Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[linux-2.6-microblaze.git] / drivers / net / dsa / microchip / ksz9477.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16
17 #include "ksz_priv.h"
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20
21 /* Used with variable features to indicate capabilities. */
22 #define GBIT_SUPPORT                    BIT(0)
23 #define NEW_XMII                        BIT(1)
24 #define IS_9893                         BIT(2)
25
26 static const struct {
27         int index;
28         char string[ETH_GSTRING_LEN];
29 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
30         { 0x00, "rx_hi" },
31         { 0x01, "rx_undersize" },
32         { 0x02, "rx_fragments" },
33         { 0x03, "rx_oversize" },
34         { 0x04, "rx_jabbers" },
35         { 0x05, "rx_symbol_err" },
36         { 0x06, "rx_crc_err" },
37         { 0x07, "rx_align_err" },
38         { 0x08, "rx_mac_ctrl" },
39         { 0x09, "rx_pause" },
40         { 0x0A, "rx_bcast" },
41         { 0x0B, "rx_mcast" },
42         { 0x0C, "rx_ucast" },
43         { 0x0D, "rx_64_or_less" },
44         { 0x0E, "rx_65_127" },
45         { 0x0F, "rx_128_255" },
46         { 0x10, "rx_256_511" },
47         { 0x11, "rx_512_1023" },
48         { 0x12, "rx_1024_1522" },
49         { 0x13, "rx_1523_2000" },
50         { 0x14, "rx_2001" },
51         { 0x15, "tx_hi" },
52         { 0x16, "tx_late_col" },
53         { 0x17, "tx_pause" },
54         { 0x18, "tx_bcast" },
55         { 0x19, "tx_mcast" },
56         { 0x1A, "tx_ucast" },
57         { 0x1B, "tx_deferred" },
58         { 0x1C, "tx_total_col" },
59         { 0x1D, "tx_exc_col" },
60         { 0x1E, "tx_single_col" },
61         { 0x1F, "tx_mult_col" },
62         { 0x80, "rx_total" },
63         { 0x81, "tx_total" },
64         { 0x82, "rx_discards" },
65         { 0x83, "tx_discards" },
66 };
67
68 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
69 {
70         u32 data;
71
72         ksz_read32(dev, addr, &data);
73         if (set)
74                 data |= bits;
75         else
76                 data &= ~bits;
77         ksz_write32(dev, addr, data);
78 }
79
80 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
81                                u32 bits, bool set)
82 {
83         u32 addr;
84         u32 data;
85
86         addr = PORT_CTRL_ADDR(port, offset);
87         ksz_read32(dev, addr, &data);
88
89         if (set)
90                 data |= bits;
91         else
92                 data &= ~bits;
93
94         ksz_write32(dev, addr, data);
95 }
96
97 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton,
98                                         int timeout)
99 {
100         u8 data;
101
102         do {
103                 ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
104                 if (!(data & waiton))
105                         break;
106                 usleep_range(1, 10);
107         } while (timeout-- > 0);
108
109         if (timeout <= 0)
110                 return -ETIMEDOUT;
111
112         return 0;
113 }
114
115 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
116                                   u32 *vlan_table)
117 {
118         int ret;
119
120         mutex_lock(&dev->vlan_mutex);
121
122         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
123         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
124
125         /* wait to be cleared */
126         ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
127         if (ret < 0) {
128                 dev_dbg(dev->dev, "Failed to read vlan table\n");
129                 goto exit;
130         }
131
132         ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
133         ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
134         ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
135
136         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
137
138 exit:
139         mutex_unlock(&dev->vlan_mutex);
140
141         return ret;
142 }
143
144 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
145                                   u32 *vlan_table)
146 {
147         int ret;
148
149         mutex_lock(&dev->vlan_mutex);
150
151         ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
152         ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
153         ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
154
155         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
156         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
157
158         /* wait to be cleared */
159         ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
160         if (ret < 0) {
161                 dev_dbg(dev->dev, "Failed to write vlan table\n");
162                 goto exit;
163         }
164
165         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
166
167         /* update vlan cache table */
168         dev->vlan_cache[vid].table[0] = vlan_table[0];
169         dev->vlan_cache[vid].table[1] = vlan_table[1];
170         dev->vlan_cache[vid].table[2] = vlan_table[2];
171
172 exit:
173         mutex_unlock(&dev->vlan_mutex);
174
175         return ret;
176 }
177
178 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
179 {
180         ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
181         ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
182         ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
183         ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
184 }
185
186 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
187 {
188         ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
189         ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
190         ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
191         ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
192 }
193
194 static int ksz9477_wait_alu_ready(struct ksz_device *dev, u32 waiton,
195                                   int timeout)
196 {
197         u32 data;
198
199         do {
200                 ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
201                 if (!(data & waiton))
202                         break;
203                 usleep_range(1, 10);
204         } while (timeout-- > 0);
205
206         if (timeout <= 0)
207                 return -ETIMEDOUT;
208
209         return 0;
210 }
211
212 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev, u32 waiton,
213                                       int timeout)
214 {
215         u32 data;
216
217         do {
218                 ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
219                 if (!(data & waiton))
220                         break;
221                 usleep_range(1, 10);
222         } while (timeout-- > 0);
223
224         if (timeout <= 0)
225                 return -ETIMEDOUT;
226
227         return 0;
228 }
229
230 static int ksz9477_reset_switch(struct ksz_device *dev)
231 {
232         u8 data8;
233         u16 data16;
234         u32 data32;
235
236         /* reset switch */
237         ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
238
239         /* turn off SPI DO Edge select */
240         ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
241         data8 &= ~SPI_AUTO_EDGE_DETECTION;
242         ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
243
244         /* default configuration */
245         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
246         data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
247               SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
248         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
249
250         /* disable interrupts */
251         ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
252         ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
253         ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
254
255         /* set broadcast storm protection 10% rate */
256         ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
257         data16 &= ~BROADCAST_STORM_RATE;
258         data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
259         ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
260
261         if (dev->synclko_125)
262                 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
263                            SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
264
265         return 0;
266 }
267
268 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
269                               u64 *cnt)
270 {
271         struct ksz_poll_ctx ctx = {
272                 .dev = dev,
273                 .port = port,
274                 .offset = REG_PORT_MIB_CTRL_STAT__4,
275         };
276         struct ksz_port *p = &dev->ports[port];
277         u32 data;
278         int ret;
279
280         /* retain the flush/freeze bit */
281         data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
282         data |= MIB_COUNTER_READ;
283         data |= (addr << MIB_COUNTER_INDEX_S);
284         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
285
286         ret = readx_poll_timeout(ksz_pread32_poll, &ctx, data,
287                                  !(data & MIB_COUNTER_READ), 10, 1000);
288
289         /* failed to read MIB. get out of loop */
290         if (ret < 0) {
291                 dev_dbg(dev->dev, "Failed to get MIB\n");
292                 return;
293         }
294
295         /* count resets upon read */
296         ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
297         *cnt += data;
298 }
299
300 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
301                               u64 *dropped, u64 *cnt)
302 {
303         addr = ksz9477_mib_names[addr].index;
304         ksz9477_r_mib_cnt(dev, port, addr, cnt);
305 }
306
307 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
308 {
309         u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
310         struct ksz_port *p = &dev->ports[port];
311
312         /* enable/disable the port for flush/freeze function */
313         mutex_lock(&p->mib.cnt_mutex);
314         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
315
316         /* used by MIB counter reading code to know freeze is enabled */
317         p->freeze = freeze;
318         mutex_unlock(&p->mib.cnt_mutex);
319 }
320
321 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
322 {
323         struct ksz_port_mib *mib = &dev->ports[port].mib;
324
325         /* flush all enabled port MIB counters */
326         mutex_lock(&mib->cnt_mutex);
327         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
328                      MIB_COUNTER_FLUSH_FREEZE);
329         ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
330         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
331         mutex_unlock(&mib->cnt_mutex);
332
333         mib->cnt_ptr = 0;
334         memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
335 }
336
337 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
338                                                       int port)
339 {
340         enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
341         struct ksz_device *dev = ds->priv;
342
343         if (dev->features & IS_9893)
344                 proto = DSA_TAG_PROTO_KSZ9893;
345         return proto;
346 }
347
348 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
349 {
350         struct ksz_device *dev = ds->priv;
351         u16 val = 0xffff;
352
353         /* No real PHY after this. Simulate the PHY.
354          * A fixed PHY can be setup in the device tree, but this function is
355          * still called for that port during initialization.
356          * For RGMII PHY there is no way to access it so the fixed PHY should
357          * be used.  For SGMII PHY the supporting code will be added later.
358          */
359         if (addr >= dev->phy_port_cnt) {
360                 struct ksz_port *p = &dev->ports[addr];
361
362                 switch (reg) {
363                 case MII_BMCR:
364                         val = 0x1140;
365                         break;
366                 case MII_BMSR:
367                         val = 0x796d;
368                         break;
369                 case MII_PHYSID1:
370                         val = 0x0022;
371                         break;
372                 case MII_PHYSID2:
373                         val = 0x1631;
374                         break;
375                 case MII_ADVERTISE:
376                         val = 0x05e1;
377                         break;
378                 case MII_LPA:
379                         val = 0xc5e1;
380                         break;
381                 case MII_CTRL1000:
382                         val = 0x0700;
383                         break;
384                 case MII_STAT1000:
385                         if (p->phydev.speed == SPEED_1000)
386                                 val = 0x3800;
387                         else
388                                 val = 0;
389                         break;
390                 }
391         } else {
392                 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
393         }
394
395         return val;
396 }
397
398 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
399                                u16 val)
400 {
401         struct ksz_device *dev = ds->priv;
402
403         /* No real PHY after this. */
404         if (addr >= dev->phy_port_cnt)
405                 return 0;
406
407         /* No gigabit support.  Do not write to this register. */
408         if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
409                 return 0;
410         ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
411
412         return 0;
413 }
414
415 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
416                                 u32 stringset, uint8_t *buf)
417 {
418         int i;
419
420         if (stringset != ETH_SS_STATS)
421                 return;
422
423         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
424                 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
425                        ETH_GSTRING_LEN);
426         }
427 }
428
429 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
430                                     u8 member)
431 {
432         ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
433         dev->ports[port].member = member;
434 }
435
436 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
437                                        u8 state)
438 {
439         struct ksz_device *dev = ds->priv;
440         struct ksz_port *p = &dev->ports[port];
441         u8 data;
442         int member = -1;
443         int forward = dev->member;
444
445         ksz_pread8(dev, port, P_STP_CTRL, &data);
446         data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
447
448         switch (state) {
449         case BR_STATE_DISABLED:
450                 data |= PORT_LEARN_DISABLE;
451                 if (port != dev->cpu_port)
452                         member = 0;
453                 break;
454         case BR_STATE_LISTENING:
455                 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
456                 if (port != dev->cpu_port &&
457                     p->stp_state == BR_STATE_DISABLED)
458                         member = dev->host_mask | p->vid_member;
459                 break;
460         case BR_STATE_LEARNING:
461                 data |= PORT_RX_ENABLE;
462                 break;
463         case BR_STATE_FORWARDING:
464                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
465
466                 /* This function is also used internally. */
467                 if (port == dev->cpu_port)
468                         break;
469
470                 member = dev->host_mask | p->vid_member;
471                 mutex_lock(&dev->dev_mutex);
472
473                 /* Port is a member of a bridge. */
474                 if (dev->br_member & (1 << port)) {
475                         dev->member |= (1 << port);
476                         member = dev->member;
477                 }
478                 mutex_unlock(&dev->dev_mutex);
479                 break;
480         case BR_STATE_BLOCKING:
481                 data |= PORT_LEARN_DISABLE;
482                 if (port != dev->cpu_port &&
483                     p->stp_state == BR_STATE_DISABLED)
484                         member = dev->host_mask | p->vid_member;
485                 break;
486         default:
487                 dev_err(ds->dev, "invalid STP state: %d\n", state);
488                 return;
489         }
490
491         ksz_pwrite8(dev, port, P_STP_CTRL, data);
492         p->stp_state = state;
493         mutex_lock(&dev->dev_mutex);
494         if (data & PORT_RX_ENABLE)
495                 dev->rx_ports |= (1 << port);
496         else
497                 dev->rx_ports &= ~(1 << port);
498         if (data & PORT_TX_ENABLE)
499                 dev->tx_ports |= (1 << port);
500         else
501                 dev->tx_ports &= ~(1 << port);
502
503         /* Port membership may share register with STP state. */
504         if (member >= 0 && member != p->member)
505                 ksz9477_cfg_port_member(dev, port, (u8)member);
506
507         /* Check if forwarding needs to be updated. */
508         if (state != BR_STATE_FORWARDING) {
509                 if (dev->br_member & (1 << port))
510                         dev->member &= ~(1 << port);
511         }
512
513         /* When topology has changed the function ksz_update_port_member
514          * should be called to modify port forwarding behavior.
515          */
516         if (forward != dev->member)
517                 ksz_update_port_member(dev, port);
518         mutex_unlock(&dev->dev_mutex);
519 }
520
521 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
522 {
523         u8 data;
524
525         ksz_read8(dev, REG_SW_LUE_CTRL_2, &data);
526         data &= ~(SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S);
527         data |= (SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
528         ksz_write8(dev, REG_SW_LUE_CTRL_2, data);
529         if (port < dev->mib_port_cnt) {
530                 /* flush individual port */
531                 ksz_pread8(dev, port, P_STP_CTRL, &data);
532                 if (!(data & PORT_LEARN_DISABLE))
533                         ksz_pwrite8(dev, port, P_STP_CTRL,
534                                     data | PORT_LEARN_DISABLE);
535                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
536                 ksz_pwrite8(dev, port, P_STP_CTRL, data);
537         } else {
538                 /* flush all */
539                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
540         }
541 }
542
543 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
544                                        bool flag)
545 {
546         struct ksz_device *dev = ds->priv;
547
548         if (flag) {
549                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
550                              PORT_VLAN_LOOKUP_VID_0, true);
551                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
552         } else {
553                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
554                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555                              PORT_VLAN_LOOKUP_VID_0, false);
556         }
557
558         return 0;
559 }
560
561 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
562                                   const struct switchdev_obj_port_vlan *vlan)
563 {
564         struct ksz_device *dev = ds->priv;
565         u32 vlan_table[3];
566         u16 vid;
567         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
568
569         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
570                 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
571                         dev_dbg(dev->dev, "Failed to get vlan table\n");
572                         return;
573                 }
574
575                 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
576                 if (untagged)
577                         vlan_table[1] |= BIT(port);
578                 else
579                         vlan_table[1] &= ~BIT(port);
580                 vlan_table[1] &= ~(BIT(dev->cpu_port));
581
582                 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
583
584                 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
585                         dev_dbg(dev->dev, "Failed to set vlan table\n");
586                         return;
587                 }
588
589                 /* change PVID */
590                 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
591                         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
592         }
593 }
594
595 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
596                                  const struct switchdev_obj_port_vlan *vlan)
597 {
598         struct ksz_device *dev = ds->priv;
599         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
600         u32 vlan_table[3];
601         u16 vid;
602         u16 pvid;
603
604         ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
605         pvid = pvid & 0xFFF;
606
607         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
608                 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
609                         dev_dbg(dev->dev, "Failed to get vlan table\n");
610                         return -ETIMEDOUT;
611                 }
612
613                 vlan_table[2] &= ~BIT(port);
614
615                 if (pvid == vid)
616                         pvid = 1;
617
618                 if (untagged)
619                         vlan_table[1] &= ~BIT(port);
620
621                 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
622                         dev_dbg(dev->dev, "Failed to set vlan table\n");
623                         return -ETIMEDOUT;
624                 }
625         }
626
627         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
628
629         return 0;
630 }
631
632 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
633                                 const unsigned char *addr, u16 vid)
634 {
635         struct ksz_device *dev = ds->priv;
636         u32 alu_table[4];
637         u32 data;
638         int ret = 0;
639
640         mutex_lock(&dev->alu_mutex);
641
642         /* find any entry with mac & vid */
643         data = vid << ALU_FID_INDEX_S;
644         data |= ((addr[0] << 8) | addr[1]);
645         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
646
647         data = ((addr[2] << 24) | (addr[3] << 16));
648         data |= ((addr[4] << 8) | addr[5]);
649         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
650
651         /* start read operation */
652         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
653
654         /* wait to be finished */
655         ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
656         if (ret < 0) {
657                 dev_dbg(dev->dev, "Failed to read ALU\n");
658                 goto exit;
659         }
660
661         /* read ALU entry */
662         ksz9477_read_table(dev, alu_table);
663
664         /* update ALU entry */
665         alu_table[0] = ALU_V_STATIC_VALID;
666         alu_table[1] |= BIT(port);
667         if (vid)
668                 alu_table[1] |= ALU_V_USE_FID;
669         alu_table[2] = (vid << ALU_V_FID_S);
670         alu_table[2] |= ((addr[0] << 8) | addr[1]);
671         alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
672         alu_table[3] |= ((addr[4] << 8) | addr[5]);
673
674         ksz9477_write_table(dev, alu_table);
675
676         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
677
678         /* wait to be finished */
679         ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
680         if (ret < 0)
681                 dev_dbg(dev->dev, "Failed to write ALU\n");
682
683 exit:
684         mutex_unlock(&dev->alu_mutex);
685
686         return ret;
687 }
688
689 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
690                                 const unsigned char *addr, u16 vid)
691 {
692         struct ksz_device *dev = ds->priv;
693         u32 alu_table[4];
694         u32 data;
695         int ret = 0;
696
697         mutex_lock(&dev->alu_mutex);
698
699         /* read any entry with mac & vid */
700         data = vid << ALU_FID_INDEX_S;
701         data |= ((addr[0] << 8) | addr[1]);
702         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
703
704         data = ((addr[2] << 24) | (addr[3] << 16));
705         data |= ((addr[4] << 8) | addr[5]);
706         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
707
708         /* start read operation */
709         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
710
711         /* wait to be finished */
712         ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
713         if (ret < 0) {
714                 dev_dbg(dev->dev, "Failed to read ALU\n");
715                 goto exit;
716         }
717
718         ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
719         if (alu_table[0] & ALU_V_STATIC_VALID) {
720                 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
721                 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
722                 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
723
724                 /* clear forwarding port */
725                 alu_table[2] &= ~BIT(port);
726
727                 /* if there is no port to forward, clear table */
728                 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
729                         alu_table[0] = 0;
730                         alu_table[1] = 0;
731                         alu_table[2] = 0;
732                         alu_table[3] = 0;
733                 }
734         } else {
735                 alu_table[0] = 0;
736                 alu_table[1] = 0;
737                 alu_table[2] = 0;
738                 alu_table[3] = 0;
739         }
740
741         ksz9477_write_table(dev, alu_table);
742
743         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
744
745         /* wait to be finished */
746         ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
747         if (ret < 0)
748                 dev_dbg(dev->dev, "Failed to write ALU\n");
749
750 exit:
751         mutex_unlock(&dev->alu_mutex);
752
753         return ret;
754 }
755
756 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
757 {
758         alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
759         alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
760         alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
761         alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
762                         ALU_V_PRIO_AGE_CNT_M;
763         alu->mstp = alu_table[0] & ALU_V_MSTP_M;
764
765         alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
766         alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
767         alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
768
769         alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
770
771         alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
772         alu->mac[1] = alu_table[2] & 0xFF;
773         alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
774         alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
775         alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
776         alu->mac[5] = alu_table[3] & 0xFF;
777 }
778
779 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
780                                  dsa_fdb_dump_cb_t *cb, void *data)
781 {
782         struct ksz_device *dev = ds->priv;
783         int ret = 0;
784         u32 ksz_data;
785         u32 alu_table[4];
786         struct alu_struct alu;
787         int timeout;
788
789         mutex_lock(&dev->alu_mutex);
790
791         /* start ALU search */
792         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
793
794         do {
795                 timeout = 1000;
796                 do {
797                         ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
798                         if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
799                                 break;
800                         usleep_range(1, 10);
801                 } while (timeout-- > 0);
802
803                 if (!timeout) {
804                         dev_dbg(dev->dev, "Failed to search ALU\n");
805                         ret = -ETIMEDOUT;
806                         goto exit;
807                 }
808
809                 /* read ALU table */
810                 ksz9477_read_table(dev, alu_table);
811
812                 ksz9477_convert_alu(&alu, alu_table);
813
814                 if (alu.port_forward & BIT(port)) {
815                         ret = cb(alu.mac, alu.fid, alu.is_static, data);
816                         if (ret)
817                                 goto exit;
818                 }
819         } while (ksz_data & ALU_START);
820
821 exit:
822
823         /* stop ALU search */
824         ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
825
826         mutex_unlock(&dev->alu_mutex);
827
828         return ret;
829 }
830
831 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
832                                  const struct switchdev_obj_port_mdb *mdb)
833 {
834         struct ksz_device *dev = ds->priv;
835         u32 static_table[4];
836         u32 data;
837         int index;
838         u32 mac_hi, mac_lo;
839
840         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
841         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
842         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
843
844         mutex_lock(&dev->alu_mutex);
845
846         for (index = 0; index < dev->num_statics; index++) {
847                 /* find empty slot first */
848                 data = (index << ALU_STAT_INDEX_S) |
849                         ALU_STAT_READ | ALU_STAT_START;
850                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
851
852                 /* wait to be finished */
853                 if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
854                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
855                         goto exit;
856                 }
857
858                 /* read ALU static table */
859                 ksz9477_read_table(dev, static_table);
860
861                 if (static_table[0] & ALU_V_STATIC_VALID) {
862                         /* check this has same vid & mac address */
863                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
864                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
865                             static_table[3] == mac_lo) {
866                                 /* found matching one */
867                                 break;
868                         }
869                 } else {
870                         /* found empty one */
871                         break;
872                 }
873         }
874
875         /* no available entry */
876         if (index == dev->num_statics)
877                 goto exit;
878
879         /* add entry */
880         static_table[0] = ALU_V_STATIC_VALID;
881         static_table[1] |= BIT(port);
882         if (mdb->vid)
883                 static_table[1] |= ALU_V_USE_FID;
884         static_table[2] = (mdb->vid << ALU_V_FID_S);
885         static_table[2] |= mac_hi;
886         static_table[3] = mac_lo;
887
888         ksz9477_write_table(dev, static_table);
889
890         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
891         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
892
893         /* wait to be finished */
894         if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
895                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
896
897 exit:
898         mutex_unlock(&dev->alu_mutex);
899 }
900
901 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
902                                 const struct switchdev_obj_port_mdb *mdb)
903 {
904         struct ksz_device *dev = ds->priv;
905         u32 static_table[4];
906         u32 data;
907         int index;
908         int ret = 0;
909         u32 mac_hi, mac_lo;
910
911         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
912         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
913         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
914
915         mutex_lock(&dev->alu_mutex);
916
917         for (index = 0; index < dev->num_statics; index++) {
918                 /* find empty slot first */
919                 data = (index << ALU_STAT_INDEX_S) |
920                         ALU_STAT_READ | ALU_STAT_START;
921                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
922
923                 /* wait to be finished */
924                 ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
925                 if (ret < 0) {
926                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
927                         goto exit;
928                 }
929
930                 /* read ALU static table */
931                 ksz9477_read_table(dev, static_table);
932
933                 if (static_table[0] & ALU_V_STATIC_VALID) {
934                         /* check this has same vid & mac address */
935
936                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
937                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
938                             static_table[3] == mac_lo) {
939                                 /* found matching one */
940                                 break;
941                         }
942                 }
943         }
944
945         /* no available entry */
946         if (index == dev->num_statics)
947                 goto exit;
948
949         /* clear port */
950         static_table[1] &= ~BIT(port);
951
952         if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
953                 /* delete entry */
954                 static_table[0] = 0;
955                 static_table[1] = 0;
956                 static_table[2] = 0;
957                 static_table[3] = 0;
958         }
959
960         ksz9477_write_table(dev, static_table);
961
962         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
963         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
964
965         /* wait to be finished */
966         ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
967         if (ret < 0)
968                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
969
970 exit:
971         mutex_unlock(&dev->alu_mutex);
972
973         return ret;
974 }
975
976 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
977                                    struct dsa_mall_mirror_tc_entry *mirror,
978                                    bool ingress)
979 {
980         struct ksz_device *dev = ds->priv;
981
982         if (ingress)
983                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
984         else
985                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
986
987         ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
988
989         /* configure mirror port */
990         ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
991                      PORT_MIRROR_SNIFFER, true);
992
993         ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
994
995         return 0;
996 }
997
998 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
999                                     struct dsa_mall_mirror_tc_entry *mirror)
1000 {
1001         struct ksz_device *dev = ds->priv;
1002         u8 data;
1003
1004         if (mirror->ingress)
1005                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1006         else
1007                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1008
1009         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1010
1011         if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1012                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1013                              PORT_MIRROR_SNIFFER, false);
1014 }
1015
1016 static void ksz9477_phy_setup(struct ksz_device *dev, int port,
1017                               struct phy_device *phy)
1018 {
1019         /* Only apply to port with PHY. */
1020         if (port >= dev->phy_port_cnt)
1021                 return;
1022
1023         /* The MAC actually cannot run in 1000 half-duplex mode. */
1024         phy_remove_link_mode(phy,
1025                              ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1026
1027         /* PHY does not support gigabit. */
1028         if (!(dev->features & GBIT_SUPPORT))
1029                 phy_remove_link_mode(phy,
1030                                      ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1031 }
1032
1033 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
1034 {
1035         bool gbit;
1036
1037         if (dev->features & NEW_XMII)
1038                 gbit = !(data & PORT_MII_NOT_1GBIT);
1039         else
1040                 gbit = !!(data & PORT_MII_1000MBIT_S1);
1041         return gbit;
1042 }
1043
1044 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1045 {
1046         if (dev->features & NEW_XMII) {
1047                 if (gbit)
1048                         *data &= ~PORT_MII_NOT_1GBIT;
1049                 else
1050                         *data |= PORT_MII_NOT_1GBIT;
1051         } else {
1052                 if (gbit)
1053                         *data |= PORT_MII_1000MBIT_S1;
1054                 else
1055                         *data &= ~PORT_MII_1000MBIT_S1;
1056         }
1057 }
1058
1059 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1060 {
1061         int mode;
1062
1063         if (dev->features & NEW_XMII) {
1064                 switch (data & PORT_MII_SEL_M) {
1065                 case PORT_MII_SEL:
1066                         mode = 0;
1067                         break;
1068                 case PORT_RMII_SEL:
1069                         mode = 1;
1070                         break;
1071                 case PORT_GMII_SEL:
1072                         mode = 2;
1073                         break;
1074                 default:
1075                         mode = 3;
1076                 }
1077         } else {
1078                 switch (data & PORT_MII_SEL_M) {
1079                 case PORT_MII_SEL_S1:
1080                         mode = 0;
1081                         break;
1082                 case PORT_RMII_SEL_S1:
1083                         mode = 1;
1084                         break;
1085                 case PORT_GMII_SEL_S1:
1086                         mode = 2;
1087                         break;
1088                 default:
1089                         mode = 3;
1090                 }
1091         }
1092         return mode;
1093 }
1094
1095 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1096 {
1097         u8 xmii;
1098
1099         if (dev->features & NEW_XMII) {
1100                 switch (mode) {
1101                 case 0:
1102                         xmii = PORT_MII_SEL;
1103                         break;
1104                 case 1:
1105                         xmii = PORT_RMII_SEL;
1106                         break;
1107                 case 2:
1108                         xmii = PORT_GMII_SEL;
1109                         break;
1110                 default:
1111                         xmii = PORT_RGMII_SEL;
1112                         break;
1113                 }
1114         } else {
1115                 switch (mode) {
1116                 case 0:
1117                         xmii = PORT_MII_SEL_S1;
1118                         break;
1119                 case 1:
1120                         xmii = PORT_RMII_SEL_S1;
1121                         break;
1122                 case 2:
1123                         xmii = PORT_GMII_SEL_S1;
1124                         break;
1125                 default:
1126                         xmii = PORT_RGMII_SEL_S1;
1127                         break;
1128                 }
1129         }
1130         *data &= ~PORT_MII_SEL_M;
1131         *data |= xmii;
1132 }
1133
1134 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1135 {
1136         phy_interface_t interface;
1137         bool gbit;
1138         int mode;
1139         u8 data8;
1140
1141         if (port < dev->phy_port_cnt)
1142                 return PHY_INTERFACE_MODE_NA;
1143         ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1144         gbit = ksz9477_get_gbit(dev, data8);
1145         mode = ksz9477_get_xmii(dev, data8);
1146         switch (mode) {
1147         case 2:
1148                 interface = PHY_INTERFACE_MODE_GMII;
1149                 if (gbit)
1150                         break;
1151                 /* fall through */
1152         case 0:
1153                 interface = PHY_INTERFACE_MODE_MII;
1154                 break;
1155         case 1:
1156                 interface = PHY_INTERFACE_MODE_RMII;
1157                 break;
1158         default:
1159                 interface = PHY_INTERFACE_MODE_RGMII;
1160                 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1161                         interface = PHY_INTERFACE_MODE_RGMII_TXID;
1162                 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1163                         interface = PHY_INTERFACE_MODE_RGMII_RXID;
1164                         if (data8 & PORT_RGMII_ID_EG_ENABLE)
1165                                 interface = PHY_INTERFACE_MODE_RGMII_ID;
1166                 }
1167                 break;
1168         }
1169         return interface;
1170 }
1171
1172 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1173                                    u8 dev_addr, u16 reg_addr, u16 val)
1174 {
1175         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1176                      MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1177         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1178         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1179                      MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1180         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1181 }
1182
1183 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1184 {
1185         /* Apply PHY settings to address errata listed in
1186          * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1187          * Silicon Errata and Data Sheet Clarification documents:
1188          *
1189          * Register settings are needed to improve PHY receive performance
1190          */
1191         ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1192         ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1193         ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1194         ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1195         ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1196         ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1197         ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1198
1199         /* Transmit waveform amplitude can be improved
1200          * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1201          */
1202         ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1203
1204         /* Energy Efficient Ethernet (EEE) feature select must
1205          * be manually disabled (except on KSZ8565 which is 100Mbit)
1206          */
1207         if (dev->features & GBIT_SUPPORT)
1208                 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1209
1210         /* Register settings are required to meet data sheet
1211          * supply current specifications
1212          */
1213         ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1214         ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1215         ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1216         ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1217         ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1218         ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1219         ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1220         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1221         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1222         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1223         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1224         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1225         ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1226 }
1227
1228 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1229 {
1230         u8 data8;
1231         u8 member;
1232         u16 data16;
1233         struct ksz_port *p = &dev->ports[port];
1234
1235         /* enable tag tail for host port */
1236         if (cpu_port)
1237                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1238                              true);
1239
1240         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1241
1242         /* set back pressure */
1243         ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1244
1245         /* enable broadcast storm limit */
1246         ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1247
1248         /* disable DiffServ priority */
1249         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1250
1251         /* replace priority */
1252         ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1253                      false);
1254         ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1255                            MTI_PVID_REPLACE, false);
1256
1257         /* enable 802.1p priority */
1258         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1259
1260         if (port < dev->phy_port_cnt) {
1261                 /* do not force flow control */
1262                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1263                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1264                              false);
1265
1266                 if (dev->phy_errata_9477)
1267                         ksz9477_phy_errata_setup(dev, port);
1268         } else {
1269                 /* force flow control */
1270                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1271                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1272                              true);
1273
1274                 /* configure MAC to 1G & RGMII mode */
1275                 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1276                 switch (dev->interface) {
1277                 case PHY_INTERFACE_MODE_MII:
1278                         ksz9477_set_xmii(dev, 0, &data8);
1279                         ksz9477_set_gbit(dev, false, &data8);
1280                         p->phydev.speed = SPEED_100;
1281                         break;
1282                 case PHY_INTERFACE_MODE_RMII:
1283                         ksz9477_set_xmii(dev, 1, &data8);
1284                         ksz9477_set_gbit(dev, false, &data8);
1285                         p->phydev.speed = SPEED_100;
1286                         break;
1287                 case PHY_INTERFACE_MODE_GMII:
1288                         ksz9477_set_xmii(dev, 2, &data8);
1289                         ksz9477_set_gbit(dev, true, &data8);
1290                         p->phydev.speed = SPEED_1000;
1291                         break;
1292                 default:
1293                         ksz9477_set_xmii(dev, 3, &data8);
1294                         ksz9477_set_gbit(dev, true, &data8);
1295                         data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1296                         data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1297                         if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1298                             dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1299                                 data8 |= PORT_RGMII_ID_IG_ENABLE;
1300                         if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1301                             dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1302                                 data8 |= PORT_RGMII_ID_EG_ENABLE;
1303                         p->phydev.speed = SPEED_1000;
1304                         break;
1305                 }
1306                 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1307                 p->phydev.duplex = 1;
1308         }
1309         mutex_lock(&dev->dev_mutex);
1310         if (cpu_port) {
1311                 member = dev->port_mask;
1312                 dev->on_ports = dev->host_mask;
1313                 dev->live_ports = dev->host_mask;
1314         } else {
1315                 member = dev->host_mask | p->vid_member;
1316                 dev->on_ports |= (1 << port);
1317
1318                 /* Link was detected before port is enabled. */
1319                 if (p->phydev.link)
1320                         dev->live_ports |= (1 << port);
1321         }
1322         mutex_unlock(&dev->dev_mutex);
1323         ksz9477_cfg_port_member(dev, port, member);
1324
1325         /* clear pending interrupts */
1326         if (port < dev->phy_port_cnt)
1327                 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1328 }
1329
1330 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1331 {
1332         struct ksz_device *dev = ds->priv;
1333         struct ksz_port *p;
1334         int i;
1335
1336         ds->num_ports = dev->port_cnt;
1337
1338         for (i = 0; i < dev->port_cnt; i++) {
1339                 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1340                         phy_interface_t interface;
1341
1342                         dev->cpu_port = i;
1343                         dev->host_mask = (1 << dev->cpu_port);
1344                         dev->port_mask |= dev->host_mask;
1345
1346                         /* Read from XMII register to determine host port
1347                          * interface.  If set specifically in device tree
1348                          * note the difference to help debugging.
1349                          */
1350                         interface = ksz9477_get_interface(dev, i);
1351                         if (!dev->interface)
1352                                 dev->interface = interface;
1353                         if (interface && interface != dev->interface)
1354                                 dev_info(dev->dev,
1355                                          "use %s instead of %s\n",
1356                                           phy_modes(dev->interface),
1357                                           phy_modes(interface));
1358
1359                         /* enable cpu port */
1360                         ksz9477_port_setup(dev, i, true);
1361                         p = &dev->ports[dev->cpu_port];
1362                         p->vid_member = dev->port_mask;
1363                         p->on = 1;
1364                 }
1365         }
1366
1367         dev->member = dev->host_mask;
1368
1369         for (i = 0; i < dev->mib_port_cnt; i++) {
1370                 if (i == dev->cpu_port)
1371                         continue;
1372                 p = &dev->ports[i];
1373
1374                 /* Initialize to non-zero so that ksz_cfg_port_member() will
1375                  * be called.
1376                  */
1377                 p->vid_member = (1 << i);
1378                 p->member = dev->port_mask;
1379                 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1380                 p->on = 1;
1381                 if (i < dev->phy_port_cnt)
1382                         p->phy = 1;
1383                 if (dev->chip_id == 0x00947700 && i == 6) {
1384                         p->sgmii = 1;
1385
1386                         /* SGMII PHY detection code is not implemented yet. */
1387                         p->phy = 0;
1388                 }
1389         }
1390 }
1391
1392 static int ksz9477_setup(struct dsa_switch *ds)
1393 {
1394         struct ksz_device *dev = ds->priv;
1395         int ret = 0;
1396
1397         dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1398                                        dev->num_vlans, GFP_KERNEL);
1399         if (!dev->vlan_cache)
1400                 return -ENOMEM;
1401
1402         ret = ksz9477_reset_switch(dev);
1403         if (ret) {
1404                 dev_err(ds->dev, "failed to reset switch\n");
1405                 return ret;
1406         }
1407
1408         /* Required for port partitioning. */
1409         ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1410                       true);
1411
1412         /* Do not work correctly with tail tagging. */
1413         ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1414
1415         /* accept packet up to 2000bytes */
1416         ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1417
1418         ksz9477_config_cpu_port(ds);
1419
1420         ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1421
1422         /* queue based egress rate limit */
1423         ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1424
1425         /* enable global MIB counter freeze function */
1426         ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1427
1428         /* start switch */
1429         ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1430
1431         ksz_init_mib_timer(dev);
1432
1433         return 0;
1434 }
1435
1436 static const struct dsa_switch_ops ksz9477_switch_ops = {
1437         .get_tag_protocol       = ksz9477_get_tag_protocol,
1438         .setup                  = ksz9477_setup,
1439         .phy_read               = ksz9477_phy_read16,
1440         .phy_write              = ksz9477_phy_write16,
1441         .adjust_link            = ksz_adjust_link,
1442         .port_enable            = ksz_enable_port,
1443         .port_disable           = ksz_disable_port,
1444         .get_strings            = ksz9477_get_strings,
1445         .get_ethtool_stats      = ksz_get_ethtool_stats,
1446         .get_sset_count         = ksz_sset_count,
1447         .port_bridge_join       = ksz_port_bridge_join,
1448         .port_bridge_leave      = ksz_port_bridge_leave,
1449         .port_stp_state_set     = ksz9477_port_stp_state_set,
1450         .port_fast_age          = ksz_port_fast_age,
1451         .port_vlan_filtering    = ksz9477_port_vlan_filtering,
1452         .port_vlan_prepare      = ksz_port_vlan_prepare,
1453         .port_vlan_add          = ksz9477_port_vlan_add,
1454         .port_vlan_del          = ksz9477_port_vlan_del,
1455         .port_fdb_dump          = ksz9477_port_fdb_dump,
1456         .port_fdb_add           = ksz9477_port_fdb_add,
1457         .port_fdb_del           = ksz9477_port_fdb_del,
1458         .port_mdb_prepare       = ksz_port_mdb_prepare,
1459         .port_mdb_add           = ksz9477_port_mdb_add,
1460         .port_mdb_del           = ksz9477_port_mdb_del,
1461         .port_mirror_add        = ksz9477_port_mirror_add,
1462         .port_mirror_del        = ksz9477_port_mirror_del,
1463 };
1464
1465 static u32 ksz9477_get_port_addr(int port, int offset)
1466 {
1467         return PORT_CTRL_ADDR(port, offset);
1468 }
1469
1470 static int ksz9477_switch_detect(struct ksz_device *dev)
1471 {
1472         u8 data8;
1473         u8 id_hi;
1474         u8 id_lo;
1475         u32 id32;
1476         int ret;
1477
1478         /* turn off SPI DO Edge select */
1479         ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1480         if (ret)
1481                 return ret;
1482
1483         data8 &= ~SPI_AUTO_EDGE_DETECTION;
1484         ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1485         if (ret)
1486                 return ret;
1487
1488         /* read chip id */
1489         ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1490         if (ret)
1491                 return ret;
1492         ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1493         if (ret)
1494                 return ret;
1495
1496         /* Number of ports can be reduced depending on chip. */
1497         dev->mib_port_cnt = TOTAL_PORT_NUM;
1498         dev->phy_port_cnt = 5;
1499
1500         /* Default capability is gigabit capable. */
1501         dev->features = GBIT_SUPPORT;
1502
1503         id_hi = (u8)(id32 >> 16);
1504         id_lo = (u8)(id32 >> 8);
1505         if ((id_lo & 0xf) == 3) {
1506                 /* Chip is from KSZ9893 design. */
1507                 dev->features |= IS_9893;
1508
1509                 /* Chip does not support gigabit. */
1510                 if (data8 & SW_QW_ABLE)
1511                         dev->features &= ~GBIT_SUPPORT;
1512                 dev->mib_port_cnt = 3;
1513                 dev->phy_port_cnt = 2;
1514         } else {
1515                 /* Chip uses new XMII register definitions. */
1516                 dev->features |= NEW_XMII;
1517
1518                 /* Chip does not support gigabit. */
1519                 if (!(data8 & SW_GIGABIT_ABLE))
1520                         dev->features &= ~GBIT_SUPPORT;
1521         }
1522
1523         /* Change chip id to known ones so it can be matched against them. */
1524         id32 = (id_hi << 16) | (id_lo << 8);
1525
1526         dev->chip_id = id32;
1527
1528         return 0;
1529 }
1530
1531 struct ksz_chip_data {
1532         u32 chip_id;
1533         const char *dev_name;
1534         int num_vlans;
1535         int num_alus;
1536         int num_statics;
1537         int cpu_ports;
1538         int port_cnt;
1539         bool phy_errata_9477;
1540 };
1541
1542 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1543         {
1544                 .chip_id = 0x00947700,
1545                 .dev_name = "KSZ9477",
1546                 .num_vlans = 4096,
1547                 .num_alus = 4096,
1548                 .num_statics = 16,
1549                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1550                 .port_cnt = 7,          /* total physical port count */
1551                 .phy_errata_9477 = true,
1552         },
1553         {
1554                 .chip_id = 0x00989700,
1555                 .dev_name = "KSZ9897",
1556                 .num_vlans = 4096,
1557                 .num_alus = 4096,
1558                 .num_statics = 16,
1559                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1560                 .port_cnt = 7,          /* total physical port count */
1561                 .phy_errata_9477 = true,
1562         },
1563         {
1564                 .chip_id = 0x00989300,
1565                 .dev_name = "KSZ9893",
1566                 .num_vlans = 4096,
1567                 .num_alus = 4096,
1568                 .num_statics = 16,
1569                 .cpu_ports = 0x07,      /* can be configured as cpu port */
1570                 .port_cnt = 3,          /* total port count */
1571         },
1572 };
1573
1574 static int ksz9477_switch_init(struct ksz_device *dev)
1575 {
1576         int i;
1577
1578         dev->ds->ops = &ksz9477_switch_ops;
1579
1580         for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1581                 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1582
1583                 if (dev->chip_id == chip->chip_id) {
1584                         dev->name = chip->dev_name;
1585                         dev->num_vlans = chip->num_vlans;
1586                         dev->num_alus = chip->num_alus;
1587                         dev->num_statics = chip->num_statics;
1588                         dev->port_cnt = chip->port_cnt;
1589                         dev->cpu_ports = chip->cpu_ports;
1590                         dev->phy_errata_9477 = chip->phy_errata_9477;
1591
1592                         break;
1593                 }
1594         }
1595
1596         /* no switch found */
1597         if (!dev->port_cnt)
1598                 return -ENODEV;
1599
1600         dev->port_mask = (1 << dev->port_cnt) - 1;
1601
1602         dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1603         dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1604
1605         i = dev->mib_port_cnt;
1606         dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1607                                   GFP_KERNEL);
1608         if (!dev->ports)
1609                 return -ENOMEM;
1610         for (i = 0; i < dev->mib_port_cnt; i++) {
1611                 mutex_init(&dev->ports[i].mib.cnt_mutex);
1612                 dev->ports[i].mib.counters =
1613                         devm_kzalloc(dev->dev,
1614                                      sizeof(u64) *
1615                                      (TOTAL_SWITCH_COUNTER_NUM + 1),
1616                                      GFP_KERNEL);
1617                 if (!dev->ports[i].mib.counters)
1618                         return -ENOMEM;
1619         }
1620
1621         return 0;
1622 }
1623
1624 static void ksz9477_switch_exit(struct ksz_device *dev)
1625 {
1626         ksz9477_reset_switch(dev);
1627 }
1628
1629 static const struct ksz_dev_ops ksz9477_dev_ops = {
1630         .get_port_addr = ksz9477_get_port_addr,
1631         .cfg_port_member = ksz9477_cfg_port_member,
1632         .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1633         .phy_setup = ksz9477_phy_setup,
1634         .port_setup = ksz9477_port_setup,
1635         .r_mib_cnt = ksz9477_r_mib_cnt,
1636         .r_mib_pkt = ksz9477_r_mib_pkt,
1637         .freeze_mib = ksz9477_freeze_mib,
1638         .port_init_cnt = ksz9477_port_init_cnt,
1639         .shutdown = ksz9477_reset_switch,
1640         .detect = ksz9477_switch_detect,
1641         .init = ksz9477_switch_init,
1642         .exit = ksz9477_switch_exit,
1643 };
1644
1645 int ksz9477_switch_register(struct ksz_device *dev)
1646 {
1647         return ksz_switch_register(dev, &ksz9477_dev_ops);
1648 }
1649 EXPORT_SYMBOL(ksz9477_switch_register);
1650
1651 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1652 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1653 MODULE_LICENSE("GPL");