Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[linux-2.6-microblaze.git] / drivers / mtd / spi-nor / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  */
9
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24
25 #include "core.h"
26
27 /* Define max times to check status register before we give up. */
28
29 /*
30  * For everything but full-chip erase; probably could be much smaller, but kept
31  * around for safety for now
32  */
33 #define DEFAULT_READY_WAIT_JIFFIES              (40UL * HZ)
34
35 /*
36  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37  * for larger flash
38  */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES       (40UL * HZ)
40
41 #define SPI_NOR_MAX_ADDR_WIDTH  4
42
43 #define SPI_NOR_SRST_SLEEP_MIN 200
44 #define SPI_NOR_SRST_SLEEP_MAX 400
45
46 /**
47  * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
48  *                         extension type.
49  * @nor:                pointer to a 'struct spi_nor'
50  * @op:                 pointer to the 'struct spi_mem_op' whose properties
51  *                      need to be initialized.
52  *
53  * Right now, only "repeat" and "invert" are supported.
54  *
55  * Return: The opcode extension.
56  */
57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
58                               const struct spi_mem_op *op)
59 {
60         switch (nor->cmd_ext_type) {
61         case SPI_NOR_EXT_INVERT:
62                 return ~op->cmd.opcode;
63
64         case SPI_NOR_EXT_REPEAT:
65                 return op->cmd.opcode;
66
67         default:
68                 dev_err(nor->dev, "Unknown command extension type\n");
69                 return 0;
70         }
71 }
72
73 /**
74  * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
75  * @nor:                pointer to a 'struct spi_nor'
76  * @op:                 pointer to the 'struct spi_mem_op' whose properties
77  *                      need to be initialized.
78  * @proto:              the protocol from which the properties need to be set.
79  */
80 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
81                              struct spi_mem_op *op,
82                              const enum spi_nor_protocol proto)
83 {
84         u8 ext;
85
86         op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
87
88         if (op->addr.nbytes)
89                 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
90
91         if (op->dummy.nbytes)
92                 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
93
94         if (op->data.nbytes)
95                 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
96
97         if (spi_nor_protocol_is_dtr(proto)) {
98                 /*
99                  * SPIMEM supports mixed DTR modes, but right now we can only
100                  * have all phases either DTR or STR. IOW, SPIMEM can have
101                  * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
102                  * phases to either DTR or STR.
103                  */
104                 op->cmd.dtr = true;
105                 op->addr.dtr = true;
106                 op->dummy.dtr = true;
107                 op->data.dtr = true;
108
109                 /* 2 bytes per clock cycle in DTR mode. */
110                 op->dummy.nbytes *= 2;
111
112                 ext = spi_nor_get_cmd_ext(nor, op);
113                 op->cmd.opcode = (op->cmd.opcode << 8) | ext;
114                 op->cmd.nbytes = 2;
115         }
116 }
117
118 /**
119  * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
120  *                           transfer
121  * @nor:        pointer to 'struct spi_nor'
122  * @op:         pointer to 'struct spi_mem_op' template for transfer
123  *
124  * If we have to use the bounce buffer, the data field in @op will be updated.
125  *
126  * Return: true if the bounce buffer is needed, false if not
127  */
128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
129 {
130         /* op->data.buf.in occupies the same memory as op->data.buf.out */
131         if (object_is_on_stack(op->data.buf.in) ||
132             !virt_addr_valid(op->data.buf.in)) {
133                 if (op->data.nbytes > nor->bouncebuf_size)
134                         op->data.nbytes = nor->bouncebuf_size;
135                 op->data.buf.in = nor->bouncebuf;
136                 return true;
137         }
138
139         return false;
140 }
141
142 /**
143  * spi_nor_spimem_exec_op() - execute a memory operation
144  * @nor:        pointer to 'struct spi_nor'
145  * @op:         pointer to 'struct spi_mem_op' template for transfer
146  *
147  * Return: 0 on success, -error otherwise.
148  */
149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
150 {
151         int error;
152
153         error = spi_mem_adjust_op_size(nor->spimem, op);
154         if (error)
155                 return error;
156
157         return spi_mem_exec_op(nor->spimem, op);
158 }
159
160 static int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
161                                            u8 *buf, size_t len)
162 {
163         if (spi_nor_protocol_is_dtr(nor->reg_proto))
164                 return -EOPNOTSUPP;
165
166         return nor->controller_ops->read_reg(nor, opcode, buf, len);
167 }
168
169 static int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
170                                             const u8 *buf, size_t len)
171 {
172         if (spi_nor_protocol_is_dtr(nor->reg_proto))
173                 return -EOPNOTSUPP;
174
175         return nor->controller_ops->write_reg(nor, opcode, buf, len);
176 }
177
178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
179 {
180         if (spi_nor_protocol_is_dtr(nor->write_proto))
181                 return -EOPNOTSUPP;
182
183         return nor->controller_ops->erase(nor, offs);
184 }
185
186 /**
187  * spi_nor_spimem_read_data() - read data from flash's memory region via
188  *                              spi-mem
189  * @nor:        pointer to 'struct spi_nor'
190  * @from:       offset to read from
191  * @len:        number of bytes to read
192  * @buf:        pointer to dst buffer
193  *
194  * Return: number of bytes read successfully, -errno otherwise
195  */
196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
197                                         size_t len, u8 *buf)
198 {
199         struct spi_mem_op op =
200                 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
201                            SPI_MEM_OP_ADDR(nor->addr_width, from, 0),
202                            SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
203                            SPI_MEM_OP_DATA_IN(len, buf, 0));
204         bool usebouncebuf;
205         ssize_t nbytes;
206         int error;
207
208         spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
209
210         /* convert the dummy cycles to the number of bytes */
211         op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
212         if (spi_nor_protocol_is_dtr(nor->read_proto))
213                 op.dummy.nbytes *= 2;
214
215         usebouncebuf = spi_nor_spimem_bounce(nor, &op);
216
217         if (nor->dirmap.rdesc) {
218                 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
219                                              op.data.nbytes, op.data.buf.in);
220         } else {
221                 error = spi_nor_spimem_exec_op(nor, &op);
222                 if (error)
223                         return error;
224                 nbytes = op.data.nbytes;
225         }
226
227         if (usebouncebuf && nbytes > 0)
228                 memcpy(buf, op.data.buf.in, nbytes);
229
230         return nbytes;
231 }
232
233 /**
234  * spi_nor_read_data() - read data from flash memory
235  * @nor:        pointer to 'struct spi_nor'
236  * @from:       offset to read from
237  * @len:        number of bytes to read
238  * @buf:        pointer to dst buffer
239  *
240  * Return: number of bytes read successfully, -errno otherwise
241  */
242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
243 {
244         if (nor->spimem)
245                 return spi_nor_spimem_read_data(nor, from, len, buf);
246
247         return nor->controller_ops->read(nor, from, len, buf);
248 }
249
250 /**
251  * spi_nor_spimem_write_data() - write data to flash memory via
252  *                               spi-mem
253  * @nor:        pointer to 'struct spi_nor'
254  * @to:         offset to write to
255  * @len:        number of bytes to write
256  * @buf:        pointer to src buffer
257  *
258  * Return: number of bytes written successfully, -errno otherwise
259  */
260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
261                                          size_t len, const u8 *buf)
262 {
263         struct spi_mem_op op =
264                 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
265                            SPI_MEM_OP_ADDR(nor->addr_width, to, 0),
266                            SPI_MEM_OP_NO_DUMMY,
267                            SPI_MEM_OP_DATA_OUT(len, buf, 0));
268         ssize_t nbytes;
269         int error;
270
271         if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
272                 op.addr.nbytes = 0;
273
274         spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
275
276         if (spi_nor_spimem_bounce(nor, &op))
277                 memcpy(nor->bouncebuf, buf, op.data.nbytes);
278
279         if (nor->dirmap.wdesc) {
280                 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
281                                               op.data.nbytes, op.data.buf.out);
282         } else {
283                 error = spi_nor_spimem_exec_op(nor, &op);
284                 if (error)
285                         return error;
286                 nbytes = op.data.nbytes;
287         }
288
289         return nbytes;
290 }
291
292 /**
293  * spi_nor_write_data() - write data to flash memory
294  * @nor:        pointer to 'struct spi_nor'
295  * @to:         offset to write to
296  * @len:        number of bytes to write
297  * @buf:        pointer to src buffer
298  *
299  * Return: number of bytes written successfully, -errno otherwise
300  */
301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
302                            const u8 *buf)
303 {
304         if (nor->spimem)
305                 return spi_nor_spimem_write_data(nor, to, len, buf);
306
307         return nor->controller_ops->write(nor, to, len, buf);
308 }
309
310 /**
311  * spi_nor_write_enable() - Set write enable latch with Write Enable command.
312  * @nor:        pointer to 'struct spi_nor'.
313  *
314  * Return: 0 on success, -errno otherwise.
315  */
316 int spi_nor_write_enable(struct spi_nor *nor)
317 {
318         int ret;
319
320         if (nor->spimem) {
321                 struct spi_mem_op op =
322                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 0),
323                                    SPI_MEM_OP_NO_ADDR,
324                                    SPI_MEM_OP_NO_DUMMY,
325                                    SPI_MEM_OP_NO_DATA);
326
327                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
328
329                 ret = spi_mem_exec_op(nor->spimem, &op);
330         } else {
331                 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
332                                                        NULL, 0);
333         }
334
335         if (ret)
336                 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
337
338         return ret;
339 }
340
341 /**
342  * spi_nor_write_disable() - Send Write Disable instruction to the chip.
343  * @nor:        pointer to 'struct spi_nor'.
344  *
345  * Return: 0 on success, -errno otherwise.
346  */
347 int spi_nor_write_disable(struct spi_nor *nor)
348 {
349         int ret;
350
351         if (nor->spimem) {
352                 struct spi_mem_op op =
353                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 0),
354                                    SPI_MEM_OP_NO_ADDR,
355                                    SPI_MEM_OP_NO_DUMMY,
356                                    SPI_MEM_OP_NO_DATA);
357
358                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
359
360                 ret = spi_mem_exec_op(nor->spimem, &op);
361         } else {
362                 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
363                                                        NULL, 0);
364         }
365
366         if (ret)
367                 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
368
369         return ret;
370 }
371
372 /**
373  * spi_nor_read_sr() - Read the Status Register.
374  * @nor:        pointer to 'struct spi_nor'.
375  * @sr:         pointer to a DMA-able buffer where the value of the
376  *              Status Register will be written. Should be at least 2 bytes.
377  *
378  * Return: 0 on success, -errno otherwise.
379  */
380 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
381 {
382         int ret;
383
384         if (nor->spimem) {
385                 struct spi_mem_op op =
386                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0),
387                                    SPI_MEM_OP_NO_ADDR,
388                                    SPI_MEM_OP_NO_DUMMY,
389                                    SPI_MEM_OP_DATA_IN(1, sr, 0));
390
391                 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
392                         op.addr.nbytes = nor->params->rdsr_addr_nbytes;
393                         op.dummy.nbytes = nor->params->rdsr_dummy;
394                         /*
395                          * We don't want to read only one byte in DTR mode. So,
396                          * read 2 and then discard the second byte.
397                          */
398                         op.data.nbytes = 2;
399                 }
400
401                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
402
403                 ret = spi_mem_exec_op(nor->spimem, &op);
404         } else {
405                 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
406                                                       1);
407         }
408
409         if (ret)
410                 dev_dbg(nor->dev, "error %d reading SR\n", ret);
411
412         return ret;
413 }
414
415 /**
416  * spi_nor_read_fsr() - Read the Flag Status Register.
417  * @nor:        pointer to 'struct spi_nor'
418  * @fsr:        pointer to a DMA-able buffer where the value of the
419  *              Flag Status Register will be written. Should be at least 2
420  *              bytes.
421  *
422  * Return: 0 on success, -errno otherwise.
423  */
424 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
425 {
426         int ret;
427
428         if (nor->spimem) {
429                 struct spi_mem_op op =
430                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
431                                    SPI_MEM_OP_NO_ADDR,
432                                    SPI_MEM_OP_NO_DUMMY,
433                                    SPI_MEM_OP_DATA_IN(1, fsr, 0));
434
435                 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
436                         op.addr.nbytes = nor->params->rdsr_addr_nbytes;
437                         op.dummy.nbytes = nor->params->rdsr_dummy;
438                         /*
439                          * We don't want to read only one byte in DTR mode. So,
440                          * read 2 and then discard the second byte.
441                          */
442                         op.data.nbytes = 2;
443                 }
444
445                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
446
447                 ret = spi_mem_exec_op(nor->spimem, &op);
448         } else {
449                 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
450                                                       1);
451         }
452
453         if (ret)
454                 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
455
456         return ret;
457 }
458
459 /**
460  * spi_nor_read_cr() - Read the Configuration Register using the
461  * SPINOR_OP_RDCR (35h) command.
462  * @nor:        pointer to 'struct spi_nor'
463  * @cr:         pointer to a DMA-able buffer where the value of the
464  *              Configuration Register will be written.
465  *
466  * Return: 0 on success, -errno otherwise.
467  */
468 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
469 {
470         int ret;
471
472         if (nor->spimem) {
473                 struct spi_mem_op op =
474                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 0),
475                                    SPI_MEM_OP_NO_ADDR,
476                                    SPI_MEM_OP_NO_DUMMY,
477                                    SPI_MEM_OP_DATA_IN(1, cr, 0));
478
479                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
480
481                 ret = spi_mem_exec_op(nor->spimem, &op);
482         } else {
483                 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
484                                                       1);
485         }
486
487         if (ret)
488                 dev_dbg(nor->dev, "error %d reading CR\n", ret);
489
490         return ret;
491 }
492
493 /**
494  * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
495  * @nor:        pointer to 'struct spi_nor'.
496  * @enable:     true to enter the 4-byte address mode, false to exit the 4-byte
497  *              address mode.
498  *
499  * Return: 0 on success, -errno otherwise.
500  */
501 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
502 {
503         int ret;
504
505         if (nor->spimem) {
506                 struct spi_mem_op op =
507                         SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
508                                                   SPINOR_OP_EN4B :
509                                                   SPINOR_OP_EX4B,
510                                                   0),
511                                   SPI_MEM_OP_NO_ADDR,
512                                   SPI_MEM_OP_NO_DUMMY,
513                                   SPI_MEM_OP_NO_DATA);
514
515                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
516
517                 ret = spi_mem_exec_op(nor->spimem, &op);
518         } else {
519                 ret = spi_nor_controller_ops_write_reg(nor,
520                                                        enable ? SPINOR_OP_EN4B :
521                                                                 SPINOR_OP_EX4B,
522                                                        NULL, 0);
523         }
524
525         if (ret)
526                 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
527
528         return ret;
529 }
530
531 /**
532  * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
533  * flashes.
534  * @nor:        pointer to 'struct spi_nor'.
535  * @enable:     true to enter the 4-byte address mode, false to exit the 4-byte
536  *              address mode.
537  *
538  * Return: 0 on success, -errno otherwise.
539  */
540 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
541 {
542         int ret;
543
544         nor->bouncebuf[0] = enable << 7;
545
546         if (nor->spimem) {
547                 struct spi_mem_op op =
548                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 0),
549                                    SPI_MEM_OP_NO_ADDR,
550                                    SPI_MEM_OP_NO_DUMMY,
551                                    SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
552
553                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
554
555                 ret = spi_mem_exec_op(nor->spimem, &op);
556         } else {
557                 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
558                                                        nor->bouncebuf, 1);
559         }
560
561         if (ret)
562                 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
563
564         return ret;
565 }
566
567 /**
568  * spi_nor_write_ear() - Write Extended Address Register.
569  * @nor:        pointer to 'struct spi_nor'.
570  * @ear:        value to write to the Extended Address Register.
571  *
572  * Return: 0 on success, -errno otherwise.
573  */
574 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
575 {
576         int ret;
577
578         nor->bouncebuf[0] = ear;
579
580         if (nor->spimem) {
581                 struct spi_mem_op op =
582                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 0),
583                                    SPI_MEM_OP_NO_ADDR,
584                                    SPI_MEM_OP_NO_DUMMY,
585                                    SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
586
587                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
588
589                 ret = spi_mem_exec_op(nor->spimem, &op);
590         } else {
591                 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREAR,
592                                                        nor->bouncebuf, 1);
593         }
594
595         if (ret)
596                 dev_dbg(nor->dev, "error %d writing EAR\n", ret);
597
598         return ret;
599 }
600
601 /**
602  * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
603  * @nor:        pointer to 'struct spi_nor'.
604  * @sr:         pointer to a DMA-able buffer where the value of the
605  *              Status Register will be written.
606  *
607  * Return: 0 on success, -errno otherwise.
608  */
609 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
610 {
611         int ret;
612
613         if (nor->spimem) {
614                 struct spi_mem_op op =
615                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 0),
616                                    SPI_MEM_OP_NO_ADDR,
617                                    SPI_MEM_OP_NO_DUMMY,
618                                    SPI_MEM_OP_DATA_IN(1, sr, 0));
619
620                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
621
622                 ret = spi_mem_exec_op(nor->spimem, &op);
623         } else {
624                 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_XRDSR, sr,
625                                                       1);
626         }
627
628         if (ret)
629                 dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
630
631         return ret;
632 }
633
634 /**
635  * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
636  * the flash is ready for new commands.
637  * @nor:        pointer to 'struct spi_nor'.
638  *
639  * Return: 1 if ready, 0 if not ready, -errno on errors.
640  */
641 static int spi_nor_xsr_ready(struct spi_nor *nor)
642 {
643         int ret;
644
645         ret = spi_nor_xread_sr(nor, nor->bouncebuf);
646         if (ret)
647                 return ret;
648
649         return !!(nor->bouncebuf[0] & XSR_RDY);
650 }
651
652 /**
653  * spi_nor_clear_sr() - Clear the Status Register.
654  * @nor:        pointer to 'struct spi_nor'.
655  */
656 static void spi_nor_clear_sr(struct spi_nor *nor)
657 {
658         int ret;
659
660         if (nor->spimem) {
661                 struct spi_mem_op op =
662                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0),
663                                    SPI_MEM_OP_NO_ADDR,
664                                    SPI_MEM_OP_NO_DUMMY,
665                                    SPI_MEM_OP_NO_DATA);
666
667                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
668
669                 ret = spi_mem_exec_op(nor->spimem, &op);
670         } else {
671                 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
672                                                        NULL, 0);
673         }
674
675         if (ret)
676                 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
677 }
678
679 /**
680  * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
681  * for new commands.
682  * @nor:        pointer to 'struct spi_nor'.
683  *
684  * Return: 1 if ready, 0 if not ready, -errno on errors.
685  */
686 static int spi_nor_sr_ready(struct spi_nor *nor)
687 {
688         int ret = spi_nor_read_sr(nor, nor->bouncebuf);
689
690         if (ret)
691                 return ret;
692
693         if (nor->flags & SNOR_F_USE_CLSR &&
694             nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
695                 if (nor->bouncebuf[0] & SR_E_ERR)
696                         dev_err(nor->dev, "Erase Error occurred\n");
697                 else
698                         dev_err(nor->dev, "Programming Error occurred\n");
699
700                 spi_nor_clear_sr(nor);
701
702                 /*
703                  * WEL bit remains set to one when an erase or page program
704                  * error occurs. Issue a Write Disable command to protect
705                  * against inadvertent writes that can possibly corrupt the
706                  * contents of the memory.
707                  */
708                 ret = spi_nor_write_disable(nor);
709                 if (ret)
710                         return ret;
711
712                 return -EIO;
713         }
714
715         return !(nor->bouncebuf[0] & SR_WIP);
716 }
717
718 /**
719  * spi_nor_clear_fsr() - Clear the Flag Status Register.
720  * @nor:        pointer to 'struct spi_nor'.
721  */
722 static void spi_nor_clear_fsr(struct spi_nor *nor)
723 {
724         int ret;
725
726         if (nor->spimem) {
727                 struct spi_mem_op op =
728                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0),
729                                    SPI_MEM_OP_NO_ADDR,
730                                    SPI_MEM_OP_NO_DUMMY,
731                                    SPI_MEM_OP_NO_DATA);
732
733                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
734
735                 ret = spi_mem_exec_op(nor->spimem, &op);
736         } else {
737                 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
738                                                        NULL, 0);
739         }
740
741         if (ret)
742                 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
743 }
744
745 /**
746  * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
747  * ready for new commands.
748  * @nor:        pointer to 'struct spi_nor'.
749  *
750  * Return: 1 if ready, 0 if not ready, -errno on errors.
751  */
752 static int spi_nor_fsr_ready(struct spi_nor *nor)
753 {
754         int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
755
756         if (ret)
757                 return ret;
758
759         if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
760                 if (nor->bouncebuf[0] & FSR_E_ERR)
761                         dev_err(nor->dev, "Erase operation failed.\n");
762                 else
763                         dev_err(nor->dev, "Program operation failed.\n");
764
765                 if (nor->bouncebuf[0] & FSR_PT_ERR)
766                         dev_err(nor->dev,
767                         "Attempted to modify a protected sector.\n");
768
769                 spi_nor_clear_fsr(nor);
770
771                 /*
772                  * WEL bit remains set to one when an erase or page program
773                  * error occurs. Issue a Write Disable command to protect
774                  * against inadvertent writes that can possibly corrupt the
775                  * contents of the memory.
776                  */
777                 ret = spi_nor_write_disable(nor);
778                 if (ret)
779                         return ret;
780
781                 return -EIO;
782         }
783
784         return !!(nor->bouncebuf[0] & FSR_READY);
785 }
786
787 /**
788  * spi_nor_ready() - Query the flash to see if it is ready for new commands.
789  * @nor:        pointer to 'struct spi_nor'.
790  *
791  * Return: 1 if ready, 0 if not ready, -errno on errors.
792  */
793 static int spi_nor_ready(struct spi_nor *nor)
794 {
795         int sr, fsr;
796
797         if (nor->flags & SNOR_F_READY_XSR_RDY)
798                 sr = spi_nor_xsr_ready(nor);
799         else
800                 sr = spi_nor_sr_ready(nor);
801         if (sr < 0)
802                 return sr;
803         fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
804         if (fsr < 0)
805                 return fsr;
806         return sr && fsr;
807 }
808
809 /**
810  * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
811  * Status Register until ready, or timeout occurs.
812  * @nor:                pointer to "struct spi_nor".
813  * @timeout_jiffies:    jiffies to wait until timeout.
814  *
815  * Return: 0 on success, -errno otherwise.
816  */
817 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
818                                                 unsigned long timeout_jiffies)
819 {
820         unsigned long deadline;
821         int timeout = 0, ret;
822
823         deadline = jiffies + timeout_jiffies;
824
825         while (!timeout) {
826                 if (time_after_eq(jiffies, deadline))
827                         timeout = 1;
828
829                 ret = spi_nor_ready(nor);
830                 if (ret < 0)
831                         return ret;
832                 if (ret)
833                         return 0;
834
835                 cond_resched();
836         }
837
838         dev_dbg(nor->dev, "flash operation timed out\n");
839
840         return -ETIMEDOUT;
841 }
842
843 /**
844  * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
845  * flash to be ready, or timeout occurs.
846  * @nor:        pointer to "struct spi_nor".
847  *
848  * Return: 0 on success, -errno otherwise.
849  */
850 int spi_nor_wait_till_ready(struct spi_nor *nor)
851 {
852         return spi_nor_wait_till_ready_with_timeout(nor,
853                                                     DEFAULT_READY_WAIT_JIFFIES);
854 }
855
856 /**
857  * spi_nor_global_block_unlock() - Unlock Global Block Protection.
858  * @nor:        pointer to 'struct spi_nor'.
859  *
860  * Return: 0 on success, -errno otherwise.
861  */
862 int spi_nor_global_block_unlock(struct spi_nor *nor)
863 {
864         int ret;
865
866         ret = spi_nor_write_enable(nor);
867         if (ret)
868                 return ret;
869
870         if (nor->spimem) {
871                 struct spi_mem_op op =
872                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_GBULK, 0),
873                                    SPI_MEM_OP_NO_ADDR,
874                                    SPI_MEM_OP_NO_DUMMY,
875                                    SPI_MEM_OP_NO_DATA);
876
877                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
878
879                 ret = spi_mem_exec_op(nor->spimem, &op);
880         } else {
881                 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
882                                                        NULL, 0);
883         }
884
885         if (ret) {
886                 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
887                 return ret;
888         }
889
890         return spi_nor_wait_till_ready(nor);
891 }
892
893 /**
894  * spi_nor_write_sr() - Write the Status Register.
895  * @nor:        pointer to 'struct spi_nor'.
896  * @sr:         pointer to DMA-able buffer to write to the Status Register.
897  * @len:        number of bytes to write to the Status Register.
898  *
899  * Return: 0 on success, -errno otherwise.
900  */
901 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
902 {
903         int ret;
904
905         ret = spi_nor_write_enable(nor);
906         if (ret)
907                 return ret;
908
909         if (nor->spimem) {
910                 struct spi_mem_op op =
911                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 0),
912                                    SPI_MEM_OP_NO_ADDR,
913                                    SPI_MEM_OP_NO_DUMMY,
914                                    SPI_MEM_OP_DATA_OUT(len, sr, 0));
915
916                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
917
918                 ret = spi_mem_exec_op(nor->spimem, &op);
919         } else {
920                 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
921                                                        len);
922         }
923
924         if (ret) {
925                 dev_dbg(nor->dev, "error %d writing SR\n", ret);
926                 return ret;
927         }
928
929         return spi_nor_wait_till_ready(nor);
930 }
931
932 /**
933  * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
934  * ensure that the byte written match the received value.
935  * @nor:        pointer to a 'struct spi_nor'.
936  * @sr1:        byte value to be written to the Status Register.
937  *
938  * Return: 0 on success, -errno otherwise.
939  */
940 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
941 {
942         int ret;
943
944         nor->bouncebuf[0] = sr1;
945
946         ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
947         if (ret)
948                 return ret;
949
950         ret = spi_nor_read_sr(nor, nor->bouncebuf);
951         if (ret)
952                 return ret;
953
954         if (nor->bouncebuf[0] != sr1) {
955                 dev_dbg(nor->dev, "SR1: read back test failed\n");
956                 return -EIO;
957         }
958
959         return 0;
960 }
961
962 /**
963  * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
964  * Status Register 2 in one shot. Ensure that the byte written in the Status
965  * Register 1 match the received value, and that the 16-bit Write did not
966  * affect what was already in the Status Register 2.
967  * @nor:        pointer to a 'struct spi_nor'.
968  * @sr1:        byte value to be written to the Status Register 1.
969  *
970  * Return: 0 on success, -errno otherwise.
971  */
972 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
973 {
974         int ret;
975         u8 *sr_cr = nor->bouncebuf;
976         u8 cr_written;
977
978         /* Make sure we don't overwrite the contents of Status Register 2. */
979         if (!(nor->flags & SNOR_F_NO_READ_CR)) {
980                 ret = spi_nor_read_cr(nor, &sr_cr[1]);
981                 if (ret)
982                         return ret;
983         } else if (nor->params->quad_enable) {
984                 /*
985                  * If the Status Register 2 Read command (35h) is not
986                  * supported, we should at least be sure we don't
987                  * change the value of the SR2 Quad Enable bit.
988                  *
989                  * We can safely assume that when the Quad Enable method is
990                  * set, the value of the QE bit is one, as a consequence of the
991                  * nor->params->quad_enable() call.
992                  *
993                  * We can safely assume that the Quad Enable bit is present in
994                  * the Status Register 2 at BIT(1). According to the JESD216
995                  * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
996                  * Write Status (01h) command is available just for the cases
997                  * in which the QE bit is described in SR2 at BIT(1).
998                  */
999                 sr_cr[1] = SR2_QUAD_EN_BIT1;
1000         } else {
1001                 sr_cr[1] = 0;
1002         }
1003
1004         sr_cr[0] = sr1;
1005
1006         ret = spi_nor_write_sr(nor, sr_cr, 2);
1007         if (ret)
1008                 return ret;
1009
1010         if (nor->flags & SNOR_F_NO_READ_CR)
1011                 return 0;
1012
1013         cr_written = sr_cr[1];
1014
1015         ret = spi_nor_read_cr(nor, &sr_cr[1]);
1016         if (ret)
1017                 return ret;
1018
1019         if (cr_written != sr_cr[1]) {
1020                 dev_dbg(nor->dev, "CR: read back test failed\n");
1021                 return -EIO;
1022         }
1023
1024         return 0;
1025 }
1026
1027 /**
1028  * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
1029  * Configuration Register in one shot. Ensure that the byte written in the
1030  * Configuration Register match the received value, and that the 16-bit Write
1031  * did not affect what was already in the Status Register 1.
1032  * @nor:        pointer to a 'struct spi_nor'.
1033  * @cr:         byte value to be written to the Configuration Register.
1034  *
1035  * Return: 0 on success, -errno otherwise.
1036  */
1037 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
1038 {
1039         int ret;
1040         u8 *sr_cr = nor->bouncebuf;
1041         u8 sr_written;
1042
1043         /* Keep the current value of the Status Register 1. */
1044         ret = spi_nor_read_sr(nor, sr_cr);
1045         if (ret)
1046                 return ret;
1047
1048         sr_cr[1] = cr;
1049
1050         ret = spi_nor_write_sr(nor, sr_cr, 2);
1051         if (ret)
1052                 return ret;
1053
1054         sr_written = sr_cr[0];
1055
1056         ret = spi_nor_read_sr(nor, sr_cr);
1057         if (ret)
1058                 return ret;
1059
1060         if (sr_written != sr_cr[0]) {
1061                 dev_dbg(nor->dev, "SR: Read back test failed\n");
1062                 return -EIO;
1063         }
1064
1065         if (nor->flags & SNOR_F_NO_READ_CR)
1066                 return 0;
1067
1068         ret = spi_nor_read_cr(nor, &sr_cr[1]);
1069         if (ret)
1070                 return ret;
1071
1072         if (cr != sr_cr[1]) {
1073                 dev_dbg(nor->dev, "CR: read back test failed\n");
1074                 return -EIO;
1075         }
1076
1077         return 0;
1078 }
1079
1080 /**
1081  * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
1082  * the byte written match the received value without affecting other bits in the
1083  * Status Register 1 and 2.
1084  * @nor:        pointer to a 'struct spi_nor'.
1085  * @sr1:        byte value to be written to the Status Register.
1086  *
1087  * Return: 0 on success, -errno otherwise.
1088  */
1089 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
1090 {
1091         if (nor->flags & SNOR_F_HAS_16BIT_SR)
1092                 return spi_nor_write_16bit_sr_and_check(nor, sr1);
1093
1094         return spi_nor_write_sr1_and_check(nor, sr1);
1095 }
1096
1097 /**
1098  * spi_nor_write_sr2() - Write the Status Register 2 using the
1099  * SPINOR_OP_WRSR2 (3eh) command.
1100  * @nor:        pointer to 'struct spi_nor'.
1101  * @sr2:        pointer to DMA-able buffer to write to the Status Register 2.
1102  *
1103  * Return: 0 on success, -errno otherwise.
1104  */
1105 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1106 {
1107         int ret;
1108
1109         ret = spi_nor_write_enable(nor);
1110         if (ret)
1111                 return ret;
1112
1113         if (nor->spimem) {
1114                 struct spi_mem_op op =
1115                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 0),
1116                                    SPI_MEM_OP_NO_ADDR,
1117                                    SPI_MEM_OP_NO_DUMMY,
1118                                    SPI_MEM_OP_DATA_OUT(1, sr2, 0));
1119
1120                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1121
1122                 ret = spi_mem_exec_op(nor->spimem, &op);
1123         } else {
1124                 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1125                                                        sr2, 1);
1126         }
1127
1128         if (ret) {
1129                 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1130                 return ret;
1131         }
1132
1133         return spi_nor_wait_till_ready(nor);
1134 }
1135
1136 /**
1137  * spi_nor_read_sr2() - Read the Status Register 2 using the
1138  * SPINOR_OP_RDSR2 (3fh) command.
1139  * @nor:        pointer to 'struct spi_nor'.
1140  * @sr2:        pointer to DMA-able buffer where the value of the
1141  *              Status Register 2 will be written.
1142  *
1143  * Return: 0 on success, -errno otherwise.
1144  */
1145 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1146 {
1147         int ret;
1148
1149         if (nor->spimem) {
1150                 struct spi_mem_op op =
1151                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 0),
1152                                    SPI_MEM_OP_NO_ADDR,
1153                                    SPI_MEM_OP_NO_DUMMY,
1154                                    SPI_MEM_OP_DATA_IN(1, sr2, 0));
1155
1156                 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1157
1158                 ret = spi_mem_exec_op(nor->spimem, &op);
1159         } else {
1160                 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1161                                                       1);
1162         }
1163
1164         if (ret)
1165                 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1166
1167         return ret;
1168 }
1169
1170 /**
1171  * spi_nor_erase_chip() - Erase the entire flash memory.
1172  * @nor:        pointer to 'struct spi_nor'.
1173  *
1174  * Return: 0 on success, -errno otherwise.
1175  */
1176 static int spi_nor_erase_chip(struct spi_nor *nor)
1177 {
1178         int ret;
1179
1180         dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1181
1182         if (nor->spimem) {
1183                 struct spi_mem_op op =
1184                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 0),
1185                                    SPI_MEM_OP_NO_ADDR,
1186                                    SPI_MEM_OP_NO_DUMMY,
1187                                    SPI_MEM_OP_NO_DATA);
1188
1189                 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
1190
1191                 ret = spi_mem_exec_op(nor->spimem, &op);
1192         } else {
1193                 ret = spi_nor_controller_ops_write_reg(nor,
1194                                                        SPINOR_OP_CHIP_ERASE,
1195                                                        NULL, 0);
1196         }
1197
1198         if (ret)
1199                 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1200
1201         return ret;
1202 }
1203
1204 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1205 {
1206         size_t i;
1207
1208         for (i = 0; i < size; i++)
1209                 if (table[i][0] == opcode)
1210                         return table[i][1];
1211
1212         /* No conversion found, keep input op code. */
1213         return opcode;
1214 }
1215
1216 u8 spi_nor_convert_3to4_read(u8 opcode)
1217 {
1218         static const u8 spi_nor_3to4_read[][2] = {
1219                 { SPINOR_OP_READ,       SPINOR_OP_READ_4B },
1220                 { SPINOR_OP_READ_FAST,  SPINOR_OP_READ_FAST_4B },
1221                 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1222                 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1223                 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1224                 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1225                 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1226                 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1227
1228                 { SPINOR_OP_READ_1_1_1_DTR,     SPINOR_OP_READ_1_1_1_DTR_4B },
1229                 { SPINOR_OP_READ_1_2_2_DTR,     SPINOR_OP_READ_1_2_2_DTR_4B },
1230                 { SPINOR_OP_READ_1_4_4_DTR,     SPINOR_OP_READ_1_4_4_DTR_4B },
1231         };
1232
1233         return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1234                                       ARRAY_SIZE(spi_nor_3to4_read));
1235 }
1236
1237 static u8 spi_nor_convert_3to4_program(u8 opcode)
1238 {
1239         static const u8 spi_nor_3to4_program[][2] = {
1240                 { SPINOR_OP_PP,         SPINOR_OP_PP_4B },
1241                 { SPINOR_OP_PP_1_1_4,   SPINOR_OP_PP_1_1_4_4B },
1242                 { SPINOR_OP_PP_1_4_4,   SPINOR_OP_PP_1_4_4_4B },
1243                 { SPINOR_OP_PP_1_1_8,   SPINOR_OP_PP_1_1_8_4B },
1244                 { SPINOR_OP_PP_1_8_8,   SPINOR_OP_PP_1_8_8_4B },
1245         };
1246
1247         return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1248                                       ARRAY_SIZE(spi_nor_3to4_program));
1249 }
1250
1251 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1252 {
1253         static const u8 spi_nor_3to4_erase[][2] = {
1254                 { SPINOR_OP_BE_4K,      SPINOR_OP_BE_4K_4B },
1255                 { SPINOR_OP_BE_32K,     SPINOR_OP_BE_32K_4B },
1256                 { SPINOR_OP_SE,         SPINOR_OP_SE_4B },
1257         };
1258
1259         return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1260                                       ARRAY_SIZE(spi_nor_3to4_erase));
1261 }
1262
1263 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1264 {
1265         return !!nor->params->erase_map.uniform_erase_type;
1266 }
1267
1268 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1269 {
1270         nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1271         nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1272         nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1273
1274         if (!spi_nor_has_uniform_erase(nor)) {
1275                 struct spi_nor_erase_map *map = &nor->params->erase_map;
1276                 struct spi_nor_erase_type *erase;
1277                 int i;
1278
1279                 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1280                         erase = &map->erase_type[i];
1281                         erase->opcode =
1282                                 spi_nor_convert_3to4_erase(erase->opcode);
1283                 }
1284         }
1285 }
1286
1287 int spi_nor_lock_and_prep(struct spi_nor *nor)
1288 {
1289         int ret = 0;
1290
1291         mutex_lock(&nor->lock);
1292
1293         if (nor->controller_ops &&  nor->controller_ops->prepare) {
1294                 ret = nor->controller_ops->prepare(nor);
1295                 if (ret) {
1296                         mutex_unlock(&nor->lock);
1297                         return ret;
1298                 }
1299         }
1300         return ret;
1301 }
1302
1303 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1304 {
1305         if (nor->controller_ops && nor->controller_ops->unprepare)
1306                 nor->controller_ops->unprepare(nor);
1307         mutex_unlock(&nor->lock);
1308 }
1309
1310 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1311 {
1312         if (!nor->params->convert_addr)
1313                 return addr;
1314
1315         return nor->params->convert_addr(nor, addr);
1316 }
1317
1318 /*
1319  * Initiate the erasure of a single sector
1320  */
1321 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1322 {
1323         int i;
1324
1325         addr = spi_nor_convert_addr(nor, addr);
1326
1327         if (nor->spimem) {
1328                 struct spi_mem_op op =
1329                         SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
1330                                    SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
1331                                    SPI_MEM_OP_NO_DUMMY,
1332                                    SPI_MEM_OP_NO_DATA);
1333
1334                 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
1335
1336                 return spi_mem_exec_op(nor->spimem, &op);
1337         } else if (nor->controller_ops->erase) {
1338                 return spi_nor_controller_ops_erase(nor, addr);
1339         }
1340
1341         /*
1342          * Default implementation, if driver doesn't have a specialized HW
1343          * control
1344          */
1345         for (i = nor->addr_width - 1; i >= 0; i--) {
1346                 nor->bouncebuf[i] = addr & 0xff;
1347                 addr >>= 8;
1348         }
1349
1350         return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1351                                                 nor->bouncebuf, nor->addr_width);
1352 }
1353
1354 /**
1355  * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1356  * @erase:      pointer to a structure that describes a SPI NOR erase type
1357  * @dividend:   dividend value
1358  * @remainder:  pointer to u32 remainder (will be updated)
1359  *
1360  * Return: the result of the division
1361  */
1362 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1363                                      u64 dividend, u32 *remainder)
1364 {
1365         /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1366         *remainder = (u32)dividend & erase->size_mask;
1367         return dividend >> erase->size_shift;
1368 }
1369
1370 /**
1371  * spi_nor_find_best_erase_type() - find the best erase type for the given
1372  *                                  offset in the serial flash memory and the
1373  *                                  number of bytes to erase. The region in
1374  *                                  which the address fits is expected to be
1375  *                                  provided.
1376  * @map:        the erase map of the SPI NOR
1377  * @region:     pointer to a structure that describes a SPI NOR erase region
1378  * @addr:       offset in the serial flash memory
1379  * @len:        number of bytes to erase
1380  *
1381  * Return: a pointer to the best fitted erase type, NULL otherwise.
1382  */
1383 static const struct spi_nor_erase_type *
1384 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1385                              const struct spi_nor_erase_region *region,
1386                              u64 addr, u32 len)
1387 {
1388         const struct spi_nor_erase_type *erase;
1389         u32 rem;
1390         int i;
1391         u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1392
1393         /*
1394          * Erase types are ordered by size, with the smallest erase type at
1395          * index 0.
1396          */
1397         for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1398                 /* Does the erase region support the tested erase type? */
1399                 if (!(erase_mask & BIT(i)))
1400                         continue;
1401
1402                 erase = &map->erase_type[i];
1403
1404                 /* Alignment is not mandatory for overlaid regions */
1405                 if (region->offset & SNOR_OVERLAID_REGION &&
1406                     region->size <= len)
1407                         return erase;
1408
1409                 /* Don't erase more than what the user has asked for. */
1410                 if (erase->size > len)
1411                         continue;
1412
1413                 spi_nor_div_by_erase_size(erase, addr, &rem);
1414                 if (!rem)
1415                         return erase;
1416         }
1417
1418         return NULL;
1419 }
1420
1421 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1422 {
1423         return region->offset & SNOR_LAST_REGION;
1424 }
1425
1426 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1427 {
1428         return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1429 }
1430
1431 /**
1432  * spi_nor_region_next() - get the next spi nor region
1433  * @region:     pointer to a structure that describes a SPI NOR erase region
1434  *
1435  * Return: the next spi nor region or NULL if last region.
1436  */
1437 struct spi_nor_erase_region *
1438 spi_nor_region_next(struct spi_nor_erase_region *region)
1439 {
1440         if (spi_nor_region_is_last(region))
1441                 return NULL;
1442         region++;
1443         return region;
1444 }
1445
1446 /**
1447  * spi_nor_find_erase_region() - find the region of the serial flash memory in
1448  *                               which the offset fits
1449  * @map:        the erase map of the SPI NOR
1450  * @addr:       offset in the serial flash memory
1451  *
1452  * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1453  *         otherwise.
1454  */
1455 static struct spi_nor_erase_region *
1456 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1457 {
1458         struct spi_nor_erase_region *region = map->regions;
1459         u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1460         u64 region_end = region_start + region->size;
1461
1462         while (addr < region_start || addr >= region_end) {
1463                 region = spi_nor_region_next(region);
1464                 if (!region)
1465                         return ERR_PTR(-EINVAL);
1466
1467                 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1468                 region_end = region_start + region->size;
1469         }
1470
1471         return region;
1472 }
1473
1474 /**
1475  * spi_nor_init_erase_cmd() - initialize an erase command
1476  * @region:     pointer to a structure that describes a SPI NOR erase region
1477  * @erase:      pointer to a structure that describes a SPI NOR erase type
1478  *
1479  * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1480  *         otherwise.
1481  */
1482 static struct spi_nor_erase_command *
1483 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1484                        const struct spi_nor_erase_type *erase)
1485 {
1486         struct spi_nor_erase_command *cmd;
1487
1488         cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1489         if (!cmd)
1490                 return ERR_PTR(-ENOMEM);
1491
1492         INIT_LIST_HEAD(&cmd->list);
1493         cmd->opcode = erase->opcode;
1494         cmd->count = 1;
1495
1496         if (region->offset & SNOR_OVERLAID_REGION)
1497                 cmd->size = region->size;
1498         else
1499                 cmd->size = erase->size;
1500
1501         return cmd;
1502 }
1503
1504 /**
1505  * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1506  * @erase_list: list of erase commands
1507  */
1508 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1509 {
1510         struct spi_nor_erase_command *cmd, *next;
1511
1512         list_for_each_entry_safe(cmd, next, erase_list, list) {
1513                 list_del(&cmd->list);
1514                 kfree(cmd);
1515         }
1516 }
1517
1518 /**
1519  * spi_nor_init_erase_cmd_list() - initialize erase command list
1520  * @nor:        pointer to a 'struct spi_nor'
1521  * @erase_list: list of erase commands to be executed once we validate that the
1522  *              erase can be performed
1523  * @addr:       offset in the serial flash memory
1524  * @len:        number of bytes to erase
1525  *
1526  * Builds the list of best fitted erase commands and verifies if the erase can
1527  * be performed.
1528  *
1529  * Return: 0 on success, -errno otherwise.
1530  */
1531 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1532                                        struct list_head *erase_list,
1533                                        u64 addr, u32 len)
1534 {
1535         const struct spi_nor_erase_map *map = &nor->params->erase_map;
1536         const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1537         struct spi_nor_erase_region *region;
1538         struct spi_nor_erase_command *cmd = NULL;
1539         u64 region_end;
1540         int ret = -EINVAL;
1541
1542         region = spi_nor_find_erase_region(map, addr);
1543         if (IS_ERR(region))
1544                 return PTR_ERR(region);
1545
1546         region_end = spi_nor_region_end(region);
1547
1548         while (len) {
1549                 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1550                 if (!erase)
1551                         goto destroy_erase_cmd_list;
1552
1553                 if (prev_erase != erase ||
1554                     erase->size != cmd->size ||
1555                     region->offset & SNOR_OVERLAID_REGION) {
1556                         cmd = spi_nor_init_erase_cmd(region, erase);
1557                         if (IS_ERR(cmd)) {
1558                                 ret = PTR_ERR(cmd);
1559                                 goto destroy_erase_cmd_list;
1560                         }
1561
1562                         list_add_tail(&cmd->list, erase_list);
1563                 } else {
1564                         cmd->count++;
1565                 }
1566
1567                 addr += cmd->size;
1568                 len -= cmd->size;
1569
1570                 if (len && addr >= region_end) {
1571                         region = spi_nor_region_next(region);
1572                         if (!region)
1573                                 goto destroy_erase_cmd_list;
1574                         region_end = spi_nor_region_end(region);
1575                 }
1576
1577                 prev_erase = erase;
1578         }
1579
1580         return 0;
1581
1582 destroy_erase_cmd_list:
1583         spi_nor_destroy_erase_cmd_list(erase_list);
1584         return ret;
1585 }
1586
1587 /**
1588  * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1589  * @nor:        pointer to a 'struct spi_nor'
1590  * @addr:       offset in the serial flash memory
1591  * @len:        number of bytes to erase
1592  *
1593  * Build a list of best fitted erase commands and execute it once we validate
1594  * that the erase can be performed.
1595  *
1596  * Return: 0 on success, -errno otherwise.
1597  */
1598 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1599 {
1600         LIST_HEAD(erase_list);
1601         struct spi_nor_erase_command *cmd, *next;
1602         int ret;
1603
1604         ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1605         if (ret)
1606                 return ret;
1607
1608         list_for_each_entry_safe(cmd, next, &erase_list, list) {
1609                 nor->erase_opcode = cmd->opcode;
1610                 while (cmd->count) {
1611                         dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1612                                  cmd->size, cmd->opcode, cmd->count);
1613
1614                         ret = spi_nor_write_enable(nor);
1615                         if (ret)
1616                                 goto destroy_erase_cmd_list;
1617
1618                         ret = spi_nor_erase_sector(nor, addr);
1619                         if (ret)
1620                                 goto destroy_erase_cmd_list;
1621
1622                         ret = spi_nor_wait_till_ready(nor);
1623                         if (ret)
1624                                 goto destroy_erase_cmd_list;
1625
1626                         addr += cmd->size;
1627                         cmd->count--;
1628                 }
1629                 list_del(&cmd->list);
1630                 kfree(cmd);
1631         }
1632
1633         return 0;
1634
1635 destroy_erase_cmd_list:
1636         spi_nor_destroy_erase_cmd_list(&erase_list);
1637         return ret;
1638 }
1639
1640 /*
1641  * Erase an address range on the nor chip.  The address range may extend
1642  * one or more erase sectors. Return an error if there is a problem erasing.
1643  */
1644 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1645 {
1646         struct spi_nor *nor = mtd_to_spi_nor(mtd);
1647         u32 addr, len;
1648         uint32_t rem;
1649         int ret;
1650
1651         dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1652                         (long long)instr->len);
1653
1654         if (spi_nor_has_uniform_erase(nor)) {
1655                 div_u64_rem(instr->len, mtd->erasesize, &rem);
1656                 if (rem)
1657                         return -EINVAL;
1658         }
1659
1660         addr = instr->addr;
1661         len = instr->len;
1662
1663         ret = spi_nor_lock_and_prep(nor);
1664         if (ret)
1665                 return ret;
1666
1667         /* whole-chip erase? */
1668         if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1669                 unsigned long timeout;
1670
1671                 ret = spi_nor_write_enable(nor);
1672                 if (ret)
1673                         goto erase_err;
1674
1675                 ret = spi_nor_erase_chip(nor);
1676                 if (ret)
1677                         goto erase_err;
1678
1679                 /*
1680                  * Scale the timeout linearly with the size of the flash, with
1681                  * a minimum calibrated to an old 2MB flash. We could try to
1682                  * pull these from CFI/SFDP, but these values should be good
1683                  * enough for now.
1684                  */
1685                 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1686                               CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1687                               (unsigned long)(mtd->size / SZ_2M));
1688                 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1689                 if (ret)
1690                         goto erase_err;
1691
1692         /* REVISIT in some cases we could speed up erasing large regions
1693          * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1694          * to use "small sector erase", but that's not always optimal.
1695          */
1696
1697         /* "sector"-at-a-time erase */
1698         } else if (spi_nor_has_uniform_erase(nor)) {
1699                 while (len) {
1700                         ret = spi_nor_write_enable(nor);
1701                         if (ret)
1702                                 goto erase_err;
1703
1704                         ret = spi_nor_erase_sector(nor, addr);
1705                         if (ret)
1706                                 goto erase_err;
1707
1708                         ret = spi_nor_wait_till_ready(nor);
1709                         if (ret)
1710                                 goto erase_err;
1711
1712                         addr += mtd->erasesize;
1713                         len -= mtd->erasesize;
1714                 }
1715
1716         /* erase multiple sectors */
1717         } else {
1718                 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1719                 if (ret)
1720                         goto erase_err;
1721         }
1722
1723         ret = spi_nor_write_disable(nor);
1724
1725 erase_err:
1726         spi_nor_unlock_and_unprep(nor);
1727
1728         return ret;
1729 }
1730
1731 /**
1732  * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1733  * Register 1.
1734  * @nor:        pointer to a 'struct spi_nor'
1735  *
1736  * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1737  *
1738  * Return: 0 on success, -errno otherwise.
1739  */
1740 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1741 {
1742         int ret;
1743
1744         ret = spi_nor_read_sr(nor, nor->bouncebuf);
1745         if (ret)
1746                 return ret;
1747
1748         if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1749                 return 0;
1750
1751         nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1752
1753         return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1754 }
1755
1756 /**
1757  * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1758  * Register 2.
1759  * @nor:       pointer to a 'struct spi_nor'.
1760  *
1761  * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1762  *
1763  * Return: 0 on success, -errno otherwise.
1764  */
1765 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1766 {
1767         int ret;
1768
1769         if (nor->flags & SNOR_F_NO_READ_CR)
1770                 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1771
1772         ret = spi_nor_read_cr(nor, nor->bouncebuf);
1773         if (ret)
1774                 return ret;
1775
1776         if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1777                 return 0;
1778
1779         nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1780
1781         return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1782 }
1783
1784 /**
1785  * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1786  * @nor:        pointer to a 'struct spi_nor'
1787  *
1788  * Set the Quad Enable (QE) bit in the Status Register 2.
1789  *
1790  * This is one of the procedures to set the QE bit described in the SFDP
1791  * (JESD216 rev B) specification but no manufacturer using this procedure has
1792  * been identified yet, hence the name of the function.
1793  *
1794  * Return: 0 on success, -errno otherwise.
1795  */
1796 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1797 {
1798         u8 *sr2 = nor->bouncebuf;
1799         int ret;
1800         u8 sr2_written;
1801
1802         /* Check current Quad Enable bit value. */
1803         ret = spi_nor_read_sr2(nor, sr2);
1804         if (ret)
1805                 return ret;
1806         if (*sr2 & SR2_QUAD_EN_BIT7)
1807                 return 0;
1808
1809         /* Update the Quad Enable bit. */
1810         *sr2 |= SR2_QUAD_EN_BIT7;
1811
1812         ret = spi_nor_write_sr2(nor, sr2);
1813         if (ret)
1814                 return ret;
1815
1816         sr2_written = *sr2;
1817
1818         /* Read back and check it. */
1819         ret = spi_nor_read_sr2(nor, sr2);
1820         if (ret)
1821                 return ret;
1822
1823         if (*sr2 != sr2_written) {
1824                 dev_dbg(nor->dev, "SR2: Read back test failed\n");
1825                 return -EIO;
1826         }
1827
1828         return 0;
1829 }
1830
1831 static const struct spi_nor_manufacturer *manufacturers[] = {
1832         &spi_nor_atmel,
1833         &spi_nor_catalyst,
1834         &spi_nor_eon,
1835         &spi_nor_esmt,
1836         &spi_nor_everspin,
1837         &spi_nor_fujitsu,
1838         &spi_nor_gigadevice,
1839         &spi_nor_intel,
1840         &spi_nor_issi,
1841         &spi_nor_macronix,
1842         &spi_nor_micron,
1843         &spi_nor_st,
1844         &spi_nor_spansion,
1845         &spi_nor_sst,
1846         &spi_nor_winbond,
1847         &spi_nor_xilinx,
1848         &spi_nor_xmc,
1849 };
1850
1851 static const struct flash_info *
1852 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
1853                           const u8 *id)
1854 {
1855         unsigned int i;
1856
1857         for (i = 0; i < nparts; i++) {
1858                 if (parts[i].id_len &&
1859                     !memcmp(parts[i].id, id, parts[i].id_len))
1860                         return &parts[i];
1861         }
1862
1863         return NULL;
1864 }
1865
1866 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1867 {
1868         const struct flash_info *info;
1869         u8 *id = nor->bouncebuf;
1870         unsigned int i;
1871         int ret;
1872
1873         if (nor->spimem) {
1874                 struct spi_mem_op op =
1875                         SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
1876                                    SPI_MEM_OP_NO_ADDR,
1877                                    SPI_MEM_OP_NO_DUMMY,
1878                                    SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
1879
1880                 ret = spi_mem_exec_op(nor->spimem, &op);
1881         } else {
1882                 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
1883                                                     SPI_NOR_MAX_ID_LEN);
1884         }
1885         if (ret) {
1886                 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
1887                 return ERR_PTR(ret);
1888         }
1889
1890         for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1891                 info = spi_nor_search_part_by_id(manufacturers[i]->parts,
1892                                                  manufacturers[i]->nparts,
1893                                                  id);
1894                 if (info) {
1895                         nor->manufacturer = manufacturers[i];
1896                         return info;
1897                 }
1898         }
1899
1900         dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
1901                 SPI_NOR_MAX_ID_LEN, id);
1902         return ERR_PTR(-ENODEV);
1903 }
1904
1905 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1906                         size_t *retlen, u_char *buf)
1907 {
1908         struct spi_nor *nor = mtd_to_spi_nor(mtd);
1909         ssize_t ret;
1910
1911         dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1912
1913         ret = spi_nor_lock_and_prep(nor);
1914         if (ret)
1915                 return ret;
1916
1917         while (len) {
1918                 loff_t addr = from;
1919
1920                 addr = spi_nor_convert_addr(nor, addr);
1921
1922                 ret = spi_nor_read_data(nor, addr, len, buf);
1923                 if (ret == 0) {
1924                         /* We shouldn't see 0-length reads */
1925                         ret = -EIO;
1926                         goto read_err;
1927                 }
1928                 if (ret < 0)
1929                         goto read_err;
1930
1931                 WARN_ON(ret > len);
1932                 *retlen += ret;
1933                 buf += ret;
1934                 from += ret;
1935                 len -= ret;
1936         }
1937         ret = 0;
1938
1939 read_err:
1940         spi_nor_unlock_and_unprep(nor);
1941         return ret;
1942 }
1943
1944 /*
1945  * Write an address range to the nor chip.  Data must be written in
1946  * FLASH_PAGESIZE chunks.  The address range may be any size provided
1947  * it is within the physical boundaries.
1948  */
1949 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1950         size_t *retlen, const u_char *buf)
1951 {
1952         struct spi_nor *nor = mtd_to_spi_nor(mtd);
1953         size_t page_offset, page_remain, i;
1954         ssize_t ret;
1955         u32 page_size = nor->params->page_size;
1956
1957         dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1958
1959         ret = spi_nor_lock_and_prep(nor);
1960         if (ret)
1961                 return ret;
1962
1963         for (i = 0; i < len; ) {
1964                 ssize_t written;
1965                 loff_t addr = to + i;
1966
1967                 /*
1968                  * If page_size is a power of two, the offset can be quickly
1969                  * calculated with an AND operation. On the other cases we
1970                  * need to do a modulus operation (more expensive).
1971                  */
1972                 if (is_power_of_2(page_size)) {
1973                         page_offset = addr & (page_size - 1);
1974                 } else {
1975                         uint64_t aux = addr;
1976
1977                         page_offset = do_div(aux, page_size);
1978                 }
1979                 /* the size of data remaining on the first page */
1980                 page_remain = min_t(size_t, page_size - page_offset, len - i);
1981
1982                 addr = spi_nor_convert_addr(nor, addr);
1983
1984                 ret = spi_nor_write_enable(nor);
1985                 if (ret)
1986                         goto write_err;
1987
1988                 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
1989                 if (ret < 0)
1990                         goto write_err;
1991                 written = ret;
1992
1993                 ret = spi_nor_wait_till_ready(nor);
1994                 if (ret)
1995                         goto write_err;
1996                 *retlen += written;
1997                 i += written;
1998         }
1999
2000 write_err:
2001         spi_nor_unlock_and_unprep(nor);
2002         return ret;
2003 }
2004
2005 static int spi_nor_check(struct spi_nor *nor)
2006 {
2007         if (!nor->dev ||
2008             (!nor->spimem && !nor->controller_ops) ||
2009             (!nor->spimem && nor->controller_ops &&
2010             (!nor->controller_ops->read ||
2011              !nor->controller_ops->write ||
2012              !nor->controller_ops->read_reg ||
2013              !nor->controller_ops->write_reg))) {
2014                 pr_err("spi-nor: please fill all the necessary fields!\n");
2015                 return -EINVAL;
2016         }
2017
2018         if (nor->spimem && nor->controller_ops) {
2019                 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2020                 return -EINVAL;
2021         }
2022
2023         return 0;
2024 }
2025
2026 void
2027 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2028                           u8 num_mode_clocks,
2029                           u8 num_wait_states,
2030                           u8 opcode,
2031                           enum spi_nor_protocol proto)
2032 {
2033         read->num_mode_clocks = num_mode_clocks;
2034         read->num_wait_states = num_wait_states;
2035         read->opcode = opcode;
2036         read->proto = proto;
2037 }
2038
2039 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2040                              enum spi_nor_protocol proto)
2041 {
2042         pp->opcode = opcode;
2043         pp->proto = proto;
2044 }
2045
2046 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2047 {
2048         size_t i;
2049
2050         for (i = 0; i < size; i++)
2051                 if (table[i][0] == (int)hwcaps)
2052                         return table[i][1];
2053
2054         return -EINVAL;
2055 }
2056
2057 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2058 {
2059         static const int hwcaps_read2cmd[][2] = {
2060                 { SNOR_HWCAPS_READ,             SNOR_CMD_READ },
2061                 { SNOR_HWCAPS_READ_FAST,        SNOR_CMD_READ_FAST },
2062                 { SNOR_HWCAPS_READ_1_1_1_DTR,   SNOR_CMD_READ_1_1_1_DTR },
2063                 { SNOR_HWCAPS_READ_1_1_2,       SNOR_CMD_READ_1_1_2 },
2064                 { SNOR_HWCAPS_READ_1_2_2,       SNOR_CMD_READ_1_2_2 },
2065                 { SNOR_HWCAPS_READ_2_2_2,       SNOR_CMD_READ_2_2_2 },
2066                 { SNOR_HWCAPS_READ_1_2_2_DTR,   SNOR_CMD_READ_1_2_2_DTR },
2067                 { SNOR_HWCAPS_READ_1_1_4,       SNOR_CMD_READ_1_1_4 },
2068                 { SNOR_HWCAPS_READ_1_4_4,       SNOR_CMD_READ_1_4_4 },
2069                 { SNOR_HWCAPS_READ_4_4_4,       SNOR_CMD_READ_4_4_4 },
2070                 { SNOR_HWCAPS_READ_1_4_4_DTR,   SNOR_CMD_READ_1_4_4_DTR },
2071                 { SNOR_HWCAPS_READ_1_1_8,       SNOR_CMD_READ_1_1_8 },
2072                 { SNOR_HWCAPS_READ_1_8_8,       SNOR_CMD_READ_1_8_8 },
2073                 { SNOR_HWCAPS_READ_8_8_8,       SNOR_CMD_READ_8_8_8 },
2074                 { SNOR_HWCAPS_READ_1_8_8_DTR,   SNOR_CMD_READ_1_8_8_DTR },
2075                 { SNOR_HWCAPS_READ_8_8_8_DTR,   SNOR_CMD_READ_8_8_8_DTR },
2076         };
2077
2078         return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2079                                   ARRAY_SIZE(hwcaps_read2cmd));
2080 }
2081
2082 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2083 {
2084         static const int hwcaps_pp2cmd[][2] = {
2085                 { SNOR_HWCAPS_PP,               SNOR_CMD_PP },
2086                 { SNOR_HWCAPS_PP_1_1_4,         SNOR_CMD_PP_1_1_4 },
2087                 { SNOR_HWCAPS_PP_1_4_4,         SNOR_CMD_PP_1_4_4 },
2088                 { SNOR_HWCAPS_PP_4_4_4,         SNOR_CMD_PP_4_4_4 },
2089                 { SNOR_HWCAPS_PP_1_1_8,         SNOR_CMD_PP_1_1_8 },
2090                 { SNOR_HWCAPS_PP_1_8_8,         SNOR_CMD_PP_1_8_8 },
2091                 { SNOR_HWCAPS_PP_8_8_8,         SNOR_CMD_PP_8_8_8 },
2092                 { SNOR_HWCAPS_PP_8_8_8_DTR,     SNOR_CMD_PP_8_8_8_DTR },
2093         };
2094
2095         return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2096                                   ARRAY_SIZE(hwcaps_pp2cmd));
2097 }
2098
2099 /**
2100  * spi_nor_spimem_check_op - check if the operation is supported
2101  *                           by controller
2102  *@nor:        pointer to a 'struct spi_nor'
2103  *@op:         pointer to op template to be checked
2104  *
2105  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2106  */
2107 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2108                                    struct spi_mem_op *op)
2109 {
2110         /*
2111          * First test with 4 address bytes. The opcode itself might
2112          * be a 3B addressing opcode but we don't care, because
2113          * SPI controller implementation should not check the opcode,
2114          * but just the sequence.
2115          */
2116         op->addr.nbytes = 4;
2117         if (!spi_mem_supports_op(nor->spimem, op)) {
2118                 if (nor->params->size > SZ_16M)
2119                         return -EOPNOTSUPP;
2120
2121                 /* If flash size <= 16MB, 3 address bytes are sufficient */
2122                 op->addr.nbytes = 3;
2123                 if (!spi_mem_supports_op(nor->spimem, op))
2124                         return -EOPNOTSUPP;
2125         }
2126
2127         return 0;
2128 }
2129
2130 /**
2131  * spi_nor_spimem_check_readop - check if the read op is supported
2132  *                               by controller
2133  *@nor:         pointer to a 'struct spi_nor'
2134  *@read:        pointer to op template to be checked
2135  *
2136  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2137  */
2138 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2139                                        const struct spi_nor_read_command *read)
2140 {
2141         struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0),
2142                                           SPI_MEM_OP_ADDR(3, 0, 0),
2143                                           SPI_MEM_OP_DUMMY(1, 0),
2144                                           SPI_MEM_OP_DATA_IN(2, NULL, 0));
2145
2146         spi_nor_spimem_setup_op(nor, &op, read->proto);
2147
2148         /* convert the dummy cycles to the number of bytes */
2149         op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
2150         if (spi_nor_protocol_is_dtr(nor->read_proto))
2151                 op.dummy.nbytes *= 2;
2152
2153         return spi_nor_spimem_check_op(nor, &op);
2154 }
2155
2156 /**
2157  * spi_nor_spimem_check_pp - check if the page program op is supported
2158  *                           by controller
2159  *@nor:         pointer to a 'struct spi_nor'
2160  *@pp:          pointer to op template to be checked
2161  *
2162  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2163  */
2164 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2165                                    const struct spi_nor_pp_command *pp)
2166 {
2167         struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0),
2168                                           SPI_MEM_OP_ADDR(3, 0, 0),
2169                                           SPI_MEM_OP_NO_DUMMY,
2170                                           SPI_MEM_OP_DATA_OUT(2, NULL, 0));
2171
2172         spi_nor_spimem_setup_op(nor, &op, pp->proto);
2173
2174         return spi_nor_spimem_check_op(nor, &op);
2175 }
2176
2177 /**
2178  * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2179  *                                based on SPI controller capabilities
2180  * @nor:        pointer to a 'struct spi_nor'
2181  * @hwcaps:     pointer to resulting capabilities after adjusting
2182  *              according to controller and flash's capability
2183  */
2184 static void
2185 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2186 {
2187         struct spi_nor_flash_parameter *params = nor->params;
2188         unsigned int cap;
2189
2190         /* X-X-X modes are not supported yet, mask them all. */
2191         *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2192
2193         /*
2194          * If the reset line is broken, we do not want to enter a stateful
2195          * mode.
2196          */
2197         if (nor->flags & SNOR_F_BROKEN_RESET)
2198                 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2199
2200         for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2201                 int rdidx, ppidx;
2202
2203                 if (!(*hwcaps & BIT(cap)))
2204                         continue;
2205
2206                 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2207                 if (rdidx >= 0 &&
2208                     spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2209                         *hwcaps &= ~BIT(cap);
2210
2211                 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2212                 if (ppidx < 0)
2213                         continue;
2214
2215                 if (spi_nor_spimem_check_pp(nor,
2216                                             &params->page_programs[ppidx]))
2217                         *hwcaps &= ~BIT(cap);
2218         }
2219 }
2220
2221 /**
2222  * spi_nor_set_erase_type() - set a SPI NOR erase type
2223  * @erase:      pointer to a structure that describes a SPI NOR erase type
2224  * @size:       the size of the sector/block erased by the erase type
2225  * @opcode:     the SPI command op code to erase the sector/block
2226  */
2227 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2228                             u8 opcode)
2229 {
2230         erase->size = size;
2231         erase->opcode = opcode;
2232         /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2233         erase->size_shift = ffs(erase->size) - 1;
2234         erase->size_mask = (1 << erase->size_shift) - 1;
2235 }
2236
2237 /**
2238  * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2239  * @map:                the erase map of the SPI NOR
2240  * @erase_mask:         bitmask encoding erase types that can erase the entire
2241  *                      flash memory
2242  * @flash_size:         the spi nor flash memory size
2243  */
2244 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2245                                     u8 erase_mask, u64 flash_size)
2246 {
2247         /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2248         map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2249                                      SNOR_LAST_REGION;
2250         map->uniform_region.size = flash_size;
2251         map->regions = &map->uniform_region;
2252         map->uniform_erase_type = erase_mask;
2253 }
2254
2255 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2256                              const struct sfdp_parameter_header *bfpt_header,
2257                              const struct sfdp_bfpt *bfpt)
2258 {
2259         int ret;
2260
2261         if (nor->manufacturer && nor->manufacturer->fixups &&
2262             nor->manufacturer->fixups->post_bfpt) {
2263                 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2264                                                            bfpt);
2265                 if (ret)
2266                         return ret;
2267         }
2268
2269         if (nor->info->fixups && nor->info->fixups->post_bfpt)
2270                 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2271
2272         return 0;
2273 }
2274
2275 static int spi_nor_select_read(struct spi_nor *nor,
2276                                u32 shared_hwcaps)
2277 {
2278         int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2279         const struct spi_nor_read_command *read;
2280
2281         if (best_match < 0)
2282                 return -EINVAL;
2283
2284         cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2285         if (cmd < 0)
2286                 return -EINVAL;
2287
2288         read = &nor->params->reads[cmd];
2289         nor->read_opcode = read->opcode;
2290         nor->read_proto = read->proto;
2291
2292         /*
2293          * In the SPI NOR framework, we don't need to make the difference
2294          * between mode clock cycles and wait state clock cycles.
2295          * Indeed, the value of the mode clock cycles is used by a QSPI
2296          * flash memory to know whether it should enter or leave its 0-4-4
2297          * (Continuous Read / XIP) mode.
2298          * eXecution In Place is out of the scope of the mtd sub-system.
2299          * Hence we choose to merge both mode and wait state clock cycles
2300          * into the so called dummy clock cycles.
2301          */
2302         nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2303         return 0;
2304 }
2305
2306 static int spi_nor_select_pp(struct spi_nor *nor,
2307                              u32 shared_hwcaps)
2308 {
2309         int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2310         const struct spi_nor_pp_command *pp;
2311
2312         if (best_match < 0)
2313                 return -EINVAL;
2314
2315         cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2316         if (cmd < 0)
2317                 return -EINVAL;
2318
2319         pp = &nor->params->page_programs[cmd];
2320         nor->program_opcode = pp->opcode;
2321         nor->write_proto = pp->proto;
2322         return 0;
2323 }
2324
2325 /**
2326  * spi_nor_select_uniform_erase() - select optimum uniform erase type
2327  * @map:                the erase map of the SPI NOR
2328  * @wanted_size:        the erase type size to search for. Contains the value of
2329  *                      info->sector_size or of the "small sector" size in case
2330  *                      CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2331  *
2332  * Once the optimum uniform sector erase command is found, disable all the
2333  * other.
2334  *
2335  * Return: pointer to erase type on success, NULL otherwise.
2336  */
2337 static const struct spi_nor_erase_type *
2338 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2339                              const u32 wanted_size)
2340 {
2341         const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2342         int i;
2343         u8 uniform_erase_type = map->uniform_erase_type;
2344
2345         for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2346                 if (!(uniform_erase_type & BIT(i)))
2347                         continue;
2348
2349                 tested_erase = &map->erase_type[i];
2350
2351                 /*
2352                  * If the current erase size is the one, stop here:
2353                  * we have found the right uniform Sector Erase command.
2354                  */
2355                 if (tested_erase->size == wanted_size) {
2356                         erase = tested_erase;
2357                         break;
2358                 }
2359
2360                 /*
2361                  * Otherwise, the current erase size is still a valid candidate.
2362                  * Select the biggest valid candidate.
2363                  */
2364                 if (!erase && tested_erase->size)
2365                         erase = tested_erase;
2366                         /* keep iterating to find the wanted_size */
2367         }
2368
2369         if (!erase)
2370                 return NULL;
2371
2372         /* Disable all other Sector Erase commands. */
2373         map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2374         map->uniform_erase_type |= BIT(erase - map->erase_type);
2375         return erase;
2376 }
2377
2378 static int spi_nor_select_erase(struct spi_nor *nor)
2379 {
2380         struct spi_nor_erase_map *map = &nor->params->erase_map;
2381         const struct spi_nor_erase_type *erase = NULL;
2382         struct mtd_info *mtd = &nor->mtd;
2383         u32 wanted_size = nor->info->sector_size;
2384         int i;
2385
2386         /*
2387          * The previous implementation handling Sector Erase commands assumed
2388          * that the SPI flash memory has an uniform layout then used only one
2389          * of the supported erase sizes for all Sector Erase commands.
2390          * So to be backward compatible, the new implementation also tries to
2391          * manage the SPI flash memory as uniform with a single erase sector
2392          * size, when possible.
2393          */
2394 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2395         /* prefer "small sector" erase if possible */
2396         wanted_size = 4096u;
2397 #endif
2398
2399         if (spi_nor_has_uniform_erase(nor)) {
2400                 erase = spi_nor_select_uniform_erase(map, wanted_size);
2401                 if (!erase)
2402                         return -EINVAL;
2403                 nor->erase_opcode = erase->opcode;
2404                 mtd->erasesize = erase->size;
2405                 return 0;
2406         }
2407
2408         /*
2409          * For non-uniform SPI flash memory, set mtd->erasesize to the
2410          * maximum erase sector size. No need to set nor->erase_opcode.
2411          */
2412         for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2413                 if (map->erase_type[i].size) {
2414                         erase = &map->erase_type[i];
2415                         break;
2416                 }
2417         }
2418
2419         if (!erase)
2420                 return -EINVAL;
2421
2422         mtd->erasesize = erase->size;
2423         return 0;
2424 }
2425
2426 static int spi_nor_default_setup(struct spi_nor *nor,
2427                                  const struct spi_nor_hwcaps *hwcaps)
2428 {
2429         struct spi_nor_flash_parameter *params = nor->params;
2430         u32 ignored_mask, shared_mask;
2431         int err;
2432
2433         /*
2434          * Keep only the hardware capabilities supported by both the SPI
2435          * controller and the SPI flash memory.
2436          */
2437         shared_mask = hwcaps->mask & params->hwcaps.mask;
2438
2439         if (nor->spimem) {
2440                 /*
2441                  * When called from spi_nor_probe(), all caps are set and we
2442                  * need to discard some of them based on what the SPI
2443                  * controller actually supports (using spi_mem_supports_op()).
2444                  */
2445                 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2446         } else {
2447                 /*
2448                  * SPI n-n-n protocols are not supported when the SPI
2449                  * controller directly implements the spi_nor interface.
2450                  * Yet another reason to switch to spi-mem.
2451                  */
2452                 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2453                 if (shared_mask & ignored_mask) {
2454                         dev_dbg(nor->dev,
2455                                 "SPI n-n-n protocols are not supported.\n");
2456                         shared_mask &= ~ignored_mask;
2457                 }
2458         }
2459
2460         /* Select the (Fast) Read command. */
2461         err = spi_nor_select_read(nor, shared_mask);
2462         if (err) {
2463                 dev_dbg(nor->dev,
2464                         "can't select read settings supported by both the SPI controller and memory.\n");
2465                 return err;
2466         }
2467
2468         /* Select the Page Program command. */
2469         err = spi_nor_select_pp(nor, shared_mask);
2470         if (err) {
2471                 dev_dbg(nor->dev,
2472                         "can't select write settings supported by both the SPI controller and memory.\n");
2473                 return err;
2474         }
2475
2476         /* Select the Sector Erase command. */
2477         err = spi_nor_select_erase(nor);
2478         if (err) {
2479                 dev_dbg(nor->dev,
2480                         "can't select erase settings supported by both the SPI controller and memory.\n");
2481                 return err;
2482         }
2483
2484         return 0;
2485 }
2486
2487 static int spi_nor_set_addr_width(struct spi_nor *nor)
2488 {
2489         if (nor->addr_width) {
2490                 /* already configured from SFDP */
2491         } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2492                 /*
2493                  * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2494                  * in this protocol an odd address width cannot be used because
2495                  * then the address phase would only span a cycle and a half.
2496                  * Half a cycle would be left over. We would then have to start
2497                  * the dummy phase in the middle of a cycle and so too the data
2498                  * phase, and we will end the transaction with half a cycle left
2499                  * over.
2500                  *
2501                  * Force all 8D-8D-8D flashes to use an address width of 4 to
2502                  * avoid this situation.
2503                  */
2504                 nor->addr_width = 4;
2505         } else if (nor->info->addr_width) {
2506                 nor->addr_width = nor->info->addr_width;
2507         } else {
2508                 nor->addr_width = 3;
2509         }
2510
2511         if (nor->addr_width == 3 && nor->params->size > 0x1000000) {
2512                 /* enable 4-byte addressing if the device exceeds 16MiB */
2513                 nor->addr_width = 4;
2514         }
2515
2516         if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2517                 dev_dbg(nor->dev, "address width is too large: %u\n",
2518                         nor->addr_width);
2519                 return -EINVAL;
2520         }
2521
2522         /* Set 4byte opcodes when possible. */
2523         if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2524             !(nor->flags & SNOR_F_HAS_4BAIT))
2525                 spi_nor_set_4byte_opcodes(nor);
2526
2527         return 0;
2528 }
2529
2530 static int spi_nor_setup(struct spi_nor *nor,
2531                          const struct spi_nor_hwcaps *hwcaps)
2532 {
2533         int ret;
2534
2535         if (nor->params->setup) {
2536                 ret = nor->params->setup(nor, hwcaps);
2537                 if (ret)
2538                         return ret;
2539         }
2540
2541         return spi_nor_set_addr_width(nor);
2542 }
2543
2544 /**
2545  * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2546  * settings based on MFR register and ->default_init() hook.
2547  * @nor:        pointer to a 'struct spi_nor'.
2548  */
2549 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2550 {
2551         if (nor->manufacturer && nor->manufacturer->fixups &&
2552             nor->manufacturer->fixups->default_init)
2553                 nor->manufacturer->fixups->default_init(nor);
2554
2555         if (nor->info->fixups && nor->info->fixups->default_init)
2556                 nor->info->fixups->default_init(nor);
2557 }
2558
2559 /**
2560  * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2561  * settings based on nor->info->sfdp_flags. This method should be called only by
2562  * flashes that do not define SFDP tables. If the flash supports SFDP but the
2563  * information is wrong and the settings from this function can not be retrieved
2564  * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2565  * bits.
2566  * @nor:        pointer to a 'struct spi_nor'.
2567  */
2568 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2569 {
2570         struct spi_nor_flash_parameter *params = nor->params;
2571         struct spi_nor_erase_map *map = &params->erase_map;
2572         const u8 no_sfdp_flags = nor->info->no_sfdp_flags;
2573         u8 i, erase_mask;
2574
2575         if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2576                 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2577                 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2578                                           0, 8, SPINOR_OP_READ_1_1_2,
2579                                           SNOR_PROTO_1_1_2);
2580         }
2581
2582         if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2583                 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2584                 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2585                                           0, 8, SPINOR_OP_READ_1_1_4,
2586                                           SNOR_PROTO_1_1_4);
2587         }
2588
2589         if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2590                 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2591                 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2592                                           0, 8, SPINOR_OP_READ_1_1_8,
2593                                           SNOR_PROTO_1_1_8);
2594         }
2595
2596         if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2597                 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2598                 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
2599                                           0, 20, SPINOR_OP_READ_FAST,
2600                                           SNOR_PROTO_8_8_8_DTR);
2601         }
2602
2603         if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2604                 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2605                 /*
2606                  * Since xSPI Page Program opcode is backward compatible with
2607                  * Legacy SPI, use Legacy SPI opcode there as well.
2608                  */
2609                 spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2610                                         SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2611         }
2612
2613         /*
2614          * Sector Erase settings. Sort Erase Types in ascending order, with the
2615          * smallest erase size starting at BIT(0).
2616          */
2617         erase_mask = 0;
2618         i = 0;
2619         if (no_sfdp_flags & SECT_4K_PMC) {
2620                 erase_mask |= BIT(i);
2621                 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2622                                        SPINOR_OP_BE_4K_PMC);
2623                 i++;
2624         } else if (no_sfdp_flags & SECT_4K) {
2625                 erase_mask |= BIT(i);
2626                 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2627                                        SPINOR_OP_BE_4K);
2628                 i++;
2629         }
2630         erase_mask |= BIT(i);
2631         spi_nor_set_erase_type(&map->erase_type[i], nor->info->sector_size,
2632                                SPINOR_OP_SE);
2633         spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2634 }
2635
2636 /**
2637  * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2638  * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2639  * @nor:        pointer to a 'struct spi_nor'
2640  */
2641 static void spi_nor_init_flags(struct spi_nor *nor)
2642 {
2643         struct device_node *np = spi_nor_get_flash_node(nor);
2644         const u16 flags = nor->info->flags;
2645
2646         if (of_property_read_bool(np, "broken-flash-reset"))
2647                 nor->flags |= SNOR_F_BROKEN_RESET;
2648
2649         if (flags & SPI_NOR_SWP_IS_VOLATILE)
2650                 nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2651
2652         if (flags & SPI_NOR_HAS_LOCK)
2653                 nor->flags |= SNOR_F_HAS_LOCK;
2654
2655         if (flags & SPI_NOR_HAS_TB) {
2656                 nor->flags |= SNOR_F_HAS_SR_TB;
2657                 if (flags & SPI_NOR_TB_SR_BIT6)
2658                         nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2659         }
2660
2661         if (flags & SPI_NOR_4BIT_BP) {
2662                 nor->flags |= SNOR_F_HAS_4BIT_BP;
2663                 if (flags & SPI_NOR_BP3_SR_BIT6)
2664                         nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2665         }
2666
2667         if (flags & NO_CHIP_ERASE)
2668                 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2669
2670         if (flags & USE_CLSR)
2671                 nor->flags |= SNOR_F_USE_CLSR;
2672
2673         if (flags & USE_FSR)
2674                 nor->flags |= SNOR_F_USE_FSR;
2675
2676         /*
2677          * Make sure the XSR_RDY flag is set before calling
2678          * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
2679          * with Atmel SPI NOR.
2680          */
2681         if (flags & SPI_NOR_XSR_RDY)
2682                 nor->flags |=  SNOR_F_READY_XSR_RDY;
2683 }
2684
2685 /**
2686  * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2687  * be discovered by SFDP for this particular flash because the SFDP table that
2688  * indicates this support is not defined in the flash. In case the table for
2689  * this support is defined but has wrong values, one should instead use a
2690  * post_sfdp() hook to set the SNOR_F equivalent flag.
2691  * @nor:       pointer to a 'struct spi_nor'
2692  */
2693 static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2694 {
2695         const u8 fixup_flags = nor->info->fixup_flags;
2696
2697         if (fixup_flags & SPI_NOR_4B_OPCODES)
2698                 nor->flags |= SNOR_F_4B_OPCODES;
2699
2700         if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2701                 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2702 }
2703
2704 /**
2705  * spi_nor_late_init_params() - Late initialization of default flash parameters.
2706  * @nor:        pointer to a 'struct spi_nor'
2707  *
2708  * Used to initialize flash parameters that are not declared in the JESD216
2709  * SFDP standard, or where SFDP tables are not defined at all.
2710  * Will replace the spi_nor_manufacturer_init_params() method.
2711  */
2712 static void spi_nor_late_init_params(struct spi_nor *nor)
2713 {
2714         if (nor->manufacturer && nor->manufacturer->fixups &&
2715             nor->manufacturer->fixups->late_init)
2716                 nor->manufacturer->fixups->late_init(nor);
2717
2718         if (nor->info->fixups && nor->info->fixups->late_init)
2719                 nor->info->fixups->late_init(nor);
2720
2721         spi_nor_init_flags(nor);
2722         spi_nor_init_fixup_flags(nor);
2723
2724         /*
2725          * NOR protection support. When locking_ops are not provided, we pick
2726          * the default ones.
2727          */
2728         if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2729                 spi_nor_init_default_locking_ops(nor);
2730 }
2731
2732 /**
2733  * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2734  * parameters and settings based on JESD216 SFDP standard.
2735  * @nor:        pointer to a 'struct spi_nor'.
2736  *
2737  * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2738  * legacy flash parameters and settings will be restored.
2739  */
2740 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2741 {
2742         struct spi_nor_flash_parameter sfdp_params;
2743
2744         memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2745
2746         if (spi_nor_parse_sfdp(nor)) {
2747                 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2748                 nor->addr_width = 0;
2749                 nor->flags &= ~SNOR_F_4B_OPCODES;
2750         }
2751 }
2752
2753 /**
2754  * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2755  * parameters and settings.
2756  * @nor:        pointer to a 'struct spi_nor'.
2757  *
2758  * The method assumes that flash doesn't support SFDP so it initializes flash
2759  * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2760  * when parsing SFDP, if supported.
2761  */
2762 static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2763 {
2764         spi_nor_no_sfdp_init_params(nor);
2765
2766         spi_nor_manufacturer_init_params(nor);
2767
2768         if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
2769                                         SPI_NOR_QUAD_READ |
2770                                         SPI_NOR_OCTAL_READ |
2771                                         SPI_NOR_OCTAL_DTR_READ))
2772                 spi_nor_sfdp_init_params_deprecated(nor);
2773 }
2774
2775 /**
2776  * spi_nor_init_default_params() - Default initialization of flash parameters
2777  * and settings. Done for all flashes, regardless is they define SFDP tables
2778  * or not.
2779  * @nor:        pointer to a 'struct spi_nor'.
2780  */
2781 static void spi_nor_init_default_params(struct spi_nor *nor)
2782 {
2783         struct spi_nor_flash_parameter *params = nor->params;
2784         const struct flash_info *info = nor->info;
2785         struct device_node *np = spi_nor_get_flash_node(nor);
2786
2787         params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2788         params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2789         params->setup = spi_nor_default_setup;
2790         params->otp.org = &info->otp_org;
2791
2792         /* Default to 16-bit Write Status (01h) Command */
2793         nor->flags |= SNOR_F_HAS_16BIT_SR;
2794
2795         /* Set SPI NOR sizes. */
2796         params->writesize = 1;
2797         params->size = (u64)info->sector_size * info->n_sectors;
2798         params->page_size = info->page_size;
2799
2800         if (!(info->flags & SPI_NOR_NO_FR)) {
2801                 /* Default to Fast Read for DT and non-DT platform devices. */
2802                 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2803
2804                 /* Mask out Fast Read if not requested at DT instantiation. */
2805                 if (np && !of_property_read_bool(np, "m25p,fast-read"))
2806                         params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2807         }
2808
2809         /* (Fast) Read settings. */
2810         params->hwcaps.mask |= SNOR_HWCAPS_READ;
2811         spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2812                                   0, 0, SPINOR_OP_READ,
2813                                   SNOR_PROTO_1_1_1);
2814
2815         if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2816                 spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2817                                           0, 8, SPINOR_OP_READ_FAST,
2818                                           SNOR_PROTO_1_1_1);
2819         /* Page Program settings. */
2820         params->hwcaps.mask |= SNOR_HWCAPS_PP;
2821         spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2822                                 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2823 }
2824
2825 /**
2826  * spi_nor_init_params() - Initialize the flash's parameters and settings.
2827  * @nor:        pointer to a 'struct spi_nor'.
2828  *
2829  * The flash parameters and settings are initialized based on a sequence of
2830  * calls that are ordered by priority:
2831  *
2832  * 1/ Default flash parameters initialization. The initializations are done
2833  *    based on nor->info data:
2834  *              spi_nor_info_init_params()
2835  *
2836  * which can be overwritten by:
2837  * 2/ Manufacturer flash parameters initialization. The initializations are
2838  *    done based on MFR register, or when the decisions can not be done solely
2839  *    based on MFR, by using specific flash_info tweeks, ->default_init():
2840  *              spi_nor_manufacturer_init_params()
2841  *
2842  * which can be overwritten by:
2843  * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2844  *    should be more accurate that the above.
2845  *              spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
2846  *
2847  *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
2848  *    the flash parameters and settings immediately after parsing the Basic
2849  *    Flash Parameter Table.
2850  *    spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
2851  *    It is used to tweak various flash parameters when information provided
2852  *    by the SFDP tables are wrong.
2853  *
2854  * which can be overwritten by:
2855  * 4/ Late flash parameters initialization, used to initialize flash
2856  * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
2857  * tables are not defined at all.
2858  *              spi_nor_late_init_params()
2859  *
2860  * Return: 0 on success, -errno otherwise.
2861  */
2862 static int spi_nor_init_params(struct spi_nor *nor)
2863 {
2864         int ret;
2865
2866         nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2867         if (!nor->params)
2868                 return -ENOMEM;
2869
2870         spi_nor_init_default_params(nor);
2871
2872         if (nor->info->parse_sfdp) {
2873                 ret = spi_nor_parse_sfdp(nor);
2874                 if (ret) {
2875                         dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
2876                         return ret;
2877                 }
2878         } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
2879                 spi_nor_no_sfdp_init_params(nor);
2880         } else {
2881                 spi_nor_init_params_deprecated(nor);
2882         }
2883
2884         spi_nor_late_init_params(nor);
2885
2886         return 0;
2887 }
2888
2889 /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
2890  * @nor:                 pointer to a 'struct spi_nor'
2891  * @enable:              whether to enable or disable Octal DTR
2892  *
2893  * Return: 0 on success, -errno otherwise.
2894  */
2895 static int spi_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
2896 {
2897         int ret;
2898
2899         if (!nor->params->octal_dtr_enable)
2900                 return 0;
2901
2902         if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
2903               nor->write_proto == SNOR_PROTO_8_8_8_DTR))
2904                 return 0;
2905
2906         if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
2907                 return 0;
2908
2909         ret = nor->params->octal_dtr_enable(nor, enable);
2910         if (ret)
2911                 return ret;
2912
2913         if (enable)
2914                 nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
2915         else
2916                 nor->reg_proto = SNOR_PROTO_1_1_1;
2917
2918         return 0;
2919 }
2920
2921 /**
2922  * spi_nor_quad_enable() - enable Quad I/O if needed.
2923  * @nor:                pointer to a 'struct spi_nor'
2924  *
2925  * Return: 0 on success, -errno otherwise.
2926  */
2927 static int spi_nor_quad_enable(struct spi_nor *nor)
2928 {
2929         if (!nor->params->quad_enable)
2930                 return 0;
2931
2932         if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2933               spi_nor_get_protocol_width(nor->write_proto) == 4))
2934                 return 0;
2935
2936         return nor->params->quad_enable(nor);
2937 }
2938
2939 static int spi_nor_init(struct spi_nor *nor)
2940 {
2941         int err;
2942
2943         err = spi_nor_octal_dtr_enable(nor, true);
2944         if (err) {
2945                 dev_dbg(nor->dev, "octal mode not supported\n");
2946                 return err;
2947         }
2948
2949         err = spi_nor_quad_enable(nor);
2950         if (err) {
2951                 dev_dbg(nor->dev, "quad mode not supported\n");
2952                 return err;
2953         }
2954
2955         /*
2956          * Some SPI NOR flashes are write protected by default after a power-on
2957          * reset cycle, in order to avoid inadvertent writes during power-up.
2958          * Backward compatibility imposes to unlock the entire flash memory
2959          * array at power-up by default. Depending on the kernel configuration
2960          * (1) do nothing, (2) always unlock the entire flash array or (3)
2961          * unlock the entire flash array only when the software write
2962          * protection bits are volatile. The latter is indicated by
2963          * SNOR_F_SWP_IS_VOLATILE.
2964          */
2965         if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
2966             (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
2967              nor->flags & SNOR_F_SWP_IS_VOLATILE))
2968                 spi_nor_try_unlock_all(nor);
2969
2970         if (nor->addr_width == 4 &&
2971             nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
2972             !(nor->flags & SNOR_F_4B_OPCODES)) {
2973                 /*
2974                  * If the RESET# pin isn't hooked up properly, or the system
2975                  * otherwise doesn't perform a reset command in the boot
2976                  * sequence, it's impossible to 100% protect against unexpected
2977                  * reboots (e.g., crashes). Warn the user (or hopefully, system
2978                  * designer) that this is bad.
2979                  */
2980                 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2981                           "enabling reset hack; may not recover from unexpected reboots\n");
2982                 nor->params->set_4byte_addr_mode(nor, true);
2983         }
2984
2985         return 0;
2986 }
2987
2988 /**
2989  * spi_nor_soft_reset() - Perform a software reset
2990  * @nor:        pointer to 'struct spi_nor'
2991  *
2992  * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
2993  * the device to its power-on-reset state. This is useful when the software has
2994  * made some changes to device (volatile) registers and needs to reset it before
2995  * shutting down, for example.
2996  *
2997  * Not every flash supports this sequence. The same set of opcodes might be used
2998  * for some other operation on a flash that does not support this. Support for
2999  * this sequence can be discovered via SFDP in the BFPT table.
3000  *
3001  * Return: 0 on success, -errno otherwise.
3002  */
3003 static void spi_nor_soft_reset(struct spi_nor *nor)
3004 {
3005         struct spi_mem_op op;
3006         int ret;
3007
3008         op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0),
3009                         SPI_MEM_OP_NO_DUMMY,
3010                         SPI_MEM_OP_NO_ADDR,
3011                         SPI_MEM_OP_NO_DATA);
3012
3013         spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3014
3015         ret = spi_mem_exec_op(nor->spimem, &op);
3016         if (ret) {
3017                 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3018                 return;
3019         }
3020
3021         op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0),
3022                         SPI_MEM_OP_NO_DUMMY,
3023                         SPI_MEM_OP_NO_ADDR,
3024                         SPI_MEM_OP_NO_DATA);
3025
3026         spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3027
3028         ret = spi_mem_exec_op(nor->spimem, &op);
3029         if (ret) {
3030                 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3031                 return;
3032         }
3033
3034         /*
3035          * Software Reset is not instant, and the delay varies from flash to
3036          * flash. Looking at a few flashes, most range somewhere below 100
3037          * microseconds. So, sleep for a range of 200-400 us.
3038          */
3039         usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
3040 }
3041
3042 /* mtd suspend handler */
3043 static int spi_nor_suspend(struct mtd_info *mtd)
3044 {
3045         struct spi_nor *nor = mtd_to_spi_nor(mtd);
3046         int ret;
3047
3048         /* Disable octal DTR mode if we enabled it. */
3049         ret = spi_nor_octal_dtr_enable(nor, false);
3050         if (ret)
3051                 dev_err(nor->dev, "suspend() failed\n");
3052
3053         return ret;
3054 }
3055
3056 /* mtd resume handler */
3057 static void spi_nor_resume(struct mtd_info *mtd)
3058 {
3059         struct spi_nor *nor = mtd_to_spi_nor(mtd);
3060         struct device *dev = nor->dev;
3061         int ret;
3062
3063         /* re-initialize the nor chip */
3064         ret = spi_nor_init(nor);
3065         if (ret)
3066                 dev_err(dev, "resume() failed\n");
3067 }
3068
3069 static int spi_nor_get_device(struct mtd_info *mtd)
3070 {
3071         struct mtd_info *master = mtd_get_master(mtd);
3072         struct spi_nor *nor = mtd_to_spi_nor(master);
3073         struct device *dev;
3074
3075         if (nor->spimem)
3076                 dev = nor->spimem->spi->controller->dev.parent;
3077         else
3078                 dev = nor->dev;
3079
3080         if (!try_module_get(dev->driver->owner))
3081                 return -ENODEV;
3082
3083         return 0;
3084 }
3085
3086 static void spi_nor_put_device(struct mtd_info *mtd)
3087 {
3088         struct mtd_info *master = mtd_get_master(mtd);
3089         struct spi_nor *nor = mtd_to_spi_nor(master);
3090         struct device *dev;
3091
3092         if (nor->spimem)
3093                 dev = nor->spimem->spi->controller->dev.parent;
3094         else
3095                 dev = nor->dev;
3096
3097         module_put(dev->driver->owner);
3098 }
3099
3100 void spi_nor_restore(struct spi_nor *nor)
3101 {
3102         /* restore the addressing mode */
3103         if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3104             nor->flags & SNOR_F_BROKEN_RESET)
3105                 nor->params->set_4byte_addr_mode(nor, false);
3106
3107         if (nor->flags & SNOR_F_SOFT_RESET)
3108                 spi_nor_soft_reset(nor);
3109 }
3110 EXPORT_SYMBOL_GPL(spi_nor_restore);
3111
3112 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
3113                                                  const char *name)
3114 {
3115         unsigned int i, j;
3116
3117         for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3118                 for (j = 0; j < manufacturers[i]->nparts; j++) {
3119                         if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3120                                 nor->manufacturer = manufacturers[i];
3121                                 return &manufacturers[i]->parts[j];
3122                         }
3123                 }
3124         }
3125
3126         return NULL;
3127 }
3128
3129 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3130                                                        const char *name)
3131 {
3132         const struct flash_info *info = NULL;
3133
3134         if (name)
3135                 info = spi_nor_match_id(nor, name);
3136         /* Try to auto-detect if chip name wasn't specified or not found */
3137         if (!info)
3138                 info = spi_nor_read_id(nor);
3139         if (IS_ERR_OR_NULL(info))
3140                 return ERR_PTR(-ENOENT);
3141
3142         /*
3143          * If caller has specified name of flash model that can normally be
3144          * detected using JEDEC, let's verify it.
3145          */
3146         if (name && info->id_len) {
3147                 const struct flash_info *jinfo;
3148
3149                 jinfo = spi_nor_read_id(nor);
3150                 if (IS_ERR(jinfo)) {
3151                         return jinfo;
3152                 } else if (jinfo != info) {
3153                         /*
3154                          * JEDEC knows better, so overwrite platform ID. We
3155                          * can't trust partitions any longer, but we'll let
3156                          * mtd apply them anyway, since some partitions may be
3157                          * marked read-only, and we don't want to lose that
3158                          * information, even if it's not 100% accurate.
3159                          */
3160                         dev_warn(nor->dev, "found %s, expected %s\n",
3161                                  jinfo->name, info->name);
3162                         info = jinfo;
3163                 }
3164         }
3165
3166         return info;
3167 }
3168
3169 static void spi_nor_set_mtd_info(struct spi_nor *nor)
3170 {
3171         struct mtd_info *mtd = &nor->mtd;
3172         struct device *dev = nor->dev;
3173
3174         spi_nor_set_mtd_locking_ops(nor);
3175         spi_nor_set_mtd_otp_ops(nor);
3176
3177         mtd->dev.parent = dev;
3178         if (!mtd->name)
3179                 mtd->name = dev_name(dev);
3180         mtd->type = MTD_NORFLASH;
3181         mtd->flags = MTD_CAP_NORFLASH;
3182         if (nor->info->flags & SPI_NOR_NO_ERASE)
3183                 mtd->flags |= MTD_NO_ERASE;
3184         mtd->writesize = nor->params->writesize;
3185         mtd->writebufsize = nor->params->page_size;
3186         mtd->size = nor->params->size;
3187         mtd->_erase = spi_nor_erase;
3188         mtd->_read = spi_nor_read;
3189         /* Might be already set by some SST flashes. */
3190         if (!mtd->_write)
3191                 mtd->_write = spi_nor_write;
3192         mtd->_suspend = spi_nor_suspend;
3193         mtd->_resume = spi_nor_resume;
3194         mtd->_get_device = spi_nor_get_device;
3195         mtd->_put_device = spi_nor_put_device;
3196 }
3197
3198 int spi_nor_scan(struct spi_nor *nor, const char *name,
3199                  const struct spi_nor_hwcaps *hwcaps)
3200 {
3201         const struct flash_info *info;
3202         struct device *dev = nor->dev;
3203         struct mtd_info *mtd = &nor->mtd;
3204         int ret;
3205         int i;
3206
3207         ret = spi_nor_check(nor);
3208         if (ret)
3209                 return ret;
3210
3211         /* Reset SPI protocol for all commands. */
3212         nor->reg_proto = SNOR_PROTO_1_1_1;
3213         nor->read_proto = SNOR_PROTO_1_1_1;
3214         nor->write_proto = SNOR_PROTO_1_1_1;
3215
3216         /*
3217          * We need the bounce buffer early to read/write registers when going
3218          * through the spi-mem layer (buffers have to be DMA-able).
3219          * For spi-mem drivers, we'll reallocate a new buffer if
3220          * nor->params->page_size turns out to be greater than PAGE_SIZE (which
3221          * shouldn't happen before long since NOR pages are usually less
3222          * than 1KB) after spi_nor_scan() returns.
3223          */
3224         nor->bouncebuf_size = PAGE_SIZE;
3225         nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3226                                       GFP_KERNEL);
3227         if (!nor->bouncebuf)
3228                 return -ENOMEM;
3229
3230         info = spi_nor_get_flash_info(nor, name);
3231         if (IS_ERR(info))
3232                 return PTR_ERR(info);
3233
3234         nor->info = info;
3235
3236         mutex_init(&nor->lock);
3237
3238         /* Init flash parameters based on flash_info struct and SFDP */
3239         ret = spi_nor_init_params(nor);
3240         if (ret)
3241                 return ret;
3242
3243         /*
3244          * Configure the SPI memory:
3245          * - select op codes for (Fast) Read, Page Program and Sector Erase.
3246          * - set the number of dummy cycles (mode cycles + wait states).
3247          * - set the SPI protocols for register and memory accesses.
3248          * - set the address width.
3249          */
3250         ret = spi_nor_setup(nor, hwcaps);
3251         if (ret)
3252                 return ret;
3253
3254         /* Send all the required SPI flash commands to initialize device */
3255         ret = spi_nor_init(nor);
3256         if (ret)
3257                 return ret;
3258
3259         /* No mtd_info fields should be used up to this point. */
3260         spi_nor_set_mtd_info(nor);
3261
3262         dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3263                         (long long)mtd->size >> 10);
3264
3265         dev_dbg(dev,
3266                 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
3267                 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3268                 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3269                 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3270
3271         if (mtd->numeraseregions)
3272                 for (i = 0; i < mtd->numeraseregions; i++)
3273                         dev_dbg(dev,
3274                                 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
3275                                 ".erasesize = 0x%.8x (%uKiB), "
3276                                 ".numblocks = %d }\n",
3277                                 i, (long long)mtd->eraseregions[i].offset,
3278                                 mtd->eraseregions[i].erasesize,
3279                                 mtd->eraseregions[i].erasesize / 1024,
3280                                 mtd->eraseregions[i].numblocks);
3281         return 0;
3282 }
3283 EXPORT_SYMBOL_GPL(spi_nor_scan);
3284
3285 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3286 {
3287         struct spi_mem_dirmap_info info = {
3288                 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3289                                       SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3290                                       SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3291                                       SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3292                 .offset = 0,
3293                 .length = nor->params->size,
3294         };
3295         struct spi_mem_op *op = &info.op_tmpl;
3296
3297         spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3298
3299         /* convert the dummy cycles to the number of bytes */
3300         op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3301         if (spi_nor_protocol_is_dtr(nor->read_proto))
3302                 op->dummy.nbytes *= 2;
3303
3304         /*
3305          * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3306          * of data bytes is non-zero, the data buswidth won't be set here. So,
3307          * do it explicitly.
3308          */
3309         op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3310
3311         nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3312                                                        &info);
3313         return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3314 }
3315
3316 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3317 {
3318         struct spi_mem_dirmap_info info = {
3319                 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3320                                       SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3321                                       SPI_MEM_OP_NO_DUMMY,
3322                                       SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3323                 .offset = 0,
3324                 .length = nor->params->size,
3325         };
3326         struct spi_mem_op *op = &info.op_tmpl;
3327
3328         if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3329                 op->addr.nbytes = 0;
3330
3331         spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3332
3333         /*
3334          * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3335          * of data bytes is non-zero, the data buswidth won't be set here. So,
3336          * do it explicitly.
3337          */
3338         op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3339
3340         nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3341                                                        &info);
3342         return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3343 }
3344
3345 static int spi_nor_probe(struct spi_mem *spimem)
3346 {
3347         struct spi_device *spi = spimem->spi;
3348         struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3349         struct spi_nor *nor;
3350         /*
3351          * Enable all caps by default. The core will mask them after
3352          * checking what's really supported using spi_mem_supports_op().
3353          */
3354         const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3355         char *flash_name;
3356         int ret;
3357
3358         nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3359         if (!nor)
3360                 return -ENOMEM;
3361
3362         nor->spimem = spimem;
3363         nor->dev = &spi->dev;
3364         spi_nor_set_flash_node(nor, spi->dev.of_node);
3365
3366         spi_mem_set_drvdata(spimem, nor);
3367
3368         if (data && data->name)
3369                 nor->mtd.name = data->name;
3370
3371         if (!nor->mtd.name)
3372                 nor->mtd.name = spi_mem_get_name(spimem);
3373
3374         /*
3375          * For some (historical?) reason many platforms provide two different
3376          * names in flash_platform_data: "name" and "type". Quite often name is
3377          * set to "m25p80" and then "type" provides a real chip name.
3378          * If that's the case, respect "type" and ignore a "name".
3379          */
3380         if (data && data->type)
3381                 flash_name = data->type;
3382         else if (!strcmp(spi->modalias, "spi-nor"))
3383                 flash_name = NULL; /* auto-detect */
3384         else
3385                 flash_name = spi->modalias;
3386
3387         ret = spi_nor_scan(nor, flash_name, &hwcaps);
3388         if (ret)
3389                 return ret;
3390
3391         /*
3392          * None of the existing parts have > 512B pages, but let's play safe
3393          * and add this logic so that if anyone ever adds support for such
3394          * a NOR we don't end up with buffer overflows.
3395          */
3396         if (nor->params->page_size > PAGE_SIZE) {
3397                 nor->bouncebuf_size = nor->params->page_size;
3398                 devm_kfree(nor->dev, nor->bouncebuf);
3399                 nor->bouncebuf = devm_kmalloc(nor->dev,
3400                                               nor->bouncebuf_size,
3401                                               GFP_KERNEL);
3402                 if (!nor->bouncebuf)
3403                         return -ENOMEM;
3404         }
3405
3406         ret = spi_nor_create_read_dirmap(nor);
3407         if (ret)
3408                 return ret;
3409
3410         ret = spi_nor_create_write_dirmap(nor);
3411         if (ret)
3412                 return ret;
3413
3414         return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3415                                    data ? data->nr_parts : 0);
3416 }
3417
3418 static int spi_nor_remove(struct spi_mem *spimem)
3419 {
3420         struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3421
3422         spi_nor_restore(nor);
3423
3424         /* Clean up MTD stuff. */
3425         return mtd_device_unregister(&nor->mtd);
3426 }
3427
3428 static void spi_nor_shutdown(struct spi_mem *spimem)
3429 {
3430         struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3431
3432         spi_nor_restore(nor);
3433 }
3434
3435 /*
3436  * Do NOT add to this array without reading the following:
3437  *
3438  * Historically, many flash devices are bound to this driver by their name. But
3439  * since most of these flash are compatible to some extent, and their
3440  * differences can often be differentiated by the JEDEC read-ID command, we
3441  * encourage new users to add support to the spi-nor library, and simply bind
3442  * against a generic string here (e.g., "jedec,spi-nor").
3443  *
3444  * Many flash names are kept here in this list to keep them available
3445  * as module aliases for existing platforms.
3446  */
3447 static const struct spi_device_id spi_nor_dev_ids[] = {
3448         /*
3449          * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3450          * hack around the fact that the SPI core does not provide uevent
3451          * matching for .of_match_table
3452          */
3453         {"spi-nor"},
3454
3455         /*
3456          * Entries not used in DTs that should be safe to drop after replacing
3457          * them with "spi-nor" in platform data.
3458          */
3459         {"s25sl064a"},  {"w25x16"},     {"m25p10"},     {"m25px64"},
3460
3461         /*
3462          * Entries that were used in DTs without "jedec,spi-nor" fallback and
3463          * should be kept for backward compatibility.
3464          */
3465         {"at25df321a"}, {"at25df641"},  {"at26df081a"},
3466         {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3467         {"mx25l25635e"},{"mx66l51235l"},
3468         {"n25q064"},    {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3469         {"s25fl256s1"}, {"s25fl512s"},  {"s25sl12801"}, {"s25fl008k"},
3470         {"s25fl064k"},
3471         {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3472         {"m25p40"},     {"m25p80"},     {"m25p16"},     {"m25p32"},
3473         {"m25p64"},     {"m25p128"},
3474         {"w25x80"},     {"w25x32"},     {"w25q32"},     {"w25q32dw"},
3475         {"w25q80bl"},   {"w25q128"},    {"w25q256"},
3476
3477         /* Flashes that can't be detected using JEDEC */
3478         {"m25p05-nonjedec"},    {"m25p10-nonjedec"},    {"m25p20-nonjedec"},
3479         {"m25p40-nonjedec"},    {"m25p80-nonjedec"},    {"m25p16-nonjedec"},
3480         {"m25p32-nonjedec"},    {"m25p64-nonjedec"},    {"m25p128-nonjedec"},
3481
3482         /* Everspin MRAMs (non-JEDEC) */
3483         { "mr25h128" }, /* 128 Kib, 40 MHz */
3484         { "mr25h256" }, /* 256 Kib, 40 MHz */
3485         { "mr25h10" },  /*   1 Mib, 40 MHz */
3486         { "mr25h40" },  /*   4 Mib, 40 MHz */
3487
3488         { },
3489 };
3490 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3491
3492 static const struct of_device_id spi_nor_of_table[] = {
3493         /*
3494          * Generic compatibility for SPI NOR that can be identified by the
3495          * JEDEC READ ID opcode (0x9F). Use this, if possible.
3496          */
3497         { .compatible = "jedec,spi-nor" },
3498         { /* sentinel */ },
3499 };
3500 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3501
3502 /*
3503  * REVISIT: many of these chips have deep power-down modes, which
3504  * should clearly be entered on suspend() to minimize power use.
3505  * And also when they're otherwise idle...
3506  */
3507 static struct spi_mem_driver spi_nor_driver = {
3508         .spidrv = {
3509                 .driver = {
3510                         .name = "spi-nor",
3511                         .of_match_table = spi_nor_of_table,
3512                         .dev_groups = spi_nor_sysfs_groups,
3513                 },
3514                 .id_table = spi_nor_dev_ids,
3515         },
3516         .probe = spi_nor_probe,
3517         .remove = spi_nor_remove,
3518         .shutdown = spi_nor_shutdown,
3519 };
3520 module_spi_mem_driver(spi_nor_driver);
3521
3522 MODULE_LICENSE("GPL v2");
3523 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3524 MODULE_AUTHOR("Mike Lavender");
3525 MODULE_DESCRIPTION("framework for SPI NOR");