can: dev: remove unnecessary parentheses
[linux-2.6-microblaze.git] / drivers / net / can / dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  */
6
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/workqueue.h>
13 #include <linux/can.h>
14 #include <linux/can/dev.h>
15 #include <linux/can/skb.h>
16 #include <linux/can/netlink.h>
17 #include <linux/can/led.h>
18 #include <linux/of.h>
19 #include <net/rtnetlink.h>
20
21 #define MOD_DESC "CAN device driver interface"
22
23 MODULE_DESCRIPTION(MOD_DESC);
24 MODULE_LICENSE("GPL v2");
25 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
26
27 /* CAN DLC to real data length conversion helpers */
28
29 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
30                              8, 12, 16, 20, 24, 32, 48, 64};
31
32 /* get data length from can_dlc with sanitized can_dlc */
33 u8 can_dlc2len(u8 can_dlc)
34 {
35         return dlc2len[can_dlc & 0x0F];
36 }
37 EXPORT_SYMBOL_GPL(can_dlc2len);
38
39 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
40                              9, 9, 9, 9,                        /* 9 - 12 */
41                              10, 10, 10, 10,                    /* 13 - 16 */
42                              11, 11, 11, 11,                    /* 17 - 20 */
43                              12, 12, 12, 12,                    /* 21 - 24 */
44                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
45                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
46                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
47                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
48                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
49
50 /* map the sanitized data length to an appropriate data length code */
51 u8 can_len2dlc(u8 len)
52 {
53         if (unlikely(len > 64))
54                 return 0xF;
55
56         return len2dlc[len];
57 }
58 EXPORT_SYMBOL_GPL(can_len2dlc);
59
60 #ifdef CONFIG_CAN_CALC_BITTIMING
61 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
62 #define CAN_CALC_SYNC_SEG 1
63
64 /* Bit-timing calculation derived from:
65  *
66  * Code based on LinCAN sources and H8S2638 project
67  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
68  * Copyright 2005      Stanislav Marek
69  * email: pisa@cmp.felk.cvut.cz
70  *
71  * Calculates proper bit-timing parameters for a specified bit-rate
72  * and sample-point, which can then be used to set the bit-timing
73  * registers of the CAN controller. You can find more information
74  * in the header file linux/can/netlink.h.
75  */
76 static int
77 can_update_sample_point(const struct can_bittiming_const *btc,
78                         unsigned int sample_point_nominal, unsigned int tseg,
79                         unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
80                         unsigned int *sample_point_error_ptr)
81 {
82         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
83         unsigned int sample_point, best_sample_point = 0;
84         unsigned int tseg1, tseg2;
85         int i;
86
87         for (i = 0; i <= 1; i++) {
88                 tseg2 = tseg + CAN_CALC_SYNC_SEG -
89                         (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) /
90                         1000 - i;
91                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
92                 tseg1 = tseg - tseg2;
93                 if (tseg1 > btc->tseg1_max) {
94                         tseg1 = btc->tseg1_max;
95                         tseg2 = tseg - tseg1;
96                 }
97
98                 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) /
99                         (tseg + CAN_CALC_SYNC_SEG);
100                 sample_point_error = abs(sample_point_nominal - sample_point);
101
102                 if (sample_point <= sample_point_nominal &&
103                     sample_point_error < best_sample_point_error) {
104                         best_sample_point = sample_point;
105                         best_sample_point_error = sample_point_error;
106                         *tseg1_ptr = tseg1;
107                         *tseg2_ptr = tseg2;
108                 }
109         }
110
111         if (sample_point_error_ptr)
112                 *sample_point_error_ptr = best_sample_point_error;
113
114         return best_sample_point;
115 }
116
117 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
118                               const struct can_bittiming_const *btc)
119 {
120         struct can_priv *priv = netdev_priv(dev);
121         unsigned int bitrate;                   /* current bitrate */
122         unsigned int bitrate_error;             /* difference between current and nominal value */
123         unsigned int best_bitrate_error = UINT_MAX;
124         unsigned int sample_point_error;        /* difference between current and nominal value */
125         unsigned int best_sample_point_error = UINT_MAX;
126         unsigned int sample_point_nominal;      /* nominal sample point */
127         unsigned int best_tseg = 0;             /* current best value for tseg */
128         unsigned int best_brp = 0;              /* current best value for brp */
129         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
130         u64 v64;
131
132         /* Use CiA recommended sample points */
133         if (bt->sample_point) {
134                 sample_point_nominal = bt->sample_point;
135         } else {
136                 if (bt->bitrate > 800000)
137                         sample_point_nominal = 750;
138                 else if (bt->bitrate > 500000)
139                         sample_point_nominal = 800;
140                 else
141                         sample_point_nominal = 875;
142         }
143
144         /* tseg even = round down, odd = round up */
145         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
146              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
147                 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
148
149                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
150                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
151
152                 /* choose brp step which is possible in system */
153                 brp = (brp / btc->brp_inc) * btc->brp_inc;
154                 if (brp < btc->brp_min || brp > btc->brp_max)
155                         continue;
156
157                 bitrate = priv->clock.freq / (brp * tsegall);
158                 bitrate_error = abs(bt->bitrate - bitrate);
159
160                 /* tseg brp biterror */
161                 if (bitrate_error > best_bitrate_error)
162                         continue;
163
164                 /* reset sample point error if we have a better bitrate */
165                 if (bitrate_error < best_bitrate_error)
166                         best_sample_point_error = UINT_MAX;
167
168                 can_update_sample_point(btc, sample_point_nominal, tseg / 2,
169                                         &tseg1, &tseg2, &sample_point_error);
170                 if (sample_point_error > best_sample_point_error)
171                         continue;
172
173                 best_sample_point_error = sample_point_error;
174                 best_bitrate_error = bitrate_error;
175                 best_tseg = tseg / 2;
176                 best_brp = brp;
177
178                 if (bitrate_error == 0 && sample_point_error == 0)
179                         break;
180         }
181
182         if (best_bitrate_error) {
183                 /* Error in one-tenth of a percent */
184                 v64 = (u64)best_bitrate_error * 1000;
185                 do_div(v64, bt->bitrate);
186                 bitrate_error = (u32)v64;
187                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
188                         netdev_err(dev,
189                                    "bitrate error %d.%d%% too high\n",
190                                    bitrate_error / 10, bitrate_error % 10);
191                         return -EDOM;
192                 }
193                 netdev_warn(dev, "bitrate error %d.%d%%\n",
194                             bitrate_error / 10, bitrate_error % 10);
195         }
196
197         /* real sample point */
198         bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
199                                                    best_tseg, &tseg1, &tseg2,
200                                                    NULL);
201
202         v64 = (u64)best_brp * 1000 * 1000 * 1000;
203         do_div(v64, priv->clock.freq);
204         bt->tq = (u32)v64;
205         bt->prop_seg = tseg1 / 2;
206         bt->phase_seg1 = tseg1 - bt->prop_seg;
207         bt->phase_seg2 = tseg2;
208
209         /* check for sjw user settings */
210         if (!bt->sjw || !btc->sjw_max) {
211                 bt->sjw = 1;
212         } else {
213                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
214                 if (bt->sjw > btc->sjw_max)
215                         bt->sjw = btc->sjw_max;
216                 /* bt->sjw must not be higher than tseg2 */
217                 if (tseg2 < bt->sjw)
218                         bt->sjw = tseg2;
219         }
220
221         bt->brp = best_brp;
222
223         /* real bitrate */
224         bt->bitrate = priv->clock.freq /
225                 (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
226
227         return 0;
228 }
229 #else /* !CONFIG_CAN_CALC_BITTIMING */
230 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
231                               const struct can_bittiming_const *btc)
232 {
233         netdev_err(dev, "bit-timing calculation not available\n");
234         return -EINVAL;
235 }
236 #endif /* CONFIG_CAN_CALC_BITTIMING */
237
238 /* Checks the validity of the specified bit-timing parameters prop_seg,
239  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
240  * prescaler value brp. You can find more information in the header
241  * file linux/can/netlink.h.
242  */
243 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
244                                const struct can_bittiming_const *btc)
245 {
246         struct can_priv *priv = netdev_priv(dev);
247         int tseg1, alltseg;
248         u64 brp64;
249
250         tseg1 = bt->prop_seg + bt->phase_seg1;
251         if (!bt->sjw)
252                 bt->sjw = 1;
253         if (bt->sjw > btc->sjw_max ||
254             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
255             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
256                 return -ERANGE;
257
258         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
259         if (btc->brp_inc > 1)
260                 do_div(brp64, btc->brp_inc);
261         brp64 += 500000000UL - 1;
262         do_div(brp64, 1000000000UL); /* the practicable BRP */
263         if (btc->brp_inc > 1)
264                 brp64 *= btc->brp_inc;
265         bt->brp = (u32)brp64;
266
267         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
268                 return -EINVAL;
269
270         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
271         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
272         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
273
274         return 0;
275 }
276
277 /* Checks the validity of predefined bitrate settings */
278 static int
279 can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
280                      const u32 *bitrate_const,
281                      const unsigned int bitrate_const_cnt)
282 {
283         struct can_priv *priv = netdev_priv(dev);
284         unsigned int i;
285
286         for (i = 0; i < bitrate_const_cnt; i++) {
287                 if (bt->bitrate == bitrate_const[i])
288                         break;
289         }
290
291         if (i >= priv->bitrate_const_cnt)
292                 return -EINVAL;
293
294         return 0;
295 }
296
297 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
298                              const struct can_bittiming_const *btc,
299                              const u32 *bitrate_const,
300                              const unsigned int bitrate_const_cnt)
301 {
302         int err;
303
304         /* Depending on the given can_bittiming parameter structure the CAN
305          * timing parameters are calculated based on the provided bitrate OR
306          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
307          * provided directly which are then checked and fixed up.
308          */
309         if (!bt->tq && bt->bitrate && btc)
310                 err = can_calc_bittiming(dev, bt, btc);
311         else if (bt->tq && !bt->bitrate && btc)
312                 err = can_fixup_bittiming(dev, bt, btc);
313         else if (!bt->tq && bt->bitrate && bitrate_const)
314                 err = can_validate_bitrate(dev, bt, bitrate_const,
315                                            bitrate_const_cnt);
316         else
317                 err = -EINVAL;
318
319         return err;
320 }
321
322 static void can_update_state_error_stats(struct net_device *dev,
323                                          enum can_state new_state)
324 {
325         struct can_priv *priv = netdev_priv(dev);
326
327         if (new_state <= priv->state)
328                 return;
329
330         switch (new_state) {
331         case CAN_STATE_ERROR_WARNING:
332                 priv->can_stats.error_warning++;
333                 break;
334         case CAN_STATE_ERROR_PASSIVE:
335                 priv->can_stats.error_passive++;
336                 break;
337         case CAN_STATE_BUS_OFF:
338                 priv->can_stats.bus_off++;
339                 break;
340         default:
341                 break;
342         }
343 }
344
345 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
346 {
347         switch (state) {
348         case CAN_STATE_ERROR_ACTIVE:
349                 return CAN_ERR_CRTL_ACTIVE;
350         case CAN_STATE_ERROR_WARNING:
351                 return CAN_ERR_CRTL_TX_WARNING;
352         case CAN_STATE_ERROR_PASSIVE:
353                 return CAN_ERR_CRTL_TX_PASSIVE;
354         default:
355                 return 0;
356         }
357 }
358
359 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
360 {
361         switch (state) {
362         case CAN_STATE_ERROR_ACTIVE:
363                 return CAN_ERR_CRTL_ACTIVE;
364         case CAN_STATE_ERROR_WARNING:
365                 return CAN_ERR_CRTL_RX_WARNING;
366         case CAN_STATE_ERROR_PASSIVE:
367                 return CAN_ERR_CRTL_RX_PASSIVE;
368         default:
369                 return 0;
370         }
371 }
372
373 void can_change_state(struct net_device *dev, struct can_frame *cf,
374                       enum can_state tx_state, enum can_state rx_state)
375 {
376         struct can_priv *priv = netdev_priv(dev);
377         enum can_state new_state = max(tx_state, rx_state);
378
379         if (unlikely(new_state == priv->state)) {
380                 netdev_warn(dev, "%s: oops, state did not change", __func__);
381                 return;
382         }
383
384         netdev_dbg(dev, "New error state: %d\n", new_state);
385
386         can_update_state_error_stats(dev, new_state);
387         priv->state = new_state;
388
389         if (!cf)
390                 return;
391
392         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
393                 cf->can_id |= CAN_ERR_BUSOFF;
394                 return;
395         }
396
397         cf->can_id |= CAN_ERR_CRTL;
398         cf->data[1] |= tx_state >= rx_state ?
399                        can_tx_state_to_frame(dev, tx_state) : 0;
400         cf->data[1] |= tx_state <= rx_state ?
401                        can_rx_state_to_frame(dev, rx_state) : 0;
402 }
403 EXPORT_SYMBOL_GPL(can_change_state);
404
405 /* Local echo of CAN messages
406  *
407  * CAN network devices *should* support a local echo functionality
408  * (see Documentation/networking/can.rst). To test the handling of CAN
409  * interfaces that do not support the local echo both driver types are
410  * implemented. In the case that the driver does not support the echo
411  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
412  * to perform the echo as a fallback solution.
413  */
414 static void can_flush_echo_skb(struct net_device *dev)
415 {
416         struct can_priv *priv = netdev_priv(dev);
417         struct net_device_stats *stats = &dev->stats;
418         int i;
419
420         for (i = 0; i < priv->echo_skb_max; i++) {
421                 if (priv->echo_skb[i]) {
422                         kfree_skb(priv->echo_skb[i]);
423                         priv->echo_skb[i] = NULL;
424                         stats->tx_dropped++;
425                         stats->tx_aborted_errors++;
426                 }
427         }
428 }
429
430 /* Put the skb on the stack to be looped backed locally lateron
431  *
432  * The function is typically called in the start_xmit function
433  * of the device driver. The driver must protect access to
434  * priv->echo_skb, if necessary.
435  */
436 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
437                       unsigned int idx)
438 {
439         struct can_priv *priv = netdev_priv(dev);
440
441         BUG_ON(idx >= priv->echo_skb_max);
442
443         /* check flag whether this packet has to be looped back */
444         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
445             (skb->protocol != htons(ETH_P_CAN) &&
446              skb->protocol != htons(ETH_P_CANFD))) {
447                 kfree_skb(skb);
448                 return;
449         }
450
451         if (!priv->echo_skb[idx]) {
452
453                 skb = can_create_echo_skb(skb);
454                 if (!skb)
455                         return;
456
457                 /* make settings for echo to reduce code in irq context */
458                 skb->pkt_type = PACKET_BROADCAST;
459                 skb->ip_summed = CHECKSUM_UNNECESSARY;
460                 skb->dev = dev;
461
462                 /* save this skb for tx interrupt echo handling */
463                 priv->echo_skb[idx] = skb;
464         } else {
465                 /* locking problem with netif_stop_queue() ?? */
466                 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
467                 kfree_skb(skb);
468         }
469 }
470 EXPORT_SYMBOL_GPL(can_put_echo_skb);
471
472 struct sk_buff *
473 __can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
474 {
475         struct can_priv *priv = netdev_priv(dev);
476
477         if (idx >= priv->echo_skb_max) {
478                 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
479                            __func__, idx, priv->echo_skb_max);
480                 return NULL;
481         }
482
483         if (priv->echo_skb[idx]) {
484                 /* Using "struct canfd_frame::len" for the frame
485                  * length is supported on both CAN and CANFD frames.
486                  */
487                 struct sk_buff *skb = priv->echo_skb[idx];
488                 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
489                 u8 len = cf->len;
490
491                 *len_ptr = len;
492                 priv->echo_skb[idx] = NULL;
493
494                 return skb;
495         }
496
497         return NULL;
498 }
499
500 /* Get the skb from the stack and loop it back locally
501  *
502  * The function is typically called when the TX done interrupt
503  * is handled in the device driver. The driver must protect
504  * access to priv->echo_skb, if necessary.
505  */
506 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
507 {
508         struct sk_buff *skb;
509         u8 len;
510
511         skb = __can_get_echo_skb(dev, idx, &len);
512         if (!skb)
513                 return 0;
514
515         netif_rx(skb);
516
517         return len;
518 }
519 EXPORT_SYMBOL_GPL(can_get_echo_skb);
520
521 /* Remove the skb from the stack and free it.
522  *
523  * The function is typically called when TX failed.
524  */
525 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
526 {
527         struct can_priv *priv = netdev_priv(dev);
528
529         BUG_ON(idx >= priv->echo_skb_max);
530
531         if (priv->echo_skb[idx]) {
532                 dev_kfree_skb_any(priv->echo_skb[idx]);
533                 priv->echo_skb[idx] = NULL;
534         }
535 }
536 EXPORT_SYMBOL_GPL(can_free_echo_skb);
537
538 /* CAN device restart for bus-off recovery */
539 static void can_restart(struct net_device *dev)
540 {
541         struct can_priv *priv = netdev_priv(dev);
542         struct net_device_stats *stats = &dev->stats;
543         struct sk_buff *skb;
544         struct can_frame *cf;
545         int err;
546
547         BUG_ON(netif_carrier_ok(dev));
548
549         /* No synchronization needed because the device is bus-off and
550          * no messages can come in or go out.
551          */
552         can_flush_echo_skb(dev);
553
554         /* send restart message upstream */
555         skb = alloc_can_err_skb(dev, &cf);
556         if (skb == NULL) {
557                 err = -ENOMEM;
558                 goto restart;
559         }
560         cf->can_id |= CAN_ERR_RESTARTED;
561
562         netif_rx(skb);
563
564         stats->rx_packets++;
565         stats->rx_bytes += cf->can_dlc;
566
567 restart:
568         netdev_dbg(dev, "restarted\n");
569         priv->can_stats.restarts++;
570
571         /* Now restart the device */
572         err = priv->do_set_mode(dev, CAN_MODE_START);
573
574         netif_carrier_on(dev);
575         if (err)
576                 netdev_err(dev, "Error %d during restart", err);
577 }
578
579 static void can_restart_work(struct work_struct *work)
580 {
581         struct delayed_work *dwork = to_delayed_work(work);
582         struct can_priv *priv = container_of(dwork, struct can_priv,
583                                              restart_work);
584
585         can_restart(priv->dev);
586 }
587
588 int can_restart_now(struct net_device *dev)
589 {
590         struct can_priv *priv = netdev_priv(dev);
591
592         /* A manual restart is only permitted if automatic restart is
593          * disabled and the device is in the bus-off state
594          */
595         if (priv->restart_ms)
596                 return -EINVAL;
597         if (priv->state != CAN_STATE_BUS_OFF)
598                 return -EBUSY;
599
600         cancel_delayed_work_sync(&priv->restart_work);
601         can_restart(dev);
602
603         return 0;
604 }
605
606 /* CAN bus-off
607  *
608  * This functions should be called when the device goes bus-off to
609  * tell the netif layer that no more packets can be sent or received.
610  * If enabled, a timer is started to trigger bus-off recovery.
611  */
612 void can_bus_off(struct net_device *dev)
613 {
614         struct can_priv *priv = netdev_priv(dev);
615
616         netdev_info(dev, "bus-off\n");
617
618         netif_carrier_off(dev);
619
620         if (priv->restart_ms)
621                 schedule_delayed_work(&priv->restart_work,
622                                       msecs_to_jiffies(priv->restart_ms));
623 }
624 EXPORT_SYMBOL_GPL(can_bus_off);
625
626 static void can_setup(struct net_device *dev)
627 {
628         dev->type = ARPHRD_CAN;
629         dev->mtu = CAN_MTU;
630         dev->hard_header_len = 0;
631         dev->addr_len = 0;
632         dev->tx_queue_len = 10;
633
634         /* New-style flags. */
635         dev->flags = IFF_NOARP;
636         dev->features = NETIF_F_HW_CSUM;
637 }
638
639 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
640 {
641         struct sk_buff *skb;
642
643         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
644                                sizeof(struct can_frame));
645         if (unlikely(!skb))
646                 return NULL;
647
648         skb->protocol = htons(ETH_P_CAN);
649         skb->pkt_type = PACKET_BROADCAST;
650         skb->ip_summed = CHECKSUM_UNNECESSARY;
651
652         skb_reset_mac_header(skb);
653         skb_reset_network_header(skb);
654         skb_reset_transport_header(skb);
655
656         can_skb_reserve(skb);
657         can_skb_prv(skb)->ifindex = dev->ifindex;
658         can_skb_prv(skb)->skbcnt = 0;
659
660         *cf = skb_put_zero(skb, sizeof(struct can_frame));
661
662         return skb;
663 }
664 EXPORT_SYMBOL_GPL(alloc_can_skb);
665
666 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
667                                 struct canfd_frame **cfd)
668 {
669         struct sk_buff *skb;
670
671         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
672                                sizeof(struct canfd_frame));
673         if (unlikely(!skb))
674                 return NULL;
675
676         skb->protocol = htons(ETH_P_CANFD);
677         skb->pkt_type = PACKET_BROADCAST;
678         skb->ip_summed = CHECKSUM_UNNECESSARY;
679
680         skb_reset_mac_header(skb);
681         skb_reset_network_header(skb);
682         skb_reset_transport_header(skb);
683
684         can_skb_reserve(skb);
685         can_skb_prv(skb)->ifindex = dev->ifindex;
686         can_skb_prv(skb)->skbcnt = 0;
687
688         *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
689
690         return skb;
691 }
692 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
693
694 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
695 {
696         struct sk_buff *skb;
697
698         skb = alloc_can_skb(dev, cf);
699         if (unlikely(!skb))
700                 return NULL;
701
702         (*cf)->can_id = CAN_ERR_FLAG;
703         (*cf)->can_dlc = CAN_ERR_DLC;
704
705         return skb;
706 }
707 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
708
709 /* Allocate and setup space for the CAN network device */
710 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
711                                     unsigned int txqs, unsigned int rxqs)
712 {
713         struct net_device *dev;
714         struct can_priv *priv;
715         int size;
716
717         if (echo_skb_max)
718                 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
719                         echo_skb_max * sizeof(struct sk_buff *);
720         else
721                 size = sizeof_priv;
722
723         dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
724                                txqs, rxqs);
725         if (!dev)
726                 return NULL;
727
728         priv = netdev_priv(dev);
729         priv->dev = dev;
730
731         if (echo_skb_max) {
732                 priv->echo_skb_max = echo_skb_max;
733                 priv->echo_skb = (void *)priv +
734                         ALIGN(sizeof_priv, sizeof(struct sk_buff *));
735         }
736
737         priv->state = CAN_STATE_STOPPED;
738
739         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
740
741         return dev;
742 }
743 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
744
745 /* Free space of the CAN network device */
746 void free_candev(struct net_device *dev)
747 {
748         free_netdev(dev);
749 }
750 EXPORT_SYMBOL_GPL(free_candev);
751
752 /* changing MTU and control mode for CAN/CANFD devices */
753 int can_change_mtu(struct net_device *dev, int new_mtu)
754 {
755         struct can_priv *priv = netdev_priv(dev);
756
757         /* Do not allow changing the MTU while running */
758         if (dev->flags & IFF_UP)
759                 return -EBUSY;
760
761         /* allow change of MTU according to the CANFD ability of the device */
762         switch (new_mtu) {
763         case CAN_MTU:
764                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
765                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
766                         return -EINVAL;
767
768                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
769                 break;
770
771         case CANFD_MTU:
772                 /* check for potential CANFD ability */
773                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
774                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
775                         return -EINVAL;
776
777                 priv->ctrlmode |= CAN_CTRLMODE_FD;
778                 break;
779
780         default:
781                 return -EINVAL;
782         }
783
784         dev->mtu = new_mtu;
785         return 0;
786 }
787 EXPORT_SYMBOL_GPL(can_change_mtu);
788
789 /* Common open function when the device gets opened.
790  *
791  * This function should be called in the open function of the device
792  * driver.
793  */
794 int open_candev(struct net_device *dev)
795 {
796         struct can_priv *priv = netdev_priv(dev);
797
798         if (!priv->bittiming.bitrate) {
799                 netdev_err(dev, "bit-timing not yet defined\n");
800                 return -EINVAL;
801         }
802
803         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
804         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
805             (!priv->data_bittiming.bitrate ||
806              priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
807                 netdev_err(dev, "incorrect/missing data bit-timing\n");
808                 return -EINVAL;
809         }
810
811         /* Switch carrier on if device was stopped while in bus-off state */
812         if (!netif_carrier_ok(dev))
813                 netif_carrier_on(dev);
814
815         return 0;
816 }
817 EXPORT_SYMBOL_GPL(open_candev);
818
819 #ifdef CONFIG_OF
820 /* Common function that can be used to understand the limitation of
821  * a transceiver when it provides no means to determine these limitations
822  * at runtime.
823  */
824 void of_can_transceiver(struct net_device *dev)
825 {
826         struct device_node *dn;
827         struct can_priv *priv = netdev_priv(dev);
828         struct device_node *np = dev->dev.parent->of_node;
829         int ret;
830
831         dn = of_get_child_by_name(np, "can-transceiver");
832         if (!dn)
833                 return;
834
835         ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
836         if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
837                 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
838 }
839 EXPORT_SYMBOL_GPL(of_can_transceiver);
840 #endif
841
842 /* Common close function for cleanup before the device gets closed.
843  *
844  * This function should be called in the close function of the device
845  * driver.
846  */
847 void close_candev(struct net_device *dev)
848 {
849         struct can_priv *priv = netdev_priv(dev);
850
851         cancel_delayed_work_sync(&priv->restart_work);
852         can_flush_echo_skb(dev);
853 }
854 EXPORT_SYMBOL_GPL(close_candev);
855
856 /* CAN netlink interface */
857 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
858         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
859         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
860         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
861         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
862         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
863         [IFLA_CAN_BITTIMING_CONST]
864                                 = { .len = sizeof(struct can_bittiming_const) },
865         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
866         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
867         [IFLA_CAN_DATA_BITTIMING]
868                                 = { .len = sizeof(struct can_bittiming) },
869         [IFLA_CAN_DATA_BITTIMING_CONST]
870                                 = { .len = sizeof(struct can_bittiming_const) },
871 };
872
873 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
874                         struct netlink_ext_ack *extack)
875 {
876         bool is_can_fd = false;
877
878         /* Make sure that valid CAN FD configurations always consist of
879          * - nominal/arbitration bittiming
880          * - data bittiming
881          * - control mode with CAN_CTRLMODE_FD set
882          */
883
884         if (!data)
885                 return 0;
886
887         if (data[IFLA_CAN_CTRLMODE]) {
888                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
889
890                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
891         }
892
893         if (is_can_fd) {
894                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
895                         return -EOPNOTSUPP;
896         }
897
898         if (data[IFLA_CAN_DATA_BITTIMING]) {
899                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
900                         return -EOPNOTSUPP;
901         }
902
903         return 0;
904 }
905
906 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
907                           struct nlattr *data[],
908                           struct netlink_ext_ack *extack)
909 {
910         struct can_priv *priv = netdev_priv(dev);
911         int err;
912
913         /* We need synchronization with dev->stop() */
914         ASSERT_RTNL();
915
916         if (data[IFLA_CAN_BITTIMING]) {
917                 struct can_bittiming bt;
918
919                 /* Do not allow changing bittiming while running */
920                 if (dev->flags & IFF_UP)
921                         return -EBUSY;
922
923                 /* Calculate bittiming parameters based on
924                  * bittiming_const if set, otherwise pass bitrate
925                  * directly via do_set_bitrate(). Bail out if neither
926                  * is given.
927                  */
928                 if (!priv->bittiming_const && !priv->do_set_bittiming)
929                         return -EOPNOTSUPP;
930
931                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
932                 err = can_get_bittiming(dev, &bt,
933                                         priv->bittiming_const,
934                                         priv->bitrate_const,
935                                         priv->bitrate_const_cnt);
936                 if (err)
937                         return err;
938
939                 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
940                         netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
941                                    priv->bitrate_max);
942                         return -EINVAL;
943                 }
944
945                 memcpy(&priv->bittiming, &bt, sizeof(bt));
946
947                 if (priv->do_set_bittiming) {
948                         /* Finally, set the bit-timing registers */
949                         err = priv->do_set_bittiming(dev);
950                         if (err)
951                                 return err;
952                 }
953         }
954
955         if (data[IFLA_CAN_CTRLMODE]) {
956                 struct can_ctrlmode *cm;
957                 u32 ctrlstatic;
958                 u32 maskedflags;
959
960                 /* Do not allow changing controller mode while running */
961                 if (dev->flags & IFF_UP)
962                         return -EBUSY;
963                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
964                 ctrlstatic = priv->ctrlmode_static;
965                 maskedflags = cm->flags & cm->mask;
966
967                 /* check whether provided bits are allowed to be passed */
968                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
969                         return -EOPNOTSUPP;
970
971                 /* do not check for static fd-non-iso if 'fd' is disabled */
972                 if (!(maskedflags & CAN_CTRLMODE_FD))
973                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
974
975                 /* make sure static options are provided by configuration */
976                 if ((maskedflags & ctrlstatic) != ctrlstatic)
977                         return -EOPNOTSUPP;
978
979                 /* clear bits to be modified and copy the flag values */
980                 priv->ctrlmode &= ~cm->mask;
981                 priv->ctrlmode |= maskedflags;
982
983                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
984                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
985                         dev->mtu = CANFD_MTU;
986                 else
987                         dev->mtu = CAN_MTU;
988         }
989
990         if (data[IFLA_CAN_RESTART_MS]) {
991                 /* Do not allow changing restart delay while running */
992                 if (dev->flags & IFF_UP)
993                         return -EBUSY;
994                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
995         }
996
997         if (data[IFLA_CAN_RESTART]) {
998                 /* Do not allow a restart while not running */
999                 if (!(dev->flags & IFF_UP))
1000                         return -EINVAL;
1001                 err = can_restart_now(dev);
1002                 if (err)
1003                         return err;
1004         }
1005
1006         if (data[IFLA_CAN_DATA_BITTIMING]) {
1007                 struct can_bittiming dbt;
1008
1009                 /* Do not allow changing bittiming while running */
1010                 if (dev->flags & IFF_UP)
1011                         return -EBUSY;
1012
1013                 /* Calculate bittiming parameters based on
1014                  * data_bittiming_const if set, otherwise pass bitrate
1015                  * directly via do_set_bitrate(). Bail out if neither
1016                  * is given.
1017                  */
1018                 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1019                         return -EOPNOTSUPP;
1020
1021                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1022                        sizeof(dbt));
1023                 err = can_get_bittiming(dev, &dbt,
1024                                         priv->data_bittiming_const,
1025                                         priv->data_bitrate_const,
1026                                         priv->data_bitrate_const_cnt);
1027                 if (err)
1028                         return err;
1029
1030                 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1031                         netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1032                                    priv->bitrate_max);
1033                         return -EINVAL;
1034                 }
1035
1036                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1037
1038                 if (priv->do_set_data_bittiming) {
1039                         /* Finally, set the bit-timing registers */
1040                         err = priv->do_set_data_bittiming(dev);
1041                         if (err)
1042                                 return err;
1043                 }
1044         }
1045
1046         if (data[IFLA_CAN_TERMINATION]) {
1047                 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1048                 const unsigned int num_term = priv->termination_const_cnt;
1049                 unsigned int i;
1050
1051                 if (!priv->do_set_termination)
1052                         return -EOPNOTSUPP;
1053
1054                 /* check whether given value is supported by the interface */
1055                 for (i = 0; i < num_term; i++) {
1056                         if (termval == priv->termination_const[i])
1057                                 break;
1058                 }
1059                 if (i >= num_term)
1060                         return -EINVAL;
1061
1062                 /* Finally, set the termination value */
1063                 err = priv->do_set_termination(dev, termval);
1064                 if (err)
1065                         return err;
1066
1067                 priv->termination = termval;
1068         }
1069
1070         return 0;
1071 }
1072
1073 static size_t can_get_size(const struct net_device *dev)
1074 {
1075         struct can_priv *priv = netdev_priv(dev);
1076         size_t size = 0;
1077
1078         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
1079                 size += nla_total_size(sizeof(struct can_bittiming));
1080         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
1081                 size += nla_total_size(sizeof(struct can_bittiming_const));
1082         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
1083         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
1084         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
1085         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
1086         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
1087                 size += nla_total_size(sizeof(struct can_berr_counter));
1088         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
1089                 size += nla_total_size(sizeof(struct can_bittiming));
1090         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
1091                 size += nla_total_size(sizeof(struct can_bittiming_const));
1092         if (priv->termination_const) {
1093                 size += nla_total_size(sizeof(priv->termination));              /* IFLA_CAN_TERMINATION */
1094                 size += nla_total_size(sizeof(*priv->termination_const) *       /* IFLA_CAN_TERMINATION_CONST */
1095                                        priv->termination_const_cnt);
1096         }
1097         if (priv->bitrate_const)                                /* IFLA_CAN_BITRATE_CONST */
1098                 size += nla_total_size(sizeof(*priv->bitrate_const) *
1099                                        priv->bitrate_const_cnt);
1100         if (priv->data_bitrate_const)                           /* IFLA_CAN_DATA_BITRATE_CONST */
1101                 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1102                                        priv->data_bitrate_const_cnt);
1103         size += sizeof(priv->bitrate_max);                      /* IFLA_CAN_BITRATE_MAX */
1104
1105         return size;
1106 }
1107
1108 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1109 {
1110         struct can_priv *priv = netdev_priv(dev);
1111         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1112         struct can_berr_counter bec;
1113         enum can_state state = priv->state;
1114
1115         if (priv->do_get_state)
1116                 priv->do_get_state(dev, &state);
1117
1118         if ((priv->bittiming.bitrate &&
1119              nla_put(skb, IFLA_CAN_BITTIMING,
1120                      sizeof(priv->bittiming), &priv->bittiming)) ||
1121
1122             (priv->bittiming_const &&
1123              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1124                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1125
1126             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1127             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1128             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1129             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1130
1131             (priv->do_get_berr_counter &&
1132              !priv->do_get_berr_counter(dev, &bec) &&
1133              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1134
1135             (priv->data_bittiming.bitrate &&
1136              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1137                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1138
1139             (priv->data_bittiming_const &&
1140              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1141                      sizeof(*priv->data_bittiming_const),
1142                      priv->data_bittiming_const)) ||
1143
1144             (priv->termination_const &&
1145              (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1146               nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1147                       sizeof(*priv->termination_const) *
1148                       priv->termination_const_cnt,
1149                       priv->termination_const))) ||
1150
1151             (priv->bitrate_const &&
1152              nla_put(skb, IFLA_CAN_BITRATE_CONST,
1153                      sizeof(*priv->bitrate_const) *
1154                      priv->bitrate_const_cnt,
1155                      priv->bitrate_const)) ||
1156
1157             (priv->data_bitrate_const &&
1158              nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1159                      sizeof(*priv->data_bitrate_const) *
1160                      priv->data_bitrate_const_cnt,
1161                      priv->data_bitrate_const)) ||
1162
1163             (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1164                      sizeof(priv->bitrate_max),
1165                      &priv->bitrate_max))
1166             )
1167
1168                 return -EMSGSIZE;
1169
1170         return 0;
1171 }
1172
1173 static size_t can_get_xstats_size(const struct net_device *dev)
1174 {
1175         return sizeof(struct can_device_stats);
1176 }
1177
1178 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1179 {
1180         struct can_priv *priv = netdev_priv(dev);
1181
1182         if (nla_put(skb, IFLA_INFO_XSTATS,
1183                     sizeof(priv->can_stats), &priv->can_stats))
1184                 goto nla_put_failure;
1185         return 0;
1186
1187 nla_put_failure:
1188         return -EMSGSIZE;
1189 }
1190
1191 static int can_newlink(struct net *src_net, struct net_device *dev,
1192                        struct nlattr *tb[], struct nlattr *data[],
1193                        struct netlink_ext_ack *extack)
1194 {
1195         return -EOPNOTSUPP;
1196 }
1197
1198 static void can_dellink(struct net_device *dev, struct list_head *head)
1199 {
1200         return;
1201 }
1202
1203 static struct rtnl_link_ops can_link_ops __read_mostly = {
1204         .kind           = "can",
1205         .maxtype        = IFLA_CAN_MAX,
1206         .policy         = can_policy,
1207         .setup          = can_setup,
1208         .validate       = can_validate,
1209         .newlink        = can_newlink,
1210         .changelink     = can_changelink,
1211         .dellink        = can_dellink,
1212         .get_size       = can_get_size,
1213         .fill_info      = can_fill_info,
1214         .get_xstats_size = can_get_xstats_size,
1215         .fill_xstats    = can_fill_xstats,
1216 };
1217
1218 /* Register the CAN network device */
1219 int register_candev(struct net_device *dev)
1220 {
1221         struct can_priv *priv = netdev_priv(dev);
1222
1223         /* Ensure termination_const, termination_const_cnt and
1224          * do_set_termination consistency. All must be either set or
1225          * unset.
1226          */
1227         if ((!priv->termination_const != !priv->termination_const_cnt) ||
1228             (!priv->termination_const != !priv->do_set_termination))
1229                 return -EINVAL;
1230
1231         if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1232                 return -EINVAL;
1233
1234         if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1235                 return -EINVAL;
1236
1237         dev->rtnl_link_ops = &can_link_ops;
1238         netif_carrier_off(dev);
1239
1240         return register_netdev(dev);
1241 }
1242 EXPORT_SYMBOL_GPL(register_candev);
1243
1244 /* Unregister the CAN network device */
1245 void unregister_candev(struct net_device *dev)
1246 {
1247         unregister_netdev(dev);
1248 }
1249 EXPORT_SYMBOL_GPL(unregister_candev);
1250
1251 /* Test if a network device is a candev based device
1252  * and return the can_priv* if so.
1253  */
1254 struct can_priv *safe_candev_priv(struct net_device *dev)
1255 {
1256         if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1257                 return NULL;
1258
1259         return netdev_priv(dev);
1260 }
1261 EXPORT_SYMBOL_GPL(safe_candev_priv);
1262
1263 static __init int can_dev_init(void)
1264 {
1265         int err;
1266
1267         can_led_notifier_init();
1268
1269         err = rtnl_link_register(&can_link_ops);
1270         if (!err)
1271                 printk(KERN_INFO MOD_DESC "\n");
1272
1273         return err;
1274 }
1275 module_init(can_dev_init);
1276
1277 static __exit void can_dev_exit(void)
1278 {
1279         rtnl_link_unregister(&can_link_ops);
1280
1281         can_led_notifier_exit();
1282 }
1283 module_exit(can_dev_exit);
1284
1285 MODULE_ALIAS_RTNL_LINK("can");