5080372b0fd750ead6935846e1660047077eabfa
[linux-2.6-microblaze.git] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58
59 #include "e1000.h"
60
61 #define ICH_FLASH_GFPREG                0x0000
62 #define ICH_FLASH_HSFSTS                0x0004
63 #define ICH_FLASH_HSFCTL                0x0006
64 #define ICH_FLASH_FADDR                 0x0008
65 #define ICH_FLASH_FDATA0                0x0010
66 #define ICH_FLASH_PR0                   0x0074
67
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
73
74 #define ICH_CYCLE_READ                  0
75 #define ICH_CYCLE_WRITE                 2
76 #define ICH_CYCLE_ERASE                 3
77
78 #define FLASH_GFPREG_BASE_MASK          0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT         12
80
81 #define ICH_FLASH_SEG_SIZE_256          256
82 #define ICH_FLASH_SEG_SIZE_4K           4096
83 #define ICH_FLASH_SEG_SIZE_8K           8192
84 #define ICH_FLASH_SEG_SIZE_64K          65536
85
86
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID         0x00008000
90
91 #define E1000_ICH_MNG_IAMT_MODE         0x2
92
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94                                  (ID_LED_DEF1_OFF2 <<  8) | \
95                                  (ID_LED_DEF1_ON2  <<  4) | \
96                                  (ID_LED_DEF1_DEF2))
97
98 #define E1000_ICH_NVM_SIG_WORD          0x13
99 #define E1000_ICH_NVM_SIG_MASK          0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102
103 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
104
105 #define E1000_FEXTNVM_SW_CONFIG         1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111
112 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
113
114 #define E1000_ICH_RAR_ENTRIES           7
115
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118                            ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
125
126 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
127
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL              PHY_REG(770, 17)
138
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL                 PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK     0x6000
142
143 /* Strapping Option Register - RO */
144 #define E1000_STRAP                     0x0000C
145 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
146 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
147
148 /* OEM Bits Phy Register */
149 #define HV_OEM_BITS            PHY_REG(768, 25)
150 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
151 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
152 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
153
154 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
155 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
156
157 /* KMRN Mode Control */
158 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
159 #define HV_KMRN_MDIO_SLOW      0x0400
160
161 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
162 /* Offset 04h HSFSTS */
163 union ich8_hws_flash_status {
164         struct ich8_hsfsts {
165                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
166                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
167                 u16 dael       :1; /* bit 2 Direct Access error Log */
168                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
169                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
170                 u16 reserved1  :2; /* bit 13:6 Reserved */
171                 u16 reserved2  :6; /* bit 13:6 Reserved */
172                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
173                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
174         } hsf_status;
175         u16 regval;
176 };
177
178 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
179 /* Offset 06h FLCTL */
180 union ich8_hws_flash_ctrl {
181         struct ich8_hsflctl {
182                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
183                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
184                 u16 reserved   :5;   /* 7:3 Reserved  */
185                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
186                 u16 flockdn    :6;   /* 15:10 Reserved */
187         } hsf_ctrl;
188         u16 regval;
189 };
190
191 /* ICH Flash Region Access Permissions */
192 union ich8_hws_flash_regacc {
193         struct ich8_flracc {
194                 u32 grra      :8; /* 0:7 GbE region Read Access */
195                 u32 grwa      :8; /* 8:15 GbE region Write Access */
196                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
197                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
198         } hsf_flregacc;
199         u16 regval;
200 };
201
202 /* ICH Flash Protected Region */
203 union ich8_flash_protected_range {
204         struct ich8_pr {
205                 u32 base:13;     /* 0:12 Protected Range Base */
206                 u32 reserved1:2; /* 13:14 Reserved */
207                 u32 rpe:1;       /* 15 Read Protection Enable */
208                 u32 limit:13;    /* 16:28 Protected Range Limit */
209                 u32 reserved2:2; /* 29:30 Reserved */
210                 u32 wpe:1;       /* 31 Write Protection Enable */
211         } range;
212         u32 regval;
213 };
214
215 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
216 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
217 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
218 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
219 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
220                                                 u32 offset, u8 byte);
221 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
222                                          u8 *data);
223 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
224                                          u16 *data);
225 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
226                                          u8 size, u16 *data);
227 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
228 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
229 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
230 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
231 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
232 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
233 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
234 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
235 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
236 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
237 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
238 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
239 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
240 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
241 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
242 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
243 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
244 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
245 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
246 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
247
248 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
249 {
250         return readw(hw->flash_address + reg);
251 }
252
253 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
254 {
255         return readl(hw->flash_address + reg);
256 }
257
258 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
259 {
260         writew(val, hw->flash_address + reg);
261 }
262
263 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
264 {
265         writel(val, hw->flash_address + reg);
266 }
267
268 #define er16flash(reg)          __er16flash(hw, (reg))
269 #define er32flash(reg)          __er32flash(hw, (reg))
270 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
271 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
272
273 /**
274  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
275  *  @hw: pointer to the HW structure
276  *
277  *  Initialize family-specific PHY parameters and function pointers.
278  **/
279 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
280 {
281         struct e1000_phy_info *phy = &hw->phy;
282         u32 ctrl, fwsm;
283         s32 ret_val = 0;
284
285         phy->addr                     = 1;
286         phy->reset_delay_us           = 100;
287
288         phy->ops.read_reg             = e1000_read_phy_reg_hv;
289         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
290         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
291         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
292         phy->ops.write_reg            = e1000_write_phy_reg_hv;
293         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
294         phy->ops.power_up             = e1000_power_up_phy_copper;
295         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
296         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
297
298         /*
299          * The MAC-PHY interconnect may still be in SMBus mode
300          * after Sx->S0.  If the manageability engine (ME) is
301          * disabled, then toggle the LANPHYPC Value bit to force
302          * the interconnect to PCIe mode.
303          */
304         fwsm = er32(FWSM);
305         if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
306                 ctrl = er32(CTRL);
307                 ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
308                 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
309                 ew32(CTRL, ctrl);
310                 udelay(10);
311                 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
312                 ew32(CTRL, ctrl);
313                 msleep(50);
314
315                 /*
316                  * Gate automatic PHY configuration by hardware on
317                  * non-managed 82579
318                  */
319                 if (hw->mac.type == e1000_pch2lan)
320                         e1000_gate_hw_phy_config_ich8lan(hw, true);
321         }
322
323         /*
324          * Reset the PHY before any acccess to it.  Doing so, ensures that
325          * the PHY is in a known good state before we read/write PHY registers.
326          * The generic reset is sufficient here, because we haven't determined
327          * the PHY type yet.
328          */
329         ret_val = e1000e_phy_hw_reset_generic(hw);
330         if (ret_val)
331                 goto out;
332
333         /* Ungate automatic PHY configuration on non-managed 82579 */
334         if ((hw->mac.type == e1000_pch2lan)  &&
335             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
336                 msleep(10);
337                 e1000_gate_hw_phy_config_ich8lan(hw, false);
338         }
339
340         phy->id = e1000_phy_unknown;
341         switch (hw->mac.type) {
342         default:
343                 ret_val = e1000e_get_phy_id(hw);
344                 if (ret_val)
345                         goto out;
346                 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
347                         break;
348                 /* fall-through */
349         case e1000_pch2lan:
350                 /*
351                  * In case the PHY needs to be in mdio slow mode,
352                  * set slow mode and try to get the PHY id again.
353                  */
354                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
355                 if (ret_val)
356                         goto out;
357                 ret_val = e1000e_get_phy_id(hw);
358                 if (ret_val)
359                         goto out;
360                 break;
361         }
362         phy->type = e1000e_get_phy_type_from_id(phy->id);
363
364         switch (phy->type) {
365         case e1000_phy_82577:
366         case e1000_phy_82579:
367                 phy->ops.check_polarity = e1000_check_polarity_82577;
368                 phy->ops.force_speed_duplex =
369                         e1000_phy_force_speed_duplex_82577;
370                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
371                 phy->ops.get_info = e1000_get_phy_info_82577;
372                 phy->ops.commit = e1000e_phy_sw_reset;
373                 break;
374         case e1000_phy_82578:
375                 phy->ops.check_polarity = e1000_check_polarity_m88;
376                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
377                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
378                 phy->ops.get_info = e1000e_get_phy_info_m88;
379                 break;
380         default:
381                 ret_val = -E1000_ERR_PHY;
382                 break;
383         }
384
385 out:
386         return ret_val;
387 }
388
389 /**
390  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
391  *  @hw: pointer to the HW structure
392  *
393  *  Initialize family-specific PHY parameters and function pointers.
394  **/
395 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
396 {
397         struct e1000_phy_info *phy = &hw->phy;
398         s32 ret_val;
399         u16 i = 0;
400
401         phy->addr                       = 1;
402         phy->reset_delay_us             = 100;
403
404         phy->ops.power_up               = e1000_power_up_phy_copper;
405         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
406
407         /*
408          * We may need to do this twice - once for IGP and if that fails,
409          * we'll set BM func pointers and try again
410          */
411         ret_val = e1000e_determine_phy_address(hw);
412         if (ret_val) {
413                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
414                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
415                 ret_val = e1000e_determine_phy_address(hw);
416                 if (ret_val) {
417                         e_dbg("Cannot determine PHY addr. Erroring out\n");
418                         return ret_val;
419                 }
420         }
421
422         phy->id = 0;
423         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
424                (i++ < 100)) {
425                 msleep(1);
426                 ret_val = e1000e_get_phy_id(hw);
427                 if (ret_val)
428                         return ret_val;
429         }
430
431         /* Verify phy id */
432         switch (phy->id) {
433         case IGP03E1000_E_PHY_ID:
434                 phy->type = e1000_phy_igp_3;
435                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
436                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
437                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
438                 phy->ops.get_info = e1000e_get_phy_info_igp;
439                 phy->ops.check_polarity = e1000_check_polarity_igp;
440                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
441                 break;
442         case IFE_E_PHY_ID:
443         case IFE_PLUS_E_PHY_ID:
444         case IFE_C_E_PHY_ID:
445                 phy->type = e1000_phy_ife;
446                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
447                 phy->ops.get_info = e1000_get_phy_info_ife;
448                 phy->ops.check_polarity = e1000_check_polarity_ife;
449                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
450                 break;
451         case BME1000_E_PHY_ID:
452                 phy->type = e1000_phy_bm;
453                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
454                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
455                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
456                 phy->ops.commit = e1000e_phy_sw_reset;
457                 phy->ops.get_info = e1000e_get_phy_info_m88;
458                 phy->ops.check_polarity = e1000_check_polarity_m88;
459                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
460                 break;
461         default:
462                 return -E1000_ERR_PHY;
463                 break;
464         }
465
466         return 0;
467 }
468
469 /**
470  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
471  *  @hw: pointer to the HW structure
472  *
473  *  Initialize family-specific NVM parameters and function
474  *  pointers.
475  **/
476 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
477 {
478         struct e1000_nvm_info *nvm = &hw->nvm;
479         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
480         u32 gfpreg, sector_base_addr, sector_end_addr;
481         u16 i;
482
483         /* Can't read flash registers if the register set isn't mapped. */
484         if (!hw->flash_address) {
485                 e_dbg("ERROR: Flash registers not mapped\n");
486                 return -E1000_ERR_CONFIG;
487         }
488
489         nvm->type = e1000_nvm_flash_sw;
490
491         gfpreg = er32flash(ICH_FLASH_GFPREG);
492
493         /*
494          * sector_X_addr is a "sector"-aligned address (4096 bytes)
495          * Add 1 to sector_end_addr since this sector is included in
496          * the overall size.
497          */
498         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
499         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
500
501         /* flash_base_addr is byte-aligned */
502         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
503
504         /*
505          * find total size of the NVM, then cut in half since the total
506          * size represents two separate NVM banks.
507          */
508         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
509                                 << FLASH_SECTOR_ADDR_SHIFT;
510         nvm->flash_bank_size /= 2;
511         /* Adjust to word count */
512         nvm->flash_bank_size /= sizeof(u16);
513
514         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
515
516         /* Clear shadow ram */
517         for (i = 0; i < nvm->word_size; i++) {
518                 dev_spec->shadow_ram[i].modified = false;
519                 dev_spec->shadow_ram[i].value    = 0xFFFF;
520         }
521
522         return 0;
523 }
524
525 /**
526  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
527  *  @hw: pointer to the HW structure
528  *
529  *  Initialize family-specific MAC parameters and function
530  *  pointers.
531  **/
532 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
533 {
534         struct e1000_hw *hw = &adapter->hw;
535         struct e1000_mac_info *mac = &hw->mac;
536
537         /* Set media type function pointer */
538         hw->phy.media_type = e1000_media_type_copper;
539
540         /* Set mta register count */
541         mac->mta_reg_count = 32;
542         /* Set rar entry count */
543         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
544         if (mac->type == e1000_ich8lan)
545                 mac->rar_entry_count--;
546         /* FWSM register */
547         mac->has_fwsm = true;
548         /* ARC subsystem not supported */
549         mac->arc_subsystem_valid = false;
550         /* Adaptive IFS supported */
551         mac->adaptive_ifs = true;
552
553         /* LED operations */
554         switch (mac->type) {
555         case e1000_ich8lan:
556         case e1000_ich9lan:
557         case e1000_ich10lan:
558                 /* check management mode */
559                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
560                 /* ID LED init */
561                 mac->ops.id_led_init = e1000e_id_led_init;
562                 /* setup LED */
563                 mac->ops.setup_led = e1000e_setup_led_generic;
564                 /* cleanup LED */
565                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
566                 /* turn on/off LED */
567                 mac->ops.led_on = e1000_led_on_ich8lan;
568                 mac->ops.led_off = e1000_led_off_ich8lan;
569                 break;
570         case e1000_pchlan:
571         case e1000_pch2lan:
572                 /* check management mode */
573                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
574                 /* ID LED init */
575                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
576                 /* setup LED */
577                 mac->ops.setup_led = e1000_setup_led_pchlan;
578                 /* cleanup LED */
579                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
580                 /* turn on/off LED */
581                 mac->ops.led_on = e1000_led_on_pchlan;
582                 mac->ops.led_off = e1000_led_off_pchlan;
583                 break;
584         default:
585                 break;
586         }
587
588         /* Enable PCS Lock-loss workaround for ICH8 */
589         if (mac->type == e1000_ich8lan)
590                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
591
592         /* Gate automatic PHY configuration by hardware on managed 82579 */
593         if ((mac->type == e1000_pch2lan) &&
594             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
595                 e1000_gate_hw_phy_config_ich8lan(hw, true);
596
597         return 0;
598 }
599
600 /**
601  *  e1000_set_eee_pchlan - Enable/disable EEE support
602  *  @hw: pointer to the HW structure
603  *
604  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
605  *  the LPI Control register will remain set only if/when link is up.
606  **/
607 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
608 {
609         s32 ret_val = 0;
610         u16 phy_reg;
611
612         if (hw->phy.type != e1000_phy_82579)
613                 goto out;
614
615         ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
616         if (ret_val)
617                 goto out;
618
619         if (hw->dev_spec.ich8lan.eee_disable)
620                 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
621         else
622                 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
623
624         ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
625 out:
626         return ret_val;
627 }
628
629 /**
630  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
631  *  @hw: pointer to the HW structure
632  *
633  *  Checks to see of the link status of the hardware has changed.  If a
634  *  change in link status has been detected, then we read the PHY registers
635  *  to get the current speed/duplex if link exists.
636  **/
637 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
638 {
639         struct e1000_mac_info *mac = &hw->mac;
640         s32 ret_val;
641         bool link;
642
643         /*
644          * We only want to go out to the PHY registers to see if Auto-Neg
645          * has completed and/or if our link status has changed.  The
646          * get_link_status flag is set upon receiving a Link Status
647          * Change or Rx Sequence Error interrupt.
648          */
649         if (!mac->get_link_status) {
650                 ret_val = 0;
651                 goto out;
652         }
653
654         /*
655          * First we want to see if the MII Status Register reports
656          * link.  If so, then we want to get the current speed/duplex
657          * of the PHY.
658          */
659         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
660         if (ret_val)
661                 goto out;
662
663         if (hw->mac.type == e1000_pchlan) {
664                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
665                 if (ret_val)
666                         goto out;
667         }
668
669         if (!link)
670                 goto out; /* No link detected */
671
672         mac->get_link_status = false;
673
674         if (hw->phy.type == e1000_phy_82578) {
675                 ret_val = e1000_link_stall_workaround_hv(hw);
676                 if (ret_val)
677                         goto out;
678         }
679
680         if (hw->mac.type == e1000_pch2lan) {
681                 ret_val = e1000_k1_workaround_lv(hw);
682                 if (ret_val)
683                         goto out;
684         }
685
686         /*
687          * Check if there was DownShift, must be checked
688          * immediately after link-up
689          */
690         e1000e_check_downshift(hw);
691
692         /* Enable/Disable EEE after link up */
693         ret_val = e1000_set_eee_pchlan(hw);
694         if (ret_val)
695                 goto out;
696
697         /*
698          * If we are forcing speed/duplex, then we simply return since
699          * we have already determined whether we have link or not.
700          */
701         if (!mac->autoneg) {
702                 ret_val = -E1000_ERR_CONFIG;
703                 goto out;
704         }
705
706         /*
707          * Auto-Neg is enabled.  Auto Speed Detection takes care
708          * of MAC speed/duplex configuration.  So we only need to
709          * configure Collision Distance in the MAC.
710          */
711         e1000e_config_collision_dist(hw);
712
713         /*
714          * Configure Flow Control now that Auto-Neg has completed.
715          * First, we need to restore the desired flow control
716          * settings because we may have had to re-autoneg with a
717          * different link partner.
718          */
719         ret_val = e1000e_config_fc_after_link_up(hw);
720         if (ret_val)
721                 e_dbg("Error configuring flow control\n");
722
723 out:
724         return ret_val;
725 }
726
727 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
728 {
729         struct e1000_hw *hw = &adapter->hw;
730         s32 rc;
731
732         rc = e1000_init_mac_params_ich8lan(adapter);
733         if (rc)
734                 return rc;
735
736         rc = e1000_init_nvm_params_ich8lan(hw);
737         if (rc)
738                 return rc;
739
740         switch (hw->mac.type) {
741         case e1000_ich8lan:
742         case e1000_ich9lan:
743         case e1000_ich10lan:
744                 rc = e1000_init_phy_params_ich8lan(hw);
745                 break;
746         case e1000_pchlan:
747         case e1000_pch2lan:
748                 rc = e1000_init_phy_params_pchlan(hw);
749                 break;
750         default:
751                 break;
752         }
753         if (rc)
754                 return rc;
755
756         if (adapter->hw.phy.type == e1000_phy_ife) {
757                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
758                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
759         }
760
761         if ((adapter->hw.mac.type == e1000_ich8lan) &&
762             (adapter->hw.phy.type == e1000_phy_igp_3))
763                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
764
765         /* Disable EEE by default until IEEE802.3az spec is finalized */
766         if (adapter->flags2 & FLAG2_HAS_EEE)
767                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
768
769         return 0;
770 }
771
772 static DEFINE_MUTEX(nvm_mutex);
773
774 /**
775  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
776  *  @hw: pointer to the HW structure
777  *
778  *  Acquires the mutex for performing NVM operations.
779  **/
780 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
781 {
782         mutex_lock(&nvm_mutex);
783
784         return 0;
785 }
786
787 /**
788  *  e1000_release_nvm_ich8lan - Release NVM mutex
789  *  @hw: pointer to the HW structure
790  *
791  *  Releases the mutex used while performing NVM operations.
792  **/
793 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
794 {
795         mutex_unlock(&nvm_mutex);
796 }
797
798 static DEFINE_MUTEX(swflag_mutex);
799
800 /**
801  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
802  *  @hw: pointer to the HW structure
803  *
804  *  Acquires the software control flag for performing PHY and select
805  *  MAC CSR accesses.
806  **/
807 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
808 {
809         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
810         s32 ret_val = 0;
811
812         mutex_lock(&swflag_mutex);
813
814         while (timeout) {
815                 extcnf_ctrl = er32(EXTCNF_CTRL);
816                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
817                         break;
818
819                 mdelay(1);
820                 timeout--;
821         }
822
823         if (!timeout) {
824                 e_dbg("SW/FW/HW has locked the resource for too long.\n");
825                 ret_val = -E1000_ERR_CONFIG;
826                 goto out;
827         }
828
829         timeout = SW_FLAG_TIMEOUT;
830
831         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
832         ew32(EXTCNF_CTRL, extcnf_ctrl);
833
834         while (timeout) {
835                 extcnf_ctrl = er32(EXTCNF_CTRL);
836                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
837                         break;
838
839                 mdelay(1);
840                 timeout--;
841         }
842
843         if (!timeout) {
844                 e_dbg("Failed to acquire the semaphore.\n");
845                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
846                 ew32(EXTCNF_CTRL, extcnf_ctrl);
847                 ret_val = -E1000_ERR_CONFIG;
848                 goto out;
849         }
850
851 out:
852         if (ret_val)
853                 mutex_unlock(&swflag_mutex);
854
855         return ret_val;
856 }
857
858 /**
859  *  e1000_release_swflag_ich8lan - Release software control flag
860  *  @hw: pointer to the HW structure
861  *
862  *  Releases the software control flag for performing PHY and select
863  *  MAC CSR accesses.
864  **/
865 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
866 {
867         u32 extcnf_ctrl;
868
869         extcnf_ctrl = er32(EXTCNF_CTRL);
870         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
871         ew32(EXTCNF_CTRL, extcnf_ctrl);
872
873         mutex_unlock(&swflag_mutex);
874 }
875
876 /**
877  *  e1000_check_mng_mode_ich8lan - Checks management mode
878  *  @hw: pointer to the HW structure
879  *
880  *  This checks if the adapter has any manageability enabled.
881  *  This is a function pointer entry point only called by read/write
882  *  routines for the PHY and NVM parts.
883  **/
884 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
885 {
886         u32 fwsm;
887
888         fwsm = er32(FWSM);
889         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
890                ((fwsm & E1000_FWSM_MODE_MASK) ==
891                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
892 }
893
894 /**
895  *  e1000_check_mng_mode_pchlan - Checks management mode
896  *  @hw: pointer to the HW structure
897  *
898  *  This checks if the adapter has iAMT enabled.
899  *  This is a function pointer entry point only called by read/write
900  *  routines for the PHY and NVM parts.
901  **/
902 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
903 {
904         u32 fwsm;
905
906         fwsm = er32(FWSM);
907         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
908                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
909 }
910
911 /**
912  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
913  *  @hw: pointer to the HW structure
914  *
915  *  Checks if firmware is blocking the reset of the PHY.
916  *  This is a function pointer entry point only called by
917  *  reset routines.
918  **/
919 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
920 {
921         u32 fwsm;
922
923         fwsm = er32(FWSM);
924
925         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
926 }
927
928 /**
929  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
930  *  @hw: pointer to the HW structure
931  *
932  *  Assumes semaphore already acquired.
933  *
934  **/
935 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
936 {
937         u16 phy_data;
938         u32 strap = er32(STRAP);
939         s32 ret_val = 0;
940
941         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
942
943         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
944         if (ret_val)
945                 goto out;
946
947         phy_data &= ~HV_SMB_ADDR_MASK;
948         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
949         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
950         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
951
952 out:
953         return ret_val;
954 }
955
956 /**
957  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
958  *  @hw:   pointer to the HW structure
959  *
960  *  SW should configure the LCD from the NVM extended configuration region
961  *  as a workaround for certain parts.
962  **/
963 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
964 {
965         struct e1000_phy_info *phy = &hw->phy;
966         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
967         s32 ret_val = 0;
968         u16 word_addr, reg_data, reg_addr, phy_page = 0;
969
970         /*
971          * Initialize the PHY from the NVM on ICH platforms.  This
972          * is needed due to an issue where the NVM configuration is
973          * not properly autoloaded after power transitions.
974          * Therefore, after each PHY reset, we will load the
975          * configuration data out of the NVM manually.
976          */
977         switch (hw->mac.type) {
978         case e1000_ich8lan:
979                 if (phy->type != e1000_phy_igp_3)
980                         return ret_val;
981
982                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
983                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
984                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
985                         break;
986                 }
987                 /* Fall-thru */
988         case e1000_pchlan:
989         case e1000_pch2lan:
990                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
991                 break;
992         default:
993                 return ret_val;
994         }
995
996         ret_val = hw->phy.ops.acquire(hw);
997         if (ret_val)
998                 return ret_val;
999
1000         data = er32(FEXTNVM);
1001         if (!(data & sw_cfg_mask))
1002                 goto out;
1003
1004         /*
1005          * Make sure HW does not configure LCD from PHY
1006          * extended configuration before SW configuration
1007          */
1008         data = er32(EXTCNF_CTRL);
1009         if (!(hw->mac.type == e1000_pch2lan)) {
1010                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1011                         goto out;
1012         }
1013
1014         cnf_size = er32(EXTCNF_SIZE);
1015         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1016         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1017         if (!cnf_size)
1018                 goto out;
1019
1020         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1021         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1022
1023         if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1024             (hw->mac.type == e1000_pchlan)) ||
1025              (hw->mac.type == e1000_pch2lan)) {
1026                 /*
1027                  * HW configures the SMBus address and LEDs when the
1028                  * OEM and LCD Write Enable bits are set in the NVM.
1029                  * When both NVM bits are cleared, SW will configure
1030                  * them instead.
1031                  */
1032                 ret_val = e1000_write_smbus_addr(hw);
1033                 if (ret_val)
1034                         goto out;
1035
1036                 data = er32(LEDCTL);
1037                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1038                                                         (u16)data);
1039                 if (ret_val)
1040                         goto out;
1041         }
1042
1043         /* Configure LCD from extended configuration region. */
1044
1045         /* cnf_base_addr is in DWORD */
1046         word_addr = (u16)(cnf_base_addr << 1);
1047
1048         for (i = 0; i < cnf_size; i++) {
1049                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1050                                          &reg_data);
1051                 if (ret_val)
1052                         goto out;
1053
1054                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1055                                          1, &reg_addr);
1056                 if (ret_val)
1057                         goto out;
1058
1059                 /* Save off the PHY page for future writes. */
1060                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1061                         phy_page = reg_data;
1062                         continue;
1063                 }
1064
1065                 reg_addr &= PHY_REG_MASK;
1066                 reg_addr |= phy_page;
1067
1068                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1069                                                     reg_data);
1070                 if (ret_val)
1071                         goto out;
1072         }
1073
1074 out:
1075         hw->phy.ops.release(hw);
1076         return ret_val;
1077 }
1078
1079 /**
1080  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1081  *  @hw:   pointer to the HW structure
1082  *  @link: link up bool flag
1083  *
1084  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1085  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1086  *  If link is down, the function will restore the default K1 setting located
1087  *  in the NVM.
1088  **/
1089 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1090 {
1091         s32 ret_val = 0;
1092         u16 status_reg = 0;
1093         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1094
1095         if (hw->mac.type != e1000_pchlan)
1096                 goto out;
1097
1098         /* Wrap the whole flow with the sw flag */
1099         ret_val = hw->phy.ops.acquire(hw);
1100         if (ret_val)
1101                 goto out;
1102
1103         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1104         if (link) {
1105                 if (hw->phy.type == e1000_phy_82578) {
1106                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1107                                                                   &status_reg);
1108                         if (ret_val)
1109                                 goto release;
1110
1111                         status_reg &= BM_CS_STATUS_LINK_UP |
1112                                       BM_CS_STATUS_RESOLVED |
1113                                       BM_CS_STATUS_SPEED_MASK;
1114
1115                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1116                                            BM_CS_STATUS_RESOLVED |
1117                                            BM_CS_STATUS_SPEED_1000))
1118                                 k1_enable = false;
1119                 }
1120
1121                 if (hw->phy.type == e1000_phy_82577) {
1122                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1123                                                                   &status_reg);
1124                         if (ret_val)
1125                                 goto release;
1126
1127                         status_reg &= HV_M_STATUS_LINK_UP |
1128                                       HV_M_STATUS_AUTONEG_COMPLETE |
1129                                       HV_M_STATUS_SPEED_MASK;
1130
1131                         if (status_reg == (HV_M_STATUS_LINK_UP |
1132                                            HV_M_STATUS_AUTONEG_COMPLETE |
1133                                            HV_M_STATUS_SPEED_1000))
1134                                 k1_enable = false;
1135                 }
1136
1137                 /* Link stall fix for link up */
1138                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1139                                                            0x0100);
1140                 if (ret_val)
1141                         goto release;
1142
1143         } else {
1144                 /* Link stall fix for link down */
1145                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1146                                                            0x4100);
1147                 if (ret_val)
1148                         goto release;
1149         }
1150
1151         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1152
1153 release:
1154         hw->phy.ops.release(hw);
1155 out:
1156         return ret_val;
1157 }
1158
1159 /**
1160  *  e1000_configure_k1_ich8lan - Configure K1 power state
1161  *  @hw: pointer to the HW structure
1162  *  @enable: K1 state to configure
1163  *
1164  *  Configure the K1 power state based on the provided parameter.
1165  *  Assumes semaphore already acquired.
1166  *
1167  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1168  **/
1169 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1170 {
1171         s32 ret_val = 0;
1172         u32 ctrl_reg = 0;
1173         u32 ctrl_ext = 0;
1174         u32 reg = 0;
1175         u16 kmrn_reg = 0;
1176
1177         ret_val = e1000e_read_kmrn_reg_locked(hw,
1178                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1179                                              &kmrn_reg);
1180         if (ret_val)
1181                 goto out;
1182
1183         if (k1_enable)
1184                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1185         else
1186                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1187
1188         ret_val = e1000e_write_kmrn_reg_locked(hw,
1189                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1190                                               kmrn_reg);
1191         if (ret_val)
1192                 goto out;
1193
1194         udelay(20);
1195         ctrl_ext = er32(CTRL_EXT);
1196         ctrl_reg = er32(CTRL);
1197
1198         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1199         reg |= E1000_CTRL_FRCSPD;
1200         ew32(CTRL, reg);
1201
1202         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1203         udelay(20);
1204         ew32(CTRL, ctrl_reg);
1205         ew32(CTRL_EXT, ctrl_ext);
1206         udelay(20);
1207
1208 out:
1209         return ret_val;
1210 }
1211
1212 /**
1213  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1214  *  @hw:       pointer to the HW structure
1215  *  @d0_state: boolean if entering d0 or d3 device state
1216  *
1217  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1218  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1219  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1220  **/
1221 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1222 {
1223         s32 ret_val = 0;
1224         u32 mac_reg;
1225         u16 oem_reg;
1226
1227         if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1228                 return ret_val;
1229
1230         ret_val = hw->phy.ops.acquire(hw);
1231         if (ret_val)
1232                 return ret_val;
1233
1234         if (!(hw->mac.type == e1000_pch2lan)) {
1235                 mac_reg = er32(EXTCNF_CTRL);
1236                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1237                         goto out;
1238         }
1239
1240         mac_reg = er32(FEXTNVM);
1241         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1242                 goto out;
1243
1244         mac_reg = er32(PHY_CTRL);
1245
1246         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1247         if (ret_val)
1248                 goto out;
1249
1250         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1251
1252         if (d0_state) {
1253                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1254                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1255
1256                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1257                         oem_reg |= HV_OEM_BITS_LPLU;
1258         } else {
1259                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1260                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1261
1262                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1263                         oem_reg |= HV_OEM_BITS_LPLU;
1264         }
1265         /* Restart auto-neg to activate the bits */
1266         if (!e1000_check_reset_block(hw))
1267                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1268         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1269
1270 out:
1271         hw->phy.ops.release(hw);
1272
1273         return ret_val;
1274 }
1275
1276
1277 /**
1278  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1279  *  @hw:   pointer to the HW structure
1280  **/
1281 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1282 {
1283         s32 ret_val;
1284         u16 data;
1285
1286         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1287         if (ret_val)
1288                 return ret_val;
1289
1290         data |= HV_KMRN_MDIO_SLOW;
1291
1292         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1293
1294         return ret_val;
1295 }
1296
1297 /**
1298  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1299  *  done after every PHY reset.
1300  **/
1301 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1302 {
1303         s32 ret_val = 0;
1304         u16 phy_data;
1305
1306         if (hw->mac.type != e1000_pchlan)
1307                 return ret_val;
1308
1309         /* Set MDIO slow mode before any other MDIO access */
1310         if (hw->phy.type == e1000_phy_82577) {
1311                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1312                 if (ret_val)
1313                         goto out;
1314         }
1315
1316         if (((hw->phy.type == e1000_phy_82577) &&
1317              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1318             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1319                 /* Disable generation of early preamble */
1320                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1321                 if (ret_val)
1322                         return ret_val;
1323
1324                 /* Preamble tuning for SSC */
1325                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1326                 if (ret_val)
1327                         return ret_val;
1328         }
1329
1330         if (hw->phy.type == e1000_phy_82578) {
1331                 /*
1332                  * Return registers to default by doing a soft reset then
1333                  * writing 0x3140 to the control register.
1334                  */
1335                 if (hw->phy.revision < 2) {
1336                         e1000e_phy_sw_reset(hw);
1337                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1338                 }
1339         }
1340
1341         /* Select page 0 */
1342         ret_val = hw->phy.ops.acquire(hw);
1343         if (ret_val)
1344                 return ret_val;
1345
1346         hw->phy.addr = 1;
1347         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1348         hw->phy.ops.release(hw);
1349         if (ret_val)
1350                 goto out;
1351
1352         /*
1353          * Configure the K1 Si workaround during phy reset assuming there is
1354          * link so that it disables K1 if link is in 1Gbps.
1355          */
1356         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1357         if (ret_val)
1358                 goto out;
1359
1360         /* Workaround for link disconnects on a busy hub in half duplex */
1361         ret_val = hw->phy.ops.acquire(hw);
1362         if (ret_val)
1363                 goto out;
1364         ret_val = hw->phy.ops.read_reg_locked(hw,
1365                                               PHY_REG(BM_PORT_CTRL_PAGE, 17),
1366                                               &phy_data);
1367         if (ret_val)
1368                 goto release;
1369         ret_val = hw->phy.ops.write_reg_locked(hw,
1370                                                PHY_REG(BM_PORT_CTRL_PAGE, 17),
1371                                                phy_data & 0x00FF);
1372 release:
1373         hw->phy.ops.release(hw);
1374 out:
1375         return ret_val;
1376 }
1377
1378 /**
1379  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1380  *  @hw:   pointer to the HW structure
1381  **/
1382 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1383 {
1384         u32 mac_reg;
1385         u16 i;
1386
1387         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1388         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1389                 mac_reg = er32(RAL(i));
1390                 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
1391                 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
1392                 mac_reg = er32(RAH(i));
1393                 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
1394                 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
1395         }
1396 }
1397
1398 static u32 e1000_calc_rx_da_crc(u8 mac[])
1399 {
1400         u32 poly = 0xEDB88320;  /* Polynomial for 802.3 CRC calculation */
1401         u32 i, j, mask, crc;
1402
1403         crc = 0xffffffff;
1404         for (i = 0; i < 6; i++) {
1405                 crc = crc ^ mac[i];
1406                 for (j = 8; j > 0; j--) {
1407                         mask = (crc & 1) * (-1);
1408                         crc = (crc >> 1) ^ (poly & mask);
1409                 }
1410         }
1411         return ~crc;
1412 }
1413
1414 /**
1415  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1416  *  with 82579 PHY
1417  *  @hw: pointer to the HW structure
1418  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1419  **/
1420 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1421 {
1422         s32 ret_val = 0;
1423         u16 phy_reg, data;
1424         u32 mac_reg;
1425         u16 i;
1426
1427         if (hw->mac.type != e1000_pch2lan)
1428                 goto out;
1429
1430         /* disable Rx path while enabling/disabling workaround */
1431         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1432         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1433         if (ret_val)
1434                 goto out;
1435
1436         if (enable) {
1437                 /*
1438                  * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1439                  * SHRAL/H) and initial CRC values to the MAC
1440                  */
1441                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1442                         u8 mac_addr[ETH_ALEN] = {0};
1443                         u32 addr_high, addr_low;
1444
1445                         addr_high = er32(RAH(i));
1446                         if (!(addr_high & E1000_RAH_AV))
1447                                 continue;
1448                         addr_low = er32(RAL(i));
1449                         mac_addr[0] = (addr_low & 0xFF);
1450                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1451                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1452                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1453                         mac_addr[4] = (addr_high & 0xFF);
1454                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1455
1456                         ew32(PCH_RAICC(i),
1457                                         e1000_calc_rx_da_crc(mac_addr));
1458                 }
1459
1460                 /* Write Rx addresses to the PHY */
1461                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1462
1463                 /* Enable jumbo frame workaround in the MAC */
1464                 mac_reg = er32(FFLT_DBG);
1465                 mac_reg &= ~(1 << 14);
1466                 mac_reg |= (7 << 15);
1467                 ew32(FFLT_DBG, mac_reg);
1468
1469                 mac_reg = er32(RCTL);
1470                 mac_reg |= E1000_RCTL_SECRC;
1471                 ew32(RCTL, mac_reg);
1472
1473                 ret_val = e1000e_read_kmrn_reg(hw,
1474                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1475                                                 &data);
1476                 if (ret_val)
1477                         goto out;
1478                 ret_val = e1000e_write_kmrn_reg(hw,
1479                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1480                                                 data | (1 << 0));
1481                 if (ret_val)
1482                         goto out;
1483                 ret_val = e1000e_read_kmrn_reg(hw,
1484                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1485                                                 &data);
1486                 if (ret_val)
1487                         goto out;
1488                 data &= ~(0xF << 8);
1489                 data |= (0xB << 8);
1490                 ret_val = e1000e_write_kmrn_reg(hw,
1491                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1492                                                 data);
1493                 if (ret_val)
1494                         goto out;
1495
1496                 /* Enable jumbo frame workaround in the PHY */
1497                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1498                 data &= ~(0x7F << 5);
1499                 data |= (0x37 << 5);
1500                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1501                 if (ret_val)
1502                         goto out;
1503                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1504                 data &= ~(1 << 13);
1505                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1506                 if (ret_val)
1507                         goto out;
1508                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1509                 data &= ~(0x3FF << 2);
1510                 data |= (0x1A << 2);
1511                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1512                 if (ret_val)
1513                         goto out;
1514                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1515                 if (ret_val)
1516                         goto out;
1517                 e1e_rphy(hw, HV_PM_CTRL, &data);
1518                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1519                 if (ret_val)
1520                         goto out;
1521         } else {
1522                 /* Write MAC register values back to h/w defaults */
1523                 mac_reg = er32(FFLT_DBG);
1524                 mac_reg &= ~(0xF << 14);
1525                 ew32(FFLT_DBG, mac_reg);
1526
1527                 mac_reg = er32(RCTL);
1528                 mac_reg &= ~E1000_RCTL_SECRC;
1529                 ew32(RCTL, mac_reg);
1530
1531                 ret_val = e1000e_read_kmrn_reg(hw,
1532                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1533                                                 &data);
1534                 if (ret_val)
1535                         goto out;
1536                 ret_val = e1000e_write_kmrn_reg(hw,
1537                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1538                                                 data & ~(1 << 0));
1539                 if (ret_val)
1540                         goto out;
1541                 ret_val = e1000e_read_kmrn_reg(hw,
1542                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1543                                                 &data);
1544                 if (ret_val)
1545                         goto out;
1546                 data &= ~(0xF << 8);
1547                 data |= (0xB << 8);
1548                 ret_val = e1000e_write_kmrn_reg(hw,
1549                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1550                                                 data);
1551                 if (ret_val)
1552                         goto out;
1553
1554                 /* Write PHY register values back to h/w defaults */
1555                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1556                 data &= ~(0x7F << 5);
1557                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1558                 if (ret_val)
1559                         goto out;
1560                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1561                 data |= (1 << 13);
1562                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1563                 if (ret_val)
1564                         goto out;
1565                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1566                 data &= ~(0x3FF << 2);
1567                 data |= (0x8 << 2);
1568                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1569                 if (ret_val)
1570                         goto out;
1571                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1572                 if (ret_val)
1573                         goto out;
1574                 e1e_rphy(hw, HV_PM_CTRL, &data);
1575                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1576                 if (ret_val)
1577                         goto out;
1578         }
1579
1580         /* re-enable Rx path after enabling/disabling workaround */
1581         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1582
1583 out:
1584         return ret_val;
1585 }
1586
1587 /**
1588  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1589  *  done after every PHY reset.
1590  **/
1591 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1592 {
1593         s32 ret_val = 0;
1594
1595         if (hw->mac.type != e1000_pch2lan)
1596                 goto out;
1597
1598         /* Set MDIO slow mode before any other MDIO access */
1599         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1600
1601 out:
1602         return ret_val;
1603 }
1604
1605 /**
1606  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1607  *  @hw:   pointer to the HW structure
1608  *
1609  *  Workaround to set the K1 beacon duration for 82579 parts
1610  **/
1611 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1612 {
1613         s32 ret_val = 0;
1614         u16 status_reg = 0;
1615         u32 mac_reg;
1616
1617         if (hw->mac.type != e1000_pch2lan)
1618                 goto out;
1619
1620         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1621         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1622         if (ret_val)
1623                 goto out;
1624
1625         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1626             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1627                 mac_reg = er32(FEXTNVM4);
1628                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1629
1630                 if (status_reg & HV_M_STATUS_SPEED_1000)
1631                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1632                 else
1633                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1634
1635                 ew32(FEXTNVM4, mac_reg);
1636         }
1637
1638 out:
1639         return ret_val;
1640 }
1641
1642 /**
1643  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1644  *  @hw:   pointer to the HW structure
1645  *  @gate: boolean set to true to gate, false to ungate
1646  *
1647  *  Gate/ungate the automatic PHY configuration via hardware; perform
1648  *  the configuration via software instead.
1649  **/
1650 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1651 {
1652         u32 extcnf_ctrl;
1653
1654         if (hw->mac.type != e1000_pch2lan)
1655                 return;
1656
1657         extcnf_ctrl = er32(EXTCNF_CTRL);
1658
1659         if (gate)
1660                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1661         else
1662                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1663
1664         ew32(EXTCNF_CTRL, extcnf_ctrl);
1665         return;
1666 }
1667
1668 /**
1669  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1670  *  @hw: pointer to the HW structure
1671  *
1672  *  Check the appropriate indication the MAC has finished configuring the
1673  *  PHY after a software reset.
1674  **/
1675 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1676 {
1677         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1678
1679         /* Wait for basic configuration completes before proceeding */
1680         do {
1681                 data = er32(STATUS);
1682                 data &= E1000_STATUS_LAN_INIT_DONE;
1683                 udelay(100);
1684         } while ((!data) && --loop);
1685
1686         /*
1687          * If basic configuration is incomplete before the above loop
1688          * count reaches 0, loading the configuration from NVM will
1689          * leave the PHY in a bad state possibly resulting in no link.
1690          */
1691         if (loop == 0)
1692                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1693
1694         /* Clear the Init Done bit for the next init event */
1695         data = er32(STATUS);
1696         data &= ~E1000_STATUS_LAN_INIT_DONE;
1697         ew32(STATUS, data);
1698 }
1699
1700 /**
1701  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1702  *  @hw: pointer to the HW structure
1703  **/
1704 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1705 {
1706         s32 ret_val = 0;
1707         u16 reg;
1708
1709         if (e1000_check_reset_block(hw))
1710                 goto out;
1711
1712         /* Allow time for h/w to get to quiescent state after reset */
1713         msleep(10);
1714
1715         /* Perform any necessary post-reset workarounds */
1716         switch (hw->mac.type) {
1717         case e1000_pchlan:
1718                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1719                 if (ret_val)
1720                         goto out;
1721                 break;
1722         case e1000_pch2lan:
1723                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1724                 if (ret_val)
1725                         goto out;
1726                 break;
1727         default:
1728                 break;
1729         }
1730
1731         /* Dummy read to clear the phy wakeup bit after lcd reset */
1732         if (hw->mac.type >= e1000_pchlan)
1733                 e1e_rphy(hw, BM_WUC, &reg);
1734
1735         /* Configure the LCD with the extended configuration region in NVM */
1736         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1737         if (ret_val)
1738                 goto out;
1739
1740         /* Configure the LCD with the OEM bits in NVM */
1741         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1742
1743         /* Ungate automatic PHY configuration on non-managed 82579 */
1744         if ((hw->mac.type == e1000_pch2lan) &&
1745             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1746                 msleep(10);
1747                 e1000_gate_hw_phy_config_ich8lan(hw, false);
1748         }
1749
1750 out:
1751         return ret_val;
1752 }
1753
1754 /**
1755  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1756  *  @hw: pointer to the HW structure
1757  *
1758  *  Resets the PHY
1759  *  This is a function pointer entry point called by drivers
1760  *  or other shared routines.
1761  **/
1762 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1763 {
1764         s32 ret_val = 0;
1765
1766         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1767         if ((hw->mac.type == e1000_pch2lan) &&
1768             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1769                 e1000_gate_hw_phy_config_ich8lan(hw, true);
1770
1771         ret_val = e1000e_phy_hw_reset_generic(hw);
1772         if (ret_val)
1773                 goto out;
1774
1775         ret_val = e1000_post_phy_reset_ich8lan(hw);
1776
1777 out:
1778         return ret_val;
1779 }
1780
1781 /**
1782  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1783  *  @hw: pointer to the HW structure
1784  *  @active: true to enable LPLU, false to disable
1785  *
1786  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1787  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1788  *  the phy speed. This function will manually set the LPLU bit and restart
1789  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1790  *  since it configures the same bit.
1791  **/
1792 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1793 {
1794         s32 ret_val = 0;
1795         u16 oem_reg;
1796
1797         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1798         if (ret_val)
1799                 goto out;
1800
1801         if (active)
1802                 oem_reg |= HV_OEM_BITS_LPLU;
1803         else
1804                 oem_reg &= ~HV_OEM_BITS_LPLU;
1805
1806         oem_reg |= HV_OEM_BITS_RESTART_AN;
1807         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1808
1809 out:
1810         return ret_val;
1811 }
1812
1813 /**
1814  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1815  *  @hw: pointer to the HW structure
1816  *  @active: true to enable LPLU, false to disable
1817  *
1818  *  Sets the LPLU D0 state according to the active flag.  When
1819  *  activating LPLU this function also disables smart speed
1820  *  and vice versa.  LPLU will not be activated unless the
1821  *  device autonegotiation advertisement meets standards of
1822  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1823  *  This is a function pointer entry point only called by
1824  *  PHY setup routines.
1825  **/
1826 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1827 {
1828         struct e1000_phy_info *phy = &hw->phy;
1829         u32 phy_ctrl;
1830         s32 ret_val = 0;
1831         u16 data;
1832
1833         if (phy->type == e1000_phy_ife)
1834                 return ret_val;
1835
1836         phy_ctrl = er32(PHY_CTRL);
1837
1838         if (active) {
1839                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1840                 ew32(PHY_CTRL, phy_ctrl);
1841
1842                 if (phy->type != e1000_phy_igp_3)
1843                         return 0;
1844
1845                 /*
1846                  * Call gig speed drop workaround on LPLU before accessing
1847                  * any PHY registers
1848                  */
1849                 if (hw->mac.type == e1000_ich8lan)
1850                         e1000e_gig_downshift_workaround_ich8lan(hw);
1851
1852                 /* When LPLU is enabled, we should disable SmartSpeed */
1853                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1854                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1855                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1856                 if (ret_val)
1857                         return ret_val;
1858         } else {
1859                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1860                 ew32(PHY_CTRL, phy_ctrl);
1861
1862                 if (phy->type != e1000_phy_igp_3)
1863                         return 0;
1864
1865                 /*
1866                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1867                  * during Dx states where the power conservation is most
1868                  * important.  During driver activity we should enable
1869                  * SmartSpeed, so performance is maintained.
1870                  */
1871                 if (phy->smart_speed == e1000_smart_speed_on) {
1872                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1873                                            &data);
1874                         if (ret_val)
1875                                 return ret_val;
1876
1877                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1878                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1879                                            data);
1880                         if (ret_val)
1881                                 return ret_val;
1882                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1883                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1884                                            &data);
1885                         if (ret_val)
1886                                 return ret_val;
1887
1888                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1889                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1890                                            data);
1891                         if (ret_val)
1892                                 return ret_val;
1893                 }
1894         }
1895
1896         return 0;
1897 }
1898
1899 /**
1900  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1901  *  @hw: pointer to the HW structure
1902  *  @active: true to enable LPLU, false to disable
1903  *
1904  *  Sets the LPLU D3 state according to the active flag.  When
1905  *  activating LPLU this function also disables smart speed
1906  *  and vice versa.  LPLU will not be activated unless the
1907  *  device autonegotiation advertisement meets standards of
1908  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1909  *  This is a function pointer entry point only called by
1910  *  PHY setup routines.
1911  **/
1912 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1913 {
1914         struct e1000_phy_info *phy = &hw->phy;
1915         u32 phy_ctrl;
1916         s32 ret_val;
1917         u16 data;
1918
1919         phy_ctrl = er32(PHY_CTRL);
1920
1921         if (!active) {
1922                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1923                 ew32(PHY_CTRL, phy_ctrl);
1924
1925                 if (phy->type != e1000_phy_igp_3)
1926                         return 0;
1927
1928                 /*
1929                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1930                  * during Dx states where the power conservation is most
1931                  * important.  During driver activity we should enable
1932                  * SmartSpeed, so performance is maintained.
1933                  */
1934                 if (phy->smart_speed == e1000_smart_speed_on) {
1935                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1936                                            &data);
1937                         if (ret_val)
1938                                 return ret_val;
1939
1940                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1941                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1942                                            data);
1943                         if (ret_val)
1944                                 return ret_val;
1945                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1946                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1947                                            &data);
1948                         if (ret_val)
1949                                 return ret_val;
1950
1951                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1952                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1953                                            data);
1954                         if (ret_val)
1955                                 return ret_val;
1956                 }
1957         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1958                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1959                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1960                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1961                 ew32(PHY_CTRL, phy_ctrl);
1962
1963                 if (phy->type != e1000_phy_igp_3)
1964                         return 0;
1965
1966                 /*
1967                  * Call gig speed drop workaround on LPLU before accessing
1968                  * any PHY registers
1969                  */
1970                 if (hw->mac.type == e1000_ich8lan)
1971                         e1000e_gig_downshift_workaround_ich8lan(hw);
1972
1973                 /* When LPLU is enabled, we should disable SmartSpeed */
1974                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1975                 if (ret_val)
1976                         return ret_val;
1977
1978                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1979                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1980         }
1981
1982         return 0;
1983 }
1984
1985 /**
1986  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1987  *  @hw: pointer to the HW structure
1988  *  @bank:  pointer to the variable that returns the active bank
1989  *
1990  *  Reads signature byte from the NVM using the flash access registers.
1991  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1992  **/
1993 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1994 {
1995         u32 eecd;
1996         struct e1000_nvm_info *nvm = &hw->nvm;
1997         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1998         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1999         u8 sig_byte = 0;
2000         s32 ret_val = 0;
2001
2002         switch (hw->mac.type) {
2003         case e1000_ich8lan:
2004         case e1000_ich9lan:
2005                 eecd = er32(EECD);
2006                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2007                     E1000_EECD_SEC1VAL_VALID_MASK) {
2008                         if (eecd & E1000_EECD_SEC1VAL)
2009                                 *bank = 1;
2010                         else
2011                                 *bank = 0;
2012
2013                         return 0;
2014                 }
2015                 e_dbg("Unable to determine valid NVM bank via EEC - "
2016                        "reading flash signature\n");
2017                 /* fall-thru */
2018         default:
2019                 /* set bank to 0 in case flash read fails */
2020                 *bank = 0;
2021
2022                 /* Check bank 0 */
2023                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2024                                                         &sig_byte);
2025                 if (ret_val)
2026                         return ret_val;
2027                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2028                     E1000_ICH_NVM_SIG_VALUE) {
2029                         *bank = 0;
2030                         return 0;
2031                 }
2032
2033                 /* Check bank 1 */
2034                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2035                                                         bank1_offset,
2036                                                         &sig_byte);
2037                 if (ret_val)
2038                         return ret_val;
2039                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2040                     E1000_ICH_NVM_SIG_VALUE) {
2041                         *bank = 1;
2042                         return 0;
2043                 }
2044
2045                 e_dbg("ERROR: No valid NVM bank present\n");
2046                 return -E1000_ERR_NVM;
2047         }
2048
2049         return 0;
2050 }
2051
2052 /**
2053  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2054  *  @hw: pointer to the HW structure
2055  *  @offset: The offset (in bytes) of the word(s) to read.
2056  *  @words: Size of data to read in words
2057  *  @data: Pointer to the word(s) to read at offset.
2058  *
2059  *  Reads a word(s) from the NVM using the flash access registers.
2060  **/
2061 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2062                                   u16 *data)
2063 {
2064         struct e1000_nvm_info *nvm = &hw->nvm;
2065         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2066         u32 act_offset;
2067         s32 ret_val = 0;
2068         u32 bank = 0;
2069         u16 i, word;
2070
2071         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2072             (words == 0)) {
2073                 e_dbg("nvm parameter(s) out of bounds\n");
2074                 ret_val = -E1000_ERR_NVM;
2075                 goto out;
2076         }
2077
2078         nvm->ops.acquire(hw);
2079
2080         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2081         if (ret_val) {
2082                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2083                 bank = 0;
2084         }
2085
2086         act_offset = (bank) ? nvm->flash_bank_size : 0;
2087         act_offset += offset;
2088
2089         ret_val = 0;
2090         for (i = 0; i < words; i++) {
2091                 if ((dev_spec->shadow_ram) &&
2092                     (dev_spec->shadow_ram[offset+i].modified)) {
2093                         data[i] = dev_spec->shadow_ram[offset+i].value;
2094                 } else {
2095                         ret_val = e1000_read_flash_word_ich8lan(hw,
2096                                                                 act_offset + i,
2097                                                                 &word);
2098                         if (ret_val)
2099                                 break;
2100                         data[i] = word;
2101                 }
2102         }
2103
2104         nvm->ops.release(hw);
2105
2106 out:
2107         if (ret_val)
2108                 e_dbg("NVM read error: %d\n", ret_val);
2109
2110         return ret_val;
2111 }
2112
2113 /**
2114  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2115  *  @hw: pointer to the HW structure
2116  *
2117  *  This function does initial flash setup so that a new read/write/erase cycle
2118  *  can be started.
2119  **/
2120 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2121 {
2122         union ich8_hws_flash_status hsfsts;
2123         s32 ret_val = -E1000_ERR_NVM;
2124         s32 i = 0;
2125
2126         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2127
2128         /* Check if the flash descriptor is valid */
2129         if (hsfsts.hsf_status.fldesvalid == 0) {
2130                 e_dbg("Flash descriptor invalid.  "
2131                          "SW Sequencing must be used.\n");
2132                 return -E1000_ERR_NVM;
2133         }
2134
2135         /* Clear FCERR and DAEL in hw status by writing 1 */
2136         hsfsts.hsf_status.flcerr = 1;
2137         hsfsts.hsf_status.dael = 1;
2138
2139         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2140
2141         /*
2142          * Either we should have a hardware SPI cycle in progress
2143          * bit to check against, in order to start a new cycle or
2144          * FDONE bit should be changed in the hardware so that it
2145          * is 1 after hardware reset, which can then be used as an
2146          * indication whether a cycle is in progress or has been
2147          * completed.
2148          */
2149
2150         if (hsfsts.hsf_status.flcinprog == 0) {
2151                 /*
2152                  * There is no cycle running at present,
2153                  * so we can start a cycle.
2154                  * Begin by setting Flash Cycle Done.
2155                  */
2156                 hsfsts.hsf_status.flcdone = 1;
2157                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2158                 ret_val = 0;
2159         } else {
2160                 /*
2161                  * Otherwise poll for sometime so the current
2162                  * cycle has a chance to end before giving up.
2163                  */
2164                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2165                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2166                         if (hsfsts.hsf_status.flcinprog == 0) {
2167                                 ret_val = 0;
2168                                 break;
2169                         }
2170                         udelay(1);
2171                 }
2172                 if (ret_val == 0) {
2173                         /*
2174                          * Successful in waiting for previous cycle to timeout,
2175                          * now set the Flash Cycle Done.
2176                          */
2177                         hsfsts.hsf_status.flcdone = 1;
2178                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2179                 } else {
2180                         e_dbg("Flash controller busy, cannot get access\n");
2181                 }
2182         }
2183
2184         return ret_val;
2185 }
2186
2187 /**
2188  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2189  *  @hw: pointer to the HW structure
2190  *  @timeout: maximum time to wait for completion
2191  *
2192  *  This function starts a flash cycle and waits for its completion.
2193  **/
2194 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2195 {
2196         union ich8_hws_flash_ctrl hsflctl;
2197         union ich8_hws_flash_status hsfsts;
2198         s32 ret_val = -E1000_ERR_NVM;
2199         u32 i = 0;
2200
2201         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2202         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2203         hsflctl.hsf_ctrl.flcgo = 1;
2204         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2205
2206         /* wait till FDONE bit is set to 1 */
2207         do {
2208                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2209                 if (hsfsts.hsf_status.flcdone == 1)
2210                         break;
2211                 udelay(1);
2212         } while (i++ < timeout);
2213
2214         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2215                 return 0;
2216
2217         return ret_val;
2218 }
2219
2220 /**
2221  *  e1000_read_flash_word_ich8lan - Read word from flash
2222  *  @hw: pointer to the HW structure
2223  *  @offset: offset to data location
2224  *  @data: pointer to the location for storing the data
2225  *
2226  *  Reads the flash word at offset into data.  Offset is converted
2227  *  to bytes before read.
2228  **/
2229 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2230                                          u16 *data)
2231 {
2232         /* Must convert offset into bytes. */
2233         offset <<= 1;
2234
2235         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2236 }
2237
2238 /**
2239  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2240  *  @hw: pointer to the HW structure
2241  *  @offset: The offset of the byte to read.
2242  *  @data: Pointer to a byte to store the value read.
2243  *
2244  *  Reads a single byte from the NVM using the flash access registers.
2245  **/
2246 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2247                                          u8 *data)
2248 {
2249         s32 ret_val;
2250         u16 word = 0;
2251
2252         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2253         if (ret_val)
2254                 return ret_val;
2255
2256         *data = (u8)word;
2257
2258         return 0;
2259 }
2260
2261 /**
2262  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2263  *  @hw: pointer to the HW structure
2264  *  @offset: The offset (in bytes) of the byte or word to read.
2265  *  @size: Size of data to read, 1=byte 2=word
2266  *  @data: Pointer to the word to store the value read.
2267  *
2268  *  Reads a byte or word from the NVM using the flash access registers.
2269  **/
2270 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2271                                          u8 size, u16 *data)
2272 {
2273         union ich8_hws_flash_status hsfsts;
2274         union ich8_hws_flash_ctrl hsflctl;
2275         u32 flash_linear_addr;
2276         u32 flash_data = 0;
2277         s32 ret_val = -E1000_ERR_NVM;
2278         u8 count = 0;
2279
2280         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2281                 return -E1000_ERR_NVM;
2282
2283         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2284                             hw->nvm.flash_base_addr;
2285
2286         do {
2287                 udelay(1);
2288                 /* Steps */
2289                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2290                 if (ret_val != 0)
2291                         break;
2292
2293                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2294                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2295                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2296                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2297                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2298
2299                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2300
2301                 ret_val = e1000_flash_cycle_ich8lan(hw,
2302                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2303
2304                 /*
2305                  * Check if FCERR is set to 1, if set to 1, clear it
2306                  * and try the whole sequence a few more times, else
2307                  * read in (shift in) the Flash Data0, the order is
2308                  * least significant byte first msb to lsb
2309                  */
2310                 if (ret_val == 0) {
2311                         flash_data = er32flash(ICH_FLASH_FDATA0);
2312                         if (size == 1) {
2313                                 *data = (u8)(flash_data & 0x000000FF);
2314                         } else if (size == 2) {
2315                                 *data = (u16)(flash_data & 0x0000FFFF);
2316                         }
2317                         break;
2318                 } else {
2319                         /*
2320                          * If we've gotten here, then things are probably
2321                          * completely hosed, but if the error condition is
2322                          * detected, it won't hurt to give it another try...
2323                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2324                          */
2325                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2326                         if (hsfsts.hsf_status.flcerr == 1) {
2327                                 /* Repeat for some time before giving up. */
2328                                 continue;
2329                         } else if (hsfsts.hsf_status.flcdone == 0) {
2330                                 e_dbg("Timeout error - flash cycle "
2331                                          "did not complete.\n");
2332                                 break;
2333                         }
2334                 }
2335         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2336
2337         return ret_val;
2338 }
2339
2340 /**
2341  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2342  *  @hw: pointer to the HW structure
2343  *  @offset: The offset (in bytes) of the word(s) to write.
2344  *  @words: Size of data to write in words
2345  *  @data: Pointer to the word(s) to write at offset.
2346  *
2347  *  Writes a byte or word to the NVM using the flash access registers.
2348  **/
2349 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2350                                    u16 *data)
2351 {
2352         struct e1000_nvm_info *nvm = &hw->nvm;
2353         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2354         u16 i;
2355
2356         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2357             (words == 0)) {
2358                 e_dbg("nvm parameter(s) out of bounds\n");
2359                 return -E1000_ERR_NVM;
2360         }
2361
2362         nvm->ops.acquire(hw);
2363
2364         for (i = 0; i < words; i++) {
2365                 dev_spec->shadow_ram[offset+i].modified = true;
2366                 dev_spec->shadow_ram[offset+i].value = data[i];
2367         }
2368
2369         nvm->ops.release(hw);
2370
2371         return 0;
2372 }
2373
2374 /**
2375  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2376  *  @hw: pointer to the HW structure
2377  *
2378  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2379  *  which writes the checksum to the shadow ram.  The changes in the shadow
2380  *  ram are then committed to the EEPROM by processing each bank at a time
2381  *  checking for the modified bit and writing only the pending changes.
2382  *  After a successful commit, the shadow ram is cleared and is ready for
2383  *  future writes.
2384  **/
2385 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2386 {
2387         struct e1000_nvm_info *nvm = &hw->nvm;
2388         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2389         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2390         s32 ret_val;
2391         u16 data;
2392
2393         ret_val = e1000e_update_nvm_checksum_generic(hw);
2394         if (ret_val)
2395                 goto out;
2396
2397         if (nvm->type != e1000_nvm_flash_sw)
2398                 goto out;
2399
2400         nvm->ops.acquire(hw);
2401
2402         /*
2403          * We're writing to the opposite bank so if we're on bank 1,
2404          * write to bank 0 etc.  We also need to erase the segment that
2405          * is going to be written
2406          */
2407         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2408         if (ret_val) {
2409                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2410                 bank = 0;
2411         }
2412
2413         if (bank == 0) {
2414                 new_bank_offset = nvm->flash_bank_size;
2415                 old_bank_offset = 0;
2416                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2417                 if (ret_val)
2418                         goto release;
2419         } else {
2420                 old_bank_offset = nvm->flash_bank_size;
2421                 new_bank_offset = 0;
2422                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2423                 if (ret_val)
2424                         goto release;
2425         }
2426
2427         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2428                 /*
2429                  * Determine whether to write the value stored
2430                  * in the other NVM bank or a modified value stored
2431                  * in the shadow RAM
2432                  */
2433                 if (dev_spec->shadow_ram[i].modified) {
2434                         data = dev_spec->shadow_ram[i].value;
2435                 } else {
2436                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2437                                                                 old_bank_offset,
2438                                                                 &data);
2439                         if (ret_val)
2440                                 break;
2441                 }
2442
2443                 /*
2444                  * If the word is 0x13, then make sure the signature bits
2445                  * (15:14) are 11b until the commit has completed.
2446                  * This will allow us to write 10b which indicates the
2447                  * signature is valid.  We want to do this after the write
2448                  * has completed so that we don't mark the segment valid
2449                  * while the write is still in progress
2450                  */
2451                 if (i == E1000_ICH_NVM_SIG_WORD)
2452                         data |= E1000_ICH_NVM_SIG_MASK;
2453
2454                 /* Convert offset to bytes. */
2455                 act_offset = (i + new_bank_offset) << 1;
2456
2457                 udelay(100);
2458                 /* Write the bytes to the new bank. */
2459                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2460                                                                act_offset,
2461                                                                (u8)data);
2462                 if (ret_val)
2463                         break;
2464
2465                 udelay(100);
2466                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2467                                                           act_offset + 1,
2468                                                           (u8)(data >> 8));
2469                 if (ret_val)
2470                         break;
2471         }
2472
2473         /*
2474          * Don't bother writing the segment valid bits if sector
2475          * programming failed.
2476          */
2477         if (ret_val) {
2478                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2479                 e_dbg("Flash commit failed.\n");
2480                 goto release;
2481         }
2482
2483         /*
2484          * Finally validate the new segment by setting bit 15:14
2485          * to 10b in word 0x13 , this can be done without an
2486          * erase as well since these bits are 11 to start with
2487          * and we need to change bit 14 to 0b
2488          */
2489         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2490         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2491         if (ret_val)
2492                 goto release;
2493
2494         data &= 0xBFFF;
2495         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2496                                                        act_offset * 2 + 1,
2497                                                        (u8)(data >> 8));
2498         if (ret_val)
2499                 goto release;
2500
2501         /*
2502          * And invalidate the previously valid segment by setting
2503          * its signature word (0x13) high_byte to 0b. This can be
2504          * done without an erase because flash erase sets all bits
2505          * to 1's. We can write 1's to 0's without an erase
2506          */
2507         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2508         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2509         if (ret_val)
2510                 goto release;
2511
2512         /* Great!  Everything worked, we can now clear the cached entries. */
2513         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2514                 dev_spec->shadow_ram[i].modified = false;
2515                 dev_spec->shadow_ram[i].value = 0xFFFF;
2516         }
2517
2518 release:
2519         nvm->ops.release(hw);
2520
2521         /*
2522          * Reload the EEPROM, or else modifications will not appear
2523          * until after the next adapter reset.
2524          */
2525         if (!ret_val) {
2526                 e1000e_reload_nvm(hw);
2527                 msleep(10);
2528         }
2529
2530 out:
2531         if (ret_val)
2532                 e_dbg("NVM update error: %d\n", ret_val);
2533
2534         return ret_val;
2535 }
2536
2537 /**
2538  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2539  *  @hw: pointer to the HW structure
2540  *
2541  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2542  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2543  *  calculated, in which case we need to calculate the checksum and set bit 6.
2544  **/
2545 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2546 {
2547         s32 ret_val;
2548         u16 data;
2549
2550         /*
2551          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2552          * needs to be fixed.  This bit is an indication that the NVM
2553          * was prepared by OEM software and did not calculate the
2554          * checksum...a likely scenario.
2555          */
2556         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2557         if (ret_val)
2558                 return ret_val;
2559
2560         if ((data & 0x40) == 0) {
2561                 data |= 0x40;
2562                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2563                 if (ret_val)
2564                         return ret_val;
2565                 ret_val = e1000e_update_nvm_checksum(hw);
2566                 if (ret_val)
2567                         return ret_val;
2568         }
2569
2570         return e1000e_validate_nvm_checksum_generic(hw);
2571 }
2572
2573 /**
2574  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2575  *  @hw: pointer to the HW structure
2576  *
2577  *  To prevent malicious write/erase of the NVM, set it to be read-only
2578  *  so that the hardware ignores all write/erase cycles of the NVM via
2579  *  the flash control registers.  The shadow-ram copy of the NVM will
2580  *  still be updated, however any updates to this copy will not stick
2581  *  across driver reloads.
2582  **/
2583 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2584 {
2585         struct e1000_nvm_info *nvm = &hw->nvm;
2586         union ich8_flash_protected_range pr0;
2587         union ich8_hws_flash_status hsfsts;
2588         u32 gfpreg;
2589
2590         nvm->ops.acquire(hw);
2591
2592         gfpreg = er32flash(ICH_FLASH_GFPREG);
2593
2594         /* Write-protect GbE Sector of NVM */
2595         pr0.regval = er32flash(ICH_FLASH_PR0);
2596         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2597         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2598         pr0.range.wpe = true;
2599         ew32flash(ICH_FLASH_PR0, pr0.regval);
2600
2601         /*
2602          * Lock down a subset of GbE Flash Control Registers, e.g.
2603          * PR0 to prevent the write-protection from being lifted.
2604          * Once FLOCKDN is set, the registers protected by it cannot
2605          * be written until FLOCKDN is cleared by a hardware reset.
2606          */
2607         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2608         hsfsts.hsf_status.flockdn = true;
2609         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2610
2611         nvm->ops.release(hw);
2612 }
2613
2614 /**
2615  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2616  *  @hw: pointer to the HW structure
2617  *  @offset: The offset (in bytes) of the byte/word to read.
2618  *  @size: Size of data to read, 1=byte 2=word
2619  *  @data: The byte(s) to write to the NVM.
2620  *
2621  *  Writes one/two bytes to the NVM using the flash access registers.
2622  **/
2623 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2624                                           u8 size, u16 data)
2625 {
2626         union ich8_hws_flash_status hsfsts;
2627         union ich8_hws_flash_ctrl hsflctl;
2628         u32 flash_linear_addr;
2629         u32 flash_data = 0;
2630         s32 ret_val;
2631         u8 count = 0;
2632
2633         if (size < 1 || size > 2 || data > size * 0xff ||
2634             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2635                 return -E1000_ERR_NVM;
2636
2637         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2638                             hw->nvm.flash_base_addr;
2639
2640         do {
2641                 udelay(1);
2642                 /* Steps */
2643                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2644                 if (ret_val)
2645                         break;
2646
2647                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2648                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2649                 hsflctl.hsf_ctrl.fldbcount = size -1;
2650                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2651                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2652
2653                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2654
2655                 if (size == 1)
2656                         flash_data = (u32)data & 0x00FF;
2657                 else
2658                         flash_data = (u32)data;
2659
2660                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2661
2662                 /*
2663                  * check if FCERR is set to 1 , if set to 1, clear it
2664                  * and try the whole sequence a few more times else done
2665                  */
2666                 ret_val = e1000_flash_cycle_ich8lan(hw,
2667                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2668                 if (!ret_val)
2669                         break;
2670
2671                 /*
2672                  * If we're here, then things are most likely
2673                  * completely hosed, but if the error condition
2674                  * is detected, it won't hurt to give it another
2675                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2676                  */
2677                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2678                 if (hsfsts.hsf_status.flcerr == 1)
2679                         /* Repeat for some time before giving up. */
2680                         continue;
2681                 if (hsfsts.hsf_status.flcdone == 0) {
2682                         e_dbg("Timeout error - flash cycle "
2683                                  "did not complete.");
2684                         break;
2685                 }
2686         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2687
2688         return ret_val;
2689 }
2690
2691 /**
2692  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2693  *  @hw: pointer to the HW structure
2694  *  @offset: The index of the byte to read.
2695  *  @data: The byte to write to the NVM.
2696  *
2697  *  Writes a single byte to the NVM using the flash access registers.
2698  **/
2699 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2700                                           u8 data)
2701 {
2702         u16 word = (u16)data;
2703
2704         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2705 }
2706
2707 /**
2708  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2709  *  @hw: pointer to the HW structure
2710  *  @offset: The offset of the byte to write.
2711  *  @byte: The byte to write to the NVM.
2712  *
2713  *  Writes a single byte to the NVM using the flash access registers.
2714  *  Goes through a retry algorithm before giving up.
2715  **/
2716 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2717                                                 u32 offset, u8 byte)
2718 {
2719         s32 ret_val;
2720         u16 program_retries;
2721
2722         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2723         if (!ret_val)
2724                 return ret_val;
2725
2726         for (program_retries = 0; program_retries < 100; program_retries++) {
2727                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2728                 udelay(100);
2729                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2730                 if (!ret_val)
2731                         break;
2732         }
2733         if (program_retries == 100)
2734                 return -E1000_ERR_NVM;
2735
2736         return 0;
2737 }
2738
2739 /**
2740  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2741  *  @hw: pointer to the HW structure
2742  *  @bank: 0 for first bank, 1 for second bank, etc.
2743  *
2744  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2745  *  bank N is 4096 * N + flash_reg_addr.
2746  **/
2747 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2748 {
2749         struct e1000_nvm_info *nvm = &hw->nvm;
2750         union ich8_hws_flash_status hsfsts;
2751         union ich8_hws_flash_ctrl hsflctl;
2752         u32 flash_linear_addr;
2753         /* bank size is in 16bit words - adjust to bytes */
2754         u32 flash_bank_size = nvm->flash_bank_size * 2;
2755         s32 ret_val;
2756         s32 count = 0;
2757         s32 j, iteration, sector_size;
2758
2759         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2760
2761         /*
2762          * Determine HW Sector size: Read BERASE bits of hw flash status
2763          * register
2764          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2765          *     consecutive sectors.  The start index for the nth Hw sector
2766          *     can be calculated as = bank * 4096 + n * 256
2767          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2768          *     The start index for the nth Hw sector can be calculated
2769          *     as = bank * 4096
2770          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2771          *     (ich9 only, otherwise error condition)
2772          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2773          */
2774         switch (hsfsts.hsf_status.berasesz) {
2775         case 0:
2776                 /* Hw sector size 256 */
2777                 sector_size = ICH_FLASH_SEG_SIZE_256;
2778                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2779                 break;
2780         case 1:
2781                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2782                 iteration = 1;
2783                 break;
2784         case 2:
2785                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2786                 iteration = 1;
2787                 break;
2788         case 3:
2789                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2790                 iteration = 1;
2791                 break;
2792         default:
2793                 return -E1000_ERR_NVM;
2794         }
2795
2796         /* Start with the base address, then add the sector offset. */
2797         flash_linear_addr = hw->nvm.flash_base_addr;
2798         flash_linear_addr += (bank) ? flash_bank_size : 0;
2799
2800         for (j = 0; j < iteration ; j++) {
2801                 do {
2802                         /* Steps */
2803                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2804                         if (ret_val)
2805                                 return ret_val;
2806
2807                         /*
2808                          * Write a value 11 (block Erase) in Flash
2809                          * Cycle field in hw flash control
2810                          */
2811                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2812                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2813                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2814
2815                         /*
2816                          * Write the last 24 bits of an index within the
2817                          * block into Flash Linear address field in Flash
2818                          * Address.
2819                          */
2820                         flash_linear_addr += (j * sector_size);
2821                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2822
2823                         ret_val = e1000_flash_cycle_ich8lan(hw,
2824                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2825                         if (ret_val == 0)
2826                                 break;
2827
2828                         /*
2829                          * Check if FCERR is set to 1.  If 1,
2830                          * clear it and try the whole sequence
2831                          * a few more times else Done
2832                          */
2833                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2834                         if (hsfsts.hsf_status.flcerr == 1)
2835                                 /* repeat for some time before giving up */
2836                                 continue;
2837                         else if (hsfsts.hsf_status.flcdone == 0)
2838                                 return ret_val;
2839                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2840         }
2841
2842         return 0;
2843 }
2844
2845 /**
2846  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2847  *  @hw: pointer to the HW structure
2848  *  @data: Pointer to the LED settings
2849  *
2850  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2851  *  settings is all 0's or F's, set the LED default to a valid LED default
2852  *  setting.
2853  **/
2854 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2855 {
2856         s32 ret_val;
2857
2858         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2859         if (ret_val) {
2860                 e_dbg("NVM Read Error\n");
2861                 return ret_val;
2862         }
2863
2864         if (*data == ID_LED_RESERVED_0000 ||
2865             *data == ID_LED_RESERVED_FFFF)
2866                 *data = ID_LED_DEFAULT_ICH8LAN;
2867
2868         return 0;
2869 }
2870
2871 /**
2872  *  e1000_id_led_init_pchlan - store LED configurations
2873  *  @hw: pointer to the HW structure
2874  *
2875  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2876  *  the PHY LED configuration register.
2877  *
2878  *  PCH also does not have an "always on" or "always off" mode which
2879  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2880  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2881  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2882  *  link based on logic in e1000_led_[on|off]_pchlan().
2883  **/
2884 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2885 {
2886         struct e1000_mac_info *mac = &hw->mac;
2887         s32 ret_val;
2888         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2889         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2890         u16 data, i, temp, shift;
2891
2892         /* Get default ID LED modes */
2893         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2894         if (ret_val)
2895                 goto out;
2896
2897         mac->ledctl_default = er32(LEDCTL);
2898         mac->ledctl_mode1 = mac->ledctl_default;
2899         mac->ledctl_mode2 = mac->ledctl_default;
2900
2901         for (i = 0; i < 4; i++) {
2902                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2903                 shift = (i * 5);
2904                 switch (temp) {
2905                 case ID_LED_ON1_DEF2:
2906                 case ID_LED_ON1_ON2:
2907                 case ID_LED_ON1_OFF2:
2908                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2909                         mac->ledctl_mode1 |= (ledctl_on << shift);
2910                         break;
2911                 case ID_LED_OFF1_DEF2:
2912                 case ID_LED_OFF1_ON2:
2913                 case ID_LED_OFF1_OFF2:
2914                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2915                         mac->ledctl_mode1 |= (ledctl_off << shift);
2916                         break;
2917                 default:
2918                         /* Do nothing */
2919                         break;
2920                 }
2921                 switch (temp) {
2922                 case ID_LED_DEF1_ON2:
2923                 case ID_LED_ON1_ON2:
2924                 case ID_LED_OFF1_ON2:
2925                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2926                         mac->ledctl_mode2 |= (ledctl_on << shift);
2927                         break;
2928                 case ID_LED_DEF1_OFF2:
2929                 case ID_LED_ON1_OFF2:
2930                 case ID_LED_OFF1_OFF2:
2931                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2932                         mac->ledctl_mode2 |= (ledctl_off << shift);
2933                         break;
2934                 default:
2935                         /* Do nothing */
2936                         break;
2937                 }
2938         }
2939
2940 out:
2941         return ret_val;
2942 }
2943
2944 /**
2945  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2946  *  @hw: pointer to the HW structure
2947  *
2948  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2949  *  register, so the the bus width is hard coded.
2950  **/
2951 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2952 {
2953         struct e1000_bus_info *bus = &hw->bus;
2954         s32 ret_val;
2955
2956         ret_val = e1000e_get_bus_info_pcie(hw);
2957
2958         /*
2959          * ICH devices are "PCI Express"-ish.  They have
2960          * a configuration space, but do not contain
2961          * PCI Express Capability registers, so bus width
2962          * must be hardcoded.
2963          */
2964         if (bus->width == e1000_bus_width_unknown)
2965                 bus->width = e1000_bus_width_pcie_x1;
2966
2967         return ret_val;
2968 }
2969
2970 /**
2971  *  e1000_reset_hw_ich8lan - Reset the hardware
2972  *  @hw: pointer to the HW structure
2973  *
2974  *  Does a full reset of the hardware which includes a reset of the PHY and
2975  *  MAC.
2976  **/
2977 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2978 {
2979         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2980         u16 reg;
2981         u32 ctrl, icr, kab;
2982         s32 ret_val;
2983
2984         /*
2985          * Prevent the PCI-E bus from sticking if there is no TLP connection
2986          * on the last TLP read/write transaction when MAC is reset.
2987          */
2988         ret_val = e1000e_disable_pcie_master(hw);
2989         if (ret_val)
2990                 e_dbg("PCI-E Master disable polling has failed.\n");
2991
2992         e_dbg("Masking off all interrupts\n");
2993         ew32(IMC, 0xffffffff);
2994
2995         /*
2996          * Disable the Transmit and Receive units.  Then delay to allow
2997          * any pending transactions to complete before we hit the MAC
2998          * with the global reset.
2999          */
3000         ew32(RCTL, 0);
3001         ew32(TCTL, E1000_TCTL_PSP);
3002         e1e_flush();
3003
3004         msleep(10);
3005
3006         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3007         if (hw->mac.type == e1000_ich8lan) {
3008                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3009                 ew32(PBA, E1000_PBA_8K);
3010                 /* Set Packet Buffer Size to 16k. */
3011                 ew32(PBS, E1000_PBS_16K);
3012         }
3013
3014         if (hw->mac.type == e1000_pchlan) {
3015                 /* Save the NVM K1 bit setting*/
3016                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3017                 if (ret_val)
3018                         return ret_val;
3019
3020                 if (reg & E1000_NVM_K1_ENABLE)
3021                         dev_spec->nvm_k1_enabled = true;
3022                 else
3023                         dev_spec->nvm_k1_enabled = false;
3024         }
3025
3026         ctrl = er32(CTRL);
3027
3028         if (!e1000_check_reset_block(hw)) {
3029                 /*
3030                  * Full-chip reset requires MAC and PHY reset at the same
3031                  * time to make sure the interface between MAC and the
3032                  * external PHY is reset.
3033                  */
3034                 ctrl |= E1000_CTRL_PHY_RST;
3035
3036                 /*
3037                  * Gate automatic PHY configuration by hardware on
3038                  * non-managed 82579
3039                  */
3040                 if ((hw->mac.type == e1000_pch2lan) &&
3041                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3042                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3043         }
3044         ret_val = e1000_acquire_swflag_ich8lan(hw);
3045         e_dbg("Issuing a global reset to ich8lan\n");
3046         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3047         msleep(20);
3048
3049         if (!ret_val)
3050                 e1000_release_swflag_ich8lan(hw);
3051
3052         if (ctrl & E1000_CTRL_PHY_RST) {
3053                 ret_val = hw->phy.ops.get_cfg_done(hw);
3054                 if (ret_val)
3055                         goto out;
3056
3057                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3058                 if (ret_val)
3059                         goto out;
3060         }
3061
3062         /*
3063          * For PCH, this write will make sure that any noise
3064          * will be detected as a CRC error and be dropped rather than show up
3065          * as a bad packet to the DMA engine.
3066          */
3067         if (hw->mac.type == e1000_pchlan)
3068                 ew32(CRC_OFFSET, 0x65656565);
3069
3070         ew32(IMC, 0xffffffff);
3071         icr = er32(ICR);
3072
3073         kab = er32(KABGTXD);
3074         kab |= E1000_KABGTXD_BGSQLBIAS;
3075         ew32(KABGTXD, kab);
3076
3077 out:
3078         return ret_val;
3079 }
3080
3081 /**
3082  *  e1000_init_hw_ich8lan - Initialize the hardware
3083  *  @hw: pointer to the HW structure
3084  *
3085  *  Prepares the hardware for transmit and receive by doing the following:
3086  *   - initialize hardware bits
3087  *   - initialize LED identification
3088  *   - setup receive address registers
3089  *   - setup flow control
3090  *   - setup transmit descriptors
3091  *   - clear statistics
3092  **/
3093 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3094 {
3095         struct e1000_mac_info *mac = &hw->mac;
3096         u32 ctrl_ext, txdctl, snoop;
3097         s32 ret_val;
3098         u16 i;
3099
3100         e1000_initialize_hw_bits_ich8lan(hw);
3101
3102         /* Initialize identification LED */
3103         ret_val = mac->ops.id_led_init(hw);
3104         if (ret_val)
3105                 e_dbg("Error initializing identification LED\n");
3106                 /* This is not fatal and we should not stop init due to this */
3107
3108         /* Setup the receive address. */
3109         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3110
3111         /* Zero out the Multicast HASH table */
3112         e_dbg("Zeroing the MTA\n");
3113         for (i = 0; i < mac->mta_reg_count; i++)
3114                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3115
3116         /*
3117          * The 82578 Rx buffer will stall if wakeup is enabled in host and
3118          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
3119          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3120          */
3121         if (hw->phy.type == e1000_phy_82578) {
3122                 hw->phy.ops.read_reg(hw, BM_WUC, &i);
3123                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3124                 if (ret_val)
3125                         return ret_val;
3126         }
3127
3128         /* Setup link and flow control */
3129         ret_val = e1000_setup_link_ich8lan(hw);
3130
3131         /* Set the transmit descriptor write-back policy for both queues */
3132         txdctl = er32(TXDCTL(0));
3133         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3134                  E1000_TXDCTL_FULL_TX_DESC_WB;
3135         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3136                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3137         ew32(TXDCTL(0), txdctl);
3138         txdctl = er32(TXDCTL(1));
3139         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3140                  E1000_TXDCTL_FULL_TX_DESC_WB;
3141         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3142                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3143         ew32(TXDCTL(1), txdctl);
3144
3145         /*
3146          * ICH8 has opposite polarity of no_snoop bits.
3147          * By default, we should use snoop behavior.
3148          */
3149         if (mac->type == e1000_ich8lan)
3150                 snoop = PCIE_ICH8_SNOOP_ALL;
3151         else
3152                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3153         e1000e_set_pcie_no_snoop(hw, snoop);
3154
3155         ctrl_ext = er32(CTRL_EXT);
3156         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3157         ew32(CTRL_EXT, ctrl_ext);
3158
3159         /*
3160          * Clear all of the statistics registers (clear on read).  It is
3161          * important that we do this after we have tried to establish link
3162          * because the symbol error count will increment wildly if there
3163          * is no link.
3164          */
3165         e1000_clear_hw_cntrs_ich8lan(hw);
3166
3167         return 0;
3168 }
3169 /**
3170  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3171  *  @hw: pointer to the HW structure
3172  *
3173  *  Sets/Clears required hardware bits necessary for correctly setting up the
3174  *  hardware for transmit and receive.
3175  **/
3176 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3177 {
3178         u32 reg;
3179
3180         /* Extended Device Control */
3181         reg = er32(CTRL_EXT);
3182         reg |= (1 << 22);
3183         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3184         if (hw->mac.type >= e1000_pchlan)
3185                 reg |= E1000_CTRL_EXT_PHYPDEN;
3186         ew32(CTRL_EXT, reg);
3187
3188         /* Transmit Descriptor Control 0 */
3189         reg = er32(TXDCTL(0));
3190         reg |= (1 << 22);
3191         ew32(TXDCTL(0), reg);
3192
3193         /* Transmit Descriptor Control 1 */
3194         reg = er32(TXDCTL(1));
3195         reg |= (1 << 22);
3196         ew32(TXDCTL(1), reg);
3197
3198         /* Transmit Arbitration Control 0 */
3199         reg = er32(TARC(0));
3200         if (hw->mac.type == e1000_ich8lan)
3201                 reg |= (1 << 28) | (1 << 29);
3202         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3203         ew32(TARC(0), reg);
3204
3205         /* Transmit Arbitration Control 1 */
3206         reg = er32(TARC(1));
3207         if (er32(TCTL) & E1000_TCTL_MULR)
3208                 reg &= ~(1 << 28);
3209         else
3210                 reg |= (1 << 28);
3211         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3212         ew32(TARC(1), reg);
3213
3214         /* Device Status */
3215         if (hw->mac.type == e1000_ich8lan) {
3216                 reg = er32(STATUS);
3217                 reg &= ~(1 << 31);
3218                 ew32(STATUS, reg);
3219         }
3220
3221         /*
3222          * work-around descriptor data corruption issue during nfs v2 udp
3223          * traffic, just disable the nfs filtering capability
3224          */
3225         reg = er32(RFCTL);
3226         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3227         ew32(RFCTL, reg);
3228 }
3229
3230 /**
3231  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3232  *  @hw: pointer to the HW structure
3233  *
3234  *  Determines which flow control settings to use, then configures flow
3235  *  control.  Calls the appropriate media-specific link configuration
3236  *  function.  Assuming the adapter has a valid link partner, a valid link
3237  *  should be established.  Assumes the hardware has previously been reset
3238  *  and the transmitter and receiver are not enabled.
3239  **/
3240 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3241 {
3242         s32 ret_val;
3243
3244         if (e1000_check_reset_block(hw))
3245                 return 0;
3246
3247         /*
3248          * ICH parts do not have a word in the NVM to determine
3249          * the default flow control setting, so we explicitly
3250          * set it to full.
3251          */
3252         if (hw->fc.requested_mode == e1000_fc_default) {
3253                 /* Workaround h/w hang when Tx flow control enabled */
3254                 if (hw->mac.type == e1000_pchlan)
3255                         hw->fc.requested_mode = e1000_fc_rx_pause;
3256                 else
3257                         hw->fc.requested_mode = e1000_fc_full;
3258         }
3259
3260         /*
3261          * Save off the requested flow control mode for use later.  Depending
3262          * on the link partner's capabilities, we may or may not use this mode.
3263          */
3264         hw->fc.current_mode = hw->fc.requested_mode;
3265
3266         e_dbg("After fix-ups FlowControl is now = %x\n",
3267                 hw->fc.current_mode);
3268
3269         /* Continue to configure the copper link. */
3270         ret_val = e1000_setup_copper_link_ich8lan(hw);
3271         if (ret_val)
3272                 return ret_val;
3273
3274         ew32(FCTTV, hw->fc.pause_time);
3275         if ((hw->phy.type == e1000_phy_82578) ||
3276             (hw->phy.type == e1000_phy_82579) ||
3277             (hw->phy.type == e1000_phy_82577)) {
3278                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3279
3280                 ret_val = hw->phy.ops.write_reg(hw,
3281                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
3282                                              hw->fc.pause_time);
3283                 if (ret_val)
3284                         return ret_val;
3285         }
3286
3287         return e1000e_set_fc_watermarks(hw);
3288 }
3289
3290 /**
3291  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3292  *  @hw: pointer to the HW structure
3293  *
3294  *  Configures the kumeran interface to the PHY to wait the appropriate time
3295  *  when polling the PHY, then call the generic setup_copper_link to finish
3296  *  configuring the copper link.
3297  **/
3298 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3299 {
3300         u32 ctrl;
3301         s32 ret_val;
3302         u16 reg_data;
3303
3304         ctrl = er32(CTRL);
3305         ctrl |= E1000_CTRL_SLU;
3306         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3307         ew32(CTRL, ctrl);
3308
3309         /*
3310          * Set the mac to wait the maximum time between each iteration
3311          * and increase the max iterations when polling the phy;
3312          * this fixes erroneous timeouts at 10Mbps.
3313          */
3314         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3315         if (ret_val)
3316                 return ret_val;
3317         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3318                                        &reg_data);
3319         if (ret_val)
3320                 return ret_val;
3321         reg_data |= 0x3F;
3322         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3323                                         reg_data);
3324         if (ret_val)
3325                 return ret_val;
3326
3327         switch (hw->phy.type) {
3328         case e1000_phy_igp_3:
3329                 ret_val = e1000e_copper_link_setup_igp(hw);
3330                 if (ret_val)
3331                         return ret_val;
3332                 break;
3333         case e1000_phy_bm:
3334         case e1000_phy_82578:
3335                 ret_val = e1000e_copper_link_setup_m88(hw);
3336                 if (ret_val)
3337                         return ret_val;
3338                 break;
3339         case e1000_phy_82577:
3340         case e1000_phy_82579:
3341                 ret_val = e1000_copper_link_setup_82577(hw);
3342                 if (ret_val)
3343                         return ret_val;
3344                 break;
3345         case e1000_phy_ife:
3346                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
3347                                                &reg_data);
3348                 if (ret_val)
3349                         return ret_val;
3350
3351                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3352
3353                 switch (hw->phy.mdix) {
3354                 case 1:
3355                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3356                         break;
3357                 case 2:
3358                         reg_data |= IFE_PMC_FORCE_MDIX;
3359                         break;
3360                 case 0:
3361                 default:
3362                         reg_data |= IFE_PMC_AUTO_MDIX;
3363                         break;
3364                 }
3365                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
3366                                                 reg_data);
3367                 if (ret_val)
3368                         return ret_val;
3369                 break;
3370         default:
3371                 break;
3372         }
3373         return e1000e_setup_copper_link(hw);
3374 }
3375
3376 /**
3377  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3378  *  @hw: pointer to the HW structure
3379  *  @speed: pointer to store current link speed
3380  *  @duplex: pointer to store the current link duplex
3381  *
3382  *  Calls the generic get_speed_and_duplex to retrieve the current link
3383  *  information and then calls the Kumeran lock loss workaround for links at
3384  *  gigabit speeds.
3385  **/
3386 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3387                                           u16 *duplex)
3388 {
3389         s32 ret_val;
3390
3391         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3392         if (ret_val)
3393                 return ret_val;
3394
3395         if ((hw->mac.type == e1000_ich8lan) &&
3396             (hw->phy.type == e1000_phy_igp_3) &&
3397             (*speed == SPEED_1000)) {
3398                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3399         }
3400
3401         return ret_val;
3402 }
3403
3404 /**
3405  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3406  *  @hw: pointer to the HW structure
3407  *
3408  *  Work-around for 82566 Kumeran PCS lock loss:
3409  *  On link status change (i.e. PCI reset, speed change) and link is up and
3410  *  speed is gigabit-
3411  *    0) if workaround is optionally disabled do nothing
3412  *    1) wait 1ms for Kumeran link to come up
3413  *    2) check Kumeran Diagnostic register PCS lock loss bit
3414  *    3) if not set the link is locked (all is good), otherwise...
3415  *    4) reset the PHY
3416  *    5) repeat up to 10 times
3417  *  Note: this is only called for IGP3 copper when speed is 1gb.
3418  **/
3419 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3420 {
3421         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3422         u32 phy_ctrl;
3423         s32 ret_val;
3424         u16 i, data;
3425         bool link;
3426
3427         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3428                 return 0;
3429
3430         /*
3431          * Make sure link is up before proceeding.  If not just return.
3432          * Attempting this while link is negotiating fouled up link
3433          * stability
3434          */
3435         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3436         if (!link)
3437                 return 0;
3438
3439         for (i = 0; i < 10; i++) {
3440                 /* read once to clear */
3441                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3442                 if (ret_val)
3443                         return ret_val;
3444                 /* and again to get new status */
3445                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3446                 if (ret_val)
3447                         return ret_val;
3448
3449                 /* check for PCS lock */
3450                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3451                         return 0;
3452
3453                 /* Issue PHY reset */
3454                 e1000_phy_hw_reset(hw);
3455                 mdelay(5);
3456         }
3457         /* Disable GigE link negotiation */
3458         phy_ctrl = er32(PHY_CTRL);
3459         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3460                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3461         ew32(PHY_CTRL, phy_ctrl);
3462
3463         /*
3464          * Call gig speed drop workaround on Gig disable before accessing
3465          * any PHY registers
3466          */
3467         e1000e_gig_downshift_workaround_ich8lan(hw);
3468
3469         /* unable to acquire PCS lock */
3470         return -E1000_ERR_PHY;
3471 }
3472
3473 /**
3474  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3475  *  @hw: pointer to the HW structure
3476  *  @state: boolean value used to set the current Kumeran workaround state
3477  *
3478  *  If ICH8, set the current Kumeran workaround state (enabled - true
3479  *  /disabled - false).
3480  **/
3481 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3482                                                  bool state)
3483 {
3484         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3485
3486         if (hw->mac.type != e1000_ich8lan) {
3487                 e_dbg("Workaround applies to ICH8 only.\n");
3488                 return;
3489         }
3490
3491         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3492 }
3493
3494 /**
3495  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3496  *  @hw: pointer to the HW structure
3497  *
3498  *  Workaround for 82566 power-down on D3 entry:
3499  *    1) disable gigabit link
3500  *    2) write VR power-down enable
3501  *    3) read it back
3502  *  Continue if successful, else issue LCD reset and repeat
3503  **/
3504 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3505 {
3506         u32 reg;
3507         u16 data;
3508         u8  retry = 0;
3509
3510         if (hw->phy.type != e1000_phy_igp_3)
3511                 return;
3512
3513         /* Try the workaround twice (if needed) */
3514         do {
3515                 /* Disable link */
3516                 reg = er32(PHY_CTRL);
3517                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3518                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3519                 ew32(PHY_CTRL, reg);
3520
3521                 /*
3522                  * Call gig speed drop workaround on Gig disable before
3523                  * accessing any PHY registers
3524                  */
3525                 if (hw->mac.type == e1000_ich8lan)
3526                         e1000e_gig_downshift_workaround_ich8lan(hw);
3527
3528                 /* Write VR power-down enable */
3529                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3530                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3531                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3532
3533                 /* Read it back and test */
3534                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3535                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3536                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3537                         break;
3538
3539                 /* Issue PHY reset and repeat at most one more time */
3540                 reg = er32(CTRL);
3541                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3542                 retry++;
3543         } while (retry);
3544 }
3545
3546 /**
3547  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3548  *  @hw: pointer to the HW structure
3549  *
3550  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3551  *  LPLU, Gig disable, MDIC PHY reset):
3552  *    1) Set Kumeran Near-end loopback
3553  *    2) Clear Kumeran Near-end loopback
3554  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3555  **/
3556 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3557 {
3558         s32 ret_val;
3559         u16 reg_data;
3560
3561         if ((hw->mac.type != e1000_ich8lan) ||
3562             (hw->phy.type != e1000_phy_igp_3))
3563                 return;
3564
3565         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3566                                       &reg_data);
3567         if (ret_val)
3568                 return;
3569         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3570         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3571                                        reg_data);
3572         if (ret_val)
3573                 return;
3574         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3575         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3576                                        reg_data);
3577 }
3578
3579 /**
3580  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3581  *  @hw: pointer to the HW structure
3582  *
3583  *  During S0 to Sx transition, it is possible the link remains at gig
3584  *  instead of negotiating to a lower speed.  Before going to Sx, set
3585  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3586  *  to a lower speed.
3587  *
3588  *  Should only be called for applicable parts.
3589  **/
3590 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3591 {
3592         u32 phy_ctrl;
3593         s32 ret_val;
3594
3595         phy_ctrl = er32(PHY_CTRL);
3596         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3597         ew32(PHY_CTRL, phy_ctrl);
3598
3599         if (hw->mac.type >= e1000_pchlan) {
3600                 e1000_oem_bits_config_ich8lan(hw, false);
3601                 ret_val = hw->phy.ops.acquire(hw);
3602                 if (ret_val)
3603                         return;
3604                 e1000_write_smbus_addr(hw);
3605                 hw->phy.ops.release(hw);
3606         }
3607 }
3608
3609 /**
3610  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3611  *  @hw: pointer to the HW structure
3612  *
3613  *  Return the LED back to the default configuration.
3614  **/
3615 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3616 {
3617         if (hw->phy.type == e1000_phy_ife)
3618                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3619
3620         ew32(LEDCTL, hw->mac.ledctl_default);
3621         return 0;
3622 }
3623
3624 /**
3625  *  e1000_led_on_ich8lan - Turn LEDs on
3626  *  @hw: pointer to the HW structure
3627  *
3628  *  Turn on the LEDs.
3629  **/
3630 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3631 {
3632         if (hw->phy.type == e1000_phy_ife)
3633                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3634                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3635
3636         ew32(LEDCTL, hw->mac.ledctl_mode2);
3637         return 0;
3638 }
3639
3640 /**
3641  *  e1000_led_off_ich8lan - Turn LEDs off
3642  *  @hw: pointer to the HW structure
3643  *
3644  *  Turn off the LEDs.
3645  **/
3646 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3647 {
3648         if (hw->phy.type == e1000_phy_ife)
3649                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3650                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3651
3652         ew32(LEDCTL, hw->mac.ledctl_mode1);
3653         return 0;
3654 }
3655
3656 /**
3657  *  e1000_setup_led_pchlan - Configures SW controllable LED
3658  *  @hw: pointer to the HW structure
3659  *
3660  *  This prepares the SW controllable LED for use.
3661  **/
3662 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3663 {
3664         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3665                                         (u16)hw->mac.ledctl_mode1);
3666 }
3667
3668 /**
3669  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3670  *  @hw: pointer to the HW structure
3671  *
3672  *  Return the LED back to the default configuration.
3673  **/
3674 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3675 {
3676         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3677                                         (u16)hw->mac.ledctl_default);
3678 }
3679
3680 /**
3681  *  e1000_led_on_pchlan - Turn LEDs on
3682  *  @hw: pointer to the HW structure
3683  *
3684  *  Turn on the LEDs.
3685  **/
3686 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3687 {
3688         u16 data = (u16)hw->mac.ledctl_mode2;
3689         u32 i, led;
3690
3691         /*
3692          * If no link, then turn LED on by setting the invert bit
3693          * for each LED that's mode is "link_up" in ledctl_mode2.
3694          */
3695         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3696                 for (i = 0; i < 3; i++) {
3697                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3698                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3699                             E1000_LEDCTL_MODE_LINK_UP)
3700                                 continue;
3701                         if (led & E1000_PHY_LED0_IVRT)
3702                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3703                         else
3704                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3705                 }
3706         }
3707
3708         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3709 }
3710
3711 /**
3712  *  e1000_led_off_pchlan - Turn LEDs off
3713  *  @hw: pointer to the HW structure
3714  *
3715  *  Turn off the LEDs.
3716  **/
3717 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3718 {
3719         u16 data = (u16)hw->mac.ledctl_mode1;
3720         u32 i, led;
3721
3722         /*
3723          * If no link, then turn LED off by clearing the invert bit
3724          * for each LED that's mode is "link_up" in ledctl_mode1.
3725          */
3726         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3727                 for (i = 0; i < 3; i++) {
3728                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3729                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3730                             E1000_LEDCTL_MODE_LINK_UP)
3731                                 continue;
3732                         if (led & E1000_PHY_LED0_IVRT)
3733                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3734                         else
3735                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3736                 }
3737         }
3738
3739         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3740 }
3741
3742 /**
3743  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3744  *  @hw: pointer to the HW structure
3745  *
3746  *  Read appropriate register for the config done bit for completion status
3747  *  and configure the PHY through s/w for EEPROM-less parts.
3748  *
3749  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3750  *  config done bit, so only an error is logged and continues.  If we were
3751  *  to return with error, EEPROM-less silicon would not be able to be reset
3752  *  or change link.
3753  **/
3754 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3755 {
3756         s32 ret_val = 0;
3757         u32 bank = 0;
3758         u32 status;
3759
3760         e1000e_get_cfg_done(hw);
3761
3762         /* Wait for indication from h/w that it has completed basic config */
3763         if (hw->mac.type >= e1000_ich10lan) {
3764                 e1000_lan_init_done_ich8lan(hw);
3765         } else {
3766                 ret_val = e1000e_get_auto_rd_done(hw);
3767                 if (ret_val) {
3768                         /*
3769                          * When auto config read does not complete, do not
3770                          * return with an error. This can happen in situations
3771                          * where there is no eeprom and prevents getting link.
3772                          */
3773                         e_dbg("Auto Read Done did not complete\n");
3774                         ret_val = 0;
3775                 }
3776         }
3777
3778         /* Clear PHY Reset Asserted bit */
3779         status = er32(STATUS);
3780         if (status & E1000_STATUS_PHYRA)
3781                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3782         else
3783                 e_dbg("PHY Reset Asserted not set - needs delay\n");
3784
3785         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3786         if (hw->mac.type <= e1000_ich9lan) {
3787                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3788                     (hw->phy.type == e1000_phy_igp_3)) {
3789                         e1000e_phy_init_script_igp3(hw);
3790                 }
3791         } else {
3792                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3793                         /* Maybe we should do a basic PHY config */
3794                         e_dbg("EEPROM not present\n");
3795                         ret_val = -E1000_ERR_CONFIG;
3796                 }
3797         }
3798
3799         return ret_val;
3800 }
3801
3802 /**
3803  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3804  * @hw: pointer to the HW structure
3805  *
3806  * In the case of a PHY power down to save power, or to turn off link during a
3807  * driver unload, or wake on lan is not enabled, remove the link.
3808  **/
3809 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3810 {
3811         /* If the management interface is not enabled, then power down */
3812         if (!(hw->mac.ops.check_mng_mode(hw) ||
3813               hw->phy.ops.check_reset_block(hw)))
3814                 e1000_power_down_phy_copper(hw);
3815 }
3816
3817 /**
3818  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3819  *  @hw: pointer to the HW structure
3820  *
3821  *  Clears hardware counters specific to the silicon family and calls
3822  *  clear_hw_cntrs_generic to clear all general purpose counters.
3823  **/
3824 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3825 {
3826         u16 phy_data;
3827
3828         e1000e_clear_hw_cntrs_base(hw);
3829
3830         er32(ALGNERRC);
3831         er32(RXERRC);
3832         er32(TNCRS);
3833         er32(CEXTERR);
3834         er32(TSCTC);
3835         er32(TSCTFC);
3836
3837         er32(MGTPRC);
3838         er32(MGTPDC);
3839         er32(MGTPTC);
3840
3841         er32(IAC);
3842         er32(ICRXOC);
3843
3844         /* Clear PHY statistics registers */
3845         if ((hw->phy.type == e1000_phy_82578) ||
3846             (hw->phy.type == e1000_phy_82579) ||
3847             (hw->phy.type == e1000_phy_82577)) {
3848                 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3849                 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3850                 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3851                 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3852                 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3853                 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3854                 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3855                 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3856                 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3857                 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3858                 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3859                 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3860                 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3861                 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3862         }
3863 }
3864
3865 static struct e1000_mac_operations ich8_mac_ops = {
3866         .id_led_init            = e1000e_id_led_init,
3867         /* check_mng_mode dependent on mac type */
3868         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3869         /* cleanup_led dependent on mac type */
3870         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3871         .get_bus_info           = e1000_get_bus_info_ich8lan,
3872         .set_lan_id             = e1000_set_lan_id_single_port,
3873         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3874         /* led_on dependent on mac type */
3875         /* led_off dependent on mac type */
3876         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3877         .reset_hw               = e1000_reset_hw_ich8lan,
3878         .init_hw                = e1000_init_hw_ich8lan,
3879         .setup_link             = e1000_setup_link_ich8lan,
3880         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3881         /* id_led_init dependent on mac type */
3882 };
3883
3884 static struct e1000_phy_operations ich8_phy_ops = {
3885         .acquire                = e1000_acquire_swflag_ich8lan,
3886         .check_reset_block      = e1000_check_reset_block_ich8lan,
3887         .commit                 = NULL,
3888         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3889         .get_cable_length       = e1000e_get_cable_length_igp_2,
3890         .read_reg               = e1000e_read_phy_reg_igp,
3891         .release                = e1000_release_swflag_ich8lan,
3892         .reset                  = e1000_phy_hw_reset_ich8lan,
3893         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3894         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3895         .write_reg              = e1000e_write_phy_reg_igp,
3896 };
3897
3898 static struct e1000_nvm_operations ich8_nvm_ops = {
3899         .acquire                = e1000_acquire_nvm_ich8lan,
3900         .read                   = e1000_read_nvm_ich8lan,
3901         .release                = e1000_release_nvm_ich8lan,
3902         .update                 = e1000_update_nvm_checksum_ich8lan,
3903         .valid_led_default      = e1000_valid_led_default_ich8lan,
3904         .validate               = e1000_validate_nvm_checksum_ich8lan,
3905         .write                  = e1000_write_nvm_ich8lan,
3906 };
3907
3908 struct e1000_info e1000_ich8_info = {
3909         .mac                    = e1000_ich8lan,
3910         .flags                  = FLAG_HAS_WOL
3911                                   | FLAG_IS_ICH
3912                                   | FLAG_RX_CSUM_ENABLED
3913                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3914                                   | FLAG_HAS_AMT
3915                                   | FLAG_HAS_FLASH
3916                                   | FLAG_APME_IN_WUC,
3917         .pba                    = 8,
3918         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3919         .get_variants           = e1000_get_variants_ich8lan,
3920         .mac_ops                = &ich8_mac_ops,
3921         .phy_ops                = &ich8_phy_ops,
3922         .nvm_ops                = &ich8_nvm_ops,
3923 };
3924
3925 struct e1000_info e1000_ich9_info = {
3926         .mac                    = e1000_ich9lan,
3927         .flags                  = FLAG_HAS_JUMBO_FRAMES
3928                                   | FLAG_IS_ICH
3929                                   | FLAG_HAS_WOL
3930                                   | FLAG_RX_CSUM_ENABLED
3931                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3932                                   | FLAG_HAS_AMT
3933                                   | FLAG_HAS_ERT
3934                                   | FLAG_HAS_FLASH
3935                                   | FLAG_APME_IN_WUC,
3936         .pba                    = 10,
3937         .max_hw_frame_size      = DEFAULT_JUMBO,
3938         .get_variants           = e1000_get_variants_ich8lan,
3939         .mac_ops                = &ich8_mac_ops,
3940         .phy_ops                = &ich8_phy_ops,
3941         .nvm_ops                = &ich8_nvm_ops,
3942 };
3943
3944 struct e1000_info e1000_ich10_info = {
3945         .mac                    = e1000_ich10lan,
3946         .flags                  = FLAG_HAS_JUMBO_FRAMES
3947                                   | FLAG_IS_ICH
3948                                   | FLAG_HAS_WOL
3949                                   | FLAG_RX_CSUM_ENABLED
3950                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3951                                   | FLAG_HAS_AMT
3952                                   | FLAG_HAS_ERT
3953                                   | FLAG_HAS_FLASH
3954                                   | FLAG_APME_IN_WUC,
3955         .pba                    = 10,
3956         .max_hw_frame_size      = DEFAULT_JUMBO,
3957         .get_variants           = e1000_get_variants_ich8lan,
3958         .mac_ops                = &ich8_mac_ops,
3959         .phy_ops                = &ich8_phy_ops,
3960         .nvm_ops                = &ich8_nvm_ops,
3961 };
3962
3963 struct e1000_info e1000_pch_info = {
3964         .mac                    = e1000_pchlan,
3965         .flags                  = FLAG_IS_ICH
3966                                   | FLAG_HAS_WOL
3967                                   | FLAG_RX_CSUM_ENABLED
3968                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3969                                   | FLAG_HAS_AMT
3970                                   | FLAG_HAS_FLASH
3971                                   | FLAG_HAS_JUMBO_FRAMES
3972                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3973                                   | FLAG_APME_IN_WUC,
3974         .flags2                 = FLAG2_HAS_PHY_STATS,
3975         .pba                    = 26,
3976         .max_hw_frame_size      = 4096,
3977         .get_variants           = e1000_get_variants_ich8lan,
3978         .mac_ops                = &ich8_mac_ops,
3979         .phy_ops                = &ich8_phy_ops,
3980         .nvm_ops                = &ich8_nvm_ops,
3981 };
3982
3983 struct e1000_info e1000_pch2_info = {
3984         .mac                    = e1000_pch2lan,
3985         .flags                  = FLAG_IS_ICH
3986                                   | FLAG_HAS_WOL
3987                                   | FLAG_RX_CSUM_ENABLED
3988                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3989                                   | FLAG_HAS_AMT
3990                                   | FLAG_HAS_FLASH
3991                                   | FLAG_HAS_JUMBO_FRAMES
3992                                   | FLAG_APME_IN_WUC,
3993         .flags2                 = FLAG2_HAS_PHY_STATS
3994                                   | FLAG2_HAS_EEE,
3995         .pba                    = 26,
3996         .max_hw_frame_size      = DEFAULT_JUMBO,
3997         .get_variants           = e1000_get_variants_ich8lan,
3998         .mac_ops                = &ich8_mac_ops,
3999         .phy_ops                = &ich8_phy_ops,
4000         .nvm_ops                = &ich8_nvm_ops,
4001 };