Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / mtd / nand / raw / s3c2410.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright © 2004-2008 Simtec Electronics
4  *      http://armlinux.simtec.co.uk/
5  *      Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 */
9
10 #define pr_fmt(fmt) "nand-s3c2410: " fmt
11
12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
13 #define DEBUG
14 #endif
15
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/io.h>
21 #include <linux/ioport.h>
22 #include <linux/platform_device.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/cpufreq.h>
28 #include <linux/of.h>
29
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/rawnand.h>
32 #include <linux/mtd/partitions.h>
33
34 #include <linux/platform_data/mtd-nand-s3c2410.h>
35
36 #define S3C2410_NFREG(x) (x)
37
38 #define S3C2410_NFCONF          S3C2410_NFREG(0x00)
39 #define S3C2410_NFCMD           S3C2410_NFREG(0x04)
40 #define S3C2410_NFADDR          S3C2410_NFREG(0x08)
41 #define S3C2410_NFDATA          S3C2410_NFREG(0x0C)
42 #define S3C2410_NFSTAT          S3C2410_NFREG(0x10)
43 #define S3C2410_NFECC           S3C2410_NFREG(0x14)
44 #define S3C2440_NFCONT          S3C2410_NFREG(0x04)
45 #define S3C2440_NFCMD           S3C2410_NFREG(0x08)
46 #define S3C2440_NFADDR          S3C2410_NFREG(0x0C)
47 #define S3C2440_NFDATA          S3C2410_NFREG(0x10)
48 #define S3C2440_NFSTAT          S3C2410_NFREG(0x20)
49 #define S3C2440_NFMECC0         S3C2410_NFREG(0x2C)
50 #define S3C2412_NFSTAT          S3C2410_NFREG(0x28)
51 #define S3C2412_NFMECC0         S3C2410_NFREG(0x34)
52 #define S3C2410_NFCONF_EN               (1<<15)
53 #define S3C2410_NFCONF_INITECC          (1<<12)
54 #define S3C2410_NFCONF_nFCE             (1<<11)
55 #define S3C2410_NFCONF_TACLS(x)         ((x)<<8)
56 #define S3C2410_NFCONF_TWRPH0(x)        ((x)<<4)
57 #define S3C2410_NFCONF_TWRPH1(x)        ((x)<<0)
58 #define S3C2410_NFSTAT_BUSY             (1<<0)
59 #define S3C2440_NFCONF_TACLS(x)         ((x)<<12)
60 #define S3C2440_NFCONF_TWRPH0(x)        ((x)<<8)
61 #define S3C2440_NFCONF_TWRPH1(x)        ((x)<<4)
62 #define S3C2440_NFCONT_INITECC          (1<<4)
63 #define S3C2440_NFCONT_nFCE             (1<<1)
64 #define S3C2440_NFCONT_ENABLE           (1<<0)
65 #define S3C2440_NFSTAT_READY            (1<<0)
66 #define S3C2412_NFCONF_NANDBOOT         (1<<31)
67 #define S3C2412_NFCONT_INIT_MAIN_ECC    (1<<5)
68 #define S3C2412_NFCONT_nFCE0            (1<<1)
69 #define S3C2412_NFSTAT_READY            (1<<0)
70
71 /* new oob placement block for use with hardware ecc generation
72  */
73 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
74                                  struct mtd_oob_region *oobregion)
75 {
76         if (section)
77                 return -ERANGE;
78
79         oobregion->offset = 0;
80         oobregion->length = 3;
81
82         return 0;
83 }
84
85 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
86                                   struct mtd_oob_region *oobregion)
87 {
88         if (section)
89                 return -ERANGE;
90
91         oobregion->offset = 8;
92         oobregion->length = 8;
93
94         return 0;
95 }
96
97 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
98         .ecc = s3c2410_ooblayout_ecc,
99         .free = s3c2410_ooblayout_free,
100 };
101
102 /* controller and mtd information */
103
104 struct s3c2410_nand_info;
105
106 /**
107  * struct s3c2410_nand_mtd - driver MTD structure
108  * @chip: The NAND chip information.
109  * @set: The platform information supplied for this set of NAND chips.
110  * @info: Link back to the hardware information.
111 */
112 struct s3c2410_nand_mtd {
113         struct nand_chip                chip;
114         struct s3c2410_nand_set         *set;
115         struct s3c2410_nand_info        *info;
116 };
117
118 enum s3c_cpu_type {
119         TYPE_S3C2410,
120         TYPE_S3C2412,
121         TYPE_S3C2440,
122 };
123
124 enum s3c_nand_clk_state {
125         CLOCK_DISABLE   = 0,
126         CLOCK_ENABLE,
127         CLOCK_SUSPEND,
128 };
129
130 /* overview of the s3c2410 nand state */
131
132 /**
133  * struct s3c2410_nand_info - NAND controller state.
134  * @controller: Base controller structure.
135  * @mtds: An array of MTD instances on this controller.
136  * @platform: The platform data for this board.
137  * @device: The platform device we bound to.
138  * @clk: The clock resource for this controller.
139  * @regs: The area mapped for the hardware registers.
140  * @sel_reg: Pointer to the register controlling the NAND selection.
141  * @sel_bit: The bit in @sel_reg to select the NAND chip.
142  * @mtd_count: The number of MTDs created from this controller.
143  * @save_sel: The contents of @sel_reg to be saved over suspend.
144  * @clk_rate: The clock rate from @clk.
145  * @clk_state: The current clock state.
146  * @cpu_type: The exact type of this controller.
147  */
148 struct s3c2410_nand_info {
149         /* mtd info */
150         struct nand_controller          controller;
151         struct s3c2410_nand_mtd         *mtds;
152         struct s3c2410_platform_nand    *platform;
153
154         /* device info */
155         struct device                   *device;
156         struct clk                      *clk;
157         void __iomem                    *regs;
158         void __iomem                    *sel_reg;
159         int                             sel_bit;
160         int                             mtd_count;
161         unsigned long                   save_sel;
162         unsigned long                   clk_rate;
163         enum s3c_nand_clk_state         clk_state;
164
165         enum s3c_cpu_type               cpu_type;
166 };
167
168 struct s3c24XX_nand_devtype_data {
169         enum s3c_cpu_type type;
170 };
171
172 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
173         .type = TYPE_S3C2410,
174 };
175
176 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
177         .type = TYPE_S3C2412,
178 };
179
180 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
181         .type = TYPE_S3C2440,
182 };
183
184 /* conversion functions */
185
186 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
187 {
188         return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
189                             chip);
190 }
191
192 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
193 {
194         return s3c2410_nand_mtd_toours(mtd)->info;
195 }
196
197 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
198 {
199         return platform_get_drvdata(dev);
200 }
201
202 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
203 {
204         return dev_get_platdata(&dev->dev);
205 }
206
207 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
208 {
209 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
210         return 1;
211 #else
212         return 0;
213 #endif
214 }
215
216 /**
217  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
218  * @info: The controller instance.
219  * @new_state: State to which clock should be set.
220  */
221 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
222                 enum s3c_nand_clk_state new_state)
223 {
224         if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
225                 return;
226
227         if (info->clk_state == CLOCK_ENABLE) {
228                 if (new_state != CLOCK_ENABLE)
229                         clk_disable_unprepare(info->clk);
230         } else {
231                 if (new_state == CLOCK_ENABLE)
232                         clk_prepare_enable(info->clk);
233         }
234
235         info->clk_state = new_state;
236 }
237
238 /* timing calculations */
239
240 #define NS_IN_KHZ 1000000
241
242 /**
243  * s3c_nand_calc_rate - calculate timing data.
244  * @wanted: The cycle time in nanoseconds.
245  * @clk: The clock rate in kHz.
246  * @max: The maximum divider value.
247  *
248  * Calculate the timing value from the given parameters.
249  */
250 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
251 {
252         int result;
253
254         result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
255
256         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
257
258         if (result > max) {
259                 pr_err("%d ns is too big for current clock rate %ld\n",
260                         wanted, clk);
261                 return -1;
262         }
263
264         if (result < 1)
265                 result = 1;
266
267         return result;
268 }
269
270 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
271
272 /* controller setup */
273
274 /**
275  * s3c2410_nand_setrate - setup controller timing information.
276  * @info: The controller instance.
277  *
278  * Given the information supplied by the platform, calculate and set
279  * the necessary timing registers in the hardware to generate the
280  * necessary timing cycles to the hardware.
281  */
282 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
283 {
284         struct s3c2410_platform_nand *plat = info->platform;
285         int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
286         int tacls, twrph0, twrph1;
287         unsigned long clkrate = clk_get_rate(info->clk);
288         unsigned long set, cfg, mask;
289         unsigned long flags;
290
291         /* calculate the timing information for the controller */
292
293         info->clk_rate = clkrate;
294         clkrate /= 1000;        /* turn clock into kHz for ease of use */
295
296         if (plat != NULL) {
297                 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
298                 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
299                 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
300         } else {
301                 /* default timings */
302                 tacls = tacls_max;
303                 twrph0 = 8;
304                 twrph1 = 8;
305         }
306
307         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
308                 dev_err(info->device, "cannot get suitable timings\n");
309                 return -EINVAL;
310         }
311
312         dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
313                 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
314                                                 twrph1, to_ns(twrph1, clkrate));
315
316         switch (info->cpu_type) {
317         case TYPE_S3C2410:
318                 mask = (S3C2410_NFCONF_TACLS(3) |
319                         S3C2410_NFCONF_TWRPH0(7) |
320                         S3C2410_NFCONF_TWRPH1(7));
321                 set = S3C2410_NFCONF_EN;
322                 set |= S3C2410_NFCONF_TACLS(tacls - 1);
323                 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
324                 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
325                 break;
326
327         case TYPE_S3C2440:
328         case TYPE_S3C2412:
329                 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
330                         S3C2440_NFCONF_TWRPH0(7) |
331                         S3C2440_NFCONF_TWRPH1(7));
332
333                 set = S3C2440_NFCONF_TACLS(tacls - 1);
334                 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
335                 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
336                 break;
337
338         default:
339                 BUG();
340         }
341
342         local_irq_save(flags);
343
344         cfg = readl(info->regs + S3C2410_NFCONF);
345         cfg &= ~mask;
346         cfg |= set;
347         writel(cfg, info->regs + S3C2410_NFCONF);
348
349         local_irq_restore(flags);
350
351         dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
352
353         return 0;
354 }
355
356 /**
357  * s3c2410_nand_inithw - basic hardware initialisation
358  * @info: The hardware state.
359  *
360  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
361  * to setup the hardware access speeds and set the controller to be enabled.
362 */
363 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
364 {
365         int ret;
366
367         ret = s3c2410_nand_setrate(info);
368         if (ret < 0)
369                 return ret;
370
371         switch (info->cpu_type) {
372         case TYPE_S3C2410:
373         default:
374                 break;
375
376         case TYPE_S3C2440:
377         case TYPE_S3C2412:
378                 /* enable the controller and de-assert nFCE */
379
380                 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
381         }
382
383         return 0;
384 }
385
386 /**
387  * s3c2410_nand_select_chip - select the given nand chip
388  * @this: NAND chip object.
389  * @chip: The chip number.
390  *
391  * This is called by the MTD layer to either select a given chip for the
392  * @mtd instance, or to indicate that the access has finished and the
393  * chip can be de-selected.
394  *
395  * The routine ensures that the nFCE line is correctly setup, and any
396  * platform specific selection code is called to route nFCE to the specific
397  * chip.
398  */
399 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
400 {
401         struct s3c2410_nand_info *info;
402         struct s3c2410_nand_mtd *nmtd;
403         unsigned long cur;
404
405         nmtd = nand_get_controller_data(this);
406         info = nmtd->info;
407
408         if (chip != -1)
409                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
410
411         cur = readl(info->sel_reg);
412
413         if (chip == -1) {
414                 cur |= info->sel_bit;
415         } else {
416                 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
417                         dev_err(info->device, "invalid chip %d\n", chip);
418                         return;
419                 }
420
421                 if (info->platform != NULL) {
422                         if (info->platform->select_chip != NULL)
423                                 (info->platform->select_chip) (nmtd->set, chip);
424                 }
425
426                 cur &= ~info->sel_bit;
427         }
428
429         writel(cur, info->sel_reg);
430
431         if (chip == -1)
432                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
433 }
434
435 /* s3c2410_nand_hwcontrol
436  *
437  * Issue command and address cycles to the chip
438 */
439
440 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
441                                    unsigned int ctrl)
442 {
443         struct mtd_info *mtd = nand_to_mtd(chip);
444         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
445
446         if (cmd == NAND_CMD_NONE)
447                 return;
448
449         if (ctrl & NAND_CLE)
450                 writeb(cmd, info->regs + S3C2410_NFCMD);
451         else
452                 writeb(cmd, info->regs + S3C2410_NFADDR);
453 }
454
455 /* command and control functions */
456
457 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
458                                    unsigned int ctrl)
459 {
460         struct mtd_info *mtd = nand_to_mtd(chip);
461         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
462
463         if (cmd == NAND_CMD_NONE)
464                 return;
465
466         if (ctrl & NAND_CLE)
467                 writeb(cmd, info->regs + S3C2440_NFCMD);
468         else
469                 writeb(cmd, info->regs + S3C2440_NFADDR);
470 }
471
472 /* s3c2410_nand_devready()
473  *
474  * returns 0 if the nand is busy, 1 if it is ready
475 */
476
477 static int s3c2410_nand_devready(struct nand_chip *chip)
478 {
479         struct mtd_info *mtd = nand_to_mtd(chip);
480         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
481         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
482 }
483
484 static int s3c2440_nand_devready(struct nand_chip *chip)
485 {
486         struct mtd_info *mtd = nand_to_mtd(chip);
487         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
488         return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
489 }
490
491 static int s3c2412_nand_devready(struct nand_chip *chip)
492 {
493         struct mtd_info *mtd = nand_to_mtd(chip);
494         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
495         return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
496 }
497
498 /* ECC handling functions */
499
500 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
501                                      u_char *read_ecc, u_char *calc_ecc)
502 {
503         struct mtd_info *mtd = nand_to_mtd(chip);
504         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
505         unsigned int diff0, diff1, diff2;
506         unsigned int bit, byte;
507
508         pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
509
510         diff0 = read_ecc[0] ^ calc_ecc[0];
511         diff1 = read_ecc[1] ^ calc_ecc[1];
512         diff2 = read_ecc[2] ^ calc_ecc[2];
513
514         pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
515                  __func__, 3, read_ecc, 3, calc_ecc,
516                  diff0, diff1, diff2);
517
518         if (diff0 == 0 && diff1 == 0 && diff2 == 0)
519                 return 0;               /* ECC is ok */
520
521         /* sometimes people do not think about using the ECC, so check
522          * to see if we have an 0xff,0xff,0xff read ECC and then ignore
523          * the error, on the assumption that this is an un-eccd page.
524          */
525         if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
526             && info->platform->ignore_unset_ecc)
527                 return 0;
528
529         /* Can we correct this ECC (ie, one row and column change).
530          * Note, this is similar to the 256 error code on smartmedia */
531
532         if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
533             ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
534             ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
535                 /* calculate the bit position of the error */
536
537                 bit  = ((diff2 >> 3) & 1) |
538                        ((diff2 >> 4) & 2) |
539                        ((diff2 >> 5) & 4);
540
541                 /* calculate the byte position of the error */
542
543                 byte = ((diff2 << 7) & 0x100) |
544                        ((diff1 << 0) & 0x80)  |
545                        ((diff1 << 1) & 0x40)  |
546                        ((diff1 << 2) & 0x20)  |
547                        ((diff1 << 3) & 0x10)  |
548                        ((diff0 >> 4) & 0x08)  |
549                        ((diff0 >> 3) & 0x04)  |
550                        ((diff0 >> 2) & 0x02)  |
551                        ((diff0 >> 1) & 0x01);
552
553                 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
554                         bit, byte);
555
556                 dat[byte] ^= (1 << bit);
557                 return 1;
558         }
559
560         /* if there is only one bit difference in the ECC, then
561          * one of only a row or column parity has changed, which
562          * means the error is most probably in the ECC itself */
563
564         diff0 |= (diff1 << 8);
565         diff0 |= (diff2 << 16);
566
567         /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
568         if ((diff0 & (diff0 - 1)) == 0)
569                 return 1;
570
571         return -1;
572 }
573
574 /* ECC functions
575  *
576  * These allow the s3c2410 and s3c2440 to use the controller's ECC
577  * generator block to ECC the data as it passes through]
578 */
579
580 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
581 {
582         struct s3c2410_nand_info *info;
583         unsigned long ctrl;
584
585         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
586         ctrl = readl(info->regs + S3C2410_NFCONF);
587         ctrl |= S3C2410_NFCONF_INITECC;
588         writel(ctrl, info->regs + S3C2410_NFCONF);
589 }
590
591 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
592 {
593         struct s3c2410_nand_info *info;
594         unsigned long ctrl;
595
596         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
597         ctrl = readl(info->regs + S3C2440_NFCONT);
598         writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
599                info->regs + S3C2440_NFCONT);
600 }
601
602 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
603 {
604         struct s3c2410_nand_info *info;
605         unsigned long ctrl;
606
607         info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
608         ctrl = readl(info->regs + S3C2440_NFCONT);
609         writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
610 }
611
612 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
613                                       const u_char *dat, u_char *ecc_code)
614 {
615         struct mtd_info *mtd = nand_to_mtd(chip);
616         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
617
618         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
619         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
620         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
621
622         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
623
624         return 0;
625 }
626
627 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
628                                       const u_char *dat, u_char *ecc_code)
629 {
630         struct mtd_info *mtd = nand_to_mtd(chip);
631         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
632         unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
633
634         ecc_code[0] = ecc;
635         ecc_code[1] = ecc >> 8;
636         ecc_code[2] = ecc >> 16;
637
638         pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
639
640         return 0;
641 }
642
643 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
644                                       const u_char *dat, u_char *ecc_code)
645 {
646         struct mtd_info *mtd = nand_to_mtd(chip);
647         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
648         unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
649
650         ecc_code[0] = ecc;
651         ecc_code[1] = ecc >> 8;
652         ecc_code[2] = ecc >> 16;
653
654         pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
655
656         return 0;
657 }
658
659 /* over-ride the standard functions for a little more speed. We can
660  * use read/write block to move the data buffers to/from the controller
661 */
662
663 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
664 {
665         readsb(this->legacy.IO_ADDR_R, buf, len);
666 }
667
668 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
669 {
670         struct mtd_info *mtd = nand_to_mtd(this);
671         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
672
673         readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
674
675         /* cleanup if we've got less than a word to do */
676         if (len & 3) {
677                 buf += len & ~3;
678
679                 for (; len & 3; len--)
680                         *buf++ = readb(info->regs + S3C2440_NFDATA);
681         }
682 }
683
684 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
685                                    int len)
686 {
687         writesb(this->legacy.IO_ADDR_W, buf, len);
688 }
689
690 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
691                                    int len)
692 {
693         struct mtd_info *mtd = nand_to_mtd(this);
694         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
695
696         writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
697
698         /* cleanup any fractional write */
699         if (len & 3) {
700                 buf += len & ~3;
701
702                 for (; len & 3; len--, buf++)
703                         writeb(*buf, info->regs + S3C2440_NFDATA);
704         }
705 }
706
707 /* device management functions */
708
709 static void s3c24xx_nand_remove(struct platform_device *pdev)
710 {
711         struct s3c2410_nand_info *info = to_nand_info(pdev);
712
713         if (info == NULL)
714                 return;
715
716         /* Release all our mtds  and their partitions, then go through
717          * freeing the resources used
718          */
719
720         if (info->mtds != NULL) {
721                 struct s3c2410_nand_mtd *ptr = info->mtds;
722                 int mtdno;
723
724                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
725                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
726                         WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
727                         nand_cleanup(&ptr->chip);
728                 }
729         }
730
731         /* free the common resources */
732
733         if (!IS_ERR(info->clk))
734                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
735 }
736
737 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
738                                       struct s3c2410_nand_mtd *mtd,
739                                       struct s3c2410_nand_set *set)
740 {
741         if (set) {
742                 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
743
744                 mtdinfo->name = set->name;
745
746                 return mtd_device_register(mtdinfo, set->partitions,
747                                            set->nr_partitions);
748         }
749
750         return -ENODEV;
751 }
752
753 static int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline,
754                                         const struct nand_interface_config *conf)
755 {
756         struct mtd_info *mtd = nand_to_mtd(chip);
757         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
758         struct s3c2410_platform_nand *pdata = info->platform;
759         const struct nand_sdr_timings *timings;
760         int tacls;
761
762         timings = nand_get_sdr_timings(conf);
763         if (IS_ERR(timings))
764                 return -ENOTSUPP;
765
766         tacls = timings->tCLS_min - timings->tWP_min;
767         if (tacls < 0)
768                 tacls = 0;
769
770         pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
771         pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
772         pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
773
774         return s3c2410_nand_setrate(info);
775 }
776
777 /**
778  * s3c2410_nand_init_chip - initialise a single instance of an chip
779  * @info: The base NAND controller the chip is on.
780  * @nmtd: The new controller MTD instance to fill in.
781  * @set: The information passed from the board specific platform data.
782  *
783  * Initialise the given @nmtd from the information in @info and @set. This
784  * readies the structure for use with the MTD layer functions by ensuring
785  * all pointers are setup and the necessary control routines selected.
786  */
787 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
788                                    struct s3c2410_nand_mtd *nmtd,
789                                    struct s3c2410_nand_set *set)
790 {
791         struct device_node *np = info->device->of_node;
792         struct nand_chip *chip = &nmtd->chip;
793         void __iomem *regs = info->regs;
794
795         nand_set_flash_node(chip, set->of_node);
796
797         chip->legacy.write_buf    = s3c2410_nand_write_buf;
798         chip->legacy.read_buf     = s3c2410_nand_read_buf;
799         chip->legacy.select_chip  = s3c2410_nand_select_chip;
800         chip->legacy.chip_delay   = 50;
801         nand_set_controller_data(chip, nmtd);
802         chip->options      = set->options;
803         chip->controller   = &info->controller;
804
805         /*
806          * let's keep behavior unchanged for legacy boards booting via pdata and
807          * auto-detect timings only when booting with a device tree.
808          */
809         if (!np)
810                 chip->options |= NAND_KEEP_TIMINGS;
811
812         switch (info->cpu_type) {
813         case TYPE_S3C2410:
814                 chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
815                 info->sel_reg   = regs + S3C2410_NFCONF;
816                 info->sel_bit   = S3C2410_NFCONF_nFCE;
817                 chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
818                 chip->legacy.dev_ready = s3c2410_nand_devready;
819                 break;
820
821         case TYPE_S3C2440:
822                 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
823                 info->sel_reg   = regs + S3C2440_NFCONT;
824                 info->sel_bit   = S3C2440_NFCONT_nFCE;
825                 chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
826                 chip->legacy.dev_ready = s3c2440_nand_devready;
827                 chip->legacy.read_buf  = s3c2440_nand_read_buf;
828                 chip->legacy.write_buf  = s3c2440_nand_write_buf;
829                 break;
830
831         case TYPE_S3C2412:
832                 chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
833                 info->sel_reg   = regs + S3C2440_NFCONT;
834                 info->sel_bit   = S3C2412_NFCONT_nFCE0;
835                 chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
836                 chip->legacy.dev_ready = s3c2412_nand_devready;
837
838                 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
839                         dev_info(info->device, "System booted from NAND\n");
840
841                 break;
842         }
843
844         chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
845
846         nmtd->info         = info;
847         nmtd->set          = set;
848
849         chip->ecc.engine_type = info->platform->engine_type;
850
851         /*
852          * If you use u-boot BBT creation code, specifying this flag will
853          * let the kernel fish out the BBT from the NAND.
854          */
855         if (set->flash_bbt)
856                 chip->bbt_options |= NAND_BBT_USE_FLASH;
857 }
858
859 /**
860  * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
861  * @chip: The NAND chip
862  *
863  * This hook is called by the core after the identification of the NAND chip,
864  * once the relevant per-chip information is up to date.. This call ensure that
865  * we update the internal state accordingly.
866  *
867  * The internal state is currently limited to the ECC state information.
868 */
869 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
870 {
871         struct mtd_info *mtd = nand_to_mtd(chip);
872         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
873
874         switch (chip->ecc.engine_type) {
875
876         case NAND_ECC_ENGINE_TYPE_NONE:
877                 dev_info(info->device, "ECC disabled\n");
878                 break;
879
880         case NAND_ECC_ENGINE_TYPE_SOFT:
881                 /*
882                  * This driver expects Hamming based ECC when engine_type is set
883                  * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
884                  * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field
885                  * to s3c2410_platform_nand.
886                  */
887                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
888                 dev_info(info->device, "soft ECC\n");
889                 break;
890
891         case NAND_ECC_ENGINE_TYPE_ON_HOST:
892                 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
893                 chip->ecc.correct   = s3c2410_nand_correct_data;
894                 chip->ecc.strength  = 1;
895
896                 switch (info->cpu_type) {
897                 case TYPE_S3C2410:
898                         chip->ecc.hwctl     = s3c2410_nand_enable_hwecc;
899                         chip->ecc.calculate = s3c2410_nand_calculate_ecc;
900                         break;
901
902                 case TYPE_S3C2412:
903                         chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
904                         chip->ecc.calculate = s3c2412_nand_calculate_ecc;
905                         break;
906
907                 case TYPE_S3C2440:
908                         chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
909                         chip->ecc.calculate = s3c2440_nand_calculate_ecc;
910                         break;
911                 }
912
913                 dev_dbg(info->device, "chip %p => page shift %d\n",
914                         chip, chip->page_shift);
915
916                 /* change the behaviour depending on whether we are using
917                  * the large or small page nand device */
918                 if (chip->page_shift > 10) {
919                         chip->ecc.size      = 256;
920                         chip->ecc.bytes     = 3;
921                 } else {
922                         chip->ecc.size      = 512;
923                         chip->ecc.bytes     = 3;
924                         mtd_set_ooblayout(nand_to_mtd(chip),
925                                           &s3c2410_ooblayout_ops);
926                 }
927
928                 dev_info(info->device, "hardware ECC\n");
929                 break;
930
931         default:
932                 dev_err(info->device, "invalid ECC mode!\n");
933                 return -EINVAL;
934         }
935
936         if (chip->bbt_options & NAND_BBT_USE_FLASH)
937                 chip->options |= NAND_SKIP_BBTSCAN;
938
939         return 0;
940 }
941
942 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
943         .attach_chip = s3c2410_nand_attach_chip,
944         .setup_interface = s3c2410_nand_setup_interface,
945 };
946
947 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
948         {
949                 .compatible = "samsung,s3c2410-nand",
950                 .data = &s3c2410_nand_devtype_data,
951         }, {
952                 /* also compatible with s3c6400 */
953                 .compatible = "samsung,s3c2412-nand",
954                 .data = &s3c2412_nand_devtype_data,
955         }, {
956                 .compatible = "samsung,s3c2440-nand",
957                 .data = &s3c2440_nand_devtype_data,
958         },
959         { /* sentinel */ }
960 };
961 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
962
963 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
964 {
965         const struct s3c24XX_nand_devtype_data *devtype_data;
966         struct s3c2410_platform_nand *pdata;
967         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
968         struct device_node *np = pdev->dev.of_node, *child;
969         struct s3c2410_nand_set *sets;
970
971         devtype_data = of_device_get_match_data(&pdev->dev);
972         if (!devtype_data)
973                 return -ENODEV;
974
975         info->cpu_type = devtype_data->type;
976
977         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
978         if (!pdata)
979                 return -ENOMEM;
980
981         pdev->dev.platform_data = pdata;
982
983         pdata->nr_sets = of_get_child_count(np);
984         if (!pdata->nr_sets)
985                 return 0;
986
987         sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
988                             GFP_KERNEL);
989         if (!sets)
990                 return -ENOMEM;
991
992         pdata->sets = sets;
993
994         for_each_available_child_of_node(np, child) {
995                 sets->name = (char *)child->name;
996                 sets->of_node = child;
997                 sets->nr_chips = 1;
998
999                 of_node_get(child);
1000
1001                 sets++;
1002         }
1003
1004         return 0;
1005 }
1006
1007 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1008 {
1009         struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1010
1011         info->cpu_type = platform_get_device_id(pdev)->driver_data;
1012
1013         return 0;
1014 }
1015
1016 /* s3c24xx_nand_probe
1017  *
1018  * called by device layer when it finds a device matching
1019  * one our driver can handled. This code checks to see if
1020  * it can allocate all necessary resources then calls the
1021  * nand layer to look for devices
1022 */
1023 static int s3c24xx_nand_probe(struct platform_device *pdev)
1024 {
1025         struct s3c2410_platform_nand *plat;
1026         struct s3c2410_nand_info *info;
1027         struct s3c2410_nand_mtd *nmtd;
1028         struct s3c2410_nand_set *sets;
1029         struct resource *res;
1030         int err = 0;
1031         int size;
1032         int nr_sets;
1033         int setno;
1034
1035         info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1036         if (info == NULL) {
1037                 err = -ENOMEM;
1038                 goto exit_error;
1039         }
1040
1041         platform_set_drvdata(pdev, info);
1042
1043         nand_controller_init(&info->controller);
1044         info->controller.ops = &s3c24xx_nand_controller_ops;
1045
1046         /* get the clock source and enable it */
1047
1048         info->clk = devm_clk_get(&pdev->dev, "nand");
1049         if (IS_ERR(info->clk)) {
1050                 dev_err(&pdev->dev, "failed to get clock\n");
1051                 err = -ENOENT;
1052                 goto exit_error;
1053         }
1054
1055         s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1056
1057         if (pdev->dev.of_node)
1058                 err = s3c24xx_nand_probe_dt(pdev);
1059         else
1060                 err = s3c24xx_nand_probe_pdata(pdev);
1061
1062         if (err)
1063                 goto exit_error;
1064
1065         plat = to_nand_plat(pdev);
1066
1067         /* allocate and map the resource */
1068
1069         /* currently we assume we have the one resource */
1070         res = pdev->resource;
1071         size = resource_size(res);
1072
1073         info->device    = &pdev->dev;
1074         info->platform  = plat;
1075
1076         info->regs = devm_ioremap_resource(&pdev->dev, res);
1077         if (IS_ERR(info->regs)) {
1078                 err = PTR_ERR(info->regs);
1079                 goto exit_error;
1080         }
1081
1082         dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1083
1084         if (!plat->sets || plat->nr_sets < 1) {
1085                 err = -EINVAL;
1086                 goto exit_error;
1087         }
1088
1089         sets = plat->sets;
1090         nr_sets = plat->nr_sets;
1091
1092         info->mtd_count = nr_sets;
1093
1094         /* allocate our information */
1095
1096         size = nr_sets * sizeof(*info->mtds);
1097         info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1098         if (info->mtds == NULL) {
1099                 err = -ENOMEM;
1100                 goto exit_error;
1101         }
1102
1103         /* initialise all possible chips */
1104
1105         nmtd = info->mtds;
1106
1107         for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1108                 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1109
1110                 pr_debug("initialising set %d (%p, info %p)\n",
1111                          setno, nmtd, info);
1112
1113                 mtd->dev.parent = &pdev->dev;
1114                 s3c2410_nand_init_chip(info, nmtd, sets);
1115
1116                 err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1117                 if (err)
1118                         goto exit_error;
1119
1120                 s3c2410_nand_add_partition(info, nmtd, sets);
1121         }
1122
1123         /* initialise the hardware */
1124         err = s3c2410_nand_inithw(info);
1125         if (err != 0)
1126                 goto exit_error;
1127
1128         if (allow_clk_suspend(info)) {
1129                 dev_info(&pdev->dev, "clock idle support enabled\n");
1130                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1131         }
1132
1133         return 0;
1134
1135  exit_error:
1136         s3c24xx_nand_remove(pdev);
1137
1138         if (err == 0)
1139                 err = -EINVAL;
1140         return err;
1141 }
1142
1143 /* PM Support */
1144 #ifdef CONFIG_PM
1145
1146 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1147 {
1148         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1149
1150         if (info) {
1151                 info->save_sel = readl(info->sel_reg);
1152
1153                 /* For the moment, we must ensure nFCE is high during
1154                  * the time we are suspended. This really should be
1155                  * handled by suspending the MTDs we are using, but
1156                  * that is currently not the case. */
1157
1158                 writel(info->save_sel | info->sel_bit, info->sel_reg);
1159
1160                 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1161         }
1162
1163         return 0;
1164 }
1165
1166 static int s3c24xx_nand_resume(struct platform_device *dev)
1167 {
1168         struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1169         unsigned long sel;
1170
1171         if (info) {
1172                 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1173                 s3c2410_nand_inithw(info);
1174
1175                 /* Restore the state of the nFCE line. */
1176
1177                 sel = readl(info->sel_reg);
1178                 sel &= ~info->sel_bit;
1179                 sel |= info->save_sel & info->sel_bit;
1180                 writel(sel, info->sel_reg);
1181
1182                 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1183         }
1184
1185         return 0;
1186 }
1187
1188 #else
1189 #define s3c24xx_nand_suspend NULL
1190 #define s3c24xx_nand_resume NULL
1191 #endif
1192
1193 /* driver device registration */
1194
1195 static const struct platform_device_id s3c24xx_driver_ids[] = {
1196         {
1197                 .name           = "s3c2410-nand",
1198                 .driver_data    = TYPE_S3C2410,
1199         }, {
1200                 .name           = "s3c2440-nand",
1201                 .driver_data    = TYPE_S3C2440,
1202         }, {
1203                 .name           = "s3c2412-nand",
1204                 .driver_data    = TYPE_S3C2412,
1205         }, {
1206                 .name           = "s3c6400-nand",
1207                 .driver_data    = TYPE_S3C2412, /* compatible with 2412 */
1208         },
1209         { }
1210 };
1211
1212 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1213
1214 static struct platform_driver s3c24xx_nand_driver = {
1215         .probe          = s3c24xx_nand_probe,
1216         .remove_new     = s3c24xx_nand_remove,
1217         .suspend        = s3c24xx_nand_suspend,
1218         .resume         = s3c24xx_nand_resume,
1219         .id_table       = s3c24xx_driver_ids,
1220         .driver         = {
1221                 .name   = "s3c24xx-nand",
1222                 .of_match_table = s3c24xx_nand_dt_ids,
1223         },
1224 };
1225
1226 module_platform_driver(s3c24xx_nand_driver);
1227
1228 MODULE_LICENSE("GPL");
1229 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1230 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");