1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
7 #include <linux/mtd/spi-nor.h>
11 #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */
12 #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */
13 #define SPINOR_REG_CYPRESS_CFR2V 0x00800003
14 #define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24 0xb
15 #define SPINOR_REG_CYPRESS_CFR3V 0x00800004
16 #define SPINOR_REG_CYPRESS_CFR3V_PGSZ BIT(4) /* Page size. */
17 #define SPINOR_REG_CYPRESS_CFR5V 0x00800006
18 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN 0x3
19 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS 0
20 #define SPINOR_OP_CYPRESS_RD_FAST 0xee
23 * spi_nor_cypress_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
24 * @nor: pointer to a 'struct spi_nor'
25 * @enable: whether to enable or disable Octal DTR
27 * This also sets the memory access latency cycles to 24 to allow the flash to
28 * run at up to 200MHz.
30 * Return: 0 on success, -errno otherwise.
32 static int spi_nor_cypress_octal_dtr_enable(struct spi_nor *nor, bool enable)
35 u8 *buf = nor->bouncebuf;
39 /* Use 24 dummy cycles for memory array reads. */
40 ret = spi_nor_write_enable(nor);
44 *buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
45 op = (struct spi_mem_op)
46 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
47 SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR2V,
50 SPI_MEM_OP_DATA_OUT(1, buf, 1));
52 ret = spi_mem_exec_op(nor->spimem, &op);
56 ret = spi_nor_wait_till_ready(nor);
63 /* Set/unset the octal and DTR enable bits. */
64 ret = spi_nor_write_enable(nor);
69 buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
72 * The register is 1-byte wide, but 1-byte transactions are not
73 * allowed in 8D-8D-8D mode. Since there is no register at the
74 * next location, just initialize the value to 0 and let the
77 buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS;
81 op = (struct spi_mem_op)
82 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
83 SPI_MEM_OP_ADDR(enable ? 3 : 4,
84 SPINOR_REG_CYPRESS_CFR5V,
87 SPI_MEM_OP_DATA_OUT(enable ? 1 : 2, buf, 1));
90 spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
92 ret = spi_mem_exec_op(nor->spimem, &op);
96 /* Read flash ID to make sure the switch was successful. */
97 op = (struct spi_mem_op)
98 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
99 SPI_MEM_OP_ADDR(enable ? 4 : 0, 0, 1),
100 SPI_MEM_OP_DUMMY(enable ? 3 : 0, 1),
101 SPI_MEM_OP_DATA_IN(round_up(nor->info->id_len, 2),
105 spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
107 ret = spi_mem_exec_op(nor->spimem, &op);
111 if (memcmp(buf, nor->info->id, nor->info->id_len))
117 static void s28hs512t_default_init(struct spi_nor *nor)
119 nor->params->octal_dtr_enable = spi_nor_cypress_octal_dtr_enable;
120 nor->params->writesize = 16;
123 static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor)
126 * On older versions of the flash the xSPI Profile 1.0 table has the
127 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
129 if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
130 nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
131 SPINOR_OP_CYPRESS_RD_FAST;
133 /* This flash is also missing the 4-byte Page Program opcode bit. */
134 spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
135 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
137 * Since xSPI Page Program opcode is backward compatible with
138 * Legacy SPI, use Legacy SPI opcode there as well.
140 spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
141 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
144 * The xSPI Profile 1.0 table advertises the number of additional
145 * address bytes needed for Read Status Register command as 0 but the
146 * actual value for that is 4.
148 nor->params->rdsr_addr_nbytes = 4;
151 static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
152 const struct sfdp_parameter_header *bfpt_header,
153 const struct sfdp_bfpt *bfpt)
156 * The BFPT table advertises a 512B page size but the page size is
157 * actually configurable (with the default being 256B). Read from
158 * CFR3V[4] and set the correct size.
160 struct spi_mem_op op =
161 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
162 SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR3V, 1),
164 SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));
167 ret = spi_mem_exec_op(nor->spimem, &op);
171 if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
172 nor->params->page_size = 512;
174 nor->params->page_size = 256;
179 static const struct spi_nor_fixups s28hs512t_fixups = {
180 .default_init = s28hs512t_default_init,
181 .post_sfdp = s28hs512t_post_sfdp_fixup,
182 .post_bfpt = s28hs512t_post_bfpt_fixup,
186 s25fs_s_post_bfpt_fixups(struct spi_nor *nor,
187 const struct sfdp_parameter_header *bfpt_header,
188 const struct sfdp_bfpt *bfpt)
191 * The S25FS-S chip family reports 512-byte pages in BFPT but
192 * in reality the write buffer still wraps at the safe default
193 * of 256 bytes. Overwrite the page size advertised by BFPT
194 * to get the writes working.
196 nor->params->page_size = 256;
201 static const struct spi_nor_fixups s25fs_s_fixups = {
202 .post_bfpt = s25fs_s_post_bfpt_fixups,
205 static const struct flash_info spansion_parts[] = {
206 /* Spansion/Cypress -- single (large) sector size only, at least
207 * for the chips listed here (without boot sectors).
209 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64)
210 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
211 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128)
212 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
213 { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
215 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
216 { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
218 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
219 { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
221 NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
222 SPI_NOR_QUAD_READ) },
223 { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
225 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
226 { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
227 FLAGS(SPI_NOR_HAS_LOCK | USE_CLSR)
228 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
229 { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
231 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
232 .fixups = &s25fs_s_fixups, },
233 { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
235 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
236 { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
238 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
239 { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
241 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
242 .fixups = &s25fs_s_fixups, },
243 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) },
244 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) },
245 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64)
247 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
248 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256)
250 NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
251 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) },
252 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) },
253 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) },
254 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) },
255 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) },
256 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8)
257 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
258 SPI_NOR_QUAD_READ) },
259 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16)
260 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
261 SPI_NOR_QUAD_READ) },
262 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32)
263 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
264 SPI_NOR_QUAD_READ) },
265 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128)
266 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
267 SPI_NOR_QUAD_READ) },
268 { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32)
269 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
270 SPI_NOR_QUAD_READ) },
271 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64)
272 NO_SFDP_FLAGS(SECT_4K) },
273 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128)
274 NO_SFDP_FLAGS(SECT_4K) },
275 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8)
276 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
277 { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16)
278 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
279 { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128)
280 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
281 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
282 { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256)
283 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
284 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
285 { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512)
286 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
287 FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
288 { "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
289 FLAGS(SPI_NOR_NO_ERASE) },
290 { "s28hs512t", INFO(0x345b1a, 0, 256 * 1024, 256)
291 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_DTR_READ |
292 SPI_NOR_OCTAL_DTR_PP)
293 .fixups = &s28hs512t_fixups,
297 static void spansion_late_init(struct spi_nor *nor)
299 if (nor->params->size <= SZ_16M)
302 nor->flags |= SNOR_F_4B_OPCODES;
303 /* No small sector erase for 4-byte command set */
304 nor->erase_opcode = SPINOR_OP_SE;
305 nor->mtd.erasesize = nor->info->sector_size;
308 static const struct spi_nor_fixups spansion_fixups = {
309 .late_init = spansion_late_init,
312 const struct spi_nor_manufacturer spi_nor_spansion = {
314 .parts = spansion_parts,
315 .nparts = ARRAY_SIZE(spansion_parts),
316 .fixups = &spansion_fixups,