Merge drm/drm-fixes into drm-misc-fixes
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/of_address.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/platform_device.h>
20 #include <linux/regmap.h>
21 #include <linux/reset.h>
22
23 /* Bad block marker length */
24 #define FMC2_BBM_LEN                    2
25
26 /* ECC step size */
27 #define FMC2_ECC_STEP_SIZE              512
28
29 /* BCHDSRx registers length */
30 #define FMC2_BCHDSRS_LEN                20
31
32 /* HECCR length */
33 #define FMC2_HECCR_LEN                  4
34
35 /* Max requests done for a 8k nand page size */
36 #define FMC2_MAX_SG                     16
37
38 /* Max chip enable */
39 #define FMC2_MAX_CE                     2
40
41 /* Max ECC buffer length */
42 #define FMC2_MAX_ECC_BUF_LEN            (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
43
44 #define FMC2_TIMEOUT_MS                 5000
45
46 /* Timings */
47 #define FMC2_THIZ                       1
48 #define FMC2_TIO                        8000
49 #define FMC2_TSYNC                      3000
50 #define FMC2_PCR_TIMING_MASK            0xf
51 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
52
53 /* FMC2 Controller Registers */
54 #define FMC2_BCR1                       0x0
55 #define FMC2_PCR                        0x80
56 #define FMC2_SR                         0x84
57 #define FMC2_PMEM                       0x88
58 #define FMC2_PATT                       0x8c
59 #define FMC2_HECCR                      0x94
60 #define FMC2_ISR                        0x184
61 #define FMC2_ICR                        0x188
62 #define FMC2_CSQCR                      0x200
63 #define FMC2_CSQCFGR1                   0x204
64 #define FMC2_CSQCFGR2                   0x208
65 #define FMC2_CSQCFGR3                   0x20c
66 #define FMC2_CSQAR1                     0x210
67 #define FMC2_CSQAR2                     0x214
68 #define FMC2_CSQIER                     0x220
69 #define FMC2_CSQISR                     0x224
70 #define FMC2_CSQICR                     0x228
71 #define FMC2_CSQEMSR                    0x230
72 #define FMC2_BCHIER                     0x250
73 #define FMC2_BCHISR                     0x254
74 #define FMC2_BCHICR                     0x258
75 #define FMC2_BCHPBR1                    0x260
76 #define FMC2_BCHPBR2                    0x264
77 #define FMC2_BCHPBR3                    0x268
78 #define FMC2_BCHPBR4                    0x26c
79 #define FMC2_BCHDSR0                    0x27c
80 #define FMC2_BCHDSR1                    0x280
81 #define FMC2_BCHDSR2                    0x284
82 #define FMC2_BCHDSR3                    0x288
83 #define FMC2_BCHDSR4                    0x28c
84
85 /* Register: FMC2_BCR1 */
86 #define FMC2_BCR1_FMC2EN                BIT(31)
87
88 /* Register: FMC2_PCR */
89 #define FMC2_PCR_PWAITEN                BIT(1)
90 #define FMC2_PCR_PBKEN                  BIT(2)
91 #define FMC2_PCR_PWID                   GENMASK(5, 4)
92 #define FMC2_PCR_PWID_BUSWIDTH_8        0
93 #define FMC2_PCR_PWID_BUSWIDTH_16       1
94 #define FMC2_PCR_ECCEN                  BIT(6)
95 #define FMC2_PCR_ECCALG                 BIT(8)
96 #define FMC2_PCR_TCLR                   GENMASK(12, 9)
97 #define FMC2_PCR_TCLR_DEFAULT           0xf
98 #define FMC2_PCR_TAR                    GENMASK(16, 13)
99 #define FMC2_PCR_TAR_DEFAULT            0xf
100 #define FMC2_PCR_ECCSS                  GENMASK(19, 17)
101 #define FMC2_PCR_ECCSS_512              1
102 #define FMC2_PCR_ECCSS_2048             3
103 #define FMC2_PCR_BCHECC                 BIT(24)
104 #define FMC2_PCR_WEN                    BIT(25)
105
106 /* Register: FMC2_SR */
107 #define FMC2_SR_NWRF                    BIT(6)
108
109 /* Register: FMC2_PMEM */
110 #define FMC2_PMEM_MEMSET                GENMASK(7, 0)
111 #define FMC2_PMEM_MEMWAIT               GENMASK(15, 8)
112 #define FMC2_PMEM_MEMHOLD               GENMASK(23, 16)
113 #define FMC2_PMEM_MEMHIZ                GENMASK(31, 24)
114 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
115
116 /* Register: FMC2_PATT */
117 #define FMC2_PATT_ATTSET                GENMASK(7, 0)
118 #define FMC2_PATT_ATTWAIT               GENMASK(15, 8)
119 #define FMC2_PATT_ATTHOLD               GENMASK(23, 16)
120 #define FMC2_PATT_ATTHIZ                GENMASK(31, 24)
121 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
122
123 /* Register: FMC2_ISR */
124 #define FMC2_ISR_IHLF                   BIT(1)
125
126 /* Register: FMC2_ICR */
127 #define FMC2_ICR_CIHLF                  BIT(1)
128
129 /* Register: FMC2_CSQCR */
130 #define FMC2_CSQCR_CSQSTART             BIT(0)
131
132 /* Register: FMC2_CSQCFGR1 */
133 #define FMC2_CSQCFGR1_CMD2EN            BIT(1)
134 #define FMC2_CSQCFGR1_DMADEN            BIT(2)
135 #define FMC2_CSQCFGR1_ACYNBR            GENMASK(6, 4)
136 #define FMC2_CSQCFGR1_CMD1              GENMASK(15, 8)
137 #define FMC2_CSQCFGR1_CMD2              GENMASK(23, 16)
138 #define FMC2_CSQCFGR1_CMD1T             BIT(24)
139 #define FMC2_CSQCFGR1_CMD2T             BIT(25)
140
141 /* Register: FMC2_CSQCFGR2 */
142 #define FMC2_CSQCFGR2_SQSDTEN           BIT(0)
143 #define FMC2_CSQCFGR2_RCMD2EN           BIT(1)
144 #define FMC2_CSQCFGR2_DMASEN            BIT(2)
145 #define FMC2_CSQCFGR2_RCMD1             GENMASK(15, 8)
146 #define FMC2_CSQCFGR2_RCMD2             GENMASK(23, 16)
147 #define FMC2_CSQCFGR2_RCMD1T            BIT(24)
148 #define FMC2_CSQCFGR2_RCMD2T            BIT(25)
149
150 /* Register: FMC2_CSQCFGR3 */
151 #define FMC2_CSQCFGR3_SNBR              GENMASK(13, 8)
152 #define FMC2_CSQCFGR3_AC1T              BIT(16)
153 #define FMC2_CSQCFGR3_AC2T              BIT(17)
154 #define FMC2_CSQCFGR3_AC3T              BIT(18)
155 #define FMC2_CSQCFGR3_AC4T              BIT(19)
156 #define FMC2_CSQCFGR3_AC5T              BIT(20)
157 #define FMC2_CSQCFGR3_SDT               BIT(21)
158 #define FMC2_CSQCFGR3_RAC1T             BIT(22)
159 #define FMC2_CSQCFGR3_RAC2T             BIT(23)
160
161 /* Register: FMC2_CSQCAR1 */
162 #define FMC2_CSQCAR1_ADDC1              GENMASK(7, 0)
163 #define FMC2_CSQCAR1_ADDC2              GENMASK(15, 8)
164 #define FMC2_CSQCAR1_ADDC3              GENMASK(23, 16)
165 #define FMC2_CSQCAR1_ADDC4              GENMASK(31, 24)
166
167 /* Register: FMC2_CSQCAR2 */
168 #define FMC2_CSQCAR2_ADDC5              GENMASK(7, 0)
169 #define FMC2_CSQCAR2_NANDCEN            GENMASK(11, 10)
170 #define FMC2_CSQCAR2_SAO                GENMASK(31, 16)
171
172 /* Register: FMC2_CSQIER */
173 #define FMC2_CSQIER_TCIE                BIT(0)
174
175 /* Register: FMC2_CSQICR */
176 #define FMC2_CSQICR_CLEAR_IRQ           GENMASK(4, 0)
177
178 /* Register: FMC2_CSQEMSR */
179 #define FMC2_CSQEMSR_SEM                GENMASK(15, 0)
180
181 /* Register: FMC2_BCHIER */
182 #define FMC2_BCHIER_DERIE               BIT(1)
183 #define FMC2_BCHIER_EPBRIE              BIT(4)
184
185 /* Register: FMC2_BCHICR */
186 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
187
188 /* Register: FMC2_BCHDSR0 */
189 #define FMC2_BCHDSR0_DUE                BIT(0)
190 #define FMC2_BCHDSR0_DEF                BIT(1)
191 #define FMC2_BCHDSR0_DEN                GENMASK(7, 4)
192
193 /* Register: FMC2_BCHDSR1 */
194 #define FMC2_BCHDSR1_EBP1               GENMASK(12, 0)
195 #define FMC2_BCHDSR1_EBP2               GENMASK(28, 16)
196
197 /* Register: FMC2_BCHDSR2 */
198 #define FMC2_BCHDSR2_EBP3               GENMASK(12, 0)
199 #define FMC2_BCHDSR2_EBP4               GENMASK(28, 16)
200
201 /* Register: FMC2_BCHDSR3 */
202 #define FMC2_BCHDSR3_EBP5               GENMASK(12, 0)
203 #define FMC2_BCHDSR3_EBP6               GENMASK(28, 16)
204
205 /* Register: FMC2_BCHDSR4 */
206 #define FMC2_BCHDSR4_EBP7               GENMASK(12, 0)
207 #define FMC2_BCHDSR4_EBP8               GENMASK(28, 16)
208
209 enum stm32_fmc2_ecc {
210         FMC2_ECC_HAM = 1,
211         FMC2_ECC_BCH4 = 4,
212         FMC2_ECC_BCH8 = 8
213 };
214
215 enum stm32_fmc2_irq_state {
216         FMC2_IRQ_UNKNOWN = 0,
217         FMC2_IRQ_BCH,
218         FMC2_IRQ_SEQ
219 };
220
221 struct stm32_fmc2_timings {
222         u8 tclr;
223         u8 tar;
224         u8 thiz;
225         u8 twait;
226         u8 thold_mem;
227         u8 tset_mem;
228         u8 thold_att;
229         u8 tset_att;
230 };
231
232 struct stm32_fmc2_nand {
233         struct nand_chip chip;
234         struct stm32_fmc2_timings timings;
235         int ncs;
236         int cs_used[FMC2_MAX_CE];
237 };
238
239 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
240 {
241         return container_of(chip, struct stm32_fmc2_nand, chip);
242 }
243
244 struct stm32_fmc2_nfc {
245         struct nand_controller base;
246         struct stm32_fmc2_nand nand;
247         struct device *dev;
248         struct device *cdev;
249         struct regmap *regmap;
250         void __iomem *data_base[FMC2_MAX_CE];
251         void __iomem *cmd_base[FMC2_MAX_CE];
252         void __iomem *addr_base[FMC2_MAX_CE];
253         phys_addr_t io_phys_addr;
254         phys_addr_t data_phys_addr[FMC2_MAX_CE];
255         struct clk *clk;
256         u8 irq_state;
257
258         struct dma_chan *dma_tx_ch;
259         struct dma_chan *dma_rx_ch;
260         struct dma_chan *dma_ecc_ch;
261         struct sg_table dma_data_sg;
262         struct sg_table dma_ecc_sg;
263         u8 *ecc_buf;
264         int dma_ecc_len;
265
266         struct completion complete;
267         struct completion dma_data_complete;
268         struct completion dma_ecc_complete;
269
270         u8 cs_assigned;
271         int cs_sel;
272 };
273
274 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
275 {
276         return container_of(base, struct stm32_fmc2_nfc, base);
277 }
278
279 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
280 {
281         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
282         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
283         struct stm32_fmc2_timings *timings = &nand->timings;
284         u32 pmem, patt;
285
286         /* Set tclr/tar timings */
287         regmap_update_bits(nfc->regmap, FMC2_PCR,
288                            FMC2_PCR_TCLR | FMC2_PCR_TAR,
289                            FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
290                            FIELD_PREP(FMC2_PCR_TAR, timings->tar));
291
292         /* Set tset/twait/thold/thiz timings in common bank */
293         pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
294         pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
295         pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
296         pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
297         regmap_write(nfc->regmap, FMC2_PMEM, pmem);
298
299         /* Set tset/twait/thold/thiz timings in attribut bank */
300         patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
301         patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
302         patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
303         patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
304         regmap_write(nfc->regmap, FMC2_PATT, patt);
305 }
306
307 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
308 {
309         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
310         u32 pcr = 0, pcr_mask;
311
312         /* Configure ECC algorithm (default configuration is Hamming) */
313         pcr_mask = FMC2_PCR_ECCALG;
314         pcr_mask |= FMC2_PCR_BCHECC;
315         if (chip->ecc.strength == FMC2_ECC_BCH8) {
316                 pcr |= FMC2_PCR_ECCALG;
317                 pcr |= FMC2_PCR_BCHECC;
318         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
319                 pcr |= FMC2_PCR_ECCALG;
320         }
321
322         /* Set buswidth */
323         pcr_mask |= FMC2_PCR_PWID;
324         if (chip->options & NAND_BUSWIDTH_16)
325                 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
326
327         /* Set ECC sector size */
328         pcr_mask |= FMC2_PCR_ECCSS;
329         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
330
331         regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
332 }
333
334 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
335 {
336         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
337         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
338         struct dma_slave_config dma_cfg;
339         int ret;
340
341         if (nand->cs_used[chipnr] == nfc->cs_sel)
342                 return 0;
343
344         nfc->cs_sel = nand->cs_used[chipnr];
345         stm32_fmc2_nfc_setup(chip);
346         stm32_fmc2_nfc_timings_init(chip);
347
348         if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
349                 memset(&dma_cfg, 0, sizeof(dma_cfg));
350                 dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
351                 dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
352                 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
353                 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
354                 dma_cfg.src_maxburst = 32;
355                 dma_cfg.dst_maxburst = 32;
356
357                 ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
358                 if (ret) {
359                         dev_err(nfc->dev, "tx DMA engine slave config failed\n");
360                         return ret;
361                 }
362
363                 ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
364                 if (ret) {
365                         dev_err(nfc->dev, "rx DMA engine slave config failed\n");
366                         return ret;
367                 }
368         }
369
370         if (nfc->dma_ecc_ch) {
371                 /*
372                  * Hamming: we read HECCR register
373                  * BCH4/BCH8: we read BCHDSRSx registers
374                  */
375                 memset(&dma_cfg, 0, sizeof(dma_cfg));
376                 dma_cfg.src_addr = nfc->io_phys_addr;
377                 dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
378                                     FMC2_HECCR : FMC2_BCHDSR0;
379                 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
380
381                 ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
382                 if (ret) {
383                         dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
384                         return ret;
385                 }
386
387                 /* Calculate ECC length needed for one sector */
388                 nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
389                                    FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
390         }
391
392         return 0;
393 }
394
395 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
396 {
397         u32 pcr;
398
399         pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
400                     FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
401
402         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
403 }
404
405 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
406 {
407         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
408                            enable ? FMC2_PCR_ECCEN : 0);
409 }
410
411 static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
412 {
413         nfc->irq_state = FMC2_IRQ_SEQ;
414
415         regmap_update_bits(nfc->regmap, FMC2_CSQIER,
416                            FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
417 }
418
419 static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
420 {
421         regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
422
423         nfc->irq_state = FMC2_IRQ_UNKNOWN;
424 }
425
426 static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
427 {
428         regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
429 }
430
431 static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
432 {
433         nfc->irq_state = FMC2_IRQ_BCH;
434
435         if (mode == NAND_ECC_WRITE)
436                 regmap_update_bits(nfc->regmap, FMC2_BCHIER,
437                                    FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
438         else
439                 regmap_update_bits(nfc->regmap, FMC2_BCHIER,
440                                    FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
441 }
442
443 static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
444 {
445         regmap_update_bits(nfc->regmap, FMC2_BCHIER,
446                            FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
447
448         nfc->irq_state = FMC2_IRQ_UNKNOWN;
449 }
450
451 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
452 {
453         regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
454 }
455
456 /*
457  * Enable ECC logic and reset syndrome/parity bits previously calculated
458  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
459  */
460 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
461 {
462         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
463
464         stm32_fmc2_nfc_set_ecc(nfc, false);
465
466         if (chip->ecc.strength != FMC2_ECC_HAM) {
467                 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
468                                    mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
469
470                 reinit_completion(&nfc->complete);
471                 stm32_fmc2_nfc_clear_bch_irq(nfc);
472                 stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
473         }
474
475         stm32_fmc2_nfc_set_ecc(nfc, true);
476 }
477
478 /*
479  * ECC Hamming calculation
480  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
481  * max of 1-bit)
482  */
483 static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
484 {
485         ecc[0] = ecc_sta;
486         ecc[1] = ecc_sta >> 8;
487         ecc[2] = ecc_sta >> 16;
488 }
489
490 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
491                                         u8 *ecc)
492 {
493         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
494         u32 sr, heccr;
495         int ret;
496
497         ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
498                                        sr & FMC2_SR_NWRF, 1,
499                                        1000 * FMC2_TIMEOUT_MS);
500         if (ret) {
501                 dev_err(nfc->dev, "ham timeout\n");
502                 return ret;
503         }
504
505         regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
506         stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
507         stm32_fmc2_nfc_set_ecc(nfc, false);
508
509         return 0;
510 }
511
512 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
513                                       u8 *read_ecc, u8 *calc_ecc)
514 {
515         u8 bit_position = 0, b0, b1, b2;
516         u32 byte_addr = 0, b;
517         u32 i, shifting = 1;
518
519         /* Indicate which bit and byte is faulty (if any) */
520         b0 = read_ecc[0] ^ calc_ecc[0];
521         b1 = read_ecc[1] ^ calc_ecc[1];
522         b2 = read_ecc[2] ^ calc_ecc[2];
523         b = b0 | (b1 << 8) | (b2 << 16);
524
525         /* No errors */
526         if (likely(!b))
527                 return 0;
528
529         /* Calculate bit position */
530         for (i = 0; i < 3; i++) {
531                 switch (b % 4) {
532                 case 2:
533                         bit_position += shifting;
534                         break;
535                 case 1:
536                         break;
537                 default:
538                         return -EBADMSG;
539                 }
540                 shifting <<= 1;
541                 b >>= 2;
542         }
543
544         /* Calculate byte position */
545         shifting = 1;
546         for (i = 0; i < 9; i++) {
547                 switch (b % 4) {
548                 case 2:
549                         byte_addr += shifting;
550                         break;
551                 case 1:
552                         break;
553                 default:
554                         return -EBADMSG;
555                 }
556                 shifting <<= 1;
557                 b >>= 2;
558         }
559
560         /* Flip the bit */
561         dat[byte_addr] ^= (1 << bit_position);
562
563         return 1;
564 }
565
566 /*
567  * ECC BCH calculation and correction
568  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
569  * max of 4-bit/8-bit)
570  */
571 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
572                                         u8 *ecc)
573 {
574         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
575         u32 bchpbr;
576
577         /* Wait until the BCH code is ready */
578         if (!wait_for_completion_timeout(&nfc->complete,
579                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
580                 dev_err(nfc->dev, "bch timeout\n");
581                 stm32_fmc2_nfc_disable_bch_irq(nfc);
582                 return -ETIMEDOUT;
583         }
584
585         /* Read parity bits */
586         regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
587         ecc[0] = bchpbr;
588         ecc[1] = bchpbr >> 8;
589         ecc[2] = bchpbr >> 16;
590         ecc[3] = bchpbr >> 24;
591
592         regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
593         ecc[4] = bchpbr;
594         ecc[5] = bchpbr >> 8;
595         ecc[6] = bchpbr >> 16;
596
597         if (chip->ecc.strength == FMC2_ECC_BCH8) {
598                 ecc[7] = bchpbr >> 24;
599
600                 regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
601                 ecc[8] = bchpbr;
602                 ecc[9] = bchpbr >> 8;
603                 ecc[10] = bchpbr >> 16;
604                 ecc[11] = bchpbr >> 24;
605
606                 regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
607                 ecc[12] = bchpbr;
608         }
609
610         stm32_fmc2_nfc_set_ecc(nfc, false);
611
612         return 0;
613 }
614
615 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
616 {
617         u32 bchdsr0 = ecc_sta[0];
618         u32 bchdsr1 = ecc_sta[1];
619         u32 bchdsr2 = ecc_sta[2];
620         u32 bchdsr3 = ecc_sta[3];
621         u32 bchdsr4 = ecc_sta[4];
622         u16 pos[8];
623         int i, den;
624         unsigned int nb_errs = 0;
625
626         /* No errors found */
627         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
628                 return 0;
629
630         /* Too many errors detected */
631         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
632                 return -EBADMSG;
633
634         pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
635         pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
636         pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
637         pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
638         pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
639         pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
640         pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
641         pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
642
643         den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
644         for (i = 0; i < den; i++) {
645                 if (pos[i] < eccsize * 8) {
646                         change_bit(pos[i], (unsigned long *)dat);
647                         nb_errs++;
648                 }
649         }
650
651         return nb_errs;
652 }
653
654 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
655                                       u8 *read_ecc, u8 *calc_ecc)
656 {
657         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
658         u32 ecc_sta[5];
659
660         /* Wait until the decoding error is ready */
661         if (!wait_for_completion_timeout(&nfc->complete,
662                                          msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
663                 dev_err(nfc->dev, "bch timeout\n");
664                 stm32_fmc2_nfc_disable_bch_irq(nfc);
665                 return -ETIMEDOUT;
666         }
667
668         regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
669
670         stm32_fmc2_nfc_set_ecc(nfc, false);
671
672         return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
673 }
674
675 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
676                                     int oob_required, int page)
677 {
678         struct mtd_info *mtd = nand_to_mtd(chip);
679         int ret, i, s, stat, eccsize = chip->ecc.size;
680         int eccbytes = chip->ecc.bytes;
681         int eccsteps = chip->ecc.steps;
682         int eccstrength = chip->ecc.strength;
683         u8 *p = buf;
684         u8 *ecc_calc = chip->ecc.calc_buf;
685         u8 *ecc_code = chip->ecc.code_buf;
686         unsigned int max_bitflips = 0;
687
688         ret = nand_read_page_op(chip, page, 0, NULL, 0);
689         if (ret)
690                 return ret;
691
692         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
693              s++, i += eccbytes, p += eccsize) {
694                 chip->ecc.hwctl(chip, NAND_ECC_READ);
695
696                 /* Read the nand page sector (512 bytes) */
697                 ret = nand_change_read_column_op(chip, s * eccsize, p,
698                                                  eccsize, false);
699                 if (ret)
700                         return ret;
701
702                 /* Read the corresponding ECC bytes */
703                 ret = nand_change_read_column_op(chip, i, ecc_code,
704                                                  eccbytes, false);
705                 if (ret)
706                         return ret;
707
708                 /* Correct the data */
709                 stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
710                 if (stat == -EBADMSG)
711                         /* Check for empty pages with bitflips */
712                         stat = nand_check_erased_ecc_chunk(p, eccsize,
713                                                            ecc_code, eccbytes,
714                                                            NULL, 0,
715                                                            eccstrength);
716
717                 if (stat < 0) {
718                         mtd->ecc_stats.failed++;
719                 } else {
720                         mtd->ecc_stats.corrected += stat;
721                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
722                 }
723         }
724
725         /* Read oob */
726         if (oob_required) {
727                 ret = nand_change_read_column_op(chip, mtd->writesize,
728                                                  chip->oob_poi, mtd->oobsize,
729                                                  false);
730                 if (ret)
731                         return ret;
732         }
733
734         return max_bitflips;
735 }
736
737 /* Sequencer read/write configuration */
738 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
739                                         int raw, bool write_data)
740 {
741         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
742         struct mtd_info *mtd = nand_to_mtd(chip);
743         u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
744         /*
745          * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
746          * cfg[3] => csqar1, cfg[4] => csqar2
747          */
748         u32 cfg[5];
749
750         regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
751                            write_data ? FMC2_PCR_WEN : 0);
752
753         /*
754          * - Set Program Page/Page Read command
755          * - Enable DMA request data
756          * - Set timings
757          */
758         cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
759         if (write_data)
760                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
761         else
762                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
763                           FMC2_CSQCFGR1_CMD2EN |
764                           FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
765                           FMC2_CSQCFGR1_CMD2T;
766
767         /*
768          * - Set Random Data Input/Random Data Read command
769          * - Enable the sequencer to access the Spare data area
770          * - Enable  DMA request status decoding for read
771          * - Set timings
772          */
773         if (write_data)
774                 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
775         else
776                 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
777                          FMC2_CSQCFGR2_RCMD2EN |
778                          FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
779                          FMC2_CSQCFGR2_RCMD1T |
780                          FMC2_CSQCFGR2_RCMD2T;
781         if (!raw) {
782                 cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
783                 cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
784         }
785
786         /*
787          * - Set the number of sectors to be written
788          * - Set timings
789          */
790         cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
791         if (write_data) {
792                 cfg[2] |= FMC2_CSQCFGR3_RAC2T;
793                 if (chip->options & NAND_ROW_ADDR_3)
794                         cfg[2] |= FMC2_CSQCFGR3_AC5T;
795                 else
796                         cfg[2] |= FMC2_CSQCFGR3_AC4T;
797         }
798
799         /*
800          * Set the fourth first address cycles
801          * Byte 1 and byte 2 => column, we start at 0x0
802          * Byte 3 and byte 4 => page
803          */
804         cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
805         cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
806
807         /*
808          * - Set chip enable number
809          * - Set ECC byte offset in the spare area
810          * - Calculate the number of address cycles to be issued
811          * - Set byte 5 of address cycle if needed
812          */
813         cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
814         if (chip->options & NAND_BUSWIDTH_16)
815                 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
816         else
817                 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
818         if (chip->options & NAND_ROW_ADDR_3) {
819                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
820                 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
821         } else {
822                 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
823         }
824
825         regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
826 }
827
828 static void stm32_fmc2_nfc_dma_callback(void *arg)
829 {
830         complete((struct completion *)arg);
831 }
832
833 /* Read/write data from/to a page */
834 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
835                                int raw, bool write_data)
836 {
837         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
838         struct dma_async_tx_descriptor *desc_data, *desc_ecc;
839         struct scatterlist *sg;
840         struct dma_chan *dma_ch = nfc->dma_rx_ch;
841         enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
842         enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
843         int eccsteps = chip->ecc.steps;
844         int eccsize = chip->ecc.size;
845         unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
846         const u8 *p = buf;
847         int s, ret;
848
849         /* Configure DMA data */
850         if (write_data) {
851                 dma_data_dir = DMA_TO_DEVICE;
852                 dma_transfer_dir = DMA_MEM_TO_DEV;
853                 dma_ch = nfc->dma_tx_ch;
854         }
855
856         for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
857                 sg_set_buf(sg, p, eccsize);
858                 p += eccsize;
859         }
860
861         ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
862                          eccsteps, dma_data_dir);
863         if (ret < 0)
864                 return ret;
865
866         desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
867                                             eccsteps, dma_transfer_dir,
868                                             DMA_PREP_INTERRUPT);
869         if (!desc_data) {
870                 ret = -ENOMEM;
871                 goto err_unmap_data;
872         }
873
874         reinit_completion(&nfc->dma_data_complete);
875         reinit_completion(&nfc->complete);
876         desc_data->callback = stm32_fmc2_nfc_dma_callback;
877         desc_data->callback_param = &nfc->dma_data_complete;
878         ret = dma_submit_error(dmaengine_submit(desc_data));
879         if (ret)
880                 goto err_unmap_data;
881
882         dma_async_issue_pending(dma_ch);
883
884         if (!write_data && !raw) {
885                 /* Configure DMA ECC status */
886                 p = nfc->ecc_buf;
887                 for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
888                         sg_set_buf(sg, p, nfc->dma_ecc_len);
889                         p += nfc->dma_ecc_len;
890                 }
891
892                 ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
893                                  eccsteps, dma_data_dir);
894                 if (ret < 0)
895                         goto err_unmap_data;
896
897                 desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
898                                                    nfc->dma_ecc_sg.sgl,
899                                                    eccsteps, dma_transfer_dir,
900                                                    DMA_PREP_INTERRUPT);
901                 if (!desc_ecc) {
902                         ret = -ENOMEM;
903                         goto err_unmap_ecc;
904                 }
905
906                 reinit_completion(&nfc->dma_ecc_complete);
907                 desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
908                 desc_ecc->callback_param = &nfc->dma_ecc_complete;
909                 ret = dma_submit_error(dmaengine_submit(desc_ecc));
910                 if (ret)
911                         goto err_unmap_ecc;
912
913                 dma_async_issue_pending(nfc->dma_ecc_ch);
914         }
915
916         stm32_fmc2_nfc_clear_seq_irq(nfc);
917         stm32_fmc2_nfc_enable_seq_irq(nfc);
918
919         /* Start the transfer */
920         regmap_update_bits(nfc->regmap, FMC2_CSQCR,
921                            FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
922
923         /* Wait end of sequencer transfer */
924         if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
925                 dev_err(nfc->dev, "seq timeout\n");
926                 stm32_fmc2_nfc_disable_seq_irq(nfc);
927                 dmaengine_terminate_all(dma_ch);
928                 if (!write_data && !raw)
929                         dmaengine_terminate_all(nfc->dma_ecc_ch);
930                 ret = -ETIMEDOUT;
931                 goto err_unmap_ecc;
932         }
933
934         /* Wait DMA data transfer completion */
935         if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
936                 dev_err(nfc->dev, "data DMA timeout\n");
937                 dmaengine_terminate_all(dma_ch);
938                 ret = -ETIMEDOUT;
939         }
940
941         /* Wait DMA ECC transfer completion */
942         if (!write_data && !raw) {
943                 if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
944                                                  timeout)) {
945                         dev_err(nfc->dev, "ECC DMA timeout\n");
946                         dmaengine_terminate_all(nfc->dma_ecc_ch);
947                         ret = -ETIMEDOUT;
948                 }
949         }
950
951 err_unmap_ecc:
952         if (!write_data && !raw)
953                 dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
954                              eccsteps, dma_data_dir);
955
956 err_unmap_data:
957         dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
958
959         return ret;
960 }
961
962 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
963                                     int oob_required, int page, int raw)
964 {
965         struct mtd_info *mtd = nand_to_mtd(chip);
966         int ret;
967
968         /* Configure the sequencer */
969         stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
970
971         /* Write the page */
972         ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
973         if (ret)
974                 return ret;
975
976         /* Write oob */
977         if (oob_required) {
978                 ret = nand_change_write_column_op(chip, mtd->writesize,
979                                                   chip->oob_poi, mtd->oobsize,
980                                                   false);
981                 if (ret)
982                         return ret;
983         }
984
985         return nand_prog_page_end_op(chip);
986 }
987
988 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
989                                          int oob_required, int page)
990 {
991         int ret;
992
993         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
994         if (ret)
995                 return ret;
996
997         return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
998 }
999
1000 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1001                                              const u8 *buf, int oob_required,
1002                                              int page)
1003 {
1004         int ret;
1005
1006         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1007         if (ret)
1008                 return ret;
1009
1010         return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1011 }
1012
1013 /* Get a status indicating which sectors have errors */
1014 static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1015 {
1016         u32 csqemsr;
1017
1018         regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
1019
1020         return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
1021 }
1022
1023 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1024                                       u8 *read_ecc, u8 *calc_ecc)
1025 {
1026         struct mtd_info *mtd = nand_to_mtd(chip);
1027         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1028         int eccbytes = chip->ecc.bytes;
1029         int eccsteps = chip->ecc.steps;
1030         int eccstrength = chip->ecc.strength;
1031         int i, s, eccsize = chip->ecc.size;
1032         u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1033         u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1034         unsigned int max_bitflips = 0;
1035
1036         for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1037                 int stat = 0;
1038
1039                 if (eccstrength == FMC2_ECC_HAM) {
1040                         /* Ecc_sta = FMC2_HECCR */
1041                         if (sta_map & BIT(s)) {
1042                                 stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1043                                                            &calc_ecc[i]);
1044                                 stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1045                                                                   &read_ecc[i],
1046                                                                   &calc_ecc[i]);
1047                         }
1048                         ecc_sta++;
1049                 } else {
1050                         /*
1051                          * Ecc_sta[0] = FMC2_BCHDSR0
1052                          * Ecc_sta[1] = FMC2_BCHDSR1
1053                          * Ecc_sta[2] = FMC2_BCHDSR2
1054                          * Ecc_sta[3] = FMC2_BCHDSR3
1055                          * Ecc_sta[4] = FMC2_BCHDSR4
1056                          */
1057                         if (sta_map & BIT(s))
1058                                 stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1059                                                                  ecc_sta);
1060                         ecc_sta += 5;
1061                 }
1062
1063                 if (stat == -EBADMSG)
1064                         /* Check for empty pages with bitflips */
1065                         stat = nand_check_erased_ecc_chunk(dat, eccsize,
1066                                                            &read_ecc[i],
1067                                                            eccbytes,
1068                                                            NULL, 0,
1069                                                            eccstrength);
1070
1071                 if (stat < 0) {
1072                         mtd->ecc_stats.failed++;
1073                 } else {
1074                         mtd->ecc_stats.corrected += stat;
1075                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1076                 }
1077         }
1078
1079         return max_bitflips;
1080 }
1081
1082 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1083                                         int oob_required, int page)
1084 {
1085         struct mtd_info *mtd = nand_to_mtd(chip);
1086         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1087         u8 *ecc_calc = chip->ecc.calc_buf;
1088         u8 *ecc_code = chip->ecc.code_buf;
1089         u16 sta_map;
1090         int ret;
1091
1092         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1093         if (ret)
1094                 return ret;
1095
1096         /* Configure the sequencer */
1097         stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1098
1099         /* Read the page */
1100         ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1101         if (ret)
1102                 return ret;
1103
1104         sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1105
1106         /* Check if errors happen */
1107         if (likely(!sta_map)) {
1108                 if (oob_required)
1109                         return nand_change_read_column_op(chip, mtd->writesize,
1110                                                           chip->oob_poi,
1111                                                           mtd->oobsize, false);
1112
1113                 return 0;
1114         }
1115
1116         /* Read oob */
1117         ret = nand_change_read_column_op(chip, mtd->writesize,
1118                                          chip->oob_poi, mtd->oobsize, false);
1119         if (ret)
1120                 return ret;
1121
1122         ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1123                                          chip->ecc.total);
1124         if (ret)
1125                 return ret;
1126
1127         /* Correct data */
1128         return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1129 }
1130
1131 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1132                                             int oob_required, int page)
1133 {
1134         struct mtd_info *mtd = nand_to_mtd(chip);
1135         int ret;
1136
1137         ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1138         if (ret)
1139                 return ret;
1140
1141         /* Configure the sequencer */
1142         stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1143
1144         /* Read the page */
1145         ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1146         if (ret)
1147                 return ret;
1148
1149         /* Read oob */
1150         if (oob_required)
1151                 return nand_change_read_column_op(chip, mtd->writesize,
1152                                                   chip->oob_poi, mtd->oobsize,
1153                                                   false);
1154
1155         return 0;
1156 }
1157
1158 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1159 {
1160         struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1161
1162         if (nfc->irq_state == FMC2_IRQ_SEQ)
1163                 /* Sequencer is used */
1164                 stm32_fmc2_nfc_disable_seq_irq(nfc);
1165         else if (nfc->irq_state == FMC2_IRQ_BCH)
1166                 /* BCH is used */
1167                 stm32_fmc2_nfc_disable_bch_irq(nfc);
1168
1169         complete(&nfc->complete);
1170
1171         return IRQ_HANDLED;
1172 }
1173
1174 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1175                                      unsigned int len, bool force_8bit)
1176 {
1177         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1178         void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1179
1180         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1181                 /* Reconfigure bus width to 8-bit */
1182                 stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1183
1184         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1185                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1186                         *(u8 *)buf = readb_relaxed(io_addr_r);
1187                         buf += sizeof(u8);
1188                         len -= sizeof(u8);
1189                 }
1190
1191                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1192                     len >= sizeof(u16)) {
1193                         *(u16 *)buf = readw_relaxed(io_addr_r);
1194                         buf += sizeof(u16);
1195                         len -= sizeof(u16);
1196                 }
1197         }
1198
1199         /* Buf is aligned */
1200         while (len >= sizeof(u32)) {
1201                 *(u32 *)buf = readl_relaxed(io_addr_r);
1202                 buf += sizeof(u32);
1203                 len -= sizeof(u32);
1204         }
1205
1206         /* Read remaining bytes */
1207         if (len >= sizeof(u16)) {
1208                 *(u16 *)buf = readw_relaxed(io_addr_r);
1209                 buf += sizeof(u16);
1210                 len -= sizeof(u16);
1211         }
1212
1213         if (len)
1214                 *(u8 *)buf = readb_relaxed(io_addr_r);
1215
1216         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1217                 /* Reconfigure bus width to 16-bit */
1218                 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1219 }
1220
1221 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1222                                       unsigned int len, bool force_8bit)
1223 {
1224         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1225         void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1226
1227         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1228                 /* Reconfigure bus width to 8-bit */
1229                 stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1230
1231         if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1232                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1233                         writeb_relaxed(*(u8 *)buf, io_addr_w);
1234                         buf += sizeof(u8);
1235                         len -= sizeof(u8);
1236                 }
1237
1238                 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1239                     len >= sizeof(u16)) {
1240                         writew_relaxed(*(u16 *)buf, io_addr_w);
1241                         buf += sizeof(u16);
1242                         len -= sizeof(u16);
1243                 }
1244         }
1245
1246         /* Buf is aligned */
1247         while (len >= sizeof(u32)) {
1248                 writel_relaxed(*(u32 *)buf, io_addr_w);
1249                 buf += sizeof(u32);
1250                 len -= sizeof(u32);
1251         }
1252
1253         /* Write remaining bytes */
1254         if (len >= sizeof(u16)) {
1255                 writew_relaxed(*(u16 *)buf, io_addr_w);
1256                 buf += sizeof(u16);
1257                 len -= sizeof(u16);
1258         }
1259
1260         if (len)
1261                 writeb_relaxed(*(u8 *)buf, io_addr_w);
1262
1263         if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1264                 /* Reconfigure bus width to 16-bit */
1265                 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1266 }
1267
1268 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1269                                   unsigned long timeout_ms)
1270 {
1271         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1272         const struct nand_sdr_timings *timings;
1273         u32 isr, sr;
1274
1275         /* Check if there is no pending requests to the NAND flash */
1276         if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
1277                                      sr & FMC2_SR_NWRF, 1,
1278                                      1000 * FMC2_TIMEOUT_MS))
1279                 dev_warn(nfc->dev, "Waitrdy timeout\n");
1280
1281         /* Wait tWB before R/B# signal is low */
1282         timings = nand_get_sdr_timings(nand_get_interface_config(chip));
1283         ndelay(PSEC_TO_NSEC(timings->tWB_max));
1284
1285         /* R/B# signal is low, clear high level flag */
1286         regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
1287
1288         /* Wait R/B# signal is high */
1289         return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
1290                                         isr & FMC2_ISR_IHLF, 5,
1291                                         1000 * FMC2_TIMEOUT_MS);
1292 }
1293
1294 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1295                                   const struct nand_operation *op,
1296                                   bool check_only)
1297 {
1298         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1299         const struct nand_op_instr *instr = NULL;
1300         unsigned int op_id, i, timeout;
1301         int ret;
1302
1303         if (check_only)
1304                 return 0;
1305
1306         ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1307         if (ret)
1308                 return ret;
1309
1310         for (op_id = 0; op_id < op->ninstrs; op_id++) {
1311                 instr = &op->instrs[op_id];
1312
1313                 switch (instr->type) {
1314                 case NAND_OP_CMD_INSTR:
1315                         writeb_relaxed(instr->ctx.cmd.opcode,
1316                                        nfc->cmd_base[nfc->cs_sel]);
1317                         break;
1318
1319                 case NAND_OP_ADDR_INSTR:
1320                         for (i = 0; i < instr->ctx.addr.naddrs; i++)
1321                                 writeb_relaxed(instr->ctx.addr.addrs[i],
1322                                                nfc->addr_base[nfc->cs_sel]);
1323                         break;
1324
1325                 case NAND_OP_DATA_IN_INSTR:
1326                         stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1327                                                  instr->ctx.data.len,
1328                                                  instr->ctx.data.force_8bit);
1329                         break;
1330
1331                 case NAND_OP_DATA_OUT_INSTR:
1332                         stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1333                                                   instr->ctx.data.len,
1334                                                   instr->ctx.data.force_8bit);
1335                         break;
1336
1337                 case NAND_OP_WAITRDY_INSTR:
1338                         timeout = instr->ctx.waitrdy.timeout_ms;
1339                         ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1340                         break;
1341                 }
1342         }
1343
1344         return ret;
1345 }
1346
1347 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1348 {
1349         u32 pcr;
1350
1351         regmap_read(nfc->regmap, FMC2_PCR, &pcr);
1352
1353         /* Set CS used to undefined */
1354         nfc->cs_sel = -1;
1355
1356         /* Enable wait feature and nand flash memory bank */
1357         pcr |= FMC2_PCR_PWAITEN;
1358         pcr |= FMC2_PCR_PBKEN;
1359
1360         /* Set buswidth to 8 bits mode for identification */
1361         pcr &= ~FMC2_PCR_PWID;
1362
1363         /* ECC logic is disabled */
1364         pcr &= ~FMC2_PCR_ECCEN;
1365
1366         /* Default mode */
1367         pcr &= ~FMC2_PCR_ECCALG;
1368         pcr &= ~FMC2_PCR_BCHECC;
1369         pcr &= ~FMC2_PCR_WEN;
1370
1371         /* Set default ECC sector size */
1372         pcr &= ~FMC2_PCR_ECCSS;
1373         pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1374
1375         /* Set default tclr/tar timings */
1376         pcr &= ~FMC2_PCR_TCLR;
1377         pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1378         pcr &= ~FMC2_PCR_TAR;
1379         pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1380
1381         /* Enable FMC2 controller */
1382         if (nfc->dev == nfc->cdev)
1383                 regmap_update_bits(nfc->regmap, FMC2_BCR1,
1384                                    FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
1385
1386         regmap_write(nfc->regmap, FMC2_PCR, pcr);
1387         regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
1388         regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
1389 }
1390
1391 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1392                                         const struct nand_sdr_timings *sdrt)
1393 {
1394         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1395         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1396         struct stm32_fmc2_timings *tims = &nand->timings;
1397         unsigned long hclk = clk_get_rate(nfc->clk);
1398         unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1399         unsigned long timing, tar, tclr, thiz, twait;
1400         unsigned long tset_mem, tset_att, thold_mem, thold_att;
1401
1402         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1403         timing = DIV_ROUND_UP(tar, hclkp) - 1;
1404         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1405
1406         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1407         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1408         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1409
1410         tims->thiz = FMC2_THIZ;
1411         thiz = (tims->thiz + 1) * hclkp;
1412
1413         /*
1414          * tWAIT > tRP
1415          * tWAIT > tWP
1416          * tWAIT > tREA + tIO
1417          */
1418         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1419         twait = max_t(unsigned long, twait, sdrt->tWP_min);
1420         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1421         timing = DIV_ROUND_UP(twait, hclkp);
1422         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1423
1424         /*
1425          * tSETUP_MEM > tCS - tWAIT
1426          * tSETUP_MEM > tALS - tWAIT
1427          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1428          */
1429         tset_mem = hclkp;
1430         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1431                 tset_mem = sdrt->tCS_min - twait;
1432         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1433                 tset_mem = sdrt->tALS_min - twait;
1434         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1435             (tset_mem < sdrt->tDS_min - (twait - thiz)))
1436                 tset_mem = sdrt->tDS_min - (twait - thiz);
1437         timing = DIV_ROUND_UP(tset_mem, hclkp);
1438         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1439
1440         /*
1441          * tHOLD_MEM > tCH
1442          * tHOLD_MEM > tREH - tSETUP_MEM
1443          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1444          */
1445         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1446         if (sdrt->tREH_min > tset_mem &&
1447             (thold_mem < sdrt->tREH_min - tset_mem))
1448                 thold_mem = sdrt->tREH_min - tset_mem;
1449         if ((sdrt->tRC_min > tset_mem + twait) &&
1450             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1451                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
1452         if ((sdrt->tWC_min > tset_mem + twait) &&
1453             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1454                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
1455         timing = DIV_ROUND_UP(thold_mem, hclkp);
1456         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1457
1458         /*
1459          * tSETUP_ATT > tCS - tWAIT
1460          * tSETUP_ATT > tCLS - tWAIT
1461          * tSETUP_ATT > tALS - tWAIT
1462          * tSETUP_ATT > tRHW - tHOLD_MEM
1463          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1464          */
1465         tset_att = hclkp;
1466         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1467                 tset_att = sdrt->tCS_min - twait;
1468         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1469                 tset_att = sdrt->tCLS_min - twait;
1470         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1471                 tset_att = sdrt->tALS_min - twait;
1472         if (sdrt->tRHW_min > thold_mem &&
1473             (tset_att < sdrt->tRHW_min - thold_mem))
1474                 tset_att = sdrt->tRHW_min - thold_mem;
1475         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1476             (tset_att < sdrt->tDS_min - (twait - thiz)))
1477                 tset_att = sdrt->tDS_min - (twait - thiz);
1478         timing = DIV_ROUND_UP(tset_att, hclkp);
1479         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1480
1481         /*
1482          * tHOLD_ATT > tALH
1483          * tHOLD_ATT > tCH
1484          * tHOLD_ATT > tCLH
1485          * tHOLD_ATT > tCOH
1486          * tHOLD_ATT > tDH
1487          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1488          * tHOLD_ATT > tADL - tSETUP_MEM
1489          * tHOLD_ATT > tWH - tSETUP_MEM
1490          * tHOLD_ATT > tWHR - tSETUP_MEM
1491          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1492          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1493          */
1494         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1495         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1496         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1497         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1498         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1499         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1500             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1501                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1502         if (sdrt->tADL_min > tset_mem &&
1503             (thold_att < sdrt->tADL_min - tset_mem))
1504                 thold_att = sdrt->tADL_min - tset_mem;
1505         if (sdrt->tWH_min > tset_mem &&
1506             (thold_att < sdrt->tWH_min - tset_mem))
1507                 thold_att = sdrt->tWH_min - tset_mem;
1508         if (sdrt->tWHR_min > tset_mem &&
1509             (thold_att < sdrt->tWHR_min - tset_mem))
1510                 thold_att = sdrt->tWHR_min - tset_mem;
1511         if ((sdrt->tRC_min > tset_att + twait) &&
1512             (thold_att < sdrt->tRC_min - (tset_att + twait)))
1513                 thold_att = sdrt->tRC_min - (tset_att + twait);
1514         if ((sdrt->tWC_min > tset_att + twait) &&
1515             (thold_att < sdrt->tWC_min - (tset_att + twait)))
1516                 thold_att = sdrt->tWC_min - (tset_att + twait);
1517         timing = DIV_ROUND_UP(thold_att, hclkp);
1518         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1519 }
1520
1521 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1522                                           const struct nand_interface_config *conf)
1523 {
1524         const struct nand_sdr_timings *sdrt;
1525
1526         sdrt = nand_get_sdr_timings(conf);
1527         if (IS_ERR(sdrt))
1528                 return PTR_ERR(sdrt);
1529
1530         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1531                 return 0;
1532
1533         stm32_fmc2_nfc_calc_timings(chip, sdrt);
1534         stm32_fmc2_nfc_timings_init(chip);
1535
1536         return 0;
1537 }
1538
1539 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1540 {
1541         int ret = 0;
1542
1543         nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1544         if (IS_ERR(nfc->dma_tx_ch)) {
1545                 ret = PTR_ERR(nfc->dma_tx_ch);
1546                 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1547                         dev_err(nfc->dev,
1548                                 "failed to request tx DMA channel: %d\n", ret);
1549                 nfc->dma_tx_ch = NULL;
1550                 goto err_dma;
1551         }
1552
1553         nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1554         if (IS_ERR(nfc->dma_rx_ch)) {
1555                 ret = PTR_ERR(nfc->dma_rx_ch);
1556                 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1557                         dev_err(nfc->dev,
1558                                 "failed to request rx DMA channel: %d\n", ret);
1559                 nfc->dma_rx_ch = NULL;
1560                 goto err_dma;
1561         }
1562
1563         nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1564         if (IS_ERR(nfc->dma_ecc_ch)) {
1565                 ret = PTR_ERR(nfc->dma_ecc_ch);
1566                 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1567                         dev_err(nfc->dev,
1568                                 "failed to request ecc DMA channel: %d\n", ret);
1569                 nfc->dma_ecc_ch = NULL;
1570                 goto err_dma;
1571         }
1572
1573         ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1574         if (ret)
1575                 return ret;
1576
1577         /* Allocate a buffer to store ECC status registers */
1578         nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
1579         if (!nfc->ecc_buf)
1580                 return -ENOMEM;
1581
1582         ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1583         if (ret)
1584                 return ret;
1585
1586         init_completion(&nfc->dma_data_complete);
1587         init_completion(&nfc->dma_ecc_complete);
1588
1589         return 0;
1590
1591 err_dma:
1592         if (ret == -ENODEV) {
1593                 dev_warn(nfc->dev,
1594                          "DMAs not defined in the DT, polling mode is used\n");
1595                 ret = 0;
1596         }
1597
1598         return ret;
1599 }
1600
1601 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1602 {
1603         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1604
1605         /*
1606          * Specific callbacks to read/write a page depending on
1607          * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1608          */
1609         if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1610                 /* DMA => use sequencer mode callbacks */
1611                 chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1612                 chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1613                 chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1614                 chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1615                 chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1616         } else {
1617                 /* No DMA => use polling mode callbacks */
1618                 chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1619                 if (chip->ecc.strength == FMC2_ECC_HAM) {
1620                         /* Hamming is used */
1621                         chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1622                         chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1623                         chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1624                 } else {
1625                         /* BCH is used */
1626                         chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1627                         chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1628                         chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1629                 }
1630         }
1631
1632         /* Specific configurations depending on the algo used */
1633         if (chip->ecc.strength == FMC2_ECC_HAM)
1634                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1635         else if (chip->ecc.strength == FMC2_ECC_BCH8)
1636                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1637         else
1638                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1639 }
1640
1641 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1642                                         struct mtd_oob_region *oobregion)
1643 {
1644         struct nand_chip *chip = mtd_to_nand(mtd);
1645         struct nand_ecc_ctrl *ecc = &chip->ecc;
1646
1647         if (section)
1648                 return -ERANGE;
1649
1650         oobregion->length = ecc->total;
1651         oobregion->offset = FMC2_BBM_LEN;
1652
1653         return 0;
1654 }
1655
1656 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1657                                          struct mtd_oob_region *oobregion)
1658 {
1659         struct nand_chip *chip = mtd_to_nand(mtd);
1660         struct nand_ecc_ctrl *ecc = &chip->ecc;
1661
1662         if (section)
1663                 return -ERANGE;
1664
1665         oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1666         oobregion->offset = ecc->total + FMC2_BBM_LEN;
1667
1668         return 0;
1669 }
1670
1671 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1672         .ecc = stm32_fmc2_nfc_ooblayout_ecc,
1673         .free = stm32_fmc2_nfc_ooblayout_free,
1674 };
1675
1676 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1677 {
1678         /* Hamming */
1679         if (strength == FMC2_ECC_HAM)
1680                 return 4;
1681
1682         /* BCH8 */
1683         if (strength == FMC2_ECC_BCH8)
1684                 return 14;
1685
1686         /* BCH4 */
1687         return 8;
1688 }
1689
1690 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1691                      FMC2_ECC_STEP_SIZE,
1692                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1693
1694 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1695 {
1696         struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1697         struct mtd_info *mtd = nand_to_mtd(chip);
1698         int ret;
1699
1700         /*
1701          * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
1702          * Hamming => ecc.strength = 1
1703          * BCH4 => ecc.strength = 4
1704          * BCH8 => ecc.strength = 8
1705          * ECC sector size = 512
1706          */
1707         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1708                 dev_err(nfc->dev,
1709                         "nand_ecc_engine_type is not well defined in the DT\n");
1710                 return -EINVAL;
1711         }
1712
1713         /* Default ECC settings in case they are not set in the device tree */
1714         if (!chip->ecc.size)
1715                 chip->ecc.size = FMC2_ECC_STEP_SIZE;
1716
1717         if (!chip->ecc.strength)
1718                 chip->ecc.strength = FMC2_ECC_BCH8;
1719
1720         ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1721                                    mtd->oobsize - FMC2_BBM_LEN);
1722         if (ret) {
1723                 dev_err(nfc->dev, "no valid ECC settings set\n");
1724                 return ret;
1725         }
1726
1727         if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1728                 dev_err(nfc->dev, "nand page size is not supported\n");
1729                 return -EINVAL;
1730         }
1731
1732         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1733                 chip->bbt_options |= NAND_BBT_NO_OOB;
1734
1735         stm32_fmc2_nfc_nand_callbacks_setup(chip);
1736
1737         mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1738
1739         stm32_fmc2_nfc_setup(chip);
1740
1741         return 0;
1742 }
1743
1744 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1745         .attach_chip = stm32_fmc2_nfc_attach_chip,
1746         .exec_op = stm32_fmc2_nfc_exec_op,
1747         .setup_interface = stm32_fmc2_nfc_setup_interface,
1748 };
1749
1750 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1751                                       struct device_node *dn)
1752 {
1753         struct stm32_fmc2_nand *nand = &nfc->nand;
1754         u32 cs;
1755         int ret, i;
1756
1757         if (!of_get_property(dn, "reg", &nand->ncs))
1758                 return -EINVAL;
1759
1760         nand->ncs /= sizeof(u32);
1761         if (!nand->ncs) {
1762                 dev_err(nfc->dev, "invalid reg property size\n");
1763                 return -EINVAL;
1764         }
1765
1766         for (i = 0; i < nand->ncs; i++) {
1767                 ret = of_property_read_u32_index(dn, "reg", i, &cs);
1768                 if (ret) {
1769                         dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1770                                 ret);
1771                         return ret;
1772                 }
1773
1774                 if (cs >= FMC2_MAX_CE) {
1775                         dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1776                         return -EINVAL;
1777                 }
1778
1779                 if (nfc->cs_assigned & BIT(cs)) {
1780                         dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1781                         return -EINVAL;
1782                 }
1783
1784                 nfc->cs_assigned |= BIT(cs);
1785                 nand->cs_used[i] = cs;
1786         }
1787
1788         nand_set_flash_node(&nand->chip, dn);
1789
1790         return 0;
1791 }
1792
1793 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1794 {
1795         struct device_node *dn = nfc->dev->of_node;
1796         struct device_node *child;
1797         int nchips = of_get_child_count(dn);
1798         int ret = 0;
1799
1800         if (!nchips) {
1801                 dev_err(nfc->dev, "NAND chip not defined\n");
1802                 return -EINVAL;
1803         }
1804
1805         if (nchips > 1) {
1806                 dev_err(nfc->dev, "too many NAND chips defined\n");
1807                 return -EINVAL;
1808         }
1809
1810         for_each_child_of_node(dn, child) {
1811                 ret = stm32_fmc2_nfc_parse_child(nfc, child);
1812                 if (ret < 0) {
1813                         of_node_put(child);
1814                         return ret;
1815                 }
1816         }
1817
1818         return ret;
1819 }
1820
1821 static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
1822 {
1823         struct device *dev = nfc->dev;
1824         bool ebi_found = false;
1825
1826         if (dev->parent && of_device_is_compatible(dev->parent->of_node,
1827                                                    "st,stm32mp1-fmc2-ebi"))
1828                 ebi_found = true;
1829
1830         if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
1831                 if (ebi_found) {
1832                         nfc->cdev = dev->parent;
1833
1834                         return 0;
1835                 }
1836
1837                 return -EINVAL;
1838         }
1839
1840         if (ebi_found)
1841                 return -EINVAL;
1842
1843         nfc->cdev = dev;
1844
1845         return 0;
1846 }
1847
1848 static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1849 {
1850         struct device *dev = &pdev->dev;
1851         struct reset_control *rstc;
1852         struct stm32_fmc2_nfc *nfc;
1853         struct stm32_fmc2_nand *nand;
1854         struct resource *res;
1855         struct mtd_info *mtd;
1856         struct nand_chip *chip;
1857         struct resource cres;
1858         int chip_cs, mem_region, ret, irq;
1859         int start_region = 0;
1860
1861         nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1862         if (!nfc)
1863                 return -ENOMEM;
1864
1865         nfc->dev = dev;
1866         nand_controller_init(&nfc->base);
1867         nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1868
1869         ret = stm32_fmc2_nfc_set_cdev(nfc);
1870         if (ret)
1871                 return ret;
1872
1873         ret = stm32_fmc2_nfc_parse_dt(nfc);
1874         if (ret)
1875                 return ret;
1876
1877         ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
1878         if (ret)
1879                 return ret;
1880
1881         nfc->io_phys_addr = cres.start;
1882
1883         nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
1884         if (IS_ERR(nfc->regmap))
1885                 return PTR_ERR(nfc->regmap);
1886
1887         if (nfc->dev == nfc->cdev)
1888                 start_region = 1;
1889
1890         for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
1891              chip_cs++, mem_region += 3) {
1892                 if (!(nfc->cs_assigned & BIT(chip_cs)))
1893                         continue;
1894
1895                 res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
1896                 nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res);
1897                 if (IS_ERR(nfc->data_base[chip_cs]))
1898                         return PTR_ERR(nfc->data_base[chip_cs]);
1899
1900                 nfc->data_phys_addr[chip_cs] = res->start;
1901
1902                 res = platform_get_resource(pdev, IORESOURCE_MEM,
1903                                             mem_region + 1);
1904                 nfc->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
1905                 if (IS_ERR(nfc->cmd_base[chip_cs]))
1906                         return PTR_ERR(nfc->cmd_base[chip_cs]);
1907
1908                 res = platform_get_resource(pdev, IORESOURCE_MEM,
1909                                             mem_region + 2);
1910                 nfc->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
1911                 if (IS_ERR(nfc->addr_base[chip_cs]))
1912                         return PTR_ERR(nfc->addr_base[chip_cs]);
1913         }
1914
1915         irq = platform_get_irq(pdev, 0);
1916         if (irq < 0)
1917                 return irq;
1918
1919         ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1920                                dev_name(dev), nfc);
1921         if (ret) {
1922                 dev_err(dev, "failed to request irq\n");
1923                 return ret;
1924         }
1925
1926         init_completion(&nfc->complete);
1927
1928         nfc->clk = devm_clk_get(nfc->cdev, NULL);
1929         if (IS_ERR(nfc->clk))
1930                 return PTR_ERR(nfc->clk);
1931
1932         ret = clk_prepare_enable(nfc->clk);
1933         if (ret) {
1934                 dev_err(dev, "can not enable the clock\n");
1935                 return ret;
1936         }
1937
1938         rstc = devm_reset_control_get(dev, NULL);
1939         if (IS_ERR(rstc)) {
1940                 ret = PTR_ERR(rstc);
1941                 if (ret == -EPROBE_DEFER)
1942                         goto err_clk_disable;
1943         } else {
1944                 reset_control_assert(rstc);
1945                 reset_control_deassert(rstc);
1946         }
1947
1948         ret = stm32_fmc2_nfc_dma_setup(nfc);
1949         if (ret)
1950                 goto err_release_dma;
1951
1952         stm32_fmc2_nfc_init(nfc);
1953
1954         nand = &nfc->nand;
1955         chip = &nand->chip;
1956         mtd = nand_to_mtd(chip);
1957         mtd->dev.parent = dev;
1958
1959         chip->controller = &nfc->base;
1960         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1961                          NAND_USES_DMA;
1962
1963         /* Scan to find existence of the device */
1964         ret = nand_scan(chip, nand->ncs);
1965         if (ret)
1966                 goto err_release_dma;
1967
1968         ret = mtd_device_register(mtd, NULL, 0);
1969         if (ret)
1970                 goto err_nand_cleanup;
1971
1972         platform_set_drvdata(pdev, nfc);
1973
1974         return 0;
1975
1976 err_nand_cleanup:
1977         nand_cleanup(chip);
1978
1979 err_release_dma:
1980         if (nfc->dma_ecc_ch)
1981                 dma_release_channel(nfc->dma_ecc_ch);
1982         if (nfc->dma_tx_ch)
1983                 dma_release_channel(nfc->dma_tx_ch);
1984         if (nfc->dma_rx_ch)
1985                 dma_release_channel(nfc->dma_rx_ch);
1986
1987         sg_free_table(&nfc->dma_data_sg);
1988         sg_free_table(&nfc->dma_ecc_sg);
1989
1990 err_clk_disable:
1991         clk_disable_unprepare(nfc->clk);
1992
1993         return ret;
1994 }
1995
1996 static int stm32_fmc2_nfc_remove(struct platform_device *pdev)
1997 {
1998         struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
1999         struct stm32_fmc2_nand *nand = &nfc->nand;
2000         struct nand_chip *chip = &nand->chip;
2001         int ret;
2002
2003         ret = mtd_device_unregister(nand_to_mtd(chip));
2004         WARN_ON(ret);
2005         nand_cleanup(chip);
2006
2007         if (nfc->dma_ecc_ch)
2008                 dma_release_channel(nfc->dma_ecc_ch);
2009         if (nfc->dma_tx_ch)
2010                 dma_release_channel(nfc->dma_tx_ch);
2011         if (nfc->dma_rx_ch)
2012                 dma_release_channel(nfc->dma_rx_ch);
2013
2014         sg_free_table(&nfc->dma_data_sg);
2015         sg_free_table(&nfc->dma_ecc_sg);
2016
2017         clk_disable_unprepare(nfc->clk);
2018
2019         return 0;
2020 }
2021
2022 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2023 {
2024         struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2025
2026         clk_disable_unprepare(nfc->clk);
2027
2028         pinctrl_pm_select_sleep_state(dev);
2029
2030         return 0;
2031 }
2032
2033 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2034 {
2035         struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2036         struct stm32_fmc2_nand *nand = &nfc->nand;
2037         int chip_cs, ret;
2038
2039         pinctrl_pm_select_default_state(dev);
2040
2041         ret = clk_prepare_enable(nfc->clk);
2042         if (ret) {
2043                 dev_err(dev, "can not enable the clock\n");
2044                 return ret;
2045         }
2046
2047         stm32_fmc2_nfc_init(nfc);
2048
2049         for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2050                 if (!(nfc->cs_assigned & BIT(chip_cs)))
2051                         continue;
2052
2053                 nand_reset(&nand->chip, chip_cs);
2054         }
2055
2056         return 0;
2057 }
2058
2059 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2060                          stm32_fmc2_nfc_resume);
2061
2062 static const struct of_device_id stm32_fmc2_nfc_match[] = {
2063         {.compatible = "st,stm32mp15-fmc2"},
2064         {.compatible = "st,stm32mp1-fmc2-nfc"},
2065         {}
2066 };
2067 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2068
2069 static struct platform_driver stm32_fmc2_nfc_driver = {
2070         .probe  = stm32_fmc2_nfc_probe,
2071         .remove = stm32_fmc2_nfc_remove,
2072         .driver = {
2073                 .name = "stm32_fmc2_nfc",
2074                 .of_match_table = stm32_fmc2_nfc_match,
2075                 .pm = &stm32_fmc2_nfc_pm_ops,
2076         },
2077 };
2078 module_platform_driver(stm32_fmc2_nfc_driver);
2079
2080 MODULE_ALIAS("platform:stm32_fmc2_nfc");
2081 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2082 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2083 MODULE_LICENSE("GPL v2");