ACPI: sysfs: Fix BERT error region memory mapping
[linux-2.6-microblaze.git] / drivers / net / dsa / microchip / ksz9477.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <linux/if_vlan.h>
15 #include <net/dsa.h>
16 #include <net/switchdev.h>
17
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20
21 /* Used with variable features to indicate capabilities. */
22 #define GBIT_SUPPORT                    BIT(0)
23 #define NEW_XMII                        BIT(1)
24 #define IS_9893                         BIT(2)
25
26 static const struct {
27         int index;
28         char string[ETH_GSTRING_LEN];
29 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
30         { 0x00, "rx_hi" },
31         { 0x01, "rx_undersize" },
32         { 0x02, "rx_fragments" },
33         { 0x03, "rx_oversize" },
34         { 0x04, "rx_jabbers" },
35         { 0x05, "rx_symbol_err" },
36         { 0x06, "rx_crc_err" },
37         { 0x07, "rx_align_err" },
38         { 0x08, "rx_mac_ctrl" },
39         { 0x09, "rx_pause" },
40         { 0x0A, "rx_bcast" },
41         { 0x0B, "rx_mcast" },
42         { 0x0C, "rx_ucast" },
43         { 0x0D, "rx_64_or_less" },
44         { 0x0E, "rx_65_127" },
45         { 0x0F, "rx_128_255" },
46         { 0x10, "rx_256_511" },
47         { 0x11, "rx_512_1023" },
48         { 0x12, "rx_1024_1522" },
49         { 0x13, "rx_1523_2000" },
50         { 0x14, "rx_2001" },
51         { 0x15, "tx_hi" },
52         { 0x16, "tx_late_col" },
53         { 0x17, "tx_pause" },
54         { 0x18, "tx_bcast" },
55         { 0x19, "tx_mcast" },
56         { 0x1A, "tx_ucast" },
57         { 0x1B, "tx_deferred" },
58         { 0x1C, "tx_total_col" },
59         { 0x1D, "tx_exc_col" },
60         { 0x1E, "tx_single_col" },
61         { 0x1F, "tx_mult_col" },
62         { 0x80, "rx_total" },
63         { 0x81, "tx_total" },
64         { 0x82, "rx_discards" },
65         { 0x83, "tx_discards" },
66 };
67
68 struct ksz9477_stats_raw {
69         u64 rx_hi;
70         u64 rx_undersize;
71         u64 rx_fragments;
72         u64 rx_oversize;
73         u64 rx_jabbers;
74         u64 rx_symbol_err;
75         u64 rx_crc_err;
76         u64 rx_align_err;
77         u64 rx_mac_ctrl;
78         u64 rx_pause;
79         u64 rx_bcast;
80         u64 rx_mcast;
81         u64 rx_ucast;
82         u64 rx_64_or_less;
83         u64 rx_65_127;
84         u64 rx_128_255;
85         u64 rx_256_511;
86         u64 rx_512_1023;
87         u64 rx_1024_1522;
88         u64 rx_1523_2000;
89         u64 rx_2001;
90         u64 tx_hi;
91         u64 tx_late_col;
92         u64 tx_pause;
93         u64 tx_bcast;
94         u64 tx_mcast;
95         u64 tx_ucast;
96         u64 tx_deferred;
97         u64 tx_total_col;
98         u64 tx_exc_col;
99         u64 tx_single_col;
100         u64 tx_mult_col;
101         u64 rx_total;
102         u64 tx_total;
103         u64 rx_discards;
104         u64 tx_discards;
105 };
106
107 static void ksz9477_r_mib_stats64(struct ksz_device *dev, int port)
108 {
109         struct rtnl_link_stats64 *stats;
110         struct ksz9477_stats_raw *raw;
111         struct ksz_port_mib *mib;
112
113         mib = &dev->ports[port].mib;
114         stats = &mib->stats64;
115         raw = (struct ksz9477_stats_raw *)mib->counters;
116
117         spin_lock(&mib->stats64_lock);
118
119         stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast;
120         stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast;
121
122         /* HW counters are counting bytes + FCS which is not acceptable
123          * for rtnl_link_stats64 interface
124          */
125         stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
126         stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
127
128         stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
129                 raw->rx_oversize;
130
131         stats->rx_crc_errors = raw->rx_crc_err;
132         stats->rx_frame_errors = raw->rx_align_err;
133         stats->rx_dropped = raw->rx_discards;
134         stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
135                 stats->rx_frame_errors  + stats->rx_dropped;
136
137         stats->tx_window_errors = raw->tx_late_col;
138         stats->tx_fifo_errors = raw->tx_discards;
139         stats->tx_aborted_errors = raw->tx_exc_col;
140         stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
141                 stats->tx_aborted_errors;
142
143         stats->multicast = raw->rx_mcast;
144         stats->collisions = raw->tx_total_col;
145
146         spin_unlock(&mib->stats64_lock);
147 }
148
149 static void ksz9477_get_stats64(struct dsa_switch *ds, int port,
150                                struct rtnl_link_stats64 *s)
151 {
152         struct ksz_device *dev = ds->priv;
153         struct ksz_port_mib *mib;
154
155         mib = &dev->ports[port].mib;
156
157         spin_lock(&mib->stats64_lock);
158         memcpy(s, &mib->stats64, sizeof(*s));
159         spin_unlock(&mib->stats64_lock);
160 }
161
162 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
163 {
164         regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
165 }
166
167 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
168                          bool set)
169 {
170         regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
171                            bits, set ? bits : 0);
172 }
173
174 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
175 {
176         regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
177 }
178
179 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
180                                u32 bits, bool set)
181 {
182         regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
183                            bits, set ? bits : 0);
184 }
185
186 static int ksz9477_change_mtu(struct dsa_switch *ds, int port, int mtu)
187 {
188         struct ksz_device *dev = ds->priv;
189         u16 frame_size, max_frame = 0;
190         int i;
191
192         frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
193
194         /* Cache the per-port MTU setting */
195         dev->ports[port].max_frame = frame_size;
196
197         for (i = 0; i < dev->port_cnt; i++)
198                 max_frame = max(max_frame, dev->ports[i].max_frame);
199
200         return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
201                                   REG_SW_MTU_MASK, max_frame);
202 }
203
204 static int ksz9477_max_mtu(struct dsa_switch *ds, int port)
205 {
206         return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
207 }
208
209 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
210 {
211         unsigned int val;
212
213         return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
214                                         val, !(val & VLAN_START), 10, 1000);
215 }
216
217 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
218                                   u32 *vlan_table)
219 {
220         int ret;
221
222         mutex_lock(&dev->vlan_mutex);
223
224         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
225         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
226
227         /* wait to be cleared */
228         ret = ksz9477_wait_vlan_ctrl_ready(dev);
229         if (ret) {
230                 dev_dbg(dev->dev, "Failed to read vlan table\n");
231                 goto exit;
232         }
233
234         ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
235         ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
236         ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
237
238         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
239
240 exit:
241         mutex_unlock(&dev->vlan_mutex);
242
243         return ret;
244 }
245
246 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
247                                   u32 *vlan_table)
248 {
249         int ret;
250
251         mutex_lock(&dev->vlan_mutex);
252
253         ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
254         ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
255         ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
256
257         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
258         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
259
260         /* wait to be cleared */
261         ret = ksz9477_wait_vlan_ctrl_ready(dev);
262         if (ret) {
263                 dev_dbg(dev->dev, "Failed to write vlan table\n");
264                 goto exit;
265         }
266
267         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
268
269         /* update vlan cache table */
270         dev->vlan_cache[vid].table[0] = vlan_table[0];
271         dev->vlan_cache[vid].table[1] = vlan_table[1];
272         dev->vlan_cache[vid].table[2] = vlan_table[2];
273
274 exit:
275         mutex_unlock(&dev->vlan_mutex);
276
277         return ret;
278 }
279
280 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
281 {
282         ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
283         ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
284         ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
285         ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
286 }
287
288 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
289 {
290         ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
291         ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
292         ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
293         ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
294 }
295
296 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
297 {
298         unsigned int val;
299
300         return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
301                                         val, !(val & ALU_START), 10, 1000);
302 }
303
304 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
305 {
306         unsigned int val;
307
308         return regmap_read_poll_timeout(dev->regmap[2],
309                                         REG_SW_ALU_STAT_CTRL__4,
310                                         val, !(val & ALU_STAT_START),
311                                         10, 1000);
312 }
313
314 static int ksz9477_reset_switch(struct ksz_device *dev)
315 {
316         u8 data8;
317         u32 data32;
318
319         /* reset switch */
320         ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
321
322         /* turn off SPI DO Edge select */
323         regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
324                            SPI_AUTO_EDGE_DETECTION, 0);
325
326         /* default configuration */
327         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
328         data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
329               SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
330         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
331
332         /* disable interrupts */
333         ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
334         ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
335         ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
336
337         /* set broadcast storm protection 10% rate */
338         regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
339                            BROADCAST_STORM_RATE,
340                            (BROADCAST_STORM_VALUE *
341                            BROADCAST_STORM_PROT_RATE) / 100);
342
343         data8 = SW_ENABLE_REFCLKO;
344         if (dev->synclko_disable)
345                 data8 = 0;
346         else if (dev->synclko_125)
347                 data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
348         ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
349
350         return 0;
351 }
352
353 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
354                               u64 *cnt)
355 {
356         struct ksz_port *p = &dev->ports[port];
357         unsigned int val;
358         u32 data;
359         int ret;
360
361         /* retain the flush/freeze bit */
362         data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
363         data |= MIB_COUNTER_READ;
364         data |= (addr << MIB_COUNTER_INDEX_S);
365         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
366
367         ret = regmap_read_poll_timeout(dev->regmap[2],
368                         PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
369                         val, !(val & MIB_COUNTER_READ), 10, 1000);
370         /* failed to read MIB. get out of loop */
371         if (ret) {
372                 dev_dbg(dev->dev, "Failed to get MIB\n");
373                 return;
374         }
375
376         /* count resets upon read */
377         ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
378         *cnt += data;
379 }
380
381 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
382                               u64 *dropped, u64 *cnt)
383 {
384         addr = ksz9477_mib_names[addr].index;
385         ksz9477_r_mib_cnt(dev, port, addr, cnt);
386 }
387
388 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
389 {
390         u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
391         struct ksz_port *p = &dev->ports[port];
392
393         /* enable/disable the port for flush/freeze function */
394         mutex_lock(&p->mib.cnt_mutex);
395         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
396
397         /* used by MIB counter reading code to know freeze is enabled */
398         p->freeze = freeze;
399         mutex_unlock(&p->mib.cnt_mutex);
400 }
401
402 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
403 {
404         struct ksz_port_mib *mib = &dev->ports[port].mib;
405
406         /* flush all enabled port MIB counters */
407         mutex_lock(&mib->cnt_mutex);
408         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
409                      MIB_COUNTER_FLUSH_FREEZE);
410         ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
411         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
412         mutex_unlock(&mib->cnt_mutex);
413
414         mib->cnt_ptr = 0;
415         memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
416 }
417
418 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
419                                                       int port,
420                                                       enum dsa_tag_protocol mp)
421 {
422         enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
423         struct ksz_device *dev = ds->priv;
424
425         if (dev->features & IS_9893)
426                 proto = DSA_TAG_PROTO_KSZ9893;
427         return proto;
428 }
429
430 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
431 {
432         struct ksz_device *dev = ds->priv;
433         u16 val = 0xffff;
434
435         /* No real PHY after this. Simulate the PHY.
436          * A fixed PHY can be setup in the device tree, but this function is
437          * still called for that port during initialization.
438          * For RGMII PHY there is no way to access it so the fixed PHY should
439          * be used.  For SGMII PHY the supporting code will be added later.
440          */
441         if (addr >= dev->phy_port_cnt) {
442                 struct ksz_port *p = &dev->ports[addr];
443
444                 switch (reg) {
445                 case MII_BMCR:
446                         val = 0x1140;
447                         break;
448                 case MII_BMSR:
449                         val = 0x796d;
450                         break;
451                 case MII_PHYSID1:
452                         val = 0x0022;
453                         break;
454                 case MII_PHYSID2:
455                         val = 0x1631;
456                         break;
457                 case MII_ADVERTISE:
458                         val = 0x05e1;
459                         break;
460                 case MII_LPA:
461                         val = 0xc5e1;
462                         break;
463                 case MII_CTRL1000:
464                         val = 0x0700;
465                         break;
466                 case MII_STAT1000:
467                         if (p->phydev.speed == SPEED_1000)
468                                 val = 0x3800;
469                         else
470                                 val = 0;
471                         break;
472                 }
473         } else {
474                 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
475         }
476
477         return val;
478 }
479
480 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
481                                u16 val)
482 {
483         struct ksz_device *dev = ds->priv;
484
485         /* No real PHY after this. */
486         if (addr >= dev->phy_port_cnt)
487                 return 0;
488
489         /* No gigabit support.  Do not write to this register. */
490         if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
491                 return 0;
492         ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
493
494         return 0;
495 }
496
497 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
498                                 u32 stringset, uint8_t *buf)
499 {
500         int i;
501
502         if (stringset != ETH_SS_STATS)
503                 return;
504
505         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
506                 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
507                        ETH_GSTRING_LEN);
508         }
509 }
510
511 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
512                                     u8 member)
513 {
514         ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
515 }
516
517 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
518                                        u8 state)
519 {
520         struct ksz_device *dev = ds->priv;
521         struct ksz_port *p = &dev->ports[port];
522         u8 data;
523
524         ksz_pread8(dev, port, P_STP_CTRL, &data);
525         data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
526
527         switch (state) {
528         case BR_STATE_DISABLED:
529                 data |= PORT_LEARN_DISABLE;
530                 break;
531         case BR_STATE_LISTENING:
532                 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
533                 break;
534         case BR_STATE_LEARNING:
535                 data |= PORT_RX_ENABLE;
536                 break;
537         case BR_STATE_FORWARDING:
538                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
539                 break;
540         case BR_STATE_BLOCKING:
541                 data |= PORT_LEARN_DISABLE;
542                 break;
543         default:
544                 dev_err(ds->dev, "invalid STP state: %d\n", state);
545                 return;
546         }
547
548         ksz_pwrite8(dev, port, P_STP_CTRL, data);
549         p->stp_state = state;
550
551         ksz_update_port_member(dev, port);
552 }
553
554 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
555 {
556         u8 data;
557
558         regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
559                            SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
560                            SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
561
562         if (port < dev->port_cnt) {
563                 /* flush individual port */
564                 ksz_pread8(dev, port, P_STP_CTRL, &data);
565                 if (!(data & PORT_LEARN_DISABLE))
566                         ksz_pwrite8(dev, port, P_STP_CTRL,
567                                     data | PORT_LEARN_DISABLE);
568                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
569                 ksz_pwrite8(dev, port, P_STP_CTRL, data);
570         } else {
571                 /* flush all */
572                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
573         }
574 }
575
576 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
577                                        bool flag,
578                                        struct netlink_ext_ack *extack)
579 {
580         struct ksz_device *dev = ds->priv;
581
582         if (flag) {
583                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
584                              PORT_VLAN_LOOKUP_VID_0, true);
585                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
586         } else {
587                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
588                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
589                              PORT_VLAN_LOOKUP_VID_0, false);
590         }
591
592         return 0;
593 }
594
595 static int ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
596                                  const struct switchdev_obj_port_vlan *vlan,
597                                  struct netlink_ext_ack *extack)
598 {
599         struct ksz_device *dev = ds->priv;
600         u32 vlan_table[3];
601         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
602         int err;
603
604         err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
605         if (err) {
606                 NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
607                 return err;
608         }
609
610         vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
611         if (untagged)
612                 vlan_table[1] |= BIT(port);
613         else
614                 vlan_table[1] &= ~BIT(port);
615         vlan_table[1] &= ~(BIT(dev->cpu_port));
616
617         vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
618
619         err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
620         if (err) {
621                 NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
622                 return err;
623         }
624
625         /* change PVID */
626         if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
627                 ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
628
629         return 0;
630 }
631
632 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
633                                  const struct switchdev_obj_port_vlan *vlan)
634 {
635         struct ksz_device *dev = ds->priv;
636         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
637         u32 vlan_table[3];
638         u16 pvid;
639
640         ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
641         pvid = pvid & 0xFFF;
642
643         if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
644                 dev_dbg(dev->dev, "Failed to get vlan table\n");
645                 return -ETIMEDOUT;
646         }
647
648         vlan_table[2] &= ~BIT(port);
649
650         if (pvid == vlan->vid)
651                 pvid = 1;
652
653         if (untagged)
654                 vlan_table[1] &= ~BIT(port);
655
656         if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
657                 dev_dbg(dev->dev, "Failed to set vlan table\n");
658                 return -ETIMEDOUT;
659         }
660
661         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
662
663         return 0;
664 }
665
666 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
667                                 const unsigned char *addr, u16 vid,
668                                 struct dsa_db db)
669 {
670         struct ksz_device *dev = ds->priv;
671         u32 alu_table[4];
672         u32 data;
673         int ret = 0;
674
675         mutex_lock(&dev->alu_mutex);
676
677         /* find any entry with mac & vid */
678         data = vid << ALU_FID_INDEX_S;
679         data |= ((addr[0] << 8) | addr[1]);
680         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
681
682         data = ((addr[2] << 24) | (addr[3] << 16));
683         data |= ((addr[4] << 8) | addr[5]);
684         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
685
686         /* start read operation */
687         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
688
689         /* wait to be finished */
690         ret = ksz9477_wait_alu_ready(dev);
691         if (ret) {
692                 dev_dbg(dev->dev, "Failed to read ALU\n");
693                 goto exit;
694         }
695
696         /* read ALU entry */
697         ksz9477_read_table(dev, alu_table);
698
699         /* update ALU entry */
700         alu_table[0] = ALU_V_STATIC_VALID;
701         alu_table[1] |= BIT(port);
702         if (vid)
703                 alu_table[1] |= ALU_V_USE_FID;
704         alu_table[2] = (vid << ALU_V_FID_S);
705         alu_table[2] |= ((addr[0] << 8) | addr[1]);
706         alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
707         alu_table[3] |= ((addr[4] << 8) | addr[5]);
708
709         ksz9477_write_table(dev, alu_table);
710
711         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
712
713         /* wait to be finished */
714         ret = ksz9477_wait_alu_ready(dev);
715         if (ret)
716                 dev_dbg(dev->dev, "Failed to write ALU\n");
717
718 exit:
719         mutex_unlock(&dev->alu_mutex);
720
721         return ret;
722 }
723
724 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
725                                 const unsigned char *addr, u16 vid,
726                                 struct dsa_db db)
727 {
728         struct ksz_device *dev = ds->priv;
729         u32 alu_table[4];
730         u32 data;
731         int ret = 0;
732
733         mutex_lock(&dev->alu_mutex);
734
735         /* read any entry with mac & vid */
736         data = vid << ALU_FID_INDEX_S;
737         data |= ((addr[0] << 8) | addr[1]);
738         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
739
740         data = ((addr[2] << 24) | (addr[3] << 16));
741         data |= ((addr[4] << 8) | addr[5]);
742         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
743
744         /* start read operation */
745         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
746
747         /* wait to be finished */
748         ret = ksz9477_wait_alu_ready(dev);
749         if (ret) {
750                 dev_dbg(dev->dev, "Failed to read ALU\n");
751                 goto exit;
752         }
753
754         ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
755         if (alu_table[0] & ALU_V_STATIC_VALID) {
756                 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
757                 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
758                 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
759
760                 /* clear forwarding port */
761                 alu_table[2] &= ~BIT(port);
762
763                 /* if there is no port to forward, clear table */
764                 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
765                         alu_table[0] = 0;
766                         alu_table[1] = 0;
767                         alu_table[2] = 0;
768                         alu_table[3] = 0;
769                 }
770         } else {
771                 alu_table[0] = 0;
772                 alu_table[1] = 0;
773                 alu_table[2] = 0;
774                 alu_table[3] = 0;
775         }
776
777         ksz9477_write_table(dev, alu_table);
778
779         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
780
781         /* wait to be finished */
782         ret = ksz9477_wait_alu_ready(dev);
783         if (ret)
784                 dev_dbg(dev->dev, "Failed to write ALU\n");
785
786 exit:
787         mutex_unlock(&dev->alu_mutex);
788
789         return ret;
790 }
791
792 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
793 {
794         alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
795         alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
796         alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
797         alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
798                         ALU_V_PRIO_AGE_CNT_M;
799         alu->mstp = alu_table[0] & ALU_V_MSTP_M;
800
801         alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
802         alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
803         alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
804
805         alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
806
807         alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
808         alu->mac[1] = alu_table[2] & 0xFF;
809         alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
810         alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
811         alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
812         alu->mac[5] = alu_table[3] & 0xFF;
813 }
814
815 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
816                                  dsa_fdb_dump_cb_t *cb, void *data)
817 {
818         struct ksz_device *dev = ds->priv;
819         int ret = 0;
820         u32 ksz_data;
821         u32 alu_table[4];
822         struct alu_struct alu;
823         int timeout;
824
825         mutex_lock(&dev->alu_mutex);
826
827         /* start ALU search */
828         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
829
830         do {
831                 timeout = 1000;
832                 do {
833                         ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
834                         if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
835                                 break;
836                         usleep_range(1, 10);
837                 } while (timeout-- > 0);
838
839                 if (!timeout) {
840                         dev_dbg(dev->dev, "Failed to search ALU\n");
841                         ret = -ETIMEDOUT;
842                         goto exit;
843                 }
844
845                 /* read ALU table */
846                 ksz9477_read_table(dev, alu_table);
847
848                 ksz9477_convert_alu(&alu, alu_table);
849
850                 if (alu.port_forward & BIT(port)) {
851                         ret = cb(alu.mac, alu.fid, alu.is_static, data);
852                         if (ret)
853                                 goto exit;
854                 }
855         } while (ksz_data & ALU_START);
856
857 exit:
858
859         /* stop ALU search */
860         ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
861
862         mutex_unlock(&dev->alu_mutex);
863
864         return ret;
865 }
866
867 static int ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
868                                 const struct switchdev_obj_port_mdb *mdb,
869                                 struct dsa_db db)
870 {
871         struct ksz_device *dev = ds->priv;
872         u32 static_table[4];
873         u32 data;
874         int index;
875         u32 mac_hi, mac_lo;
876         int err = 0;
877
878         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
879         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
880         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
881
882         mutex_lock(&dev->alu_mutex);
883
884         for (index = 0; index < dev->num_statics; index++) {
885                 /* find empty slot first */
886                 data = (index << ALU_STAT_INDEX_S) |
887                         ALU_STAT_READ | ALU_STAT_START;
888                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
889
890                 /* wait to be finished */
891                 err = ksz9477_wait_alu_sta_ready(dev);
892                 if (err) {
893                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
894                         goto exit;
895                 }
896
897                 /* read ALU static table */
898                 ksz9477_read_table(dev, static_table);
899
900                 if (static_table[0] & ALU_V_STATIC_VALID) {
901                         /* check this has same vid & mac address */
902                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
903                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
904                             static_table[3] == mac_lo) {
905                                 /* found matching one */
906                                 break;
907                         }
908                 } else {
909                         /* found empty one */
910                         break;
911                 }
912         }
913
914         /* no available entry */
915         if (index == dev->num_statics) {
916                 err = -ENOSPC;
917                 goto exit;
918         }
919
920         /* add entry */
921         static_table[0] = ALU_V_STATIC_VALID;
922         static_table[1] |= BIT(port);
923         if (mdb->vid)
924                 static_table[1] |= ALU_V_USE_FID;
925         static_table[2] = (mdb->vid << ALU_V_FID_S);
926         static_table[2] |= mac_hi;
927         static_table[3] = mac_lo;
928
929         ksz9477_write_table(dev, static_table);
930
931         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
932         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
933
934         /* wait to be finished */
935         if (ksz9477_wait_alu_sta_ready(dev))
936                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
937
938 exit:
939         mutex_unlock(&dev->alu_mutex);
940         return err;
941 }
942
943 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
944                                 const struct switchdev_obj_port_mdb *mdb,
945                                 struct dsa_db db)
946 {
947         struct ksz_device *dev = ds->priv;
948         u32 static_table[4];
949         u32 data;
950         int index;
951         int ret = 0;
952         u32 mac_hi, mac_lo;
953
954         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
955         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
956         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
957
958         mutex_lock(&dev->alu_mutex);
959
960         for (index = 0; index < dev->num_statics; index++) {
961                 /* find empty slot first */
962                 data = (index << ALU_STAT_INDEX_S) |
963                         ALU_STAT_READ | ALU_STAT_START;
964                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
965
966                 /* wait to be finished */
967                 ret = ksz9477_wait_alu_sta_ready(dev);
968                 if (ret) {
969                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
970                         goto exit;
971                 }
972
973                 /* read ALU static table */
974                 ksz9477_read_table(dev, static_table);
975
976                 if (static_table[0] & ALU_V_STATIC_VALID) {
977                         /* check this has same vid & mac address */
978
979                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
980                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
981                             static_table[3] == mac_lo) {
982                                 /* found matching one */
983                                 break;
984                         }
985                 }
986         }
987
988         /* no available entry */
989         if (index == dev->num_statics)
990                 goto exit;
991
992         /* clear port */
993         static_table[1] &= ~BIT(port);
994
995         if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
996                 /* delete entry */
997                 static_table[0] = 0;
998                 static_table[1] = 0;
999                 static_table[2] = 0;
1000                 static_table[3] = 0;
1001         }
1002
1003         ksz9477_write_table(dev, static_table);
1004
1005         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
1006         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1007
1008         /* wait to be finished */
1009         ret = ksz9477_wait_alu_sta_ready(dev);
1010         if (ret)
1011                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1012
1013 exit:
1014         mutex_unlock(&dev->alu_mutex);
1015
1016         return ret;
1017 }
1018
1019 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
1020                                    struct dsa_mall_mirror_tc_entry *mirror,
1021                                    bool ingress, struct netlink_ext_ack *extack)
1022 {
1023         struct ksz_device *dev = ds->priv;
1024
1025         if (ingress)
1026                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1027         else
1028                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1029
1030         ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1031
1032         /* configure mirror port */
1033         ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1034                      PORT_MIRROR_SNIFFER, true);
1035
1036         ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1037
1038         return 0;
1039 }
1040
1041 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
1042                                     struct dsa_mall_mirror_tc_entry *mirror)
1043 {
1044         struct ksz_device *dev = ds->priv;
1045         u8 data;
1046
1047         if (mirror->ingress)
1048                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1049         else
1050                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1051
1052         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1053
1054         if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1055                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1056                              PORT_MIRROR_SNIFFER, false);
1057 }
1058
1059 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
1060 {
1061         bool gbit;
1062
1063         if (dev->features & NEW_XMII)
1064                 gbit = !(data & PORT_MII_NOT_1GBIT);
1065         else
1066                 gbit = !!(data & PORT_MII_1000MBIT_S1);
1067         return gbit;
1068 }
1069
1070 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1071 {
1072         if (dev->features & NEW_XMII) {
1073                 if (gbit)
1074                         *data &= ~PORT_MII_NOT_1GBIT;
1075                 else
1076                         *data |= PORT_MII_NOT_1GBIT;
1077         } else {
1078                 if (gbit)
1079                         *data |= PORT_MII_1000MBIT_S1;
1080                 else
1081                         *data &= ~PORT_MII_1000MBIT_S1;
1082         }
1083 }
1084
1085 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1086 {
1087         int mode;
1088
1089         if (dev->features & NEW_XMII) {
1090                 switch (data & PORT_MII_SEL_M) {
1091                 case PORT_MII_SEL:
1092                         mode = 0;
1093                         break;
1094                 case PORT_RMII_SEL:
1095                         mode = 1;
1096                         break;
1097                 case PORT_GMII_SEL:
1098                         mode = 2;
1099                         break;
1100                 default:
1101                         mode = 3;
1102                 }
1103         } else {
1104                 switch (data & PORT_MII_SEL_M) {
1105                 case PORT_MII_SEL_S1:
1106                         mode = 0;
1107                         break;
1108                 case PORT_RMII_SEL_S1:
1109                         mode = 1;
1110                         break;
1111                 case PORT_GMII_SEL_S1:
1112                         mode = 2;
1113                         break;
1114                 default:
1115                         mode = 3;
1116                 }
1117         }
1118         return mode;
1119 }
1120
1121 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1122 {
1123         u8 xmii;
1124
1125         if (dev->features & NEW_XMII) {
1126                 switch (mode) {
1127                 case 0:
1128                         xmii = PORT_MII_SEL;
1129                         break;
1130                 case 1:
1131                         xmii = PORT_RMII_SEL;
1132                         break;
1133                 case 2:
1134                         xmii = PORT_GMII_SEL;
1135                         break;
1136                 default:
1137                         xmii = PORT_RGMII_SEL;
1138                         break;
1139                 }
1140         } else {
1141                 switch (mode) {
1142                 case 0:
1143                         xmii = PORT_MII_SEL_S1;
1144                         break;
1145                 case 1:
1146                         xmii = PORT_RMII_SEL_S1;
1147                         break;
1148                 case 2:
1149                         xmii = PORT_GMII_SEL_S1;
1150                         break;
1151                 default:
1152                         xmii = PORT_RGMII_SEL_S1;
1153                         break;
1154                 }
1155         }
1156         *data &= ~PORT_MII_SEL_M;
1157         *data |= xmii;
1158 }
1159
1160 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1161 {
1162         phy_interface_t interface;
1163         bool gbit;
1164         int mode;
1165         u8 data8;
1166
1167         if (port < dev->phy_port_cnt)
1168                 return PHY_INTERFACE_MODE_NA;
1169         ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1170         gbit = ksz9477_get_gbit(dev, data8);
1171         mode = ksz9477_get_xmii(dev, data8);
1172         switch (mode) {
1173         case 2:
1174                 interface = PHY_INTERFACE_MODE_GMII;
1175                 if (gbit)
1176                         break;
1177                 fallthrough;
1178         case 0:
1179                 interface = PHY_INTERFACE_MODE_MII;
1180                 break;
1181         case 1:
1182                 interface = PHY_INTERFACE_MODE_RMII;
1183                 break;
1184         default:
1185                 interface = PHY_INTERFACE_MODE_RGMII;
1186                 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1187                         interface = PHY_INTERFACE_MODE_RGMII_TXID;
1188                 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1189                         interface = PHY_INTERFACE_MODE_RGMII_RXID;
1190                         if (data8 & PORT_RGMII_ID_EG_ENABLE)
1191                                 interface = PHY_INTERFACE_MODE_RGMII_ID;
1192                 }
1193                 break;
1194         }
1195         return interface;
1196 }
1197
1198 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1199                                    u8 dev_addr, u16 reg_addr, u16 val)
1200 {
1201         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1202                      MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1203         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1204         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1205                      MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1206         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1207 }
1208
1209 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1210 {
1211         /* Apply PHY settings to address errata listed in
1212          * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1213          * Silicon Errata and Data Sheet Clarification documents:
1214          *
1215          * Register settings are needed to improve PHY receive performance
1216          */
1217         ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1218         ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1219         ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1220         ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1221         ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1222         ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1223         ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1224
1225         /* Transmit waveform amplitude can be improved
1226          * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1227          */
1228         ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1229
1230         /* Energy Efficient Ethernet (EEE) feature select must
1231          * be manually disabled (except on KSZ8565 which is 100Mbit)
1232          */
1233         if (dev->features & GBIT_SUPPORT)
1234                 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1235
1236         /* Register settings are required to meet data sheet
1237          * supply current specifications
1238          */
1239         ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1240         ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1241         ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1242         ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1243         ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1244         ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1245         ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1246         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1247         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1248         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1249         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1250         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1251         ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1252 }
1253
1254 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1255 {
1256         struct ksz_port *p = &dev->ports[port];
1257         struct dsa_switch *ds = dev->ds;
1258         u8 data8, member;
1259         u16 data16;
1260
1261         /* enable tag tail for host port */
1262         if (cpu_port)
1263                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1264                              true);
1265
1266         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1267
1268         /* set back pressure */
1269         ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1270
1271         /* enable broadcast storm limit */
1272         ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1273
1274         /* disable DiffServ priority */
1275         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1276
1277         /* replace priority */
1278         ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1279                      false);
1280         ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1281                            MTI_PVID_REPLACE, false);
1282
1283         /* enable 802.1p priority */
1284         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1285
1286         if (port < dev->phy_port_cnt) {
1287                 /* do not force flow control */
1288                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1289                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1290                              false);
1291
1292                 if (dev->phy_errata_9477)
1293                         ksz9477_phy_errata_setup(dev, port);
1294         } else {
1295                 /* force flow control */
1296                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1297                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1298                              true);
1299
1300                 /* configure MAC to 1G & RGMII mode */
1301                 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1302                 switch (p->interface) {
1303                 case PHY_INTERFACE_MODE_MII:
1304                         ksz9477_set_xmii(dev, 0, &data8);
1305                         ksz9477_set_gbit(dev, false, &data8);
1306                         p->phydev.speed = SPEED_100;
1307                         break;
1308                 case PHY_INTERFACE_MODE_RMII:
1309                         ksz9477_set_xmii(dev, 1, &data8);
1310                         ksz9477_set_gbit(dev, false, &data8);
1311                         p->phydev.speed = SPEED_100;
1312                         break;
1313                 case PHY_INTERFACE_MODE_GMII:
1314                         ksz9477_set_xmii(dev, 2, &data8);
1315                         ksz9477_set_gbit(dev, true, &data8);
1316                         p->phydev.speed = SPEED_1000;
1317                         break;
1318                 default:
1319                         ksz9477_set_xmii(dev, 3, &data8);
1320                         ksz9477_set_gbit(dev, true, &data8);
1321                         data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1322                         data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1323                         if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1324                             p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1325                                 data8 |= PORT_RGMII_ID_IG_ENABLE;
1326                         if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1327                             p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1328                                 data8 |= PORT_RGMII_ID_EG_ENABLE;
1329                         /* On KSZ9893, disable RGMII in-band status support */
1330                         if (dev->features & IS_9893)
1331                                 data8 &= ~PORT_MII_MAC_MODE;
1332                         p->phydev.speed = SPEED_1000;
1333                         break;
1334                 }
1335                 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1336                 p->phydev.duplex = 1;
1337         }
1338
1339         if (cpu_port)
1340                 member = dsa_user_ports(ds);
1341         else
1342                 member = BIT(dsa_upstream_port(ds, port));
1343
1344         ksz9477_cfg_port_member(dev, port, member);
1345
1346         /* clear pending interrupts */
1347         if (port < dev->phy_port_cnt)
1348                 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1349 }
1350
1351 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1352 {
1353         struct ksz_device *dev = ds->priv;
1354         struct ksz_port *p;
1355         int i;
1356
1357         for (i = 0; i < dev->port_cnt; i++) {
1358                 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1359                         phy_interface_t interface;
1360                         const char *prev_msg;
1361                         const char *prev_mode;
1362
1363                         dev->cpu_port = i;
1364                         p = &dev->ports[i];
1365
1366                         /* Read from XMII register to determine host port
1367                          * interface.  If set specifically in device tree
1368                          * note the difference to help debugging.
1369                          */
1370                         interface = ksz9477_get_interface(dev, i);
1371                         if (!p->interface) {
1372                                 if (dev->compat_interface) {
1373                                         dev_warn(dev->dev,
1374                                                  "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1375                                                  "Please update your device tree.\n",
1376                                                  i);
1377                                         p->interface = dev->compat_interface;
1378                                 } else {
1379                                         p->interface = interface;
1380                                 }
1381                         }
1382                         if (interface && interface != p->interface) {
1383                                 prev_msg = " instead of ";
1384                                 prev_mode = phy_modes(interface);
1385                         } else {
1386                                 prev_msg = "";
1387                                 prev_mode = "";
1388                         }
1389                         dev_info(dev->dev,
1390                                  "Port%d: using phy mode %s%s%s\n",
1391                                  i,
1392                                  phy_modes(p->interface),
1393                                  prev_msg,
1394                                  prev_mode);
1395
1396                         /* enable cpu port */
1397                         ksz9477_port_setup(dev, i, true);
1398                         p->on = 1;
1399                 }
1400         }
1401
1402         for (i = 0; i < dev->port_cnt; i++) {
1403                 if (i == dev->cpu_port)
1404                         continue;
1405                 p = &dev->ports[i];
1406
1407                 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1408                 p->on = 1;
1409                 if (i < dev->phy_port_cnt)
1410                         p->phy = 1;
1411                 if (dev->chip_id == 0x00947700 && i == 6) {
1412                         p->sgmii = 1;
1413
1414                         /* SGMII PHY detection code is not implemented yet. */
1415                         p->phy = 0;
1416                 }
1417         }
1418 }
1419
1420 static int ksz9477_setup(struct dsa_switch *ds)
1421 {
1422         struct ksz_device *dev = ds->priv;
1423         int ret = 0;
1424
1425         dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1426                                        dev->num_vlans, GFP_KERNEL);
1427         if (!dev->vlan_cache)
1428                 return -ENOMEM;
1429
1430         ret = ksz9477_reset_switch(dev);
1431         if (ret) {
1432                 dev_err(ds->dev, "failed to reset switch\n");
1433                 return ret;
1434         }
1435
1436         /* Required for port partitioning. */
1437         ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1438                       true);
1439
1440         /* Do not work correctly with tail tagging. */
1441         ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1442
1443         /* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1444         ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1445
1446         /* Now we can configure default MTU value */
1447         ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
1448                                  VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1449         if (ret)
1450                 return ret;
1451
1452         ksz9477_config_cpu_port(ds);
1453
1454         ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1455
1456         /* queue based egress rate limit */
1457         ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1458
1459         /* enable global MIB counter freeze function */
1460         ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1461
1462         /* start switch */
1463         ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1464
1465         ksz_init_mib_timer(dev);
1466
1467         ds->configure_vlan_while_not_filtering = false;
1468
1469         return 0;
1470 }
1471
1472 static const struct dsa_switch_ops ksz9477_switch_ops = {
1473         .get_tag_protocol       = ksz9477_get_tag_protocol,
1474         .setup                  = ksz9477_setup,
1475         .phy_read               = ksz9477_phy_read16,
1476         .phy_write              = ksz9477_phy_write16,
1477         .phylink_mac_link_down  = ksz_mac_link_down,
1478         .port_enable            = ksz_enable_port,
1479         .get_strings            = ksz9477_get_strings,
1480         .get_ethtool_stats      = ksz_get_ethtool_stats,
1481         .get_sset_count         = ksz_sset_count,
1482         .port_bridge_join       = ksz_port_bridge_join,
1483         .port_bridge_leave      = ksz_port_bridge_leave,
1484         .port_stp_state_set     = ksz9477_port_stp_state_set,
1485         .port_fast_age          = ksz_port_fast_age,
1486         .port_vlan_filtering    = ksz9477_port_vlan_filtering,
1487         .port_vlan_add          = ksz9477_port_vlan_add,
1488         .port_vlan_del          = ksz9477_port_vlan_del,
1489         .port_fdb_dump          = ksz9477_port_fdb_dump,
1490         .port_fdb_add           = ksz9477_port_fdb_add,
1491         .port_fdb_del           = ksz9477_port_fdb_del,
1492         .port_mdb_add           = ksz9477_port_mdb_add,
1493         .port_mdb_del           = ksz9477_port_mdb_del,
1494         .port_mirror_add        = ksz9477_port_mirror_add,
1495         .port_mirror_del        = ksz9477_port_mirror_del,
1496         .get_stats64            = ksz9477_get_stats64,
1497         .port_change_mtu        = ksz9477_change_mtu,
1498         .port_max_mtu           = ksz9477_max_mtu,
1499 };
1500
1501 static u32 ksz9477_get_port_addr(int port, int offset)
1502 {
1503         return PORT_CTRL_ADDR(port, offset);
1504 }
1505
1506 static int ksz9477_switch_detect(struct ksz_device *dev)
1507 {
1508         u8 data8;
1509         u8 id_hi;
1510         u8 id_lo;
1511         u32 id32;
1512         int ret;
1513
1514         /* turn off SPI DO Edge select */
1515         ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1516         if (ret)
1517                 return ret;
1518
1519         data8 &= ~SPI_AUTO_EDGE_DETECTION;
1520         ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1521         if (ret)
1522                 return ret;
1523
1524         /* read chip id */
1525         ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1526         if (ret)
1527                 return ret;
1528         ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1529         if (ret)
1530                 return ret;
1531
1532         /* Number of ports can be reduced depending on chip. */
1533         dev->phy_port_cnt = 5;
1534
1535         /* Default capability is gigabit capable. */
1536         dev->features = GBIT_SUPPORT;
1537
1538         dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
1539         id_hi = (u8)(id32 >> 16);
1540         id_lo = (u8)(id32 >> 8);
1541         if ((id_lo & 0xf) == 3) {
1542                 /* Chip is from KSZ9893 design. */
1543                 dev_info(dev->dev, "Found KSZ9893\n");
1544                 dev->features |= IS_9893;
1545
1546                 /* Chip does not support gigabit. */
1547                 if (data8 & SW_QW_ABLE)
1548                         dev->features &= ~GBIT_SUPPORT;
1549                 dev->phy_port_cnt = 2;
1550         } else {
1551                 dev_info(dev->dev, "Found KSZ9477 or compatible\n");
1552                 /* Chip uses new XMII register definitions. */
1553                 dev->features |= NEW_XMII;
1554
1555                 /* Chip does not support gigabit. */
1556                 if (!(data8 & SW_GIGABIT_ABLE))
1557                         dev->features &= ~GBIT_SUPPORT;
1558         }
1559
1560         /* Change chip id to known ones so it can be matched against them. */
1561         id32 = (id_hi << 16) | (id_lo << 8);
1562
1563         dev->chip_id = id32;
1564
1565         return 0;
1566 }
1567
1568 struct ksz_chip_data {
1569         u32 chip_id;
1570         const char *dev_name;
1571         int num_vlans;
1572         int num_alus;
1573         int num_statics;
1574         int cpu_ports;
1575         int port_cnt;
1576         bool phy_errata_9477;
1577 };
1578
1579 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1580         {
1581                 .chip_id = 0x00947700,
1582                 .dev_name = "KSZ9477",
1583                 .num_vlans = 4096,
1584                 .num_alus = 4096,
1585                 .num_statics = 16,
1586                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1587                 .port_cnt = 7,          /* total physical port count */
1588                 .phy_errata_9477 = true,
1589         },
1590         {
1591                 .chip_id = 0x00989700,
1592                 .dev_name = "KSZ9897",
1593                 .num_vlans = 4096,
1594                 .num_alus = 4096,
1595                 .num_statics = 16,
1596                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1597                 .port_cnt = 7,          /* total physical port count */
1598                 .phy_errata_9477 = true,
1599         },
1600         {
1601                 .chip_id = 0x00989300,
1602                 .dev_name = "KSZ9893",
1603                 .num_vlans = 4096,
1604                 .num_alus = 4096,
1605                 .num_statics = 16,
1606                 .cpu_ports = 0x07,      /* can be configured as cpu port */
1607                 .port_cnt = 3,          /* total port count */
1608         },
1609         {
1610                 .chip_id = 0x00956700,
1611                 .dev_name = "KSZ9567",
1612                 .num_vlans = 4096,
1613                 .num_alus = 4096,
1614                 .num_statics = 16,
1615                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1616                 .port_cnt = 7,          /* total physical port count */
1617                 .phy_errata_9477 = true,
1618         },
1619 };
1620
1621 static int ksz9477_switch_init(struct ksz_device *dev)
1622 {
1623         int i;
1624
1625         dev->ds->ops = &ksz9477_switch_ops;
1626
1627         for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1628                 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1629
1630                 if (dev->chip_id == chip->chip_id) {
1631                         dev->name = chip->dev_name;
1632                         dev->num_vlans = chip->num_vlans;
1633                         dev->num_alus = chip->num_alus;
1634                         dev->num_statics = chip->num_statics;
1635                         dev->port_cnt = chip->port_cnt;
1636                         dev->cpu_ports = chip->cpu_ports;
1637                         dev->phy_errata_9477 = chip->phy_errata_9477;
1638
1639                         break;
1640                 }
1641         }
1642
1643         /* no switch found */
1644         if (!dev->port_cnt)
1645                 return -ENODEV;
1646
1647         dev->port_mask = (1 << dev->port_cnt) - 1;
1648
1649         dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1650         dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1651
1652         dev->ports = devm_kzalloc(dev->dev,
1653                                   dev->port_cnt * sizeof(struct ksz_port),
1654                                   GFP_KERNEL);
1655         if (!dev->ports)
1656                 return -ENOMEM;
1657         for (i = 0; i < dev->port_cnt; i++) {
1658                 spin_lock_init(&dev->ports[i].mib.stats64_lock);
1659                 mutex_init(&dev->ports[i].mib.cnt_mutex);
1660                 dev->ports[i].mib.counters =
1661                         devm_kzalloc(dev->dev,
1662                                      sizeof(u64) *
1663                                      (TOTAL_SWITCH_COUNTER_NUM + 1),
1664                                      GFP_KERNEL);
1665                 if (!dev->ports[i].mib.counters)
1666                         return -ENOMEM;
1667         }
1668
1669         /* set the real number of ports */
1670         dev->ds->num_ports = dev->port_cnt;
1671
1672         return 0;
1673 }
1674
1675 static void ksz9477_switch_exit(struct ksz_device *dev)
1676 {
1677         ksz9477_reset_switch(dev);
1678 }
1679
1680 static const struct ksz_dev_ops ksz9477_dev_ops = {
1681         .get_port_addr = ksz9477_get_port_addr,
1682         .cfg_port_member = ksz9477_cfg_port_member,
1683         .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1684         .port_setup = ksz9477_port_setup,
1685         .r_mib_cnt = ksz9477_r_mib_cnt,
1686         .r_mib_pkt = ksz9477_r_mib_pkt,
1687         .r_mib_stat64 = ksz9477_r_mib_stats64,
1688         .freeze_mib = ksz9477_freeze_mib,
1689         .port_init_cnt = ksz9477_port_init_cnt,
1690         .shutdown = ksz9477_reset_switch,
1691         .detect = ksz9477_switch_detect,
1692         .init = ksz9477_switch_init,
1693         .exit = ksz9477_switch_exit,
1694 };
1695
1696 int ksz9477_switch_register(struct ksz_device *dev)
1697 {
1698         int ret, i;
1699         struct phy_device *phydev;
1700
1701         ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1702         if (ret)
1703                 return ret;
1704
1705         for (i = 0; i < dev->phy_port_cnt; ++i) {
1706                 if (!dsa_is_user_port(dev->ds, i))
1707                         continue;
1708
1709                 phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1710
1711                 /* The MAC actually cannot run in 1000 half-duplex mode. */
1712                 phy_remove_link_mode(phydev,
1713                                      ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1714
1715                 /* PHY does not support gigabit. */
1716                 if (!(dev->features & GBIT_SUPPORT))
1717                         phy_remove_link_mode(phydev,
1718                                              ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1719         }
1720         return ret;
1721 }
1722 EXPORT_SYMBOL(ksz9477_switch_register);
1723
1724 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1725 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1726 MODULE_LICENSE("GPL");