Merge tag 'm68knommu-for-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / sh_flctl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH FLCTL nand controller
4  *
5  * Copyright (c) 2008 Renesas Solutions Corp.
6  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7  *
8  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9  */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/completion.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_dma.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/partitions.h>
30 #include <linux/mtd/sh_flctl.h>
31
32 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
33                                         struct mtd_oob_region *oobregion)
34 {
35         struct nand_chip *chip = mtd_to_nand(mtd);
36
37         if (section)
38                 return -ERANGE;
39
40         oobregion->offset = 0;
41         oobregion->length = chip->ecc.bytes;
42
43         return 0;
44 }
45
46 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
47                                          struct mtd_oob_region *oobregion)
48 {
49         if (section)
50                 return -ERANGE;
51
52         oobregion->offset = 12;
53         oobregion->length = 4;
54
55         return 0;
56 }
57
58 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
59         .ecc = flctl_4secc_ooblayout_sp_ecc,
60         .free = flctl_4secc_ooblayout_sp_free,
61 };
62
63 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
64                                         struct mtd_oob_region *oobregion)
65 {
66         struct nand_chip *chip = mtd_to_nand(mtd);
67
68         if (section >= chip->ecc.steps)
69                 return -ERANGE;
70
71         oobregion->offset = (section * 16) + 6;
72         oobregion->length = chip->ecc.bytes;
73
74         return 0;
75 }
76
77 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
78                                          struct mtd_oob_region *oobregion)
79 {
80         struct nand_chip *chip = mtd_to_nand(mtd);
81
82         if (section >= chip->ecc.steps)
83                 return -ERANGE;
84
85         oobregion->offset = section * 16;
86         oobregion->length = 6;
87
88         if (!section) {
89                 oobregion->offset += 2;
90                 oobregion->length -= 2;
91         }
92
93         return 0;
94 }
95
96 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
97         .ecc = flctl_4secc_ooblayout_lp_ecc,
98         .free = flctl_4secc_ooblayout_lp_free,
99 };
100
101 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
102
103 static struct nand_bbt_descr flctl_4secc_smallpage = {
104         .offs = 11,
105         .len = 1,
106         .pattern = scan_ff_pattern,
107 };
108
109 static struct nand_bbt_descr flctl_4secc_largepage = {
110         .offs = 0,
111         .len = 2,
112         .pattern = scan_ff_pattern,
113 };
114
115 static void empty_fifo(struct sh_flctl *flctl)
116 {
117         writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
118         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
119 }
120
121 static void start_translation(struct sh_flctl *flctl)
122 {
123         writeb(TRSTRT, FLTRCR(flctl));
124 }
125
126 static void timeout_error(struct sh_flctl *flctl, const char *str)
127 {
128         dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
129 }
130
131 static void wait_completion(struct sh_flctl *flctl)
132 {
133         uint32_t timeout = LOOP_TIMEOUT_MAX;
134
135         while (timeout--) {
136                 if (readb(FLTRCR(flctl)) & TREND) {
137                         writeb(0x0, FLTRCR(flctl));
138                         return;
139                 }
140                 udelay(1);
141         }
142
143         timeout_error(flctl, __func__);
144         writeb(0x0, FLTRCR(flctl));
145 }
146
147 static void flctl_dma_complete(void *param)
148 {
149         struct sh_flctl *flctl = param;
150
151         complete(&flctl->dma_complete);
152 }
153
154 static void flctl_release_dma(struct sh_flctl *flctl)
155 {
156         if (flctl->chan_fifo0_rx) {
157                 dma_release_channel(flctl->chan_fifo0_rx);
158                 flctl->chan_fifo0_rx = NULL;
159         }
160         if (flctl->chan_fifo0_tx) {
161                 dma_release_channel(flctl->chan_fifo0_tx);
162                 flctl->chan_fifo0_tx = NULL;
163         }
164 }
165
166 static void flctl_setup_dma(struct sh_flctl *flctl)
167 {
168         dma_cap_mask_t mask;
169         struct dma_slave_config cfg;
170         struct platform_device *pdev = flctl->pdev;
171         struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
172         int ret;
173
174         if (!pdata)
175                 return;
176
177         if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
178                 return;
179
180         /* We can only either use DMA for both Tx and Rx or not use it at all */
181         dma_cap_zero(mask);
182         dma_cap_set(DMA_SLAVE, mask);
183
184         flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
185                                 (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
186         dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
187                 flctl->chan_fifo0_tx);
188
189         if (!flctl->chan_fifo0_tx)
190                 return;
191
192         memset(&cfg, 0, sizeof(cfg));
193         cfg.direction = DMA_MEM_TO_DEV;
194         cfg.dst_addr = flctl->fifo;
195         cfg.src_addr = 0;
196         ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
197         if (ret < 0)
198                 goto err;
199
200         flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
201                                 (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
202         dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
203                 flctl->chan_fifo0_rx);
204
205         if (!flctl->chan_fifo0_rx)
206                 goto err;
207
208         cfg.direction = DMA_DEV_TO_MEM;
209         cfg.dst_addr = 0;
210         cfg.src_addr = flctl->fifo;
211         ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
212         if (ret < 0)
213                 goto err;
214
215         init_completion(&flctl->dma_complete);
216
217         return;
218
219 err:
220         flctl_release_dma(flctl);
221 }
222
223 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
224 {
225         struct sh_flctl *flctl = mtd_to_flctl(mtd);
226         uint32_t addr = 0;
227
228         if (column == -1) {
229                 addr = page_addr;       /* ERASE1 */
230         } else if (page_addr != -1) {
231                 /* SEQIN, READ0, etc.. */
232                 if (flctl->chip.options & NAND_BUSWIDTH_16)
233                         column >>= 1;
234                 if (flctl->page_size) {
235                         addr = column & 0x0FFF;
236                         addr |= (page_addr & 0xff) << 16;
237                         addr |= ((page_addr >> 8) & 0xff) << 24;
238                         /* big than 128MB */
239                         if (flctl->rw_ADRCNT == ADRCNT2_E) {
240                                 uint32_t        addr2;
241                                 addr2 = (page_addr >> 16) & 0xff;
242                                 writel(addr2, FLADR2(flctl));
243                         }
244                 } else {
245                         addr = column;
246                         addr |= (page_addr & 0xff) << 8;
247                         addr |= ((page_addr >> 8) & 0xff) << 16;
248                         addr |= ((page_addr >> 16) & 0xff) << 24;
249                 }
250         }
251         writel(addr, FLADR(flctl));
252 }
253
254 static void wait_rfifo_ready(struct sh_flctl *flctl)
255 {
256         uint32_t timeout = LOOP_TIMEOUT_MAX;
257
258         while (timeout--) {
259                 uint32_t val;
260                 /* check FIFO */
261                 val = readl(FLDTCNTR(flctl)) >> 16;
262                 if (val & 0xFF)
263                         return;
264                 udelay(1);
265         }
266         timeout_error(flctl, __func__);
267 }
268
269 static void wait_wfifo_ready(struct sh_flctl *flctl)
270 {
271         uint32_t len, timeout = LOOP_TIMEOUT_MAX;
272
273         while (timeout--) {
274                 /* check FIFO */
275                 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
276                 if (len >= 4)
277                         return;
278                 udelay(1);
279         }
280         timeout_error(flctl, __func__);
281 }
282
283 static enum flctl_ecc_res_t wait_recfifo_ready
284                 (struct sh_flctl *flctl, int sector_number)
285 {
286         uint32_t timeout = LOOP_TIMEOUT_MAX;
287         void __iomem *ecc_reg[4];
288         int i;
289         int state = FL_SUCCESS;
290         uint32_t data, size;
291
292         /*
293          * First this loops checks in FLDTCNTR if we are ready to read out the
294          * oob data. This is the case if either all went fine without errors or
295          * if the bottom part of the loop corrected the errors or marked them as
296          * uncorrectable and the controller is given time to push the data into
297          * the FIFO.
298          */
299         while (timeout--) {
300                 /* check if all is ok and we can read out the OOB */
301                 size = readl(FLDTCNTR(flctl)) >> 24;
302                 if ((size & 0xFF) == 4)
303                         return state;
304
305                 /* check if a correction code has been calculated */
306                 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
307                         /*
308                          * either we wait for the fifo to be filled or a
309                          * correction pattern is being generated
310                          */
311                         udelay(1);
312                         continue;
313                 }
314
315                 /* check for an uncorrectable error */
316                 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
317                         /* check if we face a non-empty page */
318                         for (i = 0; i < 512; i++) {
319                                 if (flctl->done_buff[i] != 0xff) {
320                                         state = FL_ERROR; /* can't correct */
321                                         break;
322                                 }
323                         }
324
325                         if (state == FL_SUCCESS)
326                                 dev_dbg(&flctl->pdev->dev,
327                                 "reading empty sector %d, ecc error ignored\n",
328                                 sector_number);
329
330                         writel(0, FL4ECCCR(flctl));
331                         continue;
332                 }
333
334                 /* start error correction */
335                 ecc_reg[0] = FL4ECCRESULT0(flctl);
336                 ecc_reg[1] = FL4ECCRESULT1(flctl);
337                 ecc_reg[2] = FL4ECCRESULT2(flctl);
338                 ecc_reg[3] = FL4ECCRESULT3(flctl);
339
340                 for (i = 0; i < 3; i++) {
341                         uint8_t org;
342                         unsigned int index;
343
344                         data = readl(ecc_reg[i]);
345
346                         if (flctl->page_size)
347                                 index = (512 * sector_number) +
348                                         (data >> 16);
349                         else
350                                 index = data >> 16;
351
352                         org = flctl->done_buff[index];
353                         flctl->done_buff[index] = org ^ (data & 0xFF);
354                 }
355                 state = FL_REPAIRABLE;
356                 writel(0, FL4ECCCR(flctl));
357         }
358
359         timeout_error(flctl, __func__);
360         return FL_TIMEOUT;      /* timeout */
361 }
362
363 static void wait_wecfifo_ready(struct sh_flctl *flctl)
364 {
365         uint32_t timeout = LOOP_TIMEOUT_MAX;
366         uint32_t len;
367
368         while (timeout--) {
369                 /* check FLECFIFO */
370                 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
371                 if (len >= 4)
372                         return;
373                 udelay(1);
374         }
375         timeout_error(flctl, __func__);
376 }
377
378 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
379                                         int len, enum dma_data_direction dir)
380 {
381         struct dma_async_tx_descriptor *desc = NULL;
382         struct dma_chan *chan;
383         enum dma_transfer_direction tr_dir;
384         dma_addr_t dma_addr;
385         dma_cookie_t cookie;
386         uint32_t reg;
387         int ret;
388
389         if (dir == DMA_FROM_DEVICE) {
390                 chan = flctl->chan_fifo0_rx;
391                 tr_dir = DMA_DEV_TO_MEM;
392         } else {
393                 chan = flctl->chan_fifo0_tx;
394                 tr_dir = DMA_MEM_TO_DEV;
395         }
396
397         dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
398
399         if (!dma_mapping_error(chan->device->dev, dma_addr))
400                 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
401                         tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
402
403         if (desc) {
404                 reg = readl(FLINTDMACR(flctl));
405                 reg |= DREQ0EN;
406                 writel(reg, FLINTDMACR(flctl));
407
408                 desc->callback = flctl_dma_complete;
409                 desc->callback_param = flctl;
410                 cookie = dmaengine_submit(desc);
411                 if (dma_submit_error(cookie)) {
412                         ret = dma_submit_error(cookie);
413                         dev_warn(&flctl->pdev->dev,
414                                  "DMA submit failed, falling back to PIO\n");
415                         goto out;
416                 }
417
418                 dma_async_issue_pending(chan);
419         } else {
420                 /* DMA failed, fall back to PIO */
421                 flctl_release_dma(flctl);
422                 dev_warn(&flctl->pdev->dev,
423                          "DMA failed, falling back to PIO\n");
424                 ret = -EIO;
425                 goto out;
426         }
427
428         ret =
429         wait_for_completion_timeout(&flctl->dma_complete,
430                                 msecs_to_jiffies(3000));
431
432         if (ret <= 0) {
433                 dmaengine_terminate_all(chan);
434                 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
435         }
436
437 out:
438         reg = readl(FLINTDMACR(flctl));
439         reg &= ~DREQ0EN;
440         writel(reg, FLINTDMACR(flctl));
441
442         dma_unmap_single(chan->device->dev, dma_addr, len, dir);
443
444         /* ret > 0 is success */
445         return ret;
446 }
447
448 static void read_datareg(struct sh_flctl *flctl, int offset)
449 {
450         unsigned long data;
451         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
452
453         wait_completion(flctl);
454
455         data = readl(FLDATAR(flctl));
456         *buf = le32_to_cpu(data);
457 }
458
459 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
460 {
461         int i, len_4align;
462         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
463
464         len_4align = (rlen + 3) / 4;
465
466         /* initiate DMA transfer */
467         if (flctl->chan_fifo0_rx && rlen >= 32 &&
468                 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE) > 0)
469                         goto convert;   /* DMA success */
470
471         /* do polling transfer */
472         for (i = 0; i < len_4align; i++) {
473                 wait_rfifo_ready(flctl);
474                 buf[i] = readl(FLDTFIFO(flctl));
475         }
476
477 convert:
478         for (i = 0; i < len_4align; i++)
479                 buf[i] = be32_to_cpu(buf[i]);
480 }
481
482 static enum flctl_ecc_res_t read_ecfiforeg
483                 (struct sh_flctl *flctl, uint8_t *buff, int sector)
484 {
485         int i;
486         enum flctl_ecc_res_t res;
487         unsigned long *ecc_buf = (unsigned long *)buff;
488
489         res = wait_recfifo_ready(flctl , sector);
490
491         if (res != FL_ERROR) {
492                 for (i = 0; i < 4; i++) {
493                         ecc_buf[i] = readl(FLECFIFO(flctl));
494                         ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
495                 }
496         }
497
498         return res;
499 }
500
501 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
502                                                 unsigned int offset)
503 {
504         int i, len_4align;
505         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
506
507         len_4align = (rlen + 3) / 4;
508         for (i = 0; i < len_4align; i++) {
509                 wait_wfifo_ready(flctl);
510                 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
511         }
512 }
513
514 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
515                                                 unsigned int offset)
516 {
517         int i, len_4align;
518         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
519
520         len_4align = (rlen + 3) / 4;
521
522         for (i = 0; i < len_4align; i++)
523                 buf[i] = cpu_to_be32(buf[i]);
524
525         /* initiate DMA transfer */
526         if (flctl->chan_fifo0_tx && rlen >= 32 &&
527                 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE) > 0)
528                         return; /* DMA success */
529
530         /* do polling transfer */
531         for (i = 0; i < len_4align; i++) {
532                 wait_wecfifo_ready(flctl);
533                 writel(buf[i], FLECFIFO(flctl));
534         }
535 }
536
537 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
538 {
539         struct sh_flctl *flctl = mtd_to_flctl(mtd);
540         uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
541         uint32_t flcmdcr_val, addr_len_bytes = 0;
542
543         /* Set SNAND bit if page size is 2048byte */
544         if (flctl->page_size)
545                 flcmncr_val |= SNAND_E;
546         else
547                 flcmncr_val &= ~SNAND_E;
548
549         /* default FLCMDCR val */
550         flcmdcr_val = DOCMD1_E | DOADR_E;
551
552         /* Set for FLCMDCR */
553         switch (cmd) {
554         case NAND_CMD_ERASE1:
555                 addr_len_bytes = flctl->erase_ADRCNT;
556                 flcmdcr_val |= DOCMD2_E;
557                 break;
558         case NAND_CMD_READ0:
559         case NAND_CMD_READOOB:
560         case NAND_CMD_RNDOUT:
561                 addr_len_bytes = flctl->rw_ADRCNT;
562                 flcmdcr_val |= CDSRC_E;
563                 if (flctl->chip.options & NAND_BUSWIDTH_16)
564                         flcmncr_val |= SEL_16BIT;
565                 break;
566         case NAND_CMD_SEQIN:
567                 /* This case is that cmd is READ0 or READ1 or READ00 */
568                 flcmdcr_val &= ~DOADR_E;        /* ONLY execute 1st cmd */
569                 break;
570         case NAND_CMD_PAGEPROG:
571                 addr_len_bytes = flctl->rw_ADRCNT;
572                 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
573                 if (flctl->chip.options & NAND_BUSWIDTH_16)
574                         flcmncr_val |= SEL_16BIT;
575                 break;
576         case NAND_CMD_READID:
577                 flcmncr_val &= ~SNAND_E;
578                 flcmdcr_val |= CDSRC_E;
579                 addr_len_bytes = ADRCNT_1;
580                 break;
581         case NAND_CMD_STATUS:
582         case NAND_CMD_RESET:
583                 flcmncr_val &= ~SNAND_E;
584                 flcmdcr_val &= ~(DOADR_E | DOSR_E);
585                 break;
586         default:
587                 break;
588         }
589
590         /* Set address bytes parameter */
591         flcmdcr_val |= addr_len_bytes;
592
593         /* Now actually write */
594         writel(flcmncr_val, FLCMNCR(flctl));
595         writel(flcmdcr_val, FLCMDCR(flctl));
596         writel(flcmcdr_val, FLCMCDR(flctl));
597 }
598
599 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
600                                  int oob_required, int page)
601 {
602         struct mtd_info *mtd = nand_to_mtd(chip);
603
604         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
605         if (oob_required)
606                 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
607         return 0;
608 }
609
610 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
611                                   int oob_required, int page)
612 {
613         struct mtd_info *mtd = nand_to_mtd(chip);
614
615         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
616         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
617         return nand_prog_page_end_op(chip);
618 }
619
620 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
621 {
622         struct sh_flctl *flctl = mtd_to_flctl(mtd);
623         int sector, page_sectors;
624         enum flctl_ecc_res_t ecc_result;
625
626         page_sectors = flctl->page_size ? 4 : 1;
627
628         set_cmd_regs(mtd, NAND_CMD_READ0,
629                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
630
631         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
632                  FLCMNCR(flctl));
633         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
634         writel(page_addr << 2, FLADR(flctl));
635
636         empty_fifo(flctl);
637         start_translation(flctl);
638
639         for (sector = 0; sector < page_sectors; sector++) {
640                 read_fiforeg(flctl, 512, 512 * sector);
641
642                 ecc_result = read_ecfiforeg(flctl,
643                         &flctl->done_buff[mtd->writesize + 16 * sector],
644                         sector);
645
646                 switch (ecc_result) {
647                 case FL_REPAIRABLE:
648                         dev_info(&flctl->pdev->dev,
649                                 "applied ecc on page 0x%x", page_addr);
650                         mtd->ecc_stats.corrected++;
651                         break;
652                 case FL_ERROR:
653                         dev_warn(&flctl->pdev->dev,
654                                 "page 0x%x contains corrupted data\n",
655                                 page_addr);
656                         mtd->ecc_stats.failed++;
657                         break;
658                 default:
659                         ;
660                 }
661         }
662
663         wait_completion(flctl);
664
665         writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
666                         FLCMNCR(flctl));
667 }
668
669 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
670 {
671         struct sh_flctl *flctl = mtd_to_flctl(mtd);
672         int page_sectors = flctl->page_size ? 4 : 1;
673         int i;
674
675         set_cmd_regs(mtd, NAND_CMD_READ0,
676                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
677
678         empty_fifo(flctl);
679
680         for (i = 0; i < page_sectors; i++) {
681                 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
682                 writel(16, FLDTCNTR(flctl));
683
684                 start_translation(flctl);
685                 read_fiforeg(flctl, 16, 16 * i);
686                 wait_completion(flctl);
687         }
688 }
689
690 static void execmd_write_page_sector(struct mtd_info *mtd)
691 {
692         struct sh_flctl *flctl = mtd_to_flctl(mtd);
693         int page_addr = flctl->seqin_page_addr;
694         int sector, page_sectors;
695
696         page_sectors = flctl->page_size ? 4 : 1;
697
698         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
699                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
700
701         empty_fifo(flctl);
702         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
703         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
704         writel(page_addr << 2, FLADR(flctl));
705         start_translation(flctl);
706
707         for (sector = 0; sector < page_sectors; sector++) {
708                 write_fiforeg(flctl, 512, 512 * sector);
709                 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
710         }
711
712         wait_completion(flctl);
713         writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
714 }
715
716 static void execmd_write_oob(struct mtd_info *mtd)
717 {
718         struct sh_flctl *flctl = mtd_to_flctl(mtd);
719         int page_addr = flctl->seqin_page_addr;
720         int sector, page_sectors;
721
722         page_sectors = flctl->page_size ? 4 : 1;
723
724         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
725                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
726
727         for (sector = 0; sector < page_sectors; sector++) {
728                 empty_fifo(flctl);
729                 set_addr(mtd, sector * 528 + 512, page_addr);
730                 writel(16, FLDTCNTR(flctl));    /* set read size */
731
732                 start_translation(flctl);
733                 write_fiforeg(flctl, 16, 16 * sector);
734                 wait_completion(flctl);
735         }
736 }
737
738 static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
739                         int column, int page_addr)
740 {
741         struct mtd_info *mtd = nand_to_mtd(chip);
742         struct sh_flctl *flctl = mtd_to_flctl(mtd);
743         uint32_t read_cmd = 0;
744
745         pm_runtime_get_sync(&flctl->pdev->dev);
746
747         flctl->read_bytes = 0;
748         if (command != NAND_CMD_PAGEPROG)
749                 flctl->index = 0;
750
751         switch (command) {
752         case NAND_CMD_READ1:
753         case NAND_CMD_READ0:
754                 if (flctl->hwecc) {
755                         /* read page with hwecc */
756                         execmd_read_page_sector(mtd, page_addr);
757                         break;
758                 }
759                 if (flctl->page_size)
760                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
761                                 | command);
762                 else
763                         set_cmd_regs(mtd, command, command);
764
765                 set_addr(mtd, 0, page_addr);
766
767                 flctl->read_bytes = mtd->writesize + mtd->oobsize;
768                 if (flctl->chip.options & NAND_BUSWIDTH_16)
769                         column >>= 1;
770                 flctl->index += column;
771                 goto read_normal_exit;
772
773         case NAND_CMD_READOOB:
774                 if (flctl->hwecc) {
775                         /* read page with hwecc */
776                         execmd_read_oob(mtd, page_addr);
777                         break;
778                 }
779
780                 if (flctl->page_size) {
781                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
782                                 | NAND_CMD_READ0);
783                         set_addr(mtd, mtd->writesize, page_addr);
784                 } else {
785                         set_cmd_regs(mtd, command, command);
786                         set_addr(mtd, 0, page_addr);
787                 }
788                 flctl->read_bytes = mtd->oobsize;
789                 goto read_normal_exit;
790
791         case NAND_CMD_RNDOUT:
792                 if (flctl->hwecc)
793                         break;
794
795                 if (flctl->page_size)
796                         set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
797                                 | command);
798                 else
799                         set_cmd_regs(mtd, command, command);
800
801                 set_addr(mtd, column, 0);
802
803                 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
804                 goto read_normal_exit;
805
806         case NAND_CMD_READID:
807                 set_cmd_regs(mtd, command, command);
808
809                 /* READID is always performed using an 8-bit bus */
810                 if (flctl->chip.options & NAND_BUSWIDTH_16)
811                         column <<= 1;
812                 set_addr(mtd, column, 0);
813
814                 flctl->read_bytes = 8;
815                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
816                 empty_fifo(flctl);
817                 start_translation(flctl);
818                 read_fiforeg(flctl, flctl->read_bytes, 0);
819                 wait_completion(flctl);
820                 break;
821
822         case NAND_CMD_ERASE1:
823                 flctl->erase1_page_addr = page_addr;
824                 break;
825
826         case NAND_CMD_ERASE2:
827                 set_cmd_regs(mtd, NAND_CMD_ERASE1,
828                         (command << 8) | NAND_CMD_ERASE1);
829                 set_addr(mtd, -1, flctl->erase1_page_addr);
830                 start_translation(flctl);
831                 wait_completion(flctl);
832                 break;
833
834         case NAND_CMD_SEQIN:
835                 if (!flctl->page_size) {
836                         /* output read command */
837                         if (column >= mtd->writesize) {
838                                 column -= mtd->writesize;
839                                 read_cmd = NAND_CMD_READOOB;
840                         } else if (column < 256) {
841                                 read_cmd = NAND_CMD_READ0;
842                         } else {
843                                 column -= 256;
844                                 read_cmd = NAND_CMD_READ1;
845                         }
846                 }
847                 flctl->seqin_column = column;
848                 flctl->seqin_page_addr = page_addr;
849                 flctl->seqin_read_cmd = read_cmd;
850                 break;
851
852         case NAND_CMD_PAGEPROG:
853                 empty_fifo(flctl);
854                 if (!flctl->page_size) {
855                         set_cmd_regs(mtd, NAND_CMD_SEQIN,
856                                         flctl->seqin_read_cmd);
857                         set_addr(mtd, -1, -1);
858                         writel(0, FLDTCNTR(flctl));     /* set 0 size */
859                         start_translation(flctl);
860                         wait_completion(flctl);
861                 }
862                 if (flctl->hwecc) {
863                         /* write page with hwecc */
864                         if (flctl->seqin_column == mtd->writesize)
865                                 execmd_write_oob(mtd);
866                         else if (!flctl->seqin_column)
867                                 execmd_write_page_sector(mtd);
868                         else
869                                 pr_err("Invalid address !?\n");
870                         break;
871                 }
872                 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
873                 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
874                 writel(flctl->index, FLDTCNTR(flctl));  /* set write size */
875                 start_translation(flctl);
876                 write_fiforeg(flctl, flctl->index, 0);
877                 wait_completion(flctl);
878                 break;
879
880         case NAND_CMD_STATUS:
881                 set_cmd_regs(mtd, command, command);
882                 set_addr(mtd, -1, -1);
883
884                 flctl->read_bytes = 1;
885                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
886                 start_translation(flctl);
887                 read_datareg(flctl, 0); /* read and end */
888                 break;
889
890         case NAND_CMD_RESET:
891                 set_cmd_regs(mtd, command, command);
892                 set_addr(mtd, -1, -1);
893
894                 writel(0, FLDTCNTR(flctl));     /* set 0 size */
895                 start_translation(flctl);
896                 wait_completion(flctl);
897                 break;
898
899         default:
900                 break;
901         }
902         goto runtime_exit;
903
904 read_normal_exit:
905         writel(flctl->read_bytes, FLDTCNTR(flctl));     /* set read size */
906         empty_fifo(flctl);
907         start_translation(flctl);
908         read_fiforeg(flctl, flctl->read_bytes, 0);
909         wait_completion(flctl);
910 runtime_exit:
911         pm_runtime_put_sync(&flctl->pdev->dev);
912         return;
913 }
914
915 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
916 {
917         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
918         int ret;
919
920         switch (chipnr) {
921         case -1:
922                 flctl->flcmncr_base &= ~CE0_ENABLE;
923
924                 pm_runtime_get_sync(&flctl->pdev->dev);
925                 writel(flctl->flcmncr_base, FLCMNCR(flctl));
926
927                 if (flctl->qos_request) {
928                         dev_pm_qos_remove_request(&flctl->pm_qos);
929                         flctl->qos_request = 0;
930                 }
931
932                 pm_runtime_put_sync(&flctl->pdev->dev);
933                 break;
934         case 0:
935                 flctl->flcmncr_base |= CE0_ENABLE;
936
937                 if (!flctl->qos_request) {
938                         ret = dev_pm_qos_add_request(&flctl->pdev->dev,
939                                                         &flctl->pm_qos,
940                                                         DEV_PM_QOS_RESUME_LATENCY,
941                                                         100);
942                         if (ret < 0)
943                                 dev_err(&flctl->pdev->dev,
944                                         "PM QoS request failed: %d\n", ret);
945                         flctl->qos_request = 1;
946                 }
947
948                 if (flctl->holden) {
949                         pm_runtime_get_sync(&flctl->pdev->dev);
950                         writel(HOLDEN, FLHOLDCR(flctl));
951                         pm_runtime_put_sync(&flctl->pdev->dev);
952                 }
953                 break;
954         default:
955                 BUG();
956         }
957 }
958
959 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
960 {
961         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
962
963         memcpy(&flctl->done_buff[flctl->index], buf, len);
964         flctl->index += len;
965 }
966
967 static uint8_t flctl_read_byte(struct nand_chip *chip)
968 {
969         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
970         uint8_t data;
971
972         data = flctl->done_buff[flctl->index];
973         flctl->index++;
974         return data;
975 }
976
977 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
978 {
979         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
980
981         memcpy(buf, &flctl->done_buff[flctl->index], len);
982         flctl->index += len;
983 }
984
985 static int flctl_chip_attach_chip(struct nand_chip *chip)
986 {
987         u64 targetsize = nanddev_target_size(&chip->base);
988         struct mtd_info *mtd = nand_to_mtd(chip);
989         struct sh_flctl *flctl = mtd_to_flctl(mtd);
990
991         /*
992          * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
993          * Add the SEL_16BIT flag in flctl->flcmncr_base.
994          */
995         if (chip->options & NAND_BUSWIDTH_16)
996                 flctl->flcmncr_base |= SEL_16BIT;
997
998         if (mtd->writesize == 512) {
999                 flctl->page_size = 0;
1000                 if (targetsize > (32 << 20)) {
1001                         /* big than 32MB */
1002                         flctl->rw_ADRCNT = ADRCNT_4;
1003                         flctl->erase_ADRCNT = ADRCNT_3;
1004                 } else if (targetsize > (2 << 16)) {
1005                         /* big than 128KB */
1006                         flctl->rw_ADRCNT = ADRCNT_3;
1007                         flctl->erase_ADRCNT = ADRCNT_2;
1008                 } else {
1009                         flctl->rw_ADRCNT = ADRCNT_2;
1010                         flctl->erase_ADRCNT = ADRCNT_1;
1011                 }
1012         } else {
1013                 flctl->page_size = 1;
1014                 if (targetsize > (128 << 20)) {
1015                         /* big than 128MB */
1016                         flctl->rw_ADRCNT = ADRCNT2_E;
1017                         flctl->erase_ADRCNT = ADRCNT_3;
1018                 } else if (targetsize > (8 << 16)) {
1019                         /* big than 512KB */
1020                         flctl->rw_ADRCNT = ADRCNT_4;
1021                         flctl->erase_ADRCNT = ADRCNT_2;
1022                 } else {
1023                         flctl->rw_ADRCNT = ADRCNT_3;
1024                         flctl->erase_ADRCNT = ADRCNT_1;
1025                 }
1026         }
1027
1028         if (flctl->hwecc) {
1029                 if (mtd->writesize == 512) {
1030                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1031                         chip->badblock_pattern = &flctl_4secc_smallpage;
1032                 } else {
1033                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1034                         chip->badblock_pattern = &flctl_4secc_largepage;
1035                 }
1036
1037                 chip->ecc.size = 512;
1038                 chip->ecc.bytes = 10;
1039                 chip->ecc.strength = 4;
1040                 chip->ecc.read_page = flctl_read_page_hwecc;
1041                 chip->ecc.write_page = flctl_write_page_hwecc;
1042                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1043
1044                 /* 4 symbols ECC enabled */
1045                 flctl->flcmncr_base |= _4ECCEN;
1046         } else {
1047                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1048                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1049         }
1050
1051         return 0;
1052 }
1053
1054 static const struct nand_controller_ops flctl_nand_controller_ops = {
1055         .attach_chip = flctl_chip_attach_chip,
1056 };
1057
1058 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1059 {
1060         struct sh_flctl *flctl = dev_id;
1061
1062         dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1063         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1064
1065         return IRQ_HANDLED;
1066 }
1067
1068 struct flctl_soc_config {
1069         unsigned long flcmncr_val;
1070         unsigned has_hwecc:1;
1071         unsigned use_holden:1;
1072 };
1073
1074 static struct flctl_soc_config flctl_sh7372_config = {
1075         .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1076         .has_hwecc = 1,
1077         .use_holden = 1,
1078 };
1079
1080 static const struct of_device_id of_flctl_match[] = {
1081         { .compatible = "renesas,shmobile-flctl-sh7372",
1082                                 .data = &flctl_sh7372_config },
1083         {},
1084 };
1085 MODULE_DEVICE_TABLE(of, of_flctl_match);
1086
1087 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1088 {
1089         const struct flctl_soc_config *config;
1090         struct sh_flctl_platform_data *pdata;
1091
1092         config = of_device_get_match_data(dev);
1093         if (!config) {
1094                 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1095                 return NULL;
1096         }
1097
1098         pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1099                                                                 GFP_KERNEL);
1100         if (!pdata)
1101                 return NULL;
1102
1103         /* set SoC specific options */
1104         pdata->flcmncr_val = config->flcmncr_val;
1105         pdata->has_hwecc = config->has_hwecc;
1106         pdata->use_holden = config->use_holden;
1107
1108         return pdata;
1109 }
1110
1111 static int flctl_probe(struct platform_device *pdev)
1112 {
1113         struct resource *res;
1114         struct sh_flctl *flctl;
1115         struct mtd_info *flctl_mtd;
1116         struct nand_chip *nand;
1117         struct sh_flctl_platform_data *pdata;
1118         int ret;
1119         int irq;
1120
1121         flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1122         if (!flctl)
1123                 return -ENOMEM;
1124
1125         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1126         flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1127         if (IS_ERR(flctl->reg))
1128                 return PTR_ERR(flctl->reg);
1129         flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1130
1131         irq = platform_get_irq(pdev, 0);
1132         if (irq < 0)
1133                 return irq;
1134
1135         ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1136                                "flste", flctl);
1137         if (ret) {
1138                 dev_err(&pdev->dev, "request interrupt failed.\n");
1139                 return ret;
1140         }
1141
1142         if (pdev->dev.of_node)
1143                 pdata = flctl_parse_dt(&pdev->dev);
1144         else
1145                 pdata = dev_get_platdata(&pdev->dev);
1146
1147         if (!pdata) {
1148                 dev_err(&pdev->dev, "no setup data defined\n");
1149                 return -EINVAL;
1150         }
1151
1152         platform_set_drvdata(pdev, flctl);
1153         nand = &flctl->chip;
1154         flctl_mtd = nand_to_mtd(nand);
1155         nand_set_flash_node(nand, pdev->dev.of_node);
1156         flctl_mtd->dev.parent = &pdev->dev;
1157         flctl->pdev = pdev;
1158         flctl->hwecc = pdata->has_hwecc;
1159         flctl->holden = pdata->use_holden;
1160         flctl->flcmncr_base = pdata->flcmncr_val;
1161         flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1162
1163         /* Set address of hardware control function */
1164         /* 20 us command delay time */
1165         nand->legacy.chip_delay = 20;
1166
1167         nand->legacy.read_byte = flctl_read_byte;
1168         nand->legacy.write_buf = flctl_write_buf;
1169         nand->legacy.read_buf = flctl_read_buf;
1170         nand->legacy.select_chip = flctl_select_chip;
1171         nand->legacy.cmdfunc = flctl_cmdfunc;
1172         nand->legacy.set_features = nand_get_set_features_notsupp;
1173         nand->legacy.get_features = nand_get_set_features_notsupp;
1174
1175         if (pdata->flcmncr_val & SEL_16BIT)
1176                 nand->options |= NAND_BUSWIDTH_16;
1177
1178         nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
1179
1180         pm_runtime_enable(&pdev->dev);
1181         pm_runtime_resume(&pdev->dev);
1182
1183         flctl_setup_dma(flctl);
1184
1185         nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1186         ret = nand_scan(nand, 1);
1187         if (ret)
1188                 goto err_chip;
1189
1190         ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1191         if (ret)
1192                 goto cleanup_nand;
1193
1194         return 0;
1195
1196 cleanup_nand:
1197         nand_cleanup(nand);
1198 err_chip:
1199         flctl_release_dma(flctl);
1200         pm_runtime_disable(&pdev->dev);
1201         return ret;
1202 }
1203
1204 static int flctl_remove(struct platform_device *pdev)
1205 {
1206         struct sh_flctl *flctl = platform_get_drvdata(pdev);
1207         struct nand_chip *chip = &flctl->chip;
1208         int ret;
1209
1210         flctl_release_dma(flctl);
1211         ret = mtd_device_unregister(nand_to_mtd(chip));
1212         WARN_ON(ret);
1213         nand_cleanup(chip);
1214         pm_runtime_disable(&pdev->dev);
1215
1216         return 0;
1217 }
1218
1219 static struct platform_driver flctl_driver = {
1220         .remove         = flctl_remove,
1221         .driver = {
1222                 .name   = "sh_flctl",
1223                 .of_match_table = of_match_ptr(of_flctl_match),
1224         },
1225 };
1226
1227 module_platform_driver_probe(flctl_driver, flctl_probe);
1228
1229 MODULE_LICENSE("GPL v2");
1230 MODULE_AUTHOR("Yoshihiro Shimoda");
1231 MODULE_DESCRIPTION("SuperH FLCTL driver");
1232 MODULE_ALIAS("platform:sh_flctl");