Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux-2.6-microblaze.git] / drivers / net / ethernet / agere / et131x.c
1 /* Agere Systems Inc.
2  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3  *
4  * Copyright © 2005 Agere Systems Inc.
5  * All rights reserved.
6  *   http://www.agere.com
7  *
8  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9  *
10  *------------------------------------------------------------------------------
11  *
12  * SOFTWARE LICENSE
13  *
14  * This software is provided subject to the following terms and conditions,
15  * which you should read carefully before using the software.  Using this
16  * software indicates your acceptance of these terms and conditions.  If you do
17  * not agree with these terms and conditions, do not use the software.
18  *
19  * Copyright © 2005 Agere Systems Inc.
20  * All rights reserved.
21  *
22  * Redistribution and use in source or binary forms, with or without
23  * modifications, are permitted provided that the following conditions are met:
24  *
25  * . Redistributions of source code must retain the above copyright notice, this
26  *    list of conditions and the following Disclaimer as comments in the code as
27  *    well as in the documentation and/or other materials provided with the
28  *    distribution.
29  *
30  * . Redistributions in binary form must reproduce the above copyright notice,
31  *    this list of conditions and the following Disclaimer in the documentation
32  *    and/or other materials provided with the distribution.
33  *
34  * . Neither the name of Agere Systems Inc. nor the names of the contributors
35  *    may be used to endorse or promote products derived from this software
36  *    without specific prior written permission.
37  *
38  * Disclaimer
39  *
40  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
43  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51  * DAMAGE.
52  */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS          1000
91 #define MAX_NUM_WRITE_RETRIES           2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104  *       watchdog_interrupt & txdma_xfer_done
105  *
106  * In both cases, when flow control is enabled for either Tx or bi-direction,
107  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108  * buffer rings are running low.
109  */
110 #define INT_MASK_DISABLE            0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113  * #define INT_MASK_ENABLE             0xfff6bf17
114  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
115  */
116 #define INT_MASK_ENABLE             0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE     60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST      128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED             0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST            0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST            0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT       (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
139
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER         0x00200000
142
143 #define FMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR      0x04000000
145
146 #define FMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
147
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS          0xA4
150 #define ET1310_PCI_EEPROM_STATUS        0xB2
151 #define ET1310_PCI_ACK_NACK             0xC0
152 #define ET1310_PCI_REPLAY               0xC2
153 #define ET1310_PCI_L0L1LATENCY          0xCF
154
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
158
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
161
162 #define PARM_RX_NUM_BUFS_DEF    4
163 #define PARM_RX_TIME_INT_DEF    10
164 #define PARM_RX_MEM_END_DEF     0x2bc
165 #define PARM_TX_TIME_INT_DEF    40
166 #define PARM_TX_NUM_BUFS_DEF    4
167 #define PARM_DMA_CACHE_DEF      0
168
169 /* RX defines */
170 #define FBR_CHUNKS              32
171 #define MAX_DESC_PER_RING_RX    1024
172
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK      40
175 #define NIC_DEFAULT_NUM_RFD     1024
176 #define NUM_FBRS                2
177
178 #define MAX_PACKETS_HANDLED     256
179 #define ET131X_MIN_MTU          64
180 #define ET131X_MAX_MTU          9216
181
182 #define ALCATEL_MULTICAST_PKT   0x01000000
183 #define ALCATEL_BROADCAST_PKT   0x02000000
184
185 /* typedefs for Free Buffer Descriptors */
186 struct fbr_desc {
187         u32 addr_lo;
188         u32 addr_hi;
189         u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
190 };
191
192 /* Packet Status Ring Descriptors
193  *
194  * Word 0:
195  *
196  * top 16 bits are from the Alcatel Status Word as enumerated in
197  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
198  *
199  * 0: hp                        hash pass
200  * 1: ipa                       IP checksum assist
201  * 2: ipp                       IP checksum pass
202  * 3: tcpa                      TCP checksum assist
203  * 4: tcpp                      TCP checksum pass
204  * 5: wol                       WOL Event
205  * 6: rxmac_error               RXMAC Error Indicator
206  * 7: drop                      Drop packet
207  * 8: ft                        Frame Truncated
208  * 9: jp                        Jumbo Packet
209  * 10: vp                       VLAN Packet
210  * 11-15: unused
211  * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
212  * 17: asw_RX_DV_event          short receive event detected
213  * 18: asw_false_carrier_event  bad carrier since last good packet
214  * 19: asw_code_err             one or more nibbles signalled as errors
215  * 20: asw_CRC_err              CRC error
216  * 21: asw_len_chk_err          frame length field incorrect
217  * 22: asw_too_long             frame length > 1518 bytes
218  * 23: asw_OK                   valid CRC + no code error
219  * 24: asw_multicast            has a multicast address
220  * 25: asw_broadcast            has a broadcast address
221  * 26: asw_dribble_nibble       spurious bits after EOP
222  * 27: asw_control_frame        is a control frame
223  * 28: asw_pause_frame          is a pause frame
224  * 29: asw_unsupported_op       unsupported OP code
225  * 30: asw_VLAN_tag             VLAN tag detected
226  * 31: asw_long_evt             Rx long event
227  *
228  * Word 1:
229  * 0-15: length                 length in bytes
230  * 16-25: bi                    Buffer Index
231  * 26-27: ri                    Ring Index
232  * 28-31: reserved
233  */
234 struct pkt_stat_desc {
235         u32 word0;
236         u32 word1;
237 };
238
239 /* Typedefs for the RX DMA status word */
240
241 /* rx status word 0 holds part of the status bits of the Rx DMA engine
242  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
243  * which contains the Free Buffer ring 0 and 1 available offset.
244  *
245  * bit 0-9 FBR1 offset
246  * bit 10 Wrap flag for FBR1
247  * bit 16-25 FBR0 offset
248  * bit 26 Wrap flag for FBR0
249  */
250
251 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
252  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
253  * which contains the Packet Status Ring available offset.
254  *
255  * bit 0-15 reserved
256  * bit 16-27 PSRoffset
257  * bit 28 PSRwrap
258  * bit 29-31 unused
259  */
260
261 /* struct rx_status_block is a structure representing the status of the Rx
262  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
263  */
264 struct rx_status_block {
265         u32 word0;
266         u32 word1;
267 };
268
269 /* Structure for look-up table holding free buffer ring pointers, addresses
270  * and state.
271  */
272 struct fbr_lookup {
273         void            *virt[MAX_DESC_PER_RING_RX];
274         u32              bus_high[MAX_DESC_PER_RING_RX];
275         u32              bus_low[MAX_DESC_PER_RING_RX];
276         void            *ring_virtaddr;
277         dma_addr_t       ring_physaddr;
278         void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
279         dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
280         u32              local_full;
281         u32              num_entries;
282         dma_addr_t       buffsize;
283 };
284
285 /* struct rx_ring is the structure representing the adaptor's local
286  * reference(s) to the rings
287  */
288 struct rx_ring {
289         struct fbr_lookup *fbr[NUM_FBRS];
290         void *ps_ring_virtaddr;
291         dma_addr_t ps_ring_physaddr;
292         u32 local_psr_full;
293         u32 psr_entries;
294
295         struct rx_status_block *rx_status_block;
296         dma_addr_t rx_status_bus;
297
298         struct list_head recv_list;
299         u32 num_ready_recv;
300
301         u32 num_rfd;
302
303         bool unfinished_receives;
304 };
305
306 /* TX defines */
307 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
308  *
309  * 0-15: length of packet
310  * 16-27: VLAN tag
311  * 28: VLAN CFI
312  * 29-31: VLAN priority
313  *
314  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
315  *
316  * 0: last packet in the sequence
317  * 1: first packet in the sequence
318  * 2: interrupt the processor when this pkt sent
319  * 3: Control word - no packet data
320  * 4: Issue half-duplex backpressure : XON/XOFF
321  * 5: send pause frame
322  * 6: Tx frame has error
323  * 7: append CRC
324  * 8: MAC override
325  * 9: pad packet
326  * 10: Packet is a Huge packet
327  * 11: append VLAN tag
328  * 12: IP checksum assist
329  * 13: TCP checksum assist
330  * 14: UDP checksum assist
331  */
332 #define TXDESC_FLAG_LASTPKT             0x0001
333 #define TXDESC_FLAG_FIRSTPKT            0x0002
334 #define TXDESC_FLAG_INTPROC             0x0004
335
336 /* struct tx_desc represents each descriptor on the ring */
337 struct tx_desc {
338         u32 addr_hi;
339         u32 addr_lo;
340         u32 len_vlan;   /* control words how to xmit the */
341         u32 flags;      /* data (detailed above) */
342 };
343
344 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
345  * by 0x101c / 0x1020. This is a DMA10 type
346  */
347
348 /* TCB (Transmit Control Block: Host Side) */
349 struct tcb {
350         struct tcb *next;       /* Next entry in ring */
351         u32 count;              /* Used to spot stuck/lost packets */
352         u32 stale;              /* Used to spot stuck/lost packets */
353         struct sk_buff *skb;    /* Network skb we are tied to */
354         u32 index;              /* Ring indexes */
355         u32 index_start;
356 };
357
358 /* Structure representing our local reference(s) to the ring */
359 struct tx_ring {
360         /* TCB (Transmit Control Block) memory and lists */
361         struct tcb *tcb_ring;
362
363         /* List of TCBs that are ready to be used */
364         struct tcb *tcb_qhead;
365         struct tcb *tcb_qtail;
366
367         /* list of TCBs that are currently being sent. */
368         struct tcb *send_head;
369         struct tcb *send_tail;
370         int used;
371
372         /* The actual descriptor ring */
373         struct tx_desc *tx_desc_ring;
374         dma_addr_t tx_desc_ring_pa;
375
376         /* send_idx indicates where we last wrote to in the descriptor ring. */
377         u32 send_idx;
378
379         /* The location of the write-back status block */
380         u32 *tx_status;
381         dma_addr_t tx_status_pa;
382
383         /* Packets since the last IRQ: used for interrupt coalescing */
384         int since_irq;
385 };
386
387 /* Do not change these values: if changed, then change also in respective
388  * TXdma and Rxdma engines
389  */
390 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
391 #define NUM_TCB                      64
392
393 /* These values are all superseded by registry entries to facilitate tuning.
394  * Once the desired performance has been achieved, the optimal registry values
395  * should be re-populated to these #defines:
396  */
397 #define TX_ERROR_PERIOD             1000
398
399 #define LO_MARK_PERCENT_FOR_PSR     15
400 #define LO_MARK_PERCENT_FOR_RX      15
401
402 /* RFD (Receive Frame Descriptor) */
403 struct rfd {
404         struct list_head list_node;
405         struct sk_buff *skb;
406         u32 len;        /* total size of receive frame */
407         u16 bufferindex;
408         u8 ringindex;
409 };
410
411 /* Flow Control */
412 #define FLOW_BOTH       0
413 #define FLOW_TXONLY     1
414 #define FLOW_RXONLY     2
415 #define FLOW_NONE       3
416
417 /* Struct to define some device statistics */
418 struct ce_stats {
419         u32             multicast_pkts_rcvd;
420         u32             rcvd_pkts_dropped;
421
422         u32             tx_underflows;
423         u32             tx_collisions;
424         u32             tx_excessive_collisions;
425         u32             tx_first_collisions;
426         u32             tx_late_collisions;
427         u32             tx_max_pkt_errs;
428         u32             tx_deferred;
429
430         u32             rx_overflows;
431         u32             rx_length_errs;
432         u32             rx_align_errs;
433         u32             rx_crc_errs;
434         u32             rx_code_violations;
435         u32             rx_other_errs;
436
437         u32             interrupt_status;
438 };
439
440 /* The private adapter structure */
441 struct et131x_adapter {
442         struct net_device *netdev;
443         struct pci_dev *pdev;
444         struct mii_bus *mii_bus;
445         struct napi_struct napi;
446
447         /* Flags that indicate current state of the adapter */
448         u32 flags;
449
450         /* local link state, to determine if a state change has occurred */
451         int link;
452
453         /* Configuration  */
454         u8 rom_addr[ETH_ALEN];
455         u8 addr[ETH_ALEN];
456         bool has_eeprom;
457         u8 eeprom_data[2];
458
459         spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
460         spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
461         spinlock_t rcv_lock; /* protects the rx_ring receive list */
462
463         /* Packet Filter and look ahead size */
464         u32 packet_filter;
465
466         /* multicast list */
467         u32 multicast_addr_count;
468         u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
469
470         /* Pointer to the device's PCI register space */
471         struct address_map __iomem *regs;
472
473         /* Registry parameters */
474         u8 wanted_flow;         /* Flow we want for 802.3x flow control */
475         u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
476
477         /* Derived from the registry: */
478         u8 flow;                /* flow control validated by the far-end */
479
480         /* Minimize init-time */
481         struct timer_list error_timer;
482
483         /* variable putting the phy into coma mode when boot up with no cable
484          * plugged in after 5 seconds
485          */
486         u8 boot_coma;
487
488         /* Tx Memory Variables */
489         struct tx_ring tx_ring;
490
491         /* Rx Memory Variables */
492         struct rx_ring rx_ring;
493
494         struct ce_stats stats;
495 };
496
497 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
498 {
499         u32 reg;
500         int i;
501
502         /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
503          *    bits 7,1:0 both equal to 1, at least once after reset.
504          *    Subsequent operations need only to check that bits 1:0 are equal
505          *    to 1 prior to starting a single byte read/write
506          */
507         for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
508                 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
509                         return -EIO;
510
511                 /* I2C idle and Phy Queue Avail both true */
512                 if ((reg & 0x3000) == 0x3000) {
513                         if (status)
514                                 *status = reg;
515                         return reg & 0xFF;
516                 }
517         }
518         return -ETIMEDOUT;
519 }
520
521 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
522 {
523         struct pci_dev *pdev = adapter->pdev;
524         int index = 0;
525         int retries;
526         int err = 0;
527         int writeok = 0;
528         u32 status;
529         u32 val = 0;
530
531         /* For an EEPROM, an I2C single byte write is defined as a START
532          * condition followed by the device address, EEPROM address, one byte
533          * of data and a STOP condition.  The STOP condition will trigger the
534          * EEPROM's internally timed write cycle to the nonvolatile memory.
535          * All inputs are disabled during this write cycle and the EEPROM will
536          * not respond to any access until the internal write is complete.
537          */
538         err = eeprom_wait_ready(pdev, NULL);
539         if (err < 0)
540                 return err;
541
542          /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
543           *    and bits 1:0 both =0.  Bit 5 should be set according to the
544           *    type of EEPROM being accessed (1=two byte addressing, 0=one
545           *    byte addressing).
546           */
547         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
548                                   LBCIF_CONTROL_LBCIF_ENABLE |
549                                         LBCIF_CONTROL_I2C_WRITE))
550                 return -EIO;
551
552         /* Prepare EEPROM address for Step 3 */
553         for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
554                 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
555                         break;
556                 /* Write the data to the LBCIF Data Register (the I2C write
557                  * will begin).
558                  */
559                 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
560                         break;
561                 /* Monitor bit 1:0 of the LBCIF Status Register.  When bits
562                  * 1:0 are both equal to 1, the I2C write has completed and the
563                  * internal write cycle of the EEPROM is about to start.
564                  * (bits 1:0 = 01 is a legal state while waiting from both
565                  * equal to 1, but bits 1:0 = 10 is invalid and implies that
566                  * something is broken).
567                  */
568                 err = eeprom_wait_ready(pdev, &status);
569                 if (err < 0)
570                         return 0;
571
572                 /* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
573                  * an error has occurred.Don't break here if we are revision
574                  * 1, this is so we do a blind write for load bug.
575                  */
576                 if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
577                     adapter->pdev->revision == 0)
578                         break;
579
580                 /* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
581                  * ACK error has occurred on the address phase of the write.
582                  * This could be due to an actual hardware failure or the
583                  * EEPROM may still be in its internal write cycle from a
584                  * previous write. This write operation was ignored and must be
585                   *repeated later.
586                  */
587                 if (status & LBCIF_STATUS_ACK_ERROR) {
588                         /* This could be due to an actual hardware failure
589                          * or the EEPROM may still be in its internal write
590                          * cycle from a previous write. This write operation
591                          * was ignored and must be repeated later.
592                          */
593                         udelay(10);
594                         continue;
595                 }
596
597                 writeok = 1;
598                 break;
599         }
600
601         udelay(10);
602
603         while (1) {
604                 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
605                                           LBCIF_CONTROL_LBCIF_ENABLE))
606                         writeok = 0;
607
608                 /* Do read until internal ACK_ERROR goes away meaning write
609                  * completed
610                  */
611                 do {
612                         pci_write_config_dword(pdev,
613                                                LBCIF_ADDRESS_REGISTER,
614                                                addr);
615                         do {
616                                 pci_read_config_dword(pdev,
617                                                       LBCIF_DATA_REGISTER,
618                                                       &val);
619                         } while ((val & 0x00010000) == 0);
620                 } while (val & 0x00040000);
621
622                 if ((val & 0xFF00) != 0xC000 || index == 10000)
623                         break;
624                 index++;
625         }
626         return writeok ? 0 : -EIO;
627 }
628
629 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
630 {
631         struct pci_dev *pdev = adapter->pdev;
632         int err;
633         u32 status;
634
635         /* A single byte read is similar to the single byte write, with the
636          * exception of the data flow:
637          */
638         err = eeprom_wait_ready(pdev, NULL);
639         if (err < 0)
640                 return err;
641         /* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
642          * and bits 1:0 both =0.  Bit 5 should be set according to the type
643          * of EEPROM being accessed (1=two byte addressing, 0=one byte
644          * addressing).
645          */
646         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
647                                   LBCIF_CONTROL_LBCIF_ENABLE))
648                 return -EIO;
649         /* Write the address to the LBCIF Address Register (I2C read will
650          * begin).
651          */
652         if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
653                 return -EIO;
654         /* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
655          * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
656          * has occurred).
657          */
658         err = eeprom_wait_ready(pdev, &status);
659         if (err < 0)
660                 return err;
661         /* Regardless of error status, read data byte from LBCIF Data
662          * Register.
663          */
664         *pdata = err;
665
666         return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
667 }
668
669 static int et131x_init_eeprom(struct et131x_adapter *adapter)
670 {
671         struct pci_dev *pdev = adapter->pdev;
672         u8 eestatus;
673
674         pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
675
676         /* THIS IS A WORKAROUND:
677          * I need to call this function twice to get my card in a
678          * LG M1 Express Dual running. I tried also a msleep before this
679          * function, because I thought there could be some time conditions
680          * but it didn't work. Call the whole function twice also work.
681          */
682         if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
683                 dev_err(&pdev->dev,
684                         "Could not read PCI config space for EEPROM Status\n");
685                 return -EIO;
686         }
687
688         /* Determine if the error(s) we care about are present. If they are
689          * present we need to fail.
690          */
691         if (eestatus & 0x4C) {
692                 int write_failed = 0;
693
694                 if (pdev->revision == 0x01) {
695                         int     i;
696                         static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
697
698                         /* Re-write the first 4 bytes if we have an eeprom
699                          * present and the revision id is 1, this fixes the
700                          * corruption seen with 1310 B Silicon
701                          */
702                         for (i = 0; i < 3; i++)
703                                 if (eeprom_write(adapter, i, eedata[i]) < 0)
704                                         write_failed = 1;
705                 }
706                 if (pdev->revision  != 0x01 || write_failed) {
707                         dev_err(&pdev->dev,
708                                 "Fatal EEPROM Status Error - 0x%04x\n",
709                                 eestatus);
710
711                         /* This error could mean that there was an error
712                          * reading the eeprom or that the eeprom doesn't exist.
713                          * We will treat each case the same and not try to
714                          * gather additional information that normally would
715                          * come from the eeprom, like MAC Address
716                          */
717                         adapter->has_eeprom = false;
718                         return -EIO;
719                 }
720         }
721         adapter->has_eeprom = true;
722
723         /* Read the EEPROM for information regarding LED behavior. Refer to
724          * et131x_xcvr_init() for its use.
725          */
726         eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
727         eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
728
729         if (adapter->eeprom_data[0] != 0xcd)
730                 /* Disable all optional features */
731                 adapter->eeprom_data[1] = 0x00;
732
733         return 0;
734 }
735
736 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
737 {
738         /* Setup the receive dma configuration register for normal operation */
739         u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
740         struct rx_ring *rx_ring = &adapter->rx_ring;
741
742         if (rx_ring->fbr[1]->buffsize == 4096)
743                 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
744         else if (rx_ring->fbr[1]->buffsize == 8192)
745                 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
746         else if (rx_ring->fbr[1]->buffsize == 16384)
747                 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
748
749         csr |= ET_RXDMA_CSR_FBR0_ENABLE;
750         if (rx_ring->fbr[0]->buffsize == 256)
751                 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
752         else if (rx_ring->fbr[0]->buffsize == 512)
753                 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
754         else if (rx_ring->fbr[0]->buffsize == 1024)
755                 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
756         writel(csr, &adapter->regs->rxdma.csr);
757
758         csr = readl(&adapter->regs->rxdma.csr);
759         if (csr & ET_RXDMA_CSR_HALT_STATUS) {
760                 udelay(5);
761                 csr = readl(&adapter->regs->rxdma.csr);
762                 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
763                         dev_err(&adapter->pdev->dev,
764                                 "RX Dma failed to exit halt state. CSR 0x%08x\n",
765                                 csr);
766                 }
767         }
768 }
769
770 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
771 {
772         u32 csr;
773         /* Setup the receive dma configuration register */
774         writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
775                &adapter->regs->rxdma.csr);
776         csr = readl(&adapter->regs->rxdma.csr);
777         if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
778                 udelay(5);
779                 csr = readl(&adapter->regs->rxdma.csr);
780                 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
781                         dev_err(&adapter->pdev->dev,
782                                 "RX Dma failed to enter halt state. CSR 0x%08x\n",
783                                 csr);
784         }
785 }
786
787 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
788 {
789         /* Setup the transmit dma configuration register for normal
790          * operation
791          */
792         writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
793                &adapter->regs->txdma.csr);
794 }
795
796 static inline void add_10bit(u32 *v, int n)
797 {
798         *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
799 }
800
801 static inline void add_12bit(u32 *v, int n)
802 {
803         *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
804 }
805
806 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
807 {
808         struct mac_regs __iomem *macregs = &adapter->regs->mac;
809         u32 station1;
810         u32 station2;
811         u32 ipg;
812
813         /* First we need to reset everything.  Write to MAC configuration
814          * register 1 to perform reset.
815          */
816         writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
817                ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
818                ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
819                &macregs->cfg1);
820
821         /* Next lets configure the MAC Inter-packet gap register */
822         ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
823         ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
824         writel(ipg, &macregs->ipg);
825
826         /* Next lets configure the MAC Half Duplex register */
827         /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
828         writel(0x00A1F037, &macregs->hfdp);
829
830         /* Next lets configure the MAC Interface Control register */
831         writel(0, &macregs->if_ctrl);
832
833         writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
834
835         /* Next lets configure the MAC Station Address register.  These
836          * values are read from the EEPROM during initialization and stored
837          * in the adapter structure.  We write what is stored in the adapter
838          * structure to the MAC Station Address registers high and low.  This
839          * station address is used for generating and checking pause control
840          * packets.
841          */
842         station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
843                    (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
844         station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
845                    (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
846                    (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
847                     adapter->addr[2];
848         writel(station1, &macregs->station_addr_1);
849         writel(station2, &macregs->station_addr_2);
850
851         /* Max ethernet packet in bytes that will be passed by the mac without
852          * being truncated.  Allow the MAC to pass 4 more than our max packet
853          * size.  This is 4 for the Ethernet CRC.
854          *
855          * Packets larger than (registry_jumbo_packet) that do not contain a
856          * VLAN ID will be dropped by the Rx function.
857          */
858         writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
859
860         /* clear out MAC config reset */
861         writel(0, &macregs->cfg1);
862 }
863
864 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
865 {
866         int32_t delay = 0;
867         struct mac_regs __iomem *mac = &adapter->regs->mac;
868         struct phy_device *phydev = adapter->netdev->phydev;
869         u32 cfg1;
870         u32 cfg2;
871         u32 ifctrl;
872         u32 ctl;
873
874         ctl = readl(&adapter->regs->txmac.ctl);
875         cfg1 = readl(&mac->cfg1);
876         cfg2 = readl(&mac->cfg2);
877         ifctrl = readl(&mac->if_ctrl);
878
879         /* Set up the if mode bits */
880         cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
881         if (phydev->speed == SPEED_1000) {
882                 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
883                 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
884         } else {
885                 cfg2 |= ET_MAC_CFG2_IFMODE_100;
886                 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
887         }
888
889         cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
890                                                         ET_MAC_CFG1_TX_FLOW;
891
892         cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
893         if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
894                 cfg1 |= ET_MAC_CFG1_RX_FLOW;
895         writel(cfg1, &mac->cfg1);
896
897         /* Now we need to initialize the MAC Configuration 2 register */
898         /* preamble 7, check length, huge frame off, pad crc, crc enable
899          * full duplex off
900          */
901         cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
902         cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
903         cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
904         cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
905         cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
906         cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
907
908         if (phydev->duplex == DUPLEX_FULL)
909                 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
910
911         ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
912         if (phydev->duplex == DUPLEX_HALF)
913                 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
914
915         writel(ifctrl, &mac->if_ctrl);
916         writel(cfg2, &mac->cfg2);
917
918         do {
919                 udelay(10);
920                 delay++;
921                 cfg1 = readl(&mac->cfg1);
922         } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
923
924         if (delay == 100) {
925                 dev_warn(&adapter->pdev->dev,
926                          "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
927                          cfg1);
928         }
929
930         ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
931         writel(ctl, &adapter->regs->txmac.ctl);
932
933         if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
934                 et131x_rx_dma_enable(adapter);
935                 et131x_tx_dma_enable(adapter);
936         }
937 }
938
939 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
940 {
941         u32 pmcsr = readl(&adapter->regs->global.pm_csr);
942
943         return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
944 }
945
946 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
947 {
948         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
949         u32 hash1 = 0;
950         u32 hash2 = 0;
951         u32 hash3 = 0;
952         u32 hash4 = 0;
953
954         /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
955          * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
956          * specified) then we should pass NO multi-cast addresses to the
957          * driver.
958          */
959         if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
960                 int i;
961
962                 /* Loop through our multicast array and set up the device */
963                 for (i = 0; i < adapter->multicast_addr_count; i++) {
964                         u32 result;
965
966                         result = ether_crc(6, adapter->multicast_list[i]);
967
968                         result = (result & 0x3F800000) >> 23;
969
970                         if (result < 32) {
971                                 hash1 |= (1 << result);
972                         } else if ((31 < result) && (result < 64)) {
973                                 result -= 32;
974                                 hash2 |= (1 << result);
975                         } else if ((63 < result) && (result < 96)) {
976                                 result -= 64;
977                                 hash3 |= (1 << result);
978                         } else {
979                                 result -= 96;
980                                 hash4 |= (1 << result);
981                         }
982                 }
983         }
984
985         /* Write out the new hash to the device */
986         if (!et1310_in_phy_coma(adapter)) {
987                 writel(hash1, &rxmac->multi_hash1);
988                 writel(hash2, &rxmac->multi_hash2);
989                 writel(hash3, &rxmac->multi_hash3);
990                 writel(hash4, &rxmac->multi_hash4);
991         }
992 }
993
994 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
995 {
996         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
997         u32 uni_pf1;
998         u32 uni_pf2;
999         u32 uni_pf3;
1000
1001         /* Set up unicast packet filter reg 3 to be the first two octets of
1002          * the MAC address for both address
1003          *
1004          * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1005          * MAC address for second address
1006          *
1007          * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1008          * MAC address for first address
1009          */
1010         uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1011                   (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1012                   (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1013                    adapter->addr[1];
1014
1015         uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1016                   (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1017                   (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1018                    adapter->addr[5];
1019
1020         uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1021                   (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1022                   (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1023                    adapter->addr[5];
1024
1025         if (!et1310_in_phy_coma(adapter)) {
1026                 writel(uni_pf1, &rxmac->uni_pf_addr1);
1027                 writel(uni_pf2, &rxmac->uni_pf_addr2);
1028                 writel(uni_pf3, &rxmac->uni_pf_addr3);
1029         }
1030 }
1031
1032 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1033 {
1034         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1035         struct phy_device *phydev = adapter->netdev->phydev;
1036         u32 sa_lo;
1037         u32 sa_hi = 0;
1038         u32 pf_ctrl = 0;
1039         u32 __iomem *wolw;
1040
1041         /* Disable the MAC while it is being configured (also disable WOL) */
1042         writel(0x8, &rxmac->ctrl);
1043
1044         /* Initialize WOL to disabled. */
1045         writel(0, &rxmac->crc0);
1046         writel(0, &rxmac->crc12);
1047         writel(0, &rxmac->crc34);
1048
1049         /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1050          * its default Values of 0x00000000 because there are not WOL masks
1051          * as of this time.
1052          */
1053         for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1054                 writel(0, wolw);
1055
1056         /* Lets setup the WOL Source Address */
1057         sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1058                 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1059                 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1060                  adapter->addr[5];
1061         writel(sa_lo, &rxmac->sa_lo);
1062
1063         sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1064                        adapter->addr[1];
1065         writel(sa_hi, &rxmac->sa_hi);
1066
1067         /* Disable all Packet Filtering */
1068         writel(0, &rxmac->pf_ctrl);
1069
1070         /* Let's initialize the Unicast Packet filtering address */
1071         if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1072                 et1310_setup_device_for_unicast(adapter);
1073                 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1074         } else {
1075                 writel(0, &rxmac->uni_pf_addr1);
1076                 writel(0, &rxmac->uni_pf_addr2);
1077                 writel(0, &rxmac->uni_pf_addr3);
1078         }
1079
1080         /* Let's initialize the Multicast hash */
1081         if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1082                 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1083                 et1310_setup_device_for_multicast(adapter);
1084         }
1085
1086         /* Runt packet filtering.  Didn't work in version A silicon. */
1087         pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1088         pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1089
1090         if (adapter->registry_jumbo_packet > 8192)
1091                 /* In order to transmit jumbo packets greater than 8k, the
1092                  * FIFO between RxMAC and RxDMA needs to be reduced in size
1093                  * to (16k - Jumbo packet size).  In order to implement this,
1094                  * we must use "cut through" mode in the RxMAC, which chops
1095                  * packets down into segments which are (max_size * 16).  In
1096                  * this case we selected 256 bytes, since this is the size of
1097                  * the PCI-Express TLP's that the 1310 uses.
1098                  *
1099                  * seg_en on, fc_en off, size 0x10
1100                  */
1101                 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1102         else
1103                 writel(0, &rxmac->mcif_ctrl_max_seg);
1104
1105         writel(0, &rxmac->mcif_water_mark);
1106         writel(0, &rxmac->mif_ctrl);
1107         writel(0, &rxmac->space_avail);
1108
1109         /* Initialize the the mif_ctrl register
1110          * bit 3:  Receive code error. One or more nibbles were signaled as
1111          *         errors  during the reception of the packet.  Clear this
1112          *         bit in Gigabit, set it in 100Mbit.  This was derived
1113          *         experimentally at UNH.
1114          * bit 4:  Receive CRC error. The packet's CRC did not match the
1115          *         internally generated CRC.
1116          * bit 5:  Receive length check error. Indicates that frame length
1117          *         field value in the packet does not match the actual data
1118          *         byte length and is not a type field.
1119          * bit 16: Receive frame truncated.
1120          * bit 17: Drop packet enable
1121          */
1122         if (phydev && phydev->speed == SPEED_100)
1123                 writel(0x30038, &rxmac->mif_ctrl);
1124         else
1125                 writel(0x30030, &rxmac->mif_ctrl);
1126
1127         /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1128          * filter is always enabled since it is where the runt packets are
1129          * supposed to be dropped.  For version A silicon, runt packet
1130          * dropping doesn't work, so it is disabled in the pf_ctrl register,
1131          * but we still leave the packet filter on.
1132          */
1133         writel(pf_ctrl, &rxmac->pf_ctrl);
1134         writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1135 }
1136
1137 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1138 {
1139         struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1140
1141         /* We need to update the Control Frame Parameters
1142          * cfpt - control frame pause timer set to 64 (0x40)
1143          * cfep - control frame extended pause timer set to 0x0
1144          */
1145         if (adapter->flow == FLOW_NONE)
1146                 writel(0, &txmac->cf_param);
1147         else
1148                 writel(0x40, &txmac->cf_param);
1149 }
1150
1151 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1152 {
1153         struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1154         u32 __iomem *reg;
1155
1156         /* initialize all the macstat registers to zero on the device  */
1157         for (reg = &macstat->txrx_0_64_byte_frames;
1158              reg <= &macstat->carry_reg2; reg++)
1159                 writel(0, reg);
1160
1161         /* Unmask any counters that we want to track the overflow of.
1162          * Initially this will be all counters.  It may become clear later
1163          * that we do not need to track all counters.
1164          */
1165         writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1166         writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1167 }
1168
1169 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1170                                u8 reg, u16 *value)
1171 {
1172         struct mac_regs __iomem *mac = &adapter->regs->mac;
1173         int status = 0;
1174         u32 delay = 0;
1175         u32 mii_addr;
1176         u32 mii_cmd;
1177         u32 mii_indicator;
1178
1179         /* Save a local copy of the registers we are dealing with so we can
1180          * set them back
1181          */
1182         mii_addr = readl(&mac->mii_mgmt_addr);
1183         mii_cmd = readl(&mac->mii_mgmt_cmd);
1184
1185         /* Stop the current operation */
1186         writel(0, &mac->mii_mgmt_cmd);
1187
1188         /* Set up the register we need to read from on the correct PHY */
1189         writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1190
1191         writel(0x1, &mac->mii_mgmt_cmd);
1192
1193         do {
1194                 udelay(50);
1195                 delay++;
1196                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1197         } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1198
1199         /* If we hit the max delay, we could not read the register */
1200         if (delay == 50) {
1201                 dev_warn(&adapter->pdev->dev,
1202                          "reg 0x%08x could not be read\n", reg);
1203                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1204                          mii_indicator);
1205
1206                 status = -EIO;
1207                 goto out;
1208         }
1209
1210         /* If we hit here we were able to read the register and we need to
1211          * return the value to the caller
1212          */
1213         *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1214
1215 out:
1216         /* Stop the read operation */
1217         writel(0, &mac->mii_mgmt_cmd);
1218
1219         /* set the registers we touched back to the state at which we entered
1220          * this function
1221          */
1222         writel(mii_addr, &mac->mii_mgmt_addr);
1223         writel(mii_cmd, &mac->mii_mgmt_cmd);
1224
1225         return status;
1226 }
1227
1228 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1229 {
1230         struct phy_device *phydev = adapter->netdev->phydev;
1231
1232         if (!phydev)
1233                 return -EIO;
1234
1235         return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1236 }
1237
1238 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1239                             u16 value)
1240 {
1241         struct mac_regs __iomem *mac = &adapter->regs->mac;
1242         int status = 0;
1243         u32 delay = 0;
1244         u32 mii_addr;
1245         u32 mii_cmd;
1246         u32 mii_indicator;
1247
1248         /* Save a local copy of the registers we are dealing with so we can
1249          * set them back
1250          */
1251         mii_addr = readl(&mac->mii_mgmt_addr);
1252         mii_cmd = readl(&mac->mii_mgmt_cmd);
1253
1254         /* Stop the current operation */
1255         writel(0, &mac->mii_mgmt_cmd);
1256
1257         /* Set up the register we need to write to on the correct PHY */
1258         writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1259
1260         /* Add the value to write to the registers to the mac */
1261         writel(value, &mac->mii_mgmt_ctrl);
1262
1263         do {
1264                 udelay(50);
1265                 delay++;
1266                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1267         } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1268
1269         /* If we hit the max delay, we could not write the register */
1270         if (delay == 100) {
1271                 u16 tmp;
1272
1273                 dev_warn(&adapter->pdev->dev,
1274                          "reg 0x%08x could not be written", reg);
1275                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1276                          mii_indicator);
1277                 dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1278                          readl(&mac->mii_mgmt_cmd));
1279
1280                 et131x_mii_read(adapter, reg, &tmp);
1281
1282                 status = -EIO;
1283         }
1284         /* Stop the write operation */
1285         writel(0, &mac->mii_mgmt_cmd);
1286
1287         /* set the registers we touched back to the state at which we entered
1288          * this function
1289          */
1290         writel(mii_addr, &mac->mii_mgmt_addr);
1291         writel(mii_cmd, &mac->mii_mgmt_cmd);
1292
1293         return status;
1294 }
1295
1296 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1297                                     u16 regnum,
1298                                     u16 bitnum,
1299                                     u8 *value)
1300 {
1301         u16 reg;
1302         u16 mask = 1 << bitnum;
1303
1304         et131x_mii_read(adapter, regnum, &reg);
1305
1306         *value = (reg & mask) >> bitnum;
1307 }
1308
1309 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1310 {
1311         struct phy_device *phydev = adapter->netdev->phydev;
1312
1313         if (phydev->duplex == DUPLEX_HALF) {
1314                 adapter->flow = FLOW_NONE;
1315         } else {
1316                 char remote_pause, remote_async_pause;
1317
1318                 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1319                 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1320
1321                 if (remote_pause && remote_async_pause) {
1322                         adapter->flow = adapter->wanted_flow;
1323                 } else if (remote_pause && !remote_async_pause) {
1324                         if (adapter->wanted_flow == FLOW_BOTH)
1325                                 adapter->flow = FLOW_BOTH;
1326                         else
1327                                 adapter->flow = FLOW_NONE;
1328                 } else if (!remote_pause && !remote_async_pause) {
1329                         adapter->flow = FLOW_NONE;
1330                 } else {
1331                         if (adapter->wanted_flow == FLOW_BOTH)
1332                                 adapter->flow = FLOW_RXONLY;
1333                         else
1334                                 adapter->flow = FLOW_NONE;
1335                 }
1336         }
1337 }
1338
1339 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1340 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1341 {
1342         struct ce_stats *stats = &adapter->stats;
1343         struct macstat_regs __iomem *macstat =
1344                 &adapter->regs->macstat;
1345
1346         stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1347         stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1348         stats->tx_deferred             += readl(&macstat->tx_deferred);
1349         stats->tx_excessive_collisions +=
1350                                 readl(&macstat->tx_multiple_collisions);
1351         stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1352         stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1353         stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1354
1355         stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1356         stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1357         stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1358         stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1359         stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1360         stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1361         stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1362 }
1363
1364 /* et1310_handle_macstat_interrupt
1365  *
1366  * One of the MACSTAT counters has wrapped.  Update the local copy of
1367  * the statistics held in the adapter structure, checking the "wrap"
1368  * bit for each counter.
1369  */
1370 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1371 {
1372         u32 carry_reg1;
1373         u32 carry_reg2;
1374
1375         /* Read the interrupt bits from the register(s).  These are Clear On
1376          * Write.
1377          */
1378         carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1379         carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1380
1381         writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1382         writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1383
1384         /* We need to do update the host copy of all the MAC_STAT counters.
1385          * For each counter, check it's overflow bit.  If the overflow bit is
1386          * set, then increment the host version of the count by one complete
1387          * revolution of the counter.  This routine is called when the counter
1388          * block indicates that one of the counters has wrapped.
1389          */
1390         if (carry_reg1 & (1 << 14))
1391                 adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1392         if (carry_reg1 & (1 << 8))
1393                 adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1394         if (carry_reg1 & (1 << 7))
1395                 adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1396         if (carry_reg1 & (1 << 2))
1397                 adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1398         if (carry_reg1 & (1 << 6))
1399                 adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1400         if (carry_reg1 & (1 << 3))
1401                 adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1402         if (carry_reg1 & (1 << 0))
1403                 adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1404         if (carry_reg2 & (1 << 16))
1405                 adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1406         if (carry_reg2 & (1 << 15))
1407                 adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1408         if (carry_reg2 & (1 << 6))
1409                 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1410         if (carry_reg2 & (1 << 8))
1411                 adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1412         if (carry_reg2 & (1 << 5))
1413                 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1414         if (carry_reg2 & (1 << 4))
1415                 adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1416         if (carry_reg2 & (1 << 2))
1417                 adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1418 }
1419
1420 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1421 {
1422         struct net_device *netdev = bus->priv;
1423         struct et131x_adapter *adapter = netdev_priv(netdev);
1424         u16 value;
1425         int ret;
1426
1427         ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1428
1429         if (ret < 0)
1430                 return ret;
1431
1432         return value;
1433 }
1434
1435 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1436                              int reg, u16 value)
1437 {
1438         struct net_device *netdev = bus->priv;
1439         struct et131x_adapter *adapter = netdev_priv(netdev);
1440
1441         return et131x_mii_write(adapter, phy_addr, reg, value);
1442 }
1443
1444 /*      et1310_phy_power_switch -       PHY power control
1445  *      @adapter: device to control
1446  *      @down: true for off/false for back on
1447  *
1448  *      one hundred, ten, one thousand megs
1449  *      How would you like to have your LAN accessed
1450  *      Can't you see that this code processed
1451  *      Phy power, phy power..
1452  */
1453 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1454 {
1455         u16 data;
1456         struct  phy_device *phydev = adapter->netdev->phydev;
1457
1458         et131x_mii_read(adapter, MII_BMCR, &data);
1459         data &= ~BMCR_PDOWN;
1460         if (down)
1461                 data |= BMCR_PDOWN;
1462         et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1463 }
1464
1465 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1466 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1467 {
1468         u16 lcr2;
1469         struct  phy_device *phydev = adapter->netdev->phydev;
1470
1471         /* Set the LED behavior such that LED 1 indicates speed (off =
1472          * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1473          * link and activity (on for link, blink off for activity).
1474          *
1475          * NOTE: Some customizations have been added here for specific
1476          * vendors; The LED behavior is now determined by vendor data in the
1477          * EEPROM. However, the above description is the default.
1478          */
1479         if ((adapter->eeprom_data[1] & 0x4) == 0) {
1480                 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1481
1482                 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1483                 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1484
1485                 if ((adapter->eeprom_data[1] & 0x8) == 0)
1486                         lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1487                 else
1488                         lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1489
1490                 et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1491         }
1492 }
1493
1494 /* et131x_configure_global_regs - configure JAGCore global regs */
1495 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1496 {
1497         struct global_regs __iomem *regs = &adapter->regs->global;
1498
1499         writel(0, &regs->rxq_start_addr);
1500         writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1501
1502         if (adapter->registry_jumbo_packet < 2048) {
1503                 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1504                  * block of RAM that the driver can split between Tx
1505                  * and Rx as it desires.  Our default is to split it
1506                  * 50/50:
1507                  */
1508                 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1509                 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1510         } else if (adapter->registry_jumbo_packet < 8192) {
1511                 /* For jumbo packets > 2k but < 8k, split 50-50. */
1512                 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1513                 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1514         } else {
1515                 /* 9216 is the only packet size greater than 8k that
1516                  * is available. The Tx buffer has to be big enough
1517                  * for one whole packet on the Tx side. We'll make
1518                  * the Tx 9408, and give the rest to Rx
1519                  */
1520                 writel(0x01b3, &regs->rxq_end_addr);
1521                 writel(0x01b4, &regs->txq_start_addr);
1522         }
1523
1524         /* Initialize the loopback register. Disable all loopbacks. */
1525         writel(0, &regs->loopback);
1526
1527         writel(0, &regs->msi_config);
1528
1529         /* By default, disable the watchdog timer.  It will be enabled when
1530          * a packet is queued.
1531          */
1532         writel(0, &regs->watchdog_timer);
1533 }
1534
1535 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1536 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1537 {
1538         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1539         struct rx_ring *rx_local = &adapter->rx_ring;
1540         struct fbr_desc *fbr_entry;
1541         u32 entry;
1542         u32 psr_num_des;
1543         unsigned long flags;
1544         u8 id;
1545
1546         et131x_rx_dma_disable(adapter);
1547
1548         /* Load the completion writeback physical address */
1549         writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1550         writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1551
1552         memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1553
1554         /* Set the address and parameters of the packet status ring */
1555         writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1556         writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1557         writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1558         writel(0, &rx_dma->psr_full_offset);
1559
1560         psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1561         writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1562                &rx_dma->psr_min_des);
1563
1564         spin_lock_irqsave(&adapter->rcv_lock, flags);
1565
1566         /* These local variables track the PSR in the adapter structure */
1567         rx_local->local_psr_full = 0;
1568
1569         for (id = 0; id < NUM_FBRS; id++) {
1570                 u32 __iomem *num_des;
1571                 u32 __iomem *full_offset;
1572                 u32 __iomem *min_des;
1573                 u32 __iomem *base_hi;
1574                 u32 __iomem *base_lo;
1575                 struct fbr_lookup *fbr = rx_local->fbr[id];
1576
1577                 if (id == 0) {
1578                         num_des = &rx_dma->fbr0_num_des;
1579                         full_offset = &rx_dma->fbr0_full_offset;
1580                         min_des = &rx_dma->fbr0_min_des;
1581                         base_hi = &rx_dma->fbr0_base_hi;
1582                         base_lo = &rx_dma->fbr0_base_lo;
1583                 } else {
1584                         num_des = &rx_dma->fbr1_num_des;
1585                         full_offset = &rx_dma->fbr1_full_offset;
1586                         min_des = &rx_dma->fbr1_min_des;
1587                         base_hi = &rx_dma->fbr1_base_hi;
1588                         base_lo = &rx_dma->fbr1_base_lo;
1589                 }
1590
1591                 /* Now's the best time to initialize FBR contents */
1592                 fbr_entry = fbr->ring_virtaddr;
1593                 for (entry = 0; entry < fbr->num_entries; entry++) {
1594                         fbr_entry->addr_hi = fbr->bus_high[entry];
1595                         fbr_entry->addr_lo = fbr->bus_low[entry];
1596                         fbr_entry->word2 = entry;
1597                         fbr_entry++;
1598                 }
1599
1600                 /* Set the address and parameters of Free buffer ring 1 and 0 */
1601                 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1602                 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1603                 writel(fbr->num_entries - 1, num_des);
1604                 writel(ET_DMA10_WRAP, full_offset);
1605
1606                 /* This variable tracks the free buffer ring 1 full position,
1607                  * so it has to match the above.
1608                  */
1609                 fbr->local_full = ET_DMA10_WRAP;
1610                 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1611                        min_des);
1612         }
1613
1614         /* Program the number of packets we will receive before generating an
1615          * interrupt.
1616          * For version B silicon, this value gets updated once autoneg is
1617          *complete.
1618          */
1619         writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1620
1621         /* The "time_done" is not working correctly to coalesce interrupts
1622          * after a given time period, but rather is giving us an interrupt
1623          * regardless of whether we have received packets.
1624          * This value gets updated once autoneg is complete.
1625          */
1626         writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1627
1628         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1629 }
1630
1631 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1632  *
1633  * Configure the transmit engine with the ring buffers we have created
1634  * and prepare it for use.
1635  */
1636 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1637 {
1638         struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1639         struct tx_ring *tx_ring = &adapter->tx_ring;
1640
1641         /* Load the hardware with the start of the transmit descriptor ring. */
1642         writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1643         writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1644
1645         /* Initialise the transmit DMA engine */
1646         writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1647
1648         /* Load the completion writeback physical address */
1649         writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1650         writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1651
1652         *tx_ring->tx_status = 0;
1653
1654         writel(0, &txdma->service_request);
1655         tx_ring->send_idx = 0;
1656 }
1657
1658 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1659 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1660 {
1661         et131x_configure_global_regs(adapter);
1662         et1310_config_mac_regs1(adapter);
1663
1664         /* Configure the MMC registers */
1665         /* All we need to do is initialize the Memory Control Register */
1666         writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1667
1668         et1310_config_rxmac_regs(adapter);
1669         et1310_config_txmac_regs(adapter);
1670
1671         et131x_config_rx_dma_regs(adapter);
1672         et131x_config_tx_dma_regs(adapter);
1673
1674         et1310_config_macstat_regs(adapter);
1675
1676         et1310_phy_power_switch(adapter, 0);
1677         et131x_xcvr_init(adapter);
1678 }
1679
1680 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1681 static void et131x_soft_reset(struct et131x_adapter *adapter)
1682 {
1683         u32 reg;
1684
1685         /* Disable MAC Core */
1686         reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1687               ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1688               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1689         writel(reg, &adapter->regs->mac.cfg1);
1690
1691         reg = ET_RESET_ALL;
1692         writel(reg, &adapter->regs->global.sw_reset);
1693
1694         reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1695               ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1696         writel(reg, &adapter->regs->mac.cfg1);
1697         writel(0, &adapter->regs->mac.cfg1);
1698 }
1699
1700 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1701 {
1702         u32 mask;
1703
1704         if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1705                 mask = INT_MASK_ENABLE;
1706         else
1707                 mask = INT_MASK_ENABLE_NO_FLOW;
1708
1709         writel(mask, &adapter->regs->global.int_mask);
1710 }
1711
1712 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1713 {
1714         writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1715 }
1716
1717 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1718 {
1719         /* Setup the transmit dma configuration register */
1720         writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1721                &adapter->regs->txdma.csr);
1722 }
1723
1724 static void et131x_enable_txrx(struct net_device *netdev)
1725 {
1726         struct et131x_adapter *adapter = netdev_priv(netdev);
1727
1728         et131x_rx_dma_enable(adapter);
1729         et131x_tx_dma_enable(adapter);
1730
1731         if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1732                 et131x_enable_interrupts(adapter);
1733
1734         netif_start_queue(netdev);
1735 }
1736
1737 static void et131x_disable_txrx(struct net_device *netdev)
1738 {
1739         struct et131x_adapter *adapter = netdev_priv(netdev);
1740
1741         netif_stop_queue(netdev);
1742
1743         et131x_rx_dma_disable(adapter);
1744         et131x_tx_dma_disable(adapter);
1745
1746         et131x_disable_interrupts(adapter);
1747 }
1748
1749 static void et131x_init_send(struct et131x_adapter *adapter)
1750 {
1751         int i;
1752         struct tx_ring *tx_ring = &adapter->tx_ring;
1753         struct tcb *tcb = tx_ring->tcb_ring;
1754
1755         tx_ring->tcb_qhead = tcb;
1756
1757         memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1758
1759         for (i = 0; i < NUM_TCB; i++) {
1760                 tcb->next = tcb + 1;
1761                 tcb++;
1762         }
1763
1764         tcb--;
1765         tx_ring->tcb_qtail = tcb;
1766         tcb->next = NULL;
1767         /* Curr send queue should now be empty */
1768         tx_ring->send_head = NULL;
1769         tx_ring->send_tail = NULL;
1770 }
1771
1772 /* et1310_enable_phy_coma
1773  *
1774  * driver receive an phy status change interrupt while in D0 and check that
1775  * phy_status is down.
1776  *
1777  *          -- gate off JAGCore;
1778  *          -- set gigE PHY in Coma mode
1779  *          -- wake on phy_interrupt; Perform software reset JAGCore,
1780  *             re-initialize jagcore and gigE PHY
1781  */
1782 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1783 {
1784         u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1785
1786         /* Stop sending packets. */
1787         adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1788
1789         /* Wait for outstanding Receive packets */
1790         et131x_disable_txrx(adapter->netdev);
1791
1792         /* Gate off JAGCore 3 clock domains */
1793         pmcsr &= ~ET_PMCSR_INIT;
1794         writel(pmcsr, &adapter->regs->global.pm_csr);
1795
1796         /* Program gigE PHY in to Coma mode */
1797         pmcsr |= ET_PM_PHY_SW_COMA;
1798         writel(pmcsr, &adapter->regs->global.pm_csr);
1799 }
1800
1801 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1802 {
1803         u32 pmcsr;
1804
1805         pmcsr = readl(&adapter->regs->global.pm_csr);
1806
1807         /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1808         pmcsr |= ET_PMCSR_INIT;
1809         pmcsr &= ~ET_PM_PHY_SW_COMA;
1810         writel(pmcsr, &adapter->regs->global.pm_csr);
1811
1812         /* Restore the GbE PHY speed and duplex modes;
1813          * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1814          */
1815
1816         /* Re-initialize the send structures */
1817         et131x_init_send(adapter);
1818
1819         /* Bring the device back to the state it was during init prior to
1820          * autonegotiation being complete.  This way, when we get the auto-neg
1821          * complete interrupt, we can complete init by calling ConfigMacREGS2.
1822          */
1823         et131x_soft_reset(adapter);
1824
1825         et131x_adapter_setup(adapter);
1826
1827         /* Allow Tx to restart */
1828         adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1829
1830         et131x_enable_txrx(adapter->netdev);
1831 }
1832
1833 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1834 {
1835         u32 tmp_free_buff_ring = *free_buff_ring;
1836
1837         tmp_free_buff_ring++;
1838         /* This works for all cases where limit < 1024. The 1023 case
1839          * works because 1023++ is 1024 which means the if condition is not
1840          * taken but the carry of the bit into the wrap bit toggles the wrap
1841          * value correctly
1842          */
1843         if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1844                 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1845                 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1846         }
1847         /* For the 1023 case */
1848         tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1849         *free_buff_ring = tmp_free_buff_ring;
1850         return tmp_free_buff_ring;
1851 }
1852
1853 /* et131x_rx_dma_memory_alloc
1854  *
1855  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1856  * and the Packet Status Ring.
1857  */
1858 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1859 {
1860         u8 id;
1861         u32 i, j;
1862         u32 bufsize;
1863         u32 psr_size;
1864         u32 fbr_chunksize;
1865         struct rx_ring *rx_ring = &adapter->rx_ring;
1866         struct fbr_lookup *fbr;
1867
1868         /* Alloc memory for the lookup table */
1869         rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1870         if (rx_ring->fbr[0] == NULL)
1871                 return -ENOMEM;
1872         rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873         if (rx_ring->fbr[1] == NULL)
1874                 return -ENOMEM;
1875
1876         /* The first thing we will do is configure the sizes of the buffer
1877          * rings. These will change based on jumbo packet support.  Larger
1878          * jumbo packets increases the size of each entry in FBR0, and the
1879          * number of entries in FBR0, while at the same time decreasing the
1880          * number of entries in FBR1.
1881          *
1882          * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1883          * entries are huge in order to accommodate a "jumbo" frame, then it
1884          * will have less entries.  Conversely, FBR1 will now be relied upon
1885          * to carry more "normal" frames, thus it's entry size also increases
1886          * and the number of entries goes up too (since it now carries
1887          * "small" + "regular" packets.
1888          *
1889          * In this scheme, we try to maintain 512 entries between the two
1890          * rings. Also, FBR1 remains a constant size - when it's size doubles
1891          * the number of entries halves.  FBR0 increases in size, however.
1892          */
1893         if (adapter->registry_jumbo_packet < 2048) {
1894                 rx_ring->fbr[0]->buffsize = 256;
1895                 rx_ring->fbr[0]->num_entries = 512;
1896                 rx_ring->fbr[1]->buffsize = 2048;
1897                 rx_ring->fbr[1]->num_entries = 512;
1898         } else if (adapter->registry_jumbo_packet < 4096) {
1899                 rx_ring->fbr[0]->buffsize = 512;
1900                 rx_ring->fbr[0]->num_entries = 1024;
1901                 rx_ring->fbr[1]->buffsize = 4096;
1902                 rx_ring->fbr[1]->num_entries = 512;
1903         } else {
1904                 rx_ring->fbr[0]->buffsize = 1024;
1905                 rx_ring->fbr[0]->num_entries = 768;
1906                 rx_ring->fbr[1]->buffsize = 16384;
1907                 rx_ring->fbr[1]->num_entries = 128;
1908         }
1909
1910         rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1911                                rx_ring->fbr[1]->num_entries;
1912
1913         for (id = 0; id < NUM_FBRS; id++) {
1914                 fbr = rx_ring->fbr[id];
1915                 /* Allocate an area of memory for Free Buffer Ring */
1916                 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1917                 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1918                                                         bufsize,
1919                                                         &fbr->ring_physaddr,
1920                                                         GFP_KERNEL);
1921                 if (!fbr->ring_virtaddr) {
1922                         dev_err(&adapter->pdev->dev,
1923                                 "Cannot alloc memory for Free Buffer Ring %d\n",
1924                                 id);
1925                         return -ENOMEM;
1926                 }
1927         }
1928
1929         for (id = 0; id < NUM_FBRS; id++) {
1930                 fbr = rx_ring->fbr[id];
1931                 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1932
1933                 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1934                         dma_addr_t fbr_physaddr;
1935
1936                         fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1937                                         &adapter->pdev->dev, fbr_chunksize,
1938                                         &fbr->mem_physaddrs[i],
1939                                         GFP_KERNEL);
1940
1941                         if (!fbr->mem_virtaddrs[i]) {
1942                                 dev_err(&adapter->pdev->dev,
1943                                         "Could not alloc memory\n");
1944                                 return -ENOMEM;
1945                         }
1946
1947                         /* See NOTE in "Save Physical Address" comment above */
1948                         fbr_physaddr = fbr->mem_physaddrs[i];
1949
1950                         for (j = 0; j < FBR_CHUNKS; j++) {
1951                                 u32 k = (i * FBR_CHUNKS) + j;
1952
1953                                 /* Save the Virtual address of this index for
1954                                  * quick access later
1955                                  */
1956                                 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1957                                                    (j * fbr->buffsize);
1958
1959                                 /* now store the physical address in the
1960                                  * descriptor so the device can access it
1961                                  */
1962                                 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1963                                 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1964                                 fbr_physaddr += fbr->buffsize;
1965                         }
1966                 }
1967         }
1968
1969         /* Allocate an area of memory for FIFO of Packet Status ring entries */
1970         psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1971
1972         rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1973                                                   psr_size,
1974                                                   &rx_ring->ps_ring_physaddr,
1975                                                   GFP_KERNEL);
1976
1977         if (!rx_ring->ps_ring_virtaddr) {
1978                 dev_err(&adapter->pdev->dev,
1979                         "Cannot alloc memory for Packet Status Ring\n");
1980                 return -ENOMEM;
1981         }
1982
1983         /* Allocate an area of memory for writeback of status information */
1984         rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1985                                             sizeof(struct rx_status_block),
1986                                             &rx_ring->rx_status_bus,
1987                                             GFP_KERNEL);
1988         if (!rx_ring->rx_status_block) {
1989                 dev_err(&adapter->pdev->dev,
1990                         "Cannot alloc memory for Status Block\n");
1991                 return -ENOMEM;
1992         }
1993         rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1994
1995         /* The RFDs are going to be put on lists later on, so initialize the
1996          * lists now.
1997          */
1998         INIT_LIST_HEAD(&rx_ring->recv_list);
1999         return 0;
2000 }
2001
2002 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2003 {
2004         u8 id;
2005         u32 ii;
2006         u32 bufsize;
2007         u32 psr_size;
2008         struct rfd *rfd;
2009         struct rx_ring *rx_ring = &adapter->rx_ring;
2010         struct fbr_lookup *fbr;
2011
2012         /* Free RFDs and associated packet descriptors */
2013         WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2014
2015         while (!list_empty(&rx_ring->recv_list)) {
2016                 rfd = list_entry(rx_ring->recv_list.next,
2017                                  struct rfd, list_node);
2018
2019                 list_del(&rfd->list_node);
2020                 rfd->skb = NULL;
2021                 kfree(rfd);
2022         }
2023
2024         /* Free Free Buffer Rings */
2025         for (id = 0; id < NUM_FBRS; id++) {
2026                 fbr = rx_ring->fbr[id];
2027
2028                 if (!fbr || !fbr->ring_virtaddr)
2029                         continue;
2030
2031                 /* First the packet memory */
2032                 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2033                         if (fbr->mem_virtaddrs[ii]) {
2034                                 bufsize = fbr->buffsize * FBR_CHUNKS;
2035
2036                                 dma_free_coherent(&adapter->pdev->dev,
2037                                                   bufsize,
2038                                                   fbr->mem_virtaddrs[ii],
2039                                                   fbr->mem_physaddrs[ii]);
2040
2041                                 fbr->mem_virtaddrs[ii] = NULL;
2042                         }
2043                 }
2044
2045                 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2046
2047                 dma_free_coherent(&adapter->pdev->dev,
2048                                   bufsize,
2049                                   fbr->ring_virtaddr,
2050                                   fbr->ring_physaddr);
2051
2052                 fbr->ring_virtaddr = NULL;
2053         }
2054
2055         /* Free Packet Status Ring */
2056         if (rx_ring->ps_ring_virtaddr) {
2057                 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2058
2059                 dma_free_coherent(&adapter->pdev->dev, psr_size,
2060                                   rx_ring->ps_ring_virtaddr,
2061                                   rx_ring->ps_ring_physaddr);
2062
2063                 rx_ring->ps_ring_virtaddr = NULL;
2064         }
2065
2066         /* Free area of memory for the writeback of status information */
2067         if (rx_ring->rx_status_block) {
2068                 dma_free_coherent(&adapter->pdev->dev,
2069                                   sizeof(struct rx_status_block),
2070                                   rx_ring->rx_status_block,
2071                                   rx_ring->rx_status_bus);
2072                 rx_ring->rx_status_block = NULL;
2073         }
2074
2075         /* Free the FBR Lookup Table */
2076         kfree(rx_ring->fbr[0]);
2077         kfree(rx_ring->fbr[1]);
2078
2079         /* Reset Counters */
2080         rx_ring->num_ready_recv = 0;
2081 }
2082
2083 /* et131x_init_recv - Initialize receive data structures */
2084 static int et131x_init_recv(struct et131x_adapter *adapter)
2085 {
2086         struct rfd *rfd;
2087         u32 rfdct;
2088         struct rx_ring *rx_ring = &adapter->rx_ring;
2089
2090         /* Setup each RFD */
2091         for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2092                 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2093                 if (!rfd)
2094                         return -ENOMEM;
2095
2096                 rfd->skb = NULL;
2097
2098                 /* Add this RFD to the recv_list */
2099                 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2100
2101                 /* Increment the available RFD's */
2102                 rx_ring->num_ready_recv++;
2103         }
2104
2105         return 0;
2106 }
2107
2108 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2109 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2110 {
2111         struct phy_device *phydev = adapter->netdev->phydev;
2112
2113         /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2114          * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2115          */
2116         if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2117                 writel(0, &adapter->regs->rxdma.max_pkt_time);
2118                 writel(1, &adapter->regs->rxdma.num_pkt_done);
2119         }
2120 }
2121
2122 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2123 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2124 {
2125         struct rx_ring *rx_local = &adapter->rx_ring;
2126         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2127         u16 buff_index = rfd->bufferindex;
2128         u8 ring_index = rfd->ringindex;
2129         unsigned long flags;
2130         struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2131
2132         /* We don't use any of the OOB data besides status. Otherwise, we
2133          * need to clean up OOB data
2134          */
2135         if (buff_index < fbr->num_entries) {
2136                 u32 free_buff_ring;
2137                 u32 __iomem *offset;
2138                 struct fbr_desc *next;
2139
2140                 if (ring_index == 0)
2141                         offset = &rx_dma->fbr0_full_offset;
2142                 else
2143                         offset = &rx_dma->fbr1_full_offset;
2144
2145                 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2146                        INDEX10(fbr->local_full);
2147
2148                 /* Handle the Free Buffer Ring advancement here. Write
2149                  * the PA / Buffer Index for the returned buffer into
2150                  * the oldest (next to be freed)FBR entry
2151                  */
2152                 next->addr_hi = fbr->bus_high[buff_index];
2153                 next->addr_lo = fbr->bus_low[buff_index];
2154                 next->word2 = buff_index;
2155
2156                 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2157                                                      fbr->num_entries - 1);
2158                 writel(free_buff_ring, offset);
2159         } else {
2160                 dev_err(&adapter->pdev->dev,
2161                         "%s illegal Buffer Index returned\n", __func__);
2162         }
2163
2164         /* The processing on this RFD is done, so put it back on the tail of
2165          * our list
2166          */
2167         spin_lock_irqsave(&adapter->rcv_lock, flags);
2168         list_add_tail(&rfd->list_node, &rx_local->recv_list);
2169         rx_local->num_ready_recv++;
2170         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2171
2172         WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2173 }
2174
2175 /* nic_rx_pkts - Checks the hardware for available packets
2176  *
2177  * Checks the hardware for available packets, using completion ring
2178  * If packets are available, it gets an RFD from the recv_list, attaches
2179  * the packet to it, puts the RFD in the RecvPendList, and also returns
2180  * the pointer to the RFD.
2181  */
2182 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2183 {
2184         struct rx_ring *rx_local = &adapter->rx_ring;
2185         struct rx_status_block *status;
2186         struct pkt_stat_desc *psr;
2187         struct rfd *rfd;
2188         unsigned long flags;
2189         struct list_head *element;
2190         u8 ring_index;
2191         u16 buff_index;
2192         u32 len;
2193         u32 word0;
2194         u32 word1;
2195         struct sk_buff *skb;
2196         struct fbr_lookup *fbr;
2197
2198         /* RX Status block is written by the DMA engine prior to every
2199          * interrupt. It contains the next to be used entry in the Packet
2200          * Status Ring, and also the two Free Buffer rings.
2201          */
2202         status = rx_local->rx_status_block;
2203         word1 = status->word1 >> 16;
2204
2205         /* Check the PSR and wrap bits do not match */
2206         if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2207                 return NULL; /* Looks like this ring is not updated yet */
2208
2209         /* The packet status ring indicates that data is available. */
2210         psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2211                         (rx_local->local_psr_full & 0xFFF);
2212
2213         /* Grab any information that is required once the PSR is advanced,
2214          * since we can no longer rely on the memory being accurate
2215          */
2216         len = psr->word1 & 0xFFFF;
2217         ring_index = (psr->word1 >> 26) & 0x03;
2218         fbr = rx_local->fbr[ring_index];
2219         buff_index = (psr->word1 >> 16) & 0x3FF;
2220         word0 = psr->word0;
2221
2222         /* Indicate that we have used this PSR entry. */
2223         /* FIXME wrap 12 */
2224         add_12bit(&rx_local->local_psr_full, 1);
2225         if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2226                 /* Clear psr full and toggle the wrap bit */
2227                 rx_local->local_psr_full &=  ~0xFFF;
2228                 rx_local->local_psr_full ^= 0x1000;
2229         }
2230
2231         writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2232
2233         if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2234                 /* Illegal buffer or ring index cannot be used by S/W*/
2235                 dev_err(&adapter->pdev->dev,
2236                         "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2237                         rx_local->local_psr_full & 0xFFF, len, buff_index);
2238                 return NULL;
2239         }
2240
2241         /* Get and fill the RFD. */
2242         spin_lock_irqsave(&adapter->rcv_lock, flags);
2243
2244         element = rx_local->recv_list.next;
2245         rfd = list_entry(element, struct rfd, list_node);
2246
2247         if (!rfd) {
2248                 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2249                 return NULL;
2250         }
2251
2252         list_del(&rfd->list_node);
2253         rx_local->num_ready_recv--;
2254
2255         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2256
2257         rfd->bufferindex = buff_index;
2258         rfd->ringindex = ring_index;
2259
2260         /* In V1 silicon, there is a bug which screws up filtering of runt
2261          * packets. Therefore runt packet filtering is disabled in the MAC and
2262          * the packets are dropped here. They are also counted here.
2263          */
2264         if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2265                 adapter->stats.rx_other_errs++;
2266                 rfd->len = 0;
2267                 goto out;
2268         }
2269
2270         if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2271                 adapter->stats.multicast_pkts_rcvd++;
2272
2273         rfd->len = len;
2274
2275         skb = dev_alloc_skb(rfd->len + 2);
2276         if (!skb)
2277                 return NULL;
2278
2279         adapter->netdev->stats.rx_bytes += rfd->len;
2280
2281         skb_put_data(skb, fbr->virt[buff_index], rfd->len);
2282
2283         skb->protocol = eth_type_trans(skb, adapter->netdev);
2284         skb->ip_summed = CHECKSUM_NONE;
2285         netif_receive_skb(skb);
2286
2287 out:
2288         nic_return_rfd(adapter, rfd);
2289         return rfd;
2290 }
2291
2292 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2293 {
2294         struct rfd *rfd = NULL;
2295         int count = 0;
2296         int limit = budget;
2297         bool done = true;
2298         struct rx_ring *rx_ring = &adapter->rx_ring;
2299
2300         if (budget > MAX_PACKETS_HANDLED)
2301                 limit = MAX_PACKETS_HANDLED;
2302
2303         /* Process up to available RFD's */
2304         while (count < limit) {
2305                 if (list_empty(&rx_ring->recv_list)) {
2306                         WARN_ON(rx_ring->num_ready_recv != 0);
2307                         done = false;
2308                         break;
2309                 }
2310
2311                 rfd = nic_rx_pkts(adapter);
2312
2313                 if (rfd == NULL)
2314                         break;
2315
2316                 /* Do not receive any packets until a filter has been set.
2317                  * Do not receive any packets until we have link.
2318                  * If length is zero, return the RFD in order to advance the
2319                  * Free buffer ring.
2320                  */
2321                 if (!adapter->packet_filter ||
2322                     !netif_carrier_ok(adapter->netdev) ||
2323                     rfd->len == 0)
2324                         continue;
2325
2326                 adapter->netdev->stats.rx_packets++;
2327
2328                 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2329                         dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2330
2331                 count++;
2332         }
2333
2334         if (count == limit || !done) {
2335                 rx_ring->unfinished_receives = true;
2336                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2337                        &adapter->regs->global.watchdog_timer);
2338         } else {
2339                 /* Watchdog timer will disable itself if appropriate. */
2340                 rx_ring->unfinished_receives = false;
2341         }
2342
2343         return count;
2344 }
2345
2346 /* et131x_tx_dma_memory_alloc
2347  *
2348  * Allocates memory that will be visible both to the device and to the CPU.
2349  * The OS will pass us packets, pointers to which we will insert in the Tx
2350  * Descriptor queue. The device will read this queue to find the packets in
2351  * memory. The device will update the "status" in memory each time it xmits a
2352  * packet.
2353  */
2354 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2355 {
2356         int desc_size = 0;
2357         struct tx_ring *tx_ring = &adapter->tx_ring;
2358
2359         /* Allocate memory for the TCB's (Transmit Control Block) */
2360         tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2361                                     GFP_KERNEL | GFP_DMA);
2362         if (!tx_ring->tcb_ring)
2363                 return -ENOMEM;
2364
2365         desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2366         tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2367                                                    desc_size,
2368                                                    &tx_ring->tx_desc_ring_pa,
2369                                                    GFP_KERNEL);
2370         if (!tx_ring->tx_desc_ring) {
2371                 dev_err(&adapter->pdev->dev,
2372                         "Cannot alloc memory for Tx Ring\n");
2373                 return -ENOMEM;
2374         }
2375
2376         tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2377                                                     sizeof(u32),
2378                                                     &tx_ring->tx_status_pa,
2379                                                     GFP_KERNEL);
2380         if (!tx_ring->tx_status) {
2381                 dev_err(&adapter->pdev->dev,
2382                         "Cannot alloc memory for Tx status block\n");
2383                 return -ENOMEM;
2384         }
2385         return 0;
2386 }
2387
2388 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2389 {
2390         int desc_size = 0;
2391         struct tx_ring *tx_ring = &adapter->tx_ring;
2392
2393         if (tx_ring->tx_desc_ring) {
2394                 /* Free memory relating to Tx rings here */
2395                 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2396                 dma_free_coherent(&adapter->pdev->dev,
2397                                   desc_size,
2398                                   tx_ring->tx_desc_ring,
2399                                   tx_ring->tx_desc_ring_pa);
2400                 tx_ring->tx_desc_ring = NULL;
2401         }
2402
2403         /* Free memory for the Tx status block */
2404         if (tx_ring->tx_status) {
2405                 dma_free_coherent(&adapter->pdev->dev,
2406                                   sizeof(u32),
2407                                   tx_ring->tx_status,
2408                                   tx_ring->tx_status_pa);
2409
2410                 tx_ring->tx_status = NULL;
2411         }
2412         /* Free the memory for the tcb structures */
2413         kfree(tx_ring->tcb_ring);
2414 }
2415
2416 /* nic_send_packet - NIC specific send handler for version B silicon. */
2417 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2418 {
2419         u32 i;
2420         struct tx_desc desc[24];
2421         u32 frag = 0;
2422         u32 thiscopy, remainder;
2423         struct sk_buff *skb = tcb->skb;
2424         u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2425         skb_frag_t *frags = &skb_shinfo(skb)->frags[0];
2426         struct phy_device *phydev = adapter->netdev->phydev;
2427         dma_addr_t dma_addr;
2428         struct tx_ring *tx_ring = &adapter->tx_ring;
2429
2430         /* Part of the optimizations of this send routine restrict us to
2431          * sending 24 fragments at a pass.  In practice we should never see
2432          * more than 5 fragments.
2433          */
2434
2435         /* nr_frags should be no more than 18. */
2436         BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2437
2438         memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2439
2440         for (i = 0; i < nr_frags; i++) {
2441                 /* If there is something in this element, lets get a
2442                  * descriptor from the ring and get the necessary data
2443                  */
2444                 if (i == 0) {
2445                         /* If the fragments are smaller than a standard MTU,
2446                          * then map them to a single descriptor in the Tx
2447                          * Desc ring. However, if they're larger, as is
2448                          * possible with support for jumbo packets, then
2449                          * split them each across 2 descriptors.
2450                          *
2451                          * This will work until we determine why the hardware
2452                          * doesn't seem to like large fragments.
2453                          */
2454                         if (skb_headlen(skb) <= 1514) {
2455                                 /* Low 16bits are length, high is vlan and
2456                                  * unused currently so zero
2457                                  */
2458                                 desc[frag].len_vlan = skb_headlen(skb);
2459                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2460                                                           skb->data,
2461                                                           skb_headlen(skb),
2462                                                           DMA_TO_DEVICE);
2463                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2464                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2465                                 frag++;
2466                         } else {
2467                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2468                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2469                                                           skb->data,
2470                                                           skb_headlen(skb) / 2,
2471                                                           DMA_TO_DEVICE);
2472                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2473                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2474                                 frag++;
2475
2476                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
2477                                 dma_addr = dma_map_single(&adapter->pdev->dev,
2478                                                           skb->data +
2479                                                           skb_headlen(skb) / 2,
2480                                                           skb_headlen(skb) / 2,
2481                                                           DMA_TO_DEVICE);
2482                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
2483                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
2484                                 frag++;
2485                         }
2486                 } else {
2487                         desc[frag].len_vlan = skb_frag_size(&frags[i - 1]);
2488                         dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2489                                                     &frags[i - 1],
2490                                                     0,
2491                                                     desc[frag].len_vlan,
2492                                                     DMA_TO_DEVICE);
2493                         desc[frag].addr_lo = lower_32_bits(dma_addr);
2494                         desc[frag].addr_hi = upper_32_bits(dma_addr);
2495                         frag++;
2496                 }
2497         }
2498
2499         if (phydev && phydev->speed == SPEED_1000) {
2500                 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2501                         /* Last element & Interrupt flag */
2502                         desc[frag - 1].flags =
2503                                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2504                         tx_ring->since_irq = 0;
2505                 } else { /* Last element */
2506                         desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2507                 }
2508         } else {
2509                 desc[frag - 1].flags =
2510                                     TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2511         }
2512
2513         desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2514
2515         tcb->index_start = tx_ring->send_idx;
2516         tcb->stale = 0;
2517
2518         thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2519
2520         if (thiscopy >= frag) {
2521                 remainder = 0;
2522                 thiscopy = frag;
2523         } else {
2524                 remainder = frag - thiscopy;
2525         }
2526
2527         memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2528                desc,
2529                sizeof(struct tx_desc) * thiscopy);
2530
2531         add_10bit(&tx_ring->send_idx, thiscopy);
2532
2533         if (INDEX10(tx_ring->send_idx) == 0 ||
2534             INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2535                 tx_ring->send_idx &= ~ET_DMA10_MASK;
2536                 tx_ring->send_idx ^= ET_DMA10_WRAP;
2537         }
2538
2539         if (remainder) {
2540                 memcpy(tx_ring->tx_desc_ring,
2541                        desc + thiscopy,
2542                        sizeof(struct tx_desc) * remainder);
2543
2544                 add_10bit(&tx_ring->send_idx, remainder);
2545         }
2546
2547         if (INDEX10(tx_ring->send_idx) == 0) {
2548                 if (tx_ring->send_idx)
2549                         tcb->index = NUM_DESC_PER_RING_TX - 1;
2550                 else
2551                         tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2552         } else {
2553                 tcb->index = tx_ring->send_idx - 1;
2554         }
2555
2556         spin_lock(&adapter->tcb_send_qlock);
2557
2558         if (tx_ring->send_tail)
2559                 tx_ring->send_tail->next = tcb;
2560         else
2561                 tx_ring->send_head = tcb;
2562
2563         tx_ring->send_tail = tcb;
2564
2565         WARN_ON(tcb->next != NULL);
2566
2567         tx_ring->used++;
2568
2569         spin_unlock(&adapter->tcb_send_qlock);
2570
2571         /* Write the new write pointer back to the device. */
2572         writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2573
2574         /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2575          * timer to wake us up if this packet isn't followed by N more.
2576          */
2577         if (phydev && phydev->speed == SPEED_1000) {
2578                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2579                        &adapter->regs->global.watchdog_timer);
2580         }
2581         return 0;
2582 }
2583
2584 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2585 {
2586         int status;
2587         struct tcb *tcb;
2588         unsigned long flags;
2589         struct tx_ring *tx_ring = &adapter->tx_ring;
2590
2591         /* All packets must have at least a MAC address and a protocol type */
2592         if (skb->len < ETH_HLEN)
2593                 return -EIO;
2594
2595         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2596
2597         tcb = tx_ring->tcb_qhead;
2598
2599         if (tcb == NULL) {
2600                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2601                 return -ENOMEM;
2602         }
2603
2604         tx_ring->tcb_qhead = tcb->next;
2605
2606         if (tx_ring->tcb_qhead == NULL)
2607                 tx_ring->tcb_qtail = NULL;
2608
2609         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2610
2611         tcb->skb = skb;
2612         tcb->next = NULL;
2613
2614         status = nic_send_packet(adapter, tcb);
2615
2616         if (status != 0) {
2617                 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2618
2619                 if (tx_ring->tcb_qtail)
2620                         tx_ring->tcb_qtail->next = tcb;
2621                 else
2622                         /* Apparently ready Q is empty. */
2623                         tx_ring->tcb_qhead = tcb;
2624
2625                 tx_ring->tcb_qtail = tcb;
2626                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2627                 return status;
2628         }
2629         WARN_ON(tx_ring->used > NUM_TCB);
2630         return 0;
2631 }
2632
2633 /* free_send_packet - Recycle a struct tcb */
2634 static inline void free_send_packet(struct et131x_adapter *adapter,
2635                                     struct tcb *tcb)
2636 {
2637         unsigned long flags;
2638         struct tx_desc *desc = NULL;
2639         struct net_device_stats *stats = &adapter->netdev->stats;
2640         struct tx_ring *tx_ring = &adapter->tx_ring;
2641         u64  dma_addr;
2642
2643         if (tcb->skb) {
2644                 stats->tx_bytes += tcb->skb->len;
2645
2646                 /* Iterate through the TX descriptors on the ring
2647                  * corresponding to this packet and umap the fragments
2648                  * they point to
2649                  */
2650                 do {
2651                         desc = tx_ring->tx_desc_ring +
2652                                INDEX10(tcb->index_start);
2653
2654                         dma_addr = desc->addr_lo;
2655                         dma_addr |= (u64)desc->addr_hi << 32;
2656
2657                         dma_unmap_single(&adapter->pdev->dev,
2658                                          dma_addr,
2659                                          desc->len_vlan, DMA_TO_DEVICE);
2660
2661                         add_10bit(&tcb->index_start, 1);
2662                         if (INDEX10(tcb->index_start) >=
2663                                                         NUM_DESC_PER_RING_TX) {
2664                                 tcb->index_start &= ~ET_DMA10_MASK;
2665                                 tcb->index_start ^= ET_DMA10_WRAP;
2666                         }
2667                 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2668
2669                 dev_kfree_skb_any(tcb->skb);
2670         }
2671
2672         memset(tcb, 0, sizeof(struct tcb));
2673
2674         /* Add the TCB to the Ready Q */
2675         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2676
2677         stats->tx_packets++;
2678
2679         if (tx_ring->tcb_qtail)
2680                 tx_ring->tcb_qtail->next = tcb;
2681         else /* Apparently ready Q is empty. */
2682                 tx_ring->tcb_qhead = tcb;
2683
2684         tx_ring->tcb_qtail = tcb;
2685
2686         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2687         WARN_ON(tx_ring->used < 0);
2688 }
2689
2690 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2691 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2692 {
2693         struct tcb *tcb;
2694         unsigned long flags;
2695         u32 freed = 0;
2696         struct tx_ring *tx_ring = &adapter->tx_ring;
2697
2698         /* Any packets being sent? Check the first TCB on the send list */
2699         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2700
2701         tcb = tx_ring->send_head;
2702
2703         while (tcb != NULL && freed < NUM_TCB) {
2704                 struct tcb *next = tcb->next;
2705
2706                 tx_ring->send_head = next;
2707
2708                 if (next == NULL)
2709                         tx_ring->send_tail = NULL;
2710
2711                 tx_ring->used--;
2712
2713                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2714
2715                 freed++;
2716                 free_send_packet(adapter, tcb);
2717
2718                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2719
2720                 tcb = tx_ring->send_head;
2721         }
2722
2723         WARN_ON(freed == NUM_TCB);
2724
2725         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2726
2727         tx_ring->used = 0;
2728 }
2729
2730 /* et131x_handle_send_pkts
2731  *
2732  * Re-claim the send resources, complete sends and get more to send from
2733  * the send wait queue.
2734  */
2735 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2736 {
2737         unsigned long flags;
2738         u32 serviced;
2739         struct tcb *tcb;
2740         u32 index;
2741         struct tx_ring *tx_ring = &adapter->tx_ring;
2742
2743         serviced = readl(&adapter->regs->txdma.new_service_complete);
2744         index = INDEX10(serviced);
2745
2746         /* Has the ring wrapped?  Process any descriptors that do not have
2747          * the same "wrap" indicator as the current completion indicator
2748          */
2749         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2750
2751         tcb = tx_ring->send_head;
2752
2753         while (tcb &&
2754                ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2755                index < INDEX10(tcb->index)) {
2756                 tx_ring->used--;
2757                 tx_ring->send_head = tcb->next;
2758                 if (tcb->next == NULL)
2759                         tx_ring->send_tail = NULL;
2760
2761                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2762                 free_send_packet(adapter, tcb);
2763                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2764
2765                 /* Goto the next packet */
2766                 tcb = tx_ring->send_head;
2767         }
2768         while (tcb &&
2769                !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2770                index > (tcb->index & ET_DMA10_MASK)) {
2771                 tx_ring->used--;
2772                 tx_ring->send_head = tcb->next;
2773                 if (tcb->next == NULL)
2774                         tx_ring->send_tail = NULL;
2775
2776                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2777                 free_send_packet(adapter, tcb);
2778                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2779
2780                 /* Goto the next packet */
2781                 tcb = tx_ring->send_head;
2782         }
2783
2784         /* Wake up the queue when we hit a low-water mark */
2785         if (tx_ring->used <= NUM_TCB / 3)
2786                 netif_wake_queue(adapter->netdev);
2787
2788         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2789 }
2790
2791 static int et131x_get_regs_len(struct net_device *netdev)
2792 {
2793 #define ET131X_REGS_LEN 256
2794         return ET131X_REGS_LEN * sizeof(u32);
2795 }
2796
2797 static void et131x_get_regs(struct net_device *netdev,
2798                             struct ethtool_regs *regs, void *regs_data)
2799 {
2800         struct et131x_adapter *adapter = netdev_priv(netdev);
2801         struct address_map __iomem *aregs = adapter->regs;
2802         u32 *regs_buff = regs_data;
2803         u32 num = 0;
2804         u16 tmp;
2805
2806         memset(regs_data, 0, et131x_get_regs_len(netdev));
2807
2808         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2809                         adapter->pdev->device;
2810
2811         /* PHY regs */
2812         et131x_mii_read(adapter, MII_BMCR, &tmp);
2813         regs_buff[num++] = tmp;
2814         et131x_mii_read(adapter, MII_BMSR, &tmp);
2815         regs_buff[num++] = tmp;
2816         et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2817         regs_buff[num++] = tmp;
2818         et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2819         regs_buff[num++] = tmp;
2820         et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2821         regs_buff[num++] = tmp;
2822         et131x_mii_read(adapter, MII_LPA, &tmp);
2823         regs_buff[num++] = tmp;
2824         et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2825         regs_buff[num++] = tmp;
2826         /* Autoneg next page transmit reg */
2827         et131x_mii_read(adapter, 0x07, &tmp);
2828         regs_buff[num++] = tmp;
2829         /* Link partner next page reg */
2830         et131x_mii_read(adapter, 0x08, &tmp);
2831         regs_buff[num++] = tmp;
2832         et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2833         regs_buff[num++] = tmp;
2834         et131x_mii_read(adapter, MII_STAT1000, &tmp);
2835         regs_buff[num++] = tmp;
2836         et131x_mii_read(adapter, 0x0b, &tmp);
2837         regs_buff[num++] = tmp;
2838         et131x_mii_read(adapter, 0x0c, &tmp);
2839         regs_buff[num++] = tmp;
2840         et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2841         regs_buff[num++] = tmp;
2842         et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2843         regs_buff[num++] = tmp;
2844         et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2845         regs_buff[num++] = tmp;
2846
2847         et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2848         regs_buff[num++] = tmp;
2849         et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2850         regs_buff[num++] = tmp;
2851         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2852         regs_buff[num++] = tmp;
2853         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2854         regs_buff[num++] = tmp;
2855         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2856         regs_buff[num++] = tmp;
2857
2858         et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2859         regs_buff[num++] = tmp;
2860         et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2861         regs_buff[num++] = tmp;
2862         et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2863         regs_buff[num++] = tmp;
2864         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2865         regs_buff[num++] = tmp;
2866         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2867         regs_buff[num++] = tmp;
2868         et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2869         regs_buff[num++] = tmp;
2870         et131x_mii_read(adapter, PHY_LED_1, &tmp);
2871         regs_buff[num++] = tmp;
2872         et131x_mii_read(adapter, PHY_LED_2, &tmp);
2873         regs_buff[num++] = tmp;
2874
2875         /* Global regs */
2876         regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2877         regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2878         regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2879         regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2880         regs_buff[num++] = readl(&aregs->global.pm_csr);
2881         regs_buff[num++] = adapter->stats.interrupt_status;
2882         regs_buff[num++] = readl(&aregs->global.int_mask);
2883         regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2884         regs_buff[num++] = readl(&aregs->global.int_status_alias);
2885         regs_buff[num++] = readl(&aregs->global.sw_reset);
2886         regs_buff[num++] = readl(&aregs->global.slv_timer);
2887         regs_buff[num++] = readl(&aregs->global.msi_config);
2888         regs_buff[num++] = readl(&aregs->global.loopback);
2889         regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2890
2891         /* TXDMA regs */
2892         regs_buff[num++] = readl(&aregs->txdma.csr);
2893         regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2894         regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2895         regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2896         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2897         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2898         regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2899         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2900         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2901         regs_buff[num++] = readl(&aregs->txdma.service_request);
2902         regs_buff[num++] = readl(&aregs->txdma.service_complete);
2903         regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2904         regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2905         regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2906         regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2907         regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2908         regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2909         regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2910         regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2911         regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2912         regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2913         regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2914         regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2915         regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2916         regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2917         regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2918
2919         /* RXDMA regs */
2920         regs_buff[num++] = readl(&aregs->rxdma.csr);
2921         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2922         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2923         regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2924         regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2925         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2926         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2927         regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2928         regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2929         regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2930         regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2931         regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2932         regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2933         regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2934         regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2935         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2936         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2937         regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2938         regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2939         regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2940         regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2941         regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2942         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2943         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2944         regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2945         regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2946         regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2947         regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2948         regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2949 }
2950
2951 static void et131x_get_drvinfo(struct net_device *netdev,
2952                                struct ethtool_drvinfo *info)
2953 {
2954         struct et131x_adapter *adapter = netdev_priv(netdev);
2955
2956         strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2957         strlcpy(info->bus_info, pci_name(adapter->pdev),
2958                 sizeof(info->bus_info));
2959 }
2960
2961 static const struct ethtool_ops et131x_ethtool_ops = {
2962         .get_drvinfo    = et131x_get_drvinfo,
2963         .get_regs_len   = et131x_get_regs_len,
2964         .get_regs       = et131x_get_regs,
2965         .get_link       = ethtool_op_get_link,
2966         .get_link_ksettings = phy_ethtool_get_link_ksettings,
2967         .set_link_ksettings = phy_ethtool_set_link_ksettings,
2968 };
2969
2970 /* et131x_hwaddr_init - set up the MAC Address */
2971 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2972 {
2973         /* If have our default mac from init and no mac address from
2974          * EEPROM then we need to generate the last octet and set it on the
2975          * device
2976          */
2977         if (is_zero_ether_addr(adapter->rom_addr)) {
2978                 /* We need to randomly generate the last octet so we
2979                  * decrease our chances of setting the mac address to
2980                  * same as another one of our cards in the system
2981                  */
2982                 get_random_bytes(&adapter->addr[5], 1);
2983                 /* We have the default value in the register we are
2984                  * working with so we need to copy the current
2985                  * address into the permanent address
2986                  */
2987                 ether_addr_copy(adapter->rom_addr, adapter->addr);
2988         } else {
2989                 /* We do not have an override address, so set the
2990                  * current address to the permanent address and add
2991                  * it to the device
2992                  */
2993                 ether_addr_copy(adapter->addr, adapter->rom_addr);
2994         }
2995 }
2996
2997 static int et131x_pci_init(struct et131x_adapter *adapter,
2998                            struct pci_dev *pdev)
2999 {
3000         u16 max_payload;
3001         int i, rc;
3002
3003         rc = et131x_init_eeprom(adapter);
3004         if (rc < 0)
3005                 goto out;
3006
3007         if (!pci_is_pcie(pdev)) {
3008                 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3009                 goto err_out;
3010         }
3011
3012         /* Program the Ack/Nak latency and replay timers */
3013         max_payload = pdev->pcie_mpss;
3014
3015         if (max_payload < 2) {
3016                 static const u16 acknak[2] = { 0x76, 0xD0 };
3017                 static const u16 replay[2] = { 0x1E0, 0x2ED };
3018
3019                 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3020                                           acknak[max_payload])) {
3021                         dev_err(&pdev->dev,
3022                                 "Could not write PCI config space for ACK/NAK\n");
3023                         goto err_out;
3024                 }
3025                 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3026                                           replay[max_payload])) {
3027                         dev_err(&pdev->dev,
3028                                 "Could not write PCI config space for Replay Timer\n");
3029                         goto err_out;
3030                 }
3031         }
3032
3033         /* l0s and l1 latency timers.  We are using default values.
3034          * Representing 001 for L0s and 010 for L1
3035          */
3036         if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3037                 dev_err(&pdev->dev,
3038                         "Could not write PCI config space for Latency Timers\n");
3039                 goto err_out;
3040         }
3041
3042         /* Change the max read size to 2k */
3043         if (pcie_set_readrq(pdev, 2048)) {
3044                 dev_err(&pdev->dev,
3045                         "Couldn't change PCI config space for Max read size\n");
3046                 goto err_out;
3047         }
3048
3049         /* Get MAC address from config space if an eeprom exists, otherwise
3050          * the MAC address there will not be valid
3051          */
3052         if (!adapter->has_eeprom) {
3053                 et131x_hwaddr_init(adapter);
3054                 return 0;
3055         }
3056
3057         for (i = 0; i < ETH_ALEN; i++) {
3058                 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3059                                          adapter->rom_addr + i)) {
3060                         dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3061                         goto err_out;
3062                 }
3063         }
3064         ether_addr_copy(adapter->addr, adapter->rom_addr);
3065 out:
3066         return rc;
3067 err_out:
3068         rc = -EIO;
3069         goto out;
3070 }
3071
3072 /* et131x_error_timer_handler
3073  * @data: timer-specific variable; here a pointer to our adapter structure
3074  *
3075  * The routine called when the error timer expires, to track the number of
3076  * recurring errors.
3077  */
3078 static void et131x_error_timer_handler(struct timer_list *t)
3079 {
3080         struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
3081         struct phy_device *phydev = adapter->netdev->phydev;
3082
3083         if (et1310_in_phy_coma(adapter)) {
3084                 /* Bring the device immediately out of coma, to
3085                  * prevent it from sleeping indefinitely, this
3086                  * mechanism could be improved!
3087                  */
3088                 et1310_disable_phy_coma(adapter);
3089                 adapter->boot_coma = 20;
3090         } else {
3091                 et1310_update_macstat_host_counters(adapter);
3092         }
3093
3094         if (!phydev->link && adapter->boot_coma < 11)
3095                 adapter->boot_coma++;
3096
3097         if (adapter->boot_coma == 10) {
3098                 if (!phydev->link) {
3099                         if (!et1310_in_phy_coma(adapter)) {
3100                                 /* NOTE - This was originally a 'sync with
3101                                  *  interrupt'. How to do that under Linux?
3102                                  */
3103                                 et131x_enable_interrupts(adapter);
3104                                 et1310_enable_phy_coma(adapter);
3105                         }
3106                 }
3107         }
3108
3109         /* This is a periodic timer, so reschedule */
3110         mod_timer(&adapter->error_timer, jiffies +
3111                   msecs_to_jiffies(TX_ERROR_PERIOD));
3112 }
3113
3114 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3115 {
3116         et131x_tx_dma_memory_free(adapter);
3117         et131x_rx_dma_memory_free(adapter);
3118 }
3119
3120 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3121 {
3122         int status;
3123
3124         status = et131x_tx_dma_memory_alloc(adapter);
3125         if (status) {
3126                 dev_err(&adapter->pdev->dev,
3127                         "et131x_tx_dma_memory_alloc FAILED\n");
3128                 et131x_tx_dma_memory_free(adapter);
3129                 return status;
3130         }
3131
3132         status = et131x_rx_dma_memory_alloc(adapter);
3133         if (status) {
3134                 dev_err(&adapter->pdev->dev,
3135                         "et131x_rx_dma_memory_alloc FAILED\n");
3136                 et131x_adapter_memory_free(adapter);
3137                 return status;
3138         }
3139
3140         status = et131x_init_recv(adapter);
3141         if (status) {
3142                 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3143                 et131x_adapter_memory_free(adapter);
3144         }
3145         return status;
3146 }
3147
3148 static void et131x_adjust_link(struct net_device *netdev)
3149 {
3150         struct et131x_adapter *adapter = netdev_priv(netdev);
3151         struct  phy_device *phydev = netdev->phydev;
3152
3153         if (!phydev)
3154                 return;
3155         if (phydev->link == adapter->link)
3156                 return;
3157
3158         /* Check to see if we are in coma mode and if
3159          * so, disable it because we will not be able
3160          * to read PHY values until we are out.
3161          */
3162         if (et1310_in_phy_coma(adapter))
3163                 et1310_disable_phy_coma(adapter);
3164
3165         adapter->link = phydev->link;
3166         phy_print_status(phydev);
3167
3168         if (phydev->link) {
3169                 adapter->boot_coma = 20;
3170                 if (phydev->speed == SPEED_10) {
3171                         u16 register18;
3172
3173                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3174                                         &register18);
3175                         et131x_mii_write(adapter, phydev->mdio.addr,
3176                                          PHY_MPHY_CONTROL_REG,
3177                                          register18 | 0x4);
3178                         et131x_mii_write(adapter, phydev->mdio.addr,
3179                                          PHY_INDEX_REG, register18 | 0x8402);
3180                         et131x_mii_write(adapter, phydev->mdio.addr,
3181                                          PHY_DATA_REG, register18 | 511);
3182                         et131x_mii_write(adapter, phydev->mdio.addr,
3183                                          PHY_MPHY_CONTROL_REG, register18);
3184                 }
3185
3186                 et1310_config_flow_control(adapter);
3187
3188                 if (phydev->speed == SPEED_1000 &&
3189                     adapter->registry_jumbo_packet > 2048) {
3190                         u16 reg;
3191
3192                         et131x_mii_read(adapter, PHY_CONFIG, &reg);
3193                         reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3194                         reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3195                         et131x_mii_write(adapter, phydev->mdio.addr,
3196                                          PHY_CONFIG, reg);
3197                 }
3198
3199                 et131x_set_rx_dma_timer(adapter);
3200                 et1310_config_mac_regs2(adapter);
3201         } else {
3202                 adapter->boot_coma = 0;
3203
3204                 if (phydev->speed == SPEED_10) {
3205                         u16 register18;
3206
3207                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3208                                         &register18);
3209                         et131x_mii_write(adapter, phydev->mdio.addr,
3210                                          PHY_MPHY_CONTROL_REG,
3211                                          register18 | 0x4);
3212                         et131x_mii_write(adapter, phydev->mdio.addr,
3213                                          PHY_INDEX_REG, register18 | 0x8402);
3214                         et131x_mii_write(adapter, phydev->mdio.addr,
3215                                          PHY_DATA_REG, register18 | 511);
3216                         et131x_mii_write(adapter, phydev->mdio.addr,
3217                                          PHY_MPHY_CONTROL_REG, register18);
3218                 }
3219
3220                 et131x_free_busy_send_packets(adapter);
3221                 et131x_init_send(adapter);
3222
3223                 /* Bring the device back to the state it was during
3224                  * init prior to autonegotiation being complete. This
3225                  * way, when we get the auto-neg complete interrupt,
3226                  * we can complete init by calling config_mac_regs2.
3227                  */
3228                 et131x_soft_reset(adapter);
3229
3230                 et131x_adapter_setup(adapter);
3231
3232                 et131x_disable_txrx(netdev);
3233                 et131x_enable_txrx(netdev);
3234         }
3235 }
3236
3237 static int et131x_mii_probe(struct net_device *netdev)
3238 {
3239         struct et131x_adapter *adapter = netdev_priv(netdev);
3240         struct  phy_device *phydev = NULL;
3241
3242         phydev = phy_find_first(adapter->mii_bus);
3243         if (!phydev) {
3244                 dev_err(&adapter->pdev->dev, "no PHY found\n");
3245                 return -ENODEV;
3246         }
3247
3248         phydev = phy_connect(netdev, phydev_name(phydev),
3249                              &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3250
3251         if (IS_ERR(phydev)) {
3252                 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3253                 return PTR_ERR(phydev);
3254         }
3255
3256         phy_set_max_speed(phydev, SPEED_100);
3257
3258         if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3259                 phy_set_max_speed(phydev, SPEED_1000);
3260
3261         phydev->autoneg = AUTONEG_ENABLE;
3262
3263         phy_attached_info(phydev);
3264
3265         return 0;
3266 }
3267
3268 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3269                                                   struct pci_dev *pdev)
3270 {
3271         static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3272
3273         struct et131x_adapter *adapter;
3274
3275         adapter = netdev_priv(netdev);
3276         adapter->pdev = pci_dev_get(pdev);
3277         adapter->netdev = netdev;
3278
3279         spin_lock_init(&adapter->tcb_send_qlock);
3280         spin_lock_init(&adapter->tcb_ready_qlock);
3281         spin_lock_init(&adapter->rcv_lock);
3282
3283         adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
3284
3285         ether_addr_copy(adapter->addr, default_mac);
3286
3287         return adapter;
3288 }
3289
3290 static void et131x_pci_remove(struct pci_dev *pdev)
3291 {
3292         struct net_device *netdev = pci_get_drvdata(pdev);
3293         struct et131x_adapter *adapter = netdev_priv(netdev);
3294
3295         unregister_netdev(netdev);
3296         netif_napi_del(&adapter->napi);
3297         phy_disconnect(netdev->phydev);
3298         mdiobus_unregister(adapter->mii_bus);
3299         mdiobus_free(adapter->mii_bus);
3300
3301         et131x_adapter_memory_free(adapter);
3302         iounmap(adapter->regs);
3303         pci_dev_put(pdev);
3304
3305         free_netdev(netdev);
3306         pci_release_regions(pdev);
3307         pci_disable_device(pdev);
3308 }
3309
3310 static void et131x_up(struct net_device *netdev)
3311 {
3312         et131x_enable_txrx(netdev);
3313         phy_start(netdev->phydev);
3314 }
3315
3316 static void et131x_down(struct net_device *netdev)
3317 {
3318         /* Save the timestamp for the TX watchdog, prevent a timeout */
3319         netif_trans_update(netdev);
3320
3321         phy_stop(netdev->phydev);
3322         et131x_disable_txrx(netdev);
3323 }
3324
3325 #ifdef CONFIG_PM_SLEEP
3326 static int et131x_suspend(struct device *dev)
3327 {
3328         struct pci_dev *pdev = to_pci_dev(dev);
3329         struct net_device *netdev = pci_get_drvdata(pdev);
3330
3331         if (netif_running(netdev)) {
3332                 netif_device_detach(netdev);
3333                 et131x_down(netdev);
3334                 pci_save_state(pdev);
3335         }
3336
3337         return 0;
3338 }
3339
3340 static int et131x_resume(struct device *dev)
3341 {
3342         struct pci_dev *pdev = to_pci_dev(dev);
3343         struct net_device *netdev = pci_get_drvdata(pdev);
3344
3345         if (netif_running(netdev)) {
3346                 pci_restore_state(pdev);
3347                 et131x_up(netdev);
3348                 netif_device_attach(netdev);
3349         }
3350
3351         return 0;
3352 }
3353 #endif
3354
3355 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3356
3357 static irqreturn_t et131x_isr(int irq, void *dev_id)
3358 {
3359         bool handled = true;
3360         bool enable_interrupts = true;
3361         struct net_device *netdev = dev_id;
3362         struct et131x_adapter *adapter = netdev_priv(netdev);
3363         struct address_map __iomem *iomem = adapter->regs;
3364         struct rx_ring *rx_ring = &adapter->rx_ring;
3365         struct tx_ring *tx_ring = &adapter->tx_ring;
3366         u32 status;
3367
3368         if (!netif_device_present(netdev)) {
3369                 handled = false;
3370                 enable_interrupts = false;
3371                 goto out;
3372         }
3373
3374         et131x_disable_interrupts(adapter);
3375
3376         status = readl(&adapter->regs->global.int_status);
3377
3378         if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3379                 status &= ~INT_MASK_ENABLE;
3380         else
3381                 status &= ~INT_MASK_ENABLE_NO_FLOW;
3382
3383         /* Make sure this is our interrupt */
3384         if (!status) {
3385                 handled = false;
3386                 et131x_enable_interrupts(adapter);
3387                 goto out;
3388         }
3389
3390         /* This is our interrupt, so process accordingly */
3391         if (status & ET_INTR_WATCHDOG) {
3392                 struct tcb *tcb = tx_ring->send_head;
3393
3394                 if (tcb)
3395                         if (++tcb->stale > 1)
3396                                 status |= ET_INTR_TXDMA_ISR;
3397
3398                 if (rx_ring->unfinished_receives)
3399                         status |= ET_INTR_RXDMA_XFR_DONE;
3400                 else if (tcb == NULL)
3401                         writel(0, &adapter->regs->global.watchdog_timer);
3402
3403                 status &= ~ET_INTR_WATCHDOG;
3404         }
3405
3406         if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3407                 enable_interrupts = false;
3408                 napi_schedule(&adapter->napi);
3409         }
3410
3411         status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3412
3413         if (!status)
3414                 goto out;
3415
3416         if (status & ET_INTR_TXDMA_ERR) {
3417                 /* Following read also clears the register (COR) */
3418                 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3419
3420                 dev_warn(&adapter->pdev->dev,
3421                          "TXDMA_ERR interrupt, error = %d\n",
3422                          txdma_err);
3423         }
3424
3425         if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3426                 /* This indicates the number of unused buffers in RXDMA free
3427                  * buffer ring 0 is <= the limit you programmed. Free buffer
3428                  * resources need to be returned.  Free buffers are consumed as
3429                  * packets are passed from the network to the host. The host
3430                  * becomes aware of the packets from the contents of the packet
3431                  * status ring. This ring is queried when the packet done
3432                  * interrupt occurs. Packets are then passed to the OS. When
3433                  * the OS is done with the packets the resources can be
3434                  * returned to the ET1310 for re-use. This interrupt is one
3435                  * method of returning resources.
3436                  */
3437
3438                 /*  If the user has flow control on, then we will
3439                  * send a pause packet, otherwise just exit
3440                  */
3441                 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3442                         /* Tell the device to send a pause packet via the back
3443                          * pressure register (bp req and bp xon/xoff)
3444                          */
3445                         if (!et1310_in_phy_coma(adapter))
3446                                 writel(3, &iomem->txmac.bp_ctrl);
3447                 }
3448         }
3449
3450         /* Handle Packet Status Ring Low Interrupt */
3451         if (status & ET_INTR_RXDMA_STAT_LOW) {
3452                 /* Same idea as with the two Free Buffer Rings. Packets going
3453                  * from the network to the host each consume a free buffer
3454                  * resource and a packet status resource. These resources are
3455                  * passed to the OS. When the OS is done with the resources,
3456                  * they need to be returned to the ET1310. This is one method
3457                  * of returning the resources.
3458                  */
3459         }
3460
3461         if (status & ET_INTR_RXDMA_ERR) {
3462                 /* The rxdma_error interrupt is sent when a time-out on a
3463                  * request issued by the JAGCore has occurred or a completion is
3464                  * returned with an un-successful status. In both cases the
3465                  * request is considered complete. The JAGCore will
3466                  * automatically re-try the request in question. Normally
3467                  * information on events like these are sent to the host using
3468                  * the "Advanced Error Reporting" capability. This interrupt is
3469                  * another way of getting similar information. The only thing
3470                  * required is to clear the interrupt by reading the ISR in the
3471                  * global resources. The JAGCore will do a re-try on the
3472                  * request. Normally you should never see this interrupt. If
3473                  * you start to see this interrupt occurring frequently then
3474                  * something bad has occurred. A reset might be the thing to do.
3475                  */
3476                 /* TRAP();*/
3477
3478                 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3479                          readl(&iomem->txmac.tx_test));
3480         }
3481
3482         /* Handle the Wake on LAN Event */
3483         if (status & ET_INTR_WOL) {
3484                 /* This is a secondary interrupt for wake on LAN. The driver
3485                  * should never see this, if it does, something serious is
3486                  * wrong.
3487                  */
3488                 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3489         }
3490
3491         if (status & ET_INTR_TXMAC) {
3492                 u32 err = readl(&iomem->txmac.err);
3493
3494                 /* When any of the errors occur and TXMAC generates an
3495                  * interrupt to report these errors, it usually means that
3496                  * TXMAC has detected an error in the data stream retrieved
3497                  * from the on-chip Tx Q. All of these errors are catastrophic
3498                  * and TXMAC won't be able to recover data when these errors
3499                  * occur. In a nutshell, the whole Tx path will have to be reset
3500                  * and re-configured afterwards.
3501                  */
3502                 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3503                          err);
3504
3505                 /* If we are debugging, we want to see this error, otherwise we
3506                  * just want the device to be reset and continue
3507                  */
3508         }
3509
3510         if (status & ET_INTR_RXMAC) {
3511                 /* These interrupts are catastrophic to the device, what we need
3512                  * to do is disable the interrupts and set the flag to cause us
3513                  * to reset so we can solve this issue.
3514                  */
3515                 dev_warn(&adapter->pdev->dev,
3516                          "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3517                          readl(&iomem->rxmac.err_reg));
3518
3519                 dev_warn(&adapter->pdev->dev,
3520                          "Enable 0x%08x, Diag 0x%08x\n",
3521                          readl(&iomem->rxmac.ctrl),
3522                          readl(&iomem->rxmac.rxq_diag));
3523
3524                 /* If we are debugging, we want to see this error, otherwise we
3525                  * just want the device to be reset and continue
3526                  */
3527         }
3528
3529         if (status & ET_INTR_MAC_STAT) {
3530                 /* This means at least one of the un-masked counters in the
3531                  * MAC_STAT block has rolled over. Use this to maintain the top,
3532                  * software managed bits of the counter(s).
3533                  */
3534                 et1310_handle_macstat_interrupt(adapter);
3535         }
3536
3537         if (status & ET_INTR_SLV_TIMEOUT) {
3538                 /* This means a timeout has occurred on a read or write request
3539                  * to one of the JAGCore registers. The Global Resources block
3540                  * has terminated the request and on a read request, returned a
3541                  * "fake" value. The most likely reasons are: Bad Address or the
3542                  * addressed module is in a power-down state and can't respond.
3543                  */
3544         }
3545
3546 out:
3547         if (enable_interrupts)
3548                 et131x_enable_interrupts(adapter);
3549
3550         return IRQ_RETVAL(handled);
3551 }
3552
3553 static int et131x_poll(struct napi_struct *napi, int budget)
3554 {
3555         struct et131x_adapter *adapter =
3556                 container_of(napi, struct et131x_adapter, napi);
3557         int work_done = et131x_handle_recv_pkts(adapter, budget);
3558
3559         et131x_handle_send_pkts(adapter);
3560
3561         if (work_done < budget) {
3562                 napi_complete_done(&adapter->napi, work_done);
3563                 et131x_enable_interrupts(adapter);
3564         }
3565
3566         return work_done;
3567 }
3568
3569 /* et131x_stats - Return the current device statistics  */
3570 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3571 {
3572         struct et131x_adapter *adapter = netdev_priv(netdev);
3573         struct net_device_stats *stats = &adapter->netdev->stats;
3574         struct ce_stats *devstat = &adapter->stats;
3575
3576         stats->rx_errors = devstat->rx_length_errs +
3577                            devstat->rx_align_errs +
3578                            devstat->rx_crc_errs +
3579                            devstat->rx_code_violations +
3580                            devstat->rx_other_errs;
3581         stats->tx_errors = devstat->tx_max_pkt_errs;
3582         stats->multicast = devstat->multicast_pkts_rcvd;
3583         stats->collisions = devstat->tx_collisions;
3584
3585         stats->rx_length_errors = devstat->rx_length_errs;
3586         stats->rx_over_errors = devstat->rx_overflows;
3587         stats->rx_crc_errors = devstat->rx_crc_errs;
3588         stats->rx_dropped = devstat->rcvd_pkts_dropped;
3589
3590         /* NOTE: Not used, can't find analogous statistics */
3591         /* stats->rx_frame_errors     = devstat->; */
3592         /* stats->rx_fifo_errors      = devstat->; */
3593         /* stats->rx_missed_errors    = devstat->; */
3594
3595         /* stats->tx_aborted_errors   = devstat->; */
3596         /* stats->tx_carrier_errors   = devstat->; */
3597         /* stats->tx_fifo_errors      = devstat->; */
3598         /* stats->tx_heartbeat_errors = devstat->; */
3599         /* stats->tx_window_errors    = devstat->; */
3600         return stats;
3601 }
3602
3603 static int et131x_open(struct net_device *netdev)
3604 {
3605         struct et131x_adapter *adapter = netdev_priv(netdev);
3606         struct pci_dev *pdev = adapter->pdev;
3607         unsigned int irq = pdev->irq;
3608         int result;
3609
3610         /* Start the timer to track NIC errors */
3611         timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
3612         adapter->error_timer.expires = jiffies +
3613                 msecs_to_jiffies(TX_ERROR_PERIOD);
3614         add_timer(&adapter->error_timer);
3615
3616         result = request_irq(irq, et131x_isr,
3617                              IRQF_SHARED, netdev->name, netdev);
3618         if (result) {
3619                 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3620                 return result;
3621         }
3622
3623         adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3624
3625         napi_enable(&adapter->napi);
3626
3627         et131x_up(netdev);
3628
3629         return result;
3630 }
3631
3632 static int et131x_close(struct net_device *netdev)
3633 {
3634         struct et131x_adapter *adapter = netdev_priv(netdev);
3635
3636         et131x_down(netdev);
3637         napi_disable(&adapter->napi);
3638
3639         adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3640         free_irq(adapter->pdev->irq, netdev);
3641
3642         /* Stop the error timer */
3643         return del_timer_sync(&adapter->error_timer);
3644 }
3645
3646 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3647 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3648 {
3649         int filter = adapter->packet_filter;
3650         u32 ctrl;
3651         u32 pf_ctrl;
3652
3653         ctrl = readl(&adapter->regs->rxmac.ctrl);
3654         pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3655
3656         /* Default to disabled packet filtering */
3657         ctrl |= 0x04;
3658
3659         /* Set us to be in promiscuous mode so we receive everything, this
3660          * is also true when we get a packet filter of 0
3661          */
3662         if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3663                 pf_ctrl &= ~7;  /* Clear filter bits */
3664         else {
3665                 /* Set us up with Multicast packet filtering.  Three cases are
3666                  * possible - (1) we have a multi-cast list, (2) we receive ALL
3667                  * multicast entries or (3) we receive none.
3668                  */
3669                 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3670                         pf_ctrl &= ~2;  /* Multicast filter bit */
3671                 else {
3672                         et1310_setup_device_for_multicast(adapter);
3673                         pf_ctrl |= 2;
3674                         ctrl &= ~0x04;
3675                 }
3676
3677                 /* Set us up with Unicast packet filtering */
3678                 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3679                         et1310_setup_device_for_unicast(adapter);
3680                         pf_ctrl |= 4;
3681                         ctrl &= ~0x04;
3682                 }
3683
3684                 /* Set us up with Broadcast packet filtering */
3685                 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3686                         pf_ctrl |= 1;   /* Broadcast filter bit */
3687                         ctrl &= ~0x04;
3688                 } else {
3689                         pf_ctrl &= ~1;
3690                 }
3691
3692                 /* Setup the receive mac configuration registers - Packet
3693                  * Filter control + the enable / disable for packet filter
3694                  * in the control reg.
3695                  */
3696                 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3697                 writel(ctrl, &adapter->regs->rxmac.ctrl);
3698         }
3699         return 0;
3700 }
3701
3702 static void et131x_multicast(struct net_device *netdev)
3703 {
3704         struct et131x_adapter *adapter = netdev_priv(netdev);
3705         int packet_filter;
3706         struct netdev_hw_addr *ha;
3707         int i;
3708
3709         /* Before we modify the platform-independent filter flags, store them
3710          * locally. This allows us to determine if anything's changed and if
3711          * we even need to bother the hardware
3712          */
3713         packet_filter = adapter->packet_filter;
3714
3715         /* Clear the 'multicast' flag locally; because we only have a single
3716          * flag to check multicast, and multiple multicast addresses can be
3717          * set, this is the easiest way to determine if more than one
3718          * multicast address is being set.
3719          */
3720         packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3721
3722         /* Check the net_device flags and set the device independent flags
3723          * accordingly
3724          */
3725         if (netdev->flags & IFF_PROMISC)
3726                 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3727         else
3728                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3729
3730         if ((netdev->flags & IFF_ALLMULTI) ||
3731             (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3732                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3733
3734         if (netdev_mc_count(netdev) < 1) {
3735                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3736                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3737         } else {
3738                 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3739         }
3740
3741         /* Set values in the private adapter struct */
3742         i = 0;
3743         netdev_for_each_mc_addr(ha, netdev) {
3744                 if (i == NIC_MAX_MCAST_LIST)
3745                         break;
3746                 ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3747         }
3748         adapter->multicast_addr_count = i;
3749
3750         /* Are the new flags different from the previous ones? If not, then no
3751          * action is required
3752          *
3753          * NOTE - This block will always update the multicast_list with the
3754          *        hardware, even if the addresses aren't the same.
3755          */
3756         if (packet_filter != adapter->packet_filter)
3757                 et131x_set_packet_filter(adapter);
3758 }
3759
3760 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3761 {
3762         struct et131x_adapter *adapter = netdev_priv(netdev);
3763         struct tx_ring *tx_ring = &adapter->tx_ring;
3764
3765         /* stop the queue if it's getting full */
3766         if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3767                 netif_stop_queue(netdev);
3768
3769         /* Save the timestamp for the TX timeout watchdog */
3770         netif_trans_update(netdev);
3771
3772         /* TCB is not available */
3773         if (tx_ring->used >= NUM_TCB)
3774                 goto drop_err;
3775
3776         if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3777             !netif_carrier_ok(netdev))
3778                 goto drop_err;
3779
3780         if (send_packet(skb, adapter))
3781                 goto drop_err;
3782
3783         return NETDEV_TX_OK;
3784
3785 drop_err:
3786         dev_kfree_skb_any(skb);
3787         adapter->netdev->stats.tx_dropped++;
3788         return NETDEV_TX_OK;
3789 }
3790
3791 /* et131x_tx_timeout - Timeout handler
3792  *
3793  * The handler called when a Tx request times out. The timeout period is
3794  * specified by the 'tx_timeo" element in the net_device structure (see
3795  * et131x_alloc_device() to see how this value is set).
3796  */
3797 static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3798 {
3799         struct et131x_adapter *adapter = netdev_priv(netdev);
3800         struct tx_ring *tx_ring = &adapter->tx_ring;
3801         struct tcb *tcb;
3802         unsigned long flags;
3803
3804         /* If the device is closed, ignore the timeout */
3805         if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3806                 return;
3807
3808         /* Any nonrecoverable hardware error?
3809          * Checks adapter->flags for any failure in phy reading
3810          */
3811         if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3812                 return;
3813
3814         /* Hardware failure? */
3815         if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3816                 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3817                 return;
3818         }
3819
3820         /* Is send stuck? */
3821         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3822         tcb = tx_ring->send_head;
3823         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3824
3825         if (tcb) {
3826                 tcb->count++;
3827
3828                 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3829                         dev_warn(&adapter->pdev->dev,
3830                                  "Send stuck - reset. tcb->WrIndex %x\n",
3831                                  tcb->index);
3832
3833                         adapter->netdev->stats.tx_errors++;
3834
3835                         /* perform reset of tx/rx */
3836                         et131x_disable_txrx(netdev);
3837                         et131x_enable_txrx(netdev);
3838                 }
3839         }
3840 }
3841
3842 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3843 {
3844         int result = 0;
3845         struct et131x_adapter *adapter = netdev_priv(netdev);
3846
3847         et131x_disable_txrx(netdev);
3848
3849         netdev->mtu = new_mtu;
3850
3851         et131x_adapter_memory_free(adapter);
3852
3853         /* Set the config parameter for Jumbo Packet support */
3854         adapter->registry_jumbo_packet = new_mtu + 14;
3855         et131x_soft_reset(adapter);
3856
3857         result = et131x_adapter_memory_alloc(adapter);
3858         if (result != 0) {
3859                 dev_warn(&adapter->pdev->dev,
3860                          "Change MTU failed; couldn't re-alloc DMA memory\n");
3861                 return result;
3862         }
3863
3864         et131x_init_send(adapter);
3865         et131x_hwaddr_init(adapter);
3866         ether_addr_copy(netdev->dev_addr, adapter->addr);
3867
3868         /* Init the device with the new settings */
3869         et131x_adapter_setup(adapter);
3870         et131x_enable_txrx(netdev);
3871
3872         return result;
3873 }
3874
3875 static const struct net_device_ops et131x_netdev_ops = {
3876         .ndo_open               = et131x_open,
3877         .ndo_stop               = et131x_close,
3878         .ndo_start_xmit         = et131x_tx,
3879         .ndo_set_rx_mode        = et131x_multicast,
3880         .ndo_tx_timeout         = et131x_tx_timeout,
3881         .ndo_change_mtu         = et131x_change_mtu,
3882         .ndo_set_mac_address    = eth_mac_addr,
3883         .ndo_validate_addr      = eth_validate_addr,
3884         .ndo_get_stats          = et131x_stats,
3885         .ndo_eth_ioctl          = phy_do_ioctl,
3886 };
3887
3888 static int et131x_pci_setup(struct pci_dev *pdev,
3889                             const struct pci_device_id *ent)
3890 {
3891         struct net_device *netdev;
3892         struct et131x_adapter *adapter;
3893         int rc;
3894
3895         rc = pci_enable_device(pdev);
3896         if (rc < 0) {
3897                 dev_err(&pdev->dev, "pci_enable_device() failed\n");
3898                 goto out;
3899         }
3900
3901         /* Perform some basic PCI checks */
3902         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3903                 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3904                 rc = -ENODEV;
3905                 goto err_disable;
3906         }
3907
3908         rc = pci_request_regions(pdev, DRIVER_NAME);
3909         if (rc < 0) {
3910                 dev_err(&pdev->dev, "Can't get PCI resources\n");
3911                 goto err_disable;
3912         }
3913
3914         pci_set_master(pdev);
3915
3916         /* Check the DMA addressing support of this device */
3917         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3918             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3919                 dev_err(&pdev->dev, "No usable DMA addressing method\n");
3920                 rc = -EIO;
3921                 goto err_release_res;
3922         }
3923
3924         netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3925         if (!netdev) {
3926                 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3927                 rc = -ENOMEM;
3928                 goto err_release_res;
3929         }
3930
3931         netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3932         netdev->netdev_ops     = &et131x_netdev_ops;
3933         netdev->min_mtu        = ET131X_MIN_MTU;
3934         netdev->max_mtu        = ET131X_MAX_MTU;
3935
3936         SET_NETDEV_DEV(netdev, &pdev->dev);
3937         netdev->ethtool_ops = &et131x_ethtool_ops;
3938
3939         adapter = et131x_adapter_init(netdev, pdev);
3940
3941         rc = et131x_pci_init(adapter, pdev);
3942         if (rc < 0)
3943                 goto err_free_dev;
3944
3945         /* Map the bus-relative registers to system virtual memory */
3946         adapter->regs = pci_ioremap_bar(pdev, 0);
3947         if (!adapter->regs) {
3948                 dev_err(&pdev->dev, "Cannot map device registers\n");
3949                 rc = -ENOMEM;
3950                 goto err_free_dev;
3951         }
3952
3953         /* If Phy COMA mode was enabled when we went down, disable it here. */
3954         writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3955
3956         et131x_soft_reset(adapter);
3957         et131x_disable_interrupts(adapter);
3958
3959         rc = et131x_adapter_memory_alloc(adapter);
3960         if (rc < 0) {
3961                 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3962                 goto err_iounmap;
3963         }
3964
3965         et131x_init_send(adapter);
3966
3967         netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3968
3969         ether_addr_copy(netdev->dev_addr, adapter->addr);
3970
3971         rc = -ENOMEM;
3972
3973         adapter->mii_bus = mdiobus_alloc();
3974         if (!adapter->mii_bus) {
3975                 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
3976                 goto err_mem_free;
3977         }
3978
3979         adapter->mii_bus->name = "et131x_eth_mii";
3980         snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
3981                  (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
3982         adapter->mii_bus->priv = netdev;
3983         adapter->mii_bus->read = et131x_mdio_read;
3984         adapter->mii_bus->write = et131x_mdio_write;
3985
3986         rc = mdiobus_register(adapter->mii_bus);
3987         if (rc < 0) {
3988                 dev_err(&pdev->dev, "failed to register MII bus\n");
3989                 goto err_mdio_free;
3990         }
3991
3992         rc = et131x_mii_probe(netdev);
3993         if (rc < 0) {
3994                 dev_err(&pdev->dev, "failed to probe MII bus\n");
3995                 goto err_mdio_unregister;
3996         }
3997
3998         et131x_adapter_setup(adapter);
3999
4000         /* Init variable for counting how long we do not have link status */
4001         adapter->boot_coma = 0;
4002         et1310_disable_phy_coma(adapter);
4003
4004         /* We can enable interrupts now
4005          *
4006          *  NOTE - Because registration of interrupt handler is done in the
4007          *         device's open(), defer enabling device interrupts to that
4008          *         point
4009          */
4010
4011         rc = register_netdev(netdev);
4012         if (rc < 0) {
4013                 dev_err(&pdev->dev, "register_netdev() failed\n");
4014                 goto err_phy_disconnect;
4015         }
4016
4017         /* Register the net_device struct with the PCI subsystem. Save a copy
4018          * of the PCI config space for this device now that the device has
4019          * been initialized, just in case it needs to be quickly restored.
4020          */
4021         pci_set_drvdata(pdev, netdev);
4022 out:
4023         return rc;
4024
4025 err_phy_disconnect:
4026         phy_disconnect(netdev->phydev);
4027 err_mdio_unregister:
4028         mdiobus_unregister(adapter->mii_bus);
4029 err_mdio_free:
4030         mdiobus_free(adapter->mii_bus);
4031 err_mem_free:
4032         et131x_adapter_memory_free(adapter);
4033 err_iounmap:
4034         iounmap(adapter->regs);
4035 err_free_dev:
4036         pci_dev_put(pdev);
4037         free_netdev(netdev);
4038 err_release_res:
4039         pci_release_regions(pdev);
4040 err_disable:
4041         pci_disable_device(pdev);
4042         goto out;
4043 }
4044
4045 static const struct pci_device_id et131x_pci_table[] = {
4046         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4047         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4048         { 0,}
4049 };
4050 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4051
4052 static struct pci_driver et131x_driver = {
4053         .name           = DRIVER_NAME,
4054         .id_table       = et131x_pci_table,
4055         .probe          = et131x_pci_setup,
4056         .remove         = et131x_pci_remove,
4057         .driver.pm      = &et131x_pm_ops,
4058 };
4059
4060 module_pci_driver(et131x_driver);