else
3863                 return false;
3864 }
3865
3866 /**
3867  * bnx2x_sp_post - place a single command on an SP ring
3868  *
3869  * @bp:         driver handle
3870  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3871  * @cid:        SW CID the command is related to
3872  * @data_hi:    command private data address (high 32 bits)
3873  * @data_lo:    command private data address (low 32 bits)
3874  * @cmd_type:   command type (e.g. NONE, ETH)
3875  *
3876  * SP data is handled as if it's always an address pair, thus data fields are
3877  * not swapped to little endian in upper functions. Instead this function swaps
3878  * data as if it's two u32 fields.
3879  */
3880 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3881                   u32 data_hi, u32 data_lo, int cmd_type)
3882 {
3883         struct eth_spe *spe;
3884         u16 type;
3885         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3886
3887 #ifdef BNX2X_STOP_ON_ERROR
3888         if (unlikely(bp->panic)) {
3889                 BNX2X_ERR("Can't post SP when there is panic\n");
3890                 return -EIO;
3891         }
3892 #endif
3893
3894         spin_lock_bh(&bp->spq_lock);
3895
3896         if (common) {
3897                 if (!atomic_read(&bp->eq_spq_left)) {
3898                         BNX2X_ERR("BUG! EQ ring full!\n");
3899                         spin_unlock_bh(&bp->spq_lock);
3900                         bnx2x_panic();
3901                         return -EBUSY;
3902                 }
3903         } else if (!atomic_read(&bp->cq_spq_left)) {
3904                         BNX2X_ERR("BUG! SPQ ring full!\n");
3905                         spin_unlock_bh(&bp->spq_lock);
3906                         bnx2x_panic();
3907                         return -EBUSY;
3908         }
3909
3910         spe = bnx2x_sp_get_next(bp);
3911
3912         /* CID needs port number to be encoded int it */
3913         spe->hdr.conn_and_cmd_data =
3914                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3915                                     HW_CID(bp, cid));
3916
3917         /* In some cases, type may already contain the func-id
3918          * mainly in SRIOV related use cases, so we add it here only
3919          * if it's not already set.
3920          */
3921         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3922                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3923                         SPE_HDR_CONN_TYPE;
3924                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3925                          SPE_HDR_FUNCTION_ID);
3926         } else {
3927                 type = cmd_type;
3928         }
3929
3930         spe->hdr.type = cpu_to_le16(type);
3931
3932         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3933         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3934
3935         /*
3936          * It's ok if the actual decrement is issued towards the memory
3937          * somewhere between the spin_lock and spin_unlock. Thus no
3938          * more explicit memory barrier is needed.
3939          */
3940         if (common)
3941                 atomic_dec(&bp->eq_spq_left);
3942         else
3943                 atomic_dec(&bp->cq_spq_left);
3944
3945         DP(BNX2X_MSG_SP,
3946            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3947            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3948            (u32)(U64_LO(bp->spq_mapping) +
3949            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3950            HW_CID(bp, cid), data_hi, data_lo, type,
3951            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3952
3953         bnx2x_sp_prod_update(bp);
3954         spin_unlock_bh(&bp->spq_lock);
3955         return 0;
3956 }
3957
3958 /* acquire split MCP access lock register */
3959 static int bnx2x_acquire_alr(struct bnx2x *bp)
3960 {
3961         u32 j, val;
3962         int rc = 0;
3963
3964         might_sleep();
3965         for (j = 0; j < 1000; j++) {
3966                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3967                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3968                 if (val & MCPR_ACCESS_LOCK_LOCK)
3969                         break;
3970
3971                 usleep_range(5000, 10000);
3972         }
3973         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3974                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3975                 rc = -EBUSY;
3976         }
3977
3978         return rc;
3979 }
3980
3981 /* release split MCP access lock register */
3982 static void bnx2x_release_alr(struct bnx2x *bp)
3983 {
3984         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3985 }
3986
3987 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3988 #define BNX2X_DEF_SB_IDX        0x0002
3989
3990 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3991 {
3992         struct host_sp_status_block *def_sb = bp->def_status_blk;
3993         u16 rc = 0;
3994
3995         barrier(); /* status block is written to by the chip */
3996         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3997                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3998                 rc |= BNX2X_DEF_SB_ATT_IDX;
3999         }
4000
4001         if (bp->def_idx != def_sb->sp_sb.running_index) {
4002                 bp->def_idx = def_sb->sp_sb.running_index;
4003                 rc |= BNX2X_DEF_SB_IDX;
4004         }
4005
4006         /* Do not reorder: indices reading should complete before handling */
4007         barrier();
4008         return rc;
4009 }
4010
4011 /*
4012  * slow path service functions
4013  */
4014
4015 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4016 {
4017         int port = BP_PORT(bp);
4018         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4019                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4020         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4021                                        NIG_REG_MASK_INTERRUPT_PORT0;
4022         u32 aeu_mask;
4023         u32 nig_mask = 0;
4024         u32 reg_addr;
4025
4026         if (bp->attn_state & asserted)
4027                 BNX2X_ERR("IGU ERROR\n");
4028
4029         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4030         aeu_mask = REG_RD(bp, aeu_addr);
4031
4032         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4033            aeu_mask, asserted);
4034         aeu_mask &= ~(asserted & 0x3ff);
4035         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4036
4037         REG_WR(bp, aeu_addr, aeu_mask);
4038         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4039
4040         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4041         bp->attn_state |= asserted;
4042         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4043
4044         if (asserted & ATTN_HARD_WIRED_MASK) {
4045                 if (asserted & ATTN_NIG_FOR_FUNC) {
4046
4047                         bnx2x_acquire_phy_lock(bp);
4048
4049                         /* save nig interrupt mask */
4050                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4051
4052                         /* If nig_mask is not set, no need to call the update
4053                          * function.
4054                          */
4055                         if (nig_mask) {
4056                                 REG_WR(bp, nig_int_mask_addr, 0);
4057
4058                                 bnx2x_link_attn(bp);
4059                         }
4060
4061                         /* handle unicore attn? */
4062                 }
4063                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4064                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4065
4066                 if (asserted & GPIO_2_FUNC)
4067                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4068
4069                 if (asserted & GPIO_3_FUNC)
4070                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4071
4072                 if (asserted & GPIO_4_FUNC)
4073                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4074
4075                 if (port == 0) {
4076                         if (asserted & ATTN_GENERAL_ATTN_1) {
4077                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4078                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4079                         }
4080                         if (asserted & ATTN_GENERAL_ATTN_2) {
4081                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4082                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4083                         }
4084                         if (asserted & ATTN_GENERAL_ATTN_3) {
4085                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4086                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4087                         }
4088                 } else {
4089                         if (asserted & ATTN_GENERAL_ATTN_4) {
4090                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4091                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4092                         }
4093                         if (asserted & ATTN_GENERAL_ATTN_5) {
4094                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4095                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4096                         }
4097                         if (asserted & ATTN_GENERAL_ATTN_6) {
4098                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4099                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4100                         }
4101                 }
4102
4103         } /* if hardwired */
4104
4105         if (bp->common.int_block == INT_BLOCK_HC)
4106                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4107                             COMMAND_REG_ATTN_BITS_SET);
4108         else
4109                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4110
4111         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4112            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4113         REG_WR(bp, reg_addr, asserted);
4114
4115         /* now set back the mask */
4116         if (asserted & ATTN_NIG_FOR_FUNC) {
4117                 /* Verify that IGU ack through BAR was written before restoring
4118                  * NIG mask. This loop should exit after 2-3 iterations max.
4119                  */
4120                 if (bp->common.int_block != INT_BLOCK_HC) {
4121                         u32 cnt = 0, igu_acked;
4122                         do {
4123                                 igu_acked = REG_RD(bp,
4124                                                    IGU_REG_ATTENTION_ACK_BITS);
4125                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4126                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4127                         if (!igu_acked)
4128                                 DP(NETIF_MSG_HW,
4129                                    "Failed to verify IGU ack on time\n");
4130                         barrier();
4131                 }
4132                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4133                 bnx2x_release_phy_lock(bp);
4134         }
4135 }
4136
4137 static void bnx2x_fan_failure(struct bnx2x *bp)
4138 {
4139         int port = BP_PORT(bp);
4140         u32 ext_phy_config;
4141         /* mark the failure */
4142         ext_phy_config =
4143                 SHMEM_RD(bp,
4144                          dev_info.port_hw_config[port].external_phy_config);
4145
4146         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4147         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4148         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4149                  ext_phy_config);
4150
4151         /* log the failure */
4152         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4153                             "Please contact OEM Support for assistance\n");
4154
4155         /* Schedule device reset (unload)
4156          * This is due to some boards consuming sufficient power when driver is
4157          * up to overheat if fan fails.
4158          */
4159         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4160 }
4161
4162 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4163 {
4164         int port = BP_PORT(bp);
4165         int reg_offset;
4166         u32 val;
4167
4168         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4169                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4170
4171         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4172
4173                 val = REG_RD(bp, reg_offset);
4174                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4175                 REG_WR(bp, reg_offset, val);
4176
4177                 BNX2X_ERR("SPIO5 hw attention\n");
4178
4179                 /* Fan failure attention */
4180                 bnx2x_hw_reset_phy(&bp->link_params);
4181                 bnx2x_fan_failure(bp);
4182         }
4183
4184         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4185                 bnx2x_acquire_phy_lock(bp);
4186                 bnx2x_handle_module_detect_int(&bp->link_params);
4187                 bnx2x_release_phy_lock(bp);
4188         }
4189
4190         if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4191
4192                 val = REG_RD(bp, reg_offset);
4193                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4194                 REG_WR(bp, reg_offset, val);
4195
4196                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4197                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4198                 bnx2x_panic();
4199         }
4200 }
4201
4202 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4203 {
4204         u32 val;
4205
4206         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4207
4208                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4209                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4210                 /* DORQ discard attention */
4211                 if (val & 0x2)
4212                         BNX2X_ERR("FATAL error from DORQ\n");
4213         }
4214
4215         if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4216
4217                 int port = BP_PORT(bp);
4218                 int reg_offset;
4219
4220                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4221                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4222
4223                 val = REG_RD(bp, reg_offset);
4224                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4225                 REG_WR(bp, reg_offset, val);
4226
4227                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4228                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4229                 bnx2x_panic();
4230         }
4231 }
4232
4233 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4234 {
4235         u32 val;
4236
4237         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4238
4239                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4240                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4241                 /* CFC error attention */
4242                 if (val & 0x2)
4243                         BNX2X_ERR("FATAL error from CFC\n");
4244         }
4245
4246         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4247                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4248                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4249                 /* RQ_USDMDP_FIFO_OVERFLOW */
4250                 if (val & 0x18000)
4251                         BNX2X_ERR("FATAL error from PXP\n");
4252
4253                 if (!CHIP_IS_E1x(bp)) {
4254                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4255                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4256                 }
4257         }
4258
4259         if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4260
4261                 int port = BP_PORT(bp);
4262                 int reg_offset;
4263
4264                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4265                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4266
4267                 val = REG_RD(bp, reg_offset);
4268                 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4269                 REG_WR(bp, reg_offset, val);
4270
4271                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4272                           (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4273                 bnx2x_panic();
4274         }
4275 }
4276
4277 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4278 {
4279         u32 val;
4280
4281         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4282
4283                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4284                         int func = BP_FUNC(bp);
4285
4286                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4287                         bnx2x_read_mf_cfg(bp);
4288                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4289                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4290                         val = SHMEM_RD(bp,
4291                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4292
4293                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4294                                    DRV_STATUS_OEM_EVENT_MASK))
4295                                 bnx2x_oem_event(bp,
4296                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4297                                                 DRV_STATUS_OEM_EVENT_MASK)));
4298
4299                         if (val & DRV_STATUS_SET_MF_BW)
4300                                 bnx2x_set_mf_bw(bp);
4301
4302                         if (val & DRV_STATUS_DRV_INFO_REQ)
4303                                 bnx2x_handle_drv_info_req(bp);
4304
4305                         if (val & DRV_STATUS_VF_DISABLED)
4306                                 bnx2x_schedule_iov_task(bp,
4307                                                         BNX2X_IOV_HANDLE_FLR);
4308
4309                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4310                                 bnx2x_pmf_update(bp);
4311
4312                         if (bp->port.pmf &&
4313                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4314                                 bp->dcbx_enabled > 0)
4315                                 /* start dcbx state machine */
4316                                 bnx2x_dcbx_set_params(bp,
4317                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4318                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4319                                 bnx2x_handle_afex_cmd(bp,
4320                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4321                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4322                                 bnx2x_handle_eee_event(bp);
4323
4324                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4325                                 bnx2x_schedule_sp_rtnl(bp,
4326                                         BNX2X_SP_RTNL_UPDATE_SVID, 0);
4327
4328                         if (bp->link_vars.periodic_flags &
4329                             PERIODIC_FLAGS_LINK_EVENT) {
4330                                 /*  sync with link */
4331                                 bnx2x_acquire_phy_lock(bp);
4332                                 bp->link_vars.periodic_flags &=
4333                                         ~PERIODIC_FLAGS_LINK_EVENT;
4334                                 bnx2x_release_phy_lock(bp);
4335                                 if (IS_MF(bp))
4336                                         bnx2x_link_sync_notify(bp);
4337                                 bnx2x_link_report(bp);
4338                         }
4339                         /* Always call it here: bnx2x_link_report() will
4340                          * prevent the link indication duplication.
4341                          */
4342                         bnx2x__link_status_update(bp);
4343                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4344
4345                         BNX2X_ERR("MC assert!\n");
4346                         bnx2x_mc_assert(bp);
4347                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4348                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4349                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4350                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4351                         bnx2x_panic();
4352
4353                 } else if (attn & BNX2X_MCP_ASSERT) {
4354
4355                         BNX2X_ERR("MCP assert!\n");
4356                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4357                         bnx2x_fw_dump(bp);
4358
4359                 } else
4360                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4361         }
4362
4363         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4364                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4365                 if (attn & BNX2X_GRC_TIMEOUT) {
4366                         val = CHIP_IS_E1(bp) ? 0 :
4367                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4368                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4369                 }
4370                 if (attn & BNX2X_GRC_RSV) {
4371                         val = CHIP_IS_E1(bp) ? 0 :
4372                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4373                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4374                 }
4375                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4376         }
4377 }
4378
4379 /*
4380  * Bits map:
4381  * 0-7   - Engine0 load counter.
4382  * 8-15  - Engine1 load counter.
4383  * 16    - Engine0 RESET_IN_PROGRESS bit.
4384  * 17    - Engine1 RESET_IN_PROGRESS bit.
4385  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4386  *         on the engine
4387  * 19    - Engine1 ONE_IS_LOADED.
4388  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4389  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4390  *         just the one belonging to its engine).
4391  *
4392  */
4393 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4394
4395 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4396 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4397 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4398 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4399 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4400 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4401 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4402
4403 /*
4404  * Set the GLOBAL_RESET bit.
4405  *
4406  * Should be run under rtnl lock
4407  */
4408 void bnx2x_set_reset_global(struct bnx2x *bp)
4409 {
4410         u32 val;
4411         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4412         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4413         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4414         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4415 }
4416
4417 /*
4418  * Clear the GLOBAL_RESET bit.
4419  *
4420  * Should be run under rtnl lock
4421  */
4422 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4423 {
4424         u32 val;
4425         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4426         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4427         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4428         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4429 }
4430
4431 /*
4432  * Checks the GLOBAL_RESET bit.
4433  *
4434  * should be run under rtnl lock
4435  */
4436 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4437 {
4438         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4439
4440         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4441         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4442 }
4443
4444 /*
4445  * Clear RESET_IN_PROGRESS bit for the current engine.
4446  *
4447  * Should be run under rtnl lock
4448  */
4449 static void bnx2x_set_reset_done(struct bnx2x *bp)
4450 {
4451         u32 val;
4452         u32 bit = BP_PATH(bp) ?
4453                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4454         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4456
4457         /* Clear the bit */
4458         val &= ~bit;
4459         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4460
4461         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4462 }
4463
4464 /*
4465  * Set RESET_IN_PROGRESS for the current engine.
4466  *
4467  * should be run under rtnl lock
4468  */
4469 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4470 {
4471         u32 val;
4472         u32 bit = BP_PATH(bp) ?
4473                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4474         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4475         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4476
4477         /* Set the bit */
4478         val |= bit;
4479         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4480         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4481 }
4482
4483 /*
4484  * Checks the RESET_IN_PROGRESS bit for the given engine.
4485  * should be run under rtnl lock
4486  */
4487 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4488 {
4489         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4490         u32 bit = engine ?
4491                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4492
4493         /* return false if bit is set */
4494         return (val & bit) ? false : true;
4495 }
4496
4497 /*
4498  * set pf load for the current pf.
4499  *
4500  * should be run under rtnl lock
4501  */
4502 void bnx2x_set_pf_load(struct bnx2x *bp)
4503 {
4504         u32 val1, val;
4505         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4506                              BNX2X_PATH0_LOAD_CNT_MASK;
4507         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4508                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4509
4510         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4511         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4512
4513         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4514
4515         /* get the current counter value */
4516         val1 = (val & mask) >> shift;
4517
4518         /* set bit of that PF */
4519         val1 |= (1 << bp->pf_num);
4520
4521         /* clear the old value */
4522         val &= ~mask;
4523
4524         /* set the new one */
4525         val |= ((val1 << shift) & mask);
4526
4527         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4528         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4529 }
4530
4531 /**
4532  * bnx2x_clear_pf_load - clear pf load mark
4533  *
4534  * @bp:         driver handle
4535  *
4536  * Should be run under rtnl lock.
4537  * Decrements the load counter for the current engine. Returns
4538  * whether other functions are still loaded
4539  */
4540 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4541 {
4542         u32 val1, val;
4543         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4544                              BNX2X_PATH0_LOAD_CNT_MASK;
4545         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4546                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4547
4548         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4549         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4550         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4551
4552         /* get the current counter value */
4553         val1 = (val & mask) >> shift;
4554
4555         /* clear bit of that PF */
4556         val1 &= ~(1 << bp->pf_num);
4557
4558         /* clear the old value */
4559         val &= ~mask;
4560
4561         /* set the new one */
4562         val |= ((val1 << shift) & mask);
4563
4564         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4565         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4566         return val1 != 0;
4567 }
4568
4569 /*
4570  * Read the load status for the current engine.
4571  *
4572  * should be run under rtnl lock
4573  */
4574 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4575 {
4576         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4577                              BNX2X_PATH0_LOAD_CNT_MASK);
4578         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4579                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4580         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4581
4582         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4583
4584         val = (val & mask) >> shift;
4585
4586         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4587            engine, val);
4588
4589         return val != 0;
4590 }
4591
4592 static void _print_parity(struct bnx2x *bp, u32 reg)
4593 {
4594         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4595 }
4596
4597 static void _print_next_block(int idx, const char *blk)
4598 {
4599         pr_cont("%s%s", idx ? ", " : "", blk);
4600 }
4601
4602 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4603                                             int *par_num, bool print)
4604 {
4605         u32 cur_bit;
4606         bool res;
4607         int i;
4608
4609         res = false;
4610
4611         for (i = 0; sig; i++) {
4612                 cur_bit = (0x1UL << i);
4613                 if (sig & cur_bit) {
4614                         res |= true; /* Each bit is real error! */
4615
4616                         if (print) {
4617                                 switch (cur_bit) {
4618                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4619                                         _print_next_block((*par_num)++, "BRB");
4620                                         _print_parity(bp,
4621                                                       BRB1_REG_BRB1_PRTY_STS);
4622                                         break;
4623                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4624                                         _print_next_block((*par_num)++,
4625                                                           "PARSER");
4626                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4627                                         break;
4628                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4629                                         _print_next_block((*par_num)++, "TSDM");
4630                                         _print_parity(bp,
4631                                                       TSDM_REG_TSDM_PRTY_STS);
4632                                         break;
4633                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4634                                         _print_next_block((*par_num)++,
4635                                                           "SEARCHER");
4636                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4637                                         break;
4638                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4639                                         _print_next_block((*par_num)++, "TCM");
4640                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4641                                         break;
4642                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4643                                         _print_next_block((*par_num)++,
4644                                                           "TSEMI");
4645                                         _print_parity(bp,
4646                                                       TSEM_REG_TSEM_PRTY_STS_0);
4647                                         _print_parity(bp,
4648                                                       TSEM_REG_TSEM_PRTY_STS_1);
4649                                         break;
4650                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4651                                         _print_next_block((*par_num)++, "XPB");
4652                                         _print_parity(bp, GRCBASE_XPB +
4653                                                           PB_REG_PB_PRTY_STS);
4654                                         break;
4655                                 }
4656                         }
4657
4658                         /* Clear the bit */
4659                         sig &= ~cur_bit;
4660                 }
4661         }
4662
4663         return res;
4664 }
4665
4666 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4667                                             int *par_num, bool *global,
4668                                             bool print)
4669 {
4670         u32 cur_bit;
4671         bool res;
4672         int i;
4673
4674         res = false;
4675
4676         for (i = 0; sig; i++) {
4677                 cur_bit = (0x1UL << i);
4678                 if (sig & cur_bit) {
4679                         res |= true; /* Each bit is real error! */
4680                         switch (cur_bit) {
4681                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4682                                 if (print) {
4683                                         _print_next_block((*par_num)++, "PBF");
4684                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4685                                 }
4686                                 break;
4687                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4688                                 if (print) {
4689                                         _print_next_block((*par_num)++, "QM");
4690                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4691                                 }
4692                                 break;
4693                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4694                                 if (print) {
4695                                         _print_next_block((*par_num)++, "TM");
4696                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4697                                 }
4698                                 break;
4699                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4700                                 if (print) {
4701                                         _print_next_block((*par_num)++, "XSDM");
4702                                         _print_parity(bp,
4703                                                       XSDM_REG_XSDM_PRTY_STS);
4704                                 }
4705                                 break;
4706                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4707                                 if (print) {
4708                                         _print_next_block((*par_num)++, "XCM");
4709                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4710                                 }
4711                                 break;
4712                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4713                                 if (print) {
4714                                         _print_next_block((*par_num)++,
4715                                                           "XSEMI");
4716                                         _print_parity(bp,
4717                                                       XSEM_REG_XSEM_PRTY_STS_0);
4718                                         _print_parity(bp,
4719                                                       XSEM_REG_XSEM_PRTY_STS_1);
4720                                 }
4721                                 break;
4722                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4723                                 if (print) {
4724                                         _print_next_block((*par_num)++,
4725                                                           "DOORBELLQ");
4726                                         _print_parity(bp,
4727                                                       DORQ_REG_DORQ_PRTY_STS);
4728                                 }
4729                                 break;
4730                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4731                                 if (print) {
4732                                         _print_next_block((*par_num)++, "NIG");
4733                                         if (CHIP_IS_E1x(bp)) {
4734                                                 _print_parity(bp,
4735                                                         NIG_REG_NIG_PRTY_STS);
4736                                         } else {
4737                                                 _print_parity(bp,
4738                                                         NIG_REG_NIG_PRTY_STS_0);
4739                                                 _print_parity(bp,
4740                                                         NIG_REG_NIG_PRTY_STS_1);
4741                                         }
4742                                 }
4743                                 break;
4744                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4745                                 if (print)
4746                                         _print_next_block((*par_num)++,
4747                                                           "VAUX PCI CORE");
4748                                 *global = true;
4749                                 break;
4750                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4751                                 if (print) {
4752                                         _print_next_block((*par_num)++,
4753                                                           "DEBUG");
4754                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4755                                 }
4756                                 break;
4757                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4758                                 if (print) {
4759                                         _print_next_block((*par_num)++, "USDM");
4760                                         _print_parity(bp,
4761                                                       USDM_REG_USDM_PRTY_STS);
4762                                 }
4763                                 break;
4764                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4765                                 if (print) {
4766                                         _print_next_block((*par_num)++, "UCM");
4767                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4768                                 }
4769                                 break;
4770                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4771                                 if (print) {
4772                                         _print_next_block((*par_num)++,
4773                                                           "USEMI");
4774                                         _print_parity(bp,
4775                                                       USEM_REG_USEM_PRTY_STS_0);
4776                                         _print_parity(bp,
4777                                                       USEM_REG_USEM_PRTY_STS_1);
4778                                 }
4779                                 break;
4780                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4781                                 if (print) {
4782                                         _print_next_block((*par_num)++, "UPB");
4783                                         _print_parity(bp, GRCBASE_UPB +
4784                                                           PB_REG_PB_PRTY_STS);
4785                                 }
4786                                 break;
4787                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4788                                 if (print) {
4789                                         _print_next_block((*par_num)++, "CSDM");
4790                                         _print_parity(bp,
4791                                                       CSDM_REG_CSDM_PRTY_STS);
4792                                 }
4793                                 break;
4794                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4795                                 if (print) {
4796                                         _print_next_block((*par_num)++, "CCM");
4797                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4798                                 }
4799                                 break;
4800                         }
4801
4802                         /* Clear the bit */
4803                         sig &= ~cur_bit;
4804                 }
4805         }
4806
4807         return res;
4808 }
4809
4810 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4811                                             int *par_num, bool print)
4812 {
4813         u32 cur_bit;
4814         bool res;
4815         int i;
4816
4817         res = false;
4818
4819         for (i = 0; sig; i++) {
4820                 cur_bit = (0x1UL << i);
4821                 if (sig & cur_bit) {
4822                         res = true; /* Each bit is real error! */
4823                         if (print) {
4824                                 switch (cur_bit) {
4825                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4826                                         _print_next_block((*par_num)++,
4827                                                           "CSEMI");
4828                                         _print_parity(bp,
4829                                                       CSEM_REG_CSEM_PRTY_STS_0);
4830                                         _print_parity(bp,
4831                                                       CSEM_REG_CSEM_PRTY_STS_1);
4832                                         break;
4833                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4834                                         _print_next_block((*par_num)++, "PXP");
4835                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4836                                         _print_parity(bp,
4837                                                       PXP2_REG_PXP2_PRTY_STS_0);
4838                                         _print_parity(bp,
4839                                                       PXP2_REG_PXP2_PRTY_STS_1);
4840                                         break;
4841                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4842                                         _print_next_block((*par_num)++,
4843                                                           "PXPPCICLOCKCLIENT");
4844                                         break;
4845                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4846                                         _print_next_block((*par_num)++, "CFC");
4847                                         _print_parity(bp,
4848                                                       CFC_REG_CFC_PRTY_STS);
4849                                         break;
4850                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4851                                         _print_next_block((*par_num)++, "CDU");
4852                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4853                                         break;
4854                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4855                                         _print_next_block((*par_num)++, "DMAE");
4856                                         _print_parity(bp,
4857                                                       DMAE_REG_DMAE_PRTY_STS);
4858                                         break;
4859                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4860                                         _print_next_block((*par_num)++, "IGU");
4861                                         if (CHIP_IS_E1x(bp))
4862                                                 _print_parity(bp,
4863                                                         HC_REG_HC_PRTY_STS);
4864                                         else
4865                                                 _print_parity(bp,
4866                                                         IGU_REG_IGU_PRTY_STS);
4867                                         break;
4868                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4869                                         _print_next_block((*par_num)++, "MISC");
4870                                         _print_parity(bp,
4871                                                       MISC_REG_MISC_PRTY_STS);
4872                                         break;
4873                                 }
4874                         }
4875
4876                         /* Clear the bit */
4877                         sig &= ~cur_bit;
4878                 }
4879         }
4880
4881         return res;
4882 }
4883
4884 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4885                                             int *par_num, bool *global,
4886                                             bool print)
4887 {
4888         bool res = false;
4889         u32 cur_bit;
4890         int i;
4891
4892         for (i = 0; sig; i++) {
4893                 cur_bit = (0x1UL << i);
4894                 if (sig & cur_bit) {
4895                         switch (cur_bit) {
4896                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4897                                 if (print)
4898                                         _print_next_block((*par_num)++,
4899                                                           "MCP ROM");
4900                                 *global = true;
4901                                 res = true;
4902                                 break;
4903                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4904                                 if (print)
4905                                         _print_next_block((*par_num)++,
4906                                                           "MCP UMP RX");
4907                                 *global = true;
4908                                 res = true;
4909                                 break;
4910                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4911                                 if (print)
4912                                         _print_next_block((*par_num)++,
4913                                                           "MCP UMP TX");
4914                                 *global = true;
4915                                 res = true;
4916                                 break;
4917                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4918                                 (*par_num)++;
4919                                 /* clear latched SCPAD PATIRY from MCP */
4920                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4921                                        1UL << 10);
4922                                 break;
4923                         }
4924
4925                         /* Clear the bit */
4926                         sig &= ~cur_bit;
4927                 }
4928         }
4929
4930         return res;
4931 }
4932
4933 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4934                                             int *par_num, bool print)
4935 {
4936         u32 cur_bit;
4937         bool res;
4938         int i;
4939
4940         res = false;
4941
4942         for (i = 0; sig; i++) {
4943                 cur_bit = (0x1UL << i);
4944                 if (sig & cur_bit) {
4945                         res = true; /* Each bit is real error! */
4946                         if (print) {
4947                                 switch (cur_bit) {
4948                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4949                                         _print_next_block((*par_num)++,
4950                                                           "PGLUE_B");
4951                                         _print_parity(bp,
4952                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4953                                         break;
4954                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4955                                         _print_next_block((*par_num)++, "ATC");
4956                                         _print_parity(bp,
4957                                                       ATC_REG_ATC_PRTY_STS);
4958                                         break;
4959                                 }
4960                         }
4961                         /* Clear the bit */
4962                         sig &= ~cur_bit;
4963                 }
4964         }
4965
4966         return res;
4967 }
4968
4969 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4970                               u32 *sig)
4971 {
4972         bool res = false;
4973
4974         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4975             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4976             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4977             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4978             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4979                 int par_num = 0;
4980
4981                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4982                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4983                           sig[0] & HW_PRTY_ASSERT_SET_0,
4984                           sig[1] & HW_PRTY_ASSERT_SET_1,
4985                           sig[2] & HW_PRTY_ASSERT_SET_2,
4986                           sig[3] & HW_PRTY_ASSERT_SET_3,
4987                           sig[4] & HW_PRTY_ASSERT_SET_4);
4988                 if (print) {
4989                         if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4990                              (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4991                              (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4992                              (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4993                              (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4994                                 netdev_err(bp->dev,
4995                                            "Parity errors detected in blocks: ");
4996                         } else {
4997                                 print = false;
4998                         }
4999                 }
5000                 res |= bnx2x_check_blocks_with_parity0(bp,
5001                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5002                 res |= bnx2x_check_blocks_with_parity1(bp,
5003                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5004                 res |= bnx2x_check_blocks_with_parity2(bp,
5005                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5006                 res |= bnx2x_check_blocks_with_parity3(bp,
5007                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5008                 res |= bnx2x_check_blocks_with_parity4(bp,
5009                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5010
5011                 if (print)
5012                         pr_cont("\n");
5013         }
5014
5015         return res;
5016 }
5017
5018 /**
5019  * bnx2x_chk_parity_attn - checks for parity attentions.
5020  *
5021  * @bp:         driver handle
5022  * @global:     true if there was a global attention
5023  * @print:      show parity attention in syslog
5024  */
5025 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5026 {
5027         struct attn_route attn = { {0} };
5028         int port = BP_PORT(bp);
5029
5030         attn.sig[0] = REG_RD(bp,
5031                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5032                              port*4);
5033         attn.sig[1] = REG_RD(bp,
5034                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5035                              port*4);
5036         attn.sig[2] = REG_RD(bp,
5037                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5038                              port*4);
5039         attn.sig[3] = REG_RD(bp,
5040                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5041                              port*4);
5042         /* Since MCP attentions can't be disabled inside the block, we need to
5043          * read AEU registers to see whether they're currently disabled
5044          */
5045         attn.sig[3] &= ((REG_RD(bp,
5046                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5047                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5048                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5049                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5050
5051         if (!CHIP_IS_E1x(bp))
5052                 attn.sig[4] = REG_RD(bp,
5053                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5054                                      port*4);
5055
5056         return bnx2x_parity_attn(bp, global, print, attn.sig);
5057 }
5058
5059 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5060 {
5061         u32 val;
5062         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5063
5064                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5065                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5066                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5067                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5068                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5069                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5070                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5071                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5072                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5073                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5074                 if (val &
5075                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5076                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5077                 if (val &
5078                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5079                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5080                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5081                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5082                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5083                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5084                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5085                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5086         }
5087         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5088                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5089                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5090                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5091                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5092                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5093                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5094                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5095                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5096                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5097                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5098                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5099                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5100                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5101                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5102         }
5103
5104         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5105                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5106                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5107                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5108                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5109         }
5110 }
5111
5112 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5113 {
5114         struct attn_route attn, *group_mask;
5115         int port = BP_PORT(bp);
5116         int index;
5117         u32 reg_addr;
5118         u32 val;
5119         u32 aeu_mask;
5120         bool global = false;
5121
5122         /* need to take HW lock because MCP or other port might also
5123            try to handle this event */
5124         bnx2x_acquire_alr(bp);
5125
5126         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5127 #ifndef BNX2X_STOP_ON_ERROR
5128                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5129                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5130                 /* Disable HW interrupts */
5131                 bnx2x_int_disable(bp);
5132                 /* In case of parity errors don't handle attentions so that
5133                  * other function would "see" parity errors.
5134                  */
5135 #else
5136                 bnx2x_panic();
5137 #endif
5138                 bnx2x_release_alr(bp);
5139                 return;
5140         }
5141
5142         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5143         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5144         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5145         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5146         if (!CHIP_IS_E1x(bp))
5147                 attn.sig[4] =
5148                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5149         else
5150                 attn.sig[4] = 0;
5151
5152         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5153            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5154
5155         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5156                 if (deasserted & (1 << index)) {
5157                         group_mask = &bp->attn_group[index];
5158
5159                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5160                            index,
5161                            group_mask->sig[0], group_mask->sig[1],
5162                            group_mask->sig[2], group_mask->sig[3],
5163                            group_mask->sig[4]);
5164
5165                         bnx2x_attn_int_deasserted4(bp,
5166                                         attn.sig[4] & group_mask->sig[4]);
5167                         bnx2x_attn_int_deasserted3(bp,
5168                                         attn.sig[3] & group_mask->sig[3]);
5169                         bnx2x_attn_int_deasserted1(bp,
5170                                         attn.sig[1] & group_mask->sig[1]);
5171                         bnx2x_attn_int_deasserted2(bp,
5172                                         attn.sig[2] & group_mask->sig[2]);
5173                         bnx2x_attn_int_deasserted0(bp,
5174                                         attn.sig[0] & group_mask->sig[0]);
5175                 }
5176         }
5177
5178         bnx2x_release_alr(bp);
5179
5180         if (bp->common.int_block == INT_BLOCK_HC)
5181                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5182                             COMMAND_REG_ATTN_BITS_CLR);
5183         else
5184                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5185
5186         val = ~deasserted;
5187         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5188            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5189         REG_WR(bp, reg_addr, val);
5190
5191         if (~bp->attn_state & deasserted)
5192                 BNX2X_ERR("IGU ERROR\n");
5193
5194         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5195                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5196
5197         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5198         aeu_mask = REG_RD(bp, reg_addr);
5199
5200         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5201            aeu_mask, deasserted);
5202         aeu_mask |= (deasserted & 0x3ff);
5203         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5204
5205         REG_WR(bp, reg_addr, aeu_mask);
5206         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5207
5208         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5209         bp->attn_state &= ~deasserted;
5210         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5211 }
5212
5213 static void bnx2x_attn_int(struct bnx2x *bp)
5214 {
5215         /* read local copy of bits */
5216         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5217                                                                 attn_bits);
5218         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5219                                                                 attn_bits_ack);
5220         u32 attn_state = bp->attn_state;
5221
5222         /* look for changed bits */
5223         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5224         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5225
5226         DP(NETIF_MSG_HW,
5227            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5228            attn_bits, attn_ack, asserted, deasserted);
5229
5230         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5231                 BNX2X_ERR("BAD attention state\n");
5232
5233         /* handle bits that were raised */
5234         if (asserted)
5235                 bnx2x_attn_int_asserted(bp, asserted);
5236
5237         if (deasserted)
5238                 bnx2x_attn_int_deasserted(bp, deasserted);
5239 }
5240
5241 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5242                       u16 index, u8 op, u8 update)
5243 {
5244         u32 igu_addr = bp->igu_base_addr;
5245         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5246         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5247                              igu_addr);
5248 }
5249
5250 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5251 {
5252         /* No memory barriers */
5253         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5254 }
5255
5256 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5257                                       union event_ring_elem *elem)
5258 {
5259         u8 err = elem->message.error;
5260
5261         if (!bp->cnic_eth_dev.starting_cid  ||
5262             (cid < bp->cnic_eth_dev.starting_cid &&
5263             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5264                 return 1;
5265
5266         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5267
5268         if (unlikely(err)) {
5269
5270                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5271                           cid);
5272                 bnx2x_panic_dump(bp, false);
5273         }
5274         bnx2x_cnic_cfc_comp(bp, cid, err);
5275         return 0;
5276 }
5277
5278 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5279 {
5280         struct bnx2x_mcast_ramrod_params rparam;
5281         int rc;
5282
5283         memset(&rparam, 0, sizeof(rparam));
5284
5285         rparam.mcast_obj = &bp->mcast_obj;
5286
5287         netif_addr_lock_bh(bp->dev);
5288
5289         /* Clear pending state for the last command */
5290         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5291
5292         /* If there are pending mcast commands - send them */
5293         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5294                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5295                 if (rc < 0)
5296                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5297                                   rc);
5298         }
5299
5300         netif_addr_unlock_bh(bp->dev);
5301 }
5302
5303 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5304                                             union event_ring_elem *elem)
5305 {
5306         unsigned long ramrod_flags = 0;
5307         int rc = 0;
5308         u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5309         u32 cid = echo & BNX2X_SWCID_MASK;
5310         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5311
5312         /* Always push next commands out, don't wait here */
5313         __set_bit(RAMROD_CONT, &ramrod_flags);
5314
5315         switch (echo >> BNX2X_SWCID_SHIFT) {
5316         case BNX2X_FILTER_MAC_PENDING:
5317                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5318                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5319                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5320                 else
5321                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5322
5323                 break;
5324         case BNX2X_FILTER_VLAN_PENDING:
5325                 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5326                 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5327                 break;
5328         case BNX2X_FILTER_MCAST_PENDING:
5329                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5330                 /* This is only relevant for 57710 where multicast MACs are
5331                  * configured as unicast MACs using the same ramrod.
5332                  */
5333                 bnx2x_handle_mcast_eqe(bp);
5334                 return;
5335         default:
5336                 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5337                 return;
5338         }
5339
5340         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5341
5342         if (rc < 0)
5343                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5344         else if (rc > 0)
5345                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5346 }
5347
5348 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5349
5350 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5351 {
5352         netif_addr_lock_bh(bp->dev);
5353
5354         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5355
5356         /* Send rx_mode command again if was requested */
5357         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5358                 bnx2x_set_storm_rx_mode(bp);
5359         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5360                                     &bp->sp_state))
5361                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5362         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5363                                     &bp->sp_state))
5364                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5365
5366         netif_addr_unlock_bh(bp->dev);
5367 }
5368
5369 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5370                                               union event_ring_elem *elem)
5371 {
5372         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5373                 DP(BNX2X_MSG_SP,
5374                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5375                    elem->message.data.vif_list_event.func_bit_map);
5376                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5377                         elem->message.data.vif_list_event.func_bit_map);
5378         } else if (elem->message.data.vif_list_event.echo ==
5379                    VIF_LIST_RULE_SET) {
5380                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5381                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5382         }
5383 }
5384
5385 /* called with rtnl_lock */
5386 static void bnx2x_after_function_update(struct bnx2x *bp)
5387 {
5388         int q, rc;
5389         struct bnx2x_fastpath *fp;
5390         struct bnx2x_queue_state_params queue_params = {NULL};
5391         struct bnx2x_queue_update_params *q_update_params =
5392                 &queue_params.params.update;
5393
5394         /* Send Q update command with afex vlan removal values for all Qs */
5395         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5396
5397         /* set silent vlan removal values according to vlan mode */
5398         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5399                   &q_update_params->update_flags);
5400         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5401                   &q_update_params->update_flags);
5402         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5403
5404         /* in access mode mark mask and value are 0 to strip all vlans */
5405         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5406                 q_update_params->silent_removal_value = 0;
5407                 q_update_params->silent_removal_mask = 0;
5408         } else {
5409                 q_update_params->silent_removal_value =
5410                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5411                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5412         }
5413
5414         for_each_eth_queue(bp, q) {
5415                 /* Set the appropriate Queue object */
5416                 fp = &bp->fp[q];
5417                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5418
5419                 /* send the ramrod */
5420                 rc = bnx2x_queue_state_change(bp, &queue_params);
5421                 if (rc < 0)
5422                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5423                                   q);
5424         }
5425
5426         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5427                 fp = &bp->fp[FCOE_IDX(bp)];
5428                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5429
5430                 /* clear pending completion bit */
5431                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5432
5433                 /* mark latest Q bit */
5434                 smp_mb__before_atomic();
5435                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5436                 smp_mb__after_atomic();
5437
5438                 /* send Q update ramrod for FCoE Q */
5439                 rc = bnx2x_queue_state_change(bp, &queue_params);
5440                 if (rc < 0)
5441                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5442                                   q);
5443         } else {
5444                 /* If no FCoE ring - ACK MCP now */
5445                 bnx2x_link_report(bp);
5446                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5447         }
5448 }
5449
5450 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5451         struct bnx2x *bp, u32 cid)
5452 {
5453         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5454
5455         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5456                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5457         else
5458                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5459 }
5460
5461 static void bnx2x_eq_int(struct bnx2x *bp)
5462 {
5463         u16 hw_cons, sw_cons, sw_prod;
5464         union event_ring_elem *elem;
5465         u8 echo;
5466         u32 cid;
5467         u8 opcode;
5468         int rc, spqe_cnt = 0;
5469         struct bnx2x_queue_sp_obj *q_obj;
5470         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5471         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5472
5473         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5474
5475         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5476          * when we get the next-page we need to adjust so the loop
5477          * condition below will be met. The next element is the size of a
5478          * regular element and hence incrementing by 1
5479          */
5480         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5481                 hw_cons++;
5482
5483         /* This function may never run in parallel with itself for a
5484          * specific bp, thus there is no need in "paired" read memory
5485          * barrier here.
5486          */
5487         sw_cons = bp->eq_cons;
5488         sw_prod = bp->eq_prod;
5489
5490         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5491                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5492
5493         for (; sw_cons != hw_cons;
5494               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5495
5496                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5497
5498                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5499                 if (!rc) {
5500                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5501                            rc);
5502                         goto next_spqe;
5503                 }
5504
5505                 opcode = elem->message.opcode;
5506
5507                 /* handle eq element */
5508                 switch (opcode) {
5509                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5510                         bnx2x_vf_mbx_schedule(bp,
5511                                               &elem->message.data.vf_pf_event);
5512                         continue;
5513
5514                 case EVENT_RING_OPCODE_STAT_QUERY:
5515                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5516                                "got statistics comp event %d\n",
5517                                bp->stats_comp++);
5518                         /* nothing to do with stats comp */
5519                         goto next_spqe;
5520
5521                 case EVENT_RING_OPCODE_CFC_DEL:
5522                         /* handle according to cid range */
5523                         /*
5524                          * we may want to verify here that the bp state is
5525                          * HALTING
5526                          */
5527
5528                         /* elem CID originates from FW; actually LE */
5529                         cid = SW_CID(elem->message.data.cfc_del_event.cid);
5530
5531                         DP(BNX2X_MSG_SP,
5532                            "got delete ramrod for MULTI[%d]\n", cid);
5533
5534                         if (CNIC_LOADED(bp) &&
5535                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5536                                 goto next_spqe;
5537
5538                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5539
5540                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5541                                 break;
5542
5543                         goto next_spqe;
5544
5545                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5546                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5547                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5548                         if (f_obj->complete_cmd(bp, f_obj,
5549                                                 BNX2X_F_CMD_TX_STOP))
5550                                 break;
5551                         goto next_spqe;
5552
5553                 case EVENT_RING_OPCODE_START_TRAFFIC:
5554                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5555                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5556                         if (f_obj->complete_cmd(bp, f_obj,
5557                                                 BNX2X_F_CMD_TX_START))
5558                                 break;
5559                         goto next_spqe;
5560
5561                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5562                         echo = elem->message.data.function_update_event.echo;
5563                         if (echo == SWITCH_UPDATE) {
5564                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5565                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5566                                 if (f_obj->complete_cmd(
5567                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5568                                         break;
5569
5570                         } else {
5571                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5572
5573                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5574                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5575                                 f_obj->complete_cmd(bp, f_obj,
5576                                                     BNX2X_F_CMD_AFEX_UPDATE);
5577
5578                                 /* We will perform the Queues update from
5579                                  * sp_rtnl task as all Queue SP operations
5580                                  * should run under rtnl_lock.
5581                                  */
5582                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5583                         }
5584
5585                         goto next_spqe;
5586
5587                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5588                         f_obj->complete_cmd(bp, f_obj,
5589                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5590                         bnx2x_after_afex_vif_lists(bp, elem);
5591                         goto next_spqe;
5592                 case EVENT_RING_OPCODE_FUNCTION_START:
5593                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5594                            "got FUNC_START ramrod\n");
5595                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5596                                 break;
5597
5598                         goto next_spqe;
5599
5600                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5601                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5602                            "got FUNC_STOP ramrod\n");
5603                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5604                                 break;
5605
5606                         goto next_spqe;
5607
5608                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5609                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5610                            "got set_timesync ramrod completion\n");
5611                         if (f_obj->complete_cmd(bp, f_obj,
5612                                                 BNX2X_F_CMD_SET_TIMESYNC))
5613                                 break;
5614                         goto next_spqe;
5615                 }
5616
5617                 switch (opcode | bp->state) {
5618                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5619                       BNX2X_STATE_OPEN):
5620                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5621                       BNX2X_STATE_OPENING_WAIT4_PORT):
5622                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5623                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5624                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5625                            SW_CID(elem->message.data.eth_event.echo));
5626                         rss_raw->clear_pending(rss_raw);
5627                         break;
5628
5629                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5630                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5631                 case (EVENT_RING_OPCODE_SET_MAC |
5632                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5633                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5634                       BNX2X_STATE_OPEN):
5635                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5636                       BNX2X_STATE_DIAG):
5637                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5638                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5639                         DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5640                         bnx2x_handle_classification_eqe(bp, elem);
5641                         break;
5642
5643                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5644                       BNX2X_STATE_OPEN):
5645                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5646                       BNX2X_STATE_DIAG):
5647                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5648                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5649                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5650                         bnx2x_handle_mcast_eqe(bp);
5651                         break;
5652
5653                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5654                       BNX2X_STATE_OPEN):
5655                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5656                       BNX2X_STATE_DIAG):
5657                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5658                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5659                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5660                         bnx2x_handle_rx_mode_eqe(bp);
5661                         break;
5662                 default:
5663                         /* unknown event log error and continue */
5664                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5665                                   elem->message.opcode, bp->state);
5666                 }
5667 next_spqe:
5668                 spqe_cnt++;
5669         } /* for */
5670
5671         smp_mb__before_atomic();
5672         atomic_add(spqe_cnt, &bp->eq_spq_left);
5673
5674         bp->eq_cons = sw_cons;
5675         bp->eq_prod = sw_prod;
5676         /* Make sure that above mem writes were issued towards the memory */
5677         smp_wmb();
5678
5679         /* update producer */
5680         bnx2x_update_eq_prod(bp, bp->eq_prod);
5681 }
5682
5683 static void bnx2x_sp_task(struct work_struct *work)
5684 {
5685         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5686
5687         DP(BNX2X_MSG_SP, "sp task invoked\n");
5688
5689         /* make sure the atomic interrupt_occurred has been written */
5690         smp_rmb();
5691         if (atomic_read(&bp->interrupt_occurred)) {
5692
5693                 /* what work needs to be performed? */
5694                 u16 status = bnx2x_update_dsb_idx(bp);
5695
5696                 DP(BNX2X_MSG_SP, "status %x\n", status);
5697                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5698                 atomic_set(&bp->interrupt_occurred, 0);
5699
5700                 /* HW attentions */
5701                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5702                         bnx2x_attn_int(bp);
5703                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5704                 }
5705
5706                 /* SP events: STAT_QUERY and others */
5707                 if (status & BNX2X_DEF_SB_IDX) {
5708                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5709
5710                         if (FCOE_INIT(bp) &&
5711                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5712                                 /* Prevent local bottom-halves from running as
5713                                  * we are going to change the local NAPI list.
5714                                  */
5715                                 local_bh_disable();
5716                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5717                                 local_bh_enable();
5718                         }
5719
5720                         /* Handle EQ completions */
5721                         bnx2x_eq_int(bp);
5722                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5723                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5724
5725                         status &= ~BNX2X_DEF_SB_IDX;
5726                 }
5727
5728                 /* if status is non zero then perhaps something went wrong */
5729                 if (unlikely(status))
5730                         DP(BNX2X_MSG_SP,
5731                            "got an unknown interrupt! (status 0x%x)\n", status);
5732
5733                 /* ack status block only if something was actually handled */
5734                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5735                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5736         }
5737
5738         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5739         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5740                                &bp->sp_state)) {
5741                 bnx2x_link_report(bp);
5742                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5743         }
5744 }
5745
5746 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5747 {
5748         struct net_device *dev = dev_instance;
5749         struct bnx2x *bp = netdev_priv(dev);
5750
5751         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5752                      IGU_INT_DISABLE, 0);
5753
5754 #ifdef BNX2X_STOP_ON_ERROR
5755         if (unlikely(bp->panic))
5756                 return IRQ_HANDLED;
5757 #endif
5758
5759         if (CNIC_LOADED(bp)) {
5760                 struct cnic_ops *c_ops;
5761
5762                 rcu_read_lock();
5763                 c_ops = rcu_dereference(bp->cnic_ops);
5764                 if (c_ops)
5765                         c_ops->cnic_handler(bp->cnic_data, NULL);
5766                 rcu_read_unlock();
5767         }
5768
5769         /* schedule sp task to perform default status block work, ack
5770          * attentions and enable interrupts.
5771          */
5772         bnx2x_schedule_sp_task(bp);
5773
5774         return IRQ_HANDLED;
5775 }
5776
5777 /* end of slow path */
5778
5779 void bnx2x_drv_pulse(struct bnx2x *bp)
5780 {
5781         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5782                  bp->fw_drv_pulse_wr_seq);
5783 }
5784
5785 static void bnx2x_timer(struct timer_list *t)
5786 {
5787         struct bnx2x *bp = from_timer(bp, t, timer);
5788
5789         if (!netif_running(bp->dev))
5790                 return;
5791
5792         if (IS_PF(bp) &&
5793             !BP_NOMCP(bp)) {
5794                 int mb_idx = BP_FW_MB_IDX(bp);
5795                 u16 drv_pulse;
5796                 u16 mcp_pulse;
5797
5798                 ++bp->fw_drv_pulse_wr_seq;
5799                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5800                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5801                 bnx2x_drv_pulse(bp);
5802
5803                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5804                              MCP_PULSE_SEQ_MASK);
5805                 /* The delta between driver pulse and mcp response
5806                  * should not get too big. If the MFW is more than 5 pulses
5807                  * behind, we should worry about it enough to generate an error
5808                  * log.
5809                  */
5810                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5811                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5812                                   drv_pulse, mcp_pulse);
5813         }
5814
5815         if (bp->state == BNX2X_STATE_OPEN)
5816                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5817
5818         /* sample pf vf bulletin board for new posts from pf */
5819         if (IS_VF(bp))
5820                 bnx2x_timer_sriov(bp);
5821
5822         mod_timer(&bp->timer, jiffies + bp->current_interval);
5823 }
5824
5825 /* end of Statistics */
5826
5827 /* nic init */
5828
5829 /*
5830  * nic init service functions
5831  */
5832
5833 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5834 {
5835         u32 i;
5836         if (!(len%4) && !(addr%4))
5837                 for (i = 0; i < len; i += 4)
5838                         REG_WR(bp, addr + i, fill);
5839         else
5840                 for (i = 0; i < len; i++)
5841                         REG_WR8(bp, addr + i, fill);
5842 }
5843
5844 /* helper: writes FP SP data to FW - data_size in dwords */
5845 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5846                                 int fw_sb_id,
5847                                 u32 *sb_data_p,
5848                                 u32 data_size)
5849 {
5850         int index;
5851         for (index = 0; index < data_size; index++)
5852                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5853                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5854                         sizeof(u32)*index,
5855                         *(sb_data_p + index));
5856 }
5857
5858 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5859 {
5860         u32 *sb_data_p;
5861         u32 data_size = 0;
5862         struct hc_status_block_data_e2 sb_data_e2;
5863         struct hc_status_block_data_e1x sb_data_e1x;
5864
5865         /* disable the function first */
5866         if (!CHIP_IS_E1x(bp)) {
5867                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5868                 sb_data_e2.common.state = SB_DISABLED;
5869                 sb_data_e2.common.p_func.vf_valid = false;
5870                 sb_data_p = (u32 *)&sb_data_e2;
5871                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5872         } else {
5873                 memset(&sb_data_e1x, 0,
5874                        sizeof(struct hc_status_block_data_e1x));
5875                 sb_data_e1x.common.state = SB_DISABLED;
5876                 sb_data_e1x.common.p_func.vf_valid = false;
5877                 sb_data_p = (u32 *)&sb_data_e1x;
5878                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5879         }
5880         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5881
5882         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5883                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5884                         CSTORM_STATUS_BLOCK_SIZE);
5885         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5886                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5887                         CSTORM_SYNC_BLOCK_SIZE);
5888 }
5889
5890 /* helper:  writes SP SB data to FW */
5891 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5892                 struct hc_sp_status_block_data *sp_sb_data)
5893 {
5894         int func = BP_FUNC(bp);
5895         int i;
5896         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5897                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5898                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5899                         i*sizeof(u32),
5900                         *((u32 *)sp_sb_data + i));
5901 }
5902
5903 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5904 {
5905         int func = BP_FUNC(bp);
5906         struct hc_sp_status_block_data sp_sb_data;
5907         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5908
5909         sp_sb_data.state = SB_DISABLED;
5910         sp_sb_data.p_func.vf_valid = false;
5911
5912         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5913
5914         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5915                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5916                         CSTORM_SP_STATUS_BLOCK_SIZE);
5917         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5918                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5919                         CSTORM_SP_SYNC_BLOCK_SIZE);
5920 }
5921
5922 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5923                                            int igu_sb_id, int igu_seg_id)
5924 {
5925         hc_sm->igu_sb_id = igu_sb_id;
5926         hc_sm->igu_seg_id = igu_seg_id;
5927         hc_sm->timer_value = 0xFF;
5928         hc_sm->time_to_expire = 0xFFFFFFFF;
5929 }
5930
5931 /* allocates state machine ids. */
5932 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5933 {
5934         /* zero out state machine indices */
5935         /* rx indices */
5936         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5937
5938         /* tx indices */
5939         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5940         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5941         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5942         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5943
5944         /* map indices */
5945         /* rx indices */
5946         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5947                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5948
5949         /* tx indices */
5950         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5951                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5952         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5953                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5954         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5955                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5956         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5957                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5958 }
5959
5960 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5961                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5962 {
5963         int igu_seg_id;
5964
5965         struct hc_status_block_data_e2 sb_data_e2;
5966         struct hc_status_block_data_e1x sb_data_e1x;
5967         struct hc_status_block_sm  *hc_sm_p;
5968         int data_size;
5969         u32 *sb_data_p;
5970
5971         if (CHIP_INT_MODE_IS_BC(bp))
5972                 igu_seg_id = HC_SEG_ACCESS_NORM;
5973         else
5974                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5975
5976         bnx2x_zero_fp_sb(bp, fw_sb_id);
5977
5978         if (!CHIP_IS_E1x(bp)) {
5979                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5980                 sb_data_e2.common.state = SB_ENABLED;
5981                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5982                 sb_data_e2.common.p_func.vf_id = vfid;
5983                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5984                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5985                 sb_data_e2.common.same_igu_sb_1b = true;
5986                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5987                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5988                 hc_sm_p = sb_data_e2.common.state_machine;
5989                 sb_data_p = (u32 *)&sb_data_e2;
5990                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5991                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5992         } else {
5993                 memset(&sb_data_e1x, 0,
5994                        sizeof(struct hc_status_block_data_e1x));
5995                 sb_data_e1x.common.state = SB_ENABLED;
5996                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5997                 sb_data_e1x.common.p_func.vf_id = 0xff;
5998                 sb_data_e1x.common.p_func.vf_valid = false;
5999                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
6000                 sb_data_e1x.common.same_igu_sb_1b = true;
6001                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6002                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6003                 hc_sm_p = sb_data_e1x.common.state_machine;
6004                 sb_data_p = (u32 *)&sb_data_e1x;
6005                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6006                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6007         }
6008
6009         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6010                                        igu_sb_id, igu_seg_id);
6011         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6012                                        igu_sb_id, igu_seg_id);
6013
6014         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6015
6016         /* write indices to HW - PCI guarantees endianity of regpairs */
6017         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6018 }
6019
6020 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6021                                      u16 tx_usec, u16 rx_usec)
6022 {
6023         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6024                                     false, rx_usec);
6025         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6026                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6027                                        tx_usec);
6028         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6029                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6030                                        tx_usec);
6031         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6032                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6033                                        tx_usec);
6034 }
6035
6036 static void bnx2x_init_def_sb(struct bnx2x *bp)
6037 {
6038         struct host_sp_status_block *def_sb = bp->def_status_blk;
6039         dma_addr_t mapping = bp->def_status_blk_mapping;
6040         int igu_sp_sb_index;
6041         int igu_seg_id;
6042         int port = BP_PORT(bp);
6043         int func = BP_FUNC(bp);
6044         int reg_offset, reg_offset_en5;
6045         u64 section;
6046         int index;
6047         struct hc_sp_status_block_data sp_sb_data;
6048         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6049
6050         if (CHIP_INT_MODE_IS_BC(bp)) {
6051                 igu_sp_sb_index = DEF_SB_IGU_ID;
6052                 igu_seg_id = HC_SEG_ACCESS_DEF;
6053         } else {
6054                 igu_sp_sb_index = bp->igu_dsb_id;
6055                 igu_seg_id = IGU_SEG_ACCESS_DEF;
6056         }
6057
6058         /* ATTN */
6059         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6060                                             atten_status_block);
6061         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6062
6063         bp->attn_state = 0;
6064
6065         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6066                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6067         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6068                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6069         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6070                 int sindex;
6071                 /* take care of sig[0]..sig[4] */
6072                 for (sindex = 0; sindex < 4; sindex++)
6073                         bp->attn_group[index].sig[sindex] =
6074                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6075
6076                 if (!CHIP_IS_E1x(bp))
6077                         /*
6078                          * enable5 is separate from the rest of the registers,
6079                          * and therefore the address skip is 4
6080                          * and not 16 between the different groups
6081                          */
6082                         bp->attn_group[index].sig[4] = REG_RD(bp,
6083                                         reg_offset_en5 + 0x4*index);
6084                 else
6085                         bp->attn_group[index].sig[4] = 0;
6086         }
6087
6088         if (bp->common.int_block == INT_BLOCK_HC) {
6089                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6090                                      HC_REG_ATTN_MSG0_ADDR_L);
6091
6092                 REG_WR(bp, reg_offset, U64_LO(section));
6093                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6094         } else if (!CHIP_IS_E1x(bp)) {
6095                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6096                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6097         }
6098
6099         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6100                                             sp_sb);
6101
6102         bnx2x_zero_sp_sb(bp);
6103
6104         /* PCI guarantees endianity of regpairs */
6105         sp_sb_data.state                = SB_ENABLED;
6106         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6107         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6108         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6109         sp_sb_data.igu_seg_id           = igu_seg_id;
6110         sp_sb_data.p_func.pf_id         = func;
6111         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6112         sp_sb_data.p_func.vf_id         = 0xff;
6113
6114         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6115
6116         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6117 }
6118
6119 void bnx2x_update_coalesce(struct bnx2x *bp)
6120 {
6121         int i;
6122
6123         for_each_eth_queue(bp, i)
6124                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6125                                          bp->tx_ticks, bp->rx_ticks);
6126 }
6127
6128 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6129 {
6130         spin_lock_init(&bp->spq_lock);
6131         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6132
6133         bp->spq_prod_idx = 0;
6134         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6135         bp->spq_prod_bd = bp->spq;
6136         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6137 }
6138
6139 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6140 {
6141         int i;
6142         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6143                 union event_ring_elem *elem =
6144                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6145
6146                 elem->next_page.addr.hi =
6147                         cpu_to_le32(U64_HI(bp->eq_mapping +
6148                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6149                 elem->next_page.addr.lo =
6150                         cpu_to_le32(U64_LO(bp->eq_mapping +
6151                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6152         }
6153         bp->eq_cons = 0;
6154         bp->eq_prod = NUM_EQ_DESC;
6155         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6156         /* we want a warning message before it gets wrought... */
6157         atomic_set(&bp->eq_spq_left,
6158                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6159 }
6160
6161 /* called with netif_addr_lock_bh() */
6162 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6163                                unsigned long rx_mode_flags,
6164                                unsigned long rx_accept_flags,
6165                                unsigned long tx_accept_flags,
6166                                unsigned long ramrod_flags)
6167 {
6168         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6169         int rc;
6170
6171         memset(&ramrod_param, 0, sizeof(ramrod_param));
6172
6173         /* Prepare ramrod parameters */
6174         ramrod_param.cid = 0;
6175         ramrod_param.cl_id = cl_id;
6176         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6177         ramrod_param.func_id = BP_FUNC(bp);
6178
6179         ramrod_param.pstate = &bp->sp_state;
6180         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6181
6182         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6183         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6184
6185         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6186
6187         ramrod_param.ramrod_flags = ramrod_flags;
6188         ramrod_param.rx_mode_flags = rx_mode_flags;
6189
6190         ramrod_param.rx_accept_flags = rx_accept_flags;
6191         ramrod_param.tx_accept_flags = tx_accept_flags;
6192
6193         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6194         if (rc < 0) {
6195                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6196                 return rc;
6197         }
6198
6199         return 0;
6200 }
6201
6202 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6203                                    unsigned long *rx_accept_flags,
6204                                    unsigned long *tx_accept_flags)
6205 {
6206         /* Clear the flags first */
6207         *rx_accept_flags = 0;
6208         *tx_accept_flags = 0;
6209
6210         switch (rx_mode) {
6211         case BNX2X_RX_MODE_NONE:
6212                 /*
6213                  * 'drop all' supersedes any accept flags that may have been
6214                  * passed to the function.
6215                  */
6216                 break;
6217         case BNX2X_RX_MODE_NORMAL:
6218                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6219                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6220                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6221
6222                 /* internal switching mode */
6223                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6224                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6225                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6226
6227                 if (bp->accept_any_vlan) {
6228                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6229                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6230                 }
6231
6232                 break;
6233         case BNX2X_RX_MODE_ALLMULTI:
6234                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237
6238                 /* internal switching mode */
6239                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6240                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6241                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6242
6243                 if (bp->accept_any_vlan) {
6244                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6245                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6246                 }
6247
6248                 break;
6249         case BNX2X_RX_MODE_PROMISC:
6250                 /* According to definition of SI mode, iface in promisc mode
6251                  * should receive matched and unmatched (in resolution of port)
6252                  * unicast packets.
6253                  */
6254                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6255                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6256                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6257                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6258
6259                 /* internal switching mode */
6260                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6261                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6262
6263                 if (IS_MF_SI(bp))
6264                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6265                 else
6266                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6267
6268                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6269                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6270
6271                 break;
6272         default:
6273                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6274                 return -EINVAL;
6275         }
6276
6277         return 0;
6278 }
6279
6280 /* called with netif_addr_lock_bh() */
6281 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6282 {
6283         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6284         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6285         int rc;
6286
6287         if (!NO_FCOE(bp))
6288                 /* Configure rx_mode of FCoE Queue */
6289                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6290
6291         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6292                                      &tx_accept_flags);
6293         if (rc)
6294                 return rc;
6295
6296         __set_bit(RAMROD_RX, &ramrod_flags);
6297         __set_bit(RAMROD_TX, &ramrod_flags);
6298
6299         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6300                                    rx_accept_flags, tx_accept_flags,
6301                                    ramrod_flags);
6302 }
6303
6304 static void bnx2x_init_internal_common(struct bnx2x *bp)
6305 {
6306         int i;
6307
6308         /* Zero this manually as its initialization is
6309            currently missing in the initTool */
6310         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6311                 REG_WR(bp, BAR_USTRORM_INTMEM +
6312                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6313         if (!CHIP_IS_E1x(bp)) {
6314                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6315                         CHIP_INT_MODE_IS_BC(bp) ?
6316                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6317         }
6318 }
6319
6320 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6321 {
6322         switch (load_code) {
6323         case FW_MSG_CODE_DRV_LOAD_COMMON:
6324         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6325                 bnx2x_init_internal_common(bp);
6326                 fallthrough;
6327
6328         case FW_MSG_CODE_DRV_LOAD_PORT:
6329                 /* nothing to do */
6330                 fallthrough;
6331
6332         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6333                 /* internal memory per function is
6334                    initialized inside bnx2x_pf_init */
6335                 break;
6336
6337         default:
6338                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6339                 break;
6340         }
6341 }
6342
6343 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6344 {
6345         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6346 }
6347
6348 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6349 {
6350         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6351 }
6352
6353 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6354 {
6355         if (CHIP_IS_E1x(fp->bp))
6356                 return BP_L_ID(fp->bp) + fp->index;
6357         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6358                 return bnx2x_fp_igu_sb_id(fp);
6359 }
6360
6361 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6362 {
6363         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6364         u8 cos;
6365         unsigned long q_type = 0;
6366         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6367         fp->rx_queue = fp_idx;
6368         fp->cid = fp_idx;
6369         fp->cl_id = bnx2x_fp_cl_id(fp);
6370         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6371         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6372         /* qZone id equals to FW (per path) client id */
6373         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6374
6375         /* init shortcut */
6376         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6377
6378         /* Setup SB indices */
6379         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6380
6381         /* Configure Queue State object */
6382         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6383         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6384
6385         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6386
6387         /* init tx data */
6388         for_each_cos_in_tx_queue(fp, cos) {
6389                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6390                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6391                                   FP_COS_TO_TXQ(fp, cos, bp),
6392                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6393                 cids[cos] = fp->txdata_ptr[cos]->cid;
6394         }
6395
6396         /* nothing more for vf to do here */
6397         if (IS_VF(bp))
6398                 return;
6399
6400         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6401                       fp->fw_sb_id, fp->igu_sb_id);
6402         bnx2x_update_fpsb_idx(fp);
6403         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6404                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6405                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6406
6407         /**
6408          * Configure classification DBs: Always enable Tx switching
6409          */
6410         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6411
6412         DP(NETIF_MSG_IFUP,
6413            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6414            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6415            fp->igu_sb_id);
6416 }
6417
6418 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6419 {
6420         int i;
6421
6422         for (i = 1; i <= NUM_TX_RINGS; i++) {
6423                 struct eth_tx_next_bd *tx_next_bd =
6424                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6425
6426                 tx_next_bd->addr_hi =
6427                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6428                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6429                 tx_next_bd->addr_lo =
6430                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6431                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6432         }
6433
6434         *txdata->tx_cons_sb = cpu_to_le16(0);
6435
6436         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6437         txdata->tx_db.data.zero_fill1 = 0;
6438         txdata->tx_db.data.prod = 0;
6439
6440         txdata->tx_pkt_prod = 0;
6441         txdata->tx_pkt_cons = 0;
6442         txdata->tx_bd_prod = 0;
6443         txdata->tx_bd_cons = 0;
6444         txdata->tx_pkt = 0;
6445 }
6446
6447 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6448 {
6449         int i;
6450
6451         for_each_tx_queue_cnic(bp, i)
6452                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6453 }
6454
6455 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6456 {
6457         int i;
6458         u8 cos;
6459
6460         for_each_eth_queue(bp, i)
6461                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6462                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6463 }
6464
6465 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6466 {
6467         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6468         unsigned long q_type = 0;
6469
6470         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6471         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6472                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6473         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6474         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6475         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6476         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6477         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6478                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6479                           fp);
6480
6481         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6482
6483         /* qZone id equals to FW (per path) client id */
6484         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6485         /* init shortcut */
6486         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6487                 bnx2x_rx_ustorm_prods_offset(fp);
6488
6489         /* Configure Queue State object */
6490         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6491         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6492
6493         /* No multi-CoS for FCoE L2 client */
6494         BUG_ON(fp->max_cos != 1);
6495
6496         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6497                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6498                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6499
6500         DP(NETIF_MSG_IFUP,
6501            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6502            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6503            fp->igu_sb_id);
6504 }
6505
6506 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6507 {
6508         if (!NO_FCOE(bp))
6509                 bnx2x_init_fcoe_fp(bp);
6510
6511         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6512                       BNX2X_VF_ID_INVALID, false,
6513                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6514
6515         /* ensure status block indices were read */
6516         rmb();
6517         bnx2x_init_rx_rings_cnic(bp);
6518         bnx2x_init_tx_rings_cnic(bp);
6519
6520         /* flush all */
6521         mb();
6522 }
6523
6524 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6525 {
6526         int i;
6527
6528         /* Setup NIC internals and enable interrupts */
6529         for_each_eth_queue(bp, i)
6530                 bnx2x_init_eth_fp(bp, i);
6531
6532         /* ensure status block indices were read */
6533         rmb();
6534         bnx2x_init_rx_rings(bp);
6535         bnx2x_init_tx_rings(bp);
6536
6537         if (IS_PF(bp)) {
6538                 /* Initialize MOD_ABS interrupts */
6539                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6540                                        bp->common.shmem_base,
6541                                        bp->common.shmem2_base, BP_PORT(bp));
6542
6543                 /* initialize the default status block and sp ring */
6544                 bnx2x_init_def_sb(bp);
6545                 bnx2x_update_dsb_idx(bp);
6546                 bnx2x_init_sp_ring(bp);
6547         } else {
6548                 bnx2x_memset_stats(bp);
6549         }
6550 }
6551
6552 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6553 {
6554         bnx2x_init_eq_ring(bp);
6555         bnx2x_init_internal(bp, load_code);
6556         bnx2x_pf_init(bp);
6557         bnx2x_stats_init(bp);
6558
6559         /* flush all before enabling interrupts */
6560         mb();
6561
6562         bnx2x_int_enable(bp);
6563
6564         /* Check for SPIO5 */
6565         bnx2x_attn_int_deasserted0(bp,
6566                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6567                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6568 }
6569
6570 /* gzip service functions */
6571 static int bnx2x_gunzip_init(struct bnx2x *bp)
6572 {
6573         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6574                                             &bp->gunzip_mapping, GFP_KERNEL);
6575         if (bp->gunzip_buf  == NULL)
6576                 goto gunzip_nomem1;
6577
6578         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6579         if (bp->strm  == NULL)
6580                 goto gunzip_nomem2;
6581
6582         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6583         if (bp->strm->workspace == NULL)
6584                 goto gunzip_nomem3;
6585
6586         return 0;
6587
6588 gunzip_nomem3:
6589         kfree(bp->strm);
6590         bp->strm = NULL;
6591
6592 gunzip_nomem2:
6593         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6594                           bp->gunzip_mapping);
6595         bp->gunzip_buf = NULL;
6596
6597 gunzip_nomem1:
6598         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6599         return -ENOMEM;
6600 }
6601
6602 static void bnx2x_gunzip_end(struct bnx2x *bp)
6603 {
6604         if (bp->strm) {
6605                 vfree(bp->strm->workspace);
6606                 kfree(bp->strm);
6607                 bp->strm = NULL;
6608         }
6609
6610         if (bp->gunzip_buf) {
6611                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6612                                   bp->gunzip_mapping);
6613                 bp->gunzip_buf = NULL;
6614         }
6615 }
6616
6617 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6618 {
6619         int n, rc;
6620
6621         /* check gzip header */
6622         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6623                 BNX2X_ERR("Bad gzip header\n");
6624                 return -EINVAL;
6625         }
6626
6627         n = 10;
6628
6629 #define FNAME                           0x8
6630
6631         if (zbuf[3] & FNAME)
6632                 while ((zbuf[n++] != 0) && (n < len));
6633
6634         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6635         bp->strm->avail_in = len - n;
6636         bp->strm->next_out = bp->gunzip_buf;
6637         bp->strm->avail_out = FW_BUF_SIZE;
6638
6639         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6640         if (rc != Z_OK)
6641                 return rc;
6642
6643         rc = zlib_inflate(bp->strm, Z_FINISH);
6644         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6645                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6646                            bp->strm->msg);
6647
6648         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6649         if (bp->gunzip_outlen & 0x3)
6650                 netdev_err(bp->dev,
6651                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6652                                 bp->gunzip_outlen);
6653         bp->gunzip_outlen >>= 2;
6654
6655         zlib_inflateEnd(bp->strm);
6656
6657         if (rc == Z_STREAM_END)
6658                 return 0;
6659
6660         return rc;
6661 }
6662
6663 /* nic load/unload */
6664
6665 /*
6666  * General service functions
6667  */
6668
6669 /* send a NIG loopback debug packet */
6670 static void bnx2x_lb_pckt(struct bnx2x *bp)
6671 {
6672         u32 wb_write[3];
6673
6674         /* Ethernet source and destination addresses */
6675         wb_write[0] = 0x55555555;
6676         wb_write[1] = 0x55555555;
6677         wb_write[2] = 0x20;             /* SOP */
6678         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6679
6680         /* NON-IP protocol */
6681         wb_write[0] = 0x09000000;
6682         wb_write[1] = 0x55555555;
6683         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6684         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6685 }
6686
6687 /* some of the internal memories
6688  * are not directly readable from the driver
6689  * to test them we send debug packets
6690  */
6691 static int bnx2x_int_mem_test(struct bnx2x *bp)
6692 {
6693         int factor;
6694         int count, i;
6695         u32 val = 0;
6696
6697         if (CHIP_REV_IS_FPGA(bp))
6698                 factor = 120;
6699         else if (CHIP_REV_IS_EMUL(bp))
6700                 factor = 200;
6701         else
6702                 factor = 1;
6703
6704         /* Disable inputs of parser neighbor blocks */
6705         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6706         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6707         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6708         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6709
6710         /*  Write 0 to parser credits for CFC search request */
6711         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6712
6713         /* send Ethernet packet */
6714         bnx2x_lb_pckt(bp);
6715
6716         /* TODO do i reset NIG statistic? */
6717         /* Wait until NIG register shows 1 packet of size 0x10 */
6718         count = 1000 * factor;
6719         while (count) {
6720
6721                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6722                 val = *bnx2x_sp(bp, wb_data[0]);
6723                 if (val == 0x10)
6724                         break;
6725
6726                 usleep_range(10000, 20000);
6727                 count--;
6728         }
6729         if (val != 0x10) {
6730                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6731                 return -1;
6732         }
6733
6734         /* Wait until PRS register shows 1 packet */
6735         count = 1000 * factor;
6736         while (count) {
6737                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6738                 if (val == 1)
6739                         break;
6740
6741                 usleep_range(10000, 20000);
6742                 count--;
6743         }
6744         if (val != 0x1) {
6745                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6746                 return -2;
6747         }
6748
6749         /* Reset and init BRB, PRS */
6750         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6751         msleep(50);
6752         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6753         msleep(50);
6754         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6755         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6756
6757         DP(NETIF_MSG_HW, "part2\n");
6758
6759         /* Disable inputs of parser neighbor blocks */
6760         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6761         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6762         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6763         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6764
6765         /* Write 0 to parser credits for CFC search request */
6766         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6767
6768         /* send 10 Ethernet packets */
6769         for (i = 0; i < 10; i++)
6770                 bnx2x_lb_pckt(bp);
6771
6772         /* Wait until NIG register shows 10 + 1
6773            packets of size 11*0x10 = 0xb0 */
6774         count = 1000 * factor;
6775         while (count) {
6776
6777                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6778                 val = *bnx2x_sp(bp, wb_data[0]);
6779                 if (val == 0xb0)
6780                         break;
6781
6782                 usleep_range(10000, 20000);
6783                 count--;
6784         }
6785         if (val != 0xb0) {
6786                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6787                 return -3;
6788         }
6789
6790         /* Wait until PRS register shows 2 packets */
6791         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6792         if (val != 2)
6793                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6794
6795         /* Write 1 to parser credits for CFC search request */
6796         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6797
6798         /* Wait until PRS register shows 3 packets */
6799         msleep(10 * factor);
6800         /* Wait until NIG register shows 1 packet of size 0x10 */
6801         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6802         if (val != 3)
6803                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6804
6805         /* clear NIG EOP FIFO */
6806         for (i = 0; i < 11; i++)
6807                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6808         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6809         if (val != 1) {
6810                 BNX2X_ERR("clear of NIG failed\n");
6811                 return -4;
6812         }
6813
6814         /* Reset and init BRB, PRS, NIG */
6815         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6816         msleep(50);
6817         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6818         msleep(50);
6819         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6820         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6821         if (!CNIC_SUPPORT(bp))
6822                 /* set NIC mode */
6823                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6824
6825         /* Enable inputs of parser neighbor blocks */
6826         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6827         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6828         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6829         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6830
6831         DP(NETIF_MSG_HW, "done\n");
6832
6833         return 0; /* OK */
6834 }
6835
6836 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6837 {
6838         u32 val;
6839
6840         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6841         if (!CHIP_IS_E1x(bp))
6842                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6843         else
6844                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6845         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6846         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6847         /*
6848          * mask read length error interrupts in brb for parser
6849          * (parsing unit and 'checksum and crc' unit)
6850          * these errors are legal (PU reads fixed length and CAC can cause
6851          * read length error on truncated packets)
6852          */
6853         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6854         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6855         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6856         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6857         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6858         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6859 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6860 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6861         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6862         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6863         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6864 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6865 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6866         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6867         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6868         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6869         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6870 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6871 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6872
6873         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6874                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6875                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6876         if (!CHIP_IS_E1x(bp))
6877                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6878                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6879         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6880
6881         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6882         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6883         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6884 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6885
6886         if (!CHIP_IS_E1x(bp))
6887                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6888                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6889
6890         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6891         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6892 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6893         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6894 }
6895
6896 static void bnx2x_reset_common(struct bnx2x *bp)
6897 {
6898         u32 val = 0x1400;
6899
6900         /* reset_common */
6901         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6902                0xd3ffff7f);
6903
6904         if (CHIP_IS_E3(bp)) {
6905                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6906                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6907         }
6908
6909         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6910 }
6911
6912 static void bnx2x_setup_dmae(struct bnx2x *bp)
6913 {
6914         bp->dmae_ready = 0;
6915         spin_lock_init(&bp->dmae_lock);
6916 }
6917
6918 static void bnx2x_init_pxp(struct bnx2x *bp)
6919 {
6920         u16 devctl;
6921         int r_order, w_order;
6922
6923         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6924         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6925         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6926         if (bp->mrrs == -1)
6927                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6928         else {
6929                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6930                 r_order = bp->mrrs;
6931         }
6932
6933         bnx2x_init_pxp_arb(bp, r_order, w_order);
6934 }
6935
6936 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6937 {
6938         int is_required;
6939         u32 val;
6940         int port;
6941
6942         if (BP_NOMCP(bp))
6943                 return;
6944
6945         is_required = 0;
6946         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6947               SHARED_HW_CFG_FAN_FAILURE_MASK;
6948
6949         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6950                 is_required = 1;
6951
6952         /*
6953          * The fan failure mechanism is usually related to the PHY type since
6954          * the power consumption of the board is affected by the PHY. Currently,
6955          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6956          */
6957         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6958                 for (port = PORT_0; port < PORT_MAX; port++) {
6959                         is_required |=
6960                                 bnx2x_fan_failure_det_req(
6961                                         bp,
6962                                         bp->common.shmem_base,
6963                                         bp->common.shmem2_base,
6964                                         port);
6965                 }
6966
6967         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6968
6969         if (is_required == 0)
6970                 return;
6971
6972         /* Fan failure is indicated by SPIO 5 */
6973         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6974
6975         /* set to active low mode */
6976         val = REG_RD(bp, MISC_REG_SPIO_INT);
6977         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6978         REG_WR(bp, MISC_REG_SPIO_INT, val);
6979
6980         /* enable interrupt to signal the IGU */
6981         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6982         val |= MISC_SPIO_SPIO5;
6983         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6984 }
6985
6986 void bnx2x_pf_disable(struct bnx2x *bp)
6987 {
6988         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6989         val &= ~IGU_PF_CONF_FUNC_EN;
6990
6991         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6992         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6993         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6994 }
6995
6996 static void bnx2x__common_init_phy(struct bnx2x *bp)
6997 {
6998         u32 shmem_base[2], shmem2_base[2];
6999         /* Avoid common init in case MFW supports LFA */
7000         if (SHMEM2_RD(bp, size) >
7001             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7002                 return;
7003         shmem_base[0] =  bp->common.shmem_base;
7004         shmem2_base[0] = bp->common.shmem2_base;
7005         if (!CHIP_IS_E1x(bp)) {
7006                 shmem_base[1] =
7007                         SHMEM2_RD(bp, other_shmem_base_addr);
7008                 shmem2_base[1] =
7009                         SHMEM2_RD(bp, other_shmem2_base_addr);
7010         }
7011         bnx2x_acquire_phy_lock(bp);
7012         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7013                               bp->common.chip_id);
7014         bnx2x_release_phy_lock(bp);
7015 }
7016
7017 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7018 {
7019         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7020         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7021         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7022         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7023         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7024
7025         /* make sure this value is 0 */
7026         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7027
7028         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7029         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7030         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7031         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7032 }
7033
7034 static void bnx2x_set_endianity(struct bnx2x *bp)
7035 {
7036 #ifdef __BIG_ENDIAN
7037         bnx2x_config_endianity(bp, 1);
7038 #else
7039         bnx2x_config_endianity(bp, 0);
7040 #endif
7041 }
7042
7043 static void bnx2x_reset_endianity(struct bnx2x *bp)
7044 {
7045         bnx2x_config_endianity(bp, 0);
7046 }
7047
7048 /**
7049  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7050  *
7051  * @bp:         driver handle
7052  */
7053 static int bnx2x_init_hw_common(struct bnx2x *bp)
7054 {
7055         u32 val;
7056
7057         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7058
7059         /*
7060          * take the RESET lock to protect undi_unload flow from accessing
7061          * registers while we're resetting the chip
7062          */
7063         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7064
7065         bnx2x_reset_common(bp);
7066         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7067
7068         val = 0xfffc;
7069         if (CHIP_IS_E3(bp)) {
7070                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7071                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7072         }
7073         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7074
7075         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7076
7077         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7078
7079         if (!CHIP_IS_E1x(bp)) {
7080                 u8 abs_func_id;
7081
7082                 /**
7083                  * 4-port mode or 2-port mode we need to turn of master-enable
7084                  * for everyone, after that, turn it back on for self.
7085                  * so, we disregard multi-function or not, and always disable
7086                  * for all functions on the given path, this means 0,2,4,6 for
7087                  * path 0 and 1,3,5,7 for path 1
7088                  */
7089                 for (abs_func_id = BP_PATH(bp);
7090                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7091                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7092                                 REG_WR(bp,
7093                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7094                                     1);
7095                                 continue;
7096                         }
7097
7098                         bnx2x_pretend_func(bp, abs_func_id);
7099                         /* clear pf enable */
7100                         bnx2x_pf_disable(bp);
7101                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7102                 }
7103         }
7104
7105         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7106         if (CHIP_IS_E1(bp)) {
7107                 /* enable HW interrupt from PXP on USDM overflow
7108                    bit 16 on INT_MASK_0 */
7109                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7110         }
7111
7112         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7113         bnx2x_init_pxp(bp);
7114         bnx2x_set_endianity(bp);
7115         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7116
7117         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7118                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7119
7120         /* let the HW do it's magic ... */
7121         msleep(100);
7122         /* finish PXP init */
7123         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7124         if (val != 1) {
7125                 BNX2X_ERR("PXP2 CFG failed\n");
7126                 return -EBUSY;
7127         }
7128         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7129         if (val != 1) {
7130                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7131                 return -EBUSY;
7132         }
7133
7134         /* Timers bug workaround E2 only. We need to set the entire ILT to
7135          * have entries with value "0" and valid bit on.
7136          * This needs to be done by the first PF that is loaded in a path
7137          * (i.e. common phase)
7138          */
7139         if (!CHIP_IS_E1x(bp)) {
7140 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7141  * (i.e. vnic3) to start even if it is marked as "scan-off".
7142  * This occurs when a different function (func2,3) is being marked
7143  * as "scan-off". Real-life scenario for example: if a driver is being
7144  * load-unloaded while func6,7 are down. This will cause the timer to access
7145  * the ilt, translate to a logical address and send a request to read/write.
7146  * Since the ilt for the function that is down is not valid, this will cause
7147  * a translation error which is unrecoverable.
7148  * The Workaround is intended to make sure that when this happens nothing fatal
7149  * will occur. The workaround:
7150  *      1.  First PF driver which loads on a path will:
7151  *              a.  After taking the chip out of reset, by using pretend,
7152  *                  it will write "0" to the following registers of
7153  *                  the other vnics.
7154  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7155  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7156  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7157  *                  And for itself it will write '1' to
7158  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7159  *                  dmae-operations (writing to pram for example.)
7160  *                  note: can be done for only function 6,7 but cleaner this
7161  *                        way.
7162  *              b.  Write zero+valid to the entire ILT.
7163  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7164  *                  VNIC3 (of that port). The range allocated will be the
7165  *                  entire ILT. This is needed to prevent  ILT range error.
7166  *      2.  Any PF driver load flow:
7167  *              a.  ILT update with the physical addresses of the allocated
7168  *                  logical pages.
7169  *              b.  Wait 20msec. - note that this timeout is needed to make
7170  *                  sure there are no requests in one of the PXP internal
7171  *                  queues with "old" ILT addresses.
7172  *              c.  PF enable in the PGLC.
7173  *              d.  Clear the was_error of the PF in the PGLC. (could have
7174  *                  occurred while driver was down)
7175  *              e.  PF enable in the CFC (WEAK + STRONG)
7176  *              f.  Timers scan enable
7177  *      3.  PF driver unload flow:
7178  *              a.  Clear the Timers scan_en.
7179  *              b.  Polling for scan_on=0 for that PF.
7180  *              c.  Clear the PF enable bit in the PXP.
7181  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7182  *              e.  Write zero+valid to all ILT entries (The valid bit must
7183  *                  stay set)
7184  *              f.  If this is VNIC 3 of a port then also init
7185  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7186  *                  to the last entry in the ILT.
7187  *
7188  *      Notes:
7189  *      Currently the PF error in the PGLC is non recoverable.
7190  *      In the future the there will be a recovery routine for this error.
7191  *      Currently attention is masked.
7192  *      Having an MCP lock on the load/unload process does not guarantee that
7193  *      there is no Timer disable during Func6/7 enable. This is because the
7194  *      Timers scan is currently being cleared by the MCP on FLR.
7195  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7196  *      there is error before clearing it. But the flow above is simpler and
7197  *      more general.
7198  *      All ILT entries are written by zero+valid and not just PF6/7
7199  *      ILT entries since in the future the ILT entries allocation for
7200  *      PF-s might be dynamic.
7201  */
7202                 struct ilt_client_info ilt_cli;
7203                 struct bnx2x_ilt ilt;
7204                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7205                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7206
7207                 /* initialize dummy TM client */
7208                 ilt_cli.start = 0;
7209                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7210                 ilt_cli.client_num = ILT_CLIENT_TM;
7211
7212                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7213                  * Step 2: set the timers first/last ilt entry to point
7214                  * to the entire range to prevent ILT range error for 3rd/4th
7215                  * vnic (this code assumes existence of the vnic)
7216                  *
7217                  * both steps performed by call to bnx2x_ilt_client_init_op()
7218                  * with dummy TM client
7219                  *
7220                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7221                  * and his brother are split registers
7222                  */
7223                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7224                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7225                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7226
7227                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7228                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7229                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7230         }
7231
7232         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7233         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7234
7235         if (!CHIP_IS_E1x(bp)) {
7236                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7237                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7238                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7239
7240                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7241
7242                 /* let the HW do it's magic ... */
7243                 do {
7244                         msleep(200);
7245                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7246                 } while (factor-- && (val != 1));
7247
7248                 if (val != 1) {
7249                         BNX2X_ERR("ATC_INIT failed\n");
7250                         return -EBUSY;
7251                 }
7252         }
7253
7254         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7255
7256         bnx2x_iov_init_dmae(bp);
7257
7258         /* clean the DMAE memory */
7259         bp->dmae_ready = 1;
7260         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7261
7262         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7263
7264         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7265
7266         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7267
7268         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7269
7270         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7271         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7272         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7273         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7274
7275         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7276
7277         /* QM queues pointers table */
7278         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7279
7280         /* soft reset pulse */
7281         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7282         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7283
7284         if (CNIC_SUPPORT(bp))
7285                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7286
7287         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7288
7289         if (!CHIP_REV_IS_SLOW(bp))
7290                 /* enable hw interrupt from doorbell Q */
7291                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7292
7293         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7294
7295         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7296         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7297
7298         if (!CHIP_IS_E1(bp))
7299                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7300
7301         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7302                 if (IS_MF_AFEX(bp)) {
7303                         /* configure that VNTag and VLAN headers must be
7304                          * received in afex mode
7305                          */
7306                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7307                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7308                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7309                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7310                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7311                 } else {
7312                         /* Bit-map indicating which L2 hdrs may appear
7313                          * after the basic Ethernet header
7314                          */
7315                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7316                                bp->path_has_ovlan ? 7 : 6);
7317                 }
7318         }
7319
7320         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7321         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7322         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7323         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7324
7325         if (!CHIP_IS_E1x(bp)) {
7326                 /* reset VFC memories */
7327                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7328                            VFC_MEMORIES_RST_REG_CAM_RST |
7329                            VFC_MEMORIES_RST_REG_RAM_RST);
7330                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7331                            VFC_MEMORIES_RST_REG_CAM_RST |
7332                            VFC_MEMORIES_RST_REG_RAM_RST);
7333
7334                 msleep(20);
7335         }
7336
7337         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7338         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7339         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7340         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7341
7342         /* sync semi rtc */
7343         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7344                0x80000000);
7345         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7346                0x80000000);
7347
7348         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7349         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7350         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7351
7352         if (!CHIP_IS_E1x(bp)) {
7353                 if (IS_MF_AFEX(bp)) {
7354                         /* configure that VNTag and VLAN headers must be
7355                          * sent in afex mode
7356                          */
7357                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7358                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7359                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7360                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7361                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7362                 } else {
7363                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7364                                bp->path_has_ovlan ? 7 : 6);
7365                 }
7366         }
7367
7368         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7369
7370         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7371
7372         if (CNIC_SUPPORT(bp)) {
7373                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7374                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7375                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7376                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7377                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7378                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7379                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7380                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7381                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7382                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7383         }
7384         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7385
7386         if (sizeof(union cdu_context) != 1024)
7387                 /* we currently assume that a context is 1024 bytes */
7388                 dev_alert(&bp->pdev->dev,
7389                           "please adjust the size of cdu_context(%ld)\n",
7390                           (long)sizeof(union cdu_context));
7391
7392         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7393         val = (4 << 24) + (0 << 12) + 1024;
7394         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7395
7396         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7397         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7398         /* enable context validation interrupt from CFC */
7399         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7400
7401         /* set the thresholds to prevent CFC/CDU race */
7402         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7403
7404         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7405
7406         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7407                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7408
7409         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7410         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7411
7412         /* Reset PCIE errors for debug */
7413         REG_WR(bp, 0x2814, 0xffffffff);
7414         REG_WR(bp, 0x3820, 0xffffffff);
7415
7416         if (!CHIP_IS_E1x(bp)) {
7417                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7418                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7419                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7420                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7421                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7422                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7423                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7424                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7425                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7426                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7427                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7428         }
7429
7430         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7431         if (!CHIP_IS_E1(bp)) {
7432                 /* in E3 this done in per-port section */
7433                 if (!CHIP_IS_E3(bp))
7434                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7435         }
7436         if (CHIP_IS_E1H(bp))
7437                 /* not applicable for E2 (and above ...) */
7438                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7439
7440         if (CHIP_REV_IS_SLOW(bp))
7441                 msleep(200);
7442
7443         /* finish CFC init */
7444         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7445         if (val != 1) {
7446                 BNX2X_ERR("CFC LL_INIT failed\n");
7447                 return -EBUSY;
7448         }
7449         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7450         if (val != 1) {
7451                 BNX2X_ERR("CFC AC_INIT failed\n");
7452                 return -EBUSY;
7453         }
7454         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7455         if (val != 1) {
7456                 BNX2X_ERR("CFC CAM_INIT failed\n");
7457                 return -EBUSY;
7458         }
7459         REG_WR(bp, CFC_REG_DEBUG0, 0);
7460
7461         if (CHIP_IS_E1(bp)) {
7462                 /* read NIG statistic
7463                    to see if this is our first up since powerup */
7464                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7465                 val = *bnx2x_sp(bp, wb_data[0]);
7466
7467                 /* do internal memory self test */
7468                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7469                         BNX2X_ERR("internal mem self test failed\n");
7470                         return -EBUSY;
7471                 }
7472         }
7473
7474         bnx2x_setup_fan_failure_detection(bp);
7475
7476         /* clear PXP2 attentions */
7477         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7478
7479         bnx2x_enable_blocks_attention(bp);
7480         bnx2x_enable_blocks_parity(bp);
7481
7482         if (!BP_NOMCP(bp)) {
7483                 if (CHIP_IS_E1x(bp))
7484                         bnx2x__common_init_phy(bp);
7485         } else
7486                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7487
7488         if (SHMEM2_HAS(bp, netproc_fw_ver))
7489                 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7490
7491         return 0;
7492 }
7493
7494 /**
7495  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7496  *
7497  * @bp:         driver handle
7498  */
7499 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7500 {
7501         int rc = bnx2x_init_hw_common(bp);
7502
7503         if (rc)
7504                 return rc;
7505
7506         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7507         if (!BP_NOMCP(bp))
7508                 bnx2x__common_init_phy(bp);
7509
7510         return 0;
7511 }
7512
7513 static int bnx2x_init_hw_port(struct bnx2x *bp)
7514 {
7515         int port = BP_PORT(bp);
7516         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7517         u32 low, high;
7518         u32 val, reg;
7519
7520         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7521
7522         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7523
7524         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7525         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7526         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7527
7528         /* Timers bug workaround: disables the pf_master bit in pglue at
7529          * common phase, we need to enable it here before any dmae access are
7530          * attempted. Therefore we manually added the enable-master to the
7531          * port phase (it also happens in the function phase)
7532          */
7533         if (!CHIP_IS_E1x(bp))
7534                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7535
7536         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7537         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7538         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7539         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7540
7541         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7542         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7543         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7544         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7545
7546         /* QM cid (connection) count */
7547         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7548
7549         if (CNIC_SUPPORT(bp)) {
7550                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7551                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7552                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7553         }
7554
7555         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7556
7557         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7558
7559         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7560
7561                 if (IS_MF(bp))
7562                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7563                 else if (bp->dev->mtu > 4096) {
7564                         if (bp->flags & ONE_PORT_FLAG)
7565                                 low = 160;
7566                         else {
7567                                 val = bp->dev->mtu;
7568                                 /* (24*1024 + val*4)/256 */
7569                                 low = 96 + (val/64) +
7570                                                 ((val % 64) ? 1 : 0);
7571                         }
7572                 } else
7573                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7574                 high = low + 56;        /* 14*1024/256 */
7575                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7576                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7577         }
7578
7579         if (CHIP_MODE_IS_4_PORT(bp))
7580                 REG_WR(bp, (BP_PORT(bp) ?
7581                             BRB1_REG_MAC_GUARANTIED_1 :
7582                             BRB1_REG_MAC_GUARANTIED_0), 40);
7583
7584         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7585         if (CHIP_IS_E3B0(bp)) {
7586                 if (IS_MF_AFEX(bp)) {
7587                         /* configure headers for AFEX mode */
7588                         REG_WR(bp, BP_PORT(bp) ?
7589                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7590                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7591                         REG_WR(bp, BP_PORT(bp) ?
7592                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7593                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7594                         REG_WR(bp, BP_PORT(bp) ?
7595                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7596                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7597                 } else {
7598                         /* Ovlan exists only if we are in multi-function +
7599                          * switch-dependent mode, in switch-independent there
7600                          * is no ovlan headers
7601                          */
7602                         REG_WR(bp, BP_PORT(bp) ?
7603                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7604                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7605                                (bp->path_has_ovlan ? 7 : 6));
7606                 }
7607         }
7608
7609         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7610         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7611         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7612         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7613
7614         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7615         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7616         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7617         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7618
7619         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7620         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7621
7622         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7623
7624         if (CHIP_IS_E1x(bp)) {
7625                 /* configure PBF to work without PAUSE mtu 9000 */
7626                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7627
7628                 /* update threshold */
7629                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7630                 /* update init credit */
7631                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7632
7633                 /* probe changes */
7634                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7635                 udelay(50);
7636                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7637         }
7638
7639         if (CNIC_SUPPORT(bp))
7640                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7641
7642         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7643         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7644
7645         if (CHIP_IS_E1(bp)) {
7646                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7647                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7648         }
7649         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7650
7651         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7652
7653         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7654         /* init aeu_mask_attn_func_0/1:
7655          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7656          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7657          *             bits 4-7 are used for "per vn group attention" */
7658         val = IS_MF(bp) ? 0xF7 : 0x7;
7659         /* Enable DCBX attention for all but E1 */
7660         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7661         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7662
7663         /* SCPAD_PARITY should NOT trigger close the gates */
7664         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7665         REG_WR(bp, reg,
7666                REG_RD(bp, reg) &
7667                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7668
7669         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7670         REG_WR(bp, reg,
7671                REG_RD(bp, reg) &
7672                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7673
7674         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7675
7676         if (!CHIP_IS_E1x(bp)) {
7677                 /* Bit-map indicating which L2 hdrs may appear after the
7678                  * basic Ethernet header
7679                  */
7680                 if (IS_MF_AFEX(bp))
7681                         REG_WR(bp, BP_PORT(bp) ?
7682                                NIG_REG_P1_HDRS_AFTER_BASIC :
7683                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7684                 else
7685                         REG_WR(bp, BP_PORT(bp) ?
7686                                NIG_REG_P1_HDRS_AFTER_BASIC :
7687                                NIG_REG_P0_HDRS_AFTER_BASIC,
7688                                IS_MF_SD(bp) ? 7 : 6);
7689
7690                 if (CHIP_IS_E3(bp))
7691                         REG_WR(bp, BP_PORT(bp) ?
7692                                    NIG_REG_LLH1_MF_MODE :
7693                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7694         }
7695         if (!CHIP_IS_E3(bp))
7696                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7697
7698         if (!CHIP_IS_E1(bp)) {
7699                 /* 0x2 disable mf_ov, 0x1 enable */
7700                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7701                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7702
7703                 if (!CHIP_IS_E1x(bp)) {
7704                         val = 0;
7705                         switch (bp->mf_mode) {
7706                         case MULTI_FUNCTION_SD:
7707                                 val = 1;
7708                                 break;
7709                         case MULTI_FUNCTION_SI:
7710                         case MULTI_FUNCTION_AFEX:
7711                                 val = 2;
7712                                 break;
7713                         }
7714
7715                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7716                                                   NIG_REG_LLH0_CLS_TYPE), val);
7717                 }
7718                 {
7719                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7720                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7721                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7722                 }
7723         }
7724
7725         /* If SPIO5 is set to generate interrupts, enable it for this port */
7726         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7727         if (val & MISC_SPIO_SPIO5) {
7728                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7729                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7730                 val = REG_RD(bp, reg_addr);
7731                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7732                 REG_WR(bp, reg_addr, val);
7733         }
7734
7735         if (CHIP_IS_E3B0(bp))
7736                 bp->flags |= PTP_SUPPORTED;
7737
7738         return 0;
7739 }
7740
7741 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7742 {
7743         int reg;
7744         u32 wb_write[2];
7745
7746         if (CHIP_IS_E1(bp))
7747                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7748         else
7749                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7750
7751         wb_write[0] = ONCHIP_ADDR1(addr);
7752         wb_write[1] = ONCHIP_ADDR2(addr);
7753         REG_WR_DMAE(bp, reg, wb_write, 2);
7754 }
7755
7756 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7757 {
7758         u32 data, ctl, cnt = 100;
7759         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7760         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7761         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7762         u32 sb_bit =  1 << (idu_sb_id%32);
7763         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7764         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7765
7766         /* Not supported in BC mode */
7767         if (CHIP_INT_MODE_IS_BC(bp))
7768                 return;
7769
7770         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7771                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7772                 IGU_REGULAR_CLEANUP_SET                         |
7773                 IGU_REGULAR_BCLEANUP;
7774
7775         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7776               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7777               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7778
7779         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7780                          data, igu_addr_data);
7781         REG_WR(bp, igu_addr_data, data);
7782         barrier();
7783         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7784                           ctl, igu_addr_ctl);
7785         REG_WR(bp, igu_addr_ctl, ctl);
7786         barrier();
7787
7788         /* wait for clean up to finish */
7789         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7790                 msleep(20);
7791
7792         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7793                 DP(NETIF_MSG_HW,
7794                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7795                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7796         }
7797 }
7798
7799 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7800 {
7801         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7802 }
7803
7804 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7805 {
7806         u32 i, base = FUNC_ILT_BASE(func);
7807         for (i = base; i < base + ILT_PER_FUNC; i++)
7808                 bnx2x_ilt_wr(bp, i, 0);
7809 }
7810
7811 static void bnx2x_init_searcher(struct bnx2x *bp)
7812 {
7813         int port = BP_PORT(bp);
7814         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7815         /* T1 hash bits value determines the T1 number of entries */
7816         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7817 }
7818
7819 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7820 {
7821         int rc;
7822         struct bnx2x_func_state_params func_params = {NULL};
7823         struct bnx2x_func_switch_update_params *switch_update_params =
7824                 &func_params.params.switch_update;
7825
7826         /* Prepare parameters for function state transitions */
7827         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7828         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7829
7830         func_params.f_obj = &bp->func_obj;
7831         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7832
7833         /* Function parameters */
7834         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7835                   &switch_update_params->changes);
7836         if (suspend)
7837                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7838                           &switch_update_params->changes);
7839
7840         rc = bnx2x_func_state_change(bp, &func_params);
7841
7842         return rc;
7843 }
7844
7845 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7846 {
7847         int rc, i, port = BP_PORT(bp);
7848         int vlan_en = 0, mac_en[NUM_MACS];
7849
7850         /* Close input from network */
7851         if (bp->mf_mode == SINGLE_FUNCTION) {
7852                 bnx2x_set_rx_filter(&bp->link_params, 0);
7853         } else {
7854                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7855                                    NIG_REG_LLH0_FUNC_EN);
7856                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7857                           NIG_REG_LLH0_FUNC_EN, 0);
7858                 for (i = 0; i < NUM_MACS; i++) {
7859                         mac_en[i] = REG_RD(bp, port ?
7860                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7861                                               4 * i) :
7862                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7863                                               4 * i));
7864                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7865                                               4 * i) :
7866                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7867                 }
7868         }
7869
7870         /* Close BMC to host */
7871         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7872                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7873
7874         /* Suspend Tx switching to the PF. Completion of this ramrod
7875          * further guarantees that all the packets of that PF / child
7876          * VFs in BRB were processed by the Parser, so it is safe to
7877          * change the NIC_MODE register.
7878          */
7879         rc = bnx2x_func_switch_update(bp, 1);
7880         if (rc) {
7881                 BNX2X_ERR("Can't suspend tx-switching!\n");
7882                 return rc;
7883         }
7884
7885         /* Change NIC_MODE register */
7886         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7887
7888         /* Open input from network */
7889         if (bp->mf_mode == SINGLE_FUNCTION) {
7890                 bnx2x_set_rx_filter(&bp->link_params, 1);
7891         } else {
7892                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7893                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7894                 for (i = 0; i < NUM_MACS; i++) {
7895                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7896                                               4 * i) :
7897                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7898                                   mac_en[i]);
7899                 }
7900         }
7901
7902         /* Enable BMC to host */
7903         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7904                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7905
7906         /* Resume Tx switching to the PF */
7907         rc = bnx2x_func_switch_update(bp, 0);
7908         if (rc) {
7909                 BNX2X_ERR("Can't resume tx-switching!\n");
7910                 return rc;
7911         }
7912
7913         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7914         return 0;
7915 }
7916
7917 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7918 {
7919         int rc;
7920
7921         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7922
7923         if (CONFIGURE_NIC_MODE(bp)) {
7924                 /* Configure searcher as part of function hw init */
7925                 bnx2x_init_searcher(bp);
7926
7927                 /* Reset NIC mode */
7928                 rc = bnx2x_reset_nic_mode(bp);
7929                 if (rc)
7930                         BNX2X_ERR("Can't change NIC mode!\n");
7931                 return rc;
7932         }
7933
7934         return 0;
7935 }
7936
7937 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7938  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7939  * the addresses of the transaction, resulting in was-error bit set in the pci
7940  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7941  * to clear the interrupt which detected this from the pglueb and the was done
7942  * bit
7943  */
7944 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7945 {
7946         if (!CHIP_IS_E1x(bp))
7947                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7948                        1 << BP_ABS_FUNC(bp));
7949 }
7950
7951 static int bnx2x_init_hw_func(struct bnx2x *bp)
7952 {
7953         int port = BP_PORT(bp);
7954         int func = BP_FUNC(bp);
7955         int init_phase = PHASE_PF0 + func;
7956         struct bnx2x_ilt *ilt = BP_ILT(bp);
7957         u16 cdu_ilt_start;
7958         u32 addr, val;
7959         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7960         int i, main_mem_width, rc;
7961
7962         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7963
7964         /* FLR cleanup - hmmm */
7965         if (!CHIP_IS_E1x(bp)) {
7966                 rc = bnx2x_pf_flr_clnup(bp);
7967                 if (rc) {
7968                         bnx2x_fw_dump(bp);
7969                         return rc;
7970                 }
7971         }
7972
7973         /* set MSI reconfigure capability */
7974         if (bp->common.int_block == INT_BLOCK_HC) {
7975                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7976                 val = REG_RD(bp, addr);
7977                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7978                 REG_WR(bp, addr, val);
7979         }
7980
7981         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7982         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7983
7984         ilt = BP_ILT(bp);
7985         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7986
7987         if (IS_SRIOV(bp))
7988                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7989         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7990
7991         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7992          * those of the VFs, so start line should be reset
7993          */
7994         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7995         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7996                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7997                 ilt->lines[cdu_ilt_start + i].page_mapping =
7998                         bp->context[i].cxt_mapping;
7999                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
8000         }
8001
8002         bnx2x_ilt_init_op(bp, INITOP_SET);
8003
8004         if (!CONFIGURE_NIC_MODE(bp)) {
8005                 bnx2x_init_searcher(bp);
8006                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
8007                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8008         } else {
8009                 /* Set NIC mode */
8010                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8011                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8012         }
8013
8014         if (!CHIP_IS_E1x(bp)) {
8015                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8016
8017                 /* Turn on a single ISR mode in IGU if driver is going to use
8018                  * INT#x or MSI
8019                  */
8020                 if (!(bp->flags & USING_MSIX_FLAG))
8021                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8022                 /*
8023                  * Timers workaround bug: function init part.
8024                  * Need to wait 20msec after initializing ILT,
8025                  * needed to make sure there are no requests in
8026                  * one of the PXP internal queues with "old" ILT addresses
8027                  */
8028                 msleep(20);
8029                 /*
8030                  * Master enable - Due to WB DMAE writes performed before this
8031                  * register is re-initialized as part of the regular function
8032                  * init
8033                  */
8034                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8035                 /* Enable the function in IGU */
8036                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8037         }
8038
8039         bp->dmae_ready = 1;
8040
8041         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8042
8043         bnx2x_clean_pglue_errors(bp);
8044
8045         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8046         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8047         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8048         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8049         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8050         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8051         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8052         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8053         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8054         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8055         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8056         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8057         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8058
8059         if (!CHIP_IS_E1x(bp))
8060                 REG_WR(bp, QM_REG_PF_EN, 1);
8061
8062         if (!CHIP_IS_E1x(bp)) {
8063                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8066                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8067         }
8068         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8069
8070         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8071         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8072         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8073
8074         bnx2x_iov_init_dq(bp);
8075
8076         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8077         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8078         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8079         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8080         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8081         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8082         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8083         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8084         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8085         if (!CHIP_IS_E1x(bp))
8086                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8087
8088         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8089
8090         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8091
8092         if (!CHIP_IS_E1x(bp))
8093                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8094
8095         if (IS_MF(bp)) {
8096                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8097                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8098                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8099                                bp->mf_ov);
8100                 }
8101         }
8102
8103         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8104
8105         /* HC init per function */
8106         if (bp->common.int_block == INT_BLOCK_HC) {
8107                 if (CHIP_IS_E1H(bp)) {
8108                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8109
8110                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8111                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8112                 }
8113                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8114
8115         } else {
8116                 int num_segs, sb_idx, prod_offset;
8117
8118                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8119
8120                 if (!CHIP_IS_E1x(bp)) {
8121                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8122                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8123                 }
8124
8125                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8126
8127                 if (!CHIP_IS_E1x(bp)) {
8128                         int dsb_idx = 0;
8129                         /**
8130                          * Producer memory:
8131                          * E2 mode: address 0-135 match to the mapping memory;
8132                          * 136 - PF0 default prod; 137 - PF1 default prod;
8133                          * 138 - PF2 default prod; 139 - PF3 default prod;
8134                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8135                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8136                          * 144-147 reserved.
8137                          *
8138                          * E1.5 mode - In backward compatible mode;
8139                          * for non default SB; each even line in the memory
8140                          * holds the U producer and each odd line hold
8141                          * the C producer. The first 128 producers are for
8142                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8143                          * producers are for the DSB for each PF.
8144                          * Each PF has five segments: (the order inside each
8145                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8146                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8147                          * 144-147 attn prods;
8148                          */
8149                         /* non-default-status-blocks */
8150                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8151                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8152                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8153                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8154                                         num_segs;
8155
8156                                 for (i = 0; i < num_segs; i++) {
8157                                         addr = IGU_REG_PROD_CONS_MEMORY +
8158                                                         (prod_offset + i) * 4;
8159                                         REG_WR(bp, addr, 0);
8160                                 }
8161                                 /* send consumer update with value 0 */
8162                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8163                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8164                                 bnx2x_igu_clear_sb(bp,
8165                                                    bp->igu_base_sb + sb_idx);
8166                         }
8167
8168                         /* default-status-blocks */
8169                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8170                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8171
8172                         if (CHIP_MODE_IS_4_PORT(bp))
8173                                 dsb_idx = BP_FUNC(bp);
8174                         else
8175                                 dsb_idx = BP_VN(bp);
8176
8177                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8178                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8179                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8180
8181                         /*
8182                          * igu prods come in chunks of E1HVN_MAX (4) -
8183                          * does not matters what is the current chip mode
8184                          */
8185                         for (i = 0; i < (num_segs * E1HVN_MAX);
8186                              i += E1HVN_MAX) {
8187                                 addr = IGU_REG_PROD_CONS_MEMORY +
8188                                                         (prod_offset + i)*4;
8189                                 REG_WR(bp, addr, 0);
8190                         }
8191                         /* send consumer update with 0 */
8192                         if (CHIP_INT_MODE_IS_BC(bp)) {
8193                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8194                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8195                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8197                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8198                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8199                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8200                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8201                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8202                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8203                         } else {
8204                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8205                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8206                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8207                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8208                         }
8209                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8210
8211                         /* !!! These should become driver const once
8212                            rf-tool supports split-68 const */
8213                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8214                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8215                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8216                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8217                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8218                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8219                 }
8220         }
8221
8222         /* Reset PCIE errors for debug */
8223         REG_WR(bp, 0x2114, 0xffffffff);
8224         REG_WR(bp, 0x2120, 0xffffffff);
8225
8226         if (CHIP_IS_E1x(bp)) {
8227                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8228                 main_mem_base = HC_REG_MAIN_MEMORY +
8229                                 BP_PORT(bp) * (main_mem_size * 4);
8230                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8231                 main_mem_width = 8;
8232
8233                 val = REG_RD(bp, main_mem_prty_clr);
8234                 if (val)
8235                         DP(NETIF_MSG_HW,
8236                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8237                            val);
8238
8239                 /* Clear "false" parity errors in MSI-X table */
8240                 for (i = main_mem_base;
8241                      i < main_mem_base + main_mem_size * 4;
8242                      i += main_mem_width) {
8243                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8244                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8245                                          i, main_mem_width / 4);
8246                 }
8247                 /* Clear HC parity attention */
8248                 REG_RD(bp, main_mem_prty_clr);
8249         }
8250
8251 #ifdef BNX2X_STOP_ON_ERROR
8252         /* Enable STORMs SP logging */
8253         REG_WR8(bp, BAR_USTRORM_INTMEM +
8254                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8255         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8256                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8257         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8258                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8259         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8260                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8261 #endif
8262
8263         bnx2x_phy_probe(&bp->link_params);
8264
8265         return 0;
8266 }
8267
8268 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8269 {
8270         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8271
8272         if (!CHIP_IS_E1x(bp))
8273                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8274                                sizeof(struct host_hc_status_block_e2));
8275         else
8276                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8277                                sizeof(struct host_hc_status_block_e1x));
8278
8279         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8280 }
8281
8282 void bnx2x_free_mem(struct bnx2x *bp)
8283 {
8284         int i;
8285
8286         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8287                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8288
8289         if (IS_VF(bp))
8290                 return;
8291
8292         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8293                        sizeof(struct host_sp_status_block));
8294
8295         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8296                        sizeof(struct bnx2x_slowpath));
8297
8298         for (i = 0; i < L2_ILT_LINES(bp); i++)
8299                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8300                                bp->context[i].size);
8301         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8302
8303         BNX2X_FREE(bp->ilt->lines);
8304
8305         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8306
8307         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8308                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8309
8310         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8311
8312         bnx2x_iov_free_mem(bp);
8313 }
8314
8315 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8316 {
8317         if (!CHIP_IS_E1x(bp)) {
8318                 /* size = the status block + ramrod buffers */
8319                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8320                                                     sizeof(struct host_hc_status_block_e2));
8321                 if (!bp->cnic_sb.e2_sb)
8322                         goto alloc_mem_err;
8323         } else {
8324                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8325                                                      sizeof(struct host_hc_status_block_e1x));
8326                 if (!bp->cnic_sb.e1x_sb)
8327                         goto alloc_mem_err;
8328         }
8329
8330         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8331                 /* allocate searcher T2 table, as it wasn't allocated before */
8332                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8333                 if (!bp->t2)
8334                         goto alloc_mem_err;
8335         }
8336
8337         /* write address to which L5 should insert its values */
8338         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8339                 &bp->slowpath->drv_info_to_mcp;
8340
8341         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8342                 goto alloc_mem_err;
8343
8344         return 0;
8345
8346 alloc_mem_err:
8347         bnx2x_free_mem_cnic(bp);
8348         BNX2X_ERR("Can't allocate memory\n");
8349         return -ENOMEM;
8350 }
8351
8352 int bnx2x_alloc_mem(struct bnx2x *bp)
8353 {
8354         int i, allocated, context_size;
8355
8356         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8357                 /* allocate searcher T2 table */
8358                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8359                 if (!bp->t2)
8360                         goto alloc_mem_err;
8361         }
8362
8363         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8364                                              sizeof(struct host_sp_status_block));
8365         if (!bp->def_status_blk)
8366                 goto alloc_mem_err;
8367
8368         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8369                                        sizeof(struct bnx2x_slowpath));
8370         if (!bp->slowpath)
8371                 goto alloc_mem_err;
8372
8373         /* Allocate memory for CDU context:
8374          * This memory is allocated separately and not in the generic ILT
8375          * functions because CDU differs in few aspects:
8376          * 1. There are multiple entities allocating memory for context -
8377          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8378          * its own ILT lines.
8379          * 2. Since CDU page-size is not a single 4KB page (which is the case
8380          * for the other ILT clients), to be efficient we want to support
8381          * allocation of sub-page-size in the last entry.
8382          * 3. Context pointers are used by the driver to pass to FW / update
8383          * the context (for the other ILT clients the pointers are used just to
8384          * free the memory during unload).
8385          */
8386         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8387
8388         for (i = 0, allocated = 0; allocated < context_size; i++) {
8389                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8390                                           (context_size - allocated));
8391                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8392                                                       bp->context[i].size);
8393                 if (!bp->context[i].vcxt)
8394                         goto alloc_mem_err;
8395                 allocated += bp->context[i].size;
8396         }
8397         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8398                                  GFP_KERNEL);
8399         if (!bp->ilt->lines)
8400                 goto alloc_mem_err;
8401
8402         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8403                 goto alloc_mem_err;
8404
8405         if (bnx2x_iov_alloc_mem(bp))
8406                 goto alloc_mem_err;
8407
8408         /* Slow path ring */
8409         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8410         if (!bp->spq)
8411                 goto alloc_mem_err;
8412
8413         /* EQ */
8414         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8415                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8416         if (!bp->eq_ring)
8417                 goto alloc_mem_err;
8418
8419         return 0;
8420
8421 alloc_mem_err:
8422         bnx2x_free_mem(bp);
8423         BNX2X_ERR("Can't allocate memory\n");
8424         return -ENOMEM;
8425 }
8426
8427 /*
8428  * Init service functions
8429  */
8430
8431 int bnx2x_set_mac_one(struct bnx2x *bp, const u8 *mac,
8432                       struct bnx2x_vlan_mac_obj *obj, bool set,
8433                       int mac_type, unsigned long *ramrod_flags)
8434 {
8435         int rc;
8436         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8437
8438         memset(&ramrod_param, 0, sizeof(ramrod_param));
8439
8440         /* Fill general parameters */
8441         ramrod_param.vlan_mac_obj = obj;
8442         ramrod_param.ramrod_flags = *ramrod_flags;
8443
8444         /* Fill a user request section if needed */
8445         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8446                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8447
8448                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8449
8450                 /* Set the command: ADD or DEL */
8451                 if (set)
8452                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8453                 else
8454                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8455         }
8456
8457         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8458
8459         if (rc == -EEXIST) {
8460                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8461                 /* do not treat adding same MAC as error */
8462                 rc = 0;
8463         } else if (rc < 0)
8464                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8465
8466         return rc;
8467 }
8468
8469 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8470                        struct bnx2x_vlan_mac_obj *obj, bool set,
8471                        unsigned long *ramrod_flags)
8472 {
8473         int rc;
8474         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8475
8476         memset(&ramrod_param, 0, sizeof(ramrod_param));
8477
8478         /* Fill general parameters */
8479         ramrod_param.vlan_mac_obj = obj;
8480         ramrod_param.ramrod_flags = *ramrod_flags;
8481
8482         /* Fill a user request section if needed */
8483         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8484                 ramrod_param.user_req.u.vlan.vlan = vlan;
8485                 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8486                 /* Set the command: ADD or DEL */
8487                 if (set)
8488                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8489                 else
8490                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8491         }
8492
8493         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8494
8495         if (rc == -EEXIST) {
8496                 /* Do not treat adding same vlan as error. */
8497                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8498                 rc = 0;
8499         } else if (rc < 0) {
8500                 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8501         }
8502
8503         return rc;
8504 }
8505
8506 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8507 {
8508         struct bnx2x_vlan_entry *vlan;
8509
8510         /* Mark that hw forgot all entries */
8511         list_for_each_entry(vlan, &bp->vlan_reg, link)
8512                 vlan->hw = false;
8513
8514         bp->vlan_cnt = 0;
8515 }
8516
8517 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8518 {
8519         struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8520         unsigned long ramrod_flags = 0, vlan_flags = 0;
8521         int rc;
8522
8523         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8524         __set_bit(BNX2X_VLAN, &vlan_flags);
8525         rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8526         if (rc)
8527                 return rc;
8528
8529         bnx2x_clear_vlan_info(bp);
8530
8531         return 0;
8532 }
8533
8534 int bnx2x_del_all_macs(struct bnx2x *bp,
8535                        struct bnx2x_vlan_mac_obj *mac_obj,
8536                        int mac_type, bool wait_for_comp)
8537 {
8538         int rc;
8539         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8540
8541         /* Wait for completion of requested */
8542         if (wait_for_comp)
8543                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8544
8545         /* Set the mac type of addresses we want to clear */
8546         __set_bit(mac_type, &vlan_mac_flags);
8547
8548         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8549         if (rc < 0)
8550                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8551
8552         return rc;
8553 }
8554
8555 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8556 {
8557         if (IS_PF(bp)) {
8558                 unsigned long ramrod_flags = 0;
8559
8560                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8561                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8562                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8563                                          &bp->sp_objs->mac_obj, set,
8564                                          BNX2X_ETH_MAC, &ramrod_flags);
8565         } else { /* vf */
8566                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8567                                              bp->fp->index, set);
8568         }
8569 }
8570
8571 int bnx2x_setup_leading(struct bnx2x *bp)
8572 {
8573         if (IS_PF(bp))
8574                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8575         else /* VF */
8576                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8577 }
8578
8579 /**
8580  * bnx2x_set_int_mode - configure interrupt mode
8581  *
8582  * @bp:         driver handle
8583  *
8584  * In case of MSI-X it will also try to enable MSI-X.
8585  */
8586 int bnx2x_set_int_mode(struct bnx2x *bp)
8587 {
8588         int rc = 0;
8589
8590         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8591                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8592                 return -EINVAL;
8593         }
8594
8595         switch (int_mode) {
8596         case BNX2X_INT_MODE_MSIX:
8597                 /* attempt to enable msix */
8598                 rc = bnx2x_enable_msix(bp);
8599
8600                 /* msix attained */
8601                 if (!rc)
8602                         return 0;
8603
8604                 /* vfs use only msix */
8605                 if (rc && IS_VF(bp))
8606                         return rc;
8607
8608                 /* failed to enable multiple MSI-X */
8609                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8610                                bp->num_queues,
8611                                1 + bp->num_cnic_queues);
8612
8613                 fallthrough;
8614         case BNX2X_INT_MODE_MSI:
8615                 bnx2x_enable_msi(bp);
8616
8617                 fallthrough;
8618         case BNX2X_INT_MODE_INTX:
8619                 bp->num_ethernet_queues = 1;
8620                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8621                 BNX2X_DEV_INFO("set number of queues to 1\n");
8622                 break;
8623         default:
8624                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8625                 return -EINVAL;
8626         }
8627         return 0;
8628 }
8629
8630 /* must be called prior to any HW initializations */
8631 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8632 {
8633         if (IS_SRIOV(bp))
8634                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8635         return L2_ILT_LINES(bp);
8636 }
8637
8638 void bnx2x_ilt_set_info(struct bnx2x *bp)
8639 {
8640         struct ilt_client_info *ilt_client;
8641         struct bnx2x_ilt *ilt = BP_ILT(bp);
8642         u16 line = 0;
8643
8644         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8645         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8646
8647         /* CDU */
8648         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8649         ilt_client->client_num = ILT_CLIENT_CDU;
8650         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8651         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8652         ilt_client->start = line;
8653         line += bnx2x_cid_ilt_lines(bp);
8654
8655         if (CNIC_SUPPORT(bp))
8656                 line += CNIC_ILT_LINES;
8657         ilt_client->end = line - 1;
8658
8659         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8660            ilt_client->start,
8661            ilt_client->end,
8662            ilt_client->page_size,
8663            ilt_client->flags,
8664            ilog2(ilt_client->page_size >> 12));
8665
8666         /* QM */
8667         if (QM_INIT(bp->qm_cid_count)) {
8668                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8669                 ilt_client->client_num = ILT_CLIENT_QM;
8670                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8671                 ilt_client->flags = 0;
8672                 ilt_client->start = line;
8673
8674                 /* 4 bytes for each cid */
8675                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8676                                                          QM_ILT_PAGE_SZ);
8677
8678                 ilt_client->end = line - 1;
8679
8680                 DP(NETIF_MSG_IFUP,
8681                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8682                    ilt_client->start,
8683                    ilt_client->end,
8684                    ilt_client->page_size,
8685                    ilt_client->flags,
8686                    ilog2(ilt_client->page_size >> 12));
8687         }
8688
8689         if (CNIC_SUPPORT(bp)) {
8690                 /* SRC */
8691                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8692                 ilt_client->client_num = ILT_CLIENT_SRC;
8693                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8694                 ilt_client->flags = 0;
8695                 ilt_client->start = line;
8696                 line += SRC_ILT_LINES;
8697                 ilt_client->end = line - 1;
8698
8699                 DP(NETIF_MSG_IFUP,
8700                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8701                    ilt_client->start,
8702                    ilt_client->end,
8703                    ilt_client->page_size,
8704                    ilt_client->flags,
8705                    ilog2(ilt_client->page_size >> 12));
8706
8707                 /* TM */
8708                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8709                 ilt_client->client_num = ILT_CLIENT_TM;
8710                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8711                 ilt_client->flags = 0;
8712                 ilt_client->start = line;
8713                 line += TM_ILT_LINES;
8714                 ilt_client->end = line - 1;
8715
8716                 DP(NETIF_MSG_IFUP,
8717                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8718                    ilt_client->start,
8719                    ilt_client->end,
8720                    ilt_client->page_size,
8721                    ilt_client->flags,
8722                    ilog2(ilt_client->page_size >> 12));
8723         }
8724
8725         BUG_ON(line > ILT_MAX_LINES);
8726 }
8727
8728 /**
8729  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8730  *
8731  * @bp:                 driver handle
8732  * @fp:                 pointer to fastpath
8733  * @init_params:        pointer to parameters structure
8734  *
8735  * parameters configured:
8736  *      - HC configuration
8737  *      - Queue's CDU context
8738  */
8739 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8740         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8741 {
8742         u8 cos;
8743         int cxt_index, cxt_offset;
8744
8745         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8746         if (!IS_FCOE_FP(fp)) {
8747                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8748                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8749
8750                 /* If HC is supported, enable host coalescing in the transition
8751                  * to INIT state.
8752                  */
8753                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8754                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8755
8756                 /* HC rate */
8757                 init_params->rx.hc_rate = bp->rx_ticks ?
8758                         (1000000 / bp->rx_ticks) : 0;
8759                 init_params->tx.hc_rate = bp->tx_ticks ?
8760                         (1000000 / bp->tx_ticks) : 0;
8761
8762                 /* FW SB ID */
8763                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8764                         fp->fw_sb_id;
8765
8766                 /*
8767                  * CQ index among the SB indices: FCoE clients uses the default
8768                  * SB, therefore it's different.
8769                  */
8770                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8771                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8772         }
8773
8774         /* set maximum number of COSs supported by this queue */
8775         init_params->max_cos = fp->max_cos;
8776
8777         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8778             fp->index, init_params->max_cos);
8779
8780         /* set the context pointers queue object */
8781         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8782                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8783                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8784                                 ILT_PAGE_CIDS);
8785                 init_params->cxts[cos] =
8786                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8787         }
8788 }
8789
8790 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8791                         struct bnx2x_queue_state_params *q_params,
8792                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8793                         int tx_index, bool leading)
8794 {
8795         memset(tx_only_params, 0, sizeof(*tx_only_params));
8796
8797         /* Set the command */
8798         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8799
8800         /* Set tx-only QUEUE flags: don't zero statistics */
8801         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8802
8803         /* choose the index of the cid to send the slow path on */
8804         tx_only_params->cid_index = tx_index;
8805
8806         /* Set general TX_ONLY_SETUP parameters */
8807         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8808
8809         /* Set Tx TX_ONLY_SETUP parameters */
8810         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8811
8812         DP(NETIF_MSG_IFUP,
8813            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8814            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8815            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8816            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8817
8818         /* send the ramrod */
8819         return bnx2x_queue_state_change(bp, q_params);
8820 }
8821
8822 /**
8823  * bnx2x_setup_queue - setup queue
8824  *
8825  * @bp:         driver handle
8826  * @fp:         pointer to fastpath
8827  * @leading:    is leading
8828  *
8829  * This function performs 2 steps in a Queue state machine
8830  *      actually: 1) RESET->INIT 2) INIT->SETUP
8831  */
8832
8833 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8834                        bool leading)
8835 {
8836         struct bnx2x_queue_state_params q_params = {NULL};
8837         struct bnx2x_queue_setup_params *setup_params =
8838                                                 &q_params.params.setup;
8839         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8840                                                 &q_params.params.tx_only;
8841         int rc;
8842         u8 tx_index;
8843
8844         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8845
8846         /* reset IGU state skip FCoE L2 queue */
8847         if (!IS_FCOE_FP(fp))
8848                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8849                              IGU_INT_ENABLE, 0);
8850
8851         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8852         /* We want to wait for completion in this context */
8853         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8854
8855         /* Prepare the INIT parameters */
8856         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8857
8858         /* Set the command */
8859         q_params.cmd = BNX2X_Q_CMD_INIT;
8860
8861         /* Change the state to INIT */
8862         rc = bnx2x_queue_state_change(bp, &q_params);
8863         if (rc) {
8864                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8865                 return rc;
8866         }
8867
8868         DP(NETIF_MSG_IFUP, "init complete\n");
8869
8870         /* Now move the Queue to the SETUP state... */
8871         memset(setup_params, 0, sizeof(*setup_params));
8872
8873         /* Set QUEUE flags */
8874         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8875
8876         /* Set general SETUP parameters */
8877         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8878                                 FIRST_TX_COS_INDEX);
8879
8880         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8881                             &setup_params->rxq_params);
8882
8883         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8884                            FIRST_TX_COS_INDEX);
8885
8886         /* Set the command */
8887         q_params.cmd = BNX2X_Q_CMD_SETUP;
8888
8889         if (IS_FCOE_FP(fp))
8890                 bp->fcoe_init = true;
8891
8892         /* Change the state to SETUP */
8893         rc = bnx2x_queue_state_change(bp, &q_params);
8894         if (rc) {
8895                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8896                 return rc;
8897         }
8898
8899         /* loop through the relevant tx-only indices */
8900         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8901               tx_index < fp->max_cos;
8902               tx_index++) {
8903
8904                 /* prepare and send tx-only ramrod*/
8905                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8906                                           tx_only_params, tx_index, leading);
8907                 if (rc) {
8908                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8909                                   fp->index, tx_index);
8910                         return rc;
8911                 }
8912         }
8913
8914         return rc;
8915 }
8916
8917 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8918 {
8919         struct bnx2x_fastpath *fp = &bp->fp[index];
8920         struct bnx2x_fp_txdata *txdata;
8921         struct bnx2x_queue_state_params q_params = {NULL};
8922         int rc, tx_index;
8923
8924         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8925
8926         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8927         /* We want to wait for completion in this context */
8928         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8929
8930         /* close tx-only connections */
8931         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8932              tx_index < fp->max_cos;
8933              tx_index++){
8934
8935                 /* ascertain this is a normal queue*/
8936                 txdata = fp->txdata_ptr[tx_index];
8937
8938                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8939                                                         txdata->txq_index);
8940
8941                 /* send halt terminate on tx-only connection */
8942                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8943                 memset(&q_params.params.terminate, 0,
8944                        sizeof(q_params.params.terminate));
8945                 q_params.params.terminate.cid_index = tx_index;
8946
8947                 rc = bnx2x_queue_state_change(bp, &q_params);
8948                 if (rc)
8949                         return rc;
8950
8951                 /* send halt terminate on tx-only connection */
8952                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8953                 memset(&q_params.params.cfc_del, 0,
8954                        sizeof(q_params.params.cfc_del));
8955                 q_params.params.cfc_del.cid_index = tx_index;
8956                 rc = bnx2x_queue_state_change(bp, &q_params);
8957                 if (rc)
8958                         return rc;
8959         }
8960         /* Stop the primary connection: */
8961         /* ...halt the connection */
8962         q_params.cmd = BNX2X_Q_CMD_HALT;
8963         rc = bnx2x_queue_state_change(bp, &q_params);
8964         if (rc)
8965                 return rc;
8966
8967         /* ...terminate the connection */
8968         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8969         memset(&q_params.params.terminate, 0,
8970                sizeof(q_params.params.terminate));
8971         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8972         rc = bnx2x_queue_state_change(bp, &q_params);
8973         if (rc)
8974                 return rc;
8975         /* ...delete cfc entry */
8976         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8977         memset(&q_params.params.cfc_del, 0,
8978                sizeof(q_params.params.cfc_del));
8979         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8980         return bnx2x_queue_state_change(bp, &q_params);
8981 }
8982
8983 static void bnx2x_reset_func(struct bnx2x *bp)
8984 {
8985         int port = BP_PORT(bp);
8986         int func = BP_FUNC(bp);
8987         int i;
8988
8989         /* Disable the function in the FW */
8990         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8991         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8992         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8993         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8994
8995         /* FP SBs */
8996         for_each_eth_queue(bp, i) {
8997                 struct bnx2x_fastpath *fp = &bp->fp[i];
8998                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8999                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
9000                            SB_DISABLED);
9001         }
9002
9003         if (CNIC_LOADED(bp))
9004                 /* CNIC SB */
9005                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9006                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9007                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9008
9009         /* SP SB */
9010         REG_WR8(bp, BAR_CSTRORM_INTMEM +
9011                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9012                 SB_DISABLED);
9013
9014         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9015                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9016                        0);
9017
9018         /* Configure IGU */
9019         if (bp->common.int_block == INT_BLOCK_HC) {
9020                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9021                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9022         } else {
9023                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9024                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9025         }
9026
9027         if (CNIC_LOADED(bp)) {
9028                 /* Disable Timer scan */
9029                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9030                 /*
9031                  * Wait for at least 10ms and up to 2 second for the timers
9032                  * scan to complete
9033                  */
9034                 for (i = 0; i < 200; i++) {
9035                         usleep_range(10000, 20000);
9036                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9037                                 break;
9038                 }
9039         }
9040         /* Clear ILT */
9041         bnx2x_clear_func_ilt(bp, func);
9042
9043         /* Timers workaround bug for E2: if this is vnic-3,
9044          * we need to set the entire ilt range for this timers.
9045          */
9046         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9047                 struct ilt_client_info ilt_cli;
9048                 /* use dummy TM client */
9049                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9050                 ilt_cli.start = 0;
9051                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9052                 ilt_cli.client_num = ILT_CLIENT_TM;
9053
9054                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9055         }
9056
9057         /* this assumes that reset_port() called before reset_func()*/
9058         if (!CHIP_IS_E1x(bp))
9059                 bnx2x_pf_disable(bp);
9060
9061         bp->dmae_ready = 0;
9062 }
9063
9064 static void bnx2x_reset_port(struct bnx2x *bp)
9065 {
9066         int port = BP_PORT(bp);
9067         u32 val;
9068
9069         /* Reset physical Link */
9070         bnx2x__link_reset(bp);
9071
9072         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9073
9074         /* Do not rcv packets to BRB */
9075         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9076         /* Do not direct rcv packets that are not for MCP to the BRB */
9077         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9078                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9079
9080         /* Configure AEU */
9081         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9082
9083         msleep(100);
9084         /* Check for BRB port occupancy */
9085         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9086         if (val)
9087                 DP(NETIF_MSG_IFDOWN,
9088                    "BRB1 is not empty  %d blocks are occupied\n", val);
9089
9090         /* TODO: Close Doorbell port? */
9091 }
9092
9093 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9094 {
9095         struct bnx2x_func_state_params func_params = {NULL};
9096
9097         /* Prepare parameters for function state transitions */
9098         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9099
9100         func_params.f_obj = &bp->func_obj;
9101         func_params.cmd = BNX2X_F_CMD_HW_RESET;
9102
9103         func_params.params.hw_init.load_phase = load_code;
9104
9105         return bnx2x_func_state_change(bp, &func_params);
9106 }
9107
9108 static int bnx2x_func_stop(struct bnx2x *bp)
9109 {
9110         struct bnx2x_func_state_params func_params = {NULL};
9111         int rc;
9112
9113         /* Prepare parameters for function state transitions */
9114         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9115         func_params.f_obj = &bp->func_obj;
9116         func_params.cmd = BNX2X_F_CMD_STOP;
9117
9118         /*
9119          * Try to stop the function the 'good way'. If fails (in case
9120          * of a parity error during bnx2x_chip_cleanup()) and we are
9121          * not in a debug mode, perform a state transaction in order to
9122          * enable further HW_RESET transaction.
9123          */
9124         rc = bnx2x_func_state_change(bp, &func_params);
9125         if (rc) {
9126 #ifdef BNX2X_STOP_ON_ERROR
9127                 return rc;
9128 #else
9129                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9130                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9131                 return bnx2x_func_state_change(bp, &func_params);
9132 #endif
9133         }
9134
9135         return 0;
9136 }
9137
9138 /**
9139  * bnx2x_send_unload_req - request unload mode from the MCP.
9140  *
9141  * @bp:                 driver handle
9142  * @unload_mode:        requested function's unload mode
9143  *
9144  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9145  */
9146 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9147 {
9148         u32 reset_code = 0;
9149         int port = BP_PORT(bp);
9150
9151         /* Select the UNLOAD request mode */
9152         if (unload_mode == UNLOAD_NORMAL)
9153                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9154
9155         else if (bp->flags & NO_WOL_FLAG)
9156                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9157
9158         else if (bp->wol) {
9159                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9160                 const u8 *mac_addr = bp->dev->dev_addr;
9161                 struct pci_dev *pdev = bp->pdev;
9162                 u32 val;
9163                 u16 pmc;
9164
9165                 /* The mac address is written to entries 1-4 to
9166                  * preserve entry 0 which is used by the PMF
9167                  */
9168                 u8 entry = (BP_VN(bp) + 1)*8;
9169
9170                 val = (mac_addr[0] << 8) | mac_addr[1];
9171                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9172
9173                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9174                       (mac_addr[4] << 8) | mac_addr[5];
9175                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9176
9177                 /* Enable the PME and clear the status */
9178                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9179                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9180                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9181
9182                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9183
9184         } else
9185                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9186
9187         /* Send the request to the MCP */
9188         if (!BP_NOMCP(bp))
9189                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9190         else {
9191                 int path = BP_PATH(bp);
9192
9193                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9194                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9195                    bnx2x_load_count[path][2]);
9196                 bnx2x_load_count[path][0]--;
9197                 bnx2x_load_count[path][1 + port]--;
9198                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9199                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9200                    bnx2x_load_count[path][2]);
9201                 if (bnx2x_load_count[path][0] == 0)
9202                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9203                 else if (bnx2x_load_count[path][1 + port] == 0)
9204                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9205                 else
9206                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9207         }
9208
9209         return reset_code;
9210 }
9211
9212 /**
9213  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9214  *
9215  * @bp:         driver handle
9216  * @keep_link:          true iff link should be kept up
9217  */
9218 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9219 {
9220         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9221
9222         /* Report UNLOAD_DONE to MCP */
9223         if (!BP_NOMCP(bp))
9224                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9225 }
9226
9227 static int bnx2x_func_wait_started(struct bnx2x *bp)
9228 {
9229         int tout = 50;
9230         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9231
9232         if (!bp->port.pmf)
9233                 return 0;
9234
9235         /*
9236          * (assumption: No Attention from MCP at this stage)
9237          * PMF probably in the middle of TX disable/enable transaction
9238          * 1. Sync IRS for default SB
9239          * 2. Sync SP queue - this guarantees us that attention handling started
9240          * 3. Wait, that TX disable/enable transaction completes
9241          *
9242          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9243          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9244          * received completion for the transaction the state is TX_STOPPED.
9245          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9246          * transaction.
9247          */
9248
9249         /* make sure default SB ISR is done */
9250         if (msix)
9251                 synchronize_irq(bp->msix_table[0].vector);
9252         else
9253                 synchronize_irq(bp->pdev->irq);
9254
9255         flush_workqueue(bnx2x_wq);
9256         flush_workqueue(bnx2x_iov_wq);
9257
9258         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9259                                 BNX2X_F_STATE_STARTED && tout--)
9260                 msleep(20);
9261
9262         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9263                                                 BNX2X_F_STATE_STARTED) {
9264 #ifdef BNX2X_STOP_ON_ERROR
9265                 BNX2X_ERR("Wrong function state\n");
9266                 return -EBUSY;
9267 #else
9268                 /*
9269                  * Failed to complete the transaction in a "good way"
9270                  * Force both transactions with CLR bit
9271                  */
9272                 struct bnx2x_func_state_params func_params = {NULL};
9273
9274                 DP(NETIF_MSG_IFDOWN,
9275                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9276
9277                 func_params.f_obj = &bp->func_obj;
9278                 __set_bit(RAMROD_DRV_CLR_ONLY,
9279                                         &func_params.ramrod_flags);
9280
9281                 /* STARTED-->TX_ST0PPED */
9282                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9283                 bnx2x_func_state_change(bp, &func_params);
9284
9285                 /* TX_ST0PPED-->STARTED */
9286                 func_params.cmd = BNX2X_F_CMD_TX_START;
9287                 return bnx2x_func_state_change(bp, &func_params);
9288 #endif
9289         }
9290
9291         return 0;
9292 }
9293
9294 static void bnx2x_disable_ptp(struct bnx2x *bp)
9295 {
9296         int port = BP_PORT(bp);
9297
9298         /* Disable sending PTP packets to host */
9299         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9300                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9301
9302         /* Reset PTP event detection rules */
9303         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9304                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9305         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9306                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9307         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9308                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9309         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9310                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9311
9312         /* Disable the PTP feature */
9313         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9314                NIG_REG_P0_PTP_EN, 0x0);
9315 }
9316
9317 /* Called during unload, to stop PTP-related stuff */
9318 static void bnx2x_stop_ptp(struct bnx2x *bp)
9319 {
9320         /* Cancel PTP work queue. Should be done after the Tx queues are
9321          * drained to prevent additional scheduling.
9322          */
9323         cancel_work_sync(&bp->ptp_task);
9324
9325         if (bp->ptp_tx_skb) {
9326                 dev_kfree_skb_any(bp->ptp_tx_skb);
9327                 bp->ptp_tx_skb = NULL;
9328         }
9329
9330         /* Disable PTP in HW */
9331         bnx2x_disable_ptp(bp);
9332
9333         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9334 }
9335
9336 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9337 {
9338         int port = BP_PORT(bp);
9339         int i, rc = 0;
9340         u8 cos;
9341         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9342         u32 reset_code;
9343
9344         /* Wait until tx fastpath tasks complete */
9345         for_each_tx_queue(bp, i) {
9346                 struct bnx2x_fastpath *fp = &bp->fp[i];
9347
9348                 for_each_cos_in_tx_queue(fp, cos)
9349                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9350 #ifdef BNX2X_STOP_ON_ERROR
9351                 if (rc)
9352                         return;
9353 #endif
9354         }
9355
9356         /* Give HW time to discard old tx messages */
9357         usleep_range(1000, 2000);
9358
9359         /* Clean all ETH MACs */
9360         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9361                                 false);
9362         if (rc < 0)
9363                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9364
9365         /* Clean up UC list  */
9366         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9367                                 true);
9368         if (rc < 0)
9369                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9370                           rc);
9371
9372         /* The whole *vlan_obj structure may be not initialized if VLAN
9373          * filtering offload is not supported by hardware. Currently this is
9374          * true for all hardware covered by CHIP_IS_E1x().
9375          */
9376         if (!CHIP_IS_E1x(bp)) {
9377                 /* Remove all currently configured VLANs */
9378                 rc = bnx2x_del_all_vlans(bp);
9379                 if (rc < 0)
9380                         BNX2X_ERR("Failed to delete all VLANs\n");
9381         }
9382
9383         /* Disable LLH */
9384         if (!CHIP_IS_E1(bp))
9385                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9386
9387         /* Set "drop all" (stop Rx).
9388          * We need to take a netif_addr_lock() here in order to prevent
9389          * a race between the completion code and this code.
9390          */
9391         netif_addr_lock_bh(bp->dev);
9392         /* Schedule the rx_mode command */
9393         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9394                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9395         else if (bp->slowpath)
9396                 bnx2x_set_storm_rx_mode(bp);
9397
9398         /* Cleanup multicast configuration */
9399         rparam.mcast_obj = &bp->mcast_obj;
9400         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9401         if (rc < 0)
9402                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9403
9404         netif_addr_unlock_bh(bp->dev);
9405
9406         bnx2x_iov_chip_cleanup(bp);
9407
9408         /*
9409          * Send the UNLOAD_REQUEST to the MCP. This will return if
9410          * this function should perform FUNC, PORT or COMMON HW
9411          * reset.
9412          */
9413         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9414
9415         /*
9416          * (assumption: No Attention from MCP at this stage)
9417          * PMF probably in the middle of TX disable/enable transaction
9418          */
9419         rc = bnx2x_func_wait_started(bp);
9420         if (rc) {
9421                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9422 #ifdef BNX2X_STOP_ON_ERROR
9423                 return;
9424 #endif
9425         }
9426
9427         /* Close multi and leading connections
9428          * Completions for ramrods are collected in a synchronous way
9429          */
9430         for_each_eth_queue(bp, i)
9431                 if (bnx2x_stop_queue(bp, i))
9432 #ifdef BNX2X_STOP_ON_ERROR
9433                         return;
9434 #else
9435                         goto unload_error;
9436 #endif
9437
9438         if (CNIC_LOADED(bp)) {
9439                 for_each_cnic_queue(bp, i)
9440                         if (bnx2x_stop_queue(bp, i))
9441 #ifdef BNX2X_STOP_ON_ERROR
9442                                 return;
9443 #else
9444                                 goto unload_error;
9445 #endif
9446         }
9447
9448         /* If SP settings didn't get completed so far - something
9449          * very wrong has happen.
9450          */
9451         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9452                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9453
9454 #ifndef BNX2X_STOP_ON_ERROR
9455 unload_error:
9456 #endif
9457         rc = bnx2x_func_stop(bp);
9458         if (rc) {
9459                 BNX2X_ERR("Function stop failed!\n");
9460 #ifdef BNX2X_STOP_ON_ERROR
9461                 return;
9462 #endif
9463         }
9464
9465         /* stop_ptp should be after the Tx queues are drained to prevent
9466          * scheduling to the cancelled PTP work queue. It should also be after
9467          * function stop ramrod is sent, since as part of this ramrod FW access
9468          * PTP registers.
9469          */
9470         if (bp->flags & PTP_SUPPORTED) {
9471                 bnx2x_stop_ptp(bp);
9472                 if (bp->ptp_clock) {
9473                         ptp_clock_unregister(bp->ptp_clock);
9474                         bp->ptp_clock = NULL;
9475                 }
9476         }
9477
9478         /* Disable HW interrupts, NAPI */
9479         bnx2x_netif_stop(bp, 1);
9480         /* Delete all NAPI objects */
9481         bnx2x_del_all_napi(bp);
9482         if (CNIC_LOADED(bp))
9483                 bnx2x_del_all_napi_cnic(bp);
9484
9485         /* Release IRQs */
9486         bnx2x_free_irq(bp);
9487
9488         /* Reset the chip, unless PCI function is offline. If we reach this
9489          * point following a PCI error handling, it means device is really
9490          * in a bad state and we're about to remove it, so reset the chip
9491          * is not a good idea.
9492          */
9493         if (!pci_channel_offline(bp->pdev)) {
9494                 rc = bnx2x_reset_hw(bp, reset_code);
9495                 if (rc)
9496                         BNX2X_ERR("HW_RESET failed\n");
9497         }
9498
9499         /* Report UNLOAD_DONE to MCP */
9500         bnx2x_send_unload_done(bp, keep_link);
9501 }
9502
9503 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9504 {
9505         u32 val;
9506
9507         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9508
9509         if (CHIP_IS_E1(bp)) {
9510                 int port = BP_PORT(bp);
9511                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9512                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9513
9514                 val = REG_RD(bp, addr);
9515                 val &= ~(0x300);
9516                 REG_WR(bp, addr, val);
9517         } else {
9518                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9519                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9520                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9521                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9522         }
9523 }
9524
9525 /* Close gates #2, #3 and #4: */
9526 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9527 {
9528         u32 val;
9529
9530         /* Gates #2 and #4a are closed/opened for "not E1" only */
9531         if (!CHIP_IS_E1(bp)) {
9532                 /* #4 */
9533                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9534                 /* #2 */
9535                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9536         }
9537
9538         /* #3 */
9539         if (CHIP_IS_E1x(bp)) {
9540                 /* Prevent interrupts from HC on both ports */
9541                 val = REG_RD(bp, HC_REG_CONFIG_1);
9542                 REG_WR(bp, HC_REG_CONFIG_1,
9543                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9544                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9545
9546                 val = REG_RD(bp, HC_REG_CONFIG_0);
9547                 REG_WR(bp, HC_REG_CONFIG_0,
9548                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9549                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9550         } else {
9551                 /* Prevent incoming interrupts in IGU */
9552                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9553
9554                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9555                        (!close) ?
9556                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9557                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9558         }
9559
9560         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9561                 close ? "closing" : "opening");
9562 }
9563
9564 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9565
9566 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9567 {
9568         /* Do some magic... */
9569         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9570         *magic_val = val & SHARED_MF_CLP_MAGIC;
9571         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9572 }
9573
9574 /**
9575  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9576  *
9577  * @bp:         driver handle
9578  * @magic_val:  old value of the `magic' bit.
9579  */
9580 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9581 {
9582         /* Restore the `magic' bit value... */
9583         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9584         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9585                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9586 }
9587
9588 /**
9589  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9590  *
9591  * @bp:         driver handle
9592  * @magic_val:  old value of 'magic' bit.
9593  *
9594  * Takes care of CLP configurations.
9595  */
9596 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9597 {
9598         u32 shmem;
9599         u32 validity_offset;
9600
9601         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9602
9603         /* Set `magic' bit in order to save MF config */
9604         if (!CHIP_IS_E1(bp))
9605                 bnx2x_clp_reset_prep(bp, magic_val);
9606
9607         /* Get shmem offset */
9608         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9609         validity_offset =
9610                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9611
9612         /* Clear validity map flags */
9613         if (shmem > 0)
9614                 REG_WR(bp, shmem + validity_offset, 0);
9615 }
9616
9617 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9618 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9619
9620 /**
9621  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9622  *
9623  * @bp: driver handle
9624  */
9625 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9626 {
9627         /* special handling for emulation and FPGA,
9628            wait 10 times longer */
9629         if (CHIP_REV_IS_SLOW(bp))
9630                 msleep(MCP_ONE_TIMEOUT*10);
9631         else
9632                 msleep(MCP_ONE_TIMEOUT);
9633 }
9634
9635 /*
9636  * initializes bp->common.shmem_base and waits for validity signature to appear
9637  */
9638 static int bnx2x_init_shmem(struct bnx2x *bp)
9639 {
9640         int cnt = 0;
9641         u32 val = 0;
9642
9643         do {
9644                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9645
9646                 /* If we read all 0xFFs, means we are in PCI error state and
9647                  * should bail out to avoid crashes on adapter's FW reads.
9648                  */
9649                 if (bp->common.shmem_base == 0xFFFFFFFF) {
9650                         bp->flags |= NO_MCP_FLAG;
9651                         return -ENODEV;
9652                 }
9653
9654                 if (bp->common.shmem_base) {
9655                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9656                         if (val & SHR_MEM_VALIDITY_MB)
9657                                 return 0;
9658                 }
9659
9660                 bnx2x_mcp_wait_one(bp);
9661
9662         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9663
9664         BNX2X_ERR("BAD MCP validity signature\n");
9665
9666         return -ENODEV;
9667 }
9668
9669 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9670 {
9671         int rc = bnx2x_init_shmem(bp);
9672
9673         /* Restore the `magic' bit value */
9674         if (!CHIP_IS_E1(bp))
9675                 bnx2x_clp_reset_done(bp, magic_val);
9676
9677         return rc;
9678 }
9679
9680 static void bnx2x_pxp_prep(struct bnx2x *bp)
9681 {
9682         if (!CHIP_IS_E1(bp)) {
9683                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9684                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9685         }
9686 }
9687
9688 /*
9689  * Reset the whole chip except for:
9690  *      - PCIE core
9691  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9692  *              one reset bit)
9693  *      - IGU
9694  *      - MISC (including AEU)
9695  *      - GRC
9696  *      - RBCN, RBCP
9697  */
9698 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9699 {
9700         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9701         u32 global_bits2, stay_reset2;
9702
9703         /*
9704          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9705          * (per chip) blocks.
9706          */
9707         global_bits2 =
9708                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9709                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9710
9711         /* Don't reset the following blocks.
9712          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9713          *            reset, as in 4 port device they might still be owned
9714          *            by the MCP (there is only one leader per path).
9715          */
9716         not_reset_mask1 =
9717                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9718                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9719                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9720
9721         not_reset_mask2 =
9722                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9723                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9724                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9725                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9726                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9727                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9728                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9729                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9730                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9731                 MISC_REGISTERS_RESET_REG_2_PGLC |
9732                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9733                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9734                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9735                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9736                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9737                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9738
9739         /*
9740          * Keep the following blocks in reset:
9741          *  - all xxMACs are handled by the bnx2x_link code.
9742          */
9743         stay_reset2 =
9744                 MISC_REGISTERS_RESET_REG_2_XMAC |
9745                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9746
9747         /* Full reset masks according to the chip */
9748         reset_mask1 = 0xffffffff;
9749
9750         if (CHIP_IS_E1(bp))
9751                 reset_mask2 = 0xffff;
9752         else if (CHIP_IS_E1H(bp))
9753                 reset_mask2 = 0x1ffff;
9754         else if (CHIP_IS_E2(bp))
9755                 reset_mask2 = 0xfffff;
9756         else /* CHIP_IS_E3 */
9757                 reset_mask2 = 0x3ffffff;
9758
9759         /* Don't reset global blocks unless we need to */
9760         if (!global)
9761                 reset_mask2 &= ~global_bits2;
9762
9763         /*
9764          * In case of attention in the QM, we need to reset PXP
9765          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9766          * because otherwise QM reset would release 'close the gates' shortly
9767          * before resetting the PXP, then the PSWRQ would send a write
9768          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9769          * read the payload data from PSWWR, but PSWWR would not
9770          * respond. The write queue in PGLUE would stuck, dmae commands
9771          * would not return. Therefore it's important to reset the second
9772          * reset register (containing the
9773          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9774          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9775          * bit).
9776          */
9777         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9778                reset_mask2 & (~not_reset_mask2));
9779
9780         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9781                reset_mask1 & (~not_reset_mask1));
9782
9783         barrier();
9784
9785         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9786                reset_mask2 & (~stay_reset2));
9787
9788         barrier();
9789
9790         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9791 }
9792
9793 /**
9794  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9795  * It should get cleared in no more than 1s.
9796  *
9797  * @bp: driver handle
9798  *
9799  * It should get cleared in no more than 1s. Returns 0 if
9800  * pending writes bit gets cleared.
9801  */
9802 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9803 {
9804         u32 cnt = 1000;
9805         u32 pend_bits = 0;
9806
9807         do {
9808                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9809
9810                 if (pend_bits == 0)
9811                         break;
9812
9813                 usleep_range(1000, 2000);
9814         } while (cnt-- > 0);
9815
9816         if (cnt <= 0) {
9817                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9818                           pend_bits);
9819                 return -EBUSY;
9820         }
9821
9822         return 0;
9823 }
9824
9825 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9826 {
9827         int cnt = 1000;
9828         u32 val = 0;
9829         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9830         u32 tags_63_32 = 0;
9831
9832         /* Empty the Tetris buffer, wait for 1s */
9833         do {
9834                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9835                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9836                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9837                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9838                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9839                 if (CHIP_IS_E3(bp))
9840                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9841
9842                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9843                     ((port_is_idle_0 & 0x1) == 0x1) &&
9844                     ((port_is_idle_1 & 0x1) == 0x1) &&
9845                     (pgl_exp_rom2 == 0xffffffff) &&
9846                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9847                         break;
9848                 usleep_range(1000, 2000);
9849         } while (cnt-- > 0);
9850
9851         if (cnt <= 0) {
9852                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9853                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9854                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9855                           pgl_exp_rom2);
9856                 return -EAGAIN;
9857         }
9858
9859         barrier();
9860
9861         /* Close gates #2, #3 and #4 */
9862         bnx2x_set_234_gates(bp, true);
9863
9864         /* Poll for IGU VQs for 57712 and newer chips */
9865         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9866                 return -EAGAIN;
9867
9868         /* TBD: Indicate that "process kill" is in progress to MCP */
9869
9870         /* Clear "unprepared" bit */
9871         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9872         barrier();
9873
9874         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9875          * PSWHST, GRC and PSWRD Tetris buffer.
9876          */
9877         usleep_range(1000, 2000);
9878
9879         /* Prepare to chip reset: */
9880         /* MCP */
9881         if (global)
9882                 bnx2x_reset_mcp_prep(bp, &val);
9883
9884         /* PXP */
9885         bnx2x_pxp_prep(bp);
9886         barrier();
9887
9888         /* reset the chip */
9889         bnx2x_process_kill_chip_reset(bp, global);
9890         barrier();
9891
9892         /* clear errors in PGB */
9893         if (!CHIP_IS_E1x(bp))
9894                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9895
9896         /* Recover after reset: */
9897         /* MCP */
9898         if (global && bnx2x_reset_mcp_comp(bp, val))
9899                 return -EAGAIN;
9900
9901         /* TBD: Add resetting the NO_MCP mode DB here */
9902
9903         /* Open the gates #2, #3 and #4 */
9904         bnx2x_set_234_gates(bp, false);
9905
9906         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9907          * reset state, re-enable attentions. */
9908
9909         return 0;
9910 }
9911
9912 static int bnx2x_leader_reset(struct bnx2x *bp)
9913 {
9914         int rc = 0;
9915         bool global = bnx2x_reset_is_global(bp);
9916         u32 load_code;
9917
9918         /* if not going to reset MCP - load "fake" driver to reset HW while
9919          * driver is owner of the HW
9920          */
9921         if (!global && !BP_NOMCP(bp)) {
9922                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9923                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9924                 if (!load_code) {
9925                         BNX2X_ERR("MCP response failure, aborting\n");
9926                         rc = -EAGAIN;
9927                         goto exit_leader_reset;
9928                 }
9929                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9930                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9931                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9932                         rc = -EAGAIN;
9933                         goto exit_leader_reset2;
9934                 }
9935                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9936                 if (!load_code) {
9937                         BNX2X_ERR("MCP response failure, aborting\n");
9938                         rc = -EAGAIN;
9939                         goto exit_leader_reset2;
9940                 }
9941         }
9942
9943         /* Try to recover after the failure */
9944         if (bnx2x_process_kill(bp, global)) {
9945                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9946                           BP_PATH(bp));
9947                 rc = -EAGAIN;
9948                 goto exit_leader_reset2;
9949         }
9950
9951         /*
9952          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9953          * state.
9954          */
9955         bnx2x_set_reset_done(bp);
9956         if (global)
9957                 bnx2x_clear_reset_global(bp);
9958
9959 exit_leader_reset2:
9960         /* unload "fake driver" if it was loaded */
9961         if (!global && !BP_NOMCP(bp)) {
9962                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9963                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9964         }
9965 exit_leader_reset:
9966         bp->is_leader = 0;
9967         bnx2x_release_leader_lock(bp);
9968         smp_mb();
9969         return rc;
9970 }
9971
9972 static void bnx2x_recovery_failed(struct bnx2x *bp)
9973 {
9974         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9975
9976         /* Disconnect this device */
9977         netif_device_detach(bp->dev);
9978
9979         /*
9980          * Block ifup for all function on this engine until "process kill"
9981          * or power cycle.
9982          */
9983         bnx2x_set_reset_in_progress(bp);
9984
9985         /* Shut down the power */
9986         bnx2x_set_power_state(bp, PCI_D3hot);
9987
9988         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9989
9990         smp_mb();
9991 }
9992
9993 /*
9994  * Assumption: runs under rtnl lock. This together with the fact
9995  * that it's called only from bnx2x_sp_rtnl() ensure that it
9996  * will never be called when netif_running(bp->dev) is false.
9997  */
9998 static void bnx2x_parity_recover(struct bnx2x *bp)
9999 {
10000         u32 error_recovered, error_unrecovered;
10001         bool is_parity, global = false;
10002 #ifdef CONFIG_BNX2X_SRIOV
10003         int vf_idx;
10004
10005         for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10006                 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10007
10008                 if (vf)
10009                         vf->state = VF_LOST;
10010         }
10011 #endif
10012         DP(NETIF_MSG_HW, "Handling parity\n");
10013         while (1) {
10014                 switch (bp->recovery_state) {
10015                 case BNX2X_RECOVERY_INIT:
10016                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10017                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10018                         WARN_ON(!is_parity);
10019
10020                         /* Try to get a LEADER_LOCK HW lock */
10021                         if (bnx2x_trylock_leader_lock(bp)) {
10022                                 bnx2x_set_reset_in_progress(bp);
10023                                 /*
10024                                  * Check if there is a global attention and if
10025                                  * there was a global attention, set the global
10026                                  * reset bit.
10027                                  */
10028
10029                                 if (global)
10030                                         bnx2x_set_reset_global(bp);
10031
10032                                 bp->is_leader = 1;
10033                         }
10034
10035                         /* Stop the driver */
10036                         /* If interface has been removed - break */
10037                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10038                                 return;
10039
10040                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
10041
10042                         /* Ensure "is_leader", MCP command sequence and
10043                          * "recovery_state" update values are seen on other
10044                          * CPUs.
10045                          */
10046                         smp_mb();
10047                         break;
10048
10049                 case BNX2X_RECOVERY_WAIT:
10050                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10051                         if (bp->is_leader) {
10052                                 int other_engine = BP_PATH(bp) ? 0 : 1;
10053                                 bool other_load_status =
10054                                         bnx2x_get_load_status(bp, other_engine);
10055                                 bool load_status =
10056                                         bnx2x_get_load_status(bp, BP_PATH(bp));
10057                                 global = bnx2x_reset_is_global(bp);
10058
10059                                 /*
10060                                  * In case of a parity in a global block, let
10061                                  * the first leader that performs a
10062                                  * leader_reset() reset the global blocks in
10063                                  * order to clear global attentions. Otherwise
10064                                  * the gates will remain closed for that
10065                                  * engine.
10066                                  */
10067                                 if (load_status ||
10068                                     (global && other_load_status)) {
10069                                         /* Wait until all other functions get
10070                                          * down.
10071                                          */
10072                                         schedule_delayed_work(&bp->sp_rtnl_task,
10073                                                                 HZ/10);
10074                                         return;
10075                                 } else {
10076                                         /* If all other functions got down -
10077                                          * try to bring the chip back to
10078                                          * normal. In any case it's an exit
10079                                          * point for a leader.
10080                                          */
10081                                         if (bnx2x_leader_reset(bp)) {
10082                                                 bnx2x_recovery_failed(bp);
10083                                                 return;
10084                                         }
10085
10086                                         /* If we are here, means that the
10087                                          * leader has succeeded and doesn't
10088                                          * want to be a leader any more. Try
10089                                          * to continue as a none-leader.
10090                                          */
10091                                         break;
10092                                 }
10093                         } else { /* non-leader */
10094                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10095                                         /* Try to get a LEADER_LOCK HW lock as
10096                                          * long as a former leader may have
10097                                          * been unloaded by the user or
10098                                          * released a leadership by another
10099                                          * reason.
10100                                          */
10101                                         if (bnx2x_trylock_leader_lock(bp)) {
10102                                                 /* I'm a leader now! Restart a
10103                                                  * switch case.
10104                                                  */
10105                                                 bp->is_leader = 1;
10106                                                 break;
10107                                         }
10108
10109                                         schedule_delayed_work(&bp->sp_rtnl_task,
10110                                                                 HZ/10);
10111                                         return;
10112
10113                                 } else {
10114                                         /*
10115                                          * If there was a global attention, wait
10116                                          * for it to be cleared.
10117                                          */
10118                                         if (bnx2x_reset_is_global(bp)) {
10119                                                 schedule_delayed_work(
10120                                                         &bp->sp_rtnl_task,
10121                                                         HZ/10);
10122                                                 return;
10123                                         }
10124
10125                                         error_recovered =
10126                                           bp->eth_stats.recoverable_error;
10127                                         error_unrecovered =
10128                                           bp->eth_stats.unrecoverable_error;
10129                                         bp->recovery_state =
10130                                                 BNX2X_RECOVERY_NIC_LOADING;
10131                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10132                                                 error_unrecovered++;
10133                                                 netdev_err(bp->dev,
10134                                                            "Recovery failed. Power cycle needed\n");
10135                                                 /* Disconnect this device */
10136                                                 netif_device_detach(bp->dev);
10137                                                 /* Shut down the power */
10138                                                 bnx2x_set_power_state(
10139                                                         bp, PCI_D3hot);
10140                                                 smp_mb();
10141                                         } else {
10142                                                 bp->recovery_state =
10143                                                         BNX2X_RECOVERY_DONE;
10144                                                 error_recovered++;
10145                                                 smp_mb();
10146                                         }
10147                                         bp->eth_stats.recoverable_error =
10148                                                 error_recovered;
10149                                         bp->eth_stats.unrecoverable_error =
10150                                                 error_unrecovered;
10151
10152                                         return;
10153                                 }
10154                         }
10155                 default:
10156                         return;
10157                 }
10158         }
10159 }
10160
10161 static int bnx2x_udp_port_update(struct bnx2x *bp)
10162 {
10163         struct bnx2x_func_switch_update_params *switch_update_params;
10164         struct bnx2x_func_state_params func_params = {NULL};
10165         u16 vxlan_port = 0, geneve_port = 0;
10166         int rc;
10167
10168         switch_update_params = &func_params.params.switch_update;
10169
10170         /* Prepare parameters for function state transitions */
10171         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10172         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10173
10174         func_params.f_obj = &bp->func_obj;
10175         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10176
10177         /* Function parameters */
10178         __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10179                   &switch_update_params->changes);
10180
10181         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10182                 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10183                 switch_update_params->geneve_dst_port = geneve_port;
10184         }
10185
10186         if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10187                 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10188                 switch_update_params->vxlan_dst_port = vxlan_port;
10189         }
10190
10191         /* Re-enable inner-rss for the offloaded UDP tunnels */
10192         __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10193                   &switch_update_params->changes);
10194
10195         rc = bnx2x_func_state_change(bp, &func_params);
10196         if (rc)
10197                 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10198                           vxlan_port, geneve_port, rc);
10199         else
10200                 DP(BNX2X_MSG_SP,
10201                    "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10202                    vxlan_port, geneve_port);
10203
10204         return rc;
10205 }
10206
10207 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10208 {
10209         struct bnx2x *bp = netdev_priv(netdev);
10210         struct udp_tunnel_info ti;
10211
10212         udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10213         bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10214
10215         return bnx2x_udp_port_update(bp);
10216 }
10217
10218 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10219         .sync_table     = bnx2x_udp_tunnel_sync,
10220         .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10221                           UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10222         .tables         = {
10223                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10224                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10225         },
10226 };
10227
10228 static int bnx2x_close(struct net_device *dev);
10229
10230 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10231  * scheduled on a general queue in order to prevent a dead lock.
10232  */
10233 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10234 {
10235         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10236
10237         rtnl_lock();
10238
10239         if (!netif_running(bp->dev)) {
10240                 rtnl_unlock();
10241                 return;
10242         }
10243
10244         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10245 #ifdef BNX2X_STOP_ON_ERROR
10246                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10247                           "you will need to reboot when done\n");
10248                 goto sp_rtnl_not_reset;
10249 #endif
10250                 /*
10251                  * Clear all pending SP commands as we are going to reset the
10252                  * function anyway.
10253                  */
10254                 bp->sp_rtnl_state = 0;
10255                 smp_mb();
10256
10257                 bnx2x_parity_recover(bp);
10258
10259                 rtnl_unlock();
10260                 return;
10261         }
10262
10263         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10264 #ifdef BNX2X_STOP_ON_ERROR
10265                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10266                           "you will need to reboot when done\n");
10267                 goto sp_rtnl_not_reset;
10268 #endif
10269
10270                 /*
10271                  * Clear all pending SP commands as we are going to reset the
10272                  * function anyway.
10273                  */
10274                 bp->sp_rtnl_state = 0;
10275                 smp_mb();
10276
10277                 /* Immediately indicate link as down */
10278                 bp->link_vars.link_up = 0;
10279                 bp->force_link_down = true;
10280                 netif_carrier_off(bp->dev);
10281                 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10282
10283                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10284                 /* When ret value shows failure of allocation failure,
10285                  * the nic is rebooted again. If open still fails, a error
10286                  * message to notify the user.
10287                  */
10288                 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10289                         bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10290                         if (bnx2x_nic_load(bp, LOAD_NORMAL))
10291                                 BNX2X_ERR("Open the NIC fails again!\n");
10292                 }
10293                 rtnl_unlock();
10294                 return;
10295         }
10296 #ifdef BNX2X_STOP_ON_ERROR
10297 sp_rtnl_not_reset:
10298 #endif
10299         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10300                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10301         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10302                 bnx2x_after_function_update(bp);
10303         /*
10304          * in case of fan failure we need to reset id if the "stop on error"
10305          * debug flag is set, since we trying to prevent permanent overheating
10306          * damage
10307          */
10308         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10309                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10310                 netif_device_detach(bp->dev);
10311                 bnx2x_close(bp->dev);
10312                 rtnl_unlock();
10313                 return;
10314         }
10315
10316         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10317                 DP(BNX2X_MSG_SP,
10318                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10319                 bnx2x_vfpf_set_mcast(bp->dev);
10320         }
10321         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10322                                &bp->sp_rtnl_state)){
10323                 if (netif_carrier_ok(bp->dev)) {
10324                         bnx2x_tx_disable(bp);
10325                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10326                 }
10327         }
10328
10329         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10330                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10331                 bnx2x_set_rx_mode_inner(bp);
10332         }
10333
10334         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10335                                &bp->sp_rtnl_state))
10336                 bnx2x_pf_set_vfs_vlan(bp);
10337
10338         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10339                 bnx2x_dcbx_stop_hw_tx(bp);
10340                 bnx2x_dcbx_resume_hw_tx(bp);
10341         }
10342
10343         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10344                                &bp->sp_rtnl_state))
10345                 bnx2x_update_mng_version(bp);
10346
10347         if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10348                 bnx2x_handle_update_svid_cmd(bp);
10349
10350         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10351          * can be called from other contexts as well)
10352          */
10353         rtnl_unlock();
10354
10355         /* enable SR-IOV if applicable */
10356         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10357                                                &bp->sp_rtnl_state)) {
10358                 bnx2x_disable_sriov(bp);
10359                 bnx2x_enable_sriov(bp);
10360         }
10361 }
10362
10363 static void bnx2x_period_task(struct work_struct *work)
10364 {
10365         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10366
10367         if (!netif_running(bp->dev))
10368                 goto period_task_exit;
10369
10370         if (CHIP_REV_IS_SLOW(bp)) {
10371                 BNX2X_ERR("period task called on emulation, ignoring\n");
10372                 goto period_task_exit;
10373         }
10374
10375         bnx2x_acquire_phy_lock(bp);
10376         /*
10377          * The barrier is needed to ensure the ordering between the writing to
10378          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10379          * the reading here.
10380          */
10381         smp_mb();
10382         if (bp->port.pmf) {
10383                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10384
10385                 /* Re-queue task in 1 sec */
10386                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10387         }
10388
10389         bnx2x_release_phy_lock(bp);
10390 period_task_exit:
10391         return;
10392 }
10393
10394 /*
10395  * Init service functions
10396  */
10397
10398 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10399 {
10400         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10401         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10402         return base + (BP_ABS_FUNC(bp)) * stride;
10403 }
10404
10405 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10406                                          u8 port, u32 reset_reg,
10407                                          struct bnx2x_mac_vals *vals)
10408 {
10409         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10410         u32 base_addr;
10411
10412         if (!(mask & reset_reg))
10413                 return false;
10414
10415         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10416         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10417         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10418         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10419         REG_WR(bp, vals->umac_addr[port], 0);
10420
10421         return true;
10422 }
10423
10424 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10425                                         struct bnx2x_mac_vals *vals)
10426 {
10427         u32 val, base_addr, offset, mask, reset_reg;
10428         bool mac_stopped = false;
10429         u8 port = BP_PORT(bp);
10430
10431         /* reset addresses as they also mark which values were changed */
10432         memset(vals, 0, sizeof(*vals));
10433
10434         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10435
10436         if (!CHIP_IS_E3(bp)) {
10437                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10438                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10439                 if ((mask & reset_reg) && val) {
10440                         u32 wb_data[2];
10441                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10442                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10443                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10444                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10445                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10446
10447                         /*
10448                          * use rd/wr since we cannot use dmae. This is safe
10449                          * since MCP won't access the bus due to the request
10450                          * to unload, and no function on the path can be
10451                          * loaded at this time.
10452                          */
10453                         wb_data[0] = REG_RD(bp, base_addr + offset);
10454                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10455                         vals->bmac_addr = base_addr + offset;
10456                         vals->bmac_val[0] = wb_data[0];
10457                         vals->bmac_val[1] = wb_data[1];
10458                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10459                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10460                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10461                 }
10462                 BNX2X_DEV_INFO("Disable emac Rx\n");
10463                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10464                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10465                 REG_WR(bp, vals->emac_addr, 0);
10466                 mac_stopped = true;
10467         } else {
10468                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10469                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10470                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10471                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10472                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10473                                val & ~(1 << 1));
10474                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10475                                val | (1 << 1));
10476                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10477                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10478                         REG_WR(bp, vals->xmac_addr, 0);
10479                         mac_stopped = true;
10480                 }
10481
10482                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10483                                                             reset_reg, vals);
10484                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10485                                                             reset_reg, vals);
10486         }
10487
10488         if (mac_stopped)
10489                 msleep(20);
10490 }
10491
10492 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10493 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10494                                         0x1848 + ((f) << 4))
10495 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10496 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10497 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10498
10499 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10500 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10501 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10502
10503 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10504 {
10505         /* UNDI marks its presence in DORQ -
10506          * it initializes CID offset for normal bell to 0x7
10507          */
10508         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10509             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10510                 return false;
10511
10512         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10513                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10514                 return true;
10515         }
10516
10517         return false;
10518 }
10519
10520 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10521 {
10522         u16 rcq, bd;
10523         u32 addr, tmp_reg;
10524
10525         if (BP_FUNC(bp) < 2)
10526                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10527         else
10528                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10529
10530         tmp_reg = REG_RD(bp, addr);
10531         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10532         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10533
10534         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10535         REG_WR(bp, addr, tmp_reg);
10536
10537         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10538                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10539 }
10540
10541 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10542 {
10543         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10544                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10545         if (!rc) {
10546                 BNX2X_ERR("MCP response failure, aborting\n");
10547                 return -EBUSY;
10548         }
10549
10550         return 0;
10551 }
10552
10553 static struct bnx2x_prev_path_list *
10554                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10555 {
10556         struct bnx2x_prev_path_list *tmp_list;
10557
10558         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10559                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10560                     bp->pdev->bus->number == tmp_list->bus &&
10561                     BP_PATH(bp) == tmp_list->path)
10562                         return tmp_list;
10563
10564         return NULL;
10565 }
10566
10567 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10568 {
10569         struct bnx2x_prev_path_list *tmp_list;
10570         int rc;
10571
10572         rc = down_interruptible(&bnx2x_prev_sem);
10573         if (rc) {
10574                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10575                 return rc;
10576         }
10577
10578         tmp_list = bnx2x_prev_path_get_entry(bp);
10579         if (tmp_list) {
10580                 tmp_list->aer = 1;
10581                 rc = 0;
10582         } else {
10583                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10584                           BP_PATH(bp));
10585         }
10586
10587         up(&bnx2x_prev_sem);
10588
10589         return rc;
10590 }
10591
10592 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10593 {
10594         struct bnx2x_prev_path_list *tmp_list;
10595         bool rc = false;
10596
10597         if (down_trylock(&bnx2x_prev_sem))
10598                 return false;
10599
10600         tmp_list = bnx2x_prev_path_get_entry(bp);
10601         if (tmp_list) {
10602                 if (tmp_list->aer) {
10603                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10604                            BP_PATH(bp));
10605                 } else {
10606                         rc = true;
10607                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10608                                        BP_PATH(bp));
10609                 }
10610         }
10611
10612         up(&bnx2x_prev_sem);
10613
10614         return rc;
10615 }
10616
10617 bool bnx2x_port_after_undi(struct bnx2x *bp)
10618 {
10619         struct bnx2x_prev_path_list *entry;
10620         bool val;
10621
10622         down(&bnx2x_prev_sem);
10623
10624         entry = bnx2x_prev_path_get_entry(bp);
10625         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10626
10627         up(&bnx2x_prev_sem);
10628
10629         return val;
10630 }
10631
10632 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10633 {
10634         struct bnx2x_prev_path_list *tmp_list;
10635         int rc;
10636
10637         rc = down_interruptible(&bnx2x_prev_sem);
10638         if (rc) {
10639                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10640                 return rc;
10641         }
10642
10643         /* Check whether the entry for this path already exists */
10644         tmp_list = bnx2x_prev_path_get_entry(bp);
10645         if (tmp_list) {
10646                 if (!tmp_list->aer) {
10647                         BNX2X_ERR("Re-Marking the path.\n");
10648                 } else {
10649                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10650                            BP_PATH(bp));
10651                         tmp_list->aer = 0;
10652                 }
10653                 up(&bnx2x_prev_sem);
10654                 return 0;
10655         }
10656         up(&bnx2x_prev_sem);
10657
10658         /* Create an entry for this path and add it */
10659         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10660         if (!tmp_list) {
10661                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10662                 return -ENOMEM;
10663         }
10664
10665         tmp_list->bus = bp->pdev->bus->number;
10666         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10667         tmp_list->path = BP_PATH(bp);
10668         tmp_list->aer = 0;
10669         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10670
10671         rc = down_interruptible(&bnx2x_prev_sem);
10672         if (rc) {
10673                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10674                 kfree(tmp_list);
10675         } else {
10676                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10677                    BP_PATH(bp));
10678                 list_add(&tmp_list->list, &bnx2x_prev_list);
10679                 up(&bnx2x_prev_sem);
10680         }
10681
10682         return rc;
10683 }
10684
10685 static int bnx2x_do_flr(struct bnx2x *bp)
10686 {
10687         struct pci_dev *dev = bp->pdev;
10688
10689         if (CHIP_IS_E1x(bp)) {
10690                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10691                 return -EINVAL;
10692         }
10693
10694         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10695         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10696                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10697                           bp->common.bc_ver);
10698                 return -EINVAL;
10699         }
10700
10701         if (!pci_wait_for_pending_transaction(dev))
10702                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10703
10704         BNX2X_DEV_INFO("Initiating FLR\n");
10705         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10706
10707         return 0;
10708 }
10709
10710 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10711 {
10712         int rc;
10713
10714         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10715
10716         /* Test if previous unload process was already finished for this path */
10717         if (bnx2x_prev_is_path_marked(bp))
10718                 return bnx2x_prev_mcp_done(bp);
10719
10720         BNX2X_DEV_INFO("Path is unmarked\n");
10721
10722         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10723         if (bnx2x_prev_is_after_undi(bp))
10724                 goto out;
10725
10726         /* If function has FLR capabilities, and existing FW version matches
10727          * the one required, then FLR will be sufficient to clean any residue
10728          * left by previous driver
10729          */
10730         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10731
10732         if (!rc) {
10733                 /* fw version is good */
10734                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10735                 rc = bnx2x_do_flr(bp);
10736         }
10737
10738         if (!rc) {
10739                 /* FLR was performed */
10740                 BNX2X_DEV_INFO("FLR successful\n");
10741                 return 0;
10742         }
10743
10744         BNX2X_DEV_INFO("Could not FLR\n");
10745
10746 out:
10747         /* Close the MCP request, return failure*/
10748         rc = bnx2x_prev_mcp_done(bp);
10749         if (!rc)
10750                 rc = BNX2X_PREV_WAIT_NEEDED;
10751
10752         return rc;
10753 }
10754
10755 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10756 {
10757         u32 reset_reg, tmp_reg = 0, rc;
10758         bool prev_undi = false;
10759         struct bnx2x_mac_vals mac_vals;
10760
10761         /* It is possible a previous function received 'common' answer,
10762          * but hasn't loaded yet, therefore creating a scenario of
10763          * multiple functions receiving 'common' on the same path.
10764          */
10765         BNX2X_DEV_INFO("Common unload Flow\n");
10766
10767         memset(&mac_vals, 0, sizeof(mac_vals));
10768
10769         if (bnx2x_prev_is_path_marked(bp))
10770                 return bnx2x_prev_mcp_done(bp);
10771
10772         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10773
10774         /* Reset should be performed after BRB is emptied */
10775         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10776                 u32 timer_count = 1000;
10777
10778                 /* Close the MAC Rx to prevent BRB from filling up */
10779                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10780
10781                 /* close LLH filters for both ports towards the BRB */
10782                 bnx2x_set_rx_filter(&bp->link_params, 0);
10783                 bp->link_params.port ^= 1;
10784                 bnx2x_set_rx_filter(&bp->link_params, 0);
10785                 bp->link_params.port ^= 1;
10786
10787                 /* Check if the UNDI driver was previously loaded */
10788                 if (bnx2x_prev_is_after_undi(bp)) {
10789                         prev_undi = true;
10790                         /* clear the UNDI indication */
10791                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10792                         /* clear possible idle check errors */
10793                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10794                 }
10795                 if (!CHIP_IS_E1x(bp))
10796                         /* block FW from writing to host */
10797                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10798
10799                 /* wait until BRB is empty */
10800                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10801                 while (timer_count) {
10802                         u32 prev_brb = tmp_reg;
10803
10804                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10805                         if (!tmp_reg)
10806                                 break;
10807
10808                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10809
10810                         /* reset timer as long as BRB actually gets emptied */
10811                         if (prev_brb > tmp_reg)
10812                                 timer_count = 1000;
10813                         else
10814                                 timer_count--;
10815
10816                         /* If UNDI resides in memory, manually increment it */
10817                         if (prev_undi)
10818                                 bnx2x_prev_unload_undi_inc(bp, 1);
10819
10820                         udelay(10);
10821                 }
10822
10823                 if (!timer_count)
10824                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10825         }
10826
10827         /* No packets are in the pipeline, path is ready for reset */
10828         bnx2x_reset_common(bp);
10829
10830         if (mac_vals.xmac_addr)
10831                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10832         if (mac_vals.umac_addr[0])
10833                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10834         if (mac_vals.umac_addr[1])
10835                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10836         if (mac_vals.emac_addr)
10837                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10838         if (mac_vals.bmac_addr) {
10839                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10840                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10841         }
10842
10843         rc = bnx2x_prev_mark_path(bp, prev_undi);
10844         if (rc) {
10845                 bnx2x_prev_mcp_done(bp);
10846                 return rc;
10847         }
10848
10849         return bnx2x_prev_mcp_done(bp);
10850 }
10851
10852 static int bnx2x_prev_unload(struct bnx2x *bp)
10853 {
10854         int time_counter = 10;
10855         u32 rc, fw, hw_lock_reg, hw_lock_val;
10856         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10857
10858         /* clear hw from errors which may have resulted from an interrupted
10859          * dmae transaction.
10860          */
10861         bnx2x_clean_pglue_errors(bp);
10862
10863         /* Release previously held locks */
10864         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10865                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10866                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10867
10868         hw_lock_val = REG_RD(bp, hw_lock_reg);
10869         if (hw_lock_val) {
10870                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10871                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10872                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10873                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10874                 }
10875
10876                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10877                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10878         } else
10879                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10880
10881         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10882                 BNX2X_DEV_INFO("Release previously held alr\n");
10883                 bnx2x_release_alr(bp);
10884         }
10885
10886         do {
10887                 int aer = 0;
10888                 /* Lock MCP using an unload request */
10889                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10890                 if (!fw) {
10891                         BNX2X_ERR("MCP response failure, aborting\n");
10892                         rc = -EBUSY;
10893                         break;
10894                 }
10895
10896                 rc = down_interruptible(&bnx2x_prev_sem);
10897                 if (rc) {
10898                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10899                                   rc);
10900                 } else {
10901                         /* If Path is marked by EEH, ignore unload status */
10902                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10903                                  bnx2x_prev_path_get_entry(bp)->aer);
10904                         up(&bnx2x_prev_sem);
10905                 }
10906
10907                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10908                         rc = bnx2x_prev_unload_common(bp);
10909                         break;
10910                 }
10911
10912                 /* non-common reply from MCP might require looping */
10913                 rc = bnx2x_prev_unload_uncommon(bp);
10914                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10915                         break;
10916
10917                 msleep(20);
10918         } while (--time_counter);
10919
10920         if (!time_counter || rc) {
10921                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10922                 rc = -EPROBE_DEFER;
10923         }
10924
10925         /* Mark function if its port was used to boot from SAN */
10926         if (bnx2x_port_after_undi(bp))
10927                 bp->link_params.feature_config_flags |=
10928                         FEATURE_CONFIG_BOOT_FROM_SAN;
10929
10930         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10931
10932         return rc;
10933 }
10934
10935 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10936 {
10937         u32 val, val2, val3, val4, id, boot_mode;
10938         u16 pmc;
10939
10940         /* Get the chip revision id and number. */
10941         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10942         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10943         id = ((val & 0xffff) << 16);
10944         val = REG_RD(bp, MISC_REG_CHIP_REV);
10945         id |= ((val & 0xf) << 12);
10946
10947         /* Metal is read from PCI regs, but we can't access >=0x400 from
10948          * the configuration space (so we need to reg_rd)
10949          */
10950         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10951         id |= (((val >> 24) & 0xf) << 4);
10952         val = REG_RD(bp, MISC_REG_BOND_ID);
10953         id |= (val & 0xf);
10954         bp->common.chip_id = id;
10955
10956         /* force 57811 according to MISC register */
10957         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10958                 if (CHIP_IS_57810(bp))
10959                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10960                                 (bp->common.chip_id & 0x0000FFFF);
10961                 else if (CHIP_IS_57810_MF(bp))
10962                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10963                                 (bp->common.chip_id & 0x0000FFFF);
10964                 bp->common.chip_id |= 0x1;
10965         }
10966
10967         /* Set doorbell size */
10968         bp->db_size = (1 << BNX2X_DB_SHIFT);
10969
10970         if (!CHIP_IS_E1x(bp)) {
10971                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10972                 if ((val & 1) == 0)
10973                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10974                 else
10975                         val = (val >> 1) & 1;
10976                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10977                                                        "2_PORT_MODE");
10978                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10979                                                  CHIP_2_PORT_MODE;
10980
10981                 if (CHIP_MODE_IS_4_PORT(bp))
10982                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10983                 else
10984                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10985         } else {
10986                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10987                 bp->pfid = bp->pf_num;                  /* 0..7 */
10988         }
10989
10990         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10991
10992         bp->link_params.chip_id = bp->common.chip_id;
10993         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10994
10995         val = (REG_RD(bp, 0x2874) & 0x55);
10996         if ((bp->common.chip_id & 0x1) ||
10997             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10998                 bp->flags |= ONE_PORT_FLAG;
10999                 BNX2X_DEV_INFO("single port device\n");
11000         }
11001
11002         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11003         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11004                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
11005         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11006                        bp->common.flash_size, bp->common.flash_size);
11007
11008         bnx2x_init_shmem(bp);
11009
11010         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11011                                         MISC_REG_GENERIC_CR_1 :
11012                                         MISC_REG_GENERIC_CR_0));
11013
11014         bp->link_params.shmem_base = bp->common.shmem_base;
11015         bp->link_params.shmem2_base = bp->common.shmem2_base;
11016         if (SHMEM2_RD(bp, size) >
11017             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11018                 bp->link_params.lfa_base =
11019                 REG_RD(bp, bp->common.shmem2_base +
11020                        (u32)offsetof(struct shmem2_region,
11021                                      lfa_host_addr[BP_PORT(bp)]));
11022         else
11023                 bp->link_params.lfa_base = 0;
11024         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11025                        bp->common.shmem_base, bp->common.shmem2_base);
11026
11027         if (!bp->common.shmem_base) {
11028                 BNX2X_DEV_INFO("MCP not active\n");
11029                 bp->flags |= NO_MCP_FLAG;
11030                 return;
11031         }
11032
11033         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11034         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11035
11036         bp->link_params.hw_led_mode = ((bp->common.hw_config &
11037                                         SHARED_HW_CFG_LED_MODE_MASK) >>
11038                                        SHARED_HW_CFG_LED_MODE_SHIFT);
11039
11040         bp->link_params.feature_config_flags = 0;
11041         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11042         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11043                 bp->link_params.feature_config_flags |=
11044                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11045         else
11046                 bp->link_params.feature_config_flags &=
11047                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11048
11049         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11050         bp->common.bc_ver = val;
11051         BNX2X_DEV_INFO("bc_ver %X\n", val);
11052         if (val < BNX2X_BC_VER) {
11053                 /* for now only warn
11054                  * later we might need to enforce this */
11055                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11056                           BNX2X_BC_VER, val);
11057         }
11058         bp->link_params.feature_config_flags |=
11059                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11060                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11061
11062         bp->link_params.feature_config_flags |=
11063                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11064                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11065         bp->link_params.feature_config_flags |=
11066                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11067                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11068         bp->link_params.feature_config_flags |=
11069                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11070                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11071
11072         bp->link_params.feature_config_flags |=
11073                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11074                 FEATURE_CONFIG_MT_SUPPORT : 0;
11075
11076         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11077                         BC_SUPPORTS_PFC_STATS : 0;
11078
11079         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11080                         BC_SUPPORTS_FCOE_FEATURES : 0;
11081
11082         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11083                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11084
11085         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11086                         BC_SUPPORTS_RMMOD_CMD : 0;
11087
11088         boot_mode = SHMEM_RD(bp,
11089                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11090                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11091         switch (boot_mode) {
11092         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11093                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11094                 break;
11095         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11096                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11097                 break;
11098         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11099                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11100                 break;
11101         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11102                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11103                 break;
11104         }
11105
11106         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11107         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11108
11109         BNX2X_DEV_INFO("%sWoL capable\n",
11110                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
11111
11112         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11113         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11114         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11115         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11116
11117         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11118                  val, val2, val3, val4);
11119 }
11120
11121 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11122 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11123
11124 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11125 {
11126         int pfid = BP_FUNC(bp);
11127         int igu_sb_id;
11128         u32 val;
11129         u8 fid, igu_sb_cnt = 0;
11130
11131         bp->igu_base_sb = 0xff;
11132         if (CHIP_INT_MODE_IS_BC(bp)) {
11133                 int vn = BP_VN(bp);
11134                 igu_sb_cnt = bp->igu_sb_cnt;
11135                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11136                         FP_SB_MAX_E1x;
11137
11138                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11139                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11140
11141                 return 0;
11142         }
11143
11144         /* IGU in normal mode - read CAM */
11145         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11146              igu_sb_id++) {
11147                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11148                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11149                         continue;
11150                 fid = IGU_FID(val);
11151                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11152                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11153                                 continue;
11154                         if (IGU_VEC(val) == 0)
11155                                 /* default status block */
11156                                 bp->igu_dsb_id = igu_sb_id;
11157                         else {
11158                                 if (bp->igu_base_sb == 0xff)
11159                                         bp->igu_base_sb = igu_sb_id;
11160                                 igu_sb_cnt++;
11161                         }
11162                 }
11163         }
11164
11165 #ifdef CONFIG_PCI_MSI
11166         /* Due to new PF resource allocation by MFW T7.4 and above, it's
11167          * optional that number of CAM entries will not be equal to the value
11168          * advertised in PCI.
11169          * Driver should use the minimal value of both as the actual status
11170          * block count
11171          */
11172         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11173 #endif
11174
11175         if (igu_sb_cnt == 0) {
11176                 BNX2X_ERR("CAM configuration error\n");
11177                 return -EINVAL;
11178         }
11179
11180         return 0;
11181 }
11182
11183 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11184 {
11185         int cfg_size = 0, idx, port = BP_PORT(bp);
11186
11187         /* Aggregation of supported attributes of all external phys */
11188         bp->port.supported[0] = 0;
11189         bp->port.supported[1] = 0;
11190         switch (bp->link_params.num_phys) {
11191         case 1:
11192                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11193                 cfg_size = 1;
11194                 break;
11195         case 2:
11196                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11197                 cfg_size = 1;
11198                 break;
11199         case 3:
11200                 if (bp->link_params.multi_phy_config &
11201                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11202                         bp->port.supported[1] =
11203                                 bp->link_params.phy[EXT_PHY1].supported;
11204                         bp->port.supported[0] =
11205                                 bp->link_params.phy[EXT_PHY2].supported;
11206                 } else {
11207                         bp->port.supported[0] =
11208                                 bp->link_params.phy[EXT_PHY1].supported;
11209                         bp->port.supported[1] =
11210                                 bp->link_params.phy[EXT_PHY2].supported;
11211                 }
11212                 cfg_size = 2;
11213                 break;
11214         }
11215
11216         if (!(bp->port.supported[0] || bp->port.supported[1])) {
11217                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11218                            SHMEM_RD(bp,
11219                            dev_info.port_hw_config[port].external_phy_config),
11220                            SHMEM_RD(bp,
11221                            dev_info.port_hw_config[port].external_phy_config2));
11222                 return;
11223         }
11224
11225         if (CHIP_IS_E3(bp))
11226                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11227         else {
11228                 switch (switch_cfg) {
11229                 case SWITCH_CFG_1G:
11230                         bp->port.phy_addr = REG_RD(
11231                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11232                         break;
11233                 case SWITCH_CFG_10G:
11234                         bp->port.phy_addr = REG_RD(
11235                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11236                         break;
11237                 default:
11238                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11239                                   bp->port.link_config[0]);
11240                         return;
11241                 }
11242         }
11243         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11244         /* mask what we support according to speed_cap_mask per configuration */
11245         for (idx = 0; idx < cfg_size; idx++) {
11246                 if (!(bp->link_params.speed_cap_mask[idx] &
11247                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11248                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11249
11250                 if (!(bp->link_params.speed_cap_mask[idx] &
11251                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11252                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11253
11254                 if (!(bp->link_params.speed_cap_mask[idx] &
11255                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11256                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11257
11258                 if (!(bp->link_params.speed_cap_mask[idx] &
11259                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11260                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11261
11262                 if (!(bp->link_params.speed_cap_mask[idx] &
11263                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11264                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11265                                                      SUPPORTED_1000baseT_Full);
11266
11267                 if (!(bp->link_params.speed_cap_mask[idx] &
11268                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11269                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11270
11271                 if (!(bp->link_params.speed_cap_mask[idx] &
11272                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11273                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11274
11275                 if (!(bp->link_params.speed_cap_mask[idx] &
11276                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11277                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11278         }
11279
11280         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11281                        bp->port.supported[1]);
11282 }
11283
11284 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11285 {
11286         u32 link_config, idx, cfg_size = 0;
11287         bp->port.advertising[0] = 0;
11288         bp->port.advertising[1] = 0;
11289         switch (bp->link_params.num_phys) {
11290         case 1:
11291         case 2:
11292                 cfg_size = 1;
11293                 break;
11294         case 3:
11295                 cfg_size = 2;
11296                 break;
11297         }
11298         for (idx = 0; idx < cfg_size; idx++) {
11299                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11300                 link_config = bp->port.link_config[idx];
11301                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11302                 case PORT_FEATURE_LINK_SPEED_AUTO:
11303                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11304                                 bp->link_params.req_line_speed[idx] =
11305                                         SPEED_AUTO_NEG;
11306                                 bp->port.advertising[idx] |=
11307                                         bp->port.supported[idx];
11308                                 if (bp->link_params.phy[EXT_PHY1].type ==
11309                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11310                                         bp->port.advertising[idx] |=
11311                                         (SUPPORTED_100baseT_Half |
11312                                          SUPPORTED_100baseT_Full);
11313                         } else {
11314                                 /* force 10G, no AN */
11315                                 bp->link_params.req_line_speed[idx] =
11316                                         SPEED_10000;
11317                                 bp->port.advertising[idx] |=
11318                                         (ADVERTISED_10000baseT_Full |
11319                                          ADVERTISED_FIBRE);
11320                                 continue;
11321                         }
11322                         break;
11323
11324                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11325                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11326                                 bp->link_params.req_line_speed[idx] =
11327                                         SPEED_10;
11328                                 bp->port.advertising[idx] |=
11329                                         (ADVERTISED_10baseT_Full |
11330                                          ADVERTISED_TP);
11331                         } else {
11332                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11333                                             link_config,
11334                                     bp->link_params.speed_cap_mask[idx]);
11335                                 return;
11336                         }
11337                         break;
11338
11339                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11340                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11341                                 bp->link_params.req_line_speed[idx] =
11342                                         SPEED_10;
11343                                 bp->link_params.req_duplex[idx] =
11344                                         DUPLEX_HALF;
11345                                 bp->port.advertising[idx] |=
11346                                         (ADVERTISED_10baseT_Half |
11347                                          ADVERTISED_TP);
11348                         } else {
11349                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11350                                             link_config,
11351                                           bp->link_params.speed_cap_mask[idx]);
11352                                 return;
11353                         }
11354                         break;
11355
11356                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11357                         if (bp->port.supported[idx] &
11358                             SUPPORTED_100baseT_Full) {
11359                                 bp->link_params.req_line_speed[idx] =
11360                                         SPEED_100;
11361                                 bp->port.advertising[idx] |=
11362                                         (ADVERTISED_100baseT_Full |
11363                                          ADVERTISED_TP);
11364                         } else {
11365                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11366                                             link_config,
11367                                           bp->link_params.speed_cap_mask[idx]);
11368                                 return;
11369                         }
11370                         break;
11371
11372                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11373                         if (bp->port.supported[idx] &
11374                             SUPPORTED_100baseT_Half) {
11375                                 bp->link_params.req_line_speed[idx] =
11376                                                                 SPEED_100;
11377                                 bp->link_params.req_duplex[idx] =
11378                                                                 DUPLEX_HALF;
11379                                 bp->port.advertising[idx] |=
11380                                         (ADVERTISED_100baseT_Half |
11381                                          ADVERTISED_TP);
11382                         } else {
11383                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11384                                     link_config,
11385                                     bp->link_params.speed_cap_mask[idx]);
11386                                 return;
11387                         }
11388                         break;
11389
11390                 case PORT_FEATURE_LINK_SPEED_1G:
11391                         if (bp->port.supported[idx] &
11392                             SUPPORTED_1000baseT_Full) {
11393                                 bp->link_params.req_line_speed[idx] =
11394                                         SPEED_1000;
11395                                 bp->port.advertising[idx] |=
11396                                         (ADVERTISED_1000baseT_Full |
11397                                          ADVERTISED_TP);
11398                         } else if (bp->port.supported[idx] &
11399                                    SUPPORTED_1000baseKX_Full) {
11400                                 bp->link_params.req_line_speed[idx] =
11401                                         SPEED_1000;
11402                                 bp->port.advertising[idx] |=
11403                                         ADVERTISED_1000baseKX_Full;
11404                         } else {
11405                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11406                                     link_config,
11407                                     bp->link_params.speed_cap_mask[idx]);
11408                                 return;
11409                         }
11410                         break;
11411
11412                 case PORT_FEATURE_LINK_SPEED_2_5G:
11413                         if (bp->port.supported[idx] &
11414                             SUPPORTED_2500baseX_Full) {
11415                                 bp->link_params.req_line_speed[idx] =
11416                                         SPEED_2500;
11417                                 bp->port.advertising[idx] |=
11418                                         (ADVERTISED_2500baseX_Full |
11419                                                 ADVERTISED_TP);
11420                         } else {
11421                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11422                                     link_config,
11423                                     bp->link_params.speed_cap_mask[idx]);
11424                                 return;
11425                         }
11426                         break;
11427
11428                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11429                         if (bp->port.supported[idx] &
11430                             SUPPORTED_10000baseT_Full) {
11431                                 bp->link_params.req_line_speed[idx] =
11432                                         SPEED_10000;
11433                                 bp->port.advertising[idx] |=
11434                                         (ADVERTISED_10000baseT_Full |
11435                                                 ADVERTISED_FIBRE);
11436                         } else if (bp->port.supported[idx] &
11437                                    SUPPORTED_10000baseKR_Full) {
11438                                 bp->link_params.req_line_speed[idx] =
11439                                         SPEED_10000;
11440                                 bp->port.advertising[idx] |=
11441                                         (ADVERTISED_10000baseKR_Full |
11442                                                 ADVERTISED_FIBRE);
11443                         } else {
11444                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11445                                     link_config,
11446                                     bp->link_params.speed_cap_mask[idx]);
11447                                 return;
11448                         }
11449                         break;
11450                 case PORT_FEATURE_LINK_SPEED_20G:
11451                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11452
11453                         break;
11454                 default:
11455                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11456                                   link_config);
11457                                 bp->link_params.req_line_speed[idx] =
11458                                                         SPEED_AUTO_NEG;
11459                                 bp->port.advertising[idx] =
11460                                                 bp->port.supported[idx];
11461                         break;
11462                 }
11463
11464                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11465                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11466                 if (bp->link_params.req_flow_ctrl[idx] ==
11467                     BNX2X_FLOW_CTRL_AUTO) {
11468                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11469                                 bp->link_params.req_flow_ctrl[idx] =
11470                                                         BNX2X_FLOW_CTRL_NONE;
11471                         else
11472                                 bnx2x_set_requested_fc(bp);
11473                 }
11474
11475                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11476                                bp->link_params.req_line_speed[idx],
11477                                bp->link_params.req_duplex[idx],
11478                                bp->link_params.req_flow_ctrl[idx],
11479                                bp->port.advertising[idx]);
11480         }
11481 }
11482
11483 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11484 {
11485         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11486         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11487         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11488         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11489 }
11490
11491 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11492 {
11493         int port = BP_PORT(bp);
11494         u32 config;
11495         u32 ext_phy_type, ext_phy_config, eee_mode;
11496
11497         bp->link_params.bp = bp;
11498         bp->link_params.port = port;
11499
11500         bp->link_params.lane_config =
11501                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11502
11503         bp->link_params.speed_cap_mask[0] =
11504                 SHMEM_RD(bp,
11505                          dev_info.port_hw_config[port].speed_capability_mask) &
11506                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11507         bp->link_params.speed_cap_mask[1] =
11508                 SHMEM_RD(bp,
11509                          dev_info.port_hw_config[port].speed_capability_mask2) &
11510                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11511         bp->port.link_config[0] =
11512                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11513
11514         bp->port.link_config[1] =
11515                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11516
11517         bp->link_params.multi_phy_config =
11518                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11519         /* If the device is capable of WoL, set the default state according
11520          * to the HW
11521          */
11522         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11523         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11524                    (config & PORT_FEATURE_WOL_ENABLED));
11525
11526         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11527             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11528                 bp->flags |= NO_ISCSI_FLAG;
11529         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11530             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11531                 bp->flags |= NO_FCOE_FLAG;
11532
11533         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11534                        bp->link_params.lane_config,
11535                        bp->link_params.speed_cap_mask[0],
11536                        bp->port.link_config[0]);
11537
11538         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11539                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11540         bnx2x_phy_probe(&bp->link_params);
11541         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11542
11543         bnx2x_link_settings_requested(bp);
11544
11545         /*
11546          * If connected directly, work with the internal PHY, otherwise, work
11547          * with the external PHY
11548          */
11549         ext_phy_config =
11550                 SHMEM_RD(bp,
11551                          dev_info.port_hw_config[port].external_phy_config);
11552         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11553         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11554                 bp->mdio.prtad = bp->port.phy_addr;
11555
11556         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11557                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11558                 bp->mdio.prtad =
11559                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11560
11561         /* Configure link feature according to nvram value */
11562         eee_mode = (((SHMEM_RD(bp, dev_info.
11563                       port_feature_config[port].eee_power_mode)) &
11564                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11565                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11566         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11567                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11568                                            EEE_MODE_ENABLE_LPI |
11569                                            EEE_MODE_OUTPUT_TIME;
11570         } else {
11571                 bp->link_params.eee_mode = 0;
11572         }
11573 }
11574
11575 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11576 {
11577         u32 no_flags = NO_ISCSI_FLAG;
11578         int port = BP_PORT(bp);
11579         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11580                                 drv_lic_key[port].max_iscsi_conn);
11581
11582         if (!CNIC_SUPPORT(bp)) {
11583                 bp->flags |= no_flags;
11584                 return;
11585         }
11586
11587         /* Get the number of maximum allowed iSCSI connections */
11588         bp->cnic_eth_dev.max_iscsi_conn =
11589                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11590                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11591
11592         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11593                        bp->cnic_eth_dev.max_iscsi_conn);
11594
11595         /*
11596          * If maximum allowed number of connections is zero -
11597          * disable the feature.
11598          */
11599         if (!bp->cnic_eth_dev.max_iscsi_conn)
11600                 bp->flags |= no_flags;
11601 }
11602
11603 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11604 {
11605         /* Port info */
11606         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11607                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11608         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11609                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11610
11611         /* Node info */
11612         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11613                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11614         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11615                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11616 }
11617
11618 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11619 {
11620         u8 count = 0;
11621
11622         if (IS_MF(bp)) {
11623                 u8 fid;
11624
11625                 /* iterate over absolute function ids for this path: */
11626                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11627                         if (IS_MF_SD(bp)) {
11628                                 u32 cfg = MF_CFG_RD(bp,
11629                                                     func_mf_config[fid].config);
11630
11631                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11632                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11633                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11634                                         count++;
11635                         } else {
11636                                 u32 cfg = MF_CFG_RD(bp,
11637                                                     func_ext_config[fid].
11638                                                                       func_cfg);
11639
11640                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11641                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11642                                         count++;
11643                         }
11644                 }
11645         } else { /* SF */
11646                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11647
11648                 for (port = 0; port < port_cnt; port++) {
11649                         u32 lic = SHMEM_RD(bp,
11650                                            drv_lic_key[port].max_fcoe_conn) ^
11651                                   FW_ENCODE_32BIT_PATTERN;
11652                         if (lic)
11653                                 count++;
11654                 }
11655         }
11656
11657         return count;
11658 }
11659
11660 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11661 {
11662         int port = BP_PORT(bp);
11663         int func = BP_ABS_FUNC(bp);
11664         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11665                                 drv_lic_key[port].max_fcoe_conn);
11666         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11667
11668         if (!CNIC_SUPPORT(bp)) {
11669                 bp->flags |= NO_FCOE_FLAG;
11670                 return;
11671         }
11672
11673         /* Get the number of maximum allowed FCoE connections */
11674         bp->cnic_eth_dev.max_fcoe_conn =
11675                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11676                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11677
11678         /* Calculate the number of maximum allowed FCoE tasks */
11679         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11680
11681         /* check if FCoE resources must be shared between different functions */
11682         if (num_fcoe_func)
11683                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11684
11685         /* Read the WWN: */
11686         if (!IS_MF(bp)) {
11687                 /* Port info */
11688                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11689                         SHMEM_RD(bp,
11690                                  dev_info.port_hw_config[port].
11691                                  fcoe_wwn_port_name_upper);
11692                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11693                         SHMEM_RD(bp,
11694                                  dev_info.port_hw_config[port].
11695                                  fcoe_wwn_port_name_lower);
11696
11697                 /* Node info */
11698                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11699                         SHMEM_RD(bp,
11700                                  dev_info.port_hw_config[port].
11701                                  fcoe_wwn_node_name_upper);
11702                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11703                         SHMEM_RD(bp,
11704                                  dev_info.port_hw_config[port].
11705                                  fcoe_wwn_node_name_lower);
11706         } else if (!IS_MF_SD(bp)) {
11707                 /* Read the WWN info only if the FCoE feature is enabled for
11708                  * this function.
11709                  */
11710                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11711                         bnx2x_get_ext_wwn_info(bp, func);
11712         } else {
11713                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11714                         bnx2x_get_ext_wwn_info(bp, func);
11715         }
11716
11717         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11718
11719         /*
11720          * If maximum allowed number of connections is zero -
11721          * disable the feature.
11722          */
11723         if (!bp->cnic_eth_dev.max_fcoe_conn) {
11724                 bp->flags |= NO_FCOE_FLAG;
11725                 eth_zero_addr(bp->fip_mac);
11726         }
11727 }
11728
11729 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11730 {
11731         /*
11732          * iSCSI may be dynamically disabled but reading
11733          * info here we will decrease memory usage by driver
11734          * if the feature is disabled for good
11735          */
11736         bnx2x_get_iscsi_info(bp);
11737         bnx2x_get_fcoe_info(bp);
11738 }
11739
11740 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11741 {
11742         u32 val, val2;
11743         int func = BP_ABS_FUNC(bp);
11744         int port = BP_PORT(bp);
11745         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11746         u8 *fip_mac = bp->fip_mac;
11747
11748         if (IS_MF(bp)) {
11749                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11750                  * FCoE MAC then the appropriate feature should be disabled.
11751                  * In non SD mode features configuration comes from struct
11752                  * func_ext_config.
11753                  */
11754                 if (!IS_MF_SD(bp)) {
11755                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11756                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11757                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11758                                                  iscsi_mac_addr_upper);
11759                                 val = MF_CFG_RD(bp, func_ext_config[func].
11760                                                 iscsi_mac_addr_lower);
11761                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11762                                 BNX2X_DEV_INFO
11763                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11764                         } else {
11765                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11766                         }
11767
11768                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11769                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11770                                                  fcoe_mac_addr_upper);
11771                                 val = MF_CFG_RD(bp, func_ext_config[func].
11772                                                 fcoe_mac_addr_lower);
11773                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11774                                 BNX2X_DEV_INFO
11775                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11776                         } else {
11777                                 bp->flags |= NO_FCOE_FLAG;
11778                         }
11779
11780                         bp->mf_ext_config = cfg;
11781
11782                 } else { /* SD MODE */
11783                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11784                                 /* use primary mac as iscsi mac */
11785                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11786
11787                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11788                                 BNX2X_DEV_INFO
11789                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11790                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11791                                 /* use primary mac as fip mac */
11792                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11793                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11794                                 BNX2X_DEV_INFO
11795                                         ("Read FIP MAC: %pM\n", fip_mac);
11796                         }
11797                 }
11798
11799                 /* If this is a storage-only interface, use SAN mac as
11800                  * primary MAC. Notice that for SD this is already the case,
11801                  * as the SAN mac was copied from the primary MAC.
11802                  */
11803                 if (IS_MF_FCOE_AFEX(bp))
11804                         eth_hw_addr_set(bp->dev, fip_mac);
11805         } else {
11806                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11807                                 iscsi_mac_upper);
11808                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11809                                iscsi_mac_lower);
11810                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11811
11812                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11813                                 fcoe_fip_mac_upper);
11814                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11815                                fcoe_fip_mac_lower);
11816                 bnx2x_set_mac_buf(fip_mac, val, val2);
11817         }
11818
11819         /* Disable iSCSI OOO if MAC configuration is invalid. */
11820         if (!is_valid_ether_addr(iscsi_mac)) {
11821                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11822                 eth_zero_addr(iscsi_mac);
11823         }
11824
11825         /* Disable FCoE if MAC configuration is invalid. */
11826         if (!is_valid_ether_addr(fip_mac)) {
11827                 bp->flags |= NO_FCOE_FLAG;
11828                 eth_zero_addr(bp->fip_mac);
11829         }
11830 }
11831
11832 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11833 {
11834         u32 val, val2;
11835         int func = BP_ABS_FUNC(bp);
11836         int port = BP_PORT(bp);
11837         u8 addr[ETH_ALEN] = {};
11838
11839         /* Zero primary MAC configuration */
11840         eth_hw_addr_set(bp->dev, addr);
11841
11842         if (BP_NOMCP(bp)) {
11843                 BNX2X_ERROR("warning: random MAC workaround active\n");
11844                 eth_hw_addr_random(bp->dev);
11845         } else if (IS_MF(bp)) {
11846                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11847                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11848                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11849                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) {
11850                         bnx2x_set_mac_buf(addr, val, val2);
11851                         eth_hw_addr_set(bp->dev, addr);
11852                 }
11853
11854                 if (CNIC_SUPPORT(bp))
11855                         bnx2x_get_cnic_mac_hwinfo(bp);
11856         } else {
11857                 /* in SF read MACs from port configuration */
11858                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11859                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11860                 bnx2x_set_mac_buf(addr, val, val2);
11861                 eth_hw_addr_set(bp->dev, addr);
11862
11863                 if (CNIC_SUPPORT(bp))
11864                         bnx2x_get_cnic_mac_hwinfo(bp);
11865         }
11866
11867         if (!BP_NOMCP(bp)) {
11868                 /* Read physical port identifier from shmem */
11869                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11870                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11871                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11872                 bp->flags |= HAS_PHYS_PORT_ID;
11873         }
11874
11875         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11876
11877         if (!is_valid_ether_addr(bp->dev->dev_addr))
11878                 dev_err(&bp->pdev->dev,
11879                         "bad Ethernet MAC address configuration: %pM\n"
11880                         "change it manually before bringing up the appropriate network interface\n",
11881                         bp->dev->dev_addr);
11882 }
11883
11884 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11885 {
11886         int tmp;
11887         u32 cfg;
11888
11889         if (IS_VF(bp))
11890                 return false;
11891
11892         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11893                 /* Take function: tmp = func */
11894                 tmp = BP_ABS_FUNC(bp);
11895                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11896                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11897         } else {
11898                 /* Take port: tmp = port */
11899                 tmp = BP_PORT(bp);
11900                 cfg = SHMEM_RD(bp,
11901                                dev_info.port_hw_config[tmp].generic_features);
11902                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11903         }
11904         return cfg;
11905 }
11906
11907 static void validate_set_si_mode(struct bnx2x *bp)
11908 {
11909         u8 func = BP_ABS_FUNC(bp);
11910         u32 val;
11911
11912         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11913
11914         /* check for legal mac (upper bytes) */
11915         if (val != 0xffff) {
11916                 bp->mf_mode = MULTI_FUNCTION_SI;
11917                 bp->mf_config[BP_VN(bp)] =
11918                         MF_CFG_RD(bp, func_mf_config[func].config);
11919         } else
11920                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11921 }
11922
11923 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11924 {
11925         int /*abs*/func = BP_ABS_FUNC(bp);
11926         int vn;
11927         u32 val = 0, val2 = 0;
11928         int rc = 0;
11929
11930         /* Validate that chip access is feasible */
11931         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11932                 dev_err(&bp->pdev->dev,
11933                         "Chip read returns all Fs. Preventing probe from continuing\n");
11934                 return -EINVAL;
11935         }
11936
11937         bnx2x_get_common_hwinfo(bp);
11938
11939         /*
11940          * initialize IGU parameters
11941          */
11942         if (CHIP_IS_E1x(bp)) {
11943                 bp->common.int_block = INT_BLOCK_HC;
11944
11945                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11946                 bp->igu_base_sb = 0;
11947         } else {
11948                 bp->common.int_block = INT_BLOCK_IGU;
11949
11950                 /* do not allow device reset during IGU info processing */
11951                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11952
11953                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11954
11955                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11956                         int tout = 5000;
11957
11958                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11959
11960                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11961                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11962                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11963
11964                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11965                                 tout--;
11966                                 usleep_range(1000, 2000);
11967                         }
11968
11969                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11970                                 dev_err(&bp->pdev->dev,
11971                                         "FORCING Normal Mode failed!!!\n");
11972                                 bnx2x_release_hw_lock(bp,
11973                                                       HW_LOCK_RESOURCE_RESET);
11974                                 return -EPERM;
11975                         }
11976                 }
11977
11978                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11979                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11980                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11981                 } else
11982                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11983
11984                 rc = bnx2x_get_igu_cam_info(bp);
11985                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11986                 if (rc)
11987                         return rc;
11988         }
11989
11990         /*
11991          * set base FW non-default (fast path) status block id, this value is
11992          * used to initialize the fw_sb_id saved on the fp/queue structure to
11993          * determine the id used by the FW.
11994          */
11995         if (CHIP_IS_E1x(bp))
11996                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11997         else /*
11998               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11999               * the same queue are indicated on the same IGU SB). So we prefer
12000               * FW and IGU SBs to be the same value.
12001               */
12002                 bp->base_fw_ndsb = bp->igu_base_sb;
12003
12004         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12005                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12006                        bp->igu_sb_cnt, bp->base_fw_ndsb);
12007
12008         /*
12009          * Initialize MF configuration
12010          */
12011         bp->mf_ov = 0;
12012         bp->mf_mode = 0;
12013         bp->mf_sub_mode = 0;
12014         vn = BP_VN(bp);
12015
12016         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12017                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12018                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
12019                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12020
12021                 if (SHMEM2_HAS(bp, mf_cfg_addr))
12022                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12023                 else
12024                         bp->common.mf_cfg_base = bp->common.shmem_base +
12025                                 offsetof(struct shmem_region, func_mb) +
12026                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12027                 /*
12028                  * get mf configuration:
12029                  * 1. Existence of MF configuration
12030                  * 2. MAC address must be legal (check only upper bytes)
12031                  *    for  Switch-Independent mode;
12032                  *    OVLAN must be legal for Switch-Dependent mode
12033                  * 3. SF_MODE configures specific MF mode
12034                  */
12035                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12036                         /* get mf configuration */
12037                         val = SHMEM_RD(bp,
12038                                        dev_info.shared_feature_config.config);
12039                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12040
12041                         switch (val) {
12042                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12043                                 validate_set_si_mode(bp);
12044                                 break;
12045                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12046                                 if ((!CHIP_IS_E1x(bp)) &&
12047                                     (MF_CFG_RD(bp, func_mf_config[func].
12048                                                mac_upper) != 0xffff) &&
12049                                     (SHMEM2_HAS(bp,
12050                                                 afex_driver_support))) {
12051                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
12052                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12053                                                 func_mf_config[func].config);
12054                                 } else {
12055                                         BNX2X_DEV_INFO("can not configure afex mode\n");
12056                                 }
12057                                 break;
12058                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12059                                 /* get OV configuration */
12060                                 val = MF_CFG_RD(bp,
12061                                         func_mf_config[FUNC_0].e1hov_tag);
12062                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12063
12064                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12065                                         bp->mf_mode = MULTI_FUNCTION_SD;
12066                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12067                                                 func_mf_config[func].config);
12068                                 } else
12069                                         BNX2X_DEV_INFO("illegal OV for SD\n");
12070                                 break;
12071                         case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12072                                 bp->mf_mode = MULTI_FUNCTION_SD;
12073                                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12074                                 bp->mf_config[vn] =
12075                                         MF_CFG_RD(bp,
12076                                                   func_mf_config[func].config);
12077
12078                                 if (SHMEM2_HAS(bp, mtu_size)) {
12079                                         int mtu_idx = BP_FW_MB_IDX(bp);
12080                                         u16 mtu_size;
12081                                         u32 mtu;
12082
12083                                         mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12084                                         mtu_size = (u16)mtu;
12085                                         DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12086                                            mtu_size, mtu);
12087
12088                                         /* if valid: update device mtu */
12089                                         if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12090                                             (mtu_size <=
12091                                              ETH_MAX_JUMBO_PACKET_SIZE))
12092                                                 bp->dev->mtu = mtu_size;
12093                                 }
12094                                 break;
12095                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12096                                 bp->mf_mode = MULTI_FUNCTION_SD;
12097                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12098                                 bp->mf_config[vn] =
12099                                         MF_CFG_RD(bp,
12100                                                   func_mf_config[func].config);
12101                                 break;
12102                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12103                                 bp->mf_config[vn] = 0;
12104                                 break;
12105                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12106                                 val2 = SHMEM_RD(bp,
12107                                         dev_info.shared_hw_config.config_3);
12108                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12109                                 switch (val2) {
12110                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12111                                         validate_set_si_mode(bp);
12112                                         bp->mf_sub_mode =
12113                                                         SUB_MF_MODE_NPAR1_DOT_5;
12114                                         break;
12115                                 default:
12116                                         /* Unknown configuration */
12117                                         bp->mf_config[vn] = 0;
12118                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12119                                                        val);
12120                                 }
12121                                 break;
12122                         default:
12123                                 /* Unknown configuration: reset mf_config */
12124                                 bp->mf_config[vn] = 0;
12125                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12126                         }
12127                 }
12128
12129                 BNX2X_DEV_INFO("%s function mode\n",
12130                                IS_MF(bp) ? "multi" : "single");
12131
12132                 switch (bp->mf_mode) {
12133                 case MULTI_FUNCTION_SD:
12134                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12135                               FUNC_MF_CFG_E1HOV_TAG_MASK;
12136                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12137                                 bp->mf_ov = val;
12138                                 bp->path_has_ovlan = true;
12139
12140                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12141                                                func, bp->mf_ov, bp->mf_ov);
12142                         } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12143                                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12144                                 dev_err(&bp->pdev->dev,
12145                                         "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12146                                         func);
12147                                 bp->path_has_ovlan = true;
12148                         } else {
12149                                 dev_err(&bp->pdev->dev,
12150                                         "No valid MF OV for func %d, aborting\n",
12151                                         func);
12152                                 return -EPERM;
12153                         }
12154                         break;
12155                 case MULTI_FUNCTION_AFEX:
12156                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12157                         break;
12158                 case MULTI_FUNCTION_SI:
12159                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12160                                        func);
12161                         break;
12162                 default:
12163                         if (vn) {
12164                                 dev_err(&bp->pdev->dev,
12165                                         "VN %d is in a single function mode, aborting\n",
12166                                         vn);
12167                                 return -EPERM;
12168                         }
12169                         break;
12170                 }
12171
12172                 /* check if other port on the path needs ovlan:
12173                  * Since MF configuration is shared between ports
12174                  * Possible mixed modes are only
12175                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12176                  */
12177                 if (CHIP_MODE_IS_4_PORT(bp) &&
12178                     !bp->path_has_ovlan &&
12179                     !IS_MF(bp) &&
12180                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12181                         u8 other_port = !BP_PORT(bp);
12182                         u8 other_func = BP_PATH(bp) + 2*other_port;
12183                         val = MF_CFG_RD(bp,
12184                                         func_mf_config[other_func].e1hov_tag);
12185                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12186                                 bp->path_has_ovlan = true;
12187                 }
12188         }
12189
12190         /* adjust igu_sb_cnt to MF for E1H */
12191         if (CHIP_IS_E1H(bp) && IS_MF(bp))
12192                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12193
12194         /* port info */
12195         bnx2x_get_port_hwinfo(bp);
12196
12197         /* Get MAC addresses */
12198         bnx2x_get_mac_hwinfo(bp);
12199
12200         bnx2x_get_cnic_info(bp);
12201
12202         return rc;
12203 }
12204
12205 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12206 {
12207         char str_id[VENDOR_ID_LEN + 1];
12208         unsigned int vpd_len, kw_len;
12209         u8 *vpd_data;
12210         int rodi;
12211
12212         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12213
12214         vpd_data = pci_vpd_alloc(bp->pdev, &vpd_len);
12215         if (IS_ERR(vpd_data))
12216                 return;
12217
12218         rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12219                                             PCI_VPD_RO_KEYWORD_MFR_ID, &kw_len);
12220         if (rodi < 0 || kw_len != VENDOR_ID_LEN)
12221                 goto out_not_found;
12222
12223         /* vendor specific info */
12224         snprintf(str_id, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12225         if (!strncasecmp(str_id, &vpd_data[rodi], VENDOR_ID_LEN)) {
12226                 rodi = pci_vpd_find_ro_info_keyword(vpd_data, vpd_len,
12227                                                     PCI_VPD_RO_KEYWORD_VENDOR0,
12228                                                     &kw_len);
12229                 if (rodi >= 0 && kw_len < sizeof(bp->fw_ver)) {
12230                         memcpy(bp->fw_ver, &vpd_data[rodi], kw_len);
12231                         bp->fw_ver[kw_len] = ' ';
12232                 }
12233         }
12234 out_not_found:
12235         kfree(vpd_data);
12236 }
12237
12238 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12239 {
12240         u32 flags = 0;
12241
12242         if (CHIP_REV_IS_FPGA(bp))
12243                 SET_FLAGS(flags, MODE_FPGA);
12244         else if (CHIP_REV_IS_EMUL(bp))
12245                 SET_FLAGS(flags, MODE_EMUL);
12246         else
12247                 SET_FLAGS(flags, MODE_ASIC);
12248
12249         if (CHIP_MODE_IS_4_PORT(bp))
12250                 SET_FLAGS(flags, MODE_PORT4);
12251         else
12252                 SET_FLAGS(flags, MODE_PORT2);
12253
12254         if (CHIP_IS_E2(bp))
12255                 SET_FLAGS(flags, MODE_E2);
12256         else if (CHIP_IS_E3(bp)) {
12257                 SET_FLAGS(flags, MODE_E3);
12258                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12259                         SET_FLAGS(flags, MODE_E3_A0);
12260                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12261                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12262         }
12263
12264         if (IS_MF(bp)) {
12265                 SET_FLAGS(flags, MODE_MF);
12266                 switch (bp->mf_mode) {
12267                 case MULTI_FUNCTION_SD:
12268                         SET_FLAGS(flags, MODE_MF_SD);
12269                         break;
12270                 case MULTI_FUNCTION_SI:
12271                         SET_FLAGS(flags, MODE_MF_SI);
12272                         break;
12273                 case MULTI_FUNCTION_AFEX:
12274                         SET_FLAGS(flags, MODE_MF_AFEX);
12275                         break;
12276                 }
12277         } else
12278                 SET_FLAGS(flags, MODE_SF);
12279
12280 #if defined(__LITTLE_ENDIAN)
12281         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12282 #else /*(__BIG_ENDIAN)*/
12283         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12284 #endif
12285         INIT_MODE_FLAGS(bp) = flags;
12286 }
12287
12288 static int bnx2x_init_bp(struct bnx2x *bp)
12289 {
12290         int func;
12291         int rc;
12292
12293         mutex_init(&bp->port.phy_mutex);
12294         mutex_init(&bp->fw_mb_mutex);
12295         mutex_init(&bp->drv_info_mutex);
12296         sema_init(&bp->stats_lock, 1);
12297         bp->drv_info_mng_owner = false;
12298         INIT_LIST_HEAD(&bp->vlan_reg);
12299
12300         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12301         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12302         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12303         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12304         if (IS_PF(bp)) {
12305                 rc = bnx2x_get_hwinfo(bp);
12306                 if (rc)
12307                         return rc;
12308         } else {
12309                 static const u8 zero_addr[ETH_ALEN] = {};
12310
12311                 eth_hw_addr_set(bp->dev, zero_addr);
12312         }
12313
12314         bnx2x_set_modes_bitmap(bp);
12315
12316         rc = bnx2x_alloc_mem_bp(bp);
12317         if (rc)
12318                 return rc;
12319
12320         bnx2x_read_fwinfo(bp);
12321
12322         func = BP_FUNC(bp);
12323
12324         /* need to reset chip if undi was active */
12325         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12326                 /* init fw_seq */
12327                 bp->fw_seq =
12328                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12329                                                         DRV_MSG_SEQ_NUMBER_MASK;
12330                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12331
12332                 rc = bnx2x_prev_unload(bp);
12333                 if (rc) {
12334                         bnx2x_free_mem_bp(bp);
12335                         return rc;
12336                 }
12337         }
12338
12339         if (CHIP_REV_IS_FPGA(bp))
12340                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12341
12342         if (BP_NOMCP(bp) && (func == 0))
12343                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12344
12345         bp->disable_tpa = disable_tpa;
12346         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12347         /* Reduce memory usage in kdump environment by disabling TPA */
12348         bp->disable_tpa |= is_kdump_kernel();
12349
12350         /* Set TPA flags */
12351         if (bp->disable_tpa) {
12352                 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12353                 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12354         }
12355
12356         if (CHIP_IS_E1(bp))
12357                 bp->dropless_fc = false;
12358         else
12359                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12360
12361         bp->mrrs = mrrs;
12362
12363         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12364         if (IS_VF(bp))
12365                 bp->rx_ring_size = MAX_RX_AVAIL;
12366
12367         /* make sure that the numbers are in the right granularity */
12368         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12369         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12370
12371         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12372
12373         timer_setup(&bp->timer, bnx2x_timer, 0);
12374         bp->timer.expires = jiffies + bp->current_interval;
12375
12376         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12377             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12378             SHMEM2_HAS(bp, dcbx_en) &&
12379             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12380             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12381             SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12382                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12383                 bnx2x_dcbx_init_params(bp);
12384         } else {
12385                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12386         }
12387
12388         if (CHIP_IS_E1x(bp))
12389                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12390         else
12391                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12392
12393         /* multiple tx priority */
12394         if (IS_VF(bp))
12395                 bp->max_cos = 1;
12396         else if (CHIP_IS_E1x(bp))
12397                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12398         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12399                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12400         else if (CHIP_IS_E3B0(bp))
12401                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12402         else
12403                 BNX2X_ERR("unknown chip %x revision %x\n",
12404                           CHIP_NUM(bp), CHIP_REV(bp));
12405         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12406
12407         /* We need at least one default status block for slow-path events,
12408          * second status block for the L2 queue, and a third status block for
12409          * CNIC if supported.
12410          */
12411         if (IS_VF(bp))
12412                 bp->min_msix_vec_cnt = 1;
12413         else if (CNIC_SUPPORT(bp))
12414                 bp->min_msix_vec_cnt = 3;
12415         else /* PF w/o cnic */
12416                 bp->min_msix_vec_cnt = 2;
12417         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12418
12419         bp->dump_preset_idx = 1;
12420
12421         return rc;
12422 }
12423
12424 /****************************************************************************
12425 * General service functions
12426 ****************************************************************************/
12427
12428 /*
12429  * net_device service functions
12430  */
12431
12432 /* called with rtnl_lock */
12433 static int bnx2x_open(struct net_device *dev)
12434 {
12435         struct bnx2x *bp = netdev_priv(dev);
12436         int rc;
12437
12438         bp->stats_init = true;
12439
12440         netif_carrier_off(dev);
12441
12442         bnx2x_set_power_state(bp, PCI_D0);
12443
12444         /* If parity had happen during the unload, then attentions
12445          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12446          * want the first function loaded on the current engine to
12447          * complete the recovery.
12448          * Parity recovery is only relevant for PF driver.
12449          */
12450         if (IS_PF(bp)) {
12451                 int other_engine = BP_PATH(bp) ? 0 : 1;
12452                 bool other_load_status, load_status;
12453                 bool global = false;
12454
12455                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12456                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12457                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12458                     bnx2x_chk_parity_attn(bp, &global, true)) {
12459                         do {
12460                                 /* If there are attentions and they are in a
12461                                  * global blocks, set the GLOBAL_RESET bit
12462                                  * regardless whether it will be this function
12463                                  * that will complete the recovery or not.
12464                                  */
12465                                 if (global)
12466                                         bnx2x_set_reset_global(bp);
12467
12468                                 /* Only the first function on the current
12469                                  * engine should try to recover in open. In case
12470                                  * of attentions in global blocks only the first
12471                                  * in the chip should try to recover.
12472                                  */
12473                                 if ((!load_status &&
12474                                      (!global || !other_load_status)) &&
12475                                       bnx2x_trylock_leader_lock(bp) &&
12476                                       !bnx2x_leader_reset(bp)) {
12477                                         netdev_info(bp->dev,
12478                                                     "Recovered in open\n");
12479                                         break;
12480                                 }
12481
12482                                 /* recovery has failed... */
12483                                 bnx2x_set_power_state(bp, PCI_D3hot);
12484                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12485
12486                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12487                                           "If you still see this message after a few retries then power cycle is required.\n");
12488
12489                                 return -EAGAIN;
12490                         } while (0);
12491                 }
12492         }
12493
12494         bp->recovery_state = BNX2X_RECOVERY_DONE;
12495         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12496         if (rc)
12497                 return rc;
12498
12499         return 0;
12500 }
12501
12502 /* called with rtnl_lock */
12503 static int bnx2x_close(struct net_device *dev)
12504 {
12505         struct bnx2x *bp = netdev_priv(dev);
12506
12507         /* Unload the driver, release IRQs */
12508         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12509
12510         return 0;
12511 }
12512
12513 struct bnx2x_mcast_list_elem_group
12514 {
12515         struct list_head mcast_group_link;
12516         struct bnx2x_mcast_list_elem mcast_elems[];
12517 };
12518
12519 #define MCAST_ELEMS_PER_PG \
12520         ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12521         sizeof(struct bnx2x_mcast_list_elem))
12522
12523 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12524 {
12525         struct bnx2x_mcast_list_elem_group *current_mcast_group;
12526
12527         while (!list_empty(mcast_group_list)) {
12528                 current_mcast_group = list_first_entry(mcast_group_list,
12529                                       struct bnx2x_mcast_list_elem_group,
12530                                       mcast_group_link);
12531                 list_del(&current_mcast_group->mcast_group_link);
12532                 free_page((unsigned long)current_mcast_group);
12533         }
12534 }
12535
12536 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12537                                       struct bnx2x_mcast_ramrod_params *p,
12538                                       struct list_head *mcast_group_list)
12539 {
12540         struct bnx2x_mcast_list_elem *mc_mac;
12541         struct netdev_hw_addr *ha;
12542         struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12543         int mc_count = netdev_mc_count(bp->dev);
12544         int offset = 0;
12545
12546         INIT_LIST_HEAD(&p->mcast_list);
12547         netdev_for_each_mc_addr(ha, bp->dev) {
12548                 if (!offset) {
12549                         current_mcast_group =
12550                                 (struct bnx2x_mcast_list_elem_group *)
12551                                 __get_free_page(GFP_ATOMIC);
12552                         if (!current_mcast_group) {
12553                                 bnx2x_free_mcast_macs_list(mcast_group_list);
12554                                 BNX2X_ERR("Failed to allocate mc MAC list\n");
12555                                 return -ENOMEM;
12556                         }
12557                         list_add(&current_mcast_group->mcast_group_link,
12558                                  mcast_group_list);
12559                 }
12560                 mc_mac = &current_mcast_group->mcast_elems[offset];
12561                 mc_mac->mac = bnx2x_mc_addr(ha);
12562                 list_add_tail(&mc_mac->link, &p->mcast_list);
12563                 offset++;
12564                 if (offset == MCAST_ELEMS_PER_PG)
12565                         offset = 0;
12566         }
12567         p->mcast_list_len = mc_count;
12568         return 0;
12569 }
12570
12571 /**
12572  * bnx2x_set_uc_list - configure a new unicast MACs list.
12573  *
12574  * @bp: driver handle
12575  *
12576  * We will use zero (0) as a MAC type for these MACs.
12577  */
12578 static int bnx2x_set_uc_list(struct bnx2x *bp)
12579 {
12580         int rc;
12581         struct net_device *dev = bp->dev;
12582         struct netdev_hw_addr *ha;
12583         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12584         unsigned long ramrod_flags = 0;
12585
12586         /* First schedule a cleanup up of old configuration */
12587         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12588         if (rc < 0) {
12589                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12590                 return rc;
12591         }
12592
12593         netdev_for_each_uc_addr(ha, dev) {
12594                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12595                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12596                 if (rc == -EEXIST) {
12597                         DP(BNX2X_MSG_SP,
12598                            "Failed to schedule ADD operations: %d\n", rc);
12599                         /* do not treat adding same MAC as error */
12600                         rc = 0;
12601
12602                 } else if (rc < 0) {
12603
12604                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12605                                   rc);
12606                         return rc;
12607                 }
12608         }
12609
12610         /* Execute the pending commands */
12611         __set_bit(RAMROD_CONT, &ramrod_flags);
12612         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12613                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12614 }
12615
12616 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12617 {
12618         LIST_HEAD(mcast_group_list);
12619         struct net_device *dev = bp->dev;
12620         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12621         int rc = 0;
12622
12623         rparam.mcast_obj = &bp->mcast_obj;
12624
12625         /* first, clear all configured multicast MACs */
12626         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12627         if (rc < 0) {
12628                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12629                 return rc;
12630         }
12631
12632         /* then, configure a new MACs list */
12633         if (netdev_mc_count(dev)) {
12634                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12635                 if (rc)
12636                         return rc;
12637
12638                 /* Now add the new MACs */
12639                 rc = bnx2x_config_mcast(bp, &rparam,
12640                                         BNX2X_MCAST_CMD_ADD);
12641                 if (rc < 0)
12642                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12643                                   rc);
12644
12645                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12646         }
12647
12648         return rc;
12649 }
12650
12651 static int bnx2x_set_mc_list(struct bnx2x *bp)
12652 {
12653         LIST_HEAD(mcast_group_list);
12654         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12655         struct net_device *dev = bp->dev;
12656         int rc = 0;
12657
12658         /* On older adapters, we need to flush and re-add filters */
12659         if (CHIP_IS_E1x(bp))
12660                 return bnx2x_set_mc_list_e1x(bp);
12661
12662         rparam.mcast_obj = &bp->mcast_obj;
12663
12664         if (netdev_mc_count(dev)) {
12665                 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12666                 if (rc)
12667                         return rc;
12668
12669                 /* Override the curently configured set of mc filters */
12670                 rc = bnx2x_config_mcast(bp, &rparam,
12671                                         BNX2X_MCAST_CMD_SET);
12672                 if (rc < 0)
12673                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12674                                   rc);
12675
12676                 bnx2x_free_mcast_macs_list(&mcast_group_list);
12677         } else {
12678                 /* If no mc addresses are required, flush the configuration */
12679                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12680                 if (rc < 0)
12681                         BNX2X_ERR("Failed to clear multicast configuration %d\n",
12682                                   rc);
12683         }
12684
12685         return rc;
12686 }
12687
12688 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12689 static void bnx2x_set_rx_mode(struct net_device *dev)
12690 {
12691         struct bnx2x *bp = netdev_priv(dev);
12692
12693         if (bp->state != BNX2X_STATE_OPEN) {
12694                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12695                 return;
12696         } else {
12697                 /* Schedule an SP task to handle rest of change */
12698                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12699                                        NETIF_MSG_IFUP);
12700         }
12701 }
12702
12703 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12704 {
12705         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12706
12707         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12708
12709         netif_addr_lock_bh(bp->dev);
12710
12711         if (bp->dev->flags & IFF_PROMISC) {
12712                 rx_mode = BNX2X_RX_MODE_PROMISC;
12713         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12714                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12715                     CHIP_IS_E1(bp))) {
12716                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12717         } else {
12718                 if (IS_PF(bp)) {
12719                         /* some multicasts */
12720                         if (bnx2x_set_mc_list(bp) < 0)
12721                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12722
12723                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12724                         netif_addr_unlock_bh(bp->dev);
12725                         if (bnx2x_set_uc_list(bp) < 0)
12726                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12727                         netif_addr_lock_bh(bp->dev);
12728                 } else {
12729                         /* configuring mcast to a vf involves sleeping (when we
12730                          * wait for the pf's response).
12731                          */
12732                         bnx2x_schedule_sp_rtnl(bp,
12733                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12734                 }
12735         }
12736
12737         bp->rx_mode = rx_mode;
12738         /* handle ISCSI SD mode */
12739         if (IS_MF_ISCSI_ONLY(bp))
12740                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12741
12742         /* Schedule the rx_mode command */
12743         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12744                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12745                 netif_addr_unlock_bh(bp->dev);
12746                 return;
12747         }
12748
12749         if (IS_PF(bp)) {
12750                 bnx2x_set_storm_rx_mode(bp);
12751                 netif_addr_unlock_bh(bp->dev);
12752         } else {
12753                 /* VF will need to request the PF to make this change, and so
12754                  * the VF needs to release the bottom-half lock prior to the
12755                  * request (as it will likely require sleep on the VF side)
12756                  */
12757                 netif_addr_unlock_bh(bp->dev);
12758                 bnx2x_vfpf_storm_rx_mode(bp);
12759         }
12760 }
12761
12762 /* called with rtnl_lock */
12763 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12764                            int devad, u16 addr)
12765 {
12766         struct bnx2x *bp = netdev_priv(netdev);
12767         u16 value;
12768         int rc;
12769
12770         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12771            prtad, devad, addr);
12772
12773         /* The HW expects different devad if CL22 is used */
12774         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12775
12776         bnx2x_acquire_phy_lock(bp);
12777         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12778         bnx2x_release_phy_lock(bp);
12779         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12780
12781         if (!rc)
12782                 rc = value;
12783         return rc;
12784 }
12785
12786 /* called with rtnl_lock */
12787 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12788                             u16 addr, u16 value)
12789 {
12790         struct bnx2x *bp = netdev_priv(netdev);
12791         int rc;
12792
12793         DP(NETIF_MSG_LINK,
12794            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12795            prtad, devad, addr, value);
12796
12797         /* The HW expects different devad if CL22 is used */
12798         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12799
12800         bnx2x_acquire_phy_lock(bp);
12801         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12802         bnx2x_release_phy_lock(bp);
12803         return rc;
12804 }
12805
12806 /* called with rtnl_lock */
12807 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12808 {
12809         struct bnx2x *bp = netdev_priv(dev);
12810         struct mii_ioctl_data *mdio = if_mii(ifr);
12811
12812         if (!netif_running(dev))
12813                 return -EAGAIN;
12814
12815         switch (cmd) {
12816         case SIOCSHWTSTAMP:
12817                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12818         default:
12819                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12820                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12821                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12822         }
12823 }
12824
12825 static int bnx2x_validate_addr(struct net_device *dev)
12826 {
12827         struct bnx2x *bp = netdev_priv(dev);
12828
12829         /* query the bulletin board for mac address configured by the PF */
12830         if (IS_VF(bp))
12831                 bnx2x_sample_bulletin(bp);
12832
12833         if (!is_valid_ether_addr(dev->dev_addr)) {
12834                 BNX2X_ERR("Non-valid Ethernet address\n");
12835                 return -EADDRNOTAVAIL;
12836         }
12837         return 0;
12838 }
12839
12840 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12841                                   struct netdev_phys_item_id *ppid)
12842 {
12843         struct bnx2x *bp = netdev_priv(netdev);
12844
12845         if (!(bp->flags & HAS_PHYS_PORT_ID))
12846                 return -EOPNOTSUPP;
12847
12848         ppid->id_len = sizeof(bp->phys_port_id);
12849         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12850
12851         return 0;
12852 }
12853
12854 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12855                                               struct net_device *dev,
12856                                               netdev_features_t features)
12857 {
12858         /*
12859          * A skb with gso_size + header length > 9700 will cause a
12860          * firmware panic. Drop GSO support.
12861          *
12862          * Eventually the upper layer should not pass these packets down.
12863          *
12864          * For speed, if the gso_size is <= 9000, assume there will
12865          * not be 700 bytes of headers and pass it through. Only do a
12866          * full (slow) validation if the gso_size is > 9000.
12867          *
12868          * (Due to the way SKB_BY_FRAGS works this will also do a full
12869          * validation in that case.)
12870          */
12871         if (unlikely(skb_is_gso(skb) &&
12872                      (skb_shinfo(skb)->gso_size > 9000) &&
12873                      !skb_gso_validate_mac_len(skb, 9700)))
12874                 features &= ~NETIF_F_GSO_MASK;
12875
12876         features = vlan_features_check(skb, features);
12877         return vxlan_features_check(skb, features);
12878 }
12879
12880 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12881 {
12882         int rc;
12883
12884         if (IS_PF(bp)) {
12885                 unsigned long ramrod_flags = 0;
12886
12887                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12888                 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12889                                         add, &ramrod_flags);
12890         } else {
12891                 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12892         }
12893
12894         return rc;
12895 }
12896
12897 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12898 {
12899         struct bnx2x_vlan_entry *vlan;
12900         int rc = 0;
12901
12902         /* Configure all non-configured entries */
12903         list_for_each_entry(vlan, &bp->vlan_reg, link) {
12904                 if (vlan->hw)
12905                         continue;
12906
12907                 if (bp->vlan_cnt >= bp->vlan_credit)
12908                         return -ENOBUFS;
12909
12910                 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12911                 if (rc) {
12912                         BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12913                         return rc;
12914                 }
12915
12916                 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12917                 vlan->hw = true;
12918                 bp->vlan_cnt++;
12919         }
12920
12921         return 0;
12922 }
12923
12924 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12925 {
12926         bool need_accept_any_vlan;
12927
12928         need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12929
12930         if (bp->accept_any_vlan != need_accept_any_vlan) {
12931                 bp->accept_any_vlan = need_accept_any_vlan;
12932                 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12933                    bp->accept_any_vlan ? "raised" : "cleared");
12934                 if (set_rx_mode) {
12935                         if (IS_PF(bp))
12936                                 bnx2x_set_rx_mode_inner(bp);
12937                         else
12938                                 bnx2x_vfpf_storm_rx_mode(bp);
12939                 }
12940         }
12941 }
12942
12943 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12944 {
12945         /* Don't set rx mode here. Our caller will do it. */
12946         bnx2x_vlan_configure(bp, false);
12947
12948         return 0;
12949 }
12950
12951 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12952 {
12953         struct bnx2x *bp = netdev_priv(dev);
12954         struct bnx2x_vlan_entry *vlan;
12955
12956         DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12957
12958         vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12959         if (!vlan)
12960                 return -ENOMEM;
12961
12962         vlan->vid = vid;
12963         vlan->hw = false;
12964         list_add_tail(&vlan->link, &bp->vlan_reg);
12965
12966         if (netif_running(dev))
12967                 bnx2x_vlan_configure(bp, true);
12968
12969         return 0;
12970 }
12971
12972 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12973 {
12974         struct bnx2x *bp = netdev_priv(dev);
12975         struct bnx2x_vlan_entry *vlan;
12976         bool found = false;
12977         int rc = 0;
12978
12979         DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12980
12981         list_for_each_entry(vlan, &bp->vlan_reg, link)
12982                 if (vlan->vid == vid) {
12983                         found = true;
12984                         break;
12985                 }
12986
12987         if (!found) {
12988                 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12989                 return -EINVAL;
12990         }
12991
12992         if (netif_running(dev) && vlan->hw) {
12993                 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12994                 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
12995                 bp->vlan_cnt--;
12996         }
12997
12998         list_del(&vlan->link);
12999         kfree(vlan);
13000
13001         if (netif_running(dev))
13002                 bnx2x_vlan_configure(bp, true);
13003
13004         DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13005
13006         return rc;
13007 }
13008
13009 static const struct net_device_ops bnx2x_netdev_ops = {
13010         .ndo_open               = bnx2x_open,
13011         .ndo_stop               = bnx2x_close,
13012         .ndo_start_xmit         = bnx2x_start_xmit,
13013         .ndo_select_queue       = bnx2x_select_queue,
13014         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
13015         .ndo_set_mac_address    = bnx2x_change_mac_addr,
13016         .ndo_validate_addr      = bnx2x_validate_addr,
13017         .ndo_eth_ioctl          = bnx2x_ioctl,
13018         .ndo_change_mtu         = bnx2x_change_mtu,
13019         .ndo_fix_features       = bnx2x_fix_features,
13020         .ndo_set_features       = bnx2x_set_features,
13021         .ndo_tx_timeout         = bnx2x_tx_timeout,
13022         .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
13023         .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
13024         .ndo_setup_tc           = __bnx2x_setup_tc,
13025 #ifdef CONFIG_BNX2X_SRIOV
13026         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13027         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13028         .ndo_get_vf_config      = bnx2x_get_vf_config,
13029         .ndo_set_vf_spoofchk    = bnx2x_set_vf_spoofchk,
13030 #endif
13031 #ifdef NETDEV_FCOE_WWNN
13032         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13033 #endif
13034
13035         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13036         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13037         .ndo_features_check     = bnx2x_features_check,
13038 };
13039
13040 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13041 {
13042         if (bp->flags & AER_ENABLED) {
13043                 pci_disable_pcie_error_reporting(bp->pdev);
13044                 bp->flags &= ~AER_ENABLED;
13045         }
13046 }
13047
13048 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13049                           struct net_device *dev, unsigned long board_type)
13050 {
13051         int rc;
13052         u32 pci_cfg_dword;
13053         bool chip_is_e1x = (board_type == BCM57710 ||
13054                             board_type == BCM57711 ||
13055                             board_type == BCM57711E);
13056
13057         SET_NETDEV_DEV(dev, &pdev->dev);
13058
13059         bp->dev = dev;
13060         bp->pdev = pdev;
13061
13062         rc = pci_enable_device(pdev);
13063         if (rc) {
13064                 dev_err(&bp->pdev->dev,
13065                         "Cannot enable PCI device, aborting\n");
13066                 goto err_out;
13067         }
13068
13069         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13070                 dev_err(&bp->pdev->dev,
13071                         "Cannot find PCI device base address, aborting\n");
13072                 rc = -ENODEV;
13073                 goto err_out_disable;
13074         }
13075
13076         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13077                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13078                 rc = -ENODEV;
13079                 goto err_out_disable;
13080         }
13081
13082         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13083         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13084             PCICFG_REVESION_ID_ERROR_VAL) {
13085                 pr_err("PCI device error, probably due to fan failure, aborting\n");
13086                 rc = -ENODEV;
13087                 goto err_out_disable;
13088         }
13089
13090         if (atomic_read(&pdev->enable_cnt) == 1) {
13091                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13092                 if (rc) {
13093                         dev_err(&bp->pdev->dev,
13094                                 "Cannot obtain PCI resources, aborting\n");
13095                         goto err_out_disable;
13096                 }
13097
13098                 pci_set_master(pdev);
13099                 pci_save_state(pdev);
13100         }
13101
13102         if (IS_PF(bp)) {
13103                 if (!pdev->pm_cap) {
13104                         dev_err(&bp->pdev->dev,
13105                                 "Cannot find power management capability, aborting\n");
13106                         rc = -EIO;
13107                         goto err_out_release;
13108                 }
13109         }
13110
13111         if (!pci_is_pcie(pdev)) {
13112                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13113                 rc = -EIO;
13114                 goto err_out_release;
13115         }
13116
13117         rc = dma_set_mask_and_coherent(&bp->pdev->dev, DMA_BIT_MASK(64));
13118         if (rc) {
13119                 dev_err(&bp->pdev->dev, "System does not support DMA, aborting\n");
13120                 goto err_out_release;
13121         }
13122
13123         dev->mem_start = pci_resource_start(pdev, 0);
13124         dev->base_addr = dev->mem_start;
13125         dev->mem_end = pci_resource_end(pdev, 0);
13126
13127         dev->irq = pdev->irq;
13128
13129         bp->regview = pci_ioremap_bar(pdev, 0);
13130         if (!bp->regview) {
13131                 dev_err(&bp->pdev->dev,
13132                         "Cannot map register space, aborting\n");
13133                 rc = -ENOMEM;
13134                 goto err_out_release;
13135         }
13136
13137         /* In E1/E1H use pci device function given by kernel.
13138          * In E2/E3 read physical function from ME register since these chips
13139          * support Physical Device Assignment where kernel BDF maybe arbitrary
13140          * (depending on hypervisor).
13141          */
13142         if (chip_is_e1x) {
13143                 bp->pf_num = PCI_FUNC(pdev->devfn);
13144         } else {
13145                 /* chip is E2/3*/
13146                 pci_read_config_dword(bp->pdev,
13147                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13148                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13149                                   ME_REG_ABS_PF_NUM_SHIFT);
13150         }
13151         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13152
13153         /* clean indirect addresses */
13154         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13155                                PCICFG_VENDOR_ID_OFFSET);
13156
13157         /* Set PCIe reset type to fundamental for EEH recovery */
13158         pdev->needs_freset = 1;
13159
13160         /* AER (Advanced Error reporting) configuration */
13161         rc = pci_enable_pcie_error_reporting(pdev);
13162         if (!rc)
13163                 bp->flags |= AER_ENABLED;
13164         else
13165                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13166
13167         /*
13168          * Clean the following indirect addresses for all functions since it
13169          * is not used by the driver.
13170          */
13171         if (IS_PF(bp)) {
13172                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13173                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13174                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13175                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13176
13177                 if (chip_is_e1x) {
13178                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13179                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13180                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13181                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13182                 }
13183
13184                 /* Enable internal target-read (in case we are probed after PF
13185                  * FLR). Must be done prior to any BAR read access. Only for
13186                  * 57712 and up
13187                  */
13188                 if (!chip_is_e1x)
13189                         REG_WR(bp,
13190                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13191         }
13192
13193         dev->watchdog_timeo = TX_TIMEOUT;
13194
13195         dev->netdev_ops = &bnx2x_netdev_ops;
13196         bnx2x_set_ethtool_ops(bp, dev);
13197
13198         dev->priv_flags |= IFF_UNICAST_FLT;
13199
13200         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13201                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13202                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13203                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13204         if (!chip_is_e1x) {
13205                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13206                                     NETIF_F_GSO_IPXIP4 |
13207                                     NETIF_F_GSO_UDP_TUNNEL |
13208                                     NETIF_F_GSO_UDP_TUNNEL_CSUM |
13209                                     NETIF_F_GSO_PARTIAL;
13210
13211                 dev->hw_enc_features =
13212                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13213                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13214                         NETIF_F_GSO_IPXIP4 |
13215                         NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13216                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13217                         NETIF_F_GSO_PARTIAL;
13218
13219                 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13220                                             NETIF_F_GSO_UDP_TUNNEL_CSUM;
13221
13222                 if (IS_PF(bp))
13223                         dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13224         }
13225
13226         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13227                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13228
13229         if (IS_PF(bp)) {
13230                 if (chip_is_e1x)
13231                         bp->accept_any_vlan = true;
13232                 else
13233                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13234         }
13235         /* For VF we'll know whether to enable VLAN filtering after
13236          * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13237          */
13238
13239         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13240         dev->features |= NETIF_F_HIGHDMA;
13241         if (dev->features & NETIF_F_LRO)
13242                 dev->features &= ~NETIF_F_GRO_HW;
13243
13244         /* Add Loopback capability to the device */
13245         dev->hw_features |= NETIF_F_LOOPBACK;
13246
13247 #ifdef BCM_DCBNL
13248         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13249 #endif
13250
13251         /* MTU range, 46 - 9600 */
13252         dev->min_mtu = ETH_MIN_PACKET_SIZE;
13253         dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13254
13255         /* get_port_hwinfo() will set prtad and mmds properly */
13256         bp->mdio.prtad = MDIO_PRTAD_NONE;
13257         bp->mdio.mmds = 0;
13258         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13259         bp->mdio.dev = dev;
13260         bp->mdio.mdio_read = bnx2x_mdio_read;
13261         bp->mdio.mdio_write = bnx2x_mdio_write;
13262
13263         return 0;
13264
13265 err_out_release:
13266         if (atomic_read(&pdev->enable_cnt) == 1)
13267                 pci_release_regions(pdev);
13268
13269 err_out_disable:
13270         pci_disable_device(pdev);
13271
13272 err_out:
13273         return rc;
13274 }
13275
13276 static int bnx2x_check_firmware(struct bnx2x *bp)
13277 {
13278         const struct firmware *firmware = bp->firmware;
13279         struct bnx2x_fw_file_hdr *fw_hdr;
13280         struct bnx2x_fw_file_section *sections;
13281         u32 offset, len, num_ops;
13282         __be16 *ops_offsets;
13283         int i;
13284         const u8 *fw_ver;
13285
13286         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13287                 BNX2X_ERR("Wrong FW size\n");
13288                 return -EINVAL;
13289         }
13290
13291         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13292         sections = (struct bnx2x_fw_file_section *)fw_hdr;
13293
13294         /* Make sure none of the offsets and sizes make us read beyond
13295          * the end of the firmware data */
13296         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13297                 offset = be32_to_cpu(sections[i].offset);
13298                 len = be32_to_cpu(sections[i].len);
13299                 if (offset + len > firmware->size) {
13300                         BNX2X_ERR("Section %d length is out of bounds\n", i);
13301                         return -EINVAL;
13302                 }
13303         }
13304
13305         /* Likewise for the init_ops offsets */
13306         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13307         ops_offsets = (__force __be16 *)(firmware->data + offset);
13308         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13309
13310         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13311                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13312                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
13313                         return -EINVAL;
13314                 }
13315         }
13316
13317         /* Check FW version */
13318         offset = be32_to_cpu(fw_hdr->fw_version.offset);
13319         fw_ver = firmware->data + offset;
13320         if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13321             fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13322                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13323                           fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13324                           bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13325                 return -EINVAL;
13326         }
13327
13328         return 0;
13329 }
13330
13331 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13332 {
13333         const __be32 *source = (const __be32 *)_source;
13334         u32 *target = (u32 *)_target;
13335         u32 i;
13336
13337         for (i = 0; i < n/4; i++)
13338                 target[i] = be32_to_cpu(source[i]);
13339 }
13340
13341 /*
13342    Ops array is stored in the following format:
13343    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13344  */
13345 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13346 {
13347         const __be32 *source = (const __be32 *)_source;
13348         struct raw_op *target = (struct raw_op *)_target;
13349         u32 i, j, tmp;
13350
13351         for (i = 0, j = 0; i < n/8; i++, j += 2) {
13352                 tmp = be32_to_cpu(source[j]);
13353                 target[i].op = (tmp >> 24) & 0xff;
13354                 target[i].offset = tmp & 0xffffff;
13355                 target[i].raw_data = be32_to_cpu(source[j + 1]);
13356         }
13357 }
13358
13359 /* IRO array is stored in the following format:
13360  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13361  */
13362 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13363 {
13364         const __be32 *source = (const __be32 *)_source;
13365         struct iro *target = (struct iro *)_target;
13366         u32 i, j, tmp;
13367
13368         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13369                 target[i].base = be32_to_cpu(source[j]);
13370                 j++;
13371                 tmp = be32_to_cpu(source[j]);
13372                 target[i].m1 = (tmp >> 16) & 0xffff;
13373                 target[i].m2 = tmp & 0xffff;
13374                 j++;
13375                 tmp = be32_to_cpu(source[j]);
13376                 target[i].m3 = (tmp >> 16) & 0xffff;
13377                 target[i].size = tmp & 0xffff;
13378                 j++;
13379         }
13380 }
13381
13382 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13383 {
13384         const __be16 *source = (const __be16 *)_source;
13385         u16 *target = (u16 *)_target;
13386         u32 i;
13387
13388         for (i = 0; i < n/2; i++)
13389                 target[i] = be16_to_cpu(source[i]);
13390 }
13391
13392 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13393 do {                                                                    \
13394         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13395         bp->arr = kmalloc(len, GFP_KERNEL);                             \
13396         if (!bp->arr)                                                   \
13397                 goto lbl;                                               \
13398         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13399              (u8 *)bp->arr, len);                                       \
13400 } while (0)
13401
13402 static int bnx2x_init_firmware(struct bnx2x *bp)
13403 {
13404         const char *fw_file_name, *fw_file_name_v15;
13405         struct bnx2x_fw_file_hdr *fw_hdr;
13406         int rc;
13407
13408         if (bp->firmware)
13409                 return 0;
13410
13411         if (CHIP_IS_E1(bp)) {
13412                 fw_file_name = FW_FILE_NAME_E1;
13413                 fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13414         } else if (CHIP_IS_E1H(bp)) {
13415                 fw_file_name = FW_FILE_NAME_E1H;
13416                 fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13417         } else if (!CHIP_IS_E1x(bp)) {
13418                 fw_file_name = FW_FILE_NAME_E2;
13419                 fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13420         } else {
13421                 BNX2X_ERR("Unsupported chip revision\n");
13422                 return -EINVAL;
13423         }
13424
13425         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13426
13427         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13428         if (rc) {
13429                 BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13430
13431                 /* try to load prev version */
13432                 rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13433
13434                 if (rc)
13435                         goto request_firmware_exit;
13436
13437                 bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13438         } else {
13439                 bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13440                 bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13441         }
13442
13443         bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13444         bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13445         bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13446
13447         rc = bnx2x_check_firmware(bp);
13448         if (rc) {
13449                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13450                 goto request_firmware_exit;
13451         }
13452
13453         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13454
13455         /* Initialize the pointers to the init arrays */
13456         /* Blob */
13457         rc = -ENOMEM;
13458         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13459
13460         /* Opcodes */
13461         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13462
13463         /* Offsets */
13464         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13465                             be16_to_cpu_n);
13466
13467         /* STORMs firmware */
13468         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13469                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13470         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13471                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13472         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13473                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13474         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13475                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13476         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13477                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13478         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13479                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13480         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13481                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13482         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13483                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13484         /* IRO */
13485         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13486
13487         return 0;
13488
13489 iro_alloc_err:
13490         kfree(bp->init_ops_offsets);
13491 init_offsets_alloc_err:
13492         kfree(bp->init_ops);
13493 init_ops_alloc_err:
13494         kfree(bp->init_data);
13495 request_firmware_exit:
13496         release_firmware(bp->firmware);
13497         bp->firmware = NULL;
13498
13499         return rc;
13500 }
13501
13502 static void bnx2x_release_firmware(struct bnx2x *bp)
13503 {
13504         kfree(bp->init_ops_offsets);
13505         kfree(bp->init_ops);
13506         kfree(bp->init_data);
13507         release_firmware(bp->firmware);
13508         bp->firmware = NULL;
13509 }
13510
13511 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13512         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13513         .init_hw_cmn      = bnx2x_init_hw_common,
13514         .init_hw_port     = bnx2x_init_hw_port,
13515         .init_hw_func     = bnx2x_init_hw_func,
13516
13517         .reset_hw_cmn     = bnx2x_reset_common,
13518         .reset_hw_port    = bnx2x_reset_port,
13519         .reset_hw_func    = bnx2x_reset_func,
13520
13521         .gunzip_init      = bnx2x_gunzip_init,
13522         .gunzip_end       = bnx2x_gunzip_end,
13523
13524         .init_fw          = bnx2x_init_firmware,
13525         .release_fw       = bnx2x_release_firmware,
13526 };
13527
13528 void bnx2x__init_func_obj(struct bnx2x *bp)
13529 {
13530         /* Prepare DMAE related driver resources */
13531         bnx2x_setup_dmae(bp);
13532
13533         bnx2x_init_func_obj(bp, &bp->func_obj,
13534                             bnx2x_sp(bp, func_rdata),
13535                             bnx2x_sp_mapping(bp, func_rdata),
13536                             bnx2x_sp(bp, func_afex_rdata),
13537                             bnx2x_sp_mapping(bp, func_afex_rdata),
13538                             &bnx2x_func_sp_drv);
13539 }
13540
13541 /* must be called after sriov-enable */
13542 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13543 {
13544         int cid_count = BNX2X_L2_MAX_CID(bp);
13545
13546         if (IS_SRIOV(bp))
13547                 cid_count += BNX2X_VF_CIDS;
13548
13549         if (CNIC_SUPPORT(bp))
13550                 cid_count += CNIC_CID_MAX;
13551
13552         return roundup(cid_count, QM_CID_ROUND);
13553 }
13554
13555 /**
13556  * bnx2x_get_num_non_def_sbs - return the number of none default SBs
13557  * @pdev: pci device
13558  * @cnic_cnt: count
13559  *
13560  */
13561 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13562 {
13563         int index;
13564         u16 control = 0;
13565
13566         /*
13567          * If MSI-X is not supported - return number of SBs needed to support
13568          * one fast path queue: one FP queue + SB for CNIC
13569          */
13570         if (!pdev->msix_cap) {
13571                 dev_info(&pdev->dev, "no msix capability found\n");
13572                 return 1 + cnic_cnt;
13573         }
13574         dev_info(&pdev->dev, "msix capability found\n");
13575
13576         /*
13577          * The value in the PCI configuration space is the index of the last
13578          * entry, namely one less than the actual size of the table, which is
13579          * exactly what we want to return from this function: number of all SBs
13580          * without the default SB.
13581          * For VFs there is no default SB, then we return (index+1).
13582          */
13583         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13584
13585         index = control & PCI_MSIX_FLAGS_QSIZE;
13586
13587         return index;
13588 }
13589
13590 static int set_max_cos_est(int chip_id)
13591 {
13592         switch (chip_id) {
13593         case BCM57710:
13594         case BCM57711:
13595         case BCM57711E:
13596                 return BNX2X_MULTI_TX_COS_E1X;
13597         case BCM57712:
13598         case BCM57712_MF:
13599                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13600         case BCM57800:
13601         case BCM57800_MF:
13602         case BCM57810:
13603         case BCM57810_MF:
13604         case BCM57840_4_10:
13605         case BCM57840_2_20:
13606         case BCM57840_O:
13607         case BCM57840_MFO:
13608         case BCM57840_MF:
13609         case BCM57811:
13610         case BCM57811_MF:
13611                 return BNX2X_MULTI_TX_COS_E3B0;
13612         case BCM57712_VF:
13613         case BCM57800_VF:
13614         case BCM57810_VF:
13615         case BCM57840_VF:
13616         case BCM57811_VF:
13617                 return 1;
13618         default:
13619                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13620                 return -ENODEV;
13621         }
13622 }
13623
13624 static int set_is_vf(int chip_id)
13625 {
13626         switch (chip_id) {
13627         case BCM57712_VF:
13628         case BCM57800_VF:
13629         case BCM57810_VF:
13630         case BCM57840_VF:
13631         case BCM57811_VF:
13632                 return true;
13633         default:
13634                 return false;
13635         }
13636 }
13637
13638 /* nig_tsgen registers relative address */
13639 #define tsgen_ctrl 0x0
13640 #define tsgen_freecount 0x10
13641 #define tsgen_synctime_t0 0x20
13642 #define tsgen_offset_t0 0x28
13643 #define tsgen_drift_t0 0x30
13644 #define tsgen_synctime_t1 0x58
13645 #define tsgen_offset_t1 0x60
13646 #define tsgen_drift_t1 0x68
13647
13648 /* FW workaround for setting drift */
13649 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13650                                           int best_val, int best_period)
13651 {
13652         struct bnx2x_func_state_params func_params = {NULL};
13653         struct bnx2x_func_set_timesync_params *set_timesync_params =
13654                 &func_params.params.set_timesync;
13655
13656         /* Prepare parameters for function state transitions */
13657         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13658         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13659
13660         func_params.f_obj = &bp->func_obj;
13661         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13662
13663         /* Function parameters */
13664         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13665         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13666         set_timesync_params->add_sub_drift_adjust_value =
13667                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13668         set_timesync_params->drift_adjust_value = best_val;
13669         set_timesync_params->drift_adjust_period = best_period;
13670
13671         return bnx2x_func_state_change(bp, &func_params);
13672 }
13673
13674 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13675 {
13676         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13677         int rc;
13678         int drift_dir = 1;
13679         int val, period, period1, period2, dif, dif1, dif2;
13680         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13681
13682         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13683
13684         if (!netif_running(bp->dev)) {
13685                 DP(BNX2X_MSG_PTP,
13686                    "PTP adjfreq called while the interface is down\n");
13687                 return -ENETDOWN;
13688         }
13689
13690         if (ppb < 0) {
13691                 ppb = -ppb;
13692                 drift_dir = 0;
13693         }
13694
13695         if (ppb == 0) {
13696                 best_val = 1;
13697                 best_period = 0x1FFFFFF;
13698         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13699                 best_val = 31;
13700                 best_period = 1;
13701         } else {
13702                 /* Changed not to allow val = 8, 16, 24 as these values
13703                  * are not supported in workaround.
13704                  */
13705                 for (val = 0; val <= 31; val++) {
13706                         if ((val & 0x7) == 0)
13707                                 continue;
13708                         period1 = val * 1000000 / ppb;
13709                         period2 = period1 + 1;
13710                         if (period1 != 0)
13711                                 dif1 = ppb - (val * 1000000 / period1);
13712                         else
13713                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13714                         if (dif1 < 0)
13715                                 dif1 = -dif1;
13716                         dif2 = ppb - (val * 1000000 / period2);
13717                         if (dif2 < 0)
13718                                 dif2 = -dif2;
13719                         dif = (dif1 < dif2) ? dif1 : dif2;
13720                         period = (dif1 < dif2) ? period1 : period2;
13721                         if (dif < best_dif) {
13722                                 best_dif = dif;
13723                                 best_val = val;
13724                                 best_period = period;
13725                         }
13726                 }
13727         }
13728
13729         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13730                                             best_period);
13731         if (rc) {
13732                 BNX2X_ERR("Failed to set drift\n");
13733                 return -EFAULT;
13734         }
13735
13736         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13737            best_period);
13738
13739         return 0;
13740 }
13741
13742 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13743 {
13744         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13745
13746         if (!netif_running(bp->dev)) {
13747                 DP(BNX2X_MSG_PTP,
13748                    "PTP adjtime called while the interface is down\n");
13749                 return -ENETDOWN;
13750         }
13751
13752         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13753
13754         timecounter_adjtime(&bp->timecounter, delta);
13755
13756         return 0;
13757 }
13758
13759 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13760 {
13761         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13762         u64 ns;
13763
13764         if (!netif_running(bp->dev)) {
13765                 DP(BNX2X_MSG_PTP,
13766                    "PTP gettime called while the interface is down\n");
13767                 return -ENETDOWN;
13768         }
13769
13770         ns = timecounter_read(&bp->timecounter);
13771
13772         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13773
13774         *ts = ns_to_timespec64(ns);
13775
13776         return 0;
13777 }
13778
13779 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13780                              const struct timespec64 *ts)
13781 {
13782         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13783         u64 ns;
13784
13785         if (!netif_running(bp->dev)) {
13786                 DP(BNX2X_MSG_PTP,
13787                    "PTP settime called while the interface is down\n");
13788                 return -ENETDOWN;
13789         }
13790
13791         ns = timespec64_to_ns(ts);
13792
13793         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13794
13795         /* Re-init the timecounter */
13796         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13797
13798         return 0;
13799 }
13800
13801 /* Enable (or disable) ancillary features of the phc subsystem */
13802 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13803                             struct ptp_clock_request *rq, int on)
13804 {
13805         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13806
13807         BNX2X_ERR("PHC ancillary features are not supported\n");
13808         return -ENOTSUPP;
13809 }
13810
13811 void bnx2x_register_phc(struct bnx2x *bp)
13812 {
13813         /* Fill the ptp_clock_info struct and register PTP clock*/
13814         bp->ptp_clock_info.owner = THIS_MODULE;
13815         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13816         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13817         bp->ptp_clock_info.n_alarm = 0;
13818         bp->ptp_clock_info.n_ext_ts = 0;
13819         bp->ptp_clock_info.n_per_out = 0;
13820         bp->ptp_clock_info.pps = 0;
13821         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13822         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13823         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13824         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13825         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13826
13827         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13828         if (IS_ERR(bp->ptp_clock)) {
13829                 bp->ptp_clock = NULL;
13830                 BNX2X_ERR("PTP clock registration failed\n");
13831         }
13832 }
13833
13834 static int bnx2x_init_one(struct pci_dev *pdev,
13835                                     const struct pci_device_id *ent)
13836 {
13837         struct net_device *dev = NULL;
13838         struct bnx2x *bp;
13839         int rc, max_non_def_sbs;
13840         int rx_count, tx_count, rss_count, doorbell_size;
13841         int max_cos_est;
13842         bool is_vf;
13843         int cnic_cnt;
13844
13845         /* Management FW 'remembers' living interfaces. Allow it some time
13846          * to forget previously living interfaces, allowing a proper re-load.
13847          */
13848         if (is_kdump_kernel()) {
13849                 ktime_t now = ktime_get_boottime();
13850                 ktime_t fw_ready_time = ktime_set(5, 0);
13851
13852                 if (ktime_before(now, fw_ready_time))
13853                         msleep(ktime_ms_delta(fw_ready_time, now));
13854         }
13855
13856         /* An estimated maximum supported CoS number according to the chip
13857          * version.
13858          * We will try to roughly estimate the maximum number of CoSes this chip
13859          * may support in order to minimize the memory allocated for Tx
13860          * netdev_queue's. This number will be accurately calculated during the
13861          * initialization of bp->max_cos based on the chip versions AND chip
13862          * revision in the bnx2x_init_bp().
13863          */
13864         max_cos_est = set_max_cos_est(ent->driver_data);
13865         if (max_cos_est < 0)
13866                 return max_cos_est;
13867         is_vf = set_is_vf(ent->driver_data);
13868         cnic_cnt = is_vf ? 0 : 1;
13869
13870         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13871
13872         /* add another SB for VF as it has no default SB */
13873         max_non_def_sbs += is_vf ? 1 : 0;
13874
13875         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13876         rss_count = max_non_def_sbs - cnic_cnt;
13877
13878         if (rss_count < 1)
13879                 return -EINVAL;
13880
13881         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13882         rx_count = rss_count + cnic_cnt;
13883
13884         /* Maximum number of netdev Tx queues:
13885          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13886          */
13887         tx_count = rss_count * max_cos_est + cnic_cnt;
13888
13889         /* dev zeroed in init_etherdev */
13890         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13891         if (!dev)
13892                 return -ENOMEM;
13893
13894         bp = netdev_priv(dev);
13895
13896         bp->flags = 0;
13897         if (is_vf)
13898                 bp->flags |= IS_VF_FLAG;
13899
13900         bp->igu_sb_cnt = max_non_def_sbs;
13901         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13902         bp->msg_enable = debug;
13903         bp->cnic_support = cnic_cnt;
13904         bp->cnic_probe = bnx2x_cnic_probe;
13905
13906         pci_set_drvdata(pdev, dev);
13907
13908         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13909         if (rc < 0) {
13910                 free_netdev(dev);
13911                 return rc;
13912         }
13913
13914         BNX2X_DEV_INFO("This is a %s function\n",
13915                        IS_PF(bp) ? "physical" : "virtual");
13916         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13917         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13918         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13919                        tx_count, rx_count);
13920
13921         rc = bnx2x_init_bp(bp);
13922         if (rc)
13923                 goto init_one_exit;
13924
13925         /* Map doorbells here as we need the real value of bp->max_cos which
13926          * is initialized in bnx2x_init_bp() to determine the number of
13927          * l2 connections.
13928          */
13929         if (IS_VF(bp)) {
13930                 bp->doorbells = bnx2x_vf_doorbells(bp);
13931                 rc = bnx2x_vf_pci_alloc(bp);
13932                 if (rc)
13933                         goto init_one_freemem;
13934         } else {
13935                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13936                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13937                         dev_err(&bp->pdev->dev,
13938                                 "Cannot map doorbells, bar size too small, aborting\n");
13939                         rc = -ENOMEM;
13940                         goto init_one_freemem;
13941                 }
13942                 bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13943                                                 doorbell_size);
13944         }
13945         if (!bp->doorbells) {
13946                 dev_err(&bp->pdev->dev,
13947                         "Cannot map doorbell space, aborting\n");
13948                 rc = -ENOMEM;
13949                 goto init_one_freemem;
13950         }
13951
13952         if (IS_VF(bp)) {
13953                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13954                 if (rc)
13955                         goto init_one_freemem;
13956
13957 #ifdef CONFIG_BNX2X_SRIOV
13958                 /* VF with OLD Hypervisor or old PF do not support filtering */
13959                 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13960                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13961                         dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13962                 }
13963 #endif
13964         }
13965
13966         /* Enable SRIOV if capability found in configuration space */
13967         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13968         if (rc)
13969                 goto init_one_freemem;
13970
13971         /* calc qm_cid_count */
13972         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13973         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13974
13975         /* disable FCOE L2 queue for E1x*/
13976         if (CHIP_IS_E1x(bp))
13977                 bp->flags |= NO_FCOE_FLAG;
13978
13979         /* Set bp->num_queues for MSI-X mode*/
13980         bnx2x_set_num_queues(bp);
13981
13982         /* Configure interrupt mode: try to enable MSI-X/MSI if
13983          * needed.
13984          */
13985         rc = bnx2x_set_int_mode(bp);
13986         if (rc) {
13987                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13988                 goto init_one_freemem;
13989         }
13990         BNX2X_DEV_INFO("set interrupts successfully\n");
13991
13992         /* register the net device */
13993         rc = register_netdev(dev);
13994         if (rc) {
13995                 dev_err(&pdev->dev, "Cannot register net device\n");
13996                 goto init_one_freemem;
13997         }
13998         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13999
14000         if (!NO_FCOE(bp)) {
14001                 /* Add storage MAC address */
14002                 rtnl_lock();
14003                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14004                 rtnl_unlock();
14005         }
14006         BNX2X_DEV_INFO(
14007                "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14008                board_info[ent->driver_data].name,
14009                (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14010                dev->base_addr, bp->pdev->irq, dev->dev_addr);
14011         pcie_print_link_status(bp->pdev);
14012
14013         if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14014                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14015
14016         return 0;
14017
14018 init_one_freemem:
14019         bnx2x_free_mem_bp(bp);
14020
14021 init_one_exit:
14022         bnx2x_disable_pcie_error_reporting(bp);
14023
14024         if (bp->regview)
14025                 iounmap(bp->regview);
14026
14027         if (IS_PF(bp) && bp->doorbells)
14028                 iounmap(bp->doorbells);
14029
14030         free_netdev(dev);
14031
14032         if (atomic_read(&pdev->enable_cnt) == 1)
14033                 pci_release_regions(pdev);
14034
14035         pci_disable_device(pdev);
14036
14037         return rc;
14038 }
14039
14040 static void __bnx2x_remove(struct pci_dev *pdev,
14041                            struct net_device *dev,
14042                            struct bnx2x *bp,
14043                            bool remove_netdev)
14044 {
14045         /* Delete storage MAC address */
14046         if (!NO_FCOE(bp)) {
14047                 rtnl_lock();
14048                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14049                 rtnl_unlock();
14050         }
14051
14052 #ifdef BCM_DCBNL
14053         /* Delete app tlvs from dcbnl */
14054         bnx2x_dcbnl_update_applist(bp, true);
14055 #endif
14056
14057         if (IS_PF(bp) &&
14058             !BP_NOMCP(bp) &&
14059             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14060                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14061
14062         /* Close the interface - either directly or implicitly */
14063         if (remove_netdev) {
14064                 unregister_netdev(dev);
14065         } else {
14066                 rtnl_lock();
14067                 dev_close(dev);
14068                 rtnl_unlock();
14069         }
14070
14071         bnx2x_iov_remove_one(bp);
14072
14073         /* Power on: we can't let PCI layer write to us while we are in D3 */
14074         if (IS_PF(bp)) {
14075                 bnx2x_set_power_state(bp, PCI_D0);
14076                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14077
14078                 /* Set endianity registers to reset values in case next driver
14079                  * boots in different endianty environment.
14080                  */
14081                 bnx2x_reset_endianity(bp);
14082         }
14083
14084         /* Disable MSI/MSI-X */
14085         bnx2x_disable_msi(bp);
14086
14087         /* Power off */
14088         if (IS_PF(bp))
14089                 bnx2x_set_power_state(bp, PCI_D3hot);
14090
14091         /* Make sure RESET task is not scheduled before continuing */
14092         cancel_delayed_work_sync(&bp->sp_rtnl_task);
14093
14094         /* send message via vfpf channel to release the resources of this vf */
14095         if (IS_VF(bp))
14096                 bnx2x_vfpf_release(bp);
14097
14098         /* Assumes no further PCIe PM changes will occur */
14099         if (system_state == SYSTEM_POWER_OFF) {
14100                 pci_wake_from_d3(pdev, bp->wol);
14101                 pci_set_power_state(pdev, PCI_D3hot);
14102         }
14103
14104         bnx2x_disable_pcie_error_reporting(bp);
14105         if (remove_netdev) {
14106                 if (bp->regview)
14107                         iounmap(bp->regview);
14108
14109                 /* For vfs, doorbells are part of the regview and were unmapped
14110                  * along with it. FW is only loaded by PF.
14111                  */
14112                 if (IS_PF(bp)) {
14113                         if (bp->doorbells)
14114                                 iounmap(bp->doorbells);
14115
14116                         bnx2x_release_firmware(bp);
14117                 } else {
14118                         bnx2x_vf_pci_dealloc(bp);
14119                 }
14120                 bnx2x_free_mem_bp(bp);
14121
14122                 free_netdev(dev);
14123
14124                 if (atomic_read(&pdev->enable_cnt) == 1)
14125                         pci_release_regions(pdev);
14126
14127                 pci_disable_device(pdev);
14128         }
14129 }
14130
14131 static void bnx2x_remove_one(struct pci_dev *pdev)
14132 {
14133         struct net_device *dev = pci_get_drvdata(pdev);
14134         struct bnx2x *bp;
14135
14136         if (!dev) {
14137                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14138                 return;
14139         }
14140         bp = netdev_priv(dev);
14141
14142         __bnx2x_remove(pdev, dev, bp, true);
14143 }
14144
14145 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14146 {
14147         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14148
14149         bp->rx_mode = BNX2X_RX_MODE_NONE;
14150
14151         if (CNIC_LOADED(bp))
14152                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14153
14154         /* Stop Tx */
14155         bnx2x_tx_disable(bp);
14156         netdev_reset_tc(bp->dev);
14157
14158         del_timer_sync(&bp->timer);
14159         cancel_delayed_work_sync(&bp->sp_task);
14160         cancel_delayed_work_sync(&bp->period_task);
14161
14162         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14163                 bp->stats_state = STATS_STATE_DISABLED;
14164                 up(&bp->stats_lock);
14165         }
14166
14167         bnx2x_save_statistics(bp);
14168
14169         netif_carrier_off(bp->dev);
14170
14171         return 0;
14172 }
14173
14174 /**
14175  * bnx2x_io_error_detected - called when PCI error is detected
14176  * @pdev: Pointer to PCI device
14177  * @state: The current pci connection state
14178  *
14179  * This function is called after a PCI bus error affecting
14180  * this device has been detected.
14181  */
14182 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14183                                                 pci_channel_state_t state)
14184 {
14185         struct net_device *dev = pci_get_drvdata(pdev);
14186         struct bnx2x *bp = netdev_priv(dev);
14187
14188         rtnl_lock();
14189
14190         BNX2X_ERR("IO error detected\n");
14191
14192         netif_device_detach(dev);
14193
14194         if (state == pci_channel_io_perm_failure) {
14195                 rtnl_unlock();
14196                 return PCI_ERS_RESULT_DISCONNECT;
14197         }
14198
14199         if (netif_running(dev))
14200                 bnx2x_eeh_nic_unload(bp);
14201
14202         bnx2x_prev_path_mark_eeh(bp);
14203
14204         pci_disable_device(pdev);
14205
14206         rtnl_unlock();
14207
14208         /* Request a slot reset */
14209         return PCI_ERS_RESULT_NEED_RESET;
14210 }
14211
14212 /**
14213  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14214  * @pdev: Pointer to PCI device
14215  *
14216  * Restart the card from scratch, as if from a cold-boot.
14217  */
14218 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14219 {
14220         struct net_device *dev = pci_get_drvdata(pdev);
14221         struct bnx2x *bp = netdev_priv(dev);
14222         int i;
14223
14224         rtnl_lock();
14225         BNX2X_ERR("IO slot reset initializing...\n");
14226         if (pci_enable_device(pdev)) {
14227                 dev_err(&pdev->dev,
14228                         "Cannot re-enable PCI device after reset\n");
14229                 rtnl_unlock();
14230                 return PCI_ERS_RESULT_DISCONNECT;
14231         }
14232
14233         pci_set_master(pdev);
14234         pci_restore_state(pdev);
14235         pci_save_state(pdev);
14236
14237         if (netif_running(dev))
14238                 bnx2x_set_power_state(bp, PCI_D0);
14239
14240         if (netif_running(dev)) {
14241                 BNX2X_ERR("IO slot reset --> driver unload\n");
14242
14243                 /* MCP should have been reset; Need to wait for validity */
14244                 if (bnx2x_init_shmem(bp)) {
14245                         rtnl_unlock();
14246                         return PCI_ERS_RESULT_DISCONNECT;
14247                 }
14248
14249                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14250                         u32 v;
14251
14252                         v = SHMEM2_RD(bp,
14253                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14254                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14255                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14256                 }
14257                 bnx2x_drain_tx_queues(bp);
14258                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14259                 bnx2x_netif_stop(bp, 1);
14260                 bnx2x_del_all_napi(bp);
14261
14262                 if (CNIC_LOADED(bp))
14263                         bnx2x_del_all_napi_cnic(bp);
14264
14265                 bnx2x_free_irq(bp);
14266
14267                 /* Report UNLOAD_DONE to MCP */
14268                 bnx2x_send_unload_done(bp, true);
14269
14270                 bp->sp_state = 0;
14271                 bp->port.pmf = 0;
14272
14273                 bnx2x_prev_unload(bp);
14274
14275                 /* We should have reseted the engine, so It's fair to
14276                  * assume the FW will no longer write to the bnx2x driver.
14277                  */
14278                 bnx2x_squeeze_objects(bp);
14279                 bnx2x_free_skbs(bp);
14280                 for_each_rx_queue(bp, i)
14281                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14282                 bnx2x_free_fp_mem(bp);
14283                 bnx2x_free_mem(bp);
14284
14285                 bp->state = BNX2X_STATE_CLOSED;
14286         }
14287
14288         rtnl_unlock();
14289
14290         return PCI_ERS_RESULT_RECOVERED;
14291 }
14292
14293 /**
14294  * bnx2x_io_resume - called when traffic can start flowing again
14295  * @pdev: Pointer to PCI device
14296  *
14297  * This callback is called when the error recovery driver tells us that
14298  * its OK to resume normal operation.
14299  */
14300 static void bnx2x_io_resume(struct pci_dev *pdev)
14301 {
14302         struct net_device *dev = pci_get_drvdata(pdev);
14303         struct bnx2x *bp = netdev_priv(dev);
14304
14305         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14306                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14307                 return;
14308         }
14309
14310         rtnl_lock();
14311
14312         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14313                                                         DRV_MSG_SEQ_NUMBER_MASK;
14314
14315         if (netif_running(dev))
14316                 bnx2x_nic_load(bp, LOAD_NORMAL);
14317
14318         netif_device_attach(dev);
14319
14320         rtnl_unlock();
14321 }
14322
14323 static const struct pci_error_handlers bnx2x_err_handler = {
14324         .error_detected = bnx2x_io_error_detected,
14325         .slot_reset     = bnx2x_io_slot_reset,
14326         .resume         = bnx2x_io_resume,
14327 };
14328
14329 static void bnx2x_shutdown(struct pci_dev *pdev)
14330 {
14331         struct net_device *dev = pci_get_drvdata(pdev);
14332         struct bnx2x *bp;
14333
14334         if (!dev)
14335                 return;
14336
14337         bp = netdev_priv(dev);
14338         if (!bp)
14339                 return;
14340
14341         rtnl_lock();
14342         netif_device_detach(dev);
14343         rtnl_unlock();
14344
14345         /* Don't remove the netdevice, as there are scenarios which will cause
14346          * the kernel to hang, e.g., when trying to remove bnx2i while the
14347          * rootfs is mounted from SAN.
14348          */
14349         __bnx2x_remove(pdev, dev, bp, false);
14350 }
14351
14352 static struct pci_driver bnx2x_pci_driver = {
14353         .name        = DRV_MODULE_NAME,
14354         .id_table    = bnx2x_pci_tbl,
14355         .probe       = bnx2x_init_one,
14356         .remove      = bnx2x_remove_one,
14357         .driver.pm   = &bnx2x_pm_ops,
14358         .err_handler = &bnx2x_err_handler,
14359 #ifdef CONFIG_BNX2X_SRIOV
14360         .sriov_configure = bnx2x_sriov_configure,
14361 #endif
14362         .shutdown    = bnx2x_shutdown,
14363 };
14364
14365 static int __init bnx2x_init(void)
14366 {
14367         int ret;
14368
14369         bnx2x_wq = create_singlethread_workqueue("bnx2x");
14370         if (bnx2x_wq == NULL) {
14371                 pr_err("Cannot create workqueue\n");
14372                 return -ENOMEM;
14373         }
14374         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14375         if (!bnx2x_iov_wq) {
14376                 pr_err("Cannot create iov workqueue\n");
14377                 destroy_workqueue(bnx2x_wq);
14378                 return -ENOMEM;
14379         }
14380
14381         ret = pci_register_driver(&bnx2x_pci_driver);
14382         if (ret) {
14383                 pr_err("Cannot register driver\n");
14384                 destroy_workqueue(bnx2x_wq);
14385                 destroy_workqueue(bnx2x_iov_wq);
14386         }
14387         return ret;
14388 }
14389
14390 static void __exit bnx2x_cleanup(void)
14391 {
14392         struct list_head *pos, *q;
14393
14394         pci_unregister_driver(&bnx2x_pci_driver);
14395
14396         destroy_workqueue(bnx2x_wq);
14397         destroy_workqueue(bnx2x_iov_wq);
14398
14399         /* Free globally allocated resources */
14400         list_for_each_safe(pos, q, &bnx2x_prev_list) {
14401                 struct bnx2x_prev_path_list *tmp =
14402                         list_entry(pos, struct bnx2x_prev_path_list, list);
14403                 list_del(pos);
14404                 kfree(tmp);
14405         }
14406 }
14407
14408 void bnx2x_notify_link_changed(struct bnx2x *bp)
14409 {
14410         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14411 }
14412
14413 module_init(bnx2x_init);
14414 module_exit(bnx2x_cleanup);
14415
14416 /**
14417  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14418  * @bp:         driver handle
14419  *
14420  * This function will wait until the ramrod completion returns.
14421  * Return 0 if success, -ENODEV if ramrod doesn't return.
14422  */
14423 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14424 {
14425         unsigned long ramrod_flags = 0;
14426
14427         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14428         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14429                                  &bp->iscsi_l2_mac_obj, true,
14430                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14431 }
14432
14433 /* count denotes the number of new completions we have seen */
14434 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14435 {
14436         struct eth_spe *spe;
14437         int cxt_index, cxt_offset;
14438
14439 #ifdef BNX2X_STOP_ON_ERROR
14440         if (unlikely(bp->panic))
14441                 return;
14442 #endif
14443
14444         spin_lock_bh(&bp->spq_lock);
14445         BUG_ON(bp->cnic_spq_pending < count);
14446         bp->cnic_spq_pending -= count;
14447
14448         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14449                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14450                                 & SPE_HDR_CONN_TYPE) >>
14451                                 SPE_HDR_CONN_TYPE_SHIFT;
14452                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14453                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14454
14455                 /* Set validation for iSCSI L2 client before sending SETUP
14456                  *  ramrod
14457                  */
14458                 if (type == ETH_CONNECTION_TYPE) {
14459                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14460                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14461                                         ILT_PAGE_CIDS;
14462                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14463                                         (cxt_index * ILT_PAGE_CIDS);
14464                                 bnx2x_set_ctx_validation(bp,
14465                                         &bp->context[cxt_index].
14466                                                          vcxt[cxt_offset].eth,
14467                                         BNX2X_ISCSI_ETH_CID(bp));
14468                         }
14469                 }
14470
14471                 /*
14472                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14473                  * and in the air. We also check that number of outstanding
14474                  * COMMON ramrods is not more than the EQ and SPQ can
14475                  * accommodate.
14476                  */
14477                 if (type == ETH_CONNECTION_TYPE) {
14478                         if (!atomic_read(&bp->cq_spq_left))
14479                                 break;
14480                         else
14481                                 atomic_dec(&bp->cq_spq_left);
14482                 } else if (type == NONE_CONNECTION_TYPE) {
14483                         if (!atomic_read(&bp->eq_spq_left))
14484                                 break;
14485                         else
14486                                 atomic_dec(&bp->eq_spq_left);
14487                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14488                            (type == FCOE_CONNECTION_TYPE)) {
14489                         if (bp->cnic_spq_pending >=
14490                             bp->cnic_eth_dev.max_kwqe_pending)
14491                                 break;
14492                         else
14493                                 bp->cnic_spq_pending++;
14494                 } else {
14495                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14496                         bnx2x_panic();
14497                         break;
14498                 }
14499
14500                 spe = bnx2x_sp_get_next(bp);
14501                 *spe = *bp->cnic_kwq_cons;
14502
14503                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14504                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14505
14506                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14507                         bp->cnic_kwq_cons = bp->cnic_kwq;
14508                 else
14509                         bp->cnic_kwq_cons++;
14510         }
14511         bnx2x_sp_prod_update(bp);
14512         spin_unlock_bh(&bp->spq_lock);
14513 }
14514
14515 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14516                                struct kwqe_16 *kwqes[], u32 count)
14517 {
14518         struct bnx2x *bp = netdev_priv(dev);
14519         int i;
14520
14521 #ifdef BNX2X_STOP_ON_ERROR
14522         if (unlikely(bp->panic)) {
14523                 BNX2X_ERR("Can't post to SP queue while panic\n");
14524                 return -EIO;
14525         }
14526 #endif
14527
14528         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14529             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14530                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14531                 return -EAGAIN;
14532         }
14533
14534         spin_lock_bh(&bp->spq_lock);
14535
14536         for (i = 0; i < count; i++) {
14537                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14538
14539                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14540                         break;
14541
14542                 *bp->cnic_kwq_prod = *spe;
14543
14544                 bp->cnic_kwq_pending++;
14545
14546                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14547                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14548                    spe->data.update_data_addr.hi,
14549                    spe->data.update_data_addr.lo,
14550                    bp->cnic_kwq_pending);
14551
14552                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14553                         bp->cnic_kwq_prod = bp->cnic_kwq;
14554                 else
14555                         bp->cnic_kwq_prod++;
14556         }
14557
14558         spin_unlock_bh(&bp->spq_lock);
14559
14560         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14561                 bnx2x_cnic_sp_post(bp, 0);
14562
14563         return i;
14564 }
14565
14566 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14567 {
14568         struct cnic_ops *c_ops;
14569         int rc = 0;
14570
14571         mutex_lock(&bp->cnic_mutex);
14572         c_ops = rcu_dereference_protected(bp->cnic_ops,
14573                                           lockdep_is_held(&bp->cnic_mutex));
14574         if (c_ops)
14575                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14576         mutex_unlock(&bp->cnic_mutex);
14577
14578         return rc;
14579 }
14580
14581 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14582 {
14583         struct cnic_ops *c_ops;
14584         int rc = 0;
14585
14586         rcu_read_lock();
14587         c_ops = rcu_dereference(bp->cnic_ops);
14588         if (c_ops)
14589                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14590         rcu_read_unlock();
14591
14592         return rc;
14593 }
14594
14595 /*
14596  * for commands that have no data
14597  */
14598 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14599 {
14600         struct cnic_ctl_info ctl = {0};
14601
14602         ctl.cmd = cmd;
14603
14604         return bnx2x_cnic_ctl_send(bp, &ctl);
14605 }
14606
14607 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14608 {
14609         struct cnic_ctl_info ctl = {0};
14610
14611         /* first we tell CNIC and only then we count this as a completion */
14612         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14613         ctl.data.comp.cid = cid;
14614         ctl.data.comp.error = err;
14615
14616         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14617         bnx2x_cnic_sp_post(bp, 0);
14618 }
14619
14620 /* Called with netif_addr_lock_bh() taken.
14621  * Sets an rx_mode config for an iSCSI ETH client.
14622  * Doesn't block.
14623  * Completion should be checked outside.
14624  */
14625 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14626 {
14627         unsigned long accept_flags = 0, ramrod_flags = 0;
14628         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14629         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14630
14631         if (start) {
14632                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14633                  * because it's the only way for UIO Queue to accept
14634                  * multicasts (in non-promiscuous mode only one Queue per
14635                  * function will receive multicast packets (leading in our
14636                  * case).
14637                  */
14638                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14639                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14640                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14641                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14642
14643                 /* Clear STOP_PENDING bit if START is requested */
14644                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14645
14646                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14647         } else
14648                 /* Clear START_PENDING bit if STOP is requested */
14649                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14650
14651         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14652                 set_bit(sched_state, &bp->sp_state);
14653         else {
14654                 __set_bit(RAMROD_RX, &ramrod_flags);
14655                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14656                                     ramrod_flags);
14657         }
14658 }
14659
14660 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14661 {
14662         struct bnx2x *bp = netdev_priv(dev);
14663         int rc = 0;
14664
14665         switch (ctl->cmd) {
14666         case DRV_CTL_CTXTBL_WR_CMD: {
14667                 u32 index = ctl->data.io.offset;
14668                 dma_addr_t addr = ctl->data.io.dma_addr;
14669
14670                 bnx2x_ilt_wr(bp, index, addr);
14671                 break;
14672         }
14673
14674         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14675                 int count = ctl->data.credit.credit_count;
14676
14677                 bnx2x_cnic_sp_post(bp, count);
14678                 break;
14679         }
14680
14681         /* rtnl_lock is held.  */
14682         case DRV_CTL_START_L2_CMD: {
14683                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14684                 unsigned long sp_bits = 0;
14685
14686                 /* Configure the iSCSI classification object */
14687                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14688                                    cp->iscsi_l2_client_id,
14689                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14690                                    bnx2x_sp(bp, mac_rdata),
14691                                    bnx2x_sp_mapping(bp, mac_rdata),
14692                                    BNX2X_FILTER_MAC_PENDING,
14693                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14694                                    &bp->macs_pool);
14695
14696                 /* Set iSCSI MAC address */
14697                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14698                 if (rc)
14699                         break;
14700
14701                 barrier();
14702
14703                 /* Start accepting on iSCSI L2 ring */
14704
14705                 netif_addr_lock_bh(dev);
14706                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14707                 netif_addr_unlock_bh(dev);
14708
14709                 /* bits to wait on */
14710                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14711                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14712
14713                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14714                         BNX2X_ERR("rx_mode completion timed out!\n");
14715
14716                 break;
14717         }
14718
14719         /* rtnl_lock is held.  */
14720         case DRV_CTL_STOP_L2_CMD: {
14721                 unsigned long sp_bits = 0;
14722
14723                 /* Stop accepting on iSCSI L2 ring */
14724                 netif_addr_lock_bh(dev);
14725                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14726                 netif_addr_unlock_bh(dev);
14727
14728                 /* bits to wait on */
14729                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14730                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14731
14732                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14733                         BNX2X_ERR("rx_mode completion timed out!\n");
14734
14735                 barrier();
14736
14737                 /* Unset iSCSI L2 MAC */
14738                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14739                                         BNX2X_ISCSI_ETH_MAC, true);
14740                 break;
14741         }
14742         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14743                 int count = ctl->data.credit.credit_count;
14744
14745                 smp_mb__before_atomic();
14746                 atomic_add(count, &bp->cq_spq_left);
14747                 smp_mb__after_atomic();
14748                 break;
14749         }
14750         case DRV_CTL_ULP_REGISTER_CMD: {
14751                 int ulp_type = ctl->data.register_data.ulp_type;
14752
14753                 if (CHIP_IS_E3(bp)) {
14754                         int idx = BP_FW_MB_IDX(bp);
14755                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14756                         int path = BP_PATH(bp);
14757                         int port = BP_PORT(bp);
14758                         int i;
14759                         u32 scratch_offset;
14760                         u32 *host_addr;
14761
14762                         /* first write capability to shmem2 */
14763                         if (ulp_type == CNIC_ULP_ISCSI)
14764                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14765                         else if (ulp_type == CNIC_ULP_FCOE)
14766                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14767                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14768
14769                         if ((ulp_type != CNIC_ULP_FCOE) ||
14770                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14771                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14772                                 break;
14773
14774                         /* if reached here - should write fcoe capabilities */
14775                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14776                         if (!scratch_offset)
14777                                 break;
14778                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14779                                                    fcoe_features[path][port]);
14780                         host_addr = (u32 *) &(ctl->data.register_data.
14781                                               fcoe_features);
14782                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14783                              i += 4)
14784                                 REG_WR(bp, scratch_offset + i,
14785                                        *(host_addr + i/4));
14786                 }
14787                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14788                 break;
14789         }
14790
14791         case DRV_CTL_ULP_UNREGISTER_CMD: {
14792                 int ulp_type = ctl->data.ulp_type;
14793
14794                 if (CHIP_IS_E3(bp)) {
14795                         int idx = BP_FW_MB_IDX(bp);
14796                         u32 cap;
14797
14798                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14799                         if (ulp_type == CNIC_ULP_ISCSI)
14800                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14801                         else if (ulp_type == CNIC_ULP_FCOE)
14802                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14803                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14804                 }
14805                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14806                 break;
14807         }
14808
14809         default:
14810                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14811                 rc = -EINVAL;
14812         }
14813
14814         /* For storage-only interfaces, change driver state */
14815         if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14816                 switch (ctl->drv_state) {
14817                 case DRV_NOP:
14818                         break;
14819                 case DRV_ACTIVE:
14820                         bnx2x_set_os_driver_state(bp,
14821                                                   OS_DRIVER_STATE_ACTIVE);
14822                         break;
14823                 case DRV_INACTIVE:
14824                         bnx2x_set_os_driver_state(bp,
14825                                                   OS_DRIVER_STATE_DISABLED);
14826                         break;
14827                 case DRV_UNLOADED:
14828                         bnx2x_set_os_driver_state(bp,
14829                                                   OS_DRIVER_STATE_NOT_LOADED);
14830                         break;
14831                 default:
14832                 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14833                 }
14834         }
14835
14836         return rc;
14837 }
14838
14839 static int bnx2x_get_fc_npiv(struct net_device *dev,
14840                              struct cnic_fc_npiv_tbl *cnic_tbl)
14841 {
14842         struct bnx2x *bp = netdev_priv(dev);
14843         struct bdn_fc_npiv_tbl *tbl = NULL;
14844         u32 offset, entries;
14845         int rc = -EINVAL;
14846         int i;
14847
14848         if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14849                 goto out;
14850
14851         DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14852
14853         tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14854         if (!tbl) {
14855                 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14856                 goto out;
14857         }
14858
14859         offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14860         if (!offset) {
14861                 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14862                 goto out;
14863         }
14864         DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14865
14866         /* Read the table contents from nvram */
14867         if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14868                 BNX2X_ERR("Failed to read FC-NPIV table\n");
14869                 goto out;
14870         }
14871
14872         /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14873          * the number of entries back to cpu endianness.
14874          */
14875         entries = tbl->fc_npiv_cfg.num_of_npiv;
14876         entries = (__force u32)be32_to_cpu((__force __be32)entries);
14877         tbl->fc_npiv_cfg.num_of_npiv = entries;
14878
14879         if (!tbl->fc_npiv_cfg.num_of_npiv) {
14880                 DP(BNX2X_MSG_MCP,
14881                    "No FC-NPIV table [valid, simply not present]\n");
14882                 goto out;
14883         } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14884                 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14885                           tbl->fc_npiv_cfg.num_of_npiv);
14886                 goto out;
14887         } else {
14888                 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14889                    tbl->fc_npiv_cfg.num_of_npiv);
14890         }
14891
14892         /* Copy the data into cnic-provided struct */
14893         cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14894         for (i = 0; i < cnic_tbl->count; i++) {
14895                 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14896                 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14897         }
14898
14899         rc = 0;
14900 out:
14901         kfree(tbl);
14902         return rc;
14903 }
14904
14905 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14906 {
14907         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14908
14909         if (bp->flags & USING_MSIX_FLAG) {
14910                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14911                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14912                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14913         } else {
14914                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14915                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14916         }
14917         if (!CHIP_IS_E1x(bp))
14918                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14919         else
14920                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14921
14922         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14923         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14924         cp->irq_arr[1].status_blk = bp->def_status_blk;
14925         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14926         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14927
14928         cp->num_irq = 2;
14929 }
14930
14931 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14932 {
14933         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14934
14935         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14936                              bnx2x_cid_ilt_lines(bp);
14937         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14938         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14939         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14940
14941         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14942            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14943            cp->iscsi_l2_cid);
14944
14945         if (NO_ISCSI_OOO(bp))
14946                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14947 }
14948
14949 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14950                                void *data)
14951 {
14952         struct bnx2x *bp = netdev_priv(dev);
14953         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14954         int rc;
14955
14956         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14957
14958         if (ops == NULL) {
14959                 BNX2X_ERR("NULL ops received\n");
14960                 return -EINVAL;
14961         }
14962
14963         if (!CNIC_SUPPORT(bp)) {
14964                 BNX2X_ERR("Can't register CNIC when not supported\n");
14965                 return -EOPNOTSUPP;
14966         }
14967
14968         if (!CNIC_LOADED(bp)) {
14969                 rc = bnx2x_load_cnic(bp);
14970                 if (rc) {
14971                         BNX2X_ERR("CNIC-related load failed\n");
14972                         return rc;
14973                 }
14974         }
14975
14976         bp->cnic_enabled = true;
14977
14978         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14979         if (!bp->cnic_kwq)
14980                 return -ENOMEM;
14981
14982         bp->cnic_kwq_cons = bp->cnic_kwq;
14983         bp->cnic_kwq_prod = bp->cnic_kwq;
14984         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14985
14986         bp->cnic_spq_pending = 0;
14987         bp->cnic_kwq_pending = 0;
14988
14989         bp->cnic_data = data;
14990
14991         cp->num_irq = 0;
14992         cp->drv_state |= CNIC_DRV_STATE_REGD;
14993         cp->iro_arr = bp->iro_arr;
14994
14995         bnx2x_setup_cnic_irq_info(bp);
14996
14997         rcu_assign_pointer(bp->cnic_ops, ops);
14998
14999         /* Schedule driver to read CNIC driver versions */
15000         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15001
15002         return 0;
15003 }
15004
15005 static int bnx2x_unregister_cnic(struct net_device *dev)
15006 {
15007         struct bnx2x *bp = netdev_priv(dev);
15008         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15009
15010         mutex_lock(&bp->cnic_mutex);
15011         cp->drv_state = 0;
15012         RCU_INIT_POINTER(bp->cnic_ops, NULL);
15013         mutex_unlock(&bp->cnic_mutex);
15014         synchronize_rcu();
15015         bp->cnic_enabled = false;
15016         kfree(bp->cnic_kwq);
15017         bp->cnic_kwq = NULL;
15018
15019         return 0;
15020 }
15021
15022 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15023 {
15024         struct bnx2x *bp = netdev_priv(dev);
15025         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15026
15027         /* If both iSCSI and FCoE are disabled - return NULL in
15028          * order to indicate CNIC that it should not try to work
15029          * with this device.
15030          */
15031         if (NO_ISCSI(bp) && NO_FCOE(bp))
15032                 return NULL;
15033
15034         cp->drv_owner = THIS_MODULE;
15035         cp->chip_id = CHIP_ID(bp);
15036         cp->pdev = bp->pdev;
15037         cp->io_base = bp->regview;
15038         cp->io_base2 = bp->doorbells;
15039         cp->max_kwqe_pending = 8;
15040         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15041         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15042                              bnx2x_cid_ilt_lines(bp);
15043         cp->ctx_tbl_len = CNIC_ILT_LINES;
15044         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15045         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15046         cp->drv_ctl = bnx2x_drv_ctl;
15047         cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15048         cp->drv_register_cnic = bnx2x_register_cnic;
15049         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15050         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15051         cp->iscsi_l2_client_id =
15052                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15053         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15054
15055         if (NO_ISCSI_OOO(bp))
15056                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15057
15058         if (NO_ISCSI(bp))
15059                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15060
15061         if (NO_FCOE(bp))
15062                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15063
15064         BNX2X_DEV_INFO(
15065                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15066            cp->ctx_blk_size,
15067            cp->ctx_tbl_offset,
15068            cp->ctx_tbl_len,
15069            cp->starting_cid);
15070         return cp;
15071 }
15072
15073 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15074 {
15075         struct bnx2x *bp = fp->bp;
15076         u32 offset = BAR_USTRORM_INTMEM;
15077
15078         if (IS_VF(bp))
15079                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15080         else if (!CHIP_IS_E1x(bp))
15081                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15082         else
15083                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15084
15085         return offset;
15086 }
15087
15088 /* called only on E1H or E2.
15089  * When pretending to be PF, the pretend value is the function number 0...7
15090  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15091  * combination
15092  */
15093 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15094 {
15095         u32 pretend_reg;
15096
15097         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15098                 return -1;
15099
15100         /* get my own pretend register */
15101         pretend_reg = bnx2x_get_pretend_reg(bp);
15102         REG_WR(bp, pretend_reg, pretend_func_val);
15103         REG_RD(bp, pretend_reg);
15104         return 0;
15105 }
15106
15107 static void bnx2x_ptp_task(struct work_struct *work)
15108 {
15109         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15110         int port = BP_PORT(bp);
15111         u32 val_seq;
15112         u64 timestamp, ns;
15113         struct skb_shared_hwtstamps shhwtstamps;
15114         bool bail = true;
15115         int i;
15116
15117         /* FW may take a while to complete timestamping; try a bit and if it's
15118          * still not complete, may indicate an error state - bail out then.
15119          */
15120         for (i = 0; i < 10; i++) {
15121                 /* Read Tx timestamp registers */
15122                 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15123                                  NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15124                 if (val_seq & 0x10000) {
15125                         bail = false;
15126                         break;
15127                 }
15128                 msleep(1 << i);
15129         }
15130
15131         if (!bail) {
15132                 /* There is a valid timestamp value */
15133                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15134                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15135                 timestamp <<= 32;
15136                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15137                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15138                 /* Reset timestamp register to allow new timestamp */
15139                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15140                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15141                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15142
15143                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15144                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15145                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15146
15147                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15148                    timestamp, ns);
15149         } else {
15150                 DP(BNX2X_MSG_PTP,
15151                    "Tx timestamp is not recorded (register read=%u)\n",
15152                    val_seq);
15153                 bp->eth_stats.ptp_skip_tx_ts++;
15154         }
15155
15156         dev_kfree_skb_any(bp->ptp_tx_skb);
15157         bp->ptp_tx_skb = NULL;
15158 }
15159
15160 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15161 {
15162         int port = BP_PORT(bp);
15163         u64 timestamp, ns;
15164
15165         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15166                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15167         timestamp <<= 32;
15168         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15169                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15170
15171         /* Reset timestamp register to allow new timestamp */
15172         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15173                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15174
15175         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15176
15177         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15178
15179         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15180            timestamp, ns);
15181 }
15182
15183 /* Read the PHC */
15184 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15185 {
15186         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15187         int port = BP_PORT(bp);
15188         u32 wb_data[2];
15189         u64 phc_cycles;
15190
15191         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15192                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15193         phc_cycles = wb_data[1];
15194         phc_cycles = (phc_cycles << 32) + wb_data[0];
15195
15196         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15197
15198         return phc_cycles;
15199 }
15200
15201 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15202 {
15203         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15204         bp->cyclecounter.read = bnx2x_cyclecounter_read;
15205         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15206         bp->cyclecounter.shift = 0;
15207         bp->cyclecounter.mult = 1;
15208 }
15209
15210 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15211 {
15212         struct bnx2x_func_state_params func_params = {NULL};
15213         struct bnx2x_func_set_timesync_params *set_timesync_params =
15214                 &func_params.params.set_timesync;
15215
15216         /* Prepare parameters for function state transitions */
15217         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15218         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15219
15220         func_params.f_obj = &bp->func_obj;
15221         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15222
15223         /* Function parameters */
15224         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15225         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15226
15227         return bnx2x_func_state_change(bp, &func_params);
15228 }
15229
15230 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15231 {
15232         struct bnx2x_queue_state_params q_params;
15233         int rc, i;
15234
15235         /* send queue update ramrod to enable PTP packets */
15236         memset(&q_params, 0, sizeof(q_params));
15237         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15238         q_params.cmd = BNX2X_Q_CMD_UPDATE;
15239         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15240                   &q_params.params.update.update_flags);
15241         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15242                   &q_params.params.update.update_flags);
15243
15244         /* send the ramrod on all the queues of the PF */
15245         for_each_eth_queue(bp, i) {
15246                 struct bnx2x_fastpath *fp = &bp->fp[i];
15247
15248                 /* Set the appropriate Queue object */
15249                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15250
15251                 /* Update the Queue state */
15252                 rc = bnx2x_queue_state_change(bp, &q_params);
15253                 if (rc) {
15254                         BNX2X_ERR("Failed to enable PTP packets\n");
15255                         return rc;
15256                 }
15257         }
15258
15259         return 0;
15260 }
15261
15262 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15263 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15264 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15265 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15266 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15267 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15268 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15269 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15270 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15271 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15272 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15273 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15274
15275 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15276 {
15277         int port = BP_PORT(bp);
15278         u32 param, rule;
15279         int rc;
15280
15281         if (!bp->hwtstamp_ioctl_called)
15282                 return 0;
15283
15284         param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15285                 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15286         rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15287                 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15288         switch (bp->tx_type) {
15289         case HWTSTAMP_TX_ON:
15290                 bp->flags |= TX_TIMESTAMPING_EN;
15291                 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15292                 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15293                 break;
15294         case HWTSTAMP_TX_ONESTEP_SYNC:
15295         case HWTSTAMP_TX_ONESTEP_P2P:
15296                 BNX2X_ERR("One-step timestamping is not supported\n");
15297                 return -ERANGE;
15298         }
15299
15300         param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15301                 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15302         rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15303                 NIG_REG_P0_LLH_PTP_RULE_MASK;
15304         switch (bp->rx_filter) {
15305         case HWTSTAMP_FILTER_NONE:
15306                 break;
15307         case HWTSTAMP_FILTER_ALL:
15308         case HWTSTAMP_FILTER_SOME:
15309         case HWTSTAMP_FILTER_NTP_ALL:
15310                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15311                 break;
15312         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15313         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15314         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15315                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15316                 /* Initialize PTP detection for UDP/IPv4 events */
15317                 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15318                 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15319                 break;
15320         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15321         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15322         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15323                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15324                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15325                 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15326                 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15327                 break;
15328         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15329         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15330         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15331                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15332                 /* Initialize PTP detection L2 events */
15333                 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15334                 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15335
15336                 break;
15337         case HWTSTAMP_FILTER_PTP_V2_EVENT:
15338         case HWTSTAMP_FILTER_PTP_V2_SYNC:
15339         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15340                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15341                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15342                 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15343                 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15344                 break;
15345         }
15346
15347         /* Indicate to FW that this PF expects recorded PTP packets */
15348         rc = bnx2x_enable_ptp_packets(bp);
15349         if (rc)
15350                 return rc;
15351
15352         /* Enable sending PTP packets to host */
15353         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15354                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15355
15356         return 0;
15357 }
15358
15359 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15360 {
15361         struct hwtstamp_config config;
15362         int rc;
15363
15364         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15365
15366         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15367                 return -EFAULT;
15368
15369         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15370            config.tx_type, config.rx_filter);
15371
15372         bp->hwtstamp_ioctl_called = true;
15373         bp->tx_type = config.tx_type;
15374         bp->rx_filter = config.rx_filter;
15375
15376         rc = bnx2x_configure_ptp_filters(bp);
15377         if (rc)
15378                 return rc;
15379
15380         config.rx_filter = bp->rx_filter;
15381
15382         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15383                 -EFAULT : 0;
15384 }
15385
15386 /* Configures HW for PTP */
15387 static int bnx2x_configure_ptp(struct bnx2x *bp)
15388 {
15389         int rc, port = BP_PORT(bp);
15390         u32 wb_data[2];
15391
15392         /* Reset PTP event detection rules - will be configured in the IOCTL */
15393         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15394                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15395         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15396                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15397         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15398                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15399         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15400                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15401
15402         /* Disable PTP packets to host - will be configured in the IOCTL*/
15403         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15404                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15405
15406         /* Enable the PTP feature */
15407         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15408                NIG_REG_P0_PTP_EN, 0x3F);
15409
15410         /* Enable the free-running counter */
15411         wb_data[0] = 0;
15412         wb_data[1] = 0;
15413         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15414
15415         /* Reset drift register (offset register is not reset) */
15416         rc = bnx2x_send_reset_timesync_ramrod(bp);
15417         if (rc) {
15418                 BNX2X_ERR("Failed to reset PHC drift register\n");
15419                 return -EFAULT;
15420         }
15421
15422         /* Reset possibly old timestamps */
15423         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15424                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15425         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15426                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15427
15428         return 0;
15429 }
15430
15431 /* Called during load, to initialize PTP-related stuff */
15432 void bnx2x_init_ptp(struct bnx2x *bp)
15433 {
15434         int rc;
15435
15436         /* Configure PTP in HW */
15437         rc = bnx2x_configure_ptp(bp);
15438         if (rc) {
15439                 BNX2X_ERR("Stopping PTP initialization\n");
15440                 return;
15441         }
15442
15443         /* Init work queue for Tx timestamping */
15444         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15445
15446         /* Init cyclecounter and timecounter. This is done only in the first
15447          * load. If done in every load, PTP application will fail when doing
15448          * unload / load (e.g. MTU change) while it is running.
15449          */
15450         if (!bp->timecounter_init_done) {
15451                 bnx2x_init_cyclecounter(bp);
15452                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15453                                  ktime_to_ns(ktime_get_real()));
15454                 bp->timecounter_init_done = true;
15455         }
15456
15457         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15458 }