Merge tag 'amd-drm-fixes-5.11-2021-01-28' of https://gitlab.freedesktop.org/agd5f...
[linux-2.6-microblaze.git] / drivers / net / can / dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  */
6
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/workqueue.h>
13 #include <linux/can.h>
14 #include <linux/can/can-ml.h>
15 #include <linux/can/dev.h>
16 #include <linux/can/skb.h>
17 #include <linux/can/netlink.h>
18 #include <linux/can/led.h>
19 #include <linux/of.h>
20 #include <net/rtnetlink.h>
21
22 #define MOD_DESC "CAN device driver interface"
23
24 MODULE_DESCRIPTION(MOD_DESC);
25 MODULE_LICENSE("GPL v2");
26 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
27
28 /* CAN DLC to real data length conversion helpers */
29
30 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31                              8, 12, 16, 20, 24, 32, 48, 64};
32
33 /* get data length from raw data length code (DLC) */
34 u8 can_fd_dlc2len(u8 dlc)
35 {
36         return dlc2len[dlc & 0x0F];
37 }
38 EXPORT_SYMBOL_GPL(can_fd_dlc2len);
39
40 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
41                              9, 9, 9, 9,                        /* 9 - 12 */
42                              10, 10, 10, 10,                    /* 13 - 16 */
43                              11, 11, 11, 11,                    /* 17 - 20 */
44                              12, 12, 12, 12,                    /* 21 - 24 */
45                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
46                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
47                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
48                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
49                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
50
51 /* map the sanitized data length to an appropriate data length code */
52 u8 can_fd_len2dlc(u8 len)
53 {
54         if (unlikely(len > 64))
55                 return 0xF;
56
57         return len2dlc[len];
58 }
59 EXPORT_SYMBOL_GPL(can_fd_len2dlc);
60
61 #ifdef CONFIG_CAN_CALC_BITTIMING
62 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63
64 /* Bit-timing calculation derived from:
65  *
66  * Code based on LinCAN sources and H8S2638 project
67  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
68  * Copyright 2005      Stanislav Marek
69  * email: pisa@cmp.felk.cvut.cz
70  *
71  * Calculates proper bit-timing parameters for a specified bit-rate
72  * and sample-point, which can then be used to set the bit-timing
73  * registers of the CAN controller. You can find more information
74  * in the header file linux/can/netlink.h.
75  */
76 static int
77 can_update_sample_point(const struct can_bittiming_const *btc,
78                         unsigned int sample_point_nominal, unsigned int tseg,
79                         unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
80                         unsigned int *sample_point_error_ptr)
81 {
82         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
83         unsigned int sample_point, best_sample_point = 0;
84         unsigned int tseg1, tseg2;
85         int i;
86
87         for (i = 0; i <= 1; i++) {
88                 tseg2 = tseg + CAN_SYNC_SEG -
89                         (sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
90                         1000 - i;
91                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
92                 tseg1 = tseg - tseg2;
93                 if (tseg1 > btc->tseg1_max) {
94                         tseg1 = btc->tseg1_max;
95                         tseg2 = tseg - tseg1;
96                 }
97
98                 sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
99                         (tseg + CAN_SYNC_SEG);
100                 sample_point_error = abs(sample_point_nominal - sample_point);
101
102                 if (sample_point <= sample_point_nominal &&
103                     sample_point_error < best_sample_point_error) {
104                         best_sample_point = sample_point;
105                         best_sample_point_error = sample_point_error;
106                         *tseg1_ptr = tseg1;
107                         *tseg2_ptr = tseg2;
108                 }
109         }
110
111         if (sample_point_error_ptr)
112                 *sample_point_error_ptr = best_sample_point_error;
113
114         return best_sample_point;
115 }
116
117 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
118                               const struct can_bittiming_const *btc)
119 {
120         struct can_priv *priv = netdev_priv(dev);
121         unsigned int bitrate;                   /* current bitrate */
122         unsigned int bitrate_error;             /* difference between current and nominal value */
123         unsigned int best_bitrate_error = UINT_MAX;
124         unsigned int sample_point_error;        /* difference between current and nominal value */
125         unsigned int best_sample_point_error = UINT_MAX;
126         unsigned int sample_point_nominal;      /* nominal sample point */
127         unsigned int best_tseg = 0;             /* current best value for tseg */
128         unsigned int best_brp = 0;              /* current best value for brp */
129         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
130         u64 v64;
131
132         /* Use CiA recommended sample points */
133         if (bt->sample_point) {
134                 sample_point_nominal = bt->sample_point;
135         } else {
136                 if (bt->bitrate > 800000)
137                         sample_point_nominal = 750;
138                 else if (bt->bitrate > 500000)
139                         sample_point_nominal = 800;
140                 else
141                         sample_point_nominal = 875;
142         }
143
144         /* tseg even = round down, odd = round up */
145         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
146              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
147                 tsegall = CAN_SYNC_SEG + tseg / 2;
148
149                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
150                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
151
152                 /* choose brp step which is possible in system */
153                 brp = (brp / btc->brp_inc) * btc->brp_inc;
154                 if (brp < btc->brp_min || brp > btc->brp_max)
155                         continue;
156
157                 bitrate = priv->clock.freq / (brp * tsegall);
158                 bitrate_error = abs(bt->bitrate - bitrate);
159
160                 /* tseg brp biterror */
161                 if (bitrate_error > best_bitrate_error)
162                         continue;
163
164                 /* reset sample point error if we have a better bitrate */
165                 if (bitrate_error < best_bitrate_error)
166                         best_sample_point_error = UINT_MAX;
167
168                 can_update_sample_point(btc, sample_point_nominal, tseg / 2,
169                                         &tseg1, &tseg2, &sample_point_error);
170                 if (sample_point_error > best_sample_point_error)
171                         continue;
172
173                 best_sample_point_error = sample_point_error;
174                 best_bitrate_error = bitrate_error;
175                 best_tseg = tseg / 2;
176                 best_brp = brp;
177
178                 if (bitrate_error == 0 && sample_point_error == 0)
179                         break;
180         }
181
182         if (best_bitrate_error) {
183                 /* Error in one-tenth of a percent */
184                 v64 = (u64)best_bitrate_error * 1000;
185                 do_div(v64, bt->bitrate);
186                 bitrate_error = (u32)v64;
187                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
188                         netdev_err(dev,
189                                    "bitrate error %d.%d%% too high\n",
190                                    bitrate_error / 10, bitrate_error % 10);
191                         return -EDOM;
192                 }
193                 netdev_warn(dev, "bitrate error %d.%d%%\n",
194                             bitrate_error / 10, bitrate_error % 10);
195         }
196
197         /* real sample point */
198         bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
199                                                    best_tseg, &tseg1, &tseg2,
200                                                    NULL);
201
202         v64 = (u64)best_brp * 1000 * 1000 * 1000;
203         do_div(v64, priv->clock.freq);
204         bt->tq = (u32)v64;
205         bt->prop_seg = tseg1 / 2;
206         bt->phase_seg1 = tseg1 - bt->prop_seg;
207         bt->phase_seg2 = tseg2;
208
209         /* check for sjw user settings */
210         if (!bt->sjw || !btc->sjw_max) {
211                 bt->sjw = 1;
212         } else {
213                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
214                 if (bt->sjw > btc->sjw_max)
215                         bt->sjw = btc->sjw_max;
216                 /* bt->sjw must not be higher than tseg2 */
217                 if (tseg2 < bt->sjw)
218                         bt->sjw = tseg2;
219         }
220
221         bt->brp = best_brp;
222
223         /* real bitrate */
224         bt->bitrate = priv->clock.freq /
225                 (bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
226
227         return 0;
228 }
229 #else /* !CONFIG_CAN_CALC_BITTIMING */
230 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
231                               const struct can_bittiming_const *btc)
232 {
233         netdev_err(dev, "bit-timing calculation not available\n");
234         return -EINVAL;
235 }
236 #endif /* CONFIG_CAN_CALC_BITTIMING */
237
238 /* Checks the validity of the specified bit-timing parameters prop_seg,
239  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
240  * prescaler value brp. You can find more information in the header
241  * file linux/can/netlink.h.
242  */
243 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
244                                const struct can_bittiming_const *btc)
245 {
246         struct can_priv *priv = netdev_priv(dev);
247         int tseg1, alltseg;
248         u64 brp64;
249
250         tseg1 = bt->prop_seg + bt->phase_seg1;
251         if (!bt->sjw)
252                 bt->sjw = 1;
253         if (bt->sjw > btc->sjw_max ||
254             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
255             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
256                 return -ERANGE;
257
258         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
259         if (btc->brp_inc > 1)
260                 do_div(brp64, btc->brp_inc);
261         brp64 += 500000000UL - 1;
262         do_div(brp64, 1000000000UL); /* the practicable BRP */
263         if (btc->brp_inc > 1)
264                 brp64 *= btc->brp_inc;
265         bt->brp = (u32)brp64;
266
267         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
268                 return -EINVAL;
269
270         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
271         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
272         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
273
274         return 0;
275 }
276
277 /* Checks the validity of predefined bitrate settings */
278 static int
279 can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
280                      const u32 *bitrate_const,
281                      const unsigned int bitrate_const_cnt)
282 {
283         struct can_priv *priv = netdev_priv(dev);
284         unsigned int i;
285
286         for (i = 0; i < bitrate_const_cnt; i++) {
287                 if (bt->bitrate == bitrate_const[i])
288                         break;
289         }
290
291         if (i >= priv->bitrate_const_cnt)
292                 return -EINVAL;
293
294         return 0;
295 }
296
297 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
298                              const struct can_bittiming_const *btc,
299                              const u32 *bitrate_const,
300                              const unsigned int bitrate_const_cnt)
301 {
302         int err;
303
304         /* Depending on the given can_bittiming parameter structure the CAN
305          * timing parameters are calculated based on the provided bitrate OR
306          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
307          * provided directly which are then checked and fixed up.
308          */
309         if (!bt->tq && bt->bitrate && btc)
310                 err = can_calc_bittiming(dev, bt, btc);
311         else if (bt->tq && !bt->bitrate && btc)
312                 err = can_fixup_bittiming(dev, bt, btc);
313         else if (!bt->tq && bt->bitrate && bitrate_const)
314                 err = can_validate_bitrate(dev, bt, bitrate_const,
315                                            bitrate_const_cnt);
316         else
317                 err = -EINVAL;
318
319         return err;
320 }
321
322 static void can_update_state_error_stats(struct net_device *dev,
323                                          enum can_state new_state)
324 {
325         struct can_priv *priv = netdev_priv(dev);
326
327         if (new_state <= priv->state)
328                 return;
329
330         switch (new_state) {
331         case CAN_STATE_ERROR_WARNING:
332                 priv->can_stats.error_warning++;
333                 break;
334         case CAN_STATE_ERROR_PASSIVE:
335                 priv->can_stats.error_passive++;
336                 break;
337         case CAN_STATE_BUS_OFF:
338                 priv->can_stats.bus_off++;
339                 break;
340         default:
341                 break;
342         }
343 }
344
345 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
346 {
347         switch (state) {
348         case CAN_STATE_ERROR_ACTIVE:
349                 return CAN_ERR_CRTL_ACTIVE;
350         case CAN_STATE_ERROR_WARNING:
351                 return CAN_ERR_CRTL_TX_WARNING;
352         case CAN_STATE_ERROR_PASSIVE:
353                 return CAN_ERR_CRTL_TX_PASSIVE;
354         default:
355                 return 0;
356         }
357 }
358
359 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
360 {
361         switch (state) {
362         case CAN_STATE_ERROR_ACTIVE:
363                 return CAN_ERR_CRTL_ACTIVE;
364         case CAN_STATE_ERROR_WARNING:
365                 return CAN_ERR_CRTL_RX_WARNING;
366         case CAN_STATE_ERROR_PASSIVE:
367                 return CAN_ERR_CRTL_RX_PASSIVE;
368         default:
369                 return 0;
370         }
371 }
372
373 static const char *can_get_state_str(const enum can_state state)
374 {
375         switch (state) {
376         case CAN_STATE_ERROR_ACTIVE:
377                 return "Error Active";
378         case CAN_STATE_ERROR_WARNING:
379                 return "Error Warning";
380         case CAN_STATE_ERROR_PASSIVE:
381                 return "Error Passive";
382         case CAN_STATE_BUS_OFF:
383                 return "Bus Off";
384         case CAN_STATE_STOPPED:
385                 return "Stopped";
386         case CAN_STATE_SLEEPING:
387                 return "Sleeping";
388         default:
389                 return "<unknown>";
390         }
391
392         return "<unknown>";
393 }
394
395 void can_change_state(struct net_device *dev, struct can_frame *cf,
396                       enum can_state tx_state, enum can_state rx_state)
397 {
398         struct can_priv *priv = netdev_priv(dev);
399         enum can_state new_state = max(tx_state, rx_state);
400
401         if (unlikely(new_state == priv->state)) {
402                 netdev_warn(dev, "%s: oops, state did not change", __func__);
403                 return;
404         }
405
406         netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n",
407                    can_get_state_str(priv->state), priv->state,
408                    can_get_state_str(new_state), new_state);
409
410         can_update_state_error_stats(dev, new_state);
411         priv->state = new_state;
412
413         if (!cf)
414                 return;
415
416         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
417                 cf->can_id |= CAN_ERR_BUSOFF;
418                 return;
419         }
420
421         cf->can_id |= CAN_ERR_CRTL;
422         cf->data[1] |= tx_state >= rx_state ?
423                        can_tx_state_to_frame(dev, tx_state) : 0;
424         cf->data[1] |= tx_state <= rx_state ?
425                        can_rx_state_to_frame(dev, rx_state) : 0;
426 }
427 EXPORT_SYMBOL_GPL(can_change_state);
428
429 /* Local echo of CAN messages
430  *
431  * CAN network devices *should* support a local echo functionality
432  * (see Documentation/networking/can.rst). To test the handling of CAN
433  * interfaces that do not support the local echo both driver types are
434  * implemented. In the case that the driver does not support the echo
435  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
436  * to perform the echo as a fallback solution.
437  */
438 static void can_flush_echo_skb(struct net_device *dev)
439 {
440         struct can_priv *priv = netdev_priv(dev);
441         struct net_device_stats *stats = &dev->stats;
442         int i;
443
444         for (i = 0; i < priv->echo_skb_max; i++) {
445                 if (priv->echo_skb[i]) {
446                         kfree_skb(priv->echo_skb[i]);
447                         priv->echo_skb[i] = NULL;
448                         stats->tx_dropped++;
449                         stats->tx_aborted_errors++;
450                 }
451         }
452 }
453
454 /* Put the skb on the stack to be looped backed locally lateron
455  *
456  * The function is typically called in the start_xmit function
457  * of the device driver. The driver must protect access to
458  * priv->echo_skb, if necessary.
459  */
460 int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
461                      unsigned int idx)
462 {
463         struct can_priv *priv = netdev_priv(dev);
464
465         BUG_ON(idx >= priv->echo_skb_max);
466
467         /* check flag whether this packet has to be looped back */
468         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
469             (skb->protocol != htons(ETH_P_CAN) &&
470              skb->protocol != htons(ETH_P_CANFD))) {
471                 kfree_skb(skb);
472                 return 0;
473         }
474
475         if (!priv->echo_skb[idx]) {
476                 skb = can_create_echo_skb(skb);
477                 if (!skb)
478                         return -ENOMEM;
479
480                 /* make settings for echo to reduce code in irq context */
481                 skb->pkt_type = PACKET_BROADCAST;
482                 skb->ip_summed = CHECKSUM_UNNECESSARY;
483                 skb->dev = dev;
484
485                 /* save this skb for tx interrupt echo handling */
486                 priv->echo_skb[idx] = skb;
487         } else {
488                 /* locking problem with netif_stop_queue() ?? */
489                 netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx);
490                 kfree_skb(skb);
491                 return -EBUSY;
492         }
493
494         return 0;
495 }
496 EXPORT_SYMBOL_GPL(can_put_echo_skb);
497
498 struct sk_buff *
499 __can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
500 {
501         struct can_priv *priv = netdev_priv(dev);
502
503         if (idx >= priv->echo_skb_max) {
504                 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
505                            __func__, idx, priv->echo_skb_max);
506                 return NULL;
507         }
508
509         if (priv->echo_skb[idx]) {
510                 /* Using "struct canfd_frame::len" for the frame
511                  * length is supported on both CAN and CANFD frames.
512                  */
513                 struct sk_buff *skb = priv->echo_skb[idx];
514                 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
515
516                 /* get the real payload length for netdev statistics */
517                 if (cf->can_id & CAN_RTR_FLAG)
518                         *len_ptr = 0;
519                 else
520                         *len_ptr = cf->len;
521
522                 priv->echo_skb[idx] = NULL;
523
524                 return skb;
525         }
526
527         return NULL;
528 }
529
530 /* Get the skb from the stack and loop it back locally
531  *
532  * The function is typically called when the TX done interrupt
533  * is handled in the device driver. The driver must protect
534  * access to priv->echo_skb, if necessary.
535  */
536 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
537 {
538         struct sk_buff *skb;
539         u8 len;
540
541         skb = __can_get_echo_skb(dev, idx, &len);
542         if (!skb)
543                 return 0;
544
545         skb_get(skb);
546         if (netif_rx(skb) == NET_RX_SUCCESS)
547                 dev_consume_skb_any(skb);
548         else
549                 dev_kfree_skb_any(skb);
550
551         return len;
552 }
553 EXPORT_SYMBOL_GPL(can_get_echo_skb);
554
555 /* Remove the skb from the stack and free it.
556  *
557  * The function is typically called when TX failed.
558  */
559 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
560 {
561         struct can_priv *priv = netdev_priv(dev);
562
563         BUG_ON(idx >= priv->echo_skb_max);
564
565         if (priv->echo_skb[idx]) {
566                 dev_kfree_skb_any(priv->echo_skb[idx]);
567                 priv->echo_skb[idx] = NULL;
568         }
569 }
570 EXPORT_SYMBOL_GPL(can_free_echo_skb);
571
572 /* CAN device restart for bus-off recovery */
573 static void can_restart(struct net_device *dev)
574 {
575         struct can_priv *priv = netdev_priv(dev);
576         struct net_device_stats *stats = &dev->stats;
577         struct sk_buff *skb;
578         struct can_frame *cf;
579         int err;
580
581         BUG_ON(netif_carrier_ok(dev));
582
583         /* No synchronization needed because the device is bus-off and
584          * no messages can come in or go out.
585          */
586         can_flush_echo_skb(dev);
587
588         /* send restart message upstream */
589         skb = alloc_can_err_skb(dev, &cf);
590         if (!skb)
591                 goto restart;
592
593         cf->can_id |= CAN_ERR_RESTARTED;
594
595         stats->rx_packets++;
596         stats->rx_bytes += cf->len;
597
598         netif_rx_ni(skb);
599
600 restart:
601         netdev_dbg(dev, "restarted\n");
602         priv->can_stats.restarts++;
603
604         /* Now restart the device */
605         err = priv->do_set_mode(dev, CAN_MODE_START);
606
607         netif_carrier_on(dev);
608         if (err)
609                 netdev_err(dev, "Error %d during restart", err);
610 }
611
612 static void can_restart_work(struct work_struct *work)
613 {
614         struct delayed_work *dwork = to_delayed_work(work);
615         struct can_priv *priv = container_of(dwork, struct can_priv,
616                                              restart_work);
617
618         can_restart(priv->dev);
619 }
620
621 int can_restart_now(struct net_device *dev)
622 {
623         struct can_priv *priv = netdev_priv(dev);
624
625         /* A manual restart is only permitted if automatic restart is
626          * disabled and the device is in the bus-off state
627          */
628         if (priv->restart_ms)
629                 return -EINVAL;
630         if (priv->state != CAN_STATE_BUS_OFF)
631                 return -EBUSY;
632
633         cancel_delayed_work_sync(&priv->restart_work);
634         can_restart(dev);
635
636         return 0;
637 }
638
639 /* CAN bus-off
640  *
641  * This functions should be called when the device goes bus-off to
642  * tell the netif layer that no more packets can be sent or received.
643  * If enabled, a timer is started to trigger bus-off recovery.
644  */
645 void can_bus_off(struct net_device *dev)
646 {
647         struct can_priv *priv = netdev_priv(dev);
648
649         if (priv->restart_ms)
650                 netdev_info(dev, "bus-off, scheduling restart in %d ms\n",
651                             priv->restart_ms);
652         else
653                 netdev_info(dev, "bus-off\n");
654
655         netif_carrier_off(dev);
656
657         if (priv->restart_ms)
658                 schedule_delayed_work(&priv->restart_work,
659                                       msecs_to_jiffies(priv->restart_ms));
660 }
661 EXPORT_SYMBOL_GPL(can_bus_off);
662
663 static void can_setup(struct net_device *dev)
664 {
665         dev->type = ARPHRD_CAN;
666         dev->mtu = CAN_MTU;
667         dev->hard_header_len = 0;
668         dev->addr_len = 0;
669         dev->tx_queue_len = 10;
670
671         /* New-style flags. */
672         dev->flags = IFF_NOARP;
673         dev->features = NETIF_F_HW_CSUM;
674 }
675
676 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
677 {
678         struct sk_buff *skb;
679
680         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
681                                sizeof(struct can_frame));
682         if (unlikely(!skb))
683                 return NULL;
684
685         skb->protocol = htons(ETH_P_CAN);
686         skb->pkt_type = PACKET_BROADCAST;
687         skb->ip_summed = CHECKSUM_UNNECESSARY;
688
689         skb_reset_mac_header(skb);
690         skb_reset_network_header(skb);
691         skb_reset_transport_header(skb);
692
693         can_skb_reserve(skb);
694         can_skb_prv(skb)->ifindex = dev->ifindex;
695         can_skb_prv(skb)->skbcnt = 0;
696
697         *cf = skb_put_zero(skb, sizeof(struct can_frame));
698
699         return skb;
700 }
701 EXPORT_SYMBOL_GPL(alloc_can_skb);
702
703 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
704                                 struct canfd_frame **cfd)
705 {
706         struct sk_buff *skb;
707
708         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
709                                sizeof(struct canfd_frame));
710         if (unlikely(!skb))
711                 return NULL;
712
713         skb->protocol = htons(ETH_P_CANFD);
714         skb->pkt_type = PACKET_BROADCAST;
715         skb->ip_summed = CHECKSUM_UNNECESSARY;
716
717         skb_reset_mac_header(skb);
718         skb_reset_network_header(skb);
719         skb_reset_transport_header(skb);
720
721         can_skb_reserve(skb);
722         can_skb_prv(skb)->ifindex = dev->ifindex;
723         can_skb_prv(skb)->skbcnt = 0;
724
725         *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
726
727         return skb;
728 }
729 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
730
731 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
732 {
733         struct sk_buff *skb;
734
735         skb = alloc_can_skb(dev, cf);
736         if (unlikely(!skb))
737                 return NULL;
738
739         (*cf)->can_id = CAN_ERR_FLAG;
740         (*cf)->len = CAN_ERR_DLC;
741
742         return skb;
743 }
744 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
745
746 /* Allocate and setup space for the CAN network device */
747 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
748                                     unsigned int txqs, unsigned int rxqs)
749 {
750         struct net_device *dev;
751         struct can_priv *priv;
752         int size;
753
754         /* We put the driver's priv, the CAN mid layer priv and the
755          * echo skb into the netdevice's priv. The memory layout for
756          * the netdev_priv is like this:
757          *
758          * +-------------------------+
759          * | driver's priv           |
760          * +-------------------------+
761          * | struct can_ml_priv      |
762          * +-------------------------+
763          * | array of struct sk_buff |
764          * +-------------------------+
765          */
766
767         size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
768
769         if (echo_skb_max)
770                 size = ALIGN(size, sizeof(struct sk_buff *)) +
771                         echo_skb_max * sizeof(struct sk_buff *);
772
773         dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
774                                txqs, rxqs);
775         if (!dev)
776                 return NULL;
777
778         priv = netdev_priv(dev);
779         priv->dev = dev;
780
781         dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
782
783         if (echo_skb_max) {
784                 priv->echo_skb_max = echo_skb_max;
785                 priv->echo_skb = (void *)priv +
786                         (size - echo_skb_max * sizeof(struct sk_buff *));
787         }
788
789         priv->state = CAN_STATE_STOPPED;
790
791         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
792
793         return dev;
794 }
795 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
796
797 /* Free space of the CAN network device */
798 void free_candev(struct net_device *dev)
799 {
800         free_netdev(dev);
801 }
802 EXPORT_SYMBOL_GPL(free_candev);
803
804 /* changing MTU and control mode for CAN/CANFD devices */
805 int can_change_mtu(struct net_device *dev, int new_mtu)
806 {
807         struct can_priv *priv = netdev_priv(dev);
808
809         /* Do not allow changing the MTU while running */
810         if (dev->flags & IFF_UP)
811                 return -EBUSY;
812
813         /* allow change of MTU according to the CANFD ability of the device */
814         switch (new_mtu) {
815         case CAN_MTU:
816                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
817                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
818                         return -EINVAL;
819
820                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
821                 break;
822
823         case CANFD_MTU:
824                 /* check for potential CANFD ability */
825                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
826                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
827                         return -EINVAL;
828
829                 priv->ctrlmode |= CAN_CTRLMODE_FD;
830                 break;
831
832         default:
833                 return -EINVAL;
834         }
835
836         dev->mtu = new_mtu;
837         return 0;
838 }
839 EXPORT_SYMBOL_GPL(can_change_mtu);
840
841 /* Common open function when the device gets opened.
842  *
843  * This function should be called in the open function of the device
844  * driver.
845  */
846 int open_candev(struct net_device *dev)
847 {
848         struct can_priv *priv = netdev_priv(dev);
849
850         if (!priv->bittiming.bitrate) {
851                 netdev_err(dev, "bit-timing not yet defined\n");
852                 return -EINVAL;
853         }
854
855         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
856         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
857             (!priv->data_bittiming.bitrate ||
858              priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
859                 netdev_err(dev, "incorrect/missing data bit-timing\n");
860                 return -EINVAL;
861         }
862
863         /* Switch carrier on if device was stopped while in bus-off state */
864         if (!netif_carrier_ok(dev))
865                 netif_carrier_on(dev);
866
867         return 0;
868 }
869 EXPORT_SYMBOL_GPL(open_candev);
870
871 #ifdef CONFIG_OF
872 /* Common function that can be used to understand the limitation of
873  * a transceiver when it provides no means to determine these limitations
874  * at runtime.
875  */
876 void of_can_transceiver(struct net_device *dev)
877 {
878         struct device_node *dn;
879         struct can_priv *priv = netdev_priv(dev);
880         struct device_node *np = dev->dev.parent->of_node;
881         int ret;
882
883         dn = of_get_child_by_name(np, "can-transceiver");
884         if (!dn)
885                 return;
886
887         ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
888         of_node_put(dn);
889         if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
890                 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
891 }
892 EXPORT_SYMBOL_GPL(of_can_transceiver);
893 #endif
894
895 /* Common close function for cleanup before the device gets closed.
896  *
897  * This function should be called in the close function of the device
898  * driver.
899  */
900 void close_candev(struct net_device *dev)
901 {
902         struct can_priv *priv = netdev_priv(dev);
903
904         cancel_delayed_work_sync(&priv->restart_work);
905         can_flush_echo_skb(dev);
906 }
907 EXPORT_SYMBOL_GPL(close_candev);
908
909 /* CAN netlink interface */
910 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
911         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
912         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
913         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
914         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
915         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
916         [IFLA_CAN_BITTIMING_CONST]
917                                 = { .len = sizeof(struct can_bittiming_const) },
918         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
919         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
920         [IFLA_CAN_DATA_BITTIMING]
921                                 = { .len = sizeof(struct can_bittiming) },
922         [IFLA_CAN_DATA_BITTIMING_CONST]
923                                 = { .len = sizeof(struct can_bittiming_const) },
924         [IFLA_CAN_TERMINATION]  = { .type = NLA_U16 },
925 };
926
927 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
928                         struct netlink_ext_ack *extack)
929 {
930         bool is_can_fd = false;
931
932         /* Make sure that valid CAN FD configurations always consist of
933          * - nominal/arbitration bittiming
934          * - data bittiming
935          * - control mode with CAN_CTRLMODE_FD set
936          */
937
938         if (!data)
939                 return 0;
940
941         if (data[IFLA_CAN_CTRLMODE]) {
942                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
943
944                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
945         }
946
947         if (is_can_fd) {
948                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
949                         return -EOPNOTSUPP;
950         }
951
952         if (data[IFLA_CAN_DATA_BITTIMING]) {
953                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
954                         return -EOPNOTSUPP;
955         }
956
957         return 0;
958 }
959
960 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
961                           struct nlattr *data[],
962                           struct netlink_ext_ack *extack)
963 {
964         struct can_priv *priv = netdev_priv(dev);
965         int err;
966
967         /* We need synchronization with dev->stop() */
968         ASSERT_RTNL();
969
970         if (data[IFLA_CAN_BITTIMING]) {
971                 struct can_bittiming bt;
972
973                 /* Do not allow changing bittiming while running */
974                 if (dev->flags & IFF_UP)
975                         return -EBUSY;
976
977                 /* Calculate bittiming parameters based on
978                  * bittiming_const if set, otherwise pass bitrate
979                  * directly via do_set_bitrate(). Bail out if neither
980                  * is given.
981                  */
982                 if (!priv->bittiming_const && !priv->do_set_bittiming)
983                         return -EOPNOTSUPP;
984
985                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
986                 err = can_get_bittiming(dev, &bt,
987                                         priv->bittiming_const,
988                                         priv->bitrate_const,
989                                         priv->bitrate_const_cnt);
990                 if (err)
991                         return err;
992
993                 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
994                         netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
995                                    priv->bitrate_max);
996                         return -EINVAL;
997                 }
998
999                 memcpy(&priv->bittiming, &bt, sizeof(bt));
1000
1001                 if (priv->do_set_bittiming) {
1002                         /* Finally, set the bit-timing registers */
1003                         err = priv->do_set_bittiming(dev);
1004                         if (err)
1005                                 return err;
1006                 }
1007         }
1008
1009         if (data[IFLA_CAN_CTRLMODE]) {
1010                 struct can_ctrlmode *cm;
1011                 u32 ctrlstatic;
1012                 u32 maskedflags;
1013
1014                 /* Do not allow changing controller mode while running */
1015                 if (dev->flags & IFF_UP)
1016                         return -EBUSY;
1017                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
1018                 ctrlstatic = priv->ctrlmode_static;
1019                 maskedflags = cm->flags & cm->mask;
1020
1021                 /* check whether provided bits are allowed to be passed */
1022                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
1023                         return -EOPNOTSUPP;
1024
1025                 /* do not check for static fd-non-iso if 'fd' is disabled */
1026                 if (!(maskedflags & CAN_CTRLMODE_FD))
1027                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
1028
1029                 /* make sure static options are provided by configuration */
1030                 if ((maskedflags & ctrlstatic) != ctrlstatic)
1031                         return -EOPNOTSUPP;
1032
1033                 /* clear bits to be modified and copy the flag values */
1034                 priv->ctrlmode &= ~cm->mask;
1035                 priv->ctrlmode |= maskedflags;
1036
1037                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
1038                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1039                         dev->mtu = CANFD_MTU;
1040                 else
1041                         dev->mtu = CAN_MTU;
1042         }
1043
1044         if (data[IFLA_CAN_RESTART_MS]) {
1045                 /* Do not allow changing restart delay while running */
1046                 if (dev->flags & IFF_UP)
1047                         return -EBUSY;
1048                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1049         }
1050
1051         if (data[IFLA_CAN_RESTART]) {
1052                 /* Do not allow a restart while not running */
1053                 if (!(dev->flags & IFF_UP))
1054                         return -EINVAL;
1055                 err = can_restart_now(dev);
1056                 if (err)
1057                         return err;
1058         }
1059
1060         if (data[IFLA_CAN_DATA_BITTIMING]) {
1061                 struct can_bittiming dbt;
1062
1063                 /* Do not allow changing bittiming while running */
1064                 if (dev->flags & IFF_UP)
1065                         return -EBUSY;
1066
1067                 /* Calculate bittiming parameters based on
1068                  * data_bittiming_const if set, otherwise pass bitrate
1069                  * directly via do_set_bitrate(). Bail out if neither
1070                  * is given.
1071                  */
1072                 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1073                         return -EOPNOTSUPP;
1074
1075                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1076                        sizeof(dbt));
1077                 err = can_get_bittiming(dev, &dbt,
1078                                         priv->data_bittiming_const,
1079                                         priv->data_bitrate_const,
1080                                         priv->data_bitrate_const_cnt);
1081                 if (err)
1082                         return err;
1083
1084                 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1085                         netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1086                                    priv->bitrate_max);
1087                         return -EINVAL;
1088                 }
1089
1090                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1091
1092                 if (priv->do_set_data_bittiming) {
1093                         /* Finally, set the bit-timing registers */
1094                         err = priv->do_set_data_bittiming(dev);
1095                         if (err)
1096                                 return err;
1097                 }
1098         }
1099
1100         if (data[IFLA_CAN_TERMINATION]) {
1101                 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1102                 const unsigned int num_term = priv->termination_const_cnt;
1103                 unsigned int i;
1104
1105                 if (!priv->do_set_termination)
1106                         return -EOPNOTSUPP;
1107
1108                 /* check whether given value is supported by the interface */
1109                 for (i = 0; i < num_term; i++) {
1110                         if (termval == priv->termination_const[i])
1111                                 break;
1112                 }
1113                 if (i >= num_term)
1114                         return -EINVAL;
1115
1116                 /* Finally, set the termination value */
1117                 err = priv->do_set_termination(dev, termval);
1118                 if (err)
1119                         return err;
1120
1121                 priv->termination = termval;
1122         }
1123
1124         return 0;
1125 }
1126
1127 static size_t can_get_size(const struct net_device *dev)
1128 {
1129         struct can_priv *priv = netdev_priv(dev);
1130         size_t size = 0;
1131
1132         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
1133                 size += nla_total_size(sizeof(struct can_bittiming));
1134         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
1135                 size += nla_total_size(sizeof(struct can_bittiming_const));
1136         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
1137         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
1138         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
1139         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
1140         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
1141                 size += nla_total_size(sizeof(struct can_berr_counter));
1142         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
1143                 size += nla_total_size(sizeof(struct can_bittiming));
1144         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
1145                 size += nla_total_size(sizeof(struct can_bittiming_const));
1146         if (priv->termination_const) {
1147                 size += nla_total_size(sizeof(priv->termination));              /* IFLA_CAN_TERMINATION */
1148                 size += nla_total_size(sizeof(*priv->termination_const) *       /* IFLA_CAN_TERMINATION_CONST */
1149                                        priv->termination_const_cnt);
1150         }
1151         if (priv->bitrate_const)                                /* IFLA_CAN_BITRATE_CONST */
1152                 size += nla_total_size(sizeof(*priv->bitrate_const) *
1153                                        priv->bitrate_const_cnt);
1154         if (priv->data_bitrate_const)                           /* IFLA_CAN_DATA_BITRATE_CONST */
1155                 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1156                                        priv->data_bitrate_const_cnt);
1157         size += sizeof(priv->bitrate_max);                      /* IFLA_CAN_BITRATE_MAX */
1158
1159         return size;
1160 }
1161
1162 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1163 {
1164         struct can_priv *priv = netdev_priv(dev);
1165         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1166         struct can_berr_counter bec;
1167         enum can_state state = priv->state;
1168
1169         if (priv->do_get_state)
1170                 priv->do_get_state(dev, &state);
1171
1172         if ((priv->bittiming.bitrate &&
1173              nla_put(skb, IFLA_CAN_BITTIMING,
1174                      sizeof(priv->bittiming), &priv->bittiming)) ||
1175
1176             (priv->bittiming_const &&
1177              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1178                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1179
1180             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1181             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1182             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1183             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1184
1185             (priv->do_get_berr_counter &&
1186              !priv->do_get_berr_counter(dev, &bec) &&
1187              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1188
1189             (priv->data_bittiming.bitrate &&
1190              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1191                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1192
1193             (priv->data_bittiming_const &&
1194              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1195                      sizeof(*priv->data_bittiming_const),
1196                      priv->data_bittiming_const)) ||
1197
1198             (priv->termination_const &&
1199              (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1200               nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1201                       sizeof(*priv->termination_const) *
1202                       priv->termination_const_cnt,
1203                       priv->termination_const))) ||
1204
1205             (priv->bitrate_const &&
1206              nla_put(skb, IFLA_CAN_BITRATE_CONST,
1207                      sizeof(*priv->bitrate_const) *
1208                      priv->bitrate_const_cnt,
1209                      priv->bitrate_const)) ||
1210
1211             (priv->data_bitrate_const &&
1212              nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1213                      sizeof(*priv->data_bitrate_const) *
1214                      priv->data_bitrate_const_cnt,
1215                      priv->data_bitrate_const)) ||
1216
1217             (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1218                      sizeof(priv->bitrate_max),
1219                      &priv->bitrate_max))
1220             )
1221
1222                 return -EMSGSIZE;
1223
1224         return 0;
1225 }
1226
1227 static size_t can_get_xstats_size(const struct net_device *dev)
1228 {
1229         return sizeof(struct can_device_stats);
1230 }
1231
1232 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1233 {
1234         struct can_priv *priv = netdev_priv(dev);
1235
1236         if (nla_put(skb, IFLA_INFO_XSTATS,
1237                     sizeof(priv->can_stats), &priv->can_stats))
1238                 goto nla_put_failure;
1239         return 0;
1240
1241 nla_put_failure:
1242         return -EMSGSIZE;
1243 }
1244
1245 static int can_newlink(struct net *src_net, struct net_device *dev,
1246                        struct nlattr *tb[], struct nlattr *data[],
1247                        struct netlink_ext_ack *extack)
1248 {
1249         return -EOPNOTSUPP;
1250 }
1251
1252 static void can_dellink(struct net_device *dev, struct list_head *head)
1253 {
1254 }
1255
1256 static struct rtnl_link_ops can_link_ops __read_mostly = {
1257         .kind           = "can",
1258         .maxtype        = IFLA_CAN_MAX,
1259         .policy         = can_policy,
1260         .setup          = can_setup,
1261         .validate       = can_validate,
1262         .newlink        = can_newlink,
1263         .changelink     = can_changelink,
1264         .dellink        = can_dellink,
1265         .get_size       = can_get_size,
1266         .fill_info      = can_fill_info,
1267         .get_xstats_size = can_get_xstats_size,
1268         .fill_xstats    = can_fill_xstats,
1269 };
1270
1271 /* Register the CAN network device */
1272 int register_candev(struct net_device *dev)
1273 {
1274         struct can_priv *priv = netdev_priv(dev);
1275
1276         /* Ensure termination_const, termination_const_cnt and
1277          * do_set_termination consistency. All must be either set or
1278          * unset.
1279          */
1280         if ((!priv->termination_const != !priv->termination_const_cnt) ||
1281             (!priv->termination_const != !priv->do_set_termination))
1282                 return -EINVAL;
1283
1284         if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1285                 return -EINVAL;
1286
1287         if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1288                 return -EINVAL;
1289
1290         dev->rtnl_link_ops = &can_link_ops;
1291         netif_carrier_off(dev);
1292
1293         return register_netdev(dev);
1294 }
1295 EXPORT_SYMBOL_GPL(register_candev);
1296
1297 /* Unregister the CAN network device */
1298 void unregister_candev(struct net_device *dev)
1299 {
1300         unregister_netdev(dev);
1301 }
1302 EXPORT_SYMBOL_GPL(unregister_candev);
1303
1304 /* Test if a network device is a candev based device
1305  * and return the can_priv* if so.
1306  */
1307 struct can_priv *safe_candev_priv(struct net_device *dev)
1308 {
1309         if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1310                 return NULL;
1311
1312         return netdev_priv(dev);
1313 }
1314 EXPORT_SYMBOL_GPL(safe_candev_priv);
1315
1316 static __init int can_dev_init(void)
1317 {
1318         int err;
1319
1320         can_led_notifier_init();
1321
1322         err = rtnl_link_register(&can_link_ops);
1323         if (!err)
1324                 pr_info(MOD_DESC "\n");
1325
1326         return err;
1327 }
1328 module_init(can_dev_init);
1329
1330 static __exit void can_dev_exit(void)
1331 {
1332         rtnl_link_unregister(&can_link_ops);
1333
1334         can_led_notifier_exit();
1335 }
1336 module_exit(can_dev_exit);
1337
1338 MODULE_ALIAS_RTNL_LINK("can");