dt-bindings: soc: bcm: use absolute path to other schema
[linux-2.6-microblaze.git] / drivers / net / can / rcar / rcar_canfd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Renesas R-Car CAN FD device driver
3  *
4  * Copyright (C) 2015 Renesas Electronics Corp.
5  */
6
7 /* The R-Car CAN FD controller can operate in either one of the below two modes
8  *  - CAN FD only mode
9  *  - Classical CAN (CAN 2.0) only mode
10  *
11  * This driver puts the controller in CAN FD only mode by default. In this
12  * mode, the controller acts as a CAN FD node that can also interoperate with
13  * CAN 2.0 nodes.
14  *
15  * To switch the controller to Classical CAN (CAN 2.0) only mode, add
16  * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
17  * also required to switch modes.
18  *
19  * Note: The h/w manual register naming convention is clumsy and not acceptable
20  * to use as it is in the driver. However, those names are added as comments
21  * wherever it is modified to a readable name.
22  */
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/interrupt.h>
29 #include <linux/errno.h>
30 #include <linux/netdevice.h>
31 #include <linux/platform_device.h>
32 #include <linux/can/dev.h>
33 #include <linux/clk.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/bitmap.h>
37 #include <linux/bitops.h>
38 #include <linux/iopoll.h>
39 #include <linux/reset.h>
40
41 #define RCANFD_DRV_NAME                 "rcar_canfd"
42
43 enum rcanfd_chip_id {
44         RENESAS_RCAR_GEN3 = 0,
45         RENESAS_RZG2L,
46         RENESAS_R8A779A0,
47 };
48
49 /* Global register bits */
50
51 /* RSCFDnCFDGRMCFG */
52 #define RCANFD_GRMCFG_RCMC              BIT(0)
53
54 /* RSCFDnCFDGCFG / RSCFDnGCFG */
55 #define RCANFD_GCFG_EEFE                BIT(6)
56 #define RCANFD_GCFG_CMPOC               BIT(5)  /* CAN FD only */
57 #define RCANFD_GCFG_DCS                 BIT(4)
58 #define RCANFD_GCFG_DCE                 BIT(1)
59 #define RCANFD_GCFG_TPRI                BIT(0)
60
61 /* RSCFDnCFDGCTR / RSCFDnGCTR */
62 #define RCANFD_GCTR_TSRST               BIT(16)
63 #define RCANFD_GCTR_CFMPOFIE            BIT(11) /* CAN FD only */
64 #define RCANFD_GCTR_THLEIE              BIT(10)
65 #define RCANFD_GCTR_MEIE                BIT(9)
66 #define RCANFD_GCTR_DEIE                BIT(8)
67 #define RCANFD_GCTR_GSLPR               BIT(2)
68 #define RCANFD_GCTR_GMDC_MASK           (0x3)
69 #define RCANFD_GCTR_GMDC_GOPM           (0x0)
70 #define RCANFD_GCTR_GMDC_GRESET         (0x1)
71 #define RCANFD_GCTR_GMDC_GTEST          (0x2)
72
73 /* RSCFDnCFDGSTS / RSCFDnGSTS */
74 #define RCANFD_GSTS_GRAMINIT            BIT(3)
75 #define RCANFD_GSTS_GSLPSTS             BIT(2)
76 #define RCANFD_GSTS_GHLTSTS             BIT(1)
77 #define RCANFD_GSTS_GRSTSTS             BIT(0)
78 /* Non-operational status */
79 #define RCANFD_GSTS_GNOPM               (BIT(0) | BIT(1) | BIT(2) | BIT(3))
80
81 /* RSCFDnCFDGERFL / RSCFDnGERFL */
82 #define RCANFD_GERFL_EEF0_7             GENMASK(23, 16)
83 #define RCANFD_GERFL_EEF1               BIT(17)
84 #define RCANFD_GERFL_EEF0               BIT(16)
85 #define RCANFD_GERFL_CMPOF              BIT(3)  /* CAN FD only */
86 #define RCANFD_GERFL_THLES              BIT(2)
87 #define RCANFD_GERFL_MES                BIT(1)
88 #define RCANFD_GERFL_DEF                BIT(0)
89
90 #define RCANFD_GERFL_ERR(gpriv, x) \
91         ((x) & (reg_v3u(gpriv, RCANFD_GERFL_EEF0_7, \
92                         RCANFD_GERFL_EEF0 | RCANFD_GERFL_EEF1) | \
93                 RCANFD_GERFL_MES | \
94                 ((gpriv)->fdmode ? RCANFD_GERFL_CMPOF : 0)))
95
96 /* AFL Rx rules registers */
97
98 /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
99 #define RCANFD_GAFLCFG_SETRNC(gpriv, n, x) \
100         (((x) & reg_v3u(gpriv, 0x1ff, 0xff)) << \
101          (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8)))
102
103 #define RCANFD_GAFLCFG_GETRNC(gpriv, n, x) \
104         (((x) >> (reg_v3u(gpriv, 16, 24) - (n) * reg_v3u(gpriv, 16, 8))) & \
105          reg_v3u(gpriv, 0x1ff, 0xff))
106
107 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
108 #define RCANFD_GAFLECTR_AFLDAE          BIT(8)
109 #define RCANFD_GAFLECTR_AFLPN(gpriv, x) ((x) & reg_v3u(gpriv, 0x7f, 0x1f))
110
111 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
112 #define RCANFD_GAFLID_GAFLLB            BIT(29)
113
114 /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
115 #define RCANFD_GAFLP1_GAFLFDP(x)        (1 << (x))
116
117 /* Channel register bits */
118
119 /* RSCFDnCmCFG - Classical CAN only */
120 #define RCANFD_CFG_SJW(x)               (((x) & 0x3) << 24)
121 #define RCANFD_CFG_TSEG2(x)             (((x) & 0x7) << 20)
122 #define RCANFD_CFG_TSEG1(x)             (((x) & 0xf) << 16)
123 #define RCANFD_CFG_BRP(x)               (((x) & 0x3ff) << 0)
124
125 /* RSCFDnCFDCmNCFG - CAN FD only */
126 #define RCANFD_NCFG_NTSEG2(gpriv, x) \
127         (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 25, 24))
128
129 #define RCANFD_NCFG_NTSEG1(gpriv, x) \
130         (((x) & reg_v3u(gpriv, 0xff, 0x7f)) << reg_v3u(gpriv, 17, 16))
131
132 #define RCANFD_NCFG_NSJW(gpriv, x) \
133         (((x) & reg_v3u(gpriv, 0x7f, 0x1f)) << reg_v3u(gpriv, 10, 11))
134
135 #define RCANFD_NCFG_NBRP(x)             (((x) & 0x3ff) << 0)
136
137 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
138 #define RCANFD_CCTR_CTME                BIT(24)
139 #define RCANFD_CCTR_ERRD                BIT(23)
140 #define RCANFD_CCTR_BOM_MASK            (0x3 << 21)
141 #define RCANFD_CCTR_BOM_ISO             (0x0 << 21)
142 #define RCANFD_CCTR_BOM_BENTRY          (0x1 << 21)
143 #define RCANFD_CCTR_BOM_BEND            (0x2 << 21)
144 #define RCANFD_CCTR_TDCVFIE             BIT(19)
145 #define RCANFD_CCTR_SOCOIE              BIT(18)
146 #define RCANFD_CCTR_EOCOIE              BIT(17)
147 #define RCANFD_CCTR_TAIE                BIT(16)
148 #define RCANFD_CCTR_ALIE                BIT(15)
149 #define RCANFD_CCTR_BLIE                BIT(14)
150 #define RCANFD_CCTR_OLIE                BIT(13)
151 #define RCANFD_CCTR_BORIE               BIT(12)
152 #define RCANFD_CCTR_BOEIE               BIT(11)
153 #define RCANFD_CCTR_EPIE                BIT(10)
154 #define RCANFD_CCTR_EWIE                BIT(9)
155 #define RCANFD_CCTR_BEIE                BIT(8)
156 #define RCANFD_CCTR_CSLPR               BIT(2)
157 #define RCANFD_CCTR_CHMDC_MASK          (0x3)
158 #define RCANFD_CCTR_CHDMC_COPM          (0x0)
159 #define RCANFD_CCTR_CHDMC_CRESET        (0x1)
160 #define RCANFD_CCTR_CHDMC_CHLT          (0x2)
161
162 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
163 #define RCANFD_CSTS_COMSTS              BIT(7)
164 #define RCANFD_CSTS_RECSTS              BIT(6)
165 #define RCANFD_CSTS_TRMSTS              BIT(5)
166 #define RCANFD_CSTS_BOSTS               BIT(4)
167 #define RCANFD_CSTS_EPSTS               BIT(3)
168 #define RCANFD_CSTS_SLPSTS              BIT(2)
169 #define RCANFD_CSTS_HLTSTS              BIT(1)
170 #define RCANFD_CSTS_CRSTSTS             BIT(0)
171
172 #define RCANFD_CSTS_TECCNT(x)           (((x) >> 24) & 0xff)
173 #define RCANFD_CSTS_RECCNT(x)           (((x) >> 16) & 0xff)
174
175 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
176 #define RCANFD_CERFL_ADERR              BIT(14)
177 #define RCANFD_CERFL_B0ERR              BIT(13)
178 #define RCANFD_CERFL_B1ERR              BIT(12)
179 #define RCANFD_CERFL_CERR               BIT(11)
180 #define RCANFD_CERFL_AERR               BIT(10)
181 #define RCANFD_CERFL_FERR               BIT(9)
182 #define RCANFD_CERFL_SERR               BIT(8)
183 #define RCANFD_CERFL_ALF                BIT(7)
184 #define RCANFD_CERFL_BLF                BIT(6)
185 #define RCANFD_CERFL_OVLF               BIT(5)
186 #define RCANFD_CERFL_BORF               BIT(4)
187 #define RCANFD_CERFL_BOEF               BIT(3)
188 #define RCANFD_CERFL_EPF                BIT(2)
189 #define RCANFD_CERFL_EWF                BIT(1)
190 #define RCANFD_CERFL_BEF                BIT(0)
191
192 #define RCANFD_CERFL_ERR(x)             ((x) & (0x7fff)) /* above bits 14:0 */
193
194 /* RSCFDnCFDCmDCFG */
195 #define RCANFD_DCFG_DSJW(x)             (((x) & 0x7) << 24)
196
197 #define RCANFD_DCFG_DTSEG2(gpriv, x) \
198         (((x) & reg_v3u(gpriv, 0x0f, 0x7)) << reg_v3u(gpriv, 16, 20))
199
200 #define RCANFD_DCFG_DTSEG1(gpriv, x) \
201         (((x) & reg_v3u(gpriv, 0x1f, 0xf)) << reg_v3u(gpriv, 8, 16))
202
203 #define RCANFD_DCFG_DBRP(x)             (((x) & 0xff) << 0)
204
205 /* RSCFDnCFDCmFDCFG */
206 #define RCANFD_FDCFG_CLOE               BIT(30)
207 #define RCANFD_FDCFG_FDOE               BIT(28)
208 #define RCANFD_FDCFG_TDCE               BIT(9)
209 #define RCANFD_FDCFG_TDCOC              BIT(8)
210 #define RCANFD_FDCFG_TDCO(x)            (((x) & 0x7f) >> 16)
211
212 /* RSCFDnCFDRFCCx */
213 #define RCANFD_RFCC_RFIM                BIT(12)
214 #define RCANFD_RFCC_RFDC(x)             (((x) & 0x7) << 8)
215 #define RCANFD_RFCC_RFPLS(x)            (((x) & 0x7) << 4)
216 #define RCANFD_RFCC_RFIE                BIT(1)
217 #define RCANFD_RFCC_RFE                 BIT(0)
218
219 /* RSCFDnCFDRFSTSx */
220 #define RCANFD_RFSTS_RFIF               BIT(3)
221 #define RCANFD_RFSTS_RFMLT              BIT(2)
222 #define RCANFD_RFSTS_RFFLL              BIT(1)
223 #define RCANFD_RFSTS_RFEMP              BIT(0)
224
225 /* RSCFDnCFDRFIDx */
226 #define RCANFD_RFID_RFIDE               BIT(31)
227 #define RCANFD_RFID_RFRTR               BIT(30)
228
229 /* RSCFDnCFDRFPTRx */
230 #define RCANFD_RFPTR_RFDLC(x)           (((x) >> 28) & 0xf)
231 #define RCANFD_RFPTR_RFPTR(x)           (((x) >> 16) & 0xfff)
232 #define RCANFD_RFPTR_RFTS(x)            (((x) >> 0) & 0xffff)
233
234 /* RSCFDnCFDRFFDSTSx */
235 #define RCANFD_RFFDSTS_RFFDF            BIT(2)
236 #define RCANFD_RFFDSTS_RFBRS            BIT(1)
237 #define RCANFD_RFFDSTS_RFESI            BIT(0)
238
239 /* Common FIFO bits */
240
241 /* RSCFDnCFDCFCCk */
242 #define RCANFD_CFCC_CFTML(gpriv, x)     (((x) & 0xf) << reg_v3u(gpriv, 16, 20))
243 #define RCANFD_CFCC_CFM(gpriv, x)       (((x) & 0x3) << reg_v3u(gpriv,  8, 16))
244 #define RCANFD_CFCC_CFIM                BIT(12)
245 #define RCANFD_CFCC_CFDC(gpriv, x)      (((x) & 0x7) << reg_v3u(gpriv, 21,  8))
246 #define RCANFD_CFCC_CFPLS(x)            (((x) & 0x7) << 4)
247 #define RCANFD_CFCC_CFTXIE              BIT(2)
248 #define RCANFD_CFCC_CFE                 BIT(0)
249
250 /* RSCFDnCFDCFSTSk */
251 #define RCANFD_CFSTS_CFMC(x)            (((x) >> 8) & 0xff)
252 #define RCANFD_CFSTS_CFTXIF             BIT(4)
253 #define RCANFD_CFSTS_CFMLT              BIT(2)
254 #define RCANFD_CFSTS_CFFLL              BIT(1)
255 #define RCANFD_CFSTS_CFEMP              BIT(0)
256
257 /* RSCFDnCFDCFIDk */
258 #define RCANFD_CFID_CFIDE               BIT(31)
259 #define RCANFD_CFID_CFRTR               BIT(30)
260 #define RCANFD_CFID_CFID_MASK(x)        ((x) & 0x1fffffff)
261
262 /* RSCFDnCFDCFPTRk */
263 #define RCANFD_CFPTR_CFDLC(x)           (((x) & 0xf) << 28)
264 #define RCANFD_CFPTR_CFPTR(x)           (((x) & 0xfff) << 16)
265 #define RCANFD_CFPTR_CFTS(x)            (((x) & 0xff) << 0)
266
267 /* RSCFDnCFDCFFDCSTSk */
268 #define RCANFD_CFFDCSTS_CFFDF           BIT(2)
269 #define RCANFD_CFFDCSTS_CFBRS           BIT(1)
270 #define RCANFD_CFFDCSTS_CFESI           BIT(0)
271
272 /* This controller supports either Classical CAN only mode or CAN FD only mode.
273  * These modes are supported in two separate set of register maps & names.
274  * However, some of the register offsets are common for both modes. Those
275  * offsets are listed below as Common registers.
276  *
277  * The CAN FD only mode specific registers & Classical CAN only mode specific
278  * registers are listed separately. Their register names starts with
279  * RCANFD_F_xxx & RCANFD_C_xxx respectively.
280  */
281
282 /* Common registers */
283
284 /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
285 #define RCANFD_CCFG(m)                  (0x0000 + (0x10 * (m)))
286 /* RSCFDnCFDCmCTR / RSCFDnCmCTR */
287 #define RCANFD_CCTR(m)                  (0x0004 + (0x10 * (m)))
288 /* RSCFDnCFDCmSTS / RSCFDnCmSTS */
289 #define RCANFD_CSTS(m)                  (0x0008 + (0x10 * (m)))
290 /* RSCFDnCFDCmERFL / RSCFDnCmERFL */
291 #define RCANFD_CERFL(m)                 (0x000C + (0x10 * (m)))
292
293 /* RSCFDnCFDGCFG / RSCFDnGCFG */
294 #define RCANFD_GCFG                     (0x0084)
295 /* RSCFDnCFDGCTR / RSCFDnGCTR */
296 #define RCANFD_GCTR                     (0x0088)
297 /* RSCFDnCFDGCTS / RSCFDnGCTS */
298 #define RCANFD_GSTS                     (0x008c)
299 /* RSCFDnCFDGERFL / RSCFDnGERFL */
300 #define RCANFD_GERFL                    (0x0090)
301 /* RSCFDnCFDGTSC / RSCFDnGTSC */
302 #define RCANFD_GTSC                     (0x0094)
303 /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
304 #define RCANFD_GAFLECTR                 (0x0098)
305 /* RSCFDnCFDGAFLCFG / RSCFDnGAFLCFG */
306 #define RCANFD_GAFLCFG(ch)              (0x009c + (0x04 * ((ch) / 2)))
307 /* RSCFDnCFDRMNB / RSCFDnRMNB */
308 #define RCANFD_RMNB                     (0x00a4)
309 /* RSCFDnCFDRMND / RSCFDnRMND */
310 #define RCANFD_RMND(y)                  (0x00a8 + (0x04 * (y)))
311
312 /* RSCFDnCFDRFCCx / RSCFDnRFCCx */
313 #define RCANFD_RFCC(gpriv, x)           (reg_v3u(gpriv, 0x00c0, 0x00b8) + (0x04 * (x)))
314 /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
315 #define RCANFD_RFSTS(gpriv, x)          (RCANFD_RFCC(gpriv, x) + 0x20)
316 /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
317 #define RCANFD_RFPCTR(gpriv, x)         (RCANFD_RFCC(gpriv, x) + 0x40)
318
319 /* Common FIFO Control registers */
320
321 /* RSCFDnCFDCFCCx / RSCFDnCFCCx */
322 #define RCANFD_CFCC(gpriv, ch, idx) \
323         (reg_v3u(gpriv, 0x0120, 0x0118) + (0x0c * (ch)) + (0x04 * (idx)))
324 /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
325 #define RCANFD_CFSTS(gpriv, ch, idx) \
326         (reg_v3u(gpriv, 0x01e0, 0x0178) + (0x0c * (ch)) + (0x04 * (idx)))
327 /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
328 #define RCANFD_CFPCTR(gpriv, ch, idx) \
329         (reg_v3u(gpriv, 0x0240, 0x01d8) + (0x0c * (ch)) + (0x04 * (idx)))
330
331 /* RSCFDnCFDFESTS / RSCFDnFESTS */
332 #define RCANFD_FESTS                    (0x0238)
333 /* RSCFDnCFDFFSTS / RSCFDnFFSTS */
334 #define RCANFD_FFSTS                    (0x023c)
335 /* RSCFDnCFDFMSTS / RSCFDnFMSTS */
336 #define RCANFD_FMSTS                    (0x0240)
337 /* RSCFDnCFDRFISTS / RSCFDnRFISTS */
338 #define RCANFD_RFISTS                   (0x0244)
339 /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
340 #define RCANFD_CFRISTS                  (0x0248)
341 /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
342 #define RCANFD_CFTISTS                  (0x024c)
343
344 /* RSCFDnCFDTMCp / RSCFDnTMCp */
345 #define RCANFD_TMC(p)                   (0x0250 + (0x01 * (p)))
346 /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
347 #define RCANFD_TMSTS(p)                 (0x02d0 + (0x01 * (p)))
348
349 /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
350 #define RCANFD_TMTRSTS(y)               (0x0350 + (0x04 * (y)))
351 /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
352 #define RCANFD_TMTARSTS(y)              (0x0360 + (0x04 * (y)))
353 /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
354 #define RCANFD_TMTCSTS(y)               (0x0370 + (0x04 * (y)))
355 /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
356 #define RCANFD_TMTASTS(y)               (0x0380 + (0x04 * (y)))
357 /* RSCFDnCFDTMIECy / RSCFDnTMIECy */
358 #define RCANFD_TMIEC(y)                 (0x0390 + (0x04 * (y)))
359
360 /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
361 #define RCANFD_TXQCC(m)                 (0x03a0 + (0x04 * (m)))
362 /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
363 #define RCANFD_TXQSTS(m)                (0x03c0 + (0x04 * (m)))
364 /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
365 #define RCANFD_TXQPCTR(m)               (0x03e0 + (0x04 * (m)))
366
367 /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
368 #define RCANFD_THLCC(m)                 (0x0400 + (0x04 * (m)))
369 /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
370 #define RCANFD_THLSTS(m)                (0x0420 + (0x04 * (m)))
371 /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
372 #define RCANFD_THLPCTR(m)               (0x0440 + (0x04 * (m)))
373
374 /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
375 #define RCANFD_GTINTSTS0                (0x0460)
376 /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
377 #define RCANFD_GTINTSTS1                (0x0464)
378 /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
379 #define RCANFD_GTSTCFG                  (0x0468)
380 /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
381 #define RCANFD_GTSTCTR                  (0x046c)
382 /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
383 #define RCANFD_GLOCKK                   (0x047c)
384 /* RSCFDnCFDGRMCFG */
385 #define RCANFD_GRMCFG                   (0x04fc)
386
387 /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
388 #define RCANFD_GAFLID(offset, j)        ((offset) + (0x10 * (j)))
389 /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
390 #define RCANFD_GAFLM(offset, j)         ((offset) + 0x04 + (0x10 * (j)))
391 /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
392 #define RCANFD_GAFLP0(offset, j)        ((offset) + 0x08 + (0x10 * (j)))
393 /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
394 #define RCANFD_GAFLP1(offset, j)        ((offset) + 0x0c + (0x10 * (j)))
395
396 /* Classical CAN only mode register map */
397
398 /* RSCFDnGAFLXXXj offset */
399 #define RCANFD_C_GAFL_OFFSET            (0x0500)
400
401 /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
402 #define RCANFD_C_RMID(q)                (0x0600 + (0x10 * (q)))
403 #define RCANFD_C_RMPTR(q)               (0x0604 + (0x10 * (q)))
404 #define RCANFD_C_RMDF0(q)               (0x0608 + (0x10 * (q)))
405 #define RCANFD_C_RMDF1(q)               (0x060c + (0x10 * (q)))
406
407 /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
408 #define RCANFD_C_RFOFFSET       (0x0e00)
409 #define RCANFD_C_RFID(x)        (RCANFD_C_RFOFFSET + (0x10 * (x)))
410 #define RCANFD_C_RFPTR(x)       (RCANFD_C_RFOFFSET + 0x04 + (0x10 * (x)))
411 #define RCANFD_C_RFDF(x, df) \
412                 (RCANFD_C_RFOFFSET + 0x08 + (0x10 * (x)) + (0x04 * (df)))
413
414 /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
415 #define RCANFD_C_CFOFFSET               (0x0e80)
416
417 #define RCANFD_C_CFID(ch, idx) \
418         (RCANFD_C_CFOFFSET + (0x30 * (ch)) + (0x10 * (idx)))
419
420 #define RCANFD_C_CFPTR(ch, idx) \
421         (RCANFD_C_CFOFFSET + 0x04 + (0x30 * (ch)) + (0x10 * (idx)))
422
423 #define RCANFD_C_CFDF(ch, idx, df) \
424         (RCANFD_C_CFOFFSET + 0x08 + (0x30 * (ch)) + (0x10 * (idx)) + (0x04 * (df)))
425
426 /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
427 #define RCANFD_C_TMID(p)                (0x1000 + (0x10 * (p)))
428 #define RCANFD_C_TMPTR(p)               (0x1004 + (0x10 * (p)))
429 #define RCANFD_C_TMDF0(p)               (0x1008 + (0x10 * (p)))
430 #define RCANFD_C_TMDF1(p)               (0x100c + (0x10 * (p)))
431
432 /* RSCFDnTHLACCm */
433 #define RCANFD_C_THLACC(m)              (0x1800 + (0x04 * (m)))
434 /* RSCFDnRPGACCr */
435 #define RCANFD_C_RPGACC(r)              (0x1900 + (0x04 * (r)))
436
437 /* R-Car V3U Classical and CAN FD mode specific register map */
438 #define RCANFD_V3U_CFDCFG               (0x1314)
439 #define RCANFD_V3U_DCFG(m)              (0x1400 + (0x20 * (m)))
440
441 #define RCANFD_V3U_GAFL_OFFSET          (0x1800)
442
443 /* CAN FD mode specific register map */
444
445 /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
446 #define RCANFD_F_DCFG(m)                (0x0500 + (0x20 * (m)))
447 #define RCANFD_F_CFDCFG(m)              (0x0504 + (0x20 * (m)))
448 #define RCANFD_F_CFDCTR(m)              (0x0508 + (0x20 * (m)))
449 #define RCANFD_F_CFDSTS(m)              (0x050c + (0x20 * (m)))
450 #define RCANFD_F_CFDCRC(m)              (0x0510 + (0x20 * (m)))
451
452 /* RSCFDnCFDGAFLXXXj offset */
453 #define RCANFD_F_GAFL_OFFSET            (0x1000)
454
455 /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
456 #define RCANFD_F_RMID(q)                (0x2000 + (0x20 * (q)))
457 #define RCANFD_F_RMPTR(q)               (0x2004 + (0x20 * (q)))
458 #define RCANFD_F_RMFDSTS(q)             (0x2008 + (0x20 * (q)))
459 #define RCANFD_F_RMDF(q, b)             (0x200c + (0x04 * (b)) + (0x20 * (q)))
460
461 /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
462 #define RCANFD_F_RFOFFSET(gpriv)        reg_v3u(gpriv, 0x6000, 0x3000)
463 #define RCANFD_F_RFID(gpriv, x)         (RCANFD_F_RFOFFSET(gpriv) + (0x80 * (x)))
464 #define RCANFD_F_RFPTR(gpriv, x)        (RCANFD_F_RFOFFSET(gpriv) + 0x04 + (0x80 * (x)))
465 #define RCANFD_F_RFFDSTS(gpriv, x)      (RCANFD_F_RFOFFSET(gpriv) + 0x08 + (0x80 * (x)))
466 #define RCANFD_F_RFDF(gpriv, x, df) \
467         (RCANFD_F_RFOFFSET(gpriv) + 0x0c + (0x80 * (x)) + (0x04 * (df)))
468
469 /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
470 #define RCANFD_F_CFOFFSET(gpriv)        reg_v3u(gpriv, 0x6400, 0x3400)
471
472 #define RCANFD_F_CFID(gpriv, ch, idx) \
473         (RCANFD_F_CFOFFSET(gpriv) + (0x180 * (ch)) + (0x80 * (idx)))
474
475 #define RCANFD_F_CFPTR(gpriv, ch, idx) \
476         (RCANFD_F_CFOFFSET(gpriv) + 0x04 + (0x180 * (ch)) + (0x80 * (idx)))
477
478 #define RCANFD_F_CFFDCSTS(gpriv, ch, idx) \
479         (RCANFD_F_CFOFFSET(gpriv) + 0x08 + (0x180 * (ch)) + (0x80 * (idx)))
480
481 #define RCANFD_F_CFDF(gpriv, ch, idx, df) \
482         (RCANFD_F_CFOFFSET(gpriv) + 0x0c + (0x180 * (ch)) + (0x80 * (idx)) + \
483          (0x04 * (df)))
484
485 /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
486 #define RCANFD_F_TMID(p)                (0x4000 + (0x20 * (p)))
487 #define RCANFD_F_TMPTR(p)               (0x4004 + (0x20 * (p)))
488 #define RCANFD_F_TMFDCTR(p)             (0x4008 + (0x20 * (p)))
489 #define RCANFD_F_TMDF(p, b)             (0x400c + (0x20 * (p)) + (0x04 * (b)))
490
491 /* RSCFDnCFDTHLACCm */
492 #define RCANFD_F_THLACC(m)              (0x6000 + (0x04 * (m)))
493 /* RSCFDnCFDRPGACCr */
494 #define RCANFD_F_RPGACC(r)              (0x6400 + (0x04 * (r)))
495
496 /* Constants */
497 #define RCANFD_FIFO_DEPTH               8       /* Tx FIFO depth */
498 #define RCANFD_NAPI_WEIGHT              8       /* Rx poll quota */
499
500 #define RCANFD_NUM_CHANNELS             8       /* Eight channels max */
501 #define RCANFD_CHANNELS_MASK            BIT((RCANFD_NUM_CHANNELS) - 1)
502
503 #define RCANFD_GAFL_PAGENUM(entry)      ((entry) / 16)
504 #define RCANFD_CHANNEL_NUMRULES         1       /* only one rule per channel */
505
506 /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
507  * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
508  * number is added to RFFIFO index.
509  */
510 #define RCANFD_RFFIFO_IDX               0
511
512 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
513  * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
514  */
515 #define RCANFD_CFFIFO_IDX               0
516
517 /* fCAN clock select register settings */
518 enum rcar_canfd_fcanclk {
519         RCANFD_CANFDCLK = 0,            /* CANFD clock */
520         RCANFD_EXTCLK,                  /* Externally input clock */
521 };
522
523 struct rcar_canfd_global;
524
525 /* Channel priv data */
526 struct rcar_canfd_channel {
527         struct can_priv can;                    /* Must be the first member */
528         struct net_device *ndev;
529         struct rcar_canfd_global *gpriv;        /* Controller reference */
530         void __iomem *base;                     /* Register base address */
531         struct napi_struct napi;
532         u32 tx_head;                            /* Incremented on xmit */
533         u32 tx_tail;                            /* Incremented on xmit done */
534         u32 channel;                            /* Channel number */
535         spinlock_t tx_lock;                     /* To protect tx path */
536 };
537
538 /* Global priv data */
539 struct rcar_canfd_global {
540         struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
541         void __iomem *base;             /* Register base address */
542         struct platform_device *pdev;   /* Respective platform device */
543         struct clk *clkp;               /* Peripheral clock */
544         struct clk *can_clk;            /* fCAN clock */
545         enum rcar_canfd_fcanclk fcan;   /* CANFD or Ext clock */
546         unsigned long channels_mask;    /* Enabled channels mask */
547         bool fdmode;                    /* CAN FD or Classical CAN only mode */
548         struct reset_control *rstc1;
549         struct reset_control *rstc2;
550         enum rcanfd_chip_id chip_id;
551         u32 max_channels;
552 };
553
554 /* CAN FD mode nominal rate constants */
555 static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
556         .name = RCANFD_DRV_NAME,
557         .tseg1_min = 2,
558         .tseg1_max = 128,
559         .tseg2_min = 2,
560         .tseg2_max = 32,
561         .sjw_max = 32,
562         .brp_min = 1,
563         .brp_max = 1024,
564         .brp_inc = 1,
565 };
566
567 /* CAN FD mode data rate constants */
568 static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
569         .name = RCANFD_DRV_NAME,
570         .tseg1_min = 2,
571         .tseg1_max = 16,
572         .tseg2_min = 2,
573         .tseg2_max = 8,
574         .sjw_max = 8,
575         .brp_min = 1,
576         .brp_max = 256,
577         .brp_inc = 1,
578 };
579
580 /* Classical CAN mode bitrate constants */
581 static const struct can_bittiming_const rcar_canfd_bittiming_const = {
582         .name = RCANFD_DRV_NAME,
583         .tseg1_min = 4,
584         .tseg1_max = 16,
585         .tseg2_min = 2,
586         .tseg2_max = 8,
587         .sjw_max = 4,
588         .brp_min = 1,
589         .brp_max = 1024,
590         .brp_inc = 1,
591 };
592
593 /* Helper functions */
594 static inline bool is_v3u(struct rcar_canfd_global *gpriv)
595 {
596         return gpriv->chip_id == RENESAS_R8A779A0;
597 }
598
599 static inline u32 reg_v3u(struct rcar_canfd_global *gpriv,
600                           u32 v3u, u32 not_v3u)
601 {
602         return is_v3u(gpriv) ? v3u : not_v3u;
603 }
604
605 static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
606 {
607         u32 data = readl(reg);
608
609         data &= ~mask;
610         data |= (val & mask);
611         writel(data, reg);
612 }
613
614 static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
615 {
616         return readl(base + (offset));
617 }
618
619 static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
620 {
621         writel(val, base + (offset));
622 }
623
624 static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
625 {
626         rcar_canfd_update(val, val, base + (reg));
627 }
628
629 static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
630 {
631         rcar_canfd_update(val, 0, base + (reg));
632 }
633
634 static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
635                                   u32 mask, u32 val)
636 {
637         rcar_canfd_update(mask, val, base + (reg));
638 }
639
640 static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
641                                 struct canfd_frame *cf, u32 off)
642 {
643         u32 i, lwords;
644
645         lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
646         for (i = 0; i < lwords; i++)
647                 *((u32 *)cf->data + i) =
648                         rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
649 }
650
651 static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
652                                 struct canfd_frame *cf, u32 off)
653 {
654         u32 i, lwords;
655
656         lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
657         for (i = 0; i < lwords; i++)
658                 rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
659                                  *((u32 *)cf->data + i));
660 }
661
662 static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
663 {
664         u32 i;
665
666         for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
667                 can_free_echo_skb(ndev, i, NULL);
668 }
669
670 static void rcar_canfd_set_mode(struct rcar_canfd_global *gpriv)
671 {
672         if (is_v3u(gpriv)) {
673                 if (gpriv->fdmode)
674                         rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
675                                            RCANFD_FDCFG_FDOE);
676                 else
677                         rcar_canfd_set_bit(gpriv->base, RCANFD_V3U_CFDCFG,
678                                            RCANFD_FDCFG_CLOE);
679         } else {
680                 if (gpriv->fdmode)
681                         rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
682                                            RCANFD_GRMCFG_RCMC);
683                 else
684                         rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
685                                              RCANFD_GRMCFG_RCMC);
686         }
687 }
688
689 static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
690 {
691         u32 sts, ch;
692         int err;
693
694         /* Check RAMINIT flag as CAN RAM initialization takes place
695          * after the MCU reset
696          */
697         err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
698                                  !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
699         if (err) {
700                 dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
701                 return err;
702         }
703
704         /* Transition to Global Reset mode */
705         rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
706         rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
707                               RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
708
709         /* Ensure Global reset mode */
710         err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
711                                  (sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
712         if (err) {
713                 dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
714                 return err;
715         }
716
717         /* Reset Global error flags */
718         rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
719
720         /* Set the controller into appropriate mode */
721         rcar_canfd_set_mode(gpriv);
722
723         /* Transition all Channels to reset mode */
724         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
725                 rcar_canfd_clear_bit(gpriv->base,
726                                      RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
727
728                 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
729                                       RCANFD_CCTR_CHMDC_MASK,
730                                       RCANFD_CCTR_CHDMC_CRESET);
731
732                 /* Ensure Channel reset mode */
733                 err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
734                                          (sts & RCANFD_CSTS_CRSTSTS),
735                                          2, 500000);
736                 if (err) {
737                         dev_dbg(&gpriv->pdev->dev,
738                                 "channel %u reset failed\n", ch);
739                         return err;
740                 }
741         }
742         return 0;
743 }
744
745 static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
746 {
747         u32 cfg, ch;
748
749         /* Global configuration settings */
750
751         /* ECC Error flag Enable */
752         cfg = RCANFD_GCFG_EEFE;
753
754         if (gpriv->fdmode)
755                 /* Truncate payload to configured message size RFPLS */
756                 cfg |= RCANFD_GCFG_CMPOC;
757
758         /* Set External Clock if selected */
759         if (gpriv->fcan != RCANFD_CANFDCLK)
760                 cfg |= RCANFD_GCFG_DCS;
761
762         rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
763
764         /* Channel configuration settings */
765         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
766                 rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
767                                    RCANFD_CCTR_ERRD);
768                 rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
769                                       RCANFD_CCTR_BOM_MASK,
770                                       RCANFD_CCTR_BOM_BENTRY);
771         }
772 }
773
774 static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
775                                            u32 ch)
776 {
777         u32 cfg;
778         int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
779         u32 ridx = ch + RCANFD_RFFIFO_IDX;
780
781         if (ch == 0) {
782                 start = 0; /* Channel 0 always starts from 0th rule */
783         } else {
784                 /* Get number of Channel 0 rules and adjust */
785                 cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG(ch));
786                 start = RCANFD_GAFLCFG_GETRNC(gpriv, 0, cfg);
787         }
788
789         /* Enable write access to entry */
790         page = RCANFD_GAFL_PAGENUM(start);
791         rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
792                            (RCANFD_GAFLECTR_AFLPN(gpriv, page) |
793                             RCANFD_GAFLECTR_AFLDAE));
794
795         /* Write number of rules for channel */
796         rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG(ch),
797                            RCANFD_GAFLCFG_SETRNC(gpriv, ch, num_rules));
798         if (is_v3u(gpriv))
799                 offset = RCANFD_V3U_GAFL_OFFSET;
800         else if (gpriv->fdmode)
801                 offset = RCANFD_F_GAFL_OFFSET;
802         else
803                 offset = RCANFD_C_GAFL_OFFSET;
804
805         /* Accept all IDs */
806         rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
807         /* IDE or RTR is not considered for matching */
808         rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
809         /* Any data length accepted */
810         rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
811         /* Place the msg in corresponding Rx FIFO entry */
812         rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLP1(offset, start),
813                            RCANFD_GAFLP1_GAFLFDP(ridx));
814
815         /* Disable write access to page */
816         rcar_canfd_clear_bit(gpriv->base,
817                              RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
818 }
819
820 static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
821 {
822         /* Rx FIFO is used for reception */
823         u32 cfg;
824         u16 rfdc, rfpls;
825
826         /* Select Rx FIFO based on channel */
827         u32 ridx = ch + RCANFD_RFFIFO_IDX;
828
829         rfdc = 2;               /* b010 - 8 messages Rx FIFO depth */
830         if (gpriv->fdmode)
831                 rfpls = 7;      /* b111 - Max 64 bytes payload */
832         else
833                 rfpls = 0;      /* b000 - Max 8 bytes payload */
834
835         cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
836                 RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
837         rcar_canfd_write(gpriv->base, RCANFD_RFCC(gpriv, ridx), cfg);
838 }
839
840 static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
841 {
842         /* Tx/Rx(Common) FIFO configured in Tx mode is
843          * used for transmission
844          *
845          * Each channel has 3 Common FIFO dedicated to them.
846          * Use the 1st (index 0) out of 3
847          */
848         u32 cfg;
849         u16 cftml, cfm, cfdc, cfpls;
850
851         cftml = 0;              /* 0th buffer */
852         cfm = 1;                /* b01 - Transmit mode */
853         cfdc = 2;               /* b010 - 8 messages Tx FIFO depth */
854         if (gpriv->fdmode)
855                 cfpls = 7;      /* b111 - Max 64 bytes payload */
856         else
857                 cfpls = 0;      /* b000 - Max 8 bytes payload */
858
859         cfg = (RCANFD_CFCC_CFTML(gpriv, cftml) | RCANFD_CFCC_CFM(gpriv, cfm) |
860                 RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(gpriv, cfdc) |
861                 RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
862         rcar_canfd_write(gpriv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX), cfg);
863
864         if (gpriv->fdmode)
865                 /* Clear FD mode specific control/status register */
866                 rcar_canfd_write(gpriv->base,
867                                  RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), 0);
868 }
869
870 static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
871 {
872         u32 ctr;
873
874         /* Clear any stray error interrupt flags */
875         rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
876
877         /* Global interrupts setup */
878         ctr = RCANFD_GCTR_MEIE;
879         if (gpriv->fdmode)
880                 ctr |= RCANFD_GCTR_CFMPOFIE;
881
882         rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
883 }
884
885 static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
886                                                  *gpriv)
887 {
888         /* Disable all interrupts */
889         rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
890
891         /* Clear any stray error interrupt flags */
892         rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
893 }
894
895 static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
896                                                  *priv)
897 {
898         u32 ctr, ch = priv->channel;
899
900         /* Clear any stray error flags */
901         rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
902
903         /* Channel interrupts setup */
904         ctr = (RCANFD_CCTR_TAIE |
905                RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
906                RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
907                RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
908                RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
909         rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
910 }
911
912 static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
913                                                   *priv)
914 {
915         u32 ctr, ch = priv->channel;
916
917         ctr = (RCANFD_CCTR_TAIE |
918                RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
919                RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
920                RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
921                RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
922         rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
923
924         /* Clear any stray error flags */
925         rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
926 }
927
928 static void rcar_canfd_global_error(struct net_device *ndev)
929 {
930         struct rcar_canfd_channel *priv = netdev_priv(ndev);
931         struct rcar_canfd_global *gpriv = priv->gpriv;
932         struct net_device_stats *stats = &ndev->stats;
933         u32 ch = priv->channel;
934         u32 gerfl, sts;
935         u32 ridx = ch + RCANFD_RFFIFO_IDX;
936
937         gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
938         if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
939                 netdev_dbg(ndev, "Ch0: ECC Error flag\n");
940                 stats->tx_dropped++;
941         }
942         if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
943                 netdev_dbg(ndev, "Ch1: ECC Error flag\n");
944                 stats->tx_dropped++;
945         }
946         if (gerfl & RCANFD_GERFL_MES) {
947                 sts = rcar_canfd_read(priv->base,
948                                       RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
949                 if (sts & RCANFD_CFSTS_CFMLT) {
950                         netdev_dbg(ndev, "Tx Message Lost flag\n");
951                         stats->tx_dropped++;
952                         rcar_canfd_write(priv->base,
953                                          RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
954                                          sts & ~RCANFD_CFSTS_CFMLT);
955                 }
956
957                 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
958                 if (sts & RCANFD_RFSTS_RFMLT) {
959                         netdev_dbg(ndev, "Rx Message Lost flag\n");
960                         stats->rx_dropped++;
961                         rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
962                                          sts & ~RCANFD_RFSTS_RFMLT);
963                 }
964         }
965         if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
966                 /* Message Lost flag will be set for respective channel
967                  * when this condition happens with counters and flags
968                  * already updated.
969                  */
970                 netdev_dbg(ndev, "global payload overflow interrupt\n");
971         }
972
973         /* Clear all global error interrupts. Only affected channels bits
974          * get cleared
975          */
976         rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
977 }
978
979 static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
980                              u16 txerr, u16 rxerr)
981 {
982         struct rcar_canfd_channel *priv = netdev_priv(ndev);
983         struct net_device_stats *stats = &ndev->stats;
984         struct can_frame *cf;
985         struct sk_buff *skb;
986         u32 ch = priv->channel;
987
988         netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
989
990         /* Propagate the error condition to the CAN stack */
991         skb = alloc_can_err_skb(ndev, &cf);
992         if (!skb) {
993                 stats->rx_dropped++;
994                 return;
995         }
996
997         /* Channel error interrupts */
998         if (cerfl & RCANFD_CERFL_BEF) {
999                 netdev_dbg(ndev, "Bus error\n");
1000                 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
1001                 cf->data[2] = CAN_ERR_PROT_UNSPEC;
1002                 priv->can.can_stats.bus_error++;
1003         }
1004         if (cerfl & RCANFD_CERFL_ADERR) {
1005                 netdev_dbg(ndev, "ACK Delimiter Error\n");
1006                 stats->tx_errors++;
1007                 cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
1008         }
1009         if (cerfl & RCANFD_CERFL_B0ERR) {
1010                 netdev_dbg(ndev, "Bit Error (dominant)\n");
1011                 stats->tx_errors++;
1012                 cf->data[2] |= CAN_ERR_PROT_BIT0;
1013         }
1014         if (cerfl & RCANFD_CERFL_B1ERR) {
1015                 netdev_dbg(ndev, "Bit Error (recessive)\n");
1016                 stats->tx_errors++;
1017                 cf->data[2] |= CAN_ERR_PROT_BIT1;
1018         }
1019         if (cerfl & RCANFD_CERFL_CERR) {
1020                 netdev_dbg(ndev, "CRC Error\n");
1021                 stats->rx_errors++;
1022                 cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
1023         }
1024         if (cerfl & RCANFD_CERFL_AERR) {
1025                 netdev_dbg(ndev, "ACK Error\n");
1026                 stats->tx_errors++;
1027                 cf->can_id |= CAN_ERR_ACK;
1028                 cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
1029         }
1030         if (cerfl & RCANFD_CERFL_FERR) {
1031                 netdev_dbg(ndev, "Form Error\n");
1032                 stats->rx_errors++;
1033                 cf->data[2] |= CAN_ERR_PROT_FORM;
1034         }
1035         if (cerfl & RCANFD_CERFL_SERR) {
1036                 netdev_dbg(ndev, "Stuff Error\n");
1037                 stats->rx_errors++;
1038                 cf->data[2] |= CAN_ERR_PROT_STUFF;
1039         }
1040         if (cerfl & RCANFD_CERFL_ALF) {
1041                 netdev_dbg(ndev, "Arbitration lost Error\n");
1042                 priv->can.can_stats.arbitration_lost++;
1043                 cf->can_id |= CAN_ERR_LOSTARB;
1044                 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
1045         }
1046         if (cerfl & RCANFD_CERFL_BLF) {
1047                 netdev_dbg(ndev, "Bus Lock Error\n");
1048                 stats->rx_errors++;
1049                 cf->can_id |= CAN_ERR_BUSERROR;
1050         }
1051         if (cerfl & RCANFD_CERFL_EWF) {
1052                 netdev_dbg(ndev, "Error warning interrupt\n");
1053                 priv->can.state = CAN_STATE_ERROR_WARNING;
1054                 priv->can.can_stats.error_warning++;
1055                 cf->can_id |= CAN_ERR_CRTL;
1056                 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
1057                         CAN_ERR_CRTL_RX_WARNING;
1058                 cf->data[6] = txerr;
1059                 cf->data[7] = rxerr;
1060         }
1061         if (cerfl & RCANFD_CERFL_EPF) {
1062                 netdev_dbg(ndev, "Error passive interrupt\n");
1063                 priv->can.state = CAN_STATE_ERROR_PASSIVE;
1064                 priv->can.can_stats.error_passive++;
1065                 cf->can_id |= CAN_ERR_CRTL;
1066                 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
1067                         CAN_ERR_CRTL_RX_PASSIVE;
1068                 cf->data[6] = txerr;
1069                 cf->data[7] = rxerr;
1070         }
1071         if (cerfl & RCANFD_CERFL_BOEF) {
1072                 netdev_dbg(ndev, "Bus-off entry interrupt\n");
1073                 rcar_canfd_tx_failure_cleanup(ndev);
1074                 priv->can.state = CAN_STATE_BUS_OFF;
1075                 priv->can.can_stats.bus_off++;
1076                 can_bus_off(ndev);
1077                 cf->can_id |= CAN_ERR_BUSOFF;
1078         }
1079         if (cerfl & RCANFD_CERFL_OVLF) {
1080                 netdev_dbg(ndev,
1081                            "Overload Frame Transmission error interrupt\n");
1082                 stats->tx_errors++;
1083                 cf->can_id |= CAN_ERR_PROT;
1084                 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
1085         }
1086
1087         /* Clear channel error interrupts that are handled */
1088         rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
1089                          RCANFD_CERFL_ERR(~cerfl));
1090         netif_rx(skb);
1091 }
1092
1093 static void rcar_canfd_tx_done(struct net_device *ndev)
1094 {
1095         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1096         struct rcar_canfd_global *gpriv = priv->gpriv;
1097         struct net_device_stats *stats = &ndev->stats;
1098         u32 sts;
1099         unsigned long flags;
1100         u32 ch = priv->channel;
1101
1102         do {
1103                 u8 unsent, sent;
1104
1105                 sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
1106                 stats->tx_packets++;
1107                 stats->tx_bytes += can_get_echo_skb(ndev, sent, NULL);
1108
1109                 spin_lock_irqsave(&priv->tx_lock, flags);
1110                 priv->tx_tail++;
1111                 sts = rcar_canfd_read(priv->base,
1112                                       RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1113                 unsent = RCANFD_CFSTS_CFMC(sts);
1114
1115                 /* Wake producer only when there is room */
1116                 if (unsent != RCANFD_FIFO_DEPTH)
1117                         netif_wake_queue(ndev);
1118
1119                 if (priv->tx_head - priv->tx_tail <= unsent) {
1120                         spin_unlock_irqrestore(&priv->tx_lock, flags);
1121                         break;
1122                 }
1123                 spin_unlock_irqrestore(&priv->tx_lock, flags);
1124
1125         } while (1);
1126
1127         /* Clear interrupt */
1128         rcar_canfd_write(priv->base, RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX),
1129                          sts & ~RCANFD_CFSTS_CFTXIF);
1130 }
1131
1132 static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch)
1133 {
1134         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1135         struct net_device *ndev = priv->ndev;
1136         u32 gerfl;
1137
1138         /* Handle global error interrupts */
1139         gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
1140         if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
1141                 rcar_canfd_global_error(ndev);
1142 }
1143
1144 static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id)
1145 {
1146         struct rcar_canfd_global *gpriv = dev_id;
1147         u32 ch;
1148
1149         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1150                 rcar_canfd_handle_global_err(gpriv, ch);
1151
1152         return IRQ_HANDLED;
1153 }
1154
1155 static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch)
1156 {
1157         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1158         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1159         u32 sts;
1160
1161         /* Handle Rx interrupts */
1162         sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1163         if (likely(sts & RCANFD_RFSTS_RFIF)) {
1164                 if (napi_schedule_prep(&priv->napi)) {
1165                         /* Disable Rx FIFO interrupts */
1166                         rcar_canfd_clear_bit(priv->base,
1167                                              RCANFD_RFCC(gpriv, ridx),
1168                                              RCANFD_RFCC_RFIE);
1169                         __napi_schedule(&priv->napi);
1170                 }
1171         }
1172 }
1173
1174 static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id)
1175 {
1176         struct rcar_canfd_global *gpriv = dev_id;
1177         u32 ch;
1178
1179         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1180                 rcar_canfd_handle_global_receive(gpriv, ch);
1181
1182         return IRQ_HANDLED;
1183 }
1184
1185 static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
1186 {
1187         struct rcar_canfd_global *gpriv = dev_id;
1188         u32 ch;
1189
1190         /* Global error interrupts still indicate a condition specific
1191          * to a channel. RxFIFO interrupt is a global interrupt.
1192          */
1193         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1194                 rcar_canfd_handle_global_err(gpriv, ch);
1195                 rcar_canfd_handle_global_receive(gpriv, ch);
1196         }
1197         return IRQ_HANDLED;
1198 }
1199
1200 static void rcar_canfd_state_change(struct net_device *ndev,
1201                                     u16 txerr, u16 rxerr)
1202 {
1203         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1204         struct net_device_stats *stats = &ndev->stats;
1205         enum can_state rx_state, tx_state, state = priv->can.state;
1206         struct can_frame *cf;
1207         struct sk_buff *skb;
1208
1209         /* Handle transition from error to normal states */
1210         if (txerr < 96 && rxerr < 96)
1211                 state = CAN_STATE_ERROR_ACTIVE;
1212         else if (txerr < 128 && rxerr < 128)
1213                 state = CAN_STATE_ERROR_WARNING;
1214
1215         if (state != priv->can.state) {
1216                 netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
1217                            state, priv->can.state, txerr, rxerr);
1218                 skb = alloc_can_err_skb(ndev, &cf);
1219                 if (!skb) {
1220                         stats->rx_dropped++;
1221                         return;
1222                 }
1223                 tx_state = txerr >= rxerr ? state : 0;
1224                 rx_state = txerr <= rxerr ? state : 0;
1225
1226                 can_change_state(ndev, cf, tx_state, rx_state);
1227                 netif_rx(skb);
1228         }
1229 }
1230
1231 static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch)
1232 {
1233         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1234         struct net_device *ndev = priv->ndev;
1235         u32 sts;
1236
1237         /* Handle Tx interrupts */
1238         sts = rcar_canfd_read(priv->base,
1239                               RCANFD_CFSTS(gpriv, ch, RCANFD_CFFIFO_IDX));
1240         if (likely(sts & RCANFD_CFSTS_CFTXIF))
1241                 rcar_canfd_tx_done(ndev);
1242 }
1243
1244 static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id)
1245 {
1246         struct rcar_canfd_global *gpriv = dev_id;
1247         u32 ch;
1248
1249         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1250                 rcar_canfd_handle_channel_tx(gpriv, ch);
1251
1252         return IRQ_HANDLED;
1253 }
1254
1255 static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch)
1256 {
1257         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1258         struct net_device *ndev = priv->ndev;
1259         u16 txerr, rxerr;
1260         u32 sts, cerfl;
1261
1262         /* Handle channel error interrupts */
1263         cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
1264         sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1265         txerr = RCANFD_CSTS_TECCNT(sts);
1266         rxerr = RCANFD_CSTS_RECCNT(sts);
1267         if (unlikely(RCANFD_CERFL_ERR(cerfl)))
1268                 rcar_canfd_error(ndev, cerfl, txerr, rxerr);
1269
1270         /* Handle state change to lower states */
1271         if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE &&
1272                      priv->can.state != CAN_STATE_BUS_OFF))
1273                 rcar_canfd_state_change(ndev, txerr, rxerr);
1274 }
1275
1276 static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id)
1277 {
1278         struct rcar_canfd_global *gpriv = dev_id;
1279         u32 ch;
1280
1281         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels)
1282                 rcar_canfd_handle_channel_err(gpriv, ch);
1283
1284         return IRQ_HANDLED;
1285 }
1286
1287 static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
1288 {
1289         struct rcar_canfd_global *gpriv = dev_id;
1290         u32 ch;
1291
1292         /* Common FIFO is a per channel resource */
1293         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
1294                 rcar_canfd_handle_channel_err(gpriv, ch);
1295                 rcar_canfd_handle_channel_tx(gpriv, ch);
1296         }
1297
1298         return IRQ_HANDLED;
1299 }
1300
1301 static void rcar_canfd_set_bittiming(struct net_device *dev)
1302 {
1303         struct rcar_canfd_channel *priv = netdev_priv(dev);
1304         struct rcar_canfd_global *gpriv = priv->gpriv;
1305         const struct can_bittiming *bt = &priv->can.bittiming;
1306         const struct can_bittiming *dbt = &priv->can.data_bittiming;
1307         u16 brp, sjw, tseg1, tseg2;
1308         u32 cfg;
1309         u32 ch = priv->channel;
1310
1311         /* Nominal bit timing settings */
1312         brp = bt->brp - 1;
1313         sjw = bt->sjw - 1;
1314         tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1315         tseg2 = bt->phase_seg2 - 1;
1316
1317         if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1318                 /* CAN FD only mode */
1319                 cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) | RCANFD_NCFG_NBRP(brp) |
1320                        RCANFD_NCFG_NSJW(gpriv, sjw) | RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1321
1322                 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1323                 netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1324                            brp, sjw, tseg1, tseg2);
1325
1326                 /* Data bit timing settings */
1327                 brp = dbt->brp - 1;
1328                 sjw = dbt->sjw - 1;
1329                 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1330                 tseg2 = dbt->phase_seg2 - 1;
1331
1332                 cfg = (RCANFD_DCFG_DTSEG1(gpriv, tseg1) | RCANFD_DCFG_DBRP(brp) |
1333                        RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(gpriv, tseg2));
1334
1335                 rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
1336                 netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1337                            brp, sjw, tseg1, tseg2);
1338         } else {
1339                 /* Classical CAN only mode */
1340                 if (is_v3u(gpriv)) {
1341                         cfg = (RCANFD_NCFG_NTSEG1(gpriv, tseg1) |
1342                                RCANFD_NCFG_NBRP(brp) |
1343                                RCANFD_NCFG_NSJW(gpriv, sjw) |
1344                                RCANFD_NCFG_NTSEG2(gpriv, tseg2));
1345                 } else {
1346                         cfg = (RCANFD_CFG_TSEG1(tseg1) |
1347                                RCANFD_CFG_BRP(brp) |
1348                                RCANFD_CFG_SJW(sjw) |
1349                                RCANFD_CFG_TSEG2(tseg2));
1350                 }
1351
1352                 rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
1353                 netdev_dbg(priv->ndev,
1354                            "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
1355                            brp, sjw, tseg1, tseg2);
1356         }
1357 }
1358
1359 static int rcar_canfd_start(struct net_device *ndev)
1360 {
1361         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1362         struct rcar_canfd_global *gpriv = priv->gpriv;
1363         int err = -EOPNOTSUPP;
1364         u32 sts, ch = priv->channel;
1365         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1366
1367         rcar_canfd_set_bittiming(ndev);
1368
1369         rcar_canfd_enable_channel_interrupts(priv);
1370
1371         /* Set channel to Operational mode */
1372         rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1373                               RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
1374
1375         /* Verify channel mode change */
1376         err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1377                                  (sts & RCANFD_CSTS_COMSTS), 2, 500000);
1378         if (err) {
1379                 netdev_err(ndev, "channel %u communication state failed\n", ch);
1380                 goto fail_mode_change;
1381         }
1382
1383         /* Enable Common & Rx FIFO */
1384         rcar_canfd_set_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1385                            RCANFD_CFCC_CFE);
1386         rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1387
1388         priv->can.state = CAN_STATE_ERROR_ACTIVE;
1389         return 0;
1390
1391 fail_mode_change:
1392         rcar_canfd_disable_channel_interrupts(priv);
1393         return err;
1394 }
1395
1396 static int rcar_canfd_open(struct net_device *ndev)
1397 {
1398         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1399         struct rcar_canfd_global *gpriv = priv->gpriv;
1400         int err;
1401
1402         /* Peripheral clock is already enabled in probe */
1403         err = clk_prepare_enable(gpriv->can_clk);
1404         if (err) {
1405                 netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
1406                 goto out_clock;
1407         }
1408
1409         err = open_candev(ndev);
1410         if (err) {
1411                 netdev_err(ndev, "open_candev() failed, error %d\n", err);
1412                 goto out_can_clock;
1413         }
1414
1415         napi_enable(&priv->napi);
1416         err = rcar_canfd_start(ndev);
1417         if (err)
1418                 goto out_close;
1419         netif_start_queue(ndev);
1420         return 0;
1421 out_close:
1422         napi_disable(&priv->napi);
1423         close_candev(ndev);
1424 out_can_clock:
1425         clk_disable_unprepare(gpriv->can_clk);
1426 out_clock:
1427         return err;
1428 }
1429
1430 static void rcar_canfd_stop(struct net_device *ndev)
1431 {
1432         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1433         struct rcar_canfd_global *gpriv = priv->gpriv;
1434         int err;
1435         u32 sts, ch = priv->channel;
1436         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1437
1438         /* Transition to channel reset mode  */
1439         rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
1440                               RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
1441
1442         /* Check Channel reset mode */
1443         err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
1444                                  (sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
1445         if (err)
1446                 netdev_err(ndev, "channel %u reset failed\n", ch);
1447
1448         rcar_canfd_disable_channel_interrupts(priv);
1449
1450         /* Disable Common & Rx FIFO */
1451         rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(gpriv, ch, RCANFD_CFFIFO_IDX),
1452                              RCANFD_CFCC_CFE);
1453         rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(gpriv, ridx), RCANFD_RFCC_RFE);
1454
1455         /* Set the state as STOPPED */
1456         priv->can.state = CAN_STATE_STOPPED;
1457 }
1458
1459 static int rcar_canfd_close(struct net_device *ndev)
1460 {
1461         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1462         struct rcar_canfd_global *gpriv = priv->gpriv;
1463
1464         netif_stop_queue(ndev);
1465         rcar_canfd_stop(ndev);
1466         napi_disable(&priv->napi);
1467         clk_disable_unprepare(gpriv->can_clk);
1468         close_candev(ndev);
1469         return 0;
1470 }
1471
1472 static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
1473                                          struct net_device *ndev)
1474 {
1475         struct rcar_canfd_channel *priv = netdev_priv(ndev);
1476         struct rcar_canfd_global *gpriv = priv->gpriv;
1477         struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1478         u32 sts = 0, id, dlc;
1479         unsigned long flags;
1480         u32 ch = priv->channel;
1481
1482         if (can_dropped_invalid_skb(ndev, skb))
1483                 return NETDEV_TX_OK;
1484
1485         if (cf->can_id & CAN_EFF_FLAG) {
1486                 id = cf->can_id & CAN_EFF_MASK;
1487                 id |= RCANFD_CFID_CFIDE;
1488         } else {
1489                 id = cf->can_id & CAN_SFF_MASK;
1490         }
1491
1492         if (cf->can_id & CAN_RTR_FLAG)
1493                 id |= RCANFD_CFID_CFRTR;
1494
1495         dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len));
1496
1497         if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1498                 rcar_canfd_write(priv->base,
1499                                  RCANFD_F_CFID(gpriv, ch, RCANFD_CFFIFO_IDX), id);
1500                 rcar_canfd_write(priv->base,
1501                                  RCANFD_F_CFPTR(gpriv, ch, RCANFD_CFFIFO_IDX), dlc);
1502
1503                 if (can_is_canfd_skb(skb)) {
1504                         /* CAN FD frame format */
1505                         sts |= RCANFD_CFFDCSTS_CFFDF;
1506                         if (cf->flags & CANFD_BRS)
1507                                 sts |= RCANFD_CFFDCSTS_CFBRS;
1508
1509                         if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
1510                                 sts |= RCANFD_CFFDCSTS_CFESI;
1511                 }
1512
1513                 rcar_canfd_write(priv->base,
1514                                  RCANFD_F_CFFDCSTS(gpriv, ch, RCANFD_CFFIFO_IDX), sts);
1515
1516                 rcar_canfd_put_data(priv, cf,
1517                                     RCANFD_F_CFDF(gpriv, ch, RCANFD_CFFIFO_IDX, 0));
1518         } else {
1519                 rcar_canfd_write(priv->base,
1520                                  RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
1521                 rcar_canfd_write(priv->base,
1522                                  RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
1523                 rcar_canfd_put_data(priv, cf,
1524                                     RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
1525         }
1526
1527         can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0);
1528
1529         spin_lock_irqsave(&priv->tx_lock, flags);
1530         priv->tx_head++;
1531
1532         /* Stop the queue if we've filled all FIFO entries */
1533         if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
1534                 netif_stop_queue(ndev);
1535
1536         /* Start Tx: Write 0xff to CFPC to increment the CPU-side
1537          * pointer for the Common FIFO
1538          */
1539         rcar_canfd_write(priv->base,
1540                          RCANFD_CFPCTR(gpriv, ch, RCANFD_CFFIFO_IDX), 0xff);
1541
1542         spin_unlock_irqrestore(&priv->tx_lock, flags);
1543         return NETDEV_TX_OK;
1544 }
1545
1546 static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
1547 {
1548         struct net_device_stats *stats = &priv->ndev->stats;
1549         struct rcar_canfd_global *gpriv = priv->gpriv;
1550         struct canfd_frame *cf;
1551         struct sk_buff *skb;
1552         u32 sts = 0, id, dlc;
1553         u32 ch = priv->channel;
1554         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1555
1556         if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) || is_v3u(gpriv)) {
1557                 id = rcar_canfd_read(priv->base, RCANFD_F_RFID(gpriv, ridx));
1558                 dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(gpriv, ridx));
1559
1560                 sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(gpriv, ridx));
1561
1562                 if ((priv->can.ctrlmode & CAN_CTRLMODE_FD) &&
1563                     sts & RCANFD_RFFDSTS_RFFDF)
1564                         skb = alloc_canfd_skb(priv->ndev, &cf);
1565                 else
1566                         skb = alloc_can_skb(priv->ndev,
1567                                             (struct can_frame **)&cf);
1568         } else {
1569                 id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
1570                 dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
1571                 skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
1572         }
1573
1574         if (!skb) {
1575                 stats->rx_dropped++;
1576                 return;
1577         }
1578
1579         if (id & RCANFD_RFID_RFIDE)
1580                 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
1581         else
1582                 cf->can_id = id & CAN_SFF_MASK;
1583
1584         if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1585                 if (sts & RCANFD_RFFDSTS_RFFDF)
1586                         cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1587                 else
1588                         cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1589
1590                 if (sts & RCANFD_RFFDSTS_RFESI) {
1591                         cf->flags |= CANFD_ESI;
1592                         netdev_dbg(priv->ndev, "ESI Error\n");
1593                 }
1594
1595                 if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
1596                         cf->can_id |= CAN_RTR_FLAG;
1597                 } else {
1598                         if (sts & RCANFD_RFFDSTS_RFBRS)
1599                                 cf->flags |= CANFD_BRS;
1600
1601                         rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1602                 }
1603         } else {
1604                 cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
1605                 if (id & RCANFD_RFID_RFRTR)
1606                         cf->can_id |= CAN_RTR_FLAG;
1607                 else if (is_v3u(gpriv))
1608                         rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(gpriv, ridx, 0));
1609                 else
1610                         rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
1611         }
1612
1613         /* Write 0xff to RFPC to increment the CPU-side
1614          * pointer of the Rx FIFO
1615          */
1616         rcar_canfd_write(priv->base, RCANFD_RFPCTR(gpriv, ridx), 0xff);
1617
1618         if (!(cf->can_id & CAN_RTR_FLAG))
1619                 stats->rx_bytes += cf->len;
1620         stats->rx_packets++;
1621         netif_receive_skb(skb);
1622 }
1623
1624 static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
1625 {
1626         struct rcar_canfd_channel *priv =
1627                 container_of(napi, struct rcar_canfd_channel, napi);
1628         struct rcar_canfd_global *gpriv = priv->gpriv;
1629         int num_pkts;
1630         u32 sts;
1631         u32 ch = priv->channel;
1632         u32 ridx = ch + RCANFD_RFFIFO_IDX;
1633
1634         for (num_pkts = 0; num_pkts < quota; num_pkts++) {
1635                 sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(gpriv, ridx));
1636                 /* Check FIFO empty condition */
1637                 if (sts & RCANFD_RFSTS_RFEMP)
1638                         break;
1639
1640                 rcar_canfd_rx_pkt(priv);
1641
1642                 /* Clear interrupt bit */
1643                 if (sts & RCANFD_RFSTS_RFIF)
1644                         rcar_canfd_write(priv->base, RCANFD_RFSTS(gpriv, ridx),
1645                                          sts & ~RCANFD_RFSTS_RFIF);
1646         }
1647
1648         /* All packets processed */
1649         if (num_pkts < quota) {
1650                 if (napi_complete_done(napi, num_pkts)) {
1651                         /* Enable Rx FIFO interrupts */
1652                         rcar_canfd_set_bit(priv->base, RCANFD_RFCC(gpriv, ridx),
1653                                            RCANFD_RFCC_RFIE);
1654                 }
1655         }
1656         return num_pkts;
1657 }
1658
1659 static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
1660 {
1661         int err;
1662
1663         switch (mode) {
1664         case CAN_MODE_START:
1665                 err = rcar_canfd_start(ndev);
1666                 if (err)
1667                         return err;
1668                 netif_wake_queue(ndev);
1669                 return 0;
1670         default:
1671                 return -EOPNOTSUPP;
1672         }
1673 }
1674
1675 static int rcar_canfd_get_berr_counter(const struct net_device *dev,
1676                                        struct can_berr_counter *bec)
1677 {
1678         struct rcar_canfd_channel *priv = netdev_priv(dev);
1679         u32 val, ch = priv->channel;
1680
1681         /* Peripheral clock is already enabled in probe */
1682         val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
1683         bec->txerr = RCANFD_CSTS_TECCNT(val);
1684         bec->rxerr = RCANFD_CSTS_RECCNT(val);
1685         return 0;
1686 }
1687
1688 static const struct net_device_ops rcar_canfd_netdev_ops = {
1689         .ndo_open = rcar_canfd_open,
1690         .ndo_stop = rcar_canfd_close,
1691         .ndo_start_xmit = rcar_canfd_start_xmit,
1692         .ndo_change_mtu = can_change_mtu,
1693 };
1694
1695 static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
1696                                     u32 fcan_freq)
1697 {
1698         struct platform_device *pdev = gpriv->pdev;
1699         struct rcar_canfd_channel *priv;
1700         struct net_device *ndev;
1701         int err = -ENODEV;
1702
1703         ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
1704         if (!ndev) {
1705                 dev_err(&pdev->dev, "alloc_candev() failed\n");
1706                 return -ENOMEM;
1707         }
1708         priv = netdev_priv(ndev);
1709
1710         ndev->netdev_ops = &rcar_canfd_netdev_ops;
1711         ndev->flags |= IFF_ECHO;
1712         priv->ndev = ndev;
1713         priv->base = gpriv->base;
1714         priv->channel = ch;
1715         priv->can.clock.freq = fcan_freq;
1716         dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
1717
1718         if (gpriv->chip_id == RENESAS_RZG2L) {
1719                 char *irq_name;
1720                 int err_irq;
1721                 int tx_irq;
1722
1723                 err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err");
1724                 if (err_irq < 0) {
1725                         err = err_irq;
1726                         goto fail;
1727                 }
1728
1729                 tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx");
1730                 if (tx_irq < 0) {
1731                         err = tx_irq;
1732                         goto fail;
1733                 }
1734
1735                 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1736                                           "canfd.ch%d_err", ch);
1737                 if (!irq_name) {
1738                         err = -ENOMEM;
1739                         goto fail;
1740                 }
1741                 err = devm_request_irq(&pdev->dev, err_irq,
1742                                        rcar_canfd_channel_err_interrupt, 0,
1743                                        irq_name, gpriv);
1744                 if (err) {
1745                         dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n",
1746                                 err_irq, err);
1747                         goto fail;
1748                 }
1749                 irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1750                                           "canfd.ch%d_trx", ch);
1751                 if (!irq_name) {
1752                         err = -ENOMEM;
1753                         goto fail;
1754                 }
1755                 err = devm_request_irq(&pdev->dev, tx_irq,
1756                                        rcar_canfd_channel_tx_interrupt, 0,
1757                                        irq_name, gpriv);
1758                 if (err) {
1759                         dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n",
1760                                 tx_irq, err);
1761                         goto fail;
1762                 }
1763         }
1764
1765         if (gpriv->fdmode) {
1766                 priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
1767                 priv->can.data_bittiming_const =
1768                         &rcar_canfd_data_bittiming_const;
1769
1770                 /* Controller starts in CAN FD only mode */
1771                 err = can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
1772                 if (err)
1773                         goto fail;
1774                 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1775         } else {
1776                 /* Controller starts in Classical CAN only mode */
1777                 priv->can.bittiming_const = &rcar_canfd_bittiming_const;
1778                 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
1779         }
1780
1781         priv->can.do_set_mode = rcar_canfd_do_set_mode;
1782         priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
1783         priv->gpriv = gpriv;
1784         SET_NETDEV_DEV(ndev, &pdev->dev);
1785
1786         netif_napi_add_weight(ndev, &priv->napi, rcar_canfd_rx_poll,
1787                               RCANFD_NAPI_WEIGHT);
1788         spin_lock_init(&priv->tx_lock);
1789         gpriv->ch[priv->channel] = priv;
1790         err = register_candev(ndev);
1791         if (err) {
1792                 dev_err(&pdev->dev,
1793                         "register_candev() failed, error %d\n", err);
1794                 goto fail_candev;
1795         }
1796         dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
1797         return 0;
1798
1799 fail_candev:
1800         netif_napi_del(&priv->napi);
1801 fail:
1802         free_candev(ndev);
1803         return err;
1804 }
1805
1806 static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
1807 {
1808         struct rcar_canfd_channel *priv = gpriv->ch[ch];
1809
1810         if (priv) {
1811                 unregister_candev(priv->ndev);
1812                 netif_napi_del(&priv->napi);
1813                 free_candev(priv->ndev);
1814         }
1815 }
1816
1817 static int rcar_canfd_probe(struct platform_device *pdev)
1818 {
1819         void __iomem *addr;
1820         u32 sts, ch, fcan_freq;
1821         struct rcar_canfd_global *gpriv;
1822         struct device_node *of_child;
1823         unsigned long channels_mask = 0;
1824         int err, ch_irq, g_irq;
1825         int g_err_irq, g_recc_irq;
1826         bool fdmode = true;                     /* CAN FD only mode - default */
1827         enum rcanfd_chip_id chip_id;
1828         int max_channels;
1829         char name[9] = "channelX";
1830         int i;
1831
1832         chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev);
1833         max_channels = chip_id == RENESAS_R8A779A0 ? 8 : 2;
1834
1835         if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
1836                 fdmode = false;                 /* Classical CAN only mode */
1837
1838         for (i = 0; i < max_channels; ++i) {
1839                 name[7] = '0' + i;
1840                 of_child = of_get_child_by_name(pdev->dev.of_node, name);
1841                 if (of_child && of_device_is_available(of_child))
1842                         channels_mask |= BIT(i);
1843         }
1844
1845         if (chip_id != RENESAS_RZG2L) {
1846                 ch_irq = platform_get_irq_byname_optional(pdev, "ch_int");
1847                 if (ch_irq < 0) {
1848                         /* For backward compatibility get irq by index */
1849                         ch_irq = platform_get_irq(pdev, 0);
1850                         if (ch_irq < 0)
1851                                 return ch_irq;
1852                 }
1853
1854                 g_irq = platform_get_irq_byname_optional(pdev, "g_int");
1855                 if (g_irq < 0) {
1856                         /* For backward compatibility get irq by index */
1857                         g_irq = platform_get_irq(pdev, 1);
1858                         if (g_irq < 0)
1859                                 return g_irq;
1860                 }
1861         } else {
1862                 g_err_irq = platform_get_irq_byname(pdev, "g_err");
1863                 if (g_err_irq < 0)
1864                         return g_err_irq;
1865
1866                 g_recc_irq = platform_get_irq_byname(pdev, "g_recc");
1867                 if (g_recc_irq < 0)
1868                         return g_recc_irq;
1869         }
1870
1871         /* Global controller context */
1872         gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
1873         if (!gpriv) {
1874                 err = -ENOMEM;
1875                 goto fail_dev;
1876         }
1877         gpriv->pdev = pdev;
1878         gpriv->channels_mask = channels_mask;
1879         gpriv->fdmode = fdmode;
1880         gpriv->chip_id = chip_id;
1881         gpriv->max_channels = max_channels;
1882
1883         if (gpriv->chip_id == RENESAS_RZG2L) {
1884                 gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n");
1885                 if (IS_ERR(gpriv->rstc1))
1886                         return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1),
1887                                              "failed to get rstp_n\n");
1888
1889                 gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n");
1890                 if (IS_ERR(gpriv->rstc2))
1891                         return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2),
1892                                              "failed to get rstc_n\n");
1893         }
1894
1895         /* Peripheral clock */
1896         gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
1897         if (IS_ERR(gpriv->clkp)) {
1898                 err = PTR_ERR(gpriv->clkp);
1899                 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
1900                         err);
1901                 goto fail_dev;
1902         }
1903
1904         /* fCAN clock: Pick External clock. If not available fallback to
1905          * CANFD clock
1906          */
1907         gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1908         if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
1909                 gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
1910                 if (IS_ERR(gpriv->can_clk)) {
1911                         err = PTR_ERR(gpriv->can_clk);
1912                         dev_err(&pdev->dev,
1913                                 "cannot get canfd clock, error %d\n", err);
1914                         goto fail_dev;
1915                 }
1916                 gpriv->fcan = RCANFD_CANFDCLK;
1917
1918         } else {
1919                 gpriv->fcan = RCANFD_EXTCLK;
1920         }
1921         fcan_freq = clk_get_rate(gpriv->can_clk);
1922
1923         if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id != RENESAS_RZG2L)
1924                 /* CANFD clock is further divided by (1/2) within the IP */
1925                 fcan_freq /= 2;
1926
1927         addr = devm_platform_ioremap_resource(pdev, 0);
1928         if (IS_ERR(addr)) {
1929                 err = PTR_ERR(addr);
1930                 goto fail_dev;
1931         }
1932         gpriv->base = addr;
1933
1934         /* Request IRQ that's common for both channels */
1935         if (gpriv->chip_id != RENESAS_RZG2L) {
1936                 err = devm_request_irq(&pdev->dev, ch_irq,
1937                                        rcar_canfd_channel_interrupt, 0,
1938                                        "canfd.ch_int", gpriv);
1939                 if (err) {
1940                         dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1941                                 ch_irq, err);
1942                         goto fail_dev;
1943                 }
1944
1945                 err = devm_request_irq(&pdev->dev, g_irq,
1946                                        rcar_canfd_global_interrupt, 0,
1947                                        "canfd.g_int", gpriv);
1948                 if (err) {
1949                         dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1950                                 g_irq, err);
1951                         goto fail_dev;
1952                 }
1953         } else {
1954                 err = devm_request_irq(&pdev->dev, g_recc_irq,
1955                                        rcar_canfd_global_receive_fifo_interrupt, 0,
1956                                        "canfd.g_recc", gpriv);
1957
1958                 if (err) {
1959                         dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1960                                 g_recc_irq, err);
1961                         goto fail_dev;
1962                 }
1963
1964                 err = devm_request_irq(&pdev->dev, g_err_irq,
1965                                        rcar_canfd_global_err_interrupt, 0,
1966                                        "canfd.g_err", gpriv);
1967                 if (err) {
1968                         dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
1969                                 g_err_irq, err);
1970                         goto fail_dev;
1971                 }
1972         }
1973
1974         err = reset_control_reset(gpriv->rstc1);
1975         if (err)
1976                 goto fail_dev;
1977         err = reset_control_reset(gpriv->rstc2);
1978         if (err) {
1979                 reset_control_assert(gpriv->rstc1);
1980                 goto fail_dev;
1981         }
1982
1983         /* Enable peripheral clock for register access */
1984         err = clk_prepare_enable(gpriv->clkp);
1985         if (err) {
1986                 dev_err(&pdev->dev,
1987                         "failed to enable peripheral clock, error %d\n", err);
1988                 goto fail_reset;
1989         }
1990
1991         err = rcar_canfd_reset_controller(gpriv);
1992         if (err) {
1993                 dev_err(&pdev->dev, "reset controller failed\n");
1994                 goto fail_clk;
1995         }
1996
1997         /* Controller in Global reset & Channel reset mode */
1998         rcar_canfd_configure_controller(gpriv);
1999
2000         /* Configure per channel attributes */
2001         for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
2002                 /* Configure Channel's Rx fifo */
2003                 rcar_canfd_configure_rx(gpriv, ch);
2004
2005                 /* Configure Channel's Tx (Common) fifo */
2006                 rcar_canfd_configure_tx(gpriv, ch);
2007
2008                 /* Configure receive rules */
2009                 rcar_canfd_configure_afl_rules(gpriv, ch);
2010         }
2011
2012         /* Configure common interrupts */
2013         rcar_canfd_enable_global_interrupts(gpriv);
2014
2015         /* Start Global operation mode */
2016         rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
2017                               RCANFD_GCTR_GMDC_GOPM);
2018
2019         /* Verify mode change */
2020         err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
2021                                  !(sts & RCANFD_GSTS_GNOPM), 2, 500000);
2022         if (err) {
2023                 dev_err(&pdev->dev, "global operational mode failed\n");
2024                 goto fail_mode;
2025         }
2026
2027         for_each_set_bit(ch, &gpriv->channels_mask, max_channels) {
2028                 err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
2029                 if (err)
2030                         goto fail_channel;
2031         }
2032
2033         platform_set_drvdata(pdev, gpriv);
2034         dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
2035                  gpriv->fcan, gpriv->fdmode);
2036         return 0;
2037
2038 fail_channel:
2039         for_each_set_bit(ch, &gpriv->channels_mask, max_channels)
2040                 rcar_canfd_channel_remove(gpriv, ch);
2041 fail_mode:
2042         rcar_canfd_disable_global_interrupts(gpriv);
2043 fail_clk:
2044         clk_disable_unprepare(gpriv->clkp);
2045 fail_reset:
2046         reset_control_assert(gpriv->rstc1);
2047         reset_control_assert(gpriv->rstc2);
2048 fail_dev:
2049         return err;
2050 }
2051
2052 static int rcar_canfd_remove(struct platform_device *pdev)
2053 {
2054         struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
2055         u32 ch;
2056
2057         rcar_canfd_reset_controller(gpriv);
2058         rcar_canfd_disable_global_interrupts(gpriv);
2059
2060         for_each_set_bit(ch, &gpriv->channels_mask, gpriv->max_channels) {
2061                 rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
2062                 rcar_canfd_channel_remove(gpriv, ch);
2063         }
2064
2065         /* Enter global sleep mode */
2066         rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
2067         clk_disable_unprepare(gpriv->clkp);
2068         reset_control_assert(gpriv->rstc1);
2069         reset_control_assert(gpriv->rstc2);
2070
2071         return 0;
2072 }
2073
2074 static int __maybe_unused rcar_canfd_suspend(struct device *dev)
2075 {
2076         return 0;
2077 }
2078
2079 static int __maybe_unused rcar_canfd_resume(struct device *dev)
2080 {
2081         return 0;
2082 }
2083
2084 static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
2085                          rcar_canfd_resume);
2086
2087 static const __maybe_unused struct of_device_id rcar_canfd_of_table[] = {
2088         { .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 },
2089         { .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L },
2090         { .compatible = "renesas,r8a779a0-canfd", .data = (void *)RENESAS_R8A779A0 },
2091         { }
2092 };
2093
2094 MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
2095
2096 static struct platform_driver rcar_canfd_driver = {
2097         .driver = {
2098                 .name = RCANFD_DRV_NAME,
2099                 .of_match_table = of_match_ptr(rcar_canfd_of_table),
2100                 .pm = &rcar_canfd_pm_ops,
2101         },
2102         .probe = rcar_canfd_probe,
2103         .remove = rcar_canfd_remove,
2104 };
2105
2106 module_platform_driver(rcar_canfd_driver);
2107
2108 MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
2109 MODULE_LICENSE("GPL");
2110 MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
2111 MODULE_ALIAS("platform:" RCANFD_DRV_NAME);